frame.c: Fix the check for FID_STACK_INVALID in frame_id_eq()
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
47 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
48
49 /* Status of some values cached in the frame_info object. */
50
51 enum cached_copy_status
52 {
53 /* Value is unknown. */
54 CC_UNKNOWN,
55
56 /* We have a value. */
57 CC_VALUE,
58
59 /* Value was not saved. */
60 CC_NOT_SAVED,
61
62 /* Value is unavailable. */
63 CC_UNAVAILABLE
64 };
65
66 /* We keep a cache of stack frames, each of which is a "struct
67 frame_info". The innermost one gets allocated (in
68 wait_for_inferior) each time the inferior stops; current_frame
69 points to it. Additional frames get allocated (in get_prev_frame)
70 as needed, and are chained through the next and prev fields. Any
71 time that the frame cache becomes invalid (most notably when we
72 execute something, but also if we change how we interpret the
73 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
74 which reads new symbols)), we should call reinit_frame_cache. */
75
76 struct frame_info
77 {
78 /* Level of this frame. The inner-most (youngest) frame is at level
79 0. As you move towards the outer-most (oldest) frame, the level
80 increases. This is a cached value. It could just as easily be
81 computed by counting back from the selected frame to the inner
82 most frame. */
83 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
84 reserved to indicate a bogus frame - one that has been created
85 just to keep GDB happy (GDB always needs a frame). For the
86 moment leave this as speculation. */
87 int level;
88
89 /* The frame's program space. */
90 struct program_space *pspace;
91
92 /* The frame's address space. */
93 struct address_space *aspace;
94
95 /* The frame's low-level unwinder and corresponding cache. The
96 low-level unwinder is responsible for unwinding register values
97 for the previous frame. The low-level unwind methods are
98 selected based on the presence, or otherwise, of register unwind
99 information such as CFI. */
100 void *prologue_cache;
101 const struct frame_unwind *unwind;
102
103 /* Cached copy of the previous frame's architecture. */
104 struct
105 {
106 int p;
107 struct gdbarch *arch;
108 } prev_arch;
109
110 /* Cached copy of the previous frame's resume address. */
111 struct {
112 enum cached_copy_status status;
113 CORE_ADDR value;
114 } prev_pc;
115
116 /* Cached copy of the previous frame's function address. */
117 struct
118 {
119 CORE_ADDR addr;
120 int p;
121 } prev_func;
122
123 /* This frame's ID. */
124 struct
125 {
126 int p;
127 struct frame_id value;
128 } this_id;
129
130 /* The frame's high-level base methods, and corresponding cache.
131 The high level base methods are selected based on the frame's
132 debug info. */
133 const struct frame_base *base;
134 void *base_cache;
135
136 /* Pointers to the next (down, inner, younger) and previous (up,
137 outer, older) frame_info's in the frame cache. */
138 struct frame_info *next; /* down, inner, younger */
139 int prev_p;
140 struct frame_info *prev; /* up, outer, older */
141
142 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
143 could. Only valid when PREV_P is set. */
144 enum unwind_stop_reason stop_reason;
145
146 /* A frame specific string describing the STOP_REASON in more detail.
147 Only valid when PREV_P is set, but even then may still be NULL. */
148 const char *stop_string;
149 };
150
151 /* A frame stash used to speed up frame lookups. Create a hash table
152 to stash frames previously accessed from the frame cache for
153 quicker subsequent retrieval. The hash table is emptied whenever
154 the frame cache is invalidated. */
155
156 static htab_t frame_stash;
157
158 /* Internal function to calculate a hash from the frame_id addresses,
159 using as many valid addresses as possible. Frames below level 0
160 are not stored in the hash table. */
161
162 static hashval_t
163 frame_addr_hash (const void *ap)
164 {
165 const struct frame_info *frame = ap;
166 const struct frame_id f_id = frame->this_id.value;
167 hashval_t hash = 0;
168
169 gdb_assert (f_id.stack_status != FID_STACK_INVALID
170 || f_id.code_addr_p
171 || f_id.special_addr_p);
172
173 if (f_id.stack_status == FID_STACK_VALID)
174 hash = iterative_hash (&f_id.stack_addr,
175 sizeof (f_id.stack_addr), hash);
176 if (f_id.code_addr_p)
177 hash = iterative_hash (&f_id.code_addr,
178 sizeof (f_id.code_addr), hash);
179 if (f_id.special_addr_p)
180 hash = iterative_hash (&f_id.special_addr,
181 sizeof (f_id.special_addr), hash);
182
183 return hash;
184 }
185
186 /* Internal equality function for the hash table. This function
187 defers equality operations to frame_id_eq. */
188
189 static int
190 frame_addr_hash_eq (const void *a, const void *b)
191 {
192 const struct frame_info *f_entry = a;
193 const struct frame_info *f_element = b;
194
195 return frame_id_eq (f_entry->this_id.value,
196 f_element->this_id.value);
197 }
198
199 /* Internal function to create the frame_stash hash table. 100 seems
200 to be a good compromise to start the hash table at. */
201
202 static void
203 frame_stash_create (void)
204 {
205 frame_stash = htab_create (100,
206 frame_addr_hash,
207 frame_addr_hash_eq,
208 NULL);
209 }
210
211 /* Internal function to add a frame to the frame_stash hash table.
212 Returns false if a frame with the same ID was already stashed, true
213 otherwise. */
214
215 static int
216 frame_stash_add (struct frame_info *frame)
217 {
218 struct frame_info **slot;
219
220 /* Do not try to stash the sentinel frame. */
221 gdb_assert (frame->level >= 0);
222
223 slot = (struct frame_info **) htab_find_slot (frame_stash,
224 frame,
225 INSERT);
226
227 /* If we already have a frame in the stack with the same id, we
228 either have a stack cycle (corrupted stack?), or some bug
229 elsewhere in GDB. In any case, ignore the duplicate and return
230 an indication to the caller. */
231 if (*slot != NULL)
232 return 0;
233
234 *slot = frame;
235 return 1;
236 }
237
238 /* Internal function to search the frame stash for an entry with the
239 given frame ID. If found, return that frame. Otherwise return
240 NULL. */
241
242 static struct frame_info *
243 frame_stash_find (struct frame_id id)
244 {
245 struct frame_info dummy;
246 struct frame_info *frame;
247
248 dummy.this_id.value = id;
249 frame = htab_find (frame_stash, &dummy);
250 return frame;
251 }
252
253 /* Internal function to invalidate the frame stash by removing all
254 entries in it. This only occurs when the frame cache is
255 invalidated. */
256
257 static void
258 frame_stash_invalidate (void)
259 {
260 htab_empty (frame_stash);
261 }
262
263 /* Flag to control debugging. */
264
265 unsigned int frame_debug;
266 static void
267 show_frame_debug (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
269 {
270 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
271 }
272
273 /* Flag to indicate whether backtraces should stop at main et.al. */
274
275 static int backtrace_past_main;
276 static void
277 show_backtrace_past_main (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279 {
280 fprintf_filtered (file,
281 _("Whether backtraces should "
282 "continue past \"main\" is %s.\n"),
283 value);
284 }
285
286 static int backtrace_past_entry;
287 static void
288 show_backtrace_past_entry (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Whether backtraces should continue past the "
292 "entry point of a program is %s.\n"),
293 value);
294 }
295
296 static unsigned int backtrace_limit = UINT_MAX;
297 static void
298 show_backtrace_limit (struct ui_file *file, int from_tty,
299 struct cmd_list_element *c, const char *value)
300 {
301 fprintf_filtered (file,
302 _("An upper bound on the number "
303 "of backtrace levels is %s.\n"),
304 value);
305 }
306
307
308 static void
309 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
310 {
311 if (p)
312 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
313 else
314 fprintf_unfiltered (file, "!%s", name);
315 }
316
317 void
318 fprint_frame_id (struct ui_file *file, struct frame_id id)
319 {
320 fprintf_unfiltered (file, "{");
321
322 if (id.stack_status == FID_STACK_INVALID)
323 fprintf_unfiltered (file, "!stack");
324 else if (id.stack_status == FID_STACK_UNAVAILABLE)
325 fprintf_unfiltered (file, "stack=<unavailable>");
326 else
327 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
328 fprintf_unfiltered (file, ",");
329
330 fprint_field (file, "code", id.code_addr_p, id.code_addr);
331 fprintf_unfiltered (file, ",");
332
333 fprint_field (file, "special", id.special_addr_p, id.special_addr);
334
335 if (id.artificial_depth)
336 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
337
338 fprintf_unfiltered (file, "}");
339 }
340
341 static void
342 fprint_frame_type (struct ui_file *file, enum frame_type type)
343 {
344 switch (type)
345 {
346 case NORMAL_FRAME:
347 fprintf_unfiltered (file, "NORMAL_FRAME");
348 return;
349 case DUMMY_FRAME:
350 fprintf_unfiltered (file, "DUMMY_FRAME");
351 return;
352 case INLINE_FRAME:
353 fprintf_unfiltered (file, "INLINE_FRAME");
354 return;
355 case TAILCALL_FRAME:
356 fprintf_unfiltered (file, "TAILCALL_FRAME");
357 return;
358 case SIGTRAMP_FRAME:
359 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
360 return;
361 case ARCH_FRAME:
362 fprintf_unfiltered (file, "ARCH_FRAME");
363 return;
364 case SENTINEL_FRAME:
365 fprintf_unfiltered (file, "SENTINEL_FRAME");
366 return;
367 default:
368 fprintf_unfiltered (file, "<unknown type>");
369 return;
370 };
371 }
372
373 static void
374 fprint_frame (struct ui_file *file, struct frame_info *fi)
375 {
376 if (fi == NULL)
377 {
378 fprintf_unfiltered (file, "<NULL frame>");
379 return;
380 }
381 fprintf_unfiltered (file, "{");
382 fprintf_unfiltered (file, "level=%d", fi->level);
383 fprintf_unfiltered (file, ",");
384 fprintf_unfiltered (file, "type=");
385 if (fi->unwind != NULL)
386 fprint_frame_type (file, fi->unwind->type);
387 else
388 fprintf_unfiltered (file, "<unknown>");
389 fprintf_unfiltered (file, ",");
390 fprintf_unfiltered (file, "unwind=");
391 if (fi->unwind != NULL)
392 gdb_print_host_address (fi->unwind, file);
393 else
394 fprintf_unfiltered (file, "<unknown>");
395 fprintf_unfiltered (file, ",");
396 fprintf_unfiltered (file, "pc=");
397 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
398 fprintf_unfiltered (file, "<unknown>");
399 else if (fi->next->prev_pc.status == CC_VALUE)
400 fprintf_unfiltered (file, "%s",
401 hex_string (fi->next->prev_pc.value));
402 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
403 val_print_not_saved (file);
404 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
405 val_print_unavailable (file);
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "id=");
408 if (fi->this_id.p)
409 fprint_frame_id (file, fi->this_id.value);
410 else
411 fprintf_unfiltered (file, "<unknown>");
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "func=");
414 if (fi->next != NULL && fi->next->prev_func.p)
415 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
416 else
417 fprintf_unfiltered (file, "<unknown>");
418 fprintf_unfiltered (file, "}");
419 }
420
421 /* Given FRAME, return the enclosing frame as found in real frames read-in from
422 inferior memory. Skip any previous frames which were made up by GDB.
