Remove a MAX_REGISTER_SIZE from frame.c
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 struct address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* Flag to control debugging. */
273
274 unsigned int frame_debug;
275 static void
276 show_frame_debug (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
280 }
281
282 /* Flag to indicate whether backtraces should stop at main et.al. */
283
284 static int backtrace_past_main;
285 static void
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file,
290 _("Whether backtraces should "
291 "continue past \"main\" is %s.\n"),
292 value);
293 }
294
295 static int backtrace_past_entry;
296 static void
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
299 {
300 fprintf_filtered (file, _("Whether backtraces should continue past the "
301 "entry point of a program is %s.\n"),
302 value);
303 }
304
305 static unsigned int backtrace_limit = UINT_MAX;
306 static void
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file,
311 _("An upper bound on the number "
312 "of backtrace levels is %s.\n"),
313 value);
314 }
315
316
317 static void
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
319 {
320 if (p)
321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
322 else
323 fprintf_unfiltered (file, "!%s", name);
324 }
325
326 void
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
328 {
329 fprintf_unfiltered (file, "{");
330
331 if (id.stack_status == FID_STACK_INVALID)
332 fprintf_unfiltered (file, "!stack");
333 else if (id.stack_status == FID_STACK_UNAVAILABLE)
334 fprintf_unfiltered (file, "stack=<unavailable>");
335 else if (id.stack_status == FID_STACK_SENTINEL)
336 fprintf_unfiltered (file, "stack=<sentinel>");
337 else
338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339 fprintf_unfiltered (file, ",");
340
341 fprint_field (file, "code", id.code_addr_p, id.code_addr);
342 fprintf_unfiltered (file, ",");
343
344 fprint_field (file, "special", id.special_addr_p, id.special_addr);
345
346 if (id.artificial_depth)
347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
348
349 fprintf_unfiltered (file, "}");
350 }
351
352 static void
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
354 {
355 switch (type)
356 {
357 case NORMAL_FRAME:
358 fprintf_unfiltered (file, "NORMAL_FRAME");
359 return;
360 case DUMMY_FRAME:
361 fprintf_unfiltered (file, "DUMMY_FRAME");
362 return;
363 case INLINE_FRAME:
364 fprintf_unfiltered (file, "INLINE_FRAME");
365 return;
366 case TAILCALL_FRAME:
367 fprintf_unfiltered (file, "TAILCALL_FRAME");
368 return;
369 case SIGTRAMP_FRAME:
370 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
371 return;
372 case ARCH_FRAME:
373 fprintf_unfiltered (file, "ARCH_FRAME");
374 return;
375 case SENTINEL_FRAME:
376 fprintf_unfiltered (file, "SENTINEL_FRAME");
377 return;
378 default:
379 fprintf_unfiltered (file, "<unknown type>");
380 return;
381 };
382 }
383
384 static void
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
386 {
387 if (fi == NULL)
388 {
389 fprintf_unfiltered (file, "<NULL frame>");
390 return;
391 }
392 fprintf_unfiltered (file, "{");
393 fprintf_unfiltered (file, "level=%d", fi->level);
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "type=");
396 if (fi->unwind != NULL)
397 fprint_frame_type (file, fi->unwind->type);
398 else
399 fprintf_unfiltered (file, "<unknown>");
400 fprintf_unfiltered (file, ",");
401 fprintf_unfiltered (file, "unwind=");
402 if (fi->unwind != NULL)
403 gdb_print_host_address (fi->unwind, file);
404 else
405 fprintf_unfiltered (file, "<unknown>");
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "pc=");
408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409 fprintf_unfiltered (file, "<unknown>");
410 else if (fi->next->prev_pc.status == CC_VALUE)
411 fprintf_unfiltered (file, "%s",
412 hex_string (fi->next->prev_pc.value));
413 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414 val_print_not_saved (file);
415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416 val_print_unavailable (file);
417 fprintf_unfiltered (file, ",");
418 fprintf_unfiltered (file, "id=");
419 if (fi->this_id.p)
420 fprint_frame_id (file, fi->this_id.value);
421 else
422 fprintf_unfiltered (file, "<unknown>");
423 fprintf_unfiltered (file, ",");
424 fprintf_unfiltered (file, "func=");
425 if (fi->next != NULL && fi->next->prev_func.p)
426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
427 else
428 fprintf_unfiltered (file, "<unknown>");
429 fprintf_unfiltered (file, "}");
430 }
431
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433 inferior memory. Skip any previous frames which were made up by GDB.
434 Return FRAME if FRAME is a non-artificial frame.
435 Return NULL if FRAME is the start of an artificial-only chain. */
436
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
439 {
440 /* Note we use get_prev_frame_always, and not get_prev_frame. The
441 latter will truncate the frame chain, leading to this function
442 unintentionally returning a null_frame_id (e.g., when the user
443 sets a backtrace limit).
444
445 Note that for record targets we may get a frame chain that consists
446 of artificial frames only. */
447 while (get_frame_type (frame) == INLINE_FRAME
448 || get_frame_type (frame) == TAILCALL_FRAME)
449 {
450 frame = get_prev_frame_always (frame);
451 if (frame == NULL)
452 break;
453 }
454
455 return frame;
456 }
457
458 struct frame_info *
459 skip_unwritable_frames (struct frame_info *frame)
460 {
461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
462 {
463 frame = get_prev_frame (frame);
464 if (frame == NULL)
465 break;
466 }
467
468 return frame;
469 }
470
471 /* See frame.h. */
472
473 struct frame_info *
474 skip_tailcall_frames (struct frame_info *frame)
475 {
476 while (get_frame_type (frame) == TAILCALL_FRAME)
477 {
478 /* Note that for record targets we may get a frame chain that consists of
479 tailcall frames only. */
480 frame = get_prev_frame (frame);
481 if (frame == NULL)
482 break;
483 }
484
485 return frame;
486 }
487
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
489 frame. */
490
491 static void
492 compute_frame_id (struct frame_info *fi)
493 {
494 gdb_assert (!fi->this_id.p);
495
496 if (frame_debug)
497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
498 fi->level);
499 /* Find the unwinder. */
500 if (fi->unwind == NULL)
501 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502 /* Find THIS frame's ID. */
503 /* Default to outermost if no ID is found. */
504 fi->this_id.value = outer_frame_id;
505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506 gdb_assert (frame_id_p (fi->this_id.value));
507 fi->this_id.p = 1;
508 if (frame_debug)
509 {
510 fprintf_unfiltered (gdb_stdlog, "-> ");
511 fprint_frame_id (gdb_stdlog, fi->this_id.value);
512 fprintf_unfiltered (gdb_stdlog, " }\n");
513 }
514 }
515
516 /* Return a frame uniq ID that can be used to, later, re-find the
517 frame. */
518
519 struct frame_id
520 get_frame_id (struct frame_info *fi)
521 {
522 if (fi == NULL)
523 return null_frame_id;
524
525 if (!fi->this_id.p)
526 {
527 int stashed;
528
529 /* If we haven't computed the frame id yet, then it must be that
530 this is the current frame. Compute it now, and stash the
531 result. The IDs of other frames are computed as soon as
532 they're created, in order to detect cycles. See
533 get_prev_frame_if_no_cycle. */
534 gdb_assert (fi->level == 0);
535
536 /* Compute. */
537 compute_frame_id (fi);
538
539 /* Since this is the first frame in the chain, this should
540 always succeed. */
541 stashed = frame_stash_add (fi);
542 gdb_assert (stashed);
543 }
544
545 return fi->this_id.value;
546 }
547
548 struct frame_id
549 get_stack_frame_id (struct frame_info *next_frame)
550 {
551 return get_frame_id (skip_artificial_frames (next_frame));
552 }
553
554 struct frame_id
555 frame_unwind_caller_id (struct frame_info *next_frame)
556 {
557 struct frame_info *this_frame;
558
559 /* Use get_prev_frame_always, and not get_prev_frame. The latter
560 will truncate the frame chain, leading to this function
561 unintentionally returning a null_frame_id (e.g., when a caller
562 requests the frame ID of "main()"s caller. */
563
564 next_frame = skip_artificial_frames (next_frame);
565 if (next_frame == NULL)
566 return null_frame_id;
567
568 this_frame = get_prev_frame_always (next_frame);
569 if (this_frame)
570 return get_frame_id (skip_artificial_frames (this_frame));
571 else
572 return null_frame_id;
573 }
574
575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
578
579 struct frame_id
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581 CORE_ADDR special_addr)
582 {
583 struct frame_id id = null_frame_id;
584
585 id.stack_addr = stack_addr;
586 id.stack_status = FID_STACK_VALID;
587 id.code_addr = code_addr;
588 id.code_addr_p = 1;
589 id.special_addr = special_addr;
590 id.special_addr_p = 1;
591 return id;
592 }
593
594 /* See frame.h. */
595
596 struct frame_id
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_status = FID_STACK_UNAVAILABLE;
602 id.code_addr = code_addr;
603 id.code_addr_p = 1;
604 return id;
605 }
606
607 /* See frame.h. */
608
609 struct frame_id
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611 CORE_ADDR special_addr)
612 {
613 struct frame_id id = null_frame_id;
614
615 id.stack_status = FID_STACK_UNAVAILABLE;
616 id.code_addr = code_addr;
617 id.code_addr_p = 1;
618 id.special_addr = special_addr;
619 id.special_addr_p = 1;
620 return id;
621 }
622
623 struct frame_id
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
625 {
626 struct frame_id id = null_frame_id;
627
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 id.code_addr = code_addr;
631 id.code_addr_p = 1;
632 return id;
633 }
634
635 struct frame_id
636 frame_id_build_wild (CORE_ADDR stack_addr)
637 {
638 struct frame_id id = null_frame_id;
639
640 id.stack_addr = stack_addr;
641 id.stack_status = FID_STACK_VALID;
642 return id;
643 }
644
645 int
646 frame_id_p (struct frame_id l)
647 {
648 int p;
649
650 /* The frame is valid iff it has a valid stack address. */
651 p = l.stack_status != FID_STACK_INVALID;
652 /* outer_frame_id is also valid. */
653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
654 p = 1;
655 if (frame_debug)
656 {
657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658 fprint_frame_id (gdb_stdlog, l);
659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
660 }
661 return p;
662 }
663
664 int
665 frame_id_artificial_p (struct frame_id l)
666 {
667 if (!frame_id_p (l))
668 return 0;
669
670 return (l.artificial_depth != 0);
671 }
672
673 int
674 frame_id_eq (struct frame_id l, struct frame_id r)
675 {
676 int eq;
677
678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680 /* The outermost frame marker is equal to itself. This is the
681 dodgy thing about outer_frame_id, since between execution steps
682 we might step into another function - from which we can't
683 unwind either. More thought required to get rid of
684 outer_frame_id. */
685 eq = 1;
686 else if (l.stack_status == FID_STACK_INVALID
687 || r.stack_status == FID_STACK_INVALID)
688 /* Like a NaN, if either ID is invalid, the result is false.
689 Note that a frame ID is invalid iff it is the null frame ID. */
690 eq = 0;
691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692 /* If .stack addresses are different, the frames are different. */
693 eq = 0;
694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695 /* An invalid code addr is a wild card. If .code addresses are
696 different, the frames are different. */
697 eq = 0;
698 else if (l.special_addr_p && r.special_addr_p
699 && l.special_addr != r.special_addr)
700 /* An invalid special addr is a wild card (or unused). Otherwise
701 if special addresses are different, the frames are different. */
702 eq = 0;
703 else if (l.artificial_depth != r.artificial_depth)
704 /* If artifical depths are different, the frames must be different. */
705 eq = 0;
706 else
707 /* Frames are equal. */
708 eq = 1;
709
710 if (frame_debug)
711 {
712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713 fprint_frame_id (gdb_stdlog, l);
714 fprintf_unfiltered (gdb_stdlog, ",r=");
715 fprint_frame_id (gdb_stdlog, r);
716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
717 }
718 return eq;
719 }
720
721 /* Safety net to check whether frame ID L should be inner to
722 frame ID R, according to their stack addresses.
723
724 This method cannot be used to compare arbitrary frames, as the
725 ranges of valid stack addresses may be discontiguous (e.g. due
726 to sigaltstack).
727
728 However, it can be used as safety net to discover invalid frame
729 IDs in certain circumstances. Assuming that NEXT is the immediate
730 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
731
732 * The stack address of NEXT must be inner-than-or-equal to the stack
733 address of THIS.
734
735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
736 error has occurred.
737
738 * If NEXT and THIS have different stack addresses, no other frame
739 in the frame chain may have a stack address in between.
740
741 Therefore, if frame_id_inner (TEST, THIS) holds, but
742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743 to a valid frame in the frame chain.
744
745 The sanity checks above cannot be performed when a SIGTRAMP frame
746 is involved, because signal handlers might be executed on a different
747 stack than the stack used by the routine that caused the signal
748 to be raised. This can happen for instance when a thread exceeds
749 its maximum stack size. In this case, certain compilers implement
750 a stack overflow strategy that cause the handler to be run on a
751 different stack. */
752
753 static int
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
755 {
756 int inner;
757
758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759 /* Like NaN, any operation involving an invalid ID always fails.
760 Likewise if either ID has an unavailable stack address. */
761 inner = 0;
762 else if (l.artificial_depth > r.artificial_depth
763 && l.stack_addr == r.stack_addr
764 && l.code_addr_p == r.code_addr_p
765 && l.special_addr_p == r.special_addr_p
766 && l.special_addr == r.special_addr)
767 {
768 /* Same function, different inlined functions. */
769 const struct block *lb, *rb;
770
771 gdb_assert (l.code_addr_p && r.code_addr_p);
772
773 lb = block_for_pc (l.code_addr);
774 rb = block_for_pc (r.code_addr);
775
776 if (lb == NULL || rb == NULL)
777 /* Something's gone wrong. */
778 inner = 0;
779 else
780 /* This will return true if LB and RB are the same block, or
781 if the block with the smaller depth lexically encloses the
782 block with the greater depth. */
783 inner = contained_in (lb, rb);
784 }
785 else
786 /* Only return non-zero when strictly inner than. Note that, per
787 comment in "frame.h", there is some fuzz here. Frameless
788 functions are not strictly inner than (same .stack but
789 different .code and/or .special address). */
790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
791 if (frame_debug)
792 {
793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794 fprint_frame_id (gdb_stdlog, l);
795 fprintf_unfiltered (gdb_stdlog, ",r=");
796 fprint_frame_id (gdb_stdlog, r);
797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
798 }
799 return inner;
800 }
801
802 struct frame_info *
803 frame_find_by_id (struct frame_id id)
804 {
805 struct frame_info *frame, *prev_frame;
806
807 /* ZERO denotes the null frame, let the caller decide what to do
808 about it. Should it instead return get_current_frame()? */
809 if (!frame_id_p (id))
810 return NULL;
811
812 /* Check for the sentinel frame. */
813 if (frame_id_eq (id, sentinel_frame_id))
814 return sentinel_frame;
815
816 /* Try using the frame stash first. Finding it there removes the need
817 to perform the search by looping over all frames, which can be very
818 CPU-intensive if the number of frames is very high (the loop is O(n)
819 and get_prev_frame performs a series of checks that are relatively
820 expensive). This optimization is particularly useful when this function
821 is called from another function (such as value_fetch_lazy, case
822 VALUE_LVAL (val) == lval_register) which already loops over all frames,
823 making the overall behavior O(n^2). */
824 frame = frame_stash_find (id);
825 if (frame)
826 return frame;
827
828 for (frame = get_current_frame (); ; frame = prev_frame)
829 {
830 struct frame_id self = get_frame_id (frame);
831
832 if (frame_id_eq (id, self))
833 /* An exact match. */
834 return frame;
835
836 prev_frame = get_prev_frame (frame);
837 if (!prev_frame)
838 return NULL;
839
840 /* As a safety net to avoid unnecessary backtracing while trying
841 to find an invalid ID, we check for a common situation where
842 we can detect from comparing stack addresses that no other
843 frame in the current frame chain can have this ID. See the
844 comment at frame_id_inner for details. */
845 if (get_frame_type (frame) == NORMAL_FRAME
846 && !frame_id_inner (get_frame_arch (frame), id, self)
847 && frame_id_inner (get_frame_arch (prev_frame), id,
848 get_frame_id (prev_frame)))
849 return NULL;
850 }
851 return NULL;
852 }
853
854 static CORE_ADDR
855 frame_unwind_pc (struct frame_info *this_frame)
856 {
857 if (this_frame->prev_pc.status == CC_UNKNOWN)
858 {
859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
860 {
861 struct gdbarch *prev_gdbarch;
862 CORE_ADDR pc = 0;
863 int pc_p = 0;
864
865 /* The right way. The `pure' way. The one true way. This
866 method depends solely on the register-unwind code to
867 determine the value of registers in THIS frame, and hence
868 the value of this frame's PC (resume address). A typical
869 implementation is no more than:
870
871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
873
874 Note: this method is very heavily dependent on a correct
875 register-unwind implementation, it pays to fix that
876 method first; this method is frame type agnostic, since
877 it only deals with register values, it works with any
878 frame. This is all in stark contrast to the old
879 FRAME_SAVED_PC which would try to directly handle all the
880 different ways that a PC could be unwound. */
881 prev_gdbarch = frame_unwind_arch (this_frame);
882
883 TRY
884 {
885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
886 pc_p = 1;
887 }
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 if (ex.error == NOT_AVAILABLE_ERROR)
891 {
892 this_frame->prev_pc.status = CC_UNAVAILABLE;
893
894 if (frame_debug)
895 fprintf_unfiltered (gdb_stdlog,
896 "{ frame_unwind_pc (this_frame=%d)"
897 " -> <unavailable> }\n",
898 this_frame->level);
899 }
900 else if (ex.error == OPTIMIZED_OUT_ERROR)
901 {
902 this_frame->prev_pc.status = CC_NOT_SAVED;
903
904 if (frame_debug)
905 fprintf_unfiltered (gdb_stdlog,
906 "{ frame_unwind_pc (this_frame=%d)"
907 " -> <not saved> }\n",
908 this_frame->level);
909 }
910 else
911 throw_exception (ex);
912 }
913 END_CATCH
914
915 if (pc_p)
916 {
917 this_frame->prev_pc.value = pc;
918 this_frame->prev_pc.status = CC_VALUE;
919 if (frame_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "{ frame_unwind_pc (this_frame=%d) "
922 "-> %s }\n",
923 this_frame->level,
924 hex_string (this_frame->prev_pc.value));
925 }
926 }
927 else
928 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
929 }
930
931 if (this_frame->prev_pc.status == CC_VALUE)
932 return this_frame->prev_pc.value;
933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
937 else
938 internal_error (__FILE__, __LINE__,
939 "unexpected prev_pc status: %d",
940 (int) this_frame->prev_pc.status);
941 }
942
943 CORE_ADDR
944 frame_unwind_caller_pc (struct frame_info *this_frame)
945 {
946 this_frame = skip_artificial_frames (this_frame);
947
948 /* We must have a non-artificial frame. The caller is supposed to check
949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
950 in this case. */
951 gdb_assert (this_frame != NULL);
952
953 return frame_unwind_pc (this_frame);
954 }
955
956 int
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
958 {
959 struct frame_info *next_frame = this_frame->next;
960
961 if (!next_frame->prev_func.p)
962 {
963 CORE_ADDR addr_in_block;
964
965 /* Make certain that this, and not the adjacent, function is
966 found. */
967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
968 {
969 next_frame->prev_func.p = -1;
970 if (frame_debug)
971 fprintf_unfiltered (gdb_stdlog,
972 "{ get_frame_func (this_frame=%d)"
973 " -> unavailable }\n",
974 this_frame->level);
975 }
976 else
977 {
978 next_frame->prev_func.p = 1;
979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
980 if (frame_debug)
981 fprintf_unfiltered (gdb_stdlog,
982 "{ get_frame_func (this_frame=%d) -> %s }\n",
983 this_frame->level,
984 hex_string (next_frame->prev_func.addr));
985 }
986 }
987
988 if (next_frame->prev_func.p < 0)
989 {
990 *pc = -1;
991 return 0;
992 }
993 else
994 {
995 *pc = next_frame->prev_func.addr;
996 return 1;
997 }
998 }
999
1000 CORE_ADDR
1001 get_frame_func (struct frame_info *this_frame)
1002 {
1003 CORE_ADDR pc;
1004
1005 if (!get_frame_func_if_available (this_frame, &pc))
1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1007
1008 return pc;
1009 }
1010
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1013 {
1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015 return REG_UNAVAILABLE;
1016 else
1017 return REG_VALID;
1018 }
1019
1020 struct regcache *
1021 frame_save_as_regcache (struct frame_info *this_frame)
1022 {
1023 struct address_space *aspace = get_frame_address_space (this_frame);
1024 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
1025 aspace);
1026 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1027
1028 regcache_save (regcache, do_frame_register_read, this_frame);
1029 discard_cleanups (cleanups);
1030 return regcache;
1031 }
1032
1033 void
1034 frame_pop (struct frame_info *this_frame)
1035 {
1036 struct frame_info *prev_frame;
1037 struct regcache *scratch;
1038 struct cleanup *cleanups;
1039
1040 if (get_frame_type (this_frame) == DUMMY_FRAME)
1041 {
1042 /* Popping a dummy frame involves restoring more than just registers.