423 Return the original frame if no immediate previous frames exist. */
424
425 static struct frame_info *
426 skip_artificial_frames (struct frame_info *frame)
427 {
428 /* Note we use get_prev_frame_always, and not get_prev_frame. The
429 latter will truncate the frame chain, leading to this function
430 unintentionally returning a null_frame_id (e.g., when the user
431 sets a backtrace limit). This is safe, because as these frames
432 are made up by GDB, there must be a real frame in the chain
433 below. */
434 while (get_frame_type (frame) == INLINE_FRAME
435 || get_frame_type (frame) == TAILCALL_FRAME)
436 frame = get_prev_frame_always (frame);
437
438 return frame;
439 }
440
441 /* Compute the frame's uniq ID that can be used to, later, re-find the
442 frame. */
443
444 static void
445 compute_frame_id (struct frame_info *fi)
446 {
447 gdb_assert (!fi->this_id.p);
448
449 if (frame_debug)
450 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
451 fi->level);
452 /* Find the unwinder. */
453 if (fi->unwind == NULL)
454 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
455 /* Find THIS frame's ID. */
456 /* Default to outermost if no ID is found. */
457 fi->this_id.value = outer_frame_id;
458 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
459 gdb_assert (frame_id_p (fi->this_id.value));
460 fi->this_id.p = 1;
461 if (frame_debug)
462 {
463 fprintf_unfiltered (gdb_stdlog, "-> ");
464 fprint_frame_id (gdb_stdlog, fi->this_id.value);
465 fprintf_unfiltered (gdb_stdlog, " }\n");
466 }
467 }
468
469 /* Return a frame uniq ID that can be used to, later, re-find the
470 frame. */
471
472 struct frame_id
473 get_frame_id (struct frame_info *fi)
474 {
475 if (fi == NULL)
476 return null_frame_id;
477
478 gdb_assert (fi->this_id.p);
479 return fi->this_id.value;
480 }
481
482 struct frame_id
483 get_stack_frame_id (struct frame_info *next_frame)
484 {
485 return get_frame_id (skip_artificial_frames (next_frame));
486 }
487
488 struct frame_id
489 frame_unwind_caller_id (struct frame_info *next_frame)
490 {
491 struct frame_info *this_frame;
492
493 /* Use get_prev_frame_always, and not get_prev_frame. The latter
494 will truncate the frame chain, leading to this function
495 unintentionally returning a null_frame_id (e.g., when a caller
496 requests the frame ID of "main()"s caller. */
497
498 next_frame = skip_artificial_frames (next_frame);
499 this_frame = get_prev_frame_always (next_frame);
500 if (this_frame)
501 return get_frame_id (skip_artificial_frames (this_frame));
502 else
503 return null_frame_id;
504 }
505
506 const struct frame_id null_frame_id; /* All zeros. */
507 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
508
509 struct frame_id
510 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
511 CORE_ADDR special_addr)
512 {
513 struct frame_id id = null_frame_id;
514
515 id.stack_addr = stack_addr;
516 id.stack_status = FID_STACK_VALID;
517 id.code_addr = code_addr;
518 id.code_addr_p = 1;
519 id.special_addr = special_addr;
520 id.special_addr_p = 1;
521 return id;
522 }
523
524 /* See frame.h. */
525
526 struct frame_id
527 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
528 {
529 struct frame_id id = null_frame_id;
530
531 id.stack_status = FID_STACK_UNAVAILABLE;
532 id.code_addr = code_addr;
533 id.code_addr_p = 1;
534 return id;
535 }
536
537 /* See frame.h. */
538
539 struct frame_id
540 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
541 CORE_ADDR special_addr)
542 {
543 struct frame_id id = null_frame_id;
544
545 id.stack_status = FID_STACK_UNAVAILABLE;
546 id.code_addr = code_addr;
547 id.code_addr_p = 1;
548 id.special_addr = special_addr;
549 id.special_addr_p = 1;
550 return id;
551 }
552
553 struct frame_id
554 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
555 {
556 struct frame_id id = null_frame_id;
557
558 id.stack_addr = stack_addr;
559 id.stack_status = FID_STACK_VALID;
560 id.code_addr = code_addr;
561 id.code_addr_p = 1;
562 return id;
563 }
564
565 struct frame_id
566 frame_id_build_wild (CORE_ADDR stack_addr)
567 {
568 struct frame_id id = null_frame_id;
569
570 id.stack_addr = stack_addr;
571 id.stack_status = FID_STACK_VALID;
572 return id;
573 }
574
575 int
576 frame_id_p (struct frame_id l)
577 {
578 int p;
579
580 /* The frame is valid iff it has a valid stack address. */
581 p = l.stack_status != FID_STACK_INVALID;
582 /* outer_frame_id is also valid. */
583 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
584 p = 1;
585 if (frame_debug)
586 {
587 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
588 fprint_frame_id (gdb_stdlog, l);
589 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
590 }
591 return p;
592 }
593
594 int
595 frame_id_artificial_p (struct frame_id l)
596 {
597 if (!frame_id_p (l))
598 return 0;
599
600 return (l.artificial_depth != 0);
601 }
602
603 int
604 frame_id_eq (struct frame_id l, struct frame_id r)
605 {
606 int eq;
607
608 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
609 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
610 /* The outermost frame marker is equal to itself. This is the
611 dodgy thing about outer_frame_id, since between execution steps
612 we might step into another function - from which we can't
613 unwind either. More thought required to get rid of
614 outer_frame_id. */
615 eq = 1;
616 else if (l.stack_status == FID_STACK_INVALID
617 || r.stack_status == FID_STACK_INVALID)
618 /* Like a NaN, if either ID is invalid, the result is false.
619 Note that a frame ID is invalid iff it is the null frame ID. */
620 eq = 0;
621 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
622 /* If .stack addresses are different, the frames are different. */
623 eq = 0;
624 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
625 /* An invalid code addr is a wild card. If .code addresses are
626 different, the frames are different. */
627 eq = 0;
628 else if (l.special_addr_p && r.special_addr_p
629 && l.special_addr != r.special_addr)
630 /* An invalid special addr is a wild card (or unused). Otherwise
631 if special addresses are different, the frames are different. */
632 eq = 0;
633 else if (l.artificial_depth != r.artificial_depth)
634 /* If artifical depths are different, the frames must be different. */
635 eq = 0;
636 else
637 /* Frames are equal. */
638 eq = 1;
639
640 if (frame_debug)
641 {
642 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
643 fprint_frame_id (gdb_stdlog, l);
644 fprintf_unfiltered (gdb_stdlog, ",r=");
645 fprint_frame_id (gdb_stdlog, r);
646 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
647 }
648 return eq;
649 }
650
651 /* Safety net to check whether frame ID L should be inner to
652 frame ID R, according to their stack addresses.
653
654 This method cannot be used to compare arbitrary frames, as the
655 ranges of valid stack addresses may be discontiguous (e.g. due
656 to sigaltstack).
657
658 However, it can be used as safety net to discover invalid frame
659 IDs in certain circumstances. Assuming that NEXT is the immediate
660 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
661
662 * The stack address of NEXT must be inner-than-or-equal to the stack
663 address of THIS.
664
665 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
666 error has occurred.
667
668 * If NEXT and THIS have different stack addresses, no other frame
669 in the frame chain may have a stack address in between.
670
671 Therefore, if frame_id_inner (TEST, THIS) holds, but
672 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
673 to a valid frame in the frame chain.
674
675 The sanity checks above cannot be performed when a SIGTRAMP frame
676 is involved, because signal handlers might be executed on a different
677 stack than the stack used by the routine that caused the signal
678 to be raised. This can happen for instance when a thread exceeds
679 its maximum stack size. In this case, certain compilers implement
680 a stack overflow strategy that cause the handler to be run on a
681 different stack. */
682
683 static int
684 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
685 {
686 int inner;
687
688 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
689 /* Like NaN, any operation involving an invalid ID always fails.
690 Likewise if either ID has an unavailable stack address. */
691 inner = 0;
692 else if (l.artificial_depth > r.artificial_depth
693 && l.stack_addr == r.stack_addr
694 && l.code_addr_p == r.code_addr_p
695 && l.special_addr_p == r.special_addr_p
696 && l.special_addr == r.special_addr)
697 {
698 /* Same function, different inlined functions. */
699 const struct block *lb, *rb;
700
701 gdb_assert (l.code_addr_p && r.code_addr_p);
702
703 lb = block_for_pc (l.code_addr);
704 rb = block_for_pc (r.code_addr);
705
706 if (lb == NULL || rb == NULL)
707 /* Something's gone wrong. */
708 inner = 0;
709 else
710 /* This will return true if LB and RB are the same block, or
711 if the block with the smaller depth lexically encloses the
712 block with the greater depth. */
713 inner = contained_in (lb, rb);
714 }
715 else
716 /* Only return non-zero when strictly inner than. Note that, per
717 comment in "frame.h", there is some fuzz here. Frameless
718 functions are not strictly inner than (same .stack but
719 different .code and/or .special address). */
720 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
721 if (frame_debug)
722 {
723 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
724 fprint_frame_id (gdb_stdlog, l);
725 fprintf_unfiltered (gdb_stdlog, ",r=");
726 fprint_frame_id (gdb_stdlog, r);
727 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
728 }
729 return inner;
730 }
731
732 struct frame_info *
733 frame_find_by_id (struct frame_id id)
734 {
735 struct frame_info *frame, *prev_frame;
736
737 /* ZERO denotes the null frame, let the caller decide what to do
738 about it. Should it instead return get_current_frame()? */
739 if (!frame_id_p (id))
740 return NULL;
741
742 /* Try using the frame stash first. Finding it there removes the need
743 to perform the search by looping over all frames, which can be very
744 CPU-intensive if the number of frames is very high (the loop is O(n)
745 and get_prev_frame performs a series of checks that are relatively
746 expensive). This optimization is particularly useful when this function
747 is called from another function (such as value_fetch_lazy, case
748 VALUE_LVAL (val) == lval_register) which already loops over all frames,
749 making the overall behavior O(n^2). */
750 frame = frame_stash_find (id);
751 if (frame)
752 return frame;
753
754 for (frame = get_current_frame (); ; frame = prev_frame)
755 {
756 struct frame_id this = get_frame_id (frame);
757
758 if (frame_id_eq (id, this))
759 /* An exact match. */
760 return frame;
761
762 prev_frame = get_prev_frame (frame);
763 if (!prev_frame)
764 return NULL;
765
766 /* As a safety net to avoid unnecessary backtracing while trying
767 to find an invalid ID, we check for a common situation where
768 we can detect from comparing stack addresses that no other
769 frame in the current frame chain can have this ID. See the
770 comment at frame_id_inner for details. */
771 if (get_frame_type (frame) == NORMAL_FRAME
772 && !frame_id_inner (get_frame_arch (frame), id, this)
773 && frame_id_inner (get_frame_arch (prev_frame), id,
774 get_frame_id (prev_frame)))
775 return NULL;
776 }
777 return NULL;
778 }
779
780 static CORE_ADDR
781 frame_unwind_pc (struct frame_info *this_frame)
782 {
783 if (this_frame->prev_pc.status == CC_UNKNOWN)
784 {
785 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
786 {
787 volatile struct gdb_exception ex;
788 struct gdbarch *prev_gdbarch;
789 CORE_ADDR pc = 0;
790
791 /* The right way. The `pure' way. The one true way. This
792 method depends solely on the register-unwind code to
793 determine the value of registers in THIS frame, and hence
794 the value of this frame's PC (resume address). A typical
795 implementation is no more than:
796
797 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
798 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
799
800 Note: this method is very heavily dependent on a correct
801 register-unwind implementation, it pays to fix that
802 method first; this method is frame type agnostic, since
803 it only deals with register values, it works with any
804 frame. This is all in stark contrast to the old
805 FRAME_SAVED_PC which would try to directly handle all the
806 different ways that a PC could be unwound. */
807 prev_gdbarch = frame_unwind_arch (this_frame);
808
809 TRY_CATCH (ex, RETURN_MASK_ERROR)
810 {
811 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
812 }
813 if (ex.reason < 0)
814 {
815 if (ex.error == NOT_AVAILABLE_ERROR)
816 {
817 this_frame->prev_pc.status = CC_UNAVAILABLE;
818
819 if (frame_debug)
820 fprintf_unfiltered (gdb_stdlog,
821 "{ frame_unwind_pc (this_frame=%d)"
822 " -> <unavailable> }\n",
823 this_frame->level);
824 }
825 else if (ex.error == OPTIMIZED_OUT_ERROR)
826 {
827 this_frame->prev_pc.status = CC_NOT_SAVED;
828
829 if (frame_debug)
830 fprintf_unfiltered (gdb_stdlog,
831 "{ frame_unwind_pc (this_frame=%d)"
832 " -> <not saved> }\n",
833 this_frame->level);
834 }
835 else
836 throw_exception (ex);
837 }
838 else
839 {
840 this_frame->prev_pc.value = pc;
841 this_frame->prev_pc.status = CC_VALUE;
842 if (frame_debug)
843 fprintf_unfiltered (gdb_stdlog,
844 "{ frame_unwind_pc (this_frame=%d) "
845 "-> %s }\n",
846 this_frame->level,
847 hex_string (this_frame->prev_pc.value));
848 }
849 }
850 else
851 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
852 }
853
854 if (this_frame->prev_pc.status == CC_VALUE)
855 return this_frame->prev_pc.value;
856 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
857 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
858 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
859 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
860 else
861 internal_error (__FILE__, __LINE__,
862 "unexpected prev_pc status: %d",
863 (int) this_frame->prev_pc.status);
864 }
865
866 CORE_ADDR
867 frame_unwind_caller_pc (struct frame_info *this_frame)
868 {
869 return frame_unwind_pc (skip_artificial_frames (this_frame));
870 }
871
872 int
873 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
874 {
875 struct frame_info *next_frame = this_frame->next;
876
877 if (!next_frame->prev_func.p)
878 {
879 CORE_ADDR addr_in_block;
880
881 /* Make certain that this, and not the adjacent, function is
882 found. */
883 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
884 {
885 next_frame->prev_func.p = -1;
886 if (frame_debug)
887 fprintf_unfiltered (gdb_stdlog,
888 "{ get_frame_func (this_frame=%d)"
889 " -> unavailable }\n",
890 this_frame->level);
891 }
892 else
893 {
894 next_frame->prev_func.p = 1;
895 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
896 if (frame_debug)
897 fprintf_unfiltered (gdb_stdlog,
898 "{ get_frame_func (this_frame=%d) -> %s }\n",
899 this_frame->level,
900 hex_string (next_frame->prev_func.addr));
901 }
902 }
903
904 if (next_frame->prev_func.p < 0)
905 {
906 *pc = -1;
907 return 0;
908 }
909 else
910 {
911 *pc = next_frame->prev_func.addr;
912 return 1;
913 }
914 }
915
916 CORE_ADDR
917 get_frame_func (struct frame_info *this_frame)
918 {
919 CORE_ADDR pc;
920
921 if (!get_frame_func_if_available (this_frame, &pc))
922 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
923
924 return pc;
925 }
926
927 static enum register_status
928 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
929 {
930 if (!deprecated_frame_register_read (src, regnum, buf))
931 return REG_UNAVAILABLE;
932 else
933 return REG_VALID;
934 }
935
936 struct regcache *
937 frame_save_as_regcache (struct frame_info *this_frame)
938 {
939 struct address_space *aspace = get_frame_address_space (this_frame);
940 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
941 aspace);
942 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
943
944 regcache_save (regcache, do_frame_register_read, this_frame);
945 discard_cleanups (cleanups);
946 return regcache;
947 }
948
949 void
950 frame_pop (struct frame_info *this_frame)
951 {
952 struct frame_info *prev_frame;
953 struct regcache *scratch;
954 struct cleanup *cleanups;
955
956 if (get_frame_type (this_frame) == DUMMY_FRAME)
957 {
958 /* Popping a dummy frame involves restoring more than just registers.
959 dummy_frame_pop does all the work. */
960 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
961 return;
962 }
963
964 /* Ensure that we have a frame to pop to. */
965 prev_frame = get_prev_frame_always (this_frame);
966
967 if (!prev_frame)
968 error (_("Cannot pop the initial frame."));
969
970 /* Ignore TAILCALL_FRAME type frames, they were executed already before
971 entering THISFRAME. */
972 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
973 prev_frame = get_prev_frame (prev_frame);
974
975 /* Make a copy of all the register values unwound from this frame.
976 Save them in a scratch buffer so that there isn't a race between
977 trying to extract the old values from the current regcache while
978 at the same time writing new values into that same cache. */
979 scratch = frame_save_as_regcache (prev_frame);
980 cleanups = make_cleanup_regcache_xfree (scratch);
981
982 /* FIXME: cagney/2003-03-16: It should be possible to tell the
983 target's register cache that it is about to be hit with a burst
984 register transfer and that the sequence of register writes should
985 be batched. The pair target_prepare_to_store() and
986 target_store_registers() kind of suggest this functionality.
987 Unfortunately, they don't implement it. Their lack of a formal
988 definition can lead to targets writing back bogus values
989 (arguably a bug in the target code mind). */
990 /* Now copy those saved registers into the current regcache.
991 Here, regcache_cpy() calls regcache_restore(). */
992 regcache_cpy (get_current_regcache (), scratch);
993 do_cleanups (cleanups);
994
995 /* We've made right mess of GDB's local state, just discard
996 everything. */
997 reinit_frame_cache ();
998 }
999
1000 void
1001 frame_register_unwind (struct frame_info *frame, int regnum,
1002 int *optimizedp, int *unavailablep,
1003 enum lval_type *lvalp, CORE_ADDR *addrp,
1004 int *realnump, gdb_byte *bufferp)
1005 {
1006 struct value *value;
1007
1008 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1009 that the value proper does not need to be fetched. */
1010 gdb_assert (optimizedp != NULL);
1011 gdb_assert (lvalp != NULL);
1012 gdb_assert (addrp != NULL);
1013 gdb_assert (realnump != NULL);
1014 /* gdb_assert (bufferp != NULL); */
1015
1016 value = frame_unwind_register_value (frame, regnum);
1017
1018 gdb_assert (value != NULL);
1019
1020 *optimizedp = value_optimized_out (value);
1021 *unavailablep = !value_entirely_available (value);
1022 *lvalp = VALUE_LVAL (value);
1023 *addrp = value_address (value);
1024 *realnump = VALUE_REGNUM (value);
1025
1026 if (bufferp)
1027 {
1028 if (!*optimizedp && !*unavailablep)
1029 memcpy (bufferp, value_contents_all (value),
1030 TYPE_LENGTH (value_type (value)));
1031 else
1032 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1033 }
1034
1035 /* Dispose of the new value. This prevents watchpoints from
1036 trying to watch the saved frame pointer. */
1037 release_value (value);
1038 value_free (value);
1039 }
1040
1041 void
1042 frame_register (struct frame_info *frame, int regnum,
1043 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1044 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1045 {
1046 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1047 that the value proper does not need to be fetched. */
1048 gdb_assert (optimizedp != NULL);
1049 gdb_assert (lvalp != NULL);
1050 gdb_assert (addrp != NULL);
1051 gdb_assert (realnump != NULL);
1052 /* gdb_assert (bufferp != NULL); */
1053
1054 /* Obtain the register value by unwinding the register from the next
1055 (more inner frame). */
1056 gdb_assert (frame != NULL && frame->next != NULL);
1057 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1058 lvalp, addrp, realnump, bufferp);
1059 }
1060
1061 void
1062 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1063 {
1064 int optimized;
1065 int unavailable;
1066 CORE_ADDR addr;
1067 int realnum;
1068 enum lval_type lval;
1069
1070 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1071 &lval, &addr, &realnum, buf);
1072
1073 if (optimized)