1043 dummy_frame_pop does all the work. */
1044 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1045 return;
1046 }
1047
1048 /* Ensure that we have a frame to pop to. */
1049 prev_frame = get_prev_frame_always (this_frame);
1050
1051 if (!prev_frame)
1052 error (_("Cannot pop the initial frame."));
1053
1054 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1055 entering THISFRAME. */
1056 prev_frame = skip_tailcall_frames (prev_frame);
1057
1058 if (prev_frame == NULL)
1059 error (_("Cannot find the caller frame."));
1060
1061 /* Make a copy of all the register values unwound from this frame.
1062 Save them in a scratch buffer so that there isn't a race between
1063 trying to extract the old values from the current regcache while
1064 at the same time writing new values into that same cache. */
1065 scratch = frame_save_as_regcache (prev_frame);
1066 cleanups = make_cleanup_regcache_xfree (scratch);
1067
1068 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1069 target's register cache that it is about to be hit with a burst
1070 register transfer and that the sequence of register writes should
1071 be batched. The pair target_prepare_to_store() and
1072 target_store_registers() kind of suggest this functionality.
1073 Unfortunately, they don't implement it. Their lack of a formal
1074 definition can lead to targets writing back bogus values
1075 (arguably a bug in the target code mind). */
1076 /* Now copy those saved registers into the current regcache.
1077 Here, regcache_cpy() calls regcache_restore(). */
1078 regcache_cpy (get_current_regcache (), scratch);
1079 do_cleanups (cleanups);
1080
1081 /* We've made right mess of GDB's local state, just discard
1082 everything. */
1083 reinit_frame_cache ();
1084 }
1085
1086 void
1087 frame_register_unwind (struct frame_info *frame, int regnum,
1088 int *optimizedp, int *unavailablep,
1089 enum lval_type *lvalp, CORE_ADDR *addrp,
1090 int *realnump, gdb_byte *bufferp)
1091 {
1092 struct value *value;
1093
1094 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1095 that the value proper does not need to be fetched. */
1096 gdb_assert (optimizedp != NULL);
1097 gdb_assert (lvalp != NULL);
1098 gdb_assert (addrp != NULL);
1099 gdb_assert (realnump != NULL);
1100 /* gdb_assert (bufferp != NULL); */
1101
1102 value = frame_unwind_register_value (frame, regnum);
1103
1104 gdb_assert (value != NULL);
1105
1106 *optimizedp = value_optimized_out (value);
1107 *unavailablep = !value_entirely_available (value);
1108 *lvalp = VALUE_LVAL (value);
1109 *addrp = value_address (value);
1110 if (*lvalp == lval_register)
1111 *realnump = VALUE_REGNUM (value);
1112 else
1113 *realnump = -1;
1114
1115 if (bufferp)
1116 {
1117 if (!*optimizedp && !*unavailablep)
1118 memcpy (bufferp, value_contents_all (value),
1119 TYPE_LENGTH (value_type (value)));
1120 else
1121 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1122 }
1123
1124 /* Dispose of the new value. This prevents watchpoints from
1125 trying to watch the saved frame pointer. */
1126 release_value (value);
1127 value_free (value);
1128 }
1129
1130 void
1131 frame_register (struct frame_info *frame, int regnum,
1132 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1133 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1134 {
1135 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1136 that the value proper does not need to be fetched. */
1137 gdb_assert (optimizedp != NULL);
1138 gdb_assert (lvalp != NULL);
1139 gdb_assert (addrp != NULL);
1140 gdb_assert (realnump != NULL);
1141 /* gdb_assert (bufferp != NULL); */
1142
1143 /* Obtain the register value by unwinding the register from the next
1144 (more inner frame). */
1145 gdb_assert (frame != NULL && frame->next != NULL);
1146 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1147 lvalp, addrp, realnump, bufferp);
1148 }
1149
1150 void
1151 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1152 {
1153 int optimized;
1154 int unavailable;
1155 CORE_ADDR addr;
1156 int realnum;
1157 enum lval_type lval;
1158
1159 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1160 &lval, &addr, &realnum, buf);
1161
1162 if (optimized)
1163 throw_error (OPTIMIZED_OUT_ERROR,
1164 _("Register %d was not saved"), regnum);
1165 if (unavailable)
1166 throw_error (NOT_AVAILABLE_ERROR,
1167 _("Register %d is not available"), regnum);
1168 }
1169
1170 void
1171 get_frame_register (struct frame_info *frame,
1172 int regnum, gdb_byte *buf)
1173 {
1174 frame_unwind_register (frame->next, regnum, buf);
1175 }
1176
1177 struct value *
1178 frame_unwind_register_value (struct frame_info *frame, int regnum)
1179 {
1180 struct gdbarch *gdbarch;
1181 struct value *value;
1182
1183 gdb_assert (frame != NULL);
1184 gdbarch = frame_unwind_arch (frame);
1185
1186 if (frame_debug)
1187 {
1188 fprintf_unfiltered (gdb_stdlog,
1189 "{ frame_unwind_register_value "
1190 "(frame=%d,regnum=%d(%s),...) ",
1191 frame->level, regnum,
1192 user_reg_map_regnum_to_name (gdbarch, regnum));
1193 }
1194
1195 /* Find the unwinder. */
1196 if (frame->unwind == NULL)
1197 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1198
1199 /* Ask this frame to unwind its register. */
1200 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1201
1202 if (frame_debug)
1203 {
1204 fprintf_unfiltered (gdb_stdlog, "->");
1205 if (value_optimized_out (value))
1206 {
1207 fprintf_unfiltered (gdb_stdlog, " ");
1208 val_print_optimized_out (value, gdb_stdlog);
1209 }
1210 else
1211 {
1212 if (VALUE_LVAL (value) == lval_register)
1213 fprintf_unfiltered (gdb_stdlog, " register=%d",
1214 VALUE_REGNUM (value));
1215 else if (VALUE_LVAL (value) == lval_memory)
1216 fprintf_unfiltered (gdb_stdlog, " address=%s",
1217 paddress (gdbarch,
1218 value_address (value)));
1219 else
1220 fprintf_unfiltered (gdb_stdlog, " computed");
1221
1222 if (value_lazy (value))
1223 fprintf_unfiltered (gdb_stdlog, " lazy");
1224 else
1225 {
1226 int i;
1227 const gdb_byte *buf = value_contents (value);
1228
1229 fprintf_unfiltered (gdb_stdlog, " bytes=");
1230 fprintf_unfiltered (gdb_stdlog, "[");
1231 for (i = 0; i < register_size (gdbarch, regnum); i++)
1232 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1233 fprintf_unfiltered (gdb_stdlog, "]");
1234 }
1235 }
1236
1237 fprintf_unfiltered (gdb_stdlog, " }\n");
1238 }
1239
1240 return value;
1241 }
1242
1243 struct value *
1244 get_frame_register_value (struct frame_info *frame, int regnum)
1245 {
1246 return frame_unwind_register_value (frame->next, regnum);
1247 }
1248
1249 LONGEST
1250 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1251 {
1252 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1254 int size = register_size (gdbarch, regnum);
1255 struct value *value = frame_unwind_register_value (frame, regnum);
1256
1257 gdb_assert (value != NULL);
1258
1259 if (value_optimized_out (value))
1260 {
1261 throw_error (OPTIMIZED_OUT_ERROR,
1262 _("Register %d was not saved"), regnum);
1263 }
1264 if (!value_entirely_available (value))
1265 {
1266 throw_error (NOT_AVAILABLE_ERROR,
1267 _("Register %d is not available"), regnum);
1268 }
1269
1270 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1271 byte_order);
1272
1273 release_value (value);
1274 value_free (value);
1275 return r;
1276 }
1277
1278 LONGEST
1279 get_frame_register_signed (struct frame_info *frame, int regnum)
1280 {
1281 return frame_unwind_register_signed (frame->next, regnum);
1282 }
1283
1284 ULONGEST
1285 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1286 {
1287 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1288 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1289 int size = register_size (gdbarch, regnum);
1290 struct value *value = frame_unwind_register_value (frame, regnum);
1291
1292 gdb_assert (value != NULL);
1293
1294 if (value_optimized_out (value))
1295 {
1296 throw_error (OPTIMIZED_OUT_ERROR,
1297 _("Register %d was not saved"), regnum);
1298 }
1299 if (!value_entirely_available (value))
1300 {
1301 throw_error (NOT_AVAILABLE_ERROR,
1302 _("Register %d is not available"), regnum);
1303 }
1304
1305 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1306 byte_order);
1307
1308 release_value (value);
1309 value_free (value);
1310 return r;
1311 }
1312
1313 ULONGEST
1314 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1315 {
1316 return frame_unwind_register_unsigned (frame->next, regnum);
1317 }
1318
1319 int
1320 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1321 ULONGEST *val)
1322 {
1323 struct value *regval = get_frame_register_value (frame, regnum);
1324
1325 if (!value_optimized_out (regval)
1326 && value_entirely_available (regval))
1327 {
1328 struct gdbarch *gdbarch = get_frame_arch (frame);
1329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1330 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1331
1332 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1333 return 1;
1334 }
1335
1336 return 0;
1337 }
1338
1339 void
1340 put_frame_register (struct frame_info *frame, int regnum,
1341 const gdb_byte *buf)
1342 {
1343 struct gdbarch *gdbarch = get_frame_arch (frame);
1344 int realnum;
1345 int optim;
1346 int unavail;
1347 enum lval_type lval;
1348 CORE_ADDR addr;
1349
1350 frame_register (frame, regnum, &optim, &unavail,
1351 &lval, &addr, &realnum, NULL);
1352 if (optim)
1353 error (_("Attempt to assign to a register that was not saved."));
1354 switch (lval)
1355 {
1356 case lval_memory:
1357 {
1358 write_memory (addr, buf, register_size (gdbarch, regnum));
1359 break;
1360 }
1361 case lval_register:
1362 regcache_cooked_write (get_current_regcache (), realnum, buf);
1363 break;
1364 default:
1365 error (_("Attempt to assign to an unmodifiable value."));
1366 }
1367 }
1368
1369 /* This function is deprecated. Use get_frame_register_value instead,
1370 which provides more accurate information.