1074 throw_error (OPTIMIZED_OUT_ERROR,
1075 _("Register %d was not saved"), regnum);
1076 if (unavailable)
1077 throw_error (NOT_AVAILABLE_ERROR,
1078 _("Register %d is not available"), regnum);
1079 }
1080
1081 void
1082 get_frame_register (struct frame_info *frame,
1083 int regnum, gdb_byte *buf)
1084 {
1085 frame_unwind_register (frame->next, regnum, buf);
1086 }
1087
1088 struct value *
1089 frame_unwind_register_value (struct frame_info *frame, int regnum)
1090 {
1091 struct gdbarch *gdbarch;
1092 struct value *value;
1093
1094 gdb_assert (frame != NULL);
1095 gdbarch = frame_unwind_arch (frame);
1096
1097 if (frame_debug)
1098 {
1099 fprintf_unfiltered (gdb_stdlog,
1100 "{ frame_unwind_register_value "
1101 "(frame=%d,regnum=%d(%s),...) ",
1102 frame->level, regnum,
1103 user_reg_map_regnum_to_name (gdbarch, regnum));
1104 }
1105
1106 /* Find the unwinder. */
1107 if (frame->unwind == NULL)
1108 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1109
1110 /* Ask this frame to unwind its register. */
1111 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1112
1113 if (frame_debug)
1114 {
1115 fprintf_unfiltered (gdb_stdlog, "->");
1116 if (value_optimized_out (value))
1117 {
1118 fprintf_unfiltered (gdb_stdlog, " ");
1119 val_print_optimized_out (value, gdb_stdlog);
1120 }
1121 else
1122 {
1123 if (VALUE_LVAL (value) == lval_register)
1124 fprintf_unfiltered (gdb_stdlog, " register=%d",
1125 VALUE_REGNUM (value));
1126 else if (VALUE_LVAL (value) == lval_memory)
1127 fprintf_unfiltered (gdb_stdlog, " address=%s",
1128 paddress (gdbarch,
1129 value_address (value)));
1130 else
1131 fprintf_unfiltered (gdb_stdlog, " computed");
1132
1133 if (value_lazy (value))
1134 fprintf_unfiltered (gdb_stdlog, " lazy");
1135 else
1136 {
1137 int i;
1138 const gdb_byte *buf = value_contents (value);
1139
1140 fprintf_unfiltered (gdb_stdlog, " bytes=");
1141 fprintf_unfiltered (gdb_stdlog, "[");
1142 for (i = 0; i < register_size (gdbarch, regnum); i++)
1143 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1144 fprintf_unfiltered (gdb_stdlog, "]");
1145 }
1146 }
1147
1148 fprintf_unfiltered (gdb_stdlog, " }\n");
1149 }
1150
1151 return value;
1152 }
1153
1154 struct value *
1155 get_frame_register_value (struct frame_info *frame, int regnum)
1156 {
1157 return frame_unwind_register_value (frame->next, regnum);
1158 }
1159
1160 LONGEST
1161 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1162 {
1163 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1165 int size = register_size (gdbarch, regnum);
1166 gdb_byte buf[MAX_REGISTER_SIZE];
1167
1168 frame_unwind_register (frame, regnum, buf);
1169 return extract_signed_integer (buf, size, byte_order);
1170 }
1171
1172 LONGEST
1173 get_frame_register_signed (struct frame_info *frame, int regnum)
1174 {
1175 return frame_unwind_register_signed (frame->next, regnum);
1176 }
1177
1178 ULONGEST
1179 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1180 {
1181 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1182 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1183 int size = register_size (gdbarch, regnum);
1184 gdb_byte buf[MAX_REGISTER_SIZE];
1185
1186 frame_unwind_register (frame, regnum, buf);
1187 return extract_unsigned_integer (buf, size, byte_order);
1188 }
1189
1190 ULONGEST
1191 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1192 {
1193 return frame_unwind_register_unsigned (frame->next, regnum);
1194 }
1195
1196 int
1197 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1198 ULONGEST *val)
1199 {
1200 struct value *regval = get_frame_register_value (frame, regnum);
1201
1202 if (!value_optimized_out (regval)
1203 && value_entirely_available (regval))
1204 {
1205 struct gdbarch *gdbarch = get_frame_arch (frame);
1206 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1207 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1208
1209 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1210 return 1;
1211 }
1212
1213 return 0;
1214 }
1215
1216 void
1217 put_frame_register (struct frame_info *frame, int regnum,
1218 const gdb_byte *buf)
1219 {
1220 struct gdbarch *gdbarch = get_frame_arch (frame);
1221 int realnum;
1222 int optim;
1223 int unavail;
1224 enum lval_type lval;
1225 CORE_ADDR addr;
1226
1227 frame_register (frame, regnum, &optim, &unavail,
1228 &lval, &addr, &realnum, NULL);
1229 if (optim)
1230 error (_("Attempt to assign to a register that was not saved."));
1231 switch (lval)
1232 {
1233 case lval_memory:
1234 {
1235 write_memory (addr, buf, register_size (gdbarch, regnum));
1236 break;
1237 }
1238 case lval_register:
1239 regcache_cooked_write (get_current_regcache (), realnum, buf);
1240 break;
1241 default:
1242 error (_("Attempt to assign to an unmodifiable value."));
1243 }
1244 }
1245
1246 /* This function is deprecated. Use get_frame_register_value instead,
1247 which provides more accurate information.
1248
1249 Find and return the value of REGNUM for the specified stack frame.
1250 The number of bytes copied is REGISTER_SIZE (REGNUM).
1251
1252 Returns 0 if the register value could not be found. */
1253
1254 int
1255 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1256 gdb_byte *myaddr)
1257 {
1258 int optimized;
1259 int unavailable;
1260 enum lval_type lval;
1261 CORE_ADDR addr;
1262 int realnum;
1263
1264 frame_register (frame, regnum, &optimized, &unavailable,
1265 &lval, &addr, &realnum, myaddr);
1266
1267 return !optimized && !unavailable;
1268 }
1269
1270 int
1271 get_frame_register_bytes (struct frame_info *frame, int regnum,
1272 CORE_ADDR offset, int len, gdb_byte *myaddr,
1273 int *optimizedp, int *unavailablep)
1274 {
1275 struct gdbarch *gdbarch = get_frame_arch (frame);
1276 int i;
1277 int maxsize;
1278 int numregs;
1279
1280 /* Skip registers wholly inside of OFFSET. */
1281 while (offset >= register_size (gdbarch, regnum))
1282 {
1283 offset -= register_size (gdbarch, regnum);
1284 regnum++;
1285 }
1286
1287 /* Ensure that we will not read beyond the end of the register file.
1288 This can only ever happen if the debug information is bad. */
1289 maxsize = -offset;
1290 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1291 for (i = regnum; i < numregs; i++)
1292 {
1293 int thissize = register_size (gdbarch, i);
1294
1295 if (thissize == 0)
1296 break; /* This register is not available on this architecture. */
1297 maxsize += thissize;
1298 }
1299 if (len > maxsize)
1300 error (_("Bad debug information detected: "
1301 "Attempt to read %d bytes from registers."), len);
1302
1303 /* Copy the data. */
1304 while (len > 0)
1305 {
1306 int curr_len = register_size (gdbarch, regnum) - offset;
1307
1308 if (curr_len > len)
1309 curr_len = len;
1310
1311 if (curr_len == register_size (gdbarch, regnum))
1312 {
1313 enum lval_type lval;
1314 CORE_ADDR addr;
1315 int realnum;
1316
1317 frame_register (frame, regnum, optimizedp, unavailablep,
1318 &lval, &addr, &realnum, myaddr);
1319 if (*optimizedp || *unavailablep)
1320 return 0;
1321 }
1322 else
1323 {
1324 gdb_byte buf[MAX_REGISTER_SIZE];
1325 enum lval_type lval;
1326 CORE_ADDR addr;
1327 int realnum;
1328
1329 frame_register (frame, regnum, optimizedp, unavailablep,
1330 &lval, &addr, &realnum, buf);
1331 if (*optimizedp || *unavailablep)
1332 return 0;
1333 memcpy (myaddr, buf + offset, curr_len);
1334 }
1335
1336 myaddr += curr_len;
1337 len -= curr_len;
1338 offset = 0;
1339 regnum++;
1340 }
1341
1342 *optimizedp = 0;
1343 *unavailablep = 0;
1344 return 1;
1345 }
1346
1347 void
1348 put_frame_register_bytes (struct frame_info *frame, int regnum,
1349 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1350 {
1351 struct gdbarch *gdbarch = get_frame_arch (frame);
1352
1353 /* Skip registers wholly inside of OFFSET. */
1354 while (offset >= register_size (gdbarch, regnum))
1355 {
1356 offset -= register_size (gdbarch, regnum);
1357 regnum++;
1358 }
1359
1360 /* Copy the data. */
1361 while (len > 0)
1362 {
1363 int curr_len = register_size (gdbarch, regnum) - offset;
1364
1365 if (curr_len > len)
1366 curr_len = len;
1367
1368 if (curr_len == register_size (gdbarch, regnum))
1369 {
1370 put_frame_register (frame, regnum, myaddr);
1371 }
1372 else
1373 {
1374 gdb_byte buf[MAX_REGISTER_SIZE];
1375
1376 deprecated_frame_register_read (frame, regnum, buf);
1377 memcpy (buf + offset, myaddr, curr_len);
1378 put_frame_register (frame, regnum, buf);
1379 }
1380
1381 myaddr += curr_len;
1382 len -= curr_len;
1383 offset = 0;
1384 regnum++;
1385 }
1386 }
1387
1388 /* Create a sentinel frame. */
1389
1390 static struct frame_info *
1391 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1392 {
1393 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1394
1395 frame->level = -1;
1396 frame->pspace = pspace;
1397 frame->aspace = get_regcache_aspace (regcache);
1398 /* Explicitly initialize the sentinel frame's cache. Provide it
1399 with the underlying regcache. In the future additional
1400 information, such as the frame's thread will be added. */
1401 frame->prologue_cache = sentinel_frame_cache (regcache);
1402 /* For the moment there is only one sentinel frame implementation. */
1403 frame->unwind = &sentinel_frame_unwind;
1404 /* Link this frame back to itself. The frame is self referential
1405 (the unwound PC is the same as the pc), so make it so. */
1406 frame->next = frame;
1407 /* Make the sentinel frame's ID valid, but invalid. That way all
1408 comparisons with it should fail. */
1409 frame->this_id.p = 1;
1410 frame->this_id.value = null_frame_id;
1411 if (frame_debug)
1412 {
1413 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1414 fprint_frame (gdb_stdlog, frame);
1415 fprintf_unfiltered (gdb_stdlog, " }\n");
1416 }
1417 return frame;
1418 }
1419
1420 /* Info about the innermost stack frame (contents of FP register). */
1421
1422 static struct frame_info *current_frame;
1423
1424 /* Cache for frame addresses already read by gdb. Valid only while
1425 inferior is stopped. Control variables for the frame cache should
1426 be local to this module. */
1427
1428 static struct obstack frame_cache_obstack;
1429
1430 void *
1431 frame_obstack_zalloc (unsigned long size)
1432 {
1433 void *data = obstack_alloc (&frame_cache_obstack, size);
1434
1435 memset (data, 0, size);
1436 return data;
1437 }
1438
1439 /* Return the innermost (currently executing) stack frame. This is
1440 split into two functions. The function unwind_to_current_frame()
1441 is wrapped in catch exceptions so that, even when the unwind of the
1442 sentinel frame fails, the function still returns a stack frame. */
1443
1444 static int
1445 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1446 {
1447 struct frame_info *frame = get_prev_frame (args);
1448
1449 /* A sentinel frame can fail to unwind, e.g., because its PC value
1450 lands in somewhere like start. */
1451 if (frame == NULL)
1452 return 1;
1453 current_frame = frame;
1454 return 0;
1455 }
1456
1457 struct frame_info *
1458 get_current_frame (void)
1459 {
1460 /* First check, and report, the lack of registers. Having GDB
1461 report "No stack!" or "No memory" when the target doesn't even
1462 have registers is very confusing. Besides, "printcmd.exp"
1463 explicitly checks that ``print $pc'' with no registers prints "No
1464 registers". */
1465 if (!target_has_registers)
1466 error (_("No registers."));
1467 if (!target_has_stack)
1468 error (_("No stack."));
1469 if (!target_has_memory)
1470 error (_("No memory."));
1471 /* Traceframes are effectively a substitute for the live inferior. */
1472 if (get_traceframe_number () < 0)
1473 {
1474 if (ptid_equal (inferior_ptid, null_ptid))
1475 error (_("No selected thread."));
1476 if (is_exited (inferior_ptid))
1477 error (_("Invalid selected thread."));
1478 if (is_executing (inferior_ptid))
1479 error (_("Target is executing."));
1480 }
1481
1482 if (current_frame == NULL)
1483 {
1484 struct frame_info *sentinel_frame =
1485 create_sentinel_frame (current_program_space, get_current_regcache ());
1486 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1487 sentinel_frame, RETURN_MASK_ERROR) != 0)
1488 {
1489 /* Oops! Fake a current frame? Is this useful? It has a PC
1490 of zero, for instance. */
1491 current_frame = sentinel_frame;
1492 }
1493 }
1494 return current_frame;
1495 }
1496
1497 /* The "selected" stack frame is used by default for local and arg
1498 access. May be zero, for no selected frame. */
1499
1500 static struct frame_info *selected_frame;
1501
1502 int
1503 has_stack_frames (void)
1504 {
1505 if (!target_has_registers || !target_has_stack || !target_has_memory)
1506 return 0;
1507
1508 /* Traceframes are effectively a substitute for the live inferior. */
1509 if (get_traceframe_number () < 0)
1510 {
1511 /* No current inferior, no frame. */
1512 if (ptid_equal (inferior_ptid, null_ptid))
1513 return 0;
1514
1515 /* Don't try to read from a dead thread. */
1516 if (is_exited (inferior_ptid))
1517 return 0;
1518
1519 /* ... or from a spinning thread. */
1520 if (is_executing (inferior_ptid))
1521 return 0;
1522 }
1523
1524 return 1;
1525 }
1526
1527 /* Return the selected frame. Always non-NULL (unless there isn't an
1528 inferior sufficient for creating a frame) in which case an error is
1529 thrown. */
1530
1531 struct frame_info *
1532 get_selected_frame (const char *message)
1533 {
1534 if (selected_frame == NULL)
1535 {
1536 if (message != NULL && !has_stack_frames ())
1537 error (("%s"), message);
1538 /* Hey! Don't trust this. It should really be re-finding the
1539 last selected frame of the currently selected thread. This,
1540 though, is better than nothing. */
1541 select_frame (get_current_frame ());
1542 }
1543 /* There is always a frame. */
1544 gdb_assert (selected_frame != NULL);
1545 return selected_frame;
1546 }
1547
1548 /* If there is a selected frame, return it. Otherwise, return NULL. */
1549
1550 struct frame_info *
1551 get_selected_frame_if_set (void)
1552 {
1553 return selected_frame;
1554 }
1555
1556 /* This is a variant of get_selected_frame() which can be called when
1557 the inferior does not have a frame; in that case it will return
1558 NULL instead of calling error(). */
1559
1560 struct frame_info *
1561 deprecated_safe_get_selected_frame (void)
1562 {
1563 if (!has_stack_frames ())
1564 return NULL;
1565 return get_selected_frame (NULL);
1566 }
1567
1568 /* Select frame FI (or NULL - to invalidate the current frame). */
1569
1570 void
1571 select_frame (struct frame_info *fi)
1572 {
1573 selected_frame = fi;
1574 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1575 frame is being invalidated. */
1576 if (deprecated_selected_frame_level_changed_hook)
1577 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1578
1579 /* FIXME: kseitz/2002-08-28: It would be nice to call
1580 selected_frame_level_changed_event() right here, but due to limitations
1581 in the current interfaces, we would end up flooding UIs with events
1582 because select_frame() is used extensively internally.
1583
1584 Once we have frame-parameterized frame (and frame-related) commands,
1585 the event notification can be moved here, since this function will only
1586 be called when the user's selected frame is being changed. */
1587
1588 /* Ensure that symbols for this frame are read in. Also, determine the
1589 source language of this frame, and switch to it if desired. */
1590 if (fi)
1591 {
1592 CORE_ADDR pc;
1593
1594 /* We retrieve the frame's symtab by using the frame PC.
1595 However we cannot use the frame PC as-is, because it usually
1596 points to the instruction following the "call", which is
1597 sometimes the first instruction of another function. So we
1598 rely on get_frame_address_in_block() which provides us with a
1599 PC which is guaranteed to be inside the frame's code
1600 block. */
1601 if (get_frame_address_in_block_if_available (fi, &pc))
1602 {
1603 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1604
1605 if (cust != NULL
1606 && compunit_language (cust) != current_language->la_language
1607 && compunit_language (cust) != language_unknown
1608 && language_mode == language_mode_auto)
1609 set_language (compunit_language (cust));
1610 }
1611 }
1612 }
1613
1614 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1615 Always returns a non-NULL value. */
1616
1617 struct frame_info *
1618 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1619 {
1620 struct frame_info *fi;
1621
1622 if (frame_debug)
1623 {
1624 fprintf_unfiltered (gdb_stdlog,
1625 "{ create_new_frame (addr=%s, pc=%s) ",
1626 hex_string (addr), hex_string (pc));
1627 }
1628
1629 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1630
1631 fi->next = create_sentinel_frame (current_program_space,
1632 get_current_regcache ());
1633
1634 /* Set/update this frame's cached PC value, found in the next frame.
1635 Do this before looking for this frame's unwinder. A sniffer is
1636 very likely to read this, and the corresponding unwinder is
1637 entitled to rely that the PC doesn't magically change. */
1638 fi->next->prev_pc.value = pc;
1639 fi->next->prev_pc.status = CC_VALUE;
1640
1641 /* We currently assume that frame chain's can't cross spaces. */
1642 fi->pspace = fi->next->pspace;
1643 fi->aspace = fi->next->aspace;
1644
1645 /* Select/initialize both the unwind function and the frame's type
1646 based on the PC. */
1647 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1648
1649 fi->this_id.p = 1;
1650 fi->this_id.value = frame_id_build (addr, pc);
1651
1652 if (frame_debug)
1653 {
1654 fprintf_unfiltered (gdb_stdlog, "-> ");
1655 fprint_frame (gdb_stdlog, fi);
1656 fprintf_unfiltered (gdb_stdlog, " }\n");
1657 }
1658
1659 return fi;
1660 }
1661
1662 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1663 innermost frame). Be careful to not fall off the bottom of the
1664 frame chain and onto the sentinel frame. */
1665
1666 struct frame_info *
1667 get_next_frame (struct frame_info *this_frame)
1668 {
1669 if (this_frame->level > 0)
1670 return this_frame->next;
1671 else
1672 return NULL;
1673 }
1674
1675 /* Observer for the target_changed event. */
1676
1677 static void
1678 frame_observer_target_changed (struct target_ops *target)
1679 {
1680 reinit_frame_cache ();
1681 }
1682
1683 /* Flush the entire frame cache. */
1684
1685 void
1686 reinit_frame_cache (void)
1687 {
1688 struct frame_info *fi;
1689
1690 /* Tear down all frame caches. */
1691 for (fi = current_frame; fi != NULL; fi = fi->prev)
1692 {
1693 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1694 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1695 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1696 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1697 }
1698
1699 /* Since we can't really be sure what the first object allocated was. */
1700 obstack_free (&frame_cache_obstack, 0);
1701 obstack_init (&frame_cache_obstack);
1702
1703 if (current_frame != NULL)
1704 annotate_frames_invalid ();
1705
1706 current_frame = NULL; /* Invalidate cache */
1707 select_frame (NULL);
1708 frame_stash_invalidate ();
1709 if (frame_debug)
1710 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1711 }
1712
1713 /* Find where a register is saved (in memory or another register).
1714 The result of frame_register_unwind is just where it is saved
1715 relative to this particular frame. */
1716
1717 static void
1718 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1719 int *optimizedp, enum lval_type *lvalp,
1720 CORE_ADDR *addrp, int *realnump)
1721 {
1722 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1723
1724 while (this_frame != NULL)
1725 {
1726 int unavailable;
1727
1728 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1729 lvalp, addrp, realnump, NULL);
1730
1731 if (*optimizedp)
1732 break;
1733
1734 if (*lvalp != lval_register)
1735 break;
1736
1737 regnum = *realnump;
1738 this_frame = get_next_frame (this_frame);
1739 }
1740 }
1741
1742 /* Called during frame unwinding to remove a previous frame pointer from a
1743 frame passed in ARG. */
1744
1745 static void
1746 remove_prev_frame (void *arg)
1747 {
1748 struct frame_info *this_frame, *prev_frame;
1749
1750 this_frame = (struct frame_info *) arg;
1751 prev_frame = this_frame->prev;
1752 gdb_assert (prev_frame != NULL);
1753
1754 prev_frame->next = NULL;
1755 this_frame->prev = NULL;
1756 }
1757
1758 /* Get the previous raw frame, and check that it is not identical to
1759 same other frame frame already in the chain. If it is, there is
1760 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1761 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1762 validity tests, that compare THIS_FRAME and the next frame, we do
1763 this right after creating the previous frame, to avoid ever ending
1764 up with two frames with the same id in the frame chain. */
1765
1766 static struct frame_info *
1767 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1768 {
1769 struct frame_info *prev_frame;
1770 struct cleanup *prev_frame_cleanup;
1771
1772 prev_frame = get_prev_frame_raw (this_frame);
1773 if (prev_frame == NULL)
1774 return NULL;
1775
1776 /* The cleanup will remove the previous frame that get_prev_frame_raw
1777 linked onto THIS_FRAME. */
1778 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1779
1780 compute_frame_id (prev_frame);
1781 if (!frame_stash_add (prev_frame))
1782 {
1783 /* Another frame with the same id was already in the stash. We just
1784 detected a cycle. */
1785 if (frame_debug)
1786 {
1787 fprintf_unfiltered (gdb_stdlog, "-> ");
1788 fprint_frame (gdb_stdlog, NULL);
1789 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1790 }
1791 this_frame->stop_reason = UNWIND_SAME_ID;
1792 /* Unlink. */
1793 prev_frame->next = NULL;
1794 this_frame->prev = NULL;
1795 prev_frame = NULL;
1796 }
1797
1798 discard_cleanups (prev_frame_cleanup);
1799 return prev_frame;
1800 }
1801
1802 /* Helper function for get_prev_frame_always, this is called inside a
1803 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1804 there is no such frame. This may throw an exception. */
1805
1806 static struct frame_info *
1807 get_prev_frame_always_1 (struct frame_info *this_frame)
1808 {
1809 struct gdbarch *gdbarch;
1810
1811 gdb_assert (this_frame != NULL);
1812 gdbarch = get_frame_arch (this_frame);
1813
1814 if (frame_debug)
1815 {
1816 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1817 if (this_frame != NULL)
1818 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1819 else
1820 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1821 fprintf_unfiltered (gdb_stdlog, ") ");
1822 }
1823
1824 /* Only try to do the unwind once. */
1825 if (this_frame->prev_p)
1826 {
1827 if (frame_debug)
1828 {
1829 fprintf_unfiltered (gdb_stdlog, "-> ");
1830 fprint_frame (gdb_stdlog, this_frame->prev);
1831 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1832 }
1833 return this_frame->prev;
1834 }
1835
1836 /* If the frame unwinder hasn't been selected yet, we must do so
1837 before setting prev_p; otherwise the check for misbehaved
1838 sniffers will think that this frame's sniffer tried to unwind
1839 further (see frame_cleanup_after_sniffer). */
1840 if (this_frame->unwind == NULL)
1841 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1842
1843 this_frame->prev_p = 1;
1844 this_frame->stop_reason = UNWIND_NO_REASON;
1845
1846 /* If we are unwinding from an inline frame, all of the below tests
1847 were already performed when we unwound from the next non-inline
1848 frame. We must skip them, since we can not get THIS_FRAME's ID
1849 until we have unwound all the way down to the previous non-inline
1850 frame. */
1851 if (get_frame_type (this_frame) == INLINE_FRAME)
1852 return get_prev_frame_if_no_cycle (this_frame);
1853
1854 /* Check that this frame is unwindable. If it isn't, don't try to
1855 unwind to the prev frame. */
1856 this_frame->stop_reason
1857 = this_frame->unwind->stop_reason (this_frame,
1858 &this_frame->prologue_cache);
1859
1860 if (this_frame->stop_reason != UNWIND_NO_REASON)
1861 {
1862 if (frame_debug)
1863 {
1864 enum unwind_stop_reason reason = this_frame->stop_reason;
1865
1866 fprintf_unfiltered (gdb_stdlog, "-> ");
1867 fprint_frame (gdb_stdlog, NULL);
1868 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1869 frame_stop_reason_symbol_string (reason));
1870 }
1871 return NULL;
1872 }
1873
1874 /* Check that this frame's ID isn't inner to (younger, below, next)
1875 the next frame. This happens when a frame unwind goes backwards.