1371
1372 Find and return the value of REGNUM for the specified stack frame.
1373 The number of bytes copied is REGISTER_SIZE (REGNUM).
1374
1375 Returns 0 if the register value could not be found. */
1376
1377 int
1378 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1379 gdb_byte *myaddr)
1380 {
1381 int optimized;
1382 int unavailable;
1383 enum lval_type lval;
1384 CORE_ADDR addr;
1385 int realnum;
1386
1387 frame_register (frame, regnum, &optimized, &unavailable,
1388 &lval, &addr, &realnum, myaddr);
1389
1390 return !optimized && !unavailable;
1391 }
1392
1393 int
1394 get_frame_register_bytes (struct frame_info *frame, int regnum,
1395 CORE_ADDR offset, int len, gdb_byte *myaddr,
1396 int *optimizedp, int *unavailablep)
1397 {
1398 struct gdbarch *gdbarch = get_frame_arch (frame);
1399 int i;
1400 int maxsize;
1401 int numregs;
1402
1403 /* Skip registers wholly inside of OFFSET. */
1404 while (offset >= register_size (gdbarch, regnum))
1405 {
1406 offset -= register_size (gdbarch, regnum);
1407 regnum++;
1408 }
1409
1410 /* Ensure that we will not read beyond the end of the register file.
1411 This can only ever happen if the debug information is bad. */
1412 maxsize = -offset;
1413 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1414 for (i = regnum; i < numregs; i++)
1415 {
1416 int thissize = register_size (gdbarch, i);
1417
1418 if (thissize == 0)
1419 break; /* This register is not available on this architecture. */
1420 maxsize += thissize;
1421 }
1422 if (len > maxsize)
1423 error (_("Bad debug information detected: "
1424 "Attempt to read %d bytes from registers."), len);
1425
1426 /* Copy the data. */
1427 while (len > 0)
1428 {
1429 int curr_len = register_size (gdbarch, regnum) - offset;
1430
1431 if (curr_len > len)
1432 curr_len = len;
1433
1434 if (curr_len == register_size (gdbarch, regnum))
1435 {
1436 enum lval_type lval;
1437 CORE_ADDR addr;
1438 int realnum;
1439
1440 frame_register (frame, regnum, optimizedp, unavailablep,
1441 &lval, &addr, &realnum, myaddr);
1442 if (*optimizedp || *unavailablep)
1443 return 0;
1444 }
1445 else
1446 {
1447 struct value *value = frame_unwind_register_value (frame->next,
1448 regnum);
1449 gdb_assert (value != NULL);
1450 *optimizedp = value_optimized_out (value);
1451 *unavailablep = !value_entirely_available (value);
1452
1453 if (*optimizedp || *unavailablep)
1454 {
1455 release_value (value);
1456 value_free (value);
1457 return 0;
1458 }
1459 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1460 release_value (value);
1461 value_free (value);
1462 }
1463
1464 myaddr += curr_len;
1465 len -= curr_len;
1466 offset = 0;
1467 regnum++;
1468 }
1469
1470 *optimizedp = 0;
1471 *unavailablep = 0;
1472 return 1;
1473 }
1474
1475 void
1476 put_frame_register_bytes (struct frame_info *frame, int regnum,
1477 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1478 {
1479 struct gdbarch *gdbarch = get_frame_arch (frame);
1480
1481 /* Skip registers wholly inside of OFFSET. */
1482 while (offset >= register_size (gdbarch, regnum))
1483 {
1484 offset -= register_size (gdbarch, regnum);
1485 regnum++;
1486 }
1487
1488 /* Copy the data. */
1489 while (len > 0)
1490 {
1491 int curr_len = register_size (gdbarch, regnum) - offset;
1492
1493 if (curr_len > len)
1494 curr_len = len;
1495
1496 if (curr_len == register_size (gdbarch, regnum))
1497 {
1498 put_frame_register (frame, regnum, myaddr);
1499 }
1500 else
1501 {
1502 struct value *value = frame_unwind_register_value (frame->next,
1503 regnum);
1504 gdb_assert (value != NULL);
1505
1506 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1507 curr_len);
1508 put_frame_register (frame, regnum, value_contents_raw (value));
1509 release_value (value);
1510 value_free (value);
1511 }
1512
1513 myaddr += curr_len;
1514 len -= curr_len;
1515 offset = 0;
1516 regnum++;
1517 }
1518 }
1519
1520 /* Create a sentinel frame. */
1521
1522 static struct frame_info *
1523 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1524 {
1525 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1526
1527 frame->level = -1;
1528 frame->pspace = pspace;
1529 frame->aspace = get_regcache_aspace (regcache);
1530 /* Explicitly initialize the sentinel frame's cache. Provide it
1531 with the underlying regcache. In the future additional
1532 information, such as the frame's thread will be added. */
1533 frame->prologue_cache = sentinel_frame_cache (regcache);
1534 /* For the moment there is only one sentinel frame implementation. */
1535 frame->unwind = &sentinel_frame_unwind;
1536 /* Link this frame back to itself. The frame is self referential
1537 (the unwound PC is the same as the pc), so make it so. */
1538 frame->next = frame;
1539 /* The sentinel frame has a special ID. */
1540 frame->this_id.p = 1;
1541 frame->this_id.value = sentinel_frame_id;
1542 if (frame_debug)
1543 {
1544 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1545 fprint_frame (gdb_stdlog, frame);
1546 fprintf_unfiltered (gdb_stdlog, " }\n");
1547 }
1548 return frame;
1549 }
1550
1551 /* Cache for frame addresses already read by gdb. Valid only while
1552 inferior is stopped. Control variables for the frame cache should
1553 be local to this module. */
1554
1555 static struct obstack frame_cache_obstack;
1556
1557 void *
1558 frame_obstack_zalloc (unsigned long size)
1559 {
1560 void *data = obstack_alloc (&frame_cache_obstack, size);
1561
1562 memset (data, 0, size);
1563 return data;
1564 }
1565
1566 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1567
1568 struct frame_info *
1569 get_current_frame (void)
1570 {
1571 struct frame_info *current_frame;
1572
1573 /* First check, and report, the lack of registers. Having GDB
1574 report "No stack!" or "No memory" when the target doesn't even
1575 have registers is very confusing. Besides, "printcmd.exp"
1576 explicitly checks that ``print $pc'' with no registers prints "No
1577 registers". */
1578 if (!target_has_registers)
1579 error (_("No registers."));
1580 if (!target_has_stack)
1581 error (_("No stack."));
1582 if (!target_has_memory)
1583 error (_("No memory."));
1584 /* Traceframes are effectively a substitute for the live inferior. */
1585 if (get_traceframe_number () < 0)
1586 validate_registers_access ();
1587
1588 if (sentinel_frame == NULL)
1589 sentinel_frame =
1590 create_sentinel_frame (current_program_space, get_current_regcache ());
1591
1592 /* Set the current frame before computing the frame id, to avoid
1593 recursion inside compute_frame_id, in case the frame's
1594 unwinder decides to do a symbol lookup (which depends on the
1595 selected frame's block).
1596
1597 This call must always succeed. In particular, nothing inside
1598 get_prev_frame_always_1 should try to unwind from the
1599 sentinel frame, because that could fail/throw, and we always
1600 want to leave with the current frame created and linked in --
1601 we should never end up with the sentinel frame as outermost
1602 frame. */
1603 current_frame = get_prev_frame_always_1 (sentinel_frame);
1604 gdb_assert (current_frame != NULL);
1605
1606 return current_frame;
1607 }
1608
1609 /* The "selected" stack frame is used by default for local and arg
1610 access. May be zero, for no selected frame. */
1611
1612 static struct frame_info *selected_frame;
1613
1614 int
1615 has_stack_frames (void)
1616 {
1617 if (!target_has_registers || !target_has_stack || !target_has_memory)
1618 return 0;
1619
1620 /* Traceframes are effectively a substitute for the live inferior. */
1621 if (get_traceframe_number () < 0)
1622 {
1623 /* No current inferior, no frame. */
1624 if (ptid_equal (inferior_ptid, null_ptid))
1625 return 0;
1626
1627 /* Don't try to read from a dead thread. */
1628 if (is_exited (inferior_ptid))
1629 return 0;
1630
1631 /* ... or from a spinning thread. */
1632 if (is_executing (inferior_ptid))
1633 return 0;
1634 }
1635
1636 return 1;
1637 }
1638
1639 /* Return the selected frame. Always non-NULL (unless there isn't an
1640 inferior sufficient for creating a frame) in which case an error is
1641 thrown. */
1642
1643 struct frame_info *
1644 get_selected_frame (const char *message)
1645 {
1646 if (selected_frame == NULL)
1647 {
1648 if (message != NULL && !has_stack_frames ())
1649 error (("%s"), message);
1650 /* Hey! Don't trust this. It should really be re-finding the
1651 last selected frame of the currently selected thread. This,
1652 though, is better than nothing. */
1653 select_frame (get_current_frame ());
1654 }
1655 /* There is always a frame. */
1656 gdb_assert (selected_frame != NULL);
1657 return selected_frame;
1658 }
1659
1660 /* If there is a selected frame, return it. Otherwise, return NULL. */
1661
1662 struct frame_info *
1663 get_selected_frame_if_set (void)
1664 {
1665 return selected_frame;
1666 }
1667
1668 /* This is a variant of get_selected_frame() which can be called when
1669 the inferior does not have a frame; in that case it will return
1670 NULL instead of calling error(). */
1671
1672 struct frame_info *
1673 deprecated_safe_get_selected_frame (void)
1674 {
1675 if (!has_stack_frames ())
1676 return NULL;
1677 return get_selected_frame (NULL);
1678 }
1679
1680 /* Select frame FI (or NULL - to invalidate the current frame). */
1681
1682 void
1683 select_frame (struct frame_info *fi)
1684 {
1685 selected_frame = fi;
1686 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1687 frame is being invalidated. */
1688
1689 /* FIXME: kseitz/2002-08-28: It would be nice to call
1690 selected_frame_level_changed_event() right here, but due to limitations
1691 in the current interfaces, we would end up flooding UIs with events
1692 because select_frame() is used extensively internally.
1693
1694 Once we have frame-parameterized frame (and frame-related) commands,
1695 the event notification can be moved here, since this function will only
1696 be called when the user's selected frame is being changed. */
1697
1698 /* Ensure that symbols for this frame are read in. Also, determine the
1699 source language of this frame, and switch to it if desired. */
1700 if (fi)
1701 {
1702 CORE_ADDR pc;
1703
1704 /* We retrieve the frame's symtab by using the frame PC.