1876 This check is valid only if this frame and the next frame are NORMAL.
1877 See the comment at frame_id_inner for details. */
1878 if (get_frame_type (this_frame) == NORMAL_FRAME
1879 && this_frame->next->unwind->type == NORMAL_FRAME
1880 && frame_id_inner (get_frame_arch (this_frame->next),
1881 get_frame_id (this_frame),
1882 get_frame_id (this_frame->next)))
1883 {
1884 CORE_ADDR this_pc_in_block;
1885 struct minimal_symbol *morestack_msym;
1886 const char *morestack_name = NULL;
1887
1888 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1889 this_pc_in_block = get_frame_address_in_block (this_frame);
1890 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1891 if (morestack_msym)
1892 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1893 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1894 {
1895 if (frame_debug)
1896 {
1897 fprintf_unfiltered (gdb_stdlog, "-> ");
1898 fprint_frame (gdb_stdlog, NULL);
1899 fprintf_unfiltered (gdb_stdlog,
1900 " // this frame ID is inner }\n");
1901 }
1902 this_frame->stop_reason = UNWIND_INNER_ID;
1903 return NULL;
1904 }
1905 }
1906
1907 /* Check that this and the next frame do not unwind the PC register
1908 to the same memory location. If they do, then even though they
1909 have different frame IDs, the new frame will be bogus; two
1910 functions can't share a register save slot for the PC. This can
1911 happen when the prologue analyzer finds a stack adjustment, but
1912 no PC save.
1913
1914 This check does assume that the "PC register" is roughly a
1915 traditional PC, even if the gdbarch_unwind_pc method adjusts
1916 it (we do not rely on the value, only on the unwound PC being
1917 dependent on this value). A potential improvement would be
1918 to have the frame prev_pc method and the gdbarch unwind_pc
1919 method set the same lval and location information as
1920 frame_register_unwind. */
1921 if (this_frame->level > 0
1922 && gdbarch_pc_regnum (gdbarch) >= 0
1923 && get_frame_type (this_frame) == NORMAL_FRAME
1924 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1925 || get_frame_type (this_frame->next) == INLINE_FRAME))
1926 {
1927 int optimized, realnum, nrealnum;
1928 enum lval_type lval, nlval;
1929 CORE_ADDR addr, naddr;
1930
1931 frame_register_unwind_location (this_frame,
1932 gdbarch_pc_regnum (gdbarch),
1933 &optimized, &lval, &addr, &realnum);
1934 frame_register_unwind_location (get_next_frame (this_frame),
1935 gdbarch_pc_regnum (gdbarch),
1936 &optimized, &nlval, &naddr, &nrealnum);
1937
1938 if ((lval == lval_memory && lval == nlval && addr == naddr)
1939 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1940 {
1941 if (frame_debug)
1942 {
1943 fprintf_unfiltered (gdb_stdlog, "-> ");
1944 fprint_frame (gdb_stdlog, NULL);
1945 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1946 }
1947
1948 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1949 this_frame->prev = NULL;
1950 return NULL;
1951 }
1952 }
1953
1954 return get_prev_frame_if_no_cycle (this_frame);
1955 }
1956
1957 /* Return a "struct frame_info" corresponding to the frame that called
1958 THIS_FRAME. Returns NULL if there is no such frame.
1959
1960 Unlike get_prev_frame, this function always tries to unwind the
1961 frame. */
1962
1963 struct frame_info *
1964 get_prev_frame_always (struct frame_info *this_frame)
1965 {
1966 volatile struct gdb_exception ex;
1967 struct frame_info *prev_frame = NULL;
1968
1969 TRY_CATCH (ex, RETURN_MASK_ERROR)
1970 {
1971 prev_frame = get_prev_frame_always_1 (this_frame);
1972 }
1973 if (ex.reason < 0)
1974 {
1975 if (ex.error == MEMORY_ERROR)
1976 {
1977 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
1978 if (ex.message != NULL)
1979 {
1980 char *stop_string;
1981 size_t size;
1982
1983 /* The error needs to live as long as the frame does.
1984 Allocate using stack local STOP_STRING then assign the
1985 pointer to the frame, this allows the STOP_STRING on the
1986 frame to be of type 'const char *'. */
1987 size = strlen (ex.message) + 1;
1988 stop_string = frame_obstack_zalloc (size);
1989 memcpy (stop_string, ex.message, size);
1990 this_frame->stop_string = stop_string;
1991 }
1992 prev_frame = NULL;
1993 }
1994 else
1995 throw_exception (ex);
1996 }
1997
1998 return prev_frame;
1999 }
2000
2001 /* Construct a new "struct frame_info" and link it previous to
2002 this_frame. */
2003
2004 static struct frame_info *
2005 get_prev_frame_raw (struct frame_info *this_frame)
2006 {
2007 struct frame_info *prev_frame;
2008
2009 /* Allocate the new frame but do not wire it in to the frame chain.
2010 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2011 frame->next to pull some fancy tricks (of course such code is, by
2012 definition, recursive). Try to prevent it.
2013
2014 There is no reason to worry about memory leaks, should the
2015 remainder of the function fail. The allocated memory will be
2016 quickly reclaimed when the frame cache is flushed, and the `we've
2017 been here before' check above will stop repeated memory
2018 allocation calls. */
2019 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2020 prev_frame->level = this_frame->level + 1;
2021
2022 /* For now, assume we don't have frame chains crossing address
2023 spaces. */
2024 prev_frame->pspace = this_frame->pspace;
2025 prev_frame->aspace = this_frame->aspace;
2026
2027 /* Don't yet compute ->unwind (and hence ->type). It is computed
2028 on-demand in get_frame_type, frame_register_unwind, and
2029 get_frame_id. */
2030
2031 /* Don't yet compute the frame's ID. It is computed on-demand by
2032 get_frame_id(). */
2033
2034 /* The unwound frame ID is validate at the start of this function,
2035 as part of the logic to decide if that frame should be further
2036 unwound, and not here while the prev frame is being created.
2037 Doing this makes it possible for the user to examine a frame that
2038 has an invalid frame ID.
2039
2040 Some very old VAX code noted: [...] For the sake of argument,
2041 suppose that the stack is somewhat trashed (which is one reason
2042 that "info frame" exists). So, return 0 (indicating we don't
2043 know the address of the arglist) if we don't know what frame this
2044 frame calls. */
2045
2046 /* Link it in. */
2047 this_frame->prev = prev_frame;
2048 prev_frame->next = this_frame;
2049
2050 if (frame_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog, "-> ");
2053 fprint_frame (gdb_stdlog, prev_frame);
2054 fprintf_unfiltered (gdb_stdlog, " }\n");
2055 }
2056
2057 return prev_frame;
2058 }
2059
2060 /* Debug routine to print a NULL frame being returned. */
2061
2062 static void
2063 frame_debug_got_null_frame (struct frame_info *this_frame,
2064 const char *reason)
2065 {
2066 if (frame_debug)
2067 {
2068 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2069 if (this_frame != NULL)
2070 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2071 else
2072 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2073 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2074 }
2075 }
2076
2077 /* Is this (non-sentinel) frame in the "main"() function? */
2078
2079 static int
2080 inside_main_func (struct frame_info *this_frame)
2081 {
2082 struct bound_minimal_symbol msymbol;
2083 CORE_ADDR maddr;
2084
2085 if (symfile_objfile == 0)
2086 return 0;
2087 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2088 if (msymbol.minsym == NULL)
2089 return 0;
2090 /* Make certain that the code, and not descriptor, address is
2091 returned. */
2092 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2093 BMSYMBOL_VALUE_ADDRESS (msymbol),
2094 &current_target);
2095 return maddr == get_frame_func (this_frame);
2096 }
2097
2098 /* Test whether THIS_FRAME is inside the process entry point function. */
2099
2100 static int
2101 inside_entry_func (struct frame_info *this_frame)
2102 {
2103 CORE_ADDR entry_point;
2104
2105 if (!entry_point_address_query (&entry_point))
2106 return 0;
2107
2108 return get_frame_func (this_frame) == entry_point;
2109 }
2110
2111 /* Return a structure containing various interesting information about
2112 the frame that called THIS_FRAME. Returns NULL if there is entier
2113 no such frame or the frame fails any of a set of target-independent
2114 condition that should terminate the frame chain (e.g., as unwinding
2115 past main()).