1705 However we cannot use the frame PC as-is, because it usually
1706 points to the instruction following the "call", which is
1707 sometimes the first instruction of another function. So we
1708 rely on get_frame_address_in_block() which provides us with a
1709 PC which is guaranteed to be inside the frame's code
1710 block. */
1711 if (get_frame_address_in_block_if_available (fi, &pc))
1712 {
1713 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1714
1715 if (cust != NULL
1716 && compunit_language (cust) != current_language->la_language
1717 && compunit_language (cust) != language_unknown
1718 && language_mode == language_mode_auto)
1719 set_language (compunit_language (cust));
1720 }
1721 }
1722 }
1723
1724 #if GDB_SELF_TEST
1725 struct frame_info *
1726 create_test_frame (struct regcache *regcache)
1727 {
1728 struct frame_info *this_frame = XCNEW (struct frame_info);
1729
1730 sentinel_frame = create_sentinel_frame (NULL, regcache);
1731 sentinel_frame->prev = this_frame;
1732 sentinel_frame->prev_p = 1;;
1733 this_frame->prev_arch.p = 1;
1734 this_frame->prev_arch.arch = get_regcache_arch (regcache);
1735 this_frame->next = sentinel_frame;
1736
1737 return this_frame;
1738 }
1739 #endif
1740
1741 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1742 Always returns a non-NULL value. */
1743
1744 struct frame_info *
1745 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1746 {
1747 struct frame_info *fi;
1748
1749 if (frame_debug)
1750 {
1751 fprintf_unfiltered (gdb_stdlog,
1752 "{ create_new_frame (addr=%s, pc=%s) ",
1753 hex_string (addr), hex_string (pc));
1754 }
1755
1756 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1757
1758 fi->next = create_sentinel_frame (current_program_space,
1759 get_current_regcache ());
1760
1761 /* Set/update this frame's cached PC value, found in the next frame.
1762 Do this before looking for this frame's unwinder. A sniffer is
1763 very likely to read this, and the corresponding unwinder is
1764 entitled to rely that the PC doesn't magically change. */
1765 fi->next->prev_pc.value = pc;
1766 fi->next->prev_pc.status = CC_VALUE;
1767
1768 /* We currently assume that frame chain's can't cross spaces. */
1769 fi->pspace = fi->next->pspace;
1770 fi->aspace = fi->next->aspace;
1771
1772 /* Select/initialize both the unwind function and the frame's type
1773 based on the PC. */
1774 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1775
1776 fi->this_id.p = 1;
1777 fi->this_id.value = frame_id_build (addr, pc);
1778
1779 if (frame_debug)
1780 {
1781 fprintf_unfiltered (gdb_stdlog, "-> ");
1782 fprint_frame (gdb_stdlog, fi);
1783 fprintf_unfiltered (gdb_stdlog, " }\n");
1784 }
1785
1786 return fi;
1787 }
1788
1789 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1790 innermost frame). Be careful to not fall off the bottom of the
1791 frame chain and onto the sentinel frame. */
1792
1793 struct frame_info *
1794 get_next_frame (struct frame_info *this_frame)
1795 {
1796 if (this_frame->level > 0)
1797 return this_frame->next;
1798 else
1799 return NULL;
1800 }
1801
1802 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1803 innermost (i.e. current) frame, return the sentinel frame. Thus,
1804 unlike get_next_frame(), NULL will never be returned. */
1805
1806 struct frame_info *
1807 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1808 {
1809 gdb_assert (this_frame != NULL);
1810
1811 /* Note that, due to the manner in which the sentinel frame is
1812 constructed, this_frame->next still works even when this_frame
1813 is the sentinel frame. But we disallow it here anyway because
1814 calling get_next_frame_sentinel_okay() on the sentinel frame
1815 is likely a coding error. */
1816 gdb_assert (this_frame != sentinel_frame);
1817
1818 return this_frame->next;
1819 }
1820
1821 /* Observer for the target_changed event. */
1822
1823 static void
1824 frame_observer_target_changed (struct target_ops *target)
1825 {
1826 reinit_frame_cache ();
1827 }
1828
1829 /* Flush the entire frame cache. */
1830
1831 void
1832 reinit_frame_cache (void)
1833 {
1834 struct frame_info *fi;
1835
1836 /* Tear down all frame caches. */
1837 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1838 {
1839 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1840 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1841 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1842 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1843 }
1844
1845 /* Since we can't really be sure what the first object allocated was. */
1846 obstack_free (&frame_cache_obstack, 0);
1847 obstack_init (&frame_cache_obstack);
1848
1849 if (sentinel_frame != NULL)
1850 annotate_frames_invalid ();
1851
1852 sentinel_frame = NULL; /* Invalidate cache */
1853 select_frame (NULL);
1854 frame_stash_invalidate ();
1855 if (frame_debug)
1856 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1857 }
1858
1859 /* Find where a register is saved (in memory or another register).
1860 The result of frame_register_unwind is just where it is saved
1861 relative to this particular frame. */
1862
1863 static void
1864 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1865 int *optimizedp, enum lval_type *lvalp,
1866 CORE_ADDR *addrp, int *realnump)
1867 {
1868 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1869
1870 while (this_frame != NULL)
1871 {
1872 int unavailable;
1873
1874 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1875 lvalp, addrp, realnump, NULL);
1876
1877 if (*optimizedp)
1878 break;
1879
1880 if (*lvalp != lval_register)
1881 break;
1882
1883 regnum = *realnump;
1884 this_frame = get_next_frame (this_frame);
1885 }
1886 }
1887
1888 /* Called during frame unwinding to remove a previous frame pointer from a
1889 frame passed in ARG. */
1890
1891 static void
1892 remove_prev_frame (void *arg)
1893 {
1894 struct frame_info *this_frame, *prev_frame;
1895
1896 this_frame = (struct frame_info *) arg;
1897 prev_frame = this_frame->prev;
1898 gdb_assert (prev_frame != NULL);
1899
1900 prev_frame->next = NULL;
1901 this_frame->prev = NULL;
1902 }
1903
1904 /* Get the previous raw frame, and check that it is not identical to
1905 same other frame frame already in the chain. If it is, there is
1906 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1907 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1908 validity tests, that compare THIS_FRAME and the next frame, we do
1909 this right after creating the previous frame, to avoid ever ending
1910 up with two frames with the same id in the frame chain. */
1911
1912 static struct frame_info *
1913 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1914 {
1915 struct frame_info *prev_frame;
1916 struct cleanup *prev_frame_cleanup;
1917
1918 prev_frame = get_prev_frame_raw (this_frame);
1919
1920 /* Don't compute the frame id of the current frame yet. Unwinding
1921 the sentinel frame can fail (e.g., if the thread is gone and we
1922 can't thus read its registers). If we let the cycle detection
1923 code below try to compute a frame ID, then an error thrown from
1924 within the frame ID computation would result in the sentinel
1925 frame as outermost frame, which is bogus. Instead, we'll compute
1926 the current frame's ID lazily in get_frame_id. Note that there's
1927 no point in doing cycle detection when there's only one frame, so
1928 nothing is lost here. */
1929 if (prev_frame->level == 0)
1930 return prev_frame;
1931
1932 /* The cleanup will remove the previous frame that get_prev_frame_raw
1933 linked onto THIS_FRAME. */
1934 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1935
1936 compute_frame_id (prev_frame);
1937 if (!frame_stash_add (prev_frame))
1938 {
1939 /* Another frame with the same id was already in the stash. We just
1940 detected a cycle. */
1941 if (frame_debug)
1942 {
1943 fprintf_unfiltered (gdb_stdlog, "-> ");
1944 fprint_frame (gdb_stdlog, NULL);
1945 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1946 }
1947 this_frame->stop_reason = UNWIND_SAME_ID;
1948 /* Unlink. */
1949 prev_frame->next = NULL;
1950 this_frame->prev = NULL;
1951 prev_frame = NULL;
1952 }
1953
1954 discard_cleanups (prev_frame_cleanup);
1955 return prev_frame;
1956 }
1957
1958 /* Helper function for get_prev_frame_always, this is called inside a
1959 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1960 there is no such frame. This may throw an exception. */
1961
1962 static struct frame_info *
1963 get_prev_frame_always_1 (struct frame_info *this_frame)
1964 {
1965 struct gdbarch *gdbarch;
1966
1967 gdb_assert (this_frame != NULL);
1968 gdbarch = get_frame_arch (this_frame);
1969
1970 if (frame_debug)
1971 {
1972 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1973 if (this_frame != NULL)
1974 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1975 else
1976 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1977 fprintf_unfiltered (gdb_stdlog, ") ");
1978 }
1979
1980 /* Only try to do the unwind once. */
1981 if (this_frame->prev_p)
1982 {
1983 if (frame_debug)
1984 {
1985 fprintf_unfiltered (gdb_stdlog, "-> ");
1986 fprint_frame (gdb_stdlog, this_frame->prev);
1987 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1988 }
1989 return this_frame->prev;
1990 }
1991
1992 /* If the frame unwinder hasn't been selected yet, we must do so
1993 before setting prev_p; otherwise the check for misbehaved
1994 sniffers will think that this frame's sniffer tried to unwind
1995 further (see frame_cleanup_after_sniffer). */
1996 if (this_frame->unwind == NULL)
1997 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1998
1999 this_frame->prev_p = 1;
2000 this_frame->stop_reason = UNWIND_NO_REASON;
2001
2002 /* If we are unwinding from an inline frame, all of the below tests
2003 were already performed when we unwound from the next non-inline
2004 frame. We must skip them, since we can not get THIS_FRAME's ID
2005 until we have unwound all the way down to the previous non-inline
2006 frame. */
2007 if (get_frame_type (this_frame) == INLINE_FRAME)
2008 return get_prev_frame_if_no_cycle (this_frame);
2009
2010 /* Check that this frame is unwindable. If it isn't, don't try to
2011 unwind to the prev frame. */
2012 this_frame->stop_reason
2013 = this_frame->unwind->stop_reason (this_frame,
2014 &this_frame->prologue_cache);
2015
2016 if (this_frame->stop_reason != UNWIND_NO_REASON)
2017 {
2018 if (frame_debug)
2019 {
2020 enum unwind_stop_reason reason = this_frame->stop_reason;
2021
2022 fprintf_unfiltered (gdb_stdlog, "-> ");
2023 fprint_frame (gdb_stdlog, NULL);
2024 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2025 frame_stop_reason_symbol_string (reason));
2026 }
2027 return NULL;
2028 }
2029
2030 /* Check that this frame's ID isn't inner to (younger, below, next)
2031 the next frame. This happens when a frame unwind goes backwards.
2032 This check is valid only if this frame and the next frame are NORMAL.
2033 See the comment at frame_id_inner for details. */
2034 if (get_frame_type (this_frame) == NORMAL_FRAME
2035 && this_frame->next->unwind->type == NORMAL_FRAME
2036 && frame_id_inner (get_frame_arch (this_frame->next),
2037 get_frame_id (this_frame),
2038 get_frame_id (this_frame->next)))
2039 {
2040 CORE_ADDR this_pc_in_block;
2041 struct minimal_symbol *morestack_msym;
2042 const char *morestack_name = NULL;
2043
2044 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2045 this_pc_in_block = get_frame_address_in_block (this_frame);
2046 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2047 if (morestack_msym)
2048 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2049 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2050 {
2051 if (frame_debug)
2052 {
2053 fprintf_unfiltered (gdb_stdlog, "-> ");
2054 fprint_frame (gdb_stdlog, NULL);
2055 fprintf_unfiltered (gdb_stdlog,
2056 " // this frame ID is inner }\n");
2057 }
2058 this_frame->stop_reason = UNWIND_INNER_ID;
2059 return NULL;
2060 }
2061 }
2062
2063 /* Check that this and the next frame do not unwind the PC register
2064 to the same memory location. If they do, then even though they
2065 have different frame IDs, the new frame will be bogus; two
2066 functions can't share a register save slot for the PC. This can
2067 happen when the prologue analyzer finds a stack adjustment, but
2068 no PC save.
2069
2070 This check does assume that the "PC register" is roughly a
2071 traditional PC, even if the gdbarch_unwind_pc method adjusts
2072 it (we do not rely on the value, only on the unwound PC being
2073 dependent on this value). A potential improvement would be
2074 to have the frame prev_pc method and the gdbarch unwind_pc
2075 method set the same lval and location information as
2076 frame_register_unwind. */
2077 if (this_frame->level > 0
2078 && gdbarch_pc_regnum (gdbarch) >= 0
2079 && get_frame_type (this_frame) == NORMAL_FRAME
2080 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2081 || get_frame_type (this_frame->next) == INLINE_FRAME))
2082 {
2083 int optimized, realnum, nrealnum;
2084 enum lval_type lval, nlval;
2085 CORE_ADDR addr, naddr;
2086
2087 frame_register_unwind_location (this_frame,
2088 gdbarch_pc_regnum (gdbarch),
2089 &optimized, &lval, &addr, &realnum);
2090 frame_register_unwind_location (get_next_frame (this_frame),
2091 gdbarch_pc_regnum (gdbarch),
2092 &optimized, &nlval, &naddr, &nrealnum);
2093
2094 if ((lval == lval_memory && lval == nlval && addr == naddr)
2095 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2096 {
2097 if (frame_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog, "-> ");
2100 fprint_frame (gdb_stdlog, NULL);
2101 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2102 }
2103
2104 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2105 this_frame->prev = NULL;
2106 return NULL;
2107 }
2108 }
2109
2110 return get_prev_frame_if_no_cycle (this_frame);
2111 }
2112
2113 /* Return a "struct frame_info" corresponding to the frame that called
2114 THIS_FRAME. Returns NULL if there is no such frame.
2115
2116 Unlike get_prev_frame, this function always tries to unwind the
2117 frame. */
2118
2119 struct frame_info *
2120 get_prev_frame_always (struct frame_info *this_frame)
2121 {
2122 struct frame_info *prev_frame = NULL;
2123
2124 TRY
2125 {
2126 prev_frame = get_prev_frame_always_1 (this_frame);
2127 }
2128 CATCH (ex, RETURN_MASK_ERROR)
2129 {
2130 if (ex.error == MEMORY_ERROR)
2131 {
2132 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2133 if (ex.message != NULL)
2134 {
2135 char *stop_string;
2136 size_t size;
2137
2138 /* The error needs to live as long as the frame does.
2139 Allocate using stack local STOP_STRING then assign the
2140 pointer to the frame, this allows the STOP_STRING on the
2141 frame to be of type 'const char *'. */
2142 size = strlen (ex.message) + 1;
2143 stop_string = (char *) frame_obstack_zalloc (size);
2144 memcpy (stop_string, ex.message, size);
2145 this_frame->stop_string = stop_string;
2146 }
2147 prev_frame = NULL;
2148 }
2149 else
2150 throw_exception (ex);
2151 }
2152 END_CATCH
2153
2154 return prev_frame;
2155 }
2156
2157 /* Construct a new "struct frame_info" and link it previous to
2158 this_frame. */
2159
2160 static struct frame_info *
2161 get_prev_frame_raw (struct frame_info *this_frame)
2162 {
2163 struct frame_info *prev_frame;
2164
2165 /* Allocate the new frame but do not wire it in to the frame chain.
2166 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2167 frame->next to pull some fancy tricks (of course such code is, by
2168 definition, recursive). Try to prevent it.
2169
2170 There is no reason to worry about memory leaks, should the
2171 remainder of the function fail. The allocated memory will be
2172 quickly reclaimed when the frame cache is flushed, and the `we've
2173 been here before' check above will stop repeated memory
2174 allocation calls. */
2175 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2176 prev_frame->level = this_frame->level + 1;
2177
2178 /* For now, assume we don't have frame chains crossing address
2179 spaces. */
2180 prev_frame->pspace = this_frame->pspace;
2181 prev_frame->aspace = this_frame->aspace;
2182
2183 /* Don't yet compute ->unwind (and hence ->type). It is computed
2184 on-demand in get_frame_type, frame_register_unwind, and
2185 get_frame_id. */
2186
2187 /* Don't yet compute the frame's ID. It is computed on-demand by
2188 get_frame_id(). */
2189
2190 /* The unwound frame ID is validate at the start of this function,
2191 as part of the logic to decide if that frame should be further
2192 unwound, and not here while the prev frame is being created.
2193 Doing this makes it possible for the user to examine a frame that
2194 has an invalid frame ID.
2195
2196 Some very old VAX code noted: [...] For the sake of argument,
2197 suppose that the stack is somewhat trashed (which is one reason
2198 that "info frame" exists). So, return 0 (indicating we don't
2199 know the address of the arglist) if we don't know what frame this
2200 frame calls. */
2201
2202 /* Link it in. */
2203 this_frame->prev = prev_frame;
2204 prev_frame->next = this_frame;
2205
2206 if (frame_debug)
2207 {
2208 fprintf_unfiltered (gdb_stdlog, "-> ");
2209 fprint_frame (gdb_stdlog, prev_frame);
2210 fprintf_unfiltered (gdb_stdlog, " }\n");
2211 }
2212
2213 return prev_frame;
2214 }
2215
2216 /* Debug routine to print a NULL frame being returned. */
2217
2218 static void
2219 frame_debug_got_null_frame (struct frame_info *this_frame,
2220 const char *reason)
2221 {
2222 if (frame_debug)
2223 {
2224 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2225 if (this_frame != NULL)
2226 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2227 else
2228 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2229 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2230 }
2231 }
2232
2233 /* Is this (non-sentinel) frame in the "main"() function? */
2234
2235 static int
2236 inside_main_func (struct frame_info *this_frame)
2237 {
2238 struct bound_minimal_symbol msymbol;
2239 CORE_ADDR maddr;
2240
2241 if (symfile_objfile == 0)
2242 return 0;
2243 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2244 if (msymbol.minsym == NULL)
2245 return 0;
2246 /* Make certain that the code, and not descriptor, address is
2247 returned. */
2248 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2249 BMSYMBOL_VALUE_ADDRESS (msymbol),
2250 &current_target);
2251 return maddr == get_frame_func (this_frame);
2252 }
2253
2254 /* Test whether THIS_FRAME is inside the process entry point function. */
2255
2256 static int
2257 inside_entry_func (struct frame_info *this_frame)
2258 {
2259 CORE_ADDR entry_point;
2260
2261 if (!entry_point_address_query (&entry_point))
2262 return 0;
2263
2264 return get_frame_func (this_frame) == entry_point;
2265 }
2266
2267 /* Return a structure containing various interesting information about
2268 the frame that called THIS_FRAME. Returns NULL if there is entier
2269 no such frame or the frame fails any of a set of target-independent
2270 condition that should terminate the frame chain (e.g., as unwinding
2271 past main()).
2272
2273 This function should not contain target-dependent tests, such as
2274 checking whether the program-counter is zero. */
2275
2276 struct frame_info *
2277 get_prev_frame (struct frame_info *this_frame)
2278 {
2279 CORE_ADDR frame_pc;
2280 int frame_pc_p;
2281
2282 /* There is always a frame. If this assertion fails, suspect that
2283 something should be calling get_selected_frame() or
2284 get_current_frame(). */
2285 gdb_assert (this_frame != NULL);
2286
2287 /* If this_frame is the current frame, then compute and stash
2288 its frame id prior to fetching and computing the frame id of the
2289 previous frame. Otherwise, the cycle detection code in
2290 get_prev_frame_if_no_cycle() will not work correctly. When
2291 get_frame_id() is called later on, an assertion error will
2292 be triggered in the event of a cycle between the current
2293 frame and its previous frame. */
2294 if (this_frame->level == 0)
2295 get_frame_id (this_frame);
2296
2297 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2298
2299 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2300 sense to stop unwinding at a dummy frame. One place where a dummy
2301 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2302 pcsqh register (space register for the instruction at the head of the
2303 instruction queue) cannot be written directly; the only way to set it
2304 is to branch to code that is in the target space. In order to implement
2305 frame dummies on HPUX, the called function is made to jump back to where
2306 the inferior was when the user function was called. If gdb was inside
2307 the main function when we created the dummy frame, the dummy frame will
2308 point inside the main function. */
2309 if (this_frame->level >= 0
2310 && get_frame_type (this_frame) == NORMAL_FRAME
2311 && !backtrace_past_main
2312 && frame_pc_p
2313 && inside_main_func (this_frame))
2314 /* Don't unwind past main(). Note, this is done _before_ the
2315 frame has been marked as previously unwound. That way if the
2316 user later decides to enable unwinds past main(), that will
2317 automatically happen. */
2318 {
2319 frame_debug_got_null_frame (this_frame, "inside main func");
2320 return NULL;
2321 }
2322
2323 /* If the user's backtrace limit has been exceeded, stop. We must
2324 add two to the current level; one of those accounts for backtrace_limit
2325 being 1-based and the level being 0-based, and the other accounts for
2326 the level of the new frame instead of the level of the current
2327 frame. */
2328 if (this_frame->level + 2 > backtrace_limit)
2329 {
2330 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2331 return NULL;
2332 }
2333
2334 /* If we're already inside the entry function for the main objfile,
2335 then it isn't valid. Don't apply this test to a dummy frame -
2336 dummy frame PCs typically land in the entry func. Don't apply
2337 this test to the sentinel frame. Sentinel frames should always
2338 be allowed to unwind. */
2339 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2340 wasn't checking for "main" in the minimal symbols. With that
2341 fixed asm-source tests now stop in "main" instead of halting the
2342 backtrace in weird and wonderful ways somewhere inside the entry
2343 file. Suspect that tests for inside the entry file/func were
2344 added to work around that (now fixed) case. */
2345 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2346 suggested having the inside_entry_func test use the
2347 inside_main_func() msymbol trick (along with entry_point_address()