2116
2117 This function should not contain target-dependent tests, such as
2118 checking whether the program-counter is zero. */
2119
2120 struct frame_info *
2121 get_prev_frame (struct frame_info *this_frame)
2122 {
2123 CORE_ADDR frame_pc;
2124 int frame_pc_p;
2125
2126 /* There is always a frame. If this assertion fails, suspect that
2127 something should be calling get_selected_frame() or
2128 get_current_frame(). */
2129 gdb_assert (this_frame != NULL);
2130 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2131
2132 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2133 sense to stop unwinding at a dummy frame. One place where a dummy
2134 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2135 pcsqh register (space register for the instruction at the head of the
2136 instruction queue) cannot be written directly; the only way to set it
2137 is to branch to code that is in the target space. In order to implement
2138 frame dummies on HPUX, the called function is made to jump back to where
2139 the inferior was when the user function was called. If gdb was inside
2140 the main function when we created the dummy frame, the dummy frame will
2141 point inside the main function. */
2142 if (this_frame->level >= 0
2143 && get_frame_type (this_frame) == NORMAL_FRAME
2144 && !backtrace_past_main
2145 && frame_pc_p
2146 && inside_main_func (this_frame))
2147 /* Don't unwind past main(). Note, this is done _before_ the
2148 frame has been marked as previously unwound. That way if the
2149 user later decides to enable unwinds past main(), that will
2150 automatically happen. */
2151 {
2152 frame_debug_got_null_frame (this_frame, "inside main func");
2153 return NULL;
2154 }
2155
2156 /* If the user's backtrace limit has been exceeded, stop. We must
2157 add two to the current level; one of those accounts for backtrace_limit
2158 being 1-based and the level being 0-based, and the other accounts for
2159 the level of the new frame instead of the level of the current
2160 frame. */
2161 if (this_frame->level + 2 > backtrace_limit)
2162 {
2163 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2164 return NULL;
2165 }
2166
2167 /* If we're already inside the entry function for the main objfile,
2168 then it isn't valid. Don't apply this test to a dummy frame -
2169 dummy frame PCs typically land in the entry func. Don't apply
2170 this test to the sentinel frame. Sentinel frames should always
2171 be allowed to unwind. */
2172 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2173 wasn't checking for "main" in the minimal symbols. With that
2174 fixed asm-source tests now stop in "main" instead of halting the
2175 backtrace in weird and wonderful ways somewhere inside the entry
2176 file. Suspect that tests for inside the entry file/func were
2177 added to work around that (now fixed) case. */
2178 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2179 suggested having the inside_entry_func test use the
2180 inside_main_func() msymbol trick (along with entry_point_address()
2181 I guess) to determine the address range of the start function.
2182 That should provide a far better stopper than the current
2183 heuristics. */
2184 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2185 applied tail-call optimizations to main so that a function called
2186 from main returns directly to the caller of main. Since we don't
2187 stop at main, we should at least stop at the entry point of the
2188 application. */
2189 if (this_frame->level >= 0
2190 && get_frame_type (this_frame) == NORMAL_FRAME
2191 && !backtrace_past_entry
2192 && frame_pc_p
2193 && inside_entry_func (this_frame))
2194 {
2195 frame_debug_got_null_frame (this_frame, "inside entry func");
2196 return NULL;
2197 }
2198
2199 /* Assume that the only way to get a zero PC is through something
2200 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2201 will never unwind a zero PC. */
2202 if (this_frame->level > 0
2203 && (get_frame_type (this_frame) == NORMAL_FRAME
2204 || get_frame_type (this_frame) == INLINE_FRAME)
2205 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2206 && frame_pc_p && frame_pc == 0)
2207 {
2208 frame_debug_got_null_frame (this_frame, "zero PC");
2209 return NULL;
2210 }
2211
2212 return get_prev_frame_always (this_frame);
2213 }
2214
2215 CORE_ADDR
2216 get_frame_pc (struct frame_info *frame)
2217 {
2218 gdb_assert (frame->next != NULL);
2219 return frame_unwind_pc (frame->next);
2220 }
2221
2222 int
2223 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2224 {
2225 volatile struct gdb_exception ex;
2226
2227 gdb_assert (frame->next != NULL);
2228
2229 TRY_CATCH (ex, RETURN_MASK_ERROR)
2230 {
2231 *pc = frame_unwind_pc (frame->next);
2232 }
2233 if (ex.reason < 0)
2234 {
2235 if (ex.error == NOT_AVAILABLE_ERROR)
2236 return 0;
2237 else
2238 throw_exception (ex);
2239 }
2240
2241 return 1;
2242 }
2243
2244 /* Return an address that falls within THIS_FRAME's code block. */
2245
2246 CORE_ADDR
2247 get_frame_address_in_block (struct frame_info *this_frame)
2248 {
2249 /* A draft address. */
2250 CORE_ADDR pc = get_frame_pc (this_frame);
2251
2252 struct frame_info *next_frame = this_frame->next;
2253
2254 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2255 Normally the resume address is inside the body of the function
2256 associated with THIS_FRAME, but there is a special case: when
2257 calling a function which the compiler knows will never return
2258 (for instance abort), the call may be the very last instruction
2259 in the calling function. The resume address will point after the
2260 call and may be at the beginning of a different function
2261 entirely.
2262
2263 If THIS_FRAME is a signal frame or dummy frame, then we should
2264 not adjust the unwound PC. For a dummy frame, GDB pushed the
2265 resume address manually onto the stack. For a signal frame, the
2266 OS may have pushed the resume address manually and invoked the
2267 handler (e.g. GNU/Linux), or invoked the trampoline which called
2268 the signal handler - but in either case the signal handler is
2269 expected to return to the trampoline. So in both of these
2270 cases we know that the resume address is executable and
2271 related. So we only need to adjust the PC if THIS_FRAME
2272 is a normal function.
2273
2274 If the program has been interrupted while THIS_FRAME is current,
2275 then clearly the resume address is inside the associated
2276 function. There are three kinds of interruption: debugger stop
2277 (next frame will be SENTINEL_FRAME), operating system
2278 signal or exception (next frame will be SIGTRAMP_FRAME),
2279 or debugger-induced function call (next frame will be
2280 DUMMY_FRAME). So we only need to adjust the PC if
2281 NEXT_FRAME is a normal function.
2282
2283 We check the type of NEXT_FRAME first, since it is already
2284 known; frame type is determined by the unwinder, and since
2285 we have THIS_FRAME we've already selected an unwinder for
2286 NEXT_FRAME.
2287
2288 If the next frame is inlined, we need to keep going until we find
2289 the real function - for instance, if a signal handler is invoked
2290 while in an inlined function, then the code address of the
2291 "calling" normal function should not be adjusted either. */
2292
2293 while (get_frame_type (next_frame) == INLINE_FRAME)
2294 next_frame = next_frame->next;
2295
2296 if ((get_frame_type (next_frame) == NORMAL_FRAME
2297 || get_frame_type (next_frame) == TAILCALL_FRAME)
2298 && (get_frame_type (this_frame) == NORMAL_FRAME
2299 || get_frame_type (this_frame) == TAILCALL_FRAME
2300 || get_frame_type (this_frame) == INLINE_FRAME))
2301 return pc - 1;
2302
2303 return pc;
2304 }
2305
2306 int
2307 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2308 CORE_ADDR *pc)
2309 {
2310 volatile struct gdb_exception ex;
2311
2312 TRY_CATCH (ex, RETURN_MASK_ERROR)
2313 {
2314 *pc = get_frame_address_in_block (this_frame);
2315 }
2316 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2317 return 0;
2318 else if (ex.reason < 0)
2319 throw_exception (ex);
2320 else
2321 return 1;
2322 }
2323
2324 void
2325 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2326 {
2327 struct frame_info *next_frame;
2328 int notcurrent;
2329 CORE_ADDR pc;
2330
2331 /* If the next frame represents an inlined function call, this frame's
2332 sal is the "call site" of that inlined function, which can not
2333 be inferred from get_frame_pc. */
2334 next_frame = get_next_frame (frame);
2335 if (frame_inlined_callees (frame) > 0)
2336 {
2337 struct symbol *sym;
2338
2339 if (next_frame)
2340 sym = get_frame_function (next_frame);
2341 else
2342 sym = inline_skipped_symbol (inferior_ptid);
2343
2344 /* If frame is inline, it certainly has symbols. */
2345 gdb_assert (sym);
2346 init_sal (sal);
2347 if (SYMBOL_LINE (sym) != 0)
2348 {
2349 sal->symtab = SYMBOL_SYMTAB (sym);
2350 sal->line = SYMBOL_LINE (sym);
2351 }
2352 else
2353 /* If the symbol does not have a location, we don't know where
2354 the call site is. Do not pretend to. This is jarring, but
2355 we can't do much better. */
2356 sal->pc = get_frame_pc (frame);
2357
2358 sal->pspace = get_frame_program_space (frame);
2359
2360 return;
2361 }
2362
2363 /* If FRAME is not the innermost frame, that normally means that
2364 FRAME->pc points at the return instruction (which is *after* the
2365 call instruction), and we want to get the line containing the
2366 call (because the call is where the user thinks the program is).