2348 I guess) to determine the address range of the start function.
2349 That should provide a far better stopper than the current
2350 heuristics. */
2351 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2352 applied tail-call optimizations to main so that a function called
2353 from main returns directly to the caller of main. Since we don't
2354 stop at main, we should at least stop at the entry point of the
2355 application. */
2356 if (this_frame->level >= 0
2357 && get_frame_type (this_frame) == NORMAL_FRAME
2358 && !backtrace_past_entry
2359 && frame_pc_p
2360 && inside_entry_func (this_frame))
2361 {
2362 frame_debug_got_null_frame (this_frame, "inside entry func");
2363 return NULL;
2364 }
2365
2366 /* Assume that the only way to get a zero PC is through something
2367 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2368 will never unwind a zero PC. */
2369 if (this_frame->level > 0
2370 && (get_frame_type (this_frame) == NORMAL_FRAME
2371 || get_frame_type (this_frame) == INLINE_FRAME)
2372 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2373 && frame_pc_p && frame_pc == 0)
2374 {
2375 frame_debug_got_null_frame (this_frame, "zero PC");
2376 return NULL;
2377 }
2378
2379 return get_prev_frame_always (this_frame);
2380 }
2381
2382 struct frame_id
2383 get_prev_frame_id_by_id (struct frame_id id)
2384 {
2385 struct frame_id prev_id;
2386 struct frame_info *frame;
2387
2388 frame = frame_find_by_id (id);
2389
2390 if (frame != NULL)
2391 prev_id = get_frame_id (get_prev_frame (frame));
2392 else
2393 prev_id = null_frame_id;
2394
2395 return prev_id;
2396 }
2397
2398 CORE_ADDR
2399 get_frame_pc (struct frame_info *frame)
2400 {
2401 gdb_assert (frame->next != NULL);
2402 return frame_unwind_pc (frame->next);
2403 }
2404
2405 int
2406 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2407 {
2408
2409 gdb_assert (frame->next != NULL);
2410
2411 TRY
2412 {
2413 *pc = frame_unwind_pc (frame->next);
2414 }
2415 CATCH (ex, RETURN_MASK_ERROR)
2416 {
2417 if (ex.error == NOT_AVAILABLE_ERROR)
2418 return 0;
2419 else
2420 throw_exception (ex);
2421 }
2422 END_CATCH
2423
2424 return 1;
2425 }
2426
2427 /* Return an address that falls within THIS_FRAME's code block. */
2428
2429 CORE_ADDR
2430 get_frame_address_in_block (struct frame_info *this_frame)
2431 {
2432 /* A draft address. */
2433 CORE_ADDR pc = get_frame_pc (this_frame);
2434
2435 struct frame_info *next_frame = this_frame->next;
2436
2437 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2438 Normally the resume address is inside the body of the function
2439 associated with THIS_FRAME, but there is a special case: when
2440 calling a function which the compiler knows will never return
2441 (for instance abort), the call may be the very last instruction
2442 in the calling function. The resume address will point after the
2443 call and may be at the beginning of a different function
2444 entirely.
2445
2446 If THIS_FRAME is a signal frame or dummy frame, then we should
2447 not adjust the unwound PC. For a dummy frame, GDB pushed the
2448 resume address manually onto the stack. For a signal frame, the
2449 OS may have pushed the resume address manually and invoked the
2450 handler (e.g. GNU/Linux), or invoked the trampoline which called
2451 the signal handler - but in either case the signal handler is
2452 expected to return to the trampoline. So in both of these
2453 cases we know that the resume address is executable and
2454 related. So we only need to adjust the PC if THIS_FRAME
2455 is a normal function.
2456
2457 If the program has been interrupted while THIS_FRAME is current,
2458 then clearly the resume address is inside the associated
2459 function. There are three kinds of interruption: debugger stop
2460 (next frame will be SENTINEL_FRAME), operating system
2461 signal or exception (next frame will be SIGTRAMP_FRAME),
2462 or debugger-induced function call (next frame will be
2463 DUMMY_FRAME). So we only need to adjust the PC if
2464 NEXT_FRAME is a normal function.
2465
2466 We check the type of NEXT_FRAME first, since it is already
2467 known; frame type is determined by the unwinder, and since
2468 we have THIS_FRAME we've already selected an unwinder for
2469 NEXT_FRAME.
2470
2471 If the next frame is inlined, we need to keep going until we find
2472 the real function - for instance, if a signal handler is invoked
2473 while in an inlined function, then the code address of the
2474 "calling" normal function should not be adjusted either. */
2475
2476 while (get_frame_type (next_frame) == INLINE_FRAME)
2477 next_frame = next_frame->next;
2478
2479 if ((get_frame_type (next_frame) == NORMAL_FRAME
2480 || get_frame_type (next_frame) == TAILCALL_FRAME)
2481 && (get_frame_type (this_frame) == NORMAL_FRAME
2482 || get_frame_type (this_frame) == TAILCALL_FRAME
2483 || get_frame_type (this_frame) == INLINE_FRAME))
2484 return pc - 1;
2485
2486 return pc;
2487 }
2488
2489 int
2490 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2491 CORE_ADDR *pc)
2492 {
2493
2494 TRY
2495 {
2496 *pc = get_frame_address_in_block (this_frame);
2497 }
2498 CATCH (ex, RETURN_MASK_ERROR)
2499 {
2500 if (ex.error == NOT_AVAILABLE_ERROR)
2501 return 0;
2502 throw_exception (ex);
2503 }
2504 END_CATCH
2505
2506 return 1;
2507 }
2508
2509 void
2510 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2511 {
2512 struct frame_info *next_frame;
2513 int notcurrent;
2514 CORE_ADDR pc;
2515
2516 /* If the next frame represents an inlined function call, this frame's
2517 sal is the "call site" of that inlined function, which can not
2518 be inferred from get_frame_pc. */
2519 next_frame = get_next_frame (frame);
2520 if (frame_inlined_callees (frame) > 0)
2521 {
2522 struct symbol *sym;
2523
2524 if (next_frame)
2525 sym = get_frame_function (next_frame);
2526 else
2527 sym = inline_skipped_symbol (inferior_ptid);
2528
2529 /* If frame is inline, it certainly has symbols. */
2530 gdb_assert (sym);
2531 init_sal (sal);
2532 if (SYMBOL_LINE (sym) != 0)
2533 {
2534 sal->symtab = symbol_symtab (sym);
2535 sal->line = SYMBOL_LINE (sym);
2536 }
2537 else
2538 /* If the symbol does not have a location, we don't know where
2539 the call site is. Do not pretend to. This is jarring, but
2540 we can't do much better. */
2541 sal->pc = get_frame_pc (frame);
2542
2543 sal->pspace = get_frame_program_space (frame);
2544
2545 return;
2546 }
2547
2548 /* If FRAME is not the innermost frame, that normally means that
2549 FRAME->pc points at the return instruction (which is *after* the
2550 call instruction), and we want to get the line containing the
2551 call (because the call is where the user thinks the program is).
2552 However, if the next frame is either a SIGTRAMP_FRAME or a
2553 DUMMY_FRAME, then the next frame will contain a saved interrupt
2554 PC and such a PC indicates the current (rather than next)
2555 instruction/line, consequently, for such cases, want to get the
2556 line containing fi->pc. */
2557 if (!get_frame_pc_if_available (frame, &pc))
2558 {
2559 init_sal (sal);
2560 return;
2561 }
2562
2563 notcurrent = (pc != get_frame_address_in_block (frame));
2564 (*sal) = find_pc_line (pc, notcurrent);
2565 }
2566
2567 /* Per "frame.h", return the ``address'' of the frame. Code should
2568 really be using get_frame_id(). */
2569 CORE_ADDR
2570 get_frame_base (struct frame_info *fi)
2571 {
2572 return get_frame_id (fi).stack_addr;
2573 }
2574
2575 /* High-level offsets into the frame. Used by the debug info. */
2576
2577 CORE_ADDR
2578 get_frame_base_address (struct frame_info *fi)
2579 {
2580 if (get_frame_type (fi) != NORMAL_FRAME)
2581 return 0;
2582 if (fi->base == NULL)
2583 fi->base = frame_base_find_by_frame (fi);
2584 /* Sneaky: If the low-level unwind and high-level base code share a
2585 common unwinder, let them share the prologue cache. */
2586 if (fi->base->unwind == fi->unwind)
2587 return fi->base->this_base (fi, &fi->prologue_cache);
2588 return fi->base->this_base (fi, &fi->base_cache);
2589 }
2590
2591 CORE_ADDR
2592 get_frame_locals_address (struct frame_info *fi)
2593 {
2594 if (get_frame_type (fi) != NORMAL_FRAME)
2595 return 0;
2596 /* If there isn't a frame address method, find it. */
2597 if (fi->base == NULL)
2598 fi->base = frame_base_find_by_frame (fi);
2599 /* Sneaky: If the low-level unwind and high-level base code share a
2600 common unwinder, let them share the prologue cache. */
2601 if (fi->base->unwind == fi->unwind)
2602 return fi->base->this_locals (fi, &fi->prologue_cache);
2603 return fi->base->this_locals (fi, &fi->base_cache);
2604 }
2605
2606 CORE_ADDR
2607 get_frame_args_address (struct frame_info *fi)
2608 {
2609 if (get_frame_type (fi) != NORMAL_FRAME)
2610 return 0;
2611 /* If there isn't a frame address method, find it. */
2612 if (fi->base == NULL)
2613 fi->base = frame_base_find_by_frame (fi);
2614 /* Sneaky: If the low-level unwind and high-level base code share a
2615 common unwinder, let them share the prologue cache. */
2616 if (fi->base->unwind == fi->unwind)
2617 return fi->base->this_args (fi, &fi->prologue_cache);
2618 return fi->base->this_args (fi, &fi->base_cache);
2619 }
2620
2621 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2622 otherwise. */
2623
2624 int
2625 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2626 {
2627 if (fi->unwind == NULL)
2628 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2629 return fi->unwind == unwinder;
2630 }
2631
2632 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2633 or -1 for a NULL frame. */
2634
2635 int
2636 frame_relative_level (struct frame_info *fi)
2637 {
2638 if (fi == NULL)
2639 return -1;
2640 else
2641 return fi->level;
2642 }
2643
2644 enum frame_type
2645 get_frame_type (struct frame_info *frame)
2646 {
2647 if (frame->unwind == NULL)
2648 /* Initialize the frame's unwinder because that's what
2649 provides the frame's type. */
2650 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2651 return frame->unwind->type;
2652 }
2653
2654 struct program_space *
2655 get_frame_program_space (struct frame_info *frame)
2656 {
2657 return frame->pspace;
2658 }
2659
2660 struct program_space *
2661 frame_unwind_program_space (struct frame_info *this_frame)
2662 {
2663 gdb_assert (this_frame);
2664
2665 /* This is really a placeholder to keep the API consistent --- we
2666 assume for now that we don't have frame chains crossing
2667 spaces. */
2668 return this_frame->pspace;
2669 }
2670