2367 However, if the next frame is either a SIGTRAMP_FRAME or a
2368 DUMMY_FRAME, then the next frame will contain a saved interrupt
2369 PC and such a PC indicates the current (rather than next)
2370 instruction/line, consequently, for such cases, want to get the
2371 line containing fi->pc. */
2372 if (!get_frame_pc_if_available (frame, &pc))
2373 {
2374 init_sal (sal);
2375 return;
2376 }
2377
2378 notcurrent = (pc != get_frame_address_in_block (frame));
2379 (*sal) = find_pc_line (pc, notcurrent);
2380 }
2381
2382 /* Per "frame.h", return the ``address'' of the frame. Code should
2383 really be using get_frame_id(). */
2384 CORE_ADDR
2385 get_frame_base (struct frame_info *fi)
2386 {
2387 return get_frame_id (fi).stack_addr;
2388 }
2389
2390 /* High-level offsets into the frame. Used by the debug info. */
2391
2392 CORE_ADDR
2393 get_frame_base_address (struct frame_info *fi)
2394 {
2395 if (get_frame_type (fi) != NORMAL_FRAME)
2396 return 0;
2397 if (fi->base == NULL)
2398 fi->base = frame_base_find_by_frame (fi);
2399 /* Sneaky: If the low-level unwind and high-level base code share a
2400 common unwinder, let them share the prologue cache. */
2401 if (fi->base->unwind == fi->unwind)
2402 return fi->base->this_base (fi, &fi->prologue_cache);
2403 return fi->base->this_base (fi, &fi->base_cache);
2404 }
2405
2406 CORE_ADDR
2407 get_frame_locals_address (struct frame_info *fi)
2408 {
2409 if (get_frame_type (fi) != NORMAL_FRAME)
2410 return 0;
2411 /* If there isn't a frame address method, find it. */
2412 if (fi->base == NULL)
2413 fi->base = frame_base_find_by_frame (fi);
2414 /* Sneaky: If the low-level unwind and high-level base code share a
2415 common unwinder, let them share the prologue cache. */
2416 if (fi->base->unwind == fi->unwind)
2417 return fi->base->this_locals (fi, &fi->prologue_cache);
2418 return fi->base->this_locals (fi, &fi->base_cache);
2419 }
2420
2421 CORE_ADDR
2422 get_frame_args_address (struct frame_info *fi)
2423 {
2424 if (get_frame_type (fi) != NORMAL_FRAME)
2425 return 0;
2426 /* If there isn't a frame address method, find it. */
2427 if (fi->base == NULL)
2428 fi->base = frame_base_find_by_frame (fi);
2429 /* Sneaky: If the low-level unwind and high-level base code share a
2430 common unwinder, let them share the prologue cache. */
2431 if (fi->base->unwind == fi->unwind)
2432 return fi->base->this_args (fi, &fi->prologue_cache);
2433 return fi->base->this_args (fi, &fi->base_cache);
2434 }
2435
2436 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2437 otherwise. */
2438
2439 int
2440 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2441 {
2442 if (fi->unwind == NULL)
2443 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2444 return fi->unwind == unwinder;
2445 }
2446
2447 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2448 or -1 for a NULL frame. */
2449
2450 int
2451 frame_relative_level (struct frame_info *fi)
2452 {
2453 if (fi == NULL)
2454 return -1;
2455 else
2456 return fi->level;
2457 }
2458
2459 enum frame_type
2460 get_frame_type (struct frame_info *frame)
2461 {
2462 if (frame->unwind == NULL)
2463 /* Initialize the frame's unwinder because that's what
2464 provides the frame's type. */
2465 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2466 return frame->unwind->type;
2467 }
2468
2469 struct program_space *
2470 get_frame_program_space (struct frame_info *frame)
2471 {
2472 return frame->pspace;
2473 }
2474
2475 struct program_space *
2476 frame_unwind_program_space (struct frame_info *this_frame)
2477 {
2478 gdb_assert (this_frame);
2479
2480 /* This is really a placeholder to keep the API consistent --- we
2481 assume for now that we don't have frame chains crossing
2482 spaces. */
2483 return this_frame->pspace;
2484 }
2485
2486 struct address_space *
2487 get_frame_address_space (struct frame_info *frame)
2488 {
2489 return frame->aspace;
2490 }
2491
2492 /* Memory access methods. */
2493
2494 void
2495 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2496 gdb_byte *buf, int len)
2497 {
2498 read_memory (addr, buf, len);
2499 }
2500
2501 LONGEST
2502 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2503 int len)
2504 {
2505 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2507
2508 return read_memory_integer (addr, len, byte_order);
2509 }
2510
2511 ULONGEST
2512 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2513 int len)
2514 {
2515 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2516 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2517
2518 return read_memory_unsigned_integer (addr, len, byte_order);
2519 }
2520
2521 int
2522 safe_frame_unwind_memory (struct frame_info *this_frame,
2523 CORE_ADDR addr, gdb_byte *buf, int len)
2524 {
2525 /* NOTE: target_read_memory returns zero on success! */
2526 return !target_read_memory (addr, buf, len);
2527 }
2528
2529 /* Architecture methods. */
2530
2531 struct gdbarch *
2532 get_frame_arch (struct frame_info *this_frame)
2533 {
2534 return frame_unwind_arch (this_frame->next);
2535 }
2536
2537 struct gdbarch *
2538 frame_unwind_arch (struct frame_info *next_frame)
2539 {
2540 if (!next_frame->prev_arch.p)
2541 {
2542 struct gdbarch *arch;
2543
2544 if (next_frame->unwind == NULL)
2545 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2546
2547 if (next_frame->unwind->prev_arch != NULL)
2548 arch = next_frame->unwind->prev_arch (next_frame,
2549 &next_frame->prologue_cache);
2550 else
2551 arch = get_frame_arch (next_frame);
2552
2553 next_frame->prev_arch.arch = arch;
2554 next_frame->prev_arch.p = 1;
2555 if (frame_debug)
2556 fprintf_unfiltered (gdb_stdlog,
2557 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2558 next_frame->level,
2559 gdbarch_bfd_arch_info (arch)->printable_name);
2560 }
2561
2562 return next_frame->prev_arch.arch;
2563 }
2564
2565 struct gdbarch *
2566 frame_unwind_caller_arch (struct frame_info *next_frame)
2567 {
2568 return frame_unwind_arch (skip_artificial_frames (next_frame));
2569 }
2570
2571 /* Stack pointer methods. */
2572
2573 CORE_ADDR
2574 get_frame_sp (struct frame_info *this_frame)
2575 {
2576 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2577
2578 /* Normality - an architecture that provides a way of obtaining any
2579 frame inner-most address. */
2580 if (gdbarch_unwind_sp_p (gdbarch))
2581 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2582 operate on THIS_FRAME now. */
2583 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2584 /* Now things are really are grim. Hope that the value returned by
2585 the gdbarch_sp_regnum register is meaningful. */
2586 if (gdbarch_sp_regnum (gdbarch) >= 0)
2587 return get_frame_register_unsigned (this_frame,
2588 gdbarch_sp_regnum (gdbarch));
2589 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2590 }
2591
2592 /* Return the reason why we can't unwind past FRAME. */
2593
2594 enum unwind_stop_reason
2595 get_frame_unwind_stop_reason (struct frame_info *frame)
2596 {
2597 /* Fill-in STOP_REASON. */
2598 get_prev_frame_always (frame);
2599 gdb_assert (frame->prev_p);
2600
2601 return frame->stop_reason;
2602 }
2603
2604 /* Return a string explaining REASON. */
2605
2606 const char *
2607 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2608 {
2609 switch (reason)
2610 {
2611 #define SET(name, description) \
2612 case name: return _(description);
2613 #include "unwind_stop_reasons.def"
2614 #undef SET
2615
2616 default:
2617 internal_error (__FILE__, __LINE__,
2618 "Invalid frame stop reason");
2619 }
2620 }
2621
2622 const char *
2623 frame_stop_reason_string (struct frame_info *fi)
2624 {
2625 gdb_assert (fi->prev_p);
2626 gdb_assert (fi->prev == NULL);
2627
2628 /* Return the specific string if we have one. */
2629 if (fi->stop_string != NULL)
2630 return fi->stop_string;
2631
2632 /* Return the generic string if we have nothing better. */
2633 return unwind_stop_reason_to_string (fi->stop_reason);
2634 }
2635
2636 /* Return the enum symbol name of REASON as a string, to use in debug
2637 output. */
2638
2639 static const char *
2640 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2641 {
2642 switch (reason)
2643 {
2644 #define SET(name, description) \
2645 case name: return #name;
2646 #include "unwind_stop_reasons.def"
2647 #undef SET
2648
2649 default:
2650 internal_error (__FILE__, __LINE__,
2651 "Invalid frame stop reason");
2652 }
2653 }
2654
2655 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2656 FRAME. */
2657
2658 static void
2659 frame_cleanup_after_sniffer (void *arg)
2660 {
2661 struct frame_info *frame = arg;
2662
2663 /* The sniffer should not allocate a prologue cache if it did not
2664 match this frame. */
2665 gdb_assert (frame->prologue_cache == NULL);
2666
2667 /* No sniffer should extend the frame chain; sniff based on what is
2668 already certain. */
2669 gdb_assert (!frame->prev_p);
2670
2671 /* The sniffer should not check the frame's ID; that's circular. */
2672 gdb_assert (!frame->this_id.p);
2673
2674 /* Clear cached fields dependent on the unwinder.
2675
2676 The previous PC is independent of the unwinder, but the previous
2677 function is not (see get_frame_address_in_block). */
2678 frame->prev_func.p = 0;
2679 frame->prev_func.addr = 0;
2680
2681 /* Discard the unwinder last, so that we can easily find it if an assertion
2682 in this function triggers. */
2683 frame->unwind = NULL;
2684 }
2685
2686 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2687 Return a cleanup which should be called if unwinding fails, and
2688 discarded if it succeeds. */
2689
2690 struct cleanup *
2691 frame_prepare_for_sniffer (struct frame_info *frame,
2692 const struct frame_unwind *unwind)
2693 {
2694 gdb_assert (frame->unwind == NULL);
2695 frame->unwind = unwind;
2696 return make_cleanup (frame_cleanup_after_sniffer, frame);
2697 }
2698
2699 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2700
2701 static struct cmd_list_element *set_backtrace_cmdlist;
2702 static struct cmd_list_element *show_backtrace_cmdlist;
2703
2704 static void
2705 set_backtrace_cmd (char *args, int from_tty)
2706 {
2707 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2708 gdb_stdout);
2709 }
2710
2711 static void
2712 show_backtrace_cmd (char *args, int from_tty)
2713 {
2714 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2715 }
2716
2717 void
2718 _initialize_frame (void)
2719 {
2720 obstack_init (&frame_cache_obstack);
2721
2722 frame_stash_create ();
2723
2724 observer_attach_target_changed (frame_observer_target_changed);
2725
2726 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2727 Set backtrace specific variables.\n\
2728 Configure backtrace variables such as the backtrace limit"),
2729 &set_backtrace_cmdlist, "set backtrace ",
2730 0/*allow-unknown*/, &setlist);
2731 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2732 Show backtrace specific variables\n\
2733 Show backtrace variables such as the backtrace limit"),
2734 &show_backtrace_cmdlist, "show backtrace ",
2735 0/*allow-unknown*/, &showlist);
2736
2737 add_setshow_boolean_cmd ("past-main", class_obscure,
2738 &backtrace_past_main, _("\
2739 Set whether backtraces should continue past \"main\"."), _("\
2740 Show whether backtraces should continue past \"main\"."), _("\
2741 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2742 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2743 of the stack trace."),
2744 NULL,
2745 show_backtrace_past_main,
2746 &set_backtrace_cmdlist,
2747 &show_backtrace_cmdlist);
2748
2749 add_setshow_boolean_cmd ("past-entry", class_obscure,
2750 &backtrace_past_entry, _("\
2751 Set whether backtraces should continue past the entry point of a program."),
2752 _("\
2753 Show whether backtraces should continue past the entry point of a program."),
2754 _("\
2755 Normally there are no callers beyond the entry point of a program, so GDB\n\
2756 will terminate the backtrace there. Set this variable if you need to see\n\
2757 the rest of the stack trace."),
2758 NULL,
2759 show_backtrace_past_entry,
2760 &set_backtrace_cmdlist,
2761 &show_backtrace_cmdlist);
2762
2763 add_setshow_uinteger_cmd ("limit", class_obscure,
2764 &backtrace_limit, _("\
2765 Set an upper bound on the number of backtrace levels."), _("\
2766 Show the upper bound on the number of backtrace levels."), _("\
2767 No more than the specified number of frames can be displayed or examined.\n\
2768 Literal \"unlimited\" or zero means no limit."),
2769 NULL,
2770 show_backtrace_limit,
2771 &set_backtrace_cmdlist,
2772 &show_backtrace_cmdlist);
2773
2774 /* Debug this files internals. */
2775 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2776 Set frame debugging."), _("\
2777 Show frame debugging."), _("\
2778 When non-zero, frame specific internal debugging is enabled."),
2779 NULL,
2780 show_frame_debug,
2781 &setdebuglist, &showdebuglist);
2782 }
This page took 0.083219 seconds and 5 git commands to generate.