2671 struct address_space *
2672 get_frame_address_space (struct frame_info *frame)
2673 {
2674 return frame->aspace;
2675 }
2676
2677 /* Memory access methods. */
2678
2679 void
2680 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2681 gdb_byte *buf, int len)
2682 {
2683 read_memory (addr, buf, len);
2684 }
2685
2686 LONGEST
2687 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2688 int len)
2689 {
2690 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2692
2693 return read_memory_integer (addr, len, byte_order);
2694 }
2695
2696 ULONGEST
2697 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2698 int len)
2699 {
2700 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2701 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2702
2703 return read_memory_unsigned_integer (addr, len, byte_order);
2704 }
2705
2706 int
2707 safe_frame_unwind_memory (struct frame_info *this_frame,
2708 CORE_ADDR addr, gdb_byte *buf, int len)
2709 {
2710 /* NOTE: target_read_memory returns zero on success! */
2711 return !target_read_memory (addr, buf, len);
2712 }
2713
2714 /* Architecture methods. */
2715
2716 struct gdbarch *
2717 get_frame_arch (struct frame_info *this_frame)
2718 {
2719 return frame_unwind_arch (this_frame->next);
2720 }
2721
2722 struct gdbarch *
2723 frame_unwind_arch (struct frame_info *next_frame)
2724 {
2725 if (!next_frame->prev_arch.p)
2726 {
2727 struct gdbarch *arch;
2728
2729 if (next_frame->unwind == NULL)
2730 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2731
2732 if (next_frame->unwind->prev_arch != NULL)
2733 arch = next_frame->unwind->prev_arch (next_frame,
2734 &next_frame->prologue_cache);
2735 else
2736 arch = get_frame_arch (next_frame);
2737
2738 next_frame->prev_arch.arch = arch;
2739 next_frame->prev_arch.p = 1;
2740 if (frame_debug)
2741 fprintf_unfiltered (gdb_stdlog,
2742 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2743 next_frame->level,
2744 gdbarch_bfd_arch_info (arch)->printable_name);
2745 }
2746
2747 return next_frame->prev_arch.arch;
2748 }
2749
2750 struct gdbarch *
2751 frame_unwind_caller_arch (struct frame_info *next_frame)
2752 {
2753 next_frame = skip_artificial_frames (next_frame);
2754
2755 /* We must have a non-artificial frame. The caller is supposed to check
2756 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2757 in this case. */
2758 gdb_assert (next_frame != NULL);
2759
2760 return frame_unwind_arch (next_frame);
2761 }
2762
2763 /* Gets the language of FRAME. */
2764
2765 enum language
2766 get_frame_language (struct frame_info *frame)
2767 {
2768 CORE_ADDR pc = 0;
2769 int pc_p = 0;
2770
2771 gdb_assert (frame!= NULL);
2772
2773 /* We determine the current frame language by looking up its
2774 associated symtab. To retrieve this symtab, we use the frame
2775 PC. However we cannot use the frame PC as is, because it
2776 usually points to the instruction following the "call", which
2777 is sometimes the first instruction of another function. So
2778 we rely on get_frame_address_in_block(), it provides us with
2779 a PC that is guaranteed to be inside the frame's code
2780 block. */
2781
2782 TRY
2783 {
2784 pc = get_frame_address_in_block (frame);
2785 pc_p = 1;
2786 }
2787 CATCH (ex, RETURN_MASK_ERROR)
2788 {
2789 if (ex.error != NOT_AVAILABLE_ERROR)
2790 throw_exception (ex);
2791 }
2792 END_CATCH
2793
2794 if (pc_p)
2795 {
2796 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2797
2798 if (cust != NULL)
2799 return compunit_language (cust);
2800 }
2801
2802 return language_unknown;
2803 }
2804
2805 /* Stack pointer methods. */
2806
2807 CORE_ADDR
2808 get_frame_sp (struct frame_info *this_frame)
2809 {
2810 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2811
2812 /* Normality - an architecture that provides a way of obtaining any
2813 frame inner-most address. */
2814 if (gdbarch_unwind_sp_p (gdbarch))
2815 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2816 operate on THIS_FRAME now. */
2817 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2818 /* Now things are really are grim. Hope that the value returned by
2819 the gdbarch_sp_regnum register is meaningful. */
2820 if (gdbarch_sp_regnum (gdbarch) >= 0)
2821 return get_frame_register_unsigned (this_frame,
2822 gdbarch_sp_regnum (gdbarch));
2823 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2824 }
2825
2826 /* Return the reason why we can't unwind past FRAME. */
2827
2828 enum unwind_stop_reason
2829 get_frame_unwind_stop_reason (struct frame_info *frame)
2830 {
2831 /* Fill-in STOP_REASON. */
2832 get_prev_frame_always (frame);
2833 gdb_assert (frame->prev_p);
2834
2835 return frame->stop_reason;
2836 }
2837
2838 /* Return a string explaining REASON. */
2839
2840 const char *
2841 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2842 {
2843 switch (reason)
2844 {
2845 #define SET(name, description) \
2846 case name: return _(description);
2847 #include "unwind_stop_reasons.def"
2848 #undef SET
2849
2850 default:
2851 internal_error (__FILE__, __LINE__,
2852 "Invalid frame stop reason");
2853 }
2854 }
2855
2856 const char *
2857 frame_stop_reason_string (struct frame_info *fi)
2858 {
2859 gdb_assert (fi->prev_p);
2860 gdb_assert (fi->prev == NULL);
2861
2862 /* Return the specific string if we have one. */
2863 if (fi->stop_string != NULL)
2864 return fi->stop_string;
2865
2866 /* Return the generic string if we have nothing better. */
2867 return unwind_stop_reason_to_string (fi->stop_reason);
2868 }
2869
2870 /* Return the enum symbol name of REASON as a string, to use in debug
2871 output. */
2872
2873 static const char *
2874 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2875 {
2876 switch (reason)
2877 {
2878 #define SET(name, description) \
2879 case name: return #name;
2880 #include "unwind_stop_reasons.def"
2881 #undef SET
2882
2883 default:
2884 internal_error (__FILE__, __LINE__,
2885 "Invalid frame stop reason");
2886 }
2887 }
2888
2889 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2890 FRAME. */
2891
2892 static void
2893 frame_cleanup_after_sniffer (void *arg)
2894 {
2895 struct frame_info *frame = (struct frame_info *) arg;
2896
2897 /* The sniffer should not allocate a prologue cache if it did not
2898 match this frame. */
2899 gdb_assert (frame->prologue_cache == NULL);
2900
2901 /* No sniffer should extend the frame chain; sniff based on what is
2902 already certain. */
2903 gdb_assert (!frame->prev_p);
2904
2905 /* The sniffer should not check the frame's ID; that's circular. */
2906 gdb_assert (!frame->this_id.p);
2907
2908 /* Clear cached fields dependent on the unwinder.
2909
2910 The previous PC is independent of the unwinder, but the previous
2911 function is not (see get_frame_address_in_block). */
2912 frame->prev_func.p = 0;
2913 frame->prev_func.addr = 0;
2914
2915 /* Discard the unwinder last, so that we can easily find it if an assertion
2916 in this function triggers. */
2917 frame->unwind = NULL;
2918 }
2919
2920 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2921 Return a cleanup which should be called if unwinding fails, and
2922 discarded if it succeeds. */
2923
2924 struct cleanup *
2925 frame_prepare_for_sniffer (struct frame_info *frame,
2926 const struct frame_unwind *unwind)
2927 {
2928 gdb_assert (frame->unwind == NULL);
2929 frame->unwind = unwind;
2930 return make_cleanup (frame_cleanup_after_sniffer, frame);
2931 }
2932
2933 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2934
2935 static struct cmd_list_element *set_backtrace_cmdlist;
2936 static struct cmd_list_element *show_backtrace_cmdlist;
2937
2938 static void
2939 set_backtrace_cmd (char *args, int from_tty)
2940 {
2941 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2942 gdb_stdout);
2943 }
2944
2945 static void
2946 show_backtrace_cmd (char *args, int from_tty)
2947 {
2948 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2949 }
2950
2951 void
2952 _initialize_frame (void)
2953 {
2954 obstack_init (&frame_cache_obstack);
2955
2956 frame_stash_create ();
2957
2958 observer_attach_target_changed (frame_observer_target_changed);
2959
2960 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2961 Set backtrace specific variables.\n\
2962 Configure backtrace variables such as the backtrace limit"),
2963 &set_backtrace_cmdlist, "set backtrace ",
2964 0/*allow-unknown*/, &setlist);
2965 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2966 Show backtrace specific variables\n\
2967 Show backtrace variables such as the backtrace limit"),
2968 &show_backtrace_cmdlist, "show backtrace ",
2969 0/*allow-unknown*/, &showlist);
2970
2971 add_setshow_boolean_cmd ("past-main", class_obscure,
2972 &backtrace_past_main, _("\
2973 Set whether backtraces should continue past \"main\"."), _("\
2974 Show whether backtraces should continue past \"main\"."), _("\
2975 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2976 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2977 of the stack trace."),
2978 NULL,
2979 show_backtrace_past_main,
2980 &set_backtrace_cmdlist,
2981 &show_backtrace_cmdlist);
2982
2983 add_setshow_boolean_cmd ("past-entry", class_obscure,
2984 &backtrace_past_entry, _("\
2985 Set whether backtraces should continue past the entry point of a program."),
2986 _("\
2987 Show whether backtraces should continue past the entry point of a program."),
2988 _("\
2989 Normally there are no callers beyond the entry point of a program, so GDB\n\
2990 will terminate the backtrace there. Set this variable if you need to see\n\
2991 the rest of the stack trace."),
2992 NULL,
2993 show_backtrace_past_entry,
2994 &set_backtrace_cmdlist,
2995 &show_backtrace_cmdlist);
2996
2997 add_setshow_uinteger_cmd ("limit", class_obscure,
2998 &backtrace_limit, _("\
2999 Set an upper bound on the number of backtrace levels."), _("\
3000 Show the upper bound on the number of backtrace levels."), _("\
3001 No more than the specified number of frames can be displayed or examined.\n\
3002 Literal \"unlimited\" or zero means no limit."),
3003 NULL,
3004 show_backtrace_limit,
3005 &set_backtrace_cmdlist,
3006 &show_backtrace_cmdlist);
3007
3008 /* Debug this files internals. */
3009 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
3010 Set frame debugging."), _("\
3011 Show frame debugging."), _("\
3012 When non-zero, frame specific internal debugging is enabled."),
3013 NULL,
3014 show_frame_debug,
3015 &setdebuglist, &showdebuglist);
3016 }
This page took 0.208243 seconds and 5 git commands to generate.