2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / frv-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on the Fujitsu FR-V,
2 for GDB.
3
4 Copyright (C) 2004, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "frame.h"
26 #include "osabi.h"
27 #include "regcache.h"
28 #include "elf-bfd.h"
29 #include "elf/frv.h"
30 #include "frv-tdep.h"
31 #include "trad-frame.h"
32 #include "frame-unwind.h"
33 #include "regset.h"
34 #include "gdb_string.h"
35 #include "linux-tdep.h"
36
37 /* Define the size (in bytes) of an FR-V instruction. */
38 static const int frv_instr_size = 4;
39
40 enum {
41 NORMAL_SIGTRAMP = 1,
42 RT_SIGTRAMP = 2
43 };
44
45 static int
46 frv_linux_pc_in_sigtramp (struct gdbarch *gdbarch, CORE_ADDR pc, char *name)
47 {
48 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
49 char buf[frv_instr_size];
50 LONGEST instr;
51 int retval = 0;
52
53 if (target_read_memory (pc, buf, sizeof buf) != 0)
54 return 0;
55
56 instr = extract_unsigned_integer (buf, sizeof buf, byte_order);
57
58 if (instr == 0x8efc0077) /* setlos #__NR_sigreturn, gr7 */
59 retval = NORMAL_SIGTRAMP;
60 else if (instr -= 0x8efc00ad) /* setlos #__NR_rt_sigreturn, gr7 */
61 retval = RT_SIGTRAMP;
62 else
63 return 0;
64
65 if (target_read_memory (pc + frv_instr_size, buf, sizeof buf) != 0)
66 return 0;
67 instr = extract_unsigned_integer (buf, sizeof buf, byte_order);
68 if (instr != 0xc0700000) /* tira gr0, 0 */
69 return 0;
70
71 /* If we get this far, we'll return a non-zero value, either
72 NORMAL_SIGTRAMP (1) or RT_SIGTRAMP (2). */
73 return retval;
74 }
75
76 /* Given NEXT_FRAME, the "callee" frame of the sigtramp frame that we
77 wish to decode, and REGNO, one of the frv register numbers defined
78 in frv-tdep.h, return the address of the saved register (corresponding
79 to REGNO) in the sigtramp frame. Return -1 if the register is not
80 found in the sigtramp frame. The magic numbers in the code below
81 were computed by examining the following kernel structs:
82
83 From arch/frv/kernel/signal.c:
84
85 struct sigframe
86 {
87 void (*pretcode)(void);
88 int sig;
89 struct sigcontext sc;
90 unsigned long extramask[_NSIG_WORDS-1];
91 uint32_t retcode[2];
92 };
93
94 struct rt_sigframe
95 {
96 void (*pretcode)(void);
97 int sig;
98 struct siginfo *pinfo;
99 void *puc;
100 struct siginfo info;
101 struct ucontext uc;
102 uint32_t retcode[2];
103 };
104
105 From include/asm-frv/ucontext.h:
106
107 struct ucontext {
108 unsigned long uc_flags;
109 struct ucontext *uc_link;
110 stack_t uc_stack;
111 struct sigcontext uc_mcontext;
112 sigset_t uc_sigmask;
113 };
114
115 From include/asm-frv/signal.h:
116
117 typedef struct sigaltstack {
118 void *ss_sp;
119 int ss_flags;
120 size_t ss_size;
121 } stack_t;
122
123 From include/asm-frv/sigcontext.h:
124
125 struct sigcontext {
126 struct user_context sc_context;
127 unsigned long sc_oldmask;
128 } __attribute__((aligned(8)));
129
130 From include/asm-frv/registers.h:
131 struct user_int_regs
132 {
133 unsigned long psr;
134 unsigned long isr;
135 unsigned long ccr;
136 unsigned long cccr;
137 unsigned long lr;
138 unsigned long lcr;
139 unsigned long pc;
140 unsigned long __status;
141 unsigned long syscallno;
142 unsigned long orig_gr8;
143 unsigned long gner[2];
144 unsigned long long iacc[1];
145
146 union {
147 unsigned long tbr;
148 unsigned long gr[64];
149 };
150 };
151
152 struct user_fpmedia_regs
153 {
154 unsigned long fr[64];
155 unsigned long fner[2];
156 unsigned long msr[2];
157 unsigned long acc[8];
158 unsigned char accg[8];
159 unsigned long fsr[1];
160 };
161
162 struct user_context
163 {
164 struct user_int_regs i;
165 struct user_fpmedia_regs f;
166
167 void *extension;
168 } __attribute__((aligned(8))); */
169
170 static LONGEST
171 frv_linux_sigcontext_reg_addr (struct frame_info *this_frame, int regno,
172 CORE_ADDR *sc_addr_cache_ptr)
173 {
174 struct gdbarch *gdbarch = get_frame_arch (this_frame);
175 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
176 CORE_ADDR sc_addr;
177
178 if (sc_addr_cache_ptr && *sc_addr_cache_ptr)
179 {
180 sc_addr = *sc_addr_cache_ptr;
181 }
182 else
183 {
184 CORE_ADDR pc, sp;
185 char buf[4];
186 int tramp_type;
187
188 pc = get_frame_pc (this_frame);
189 tramp_type = frv_linux_pc_in_sigtramp (gdbarch, pc, 0);
190
191 get_frame_register (this_frame, sp_regnum, buf);
192 sp = extract_unsigned_integer (buf, sizeof buf, byte_order);
193
194 if (tramp_type == NORMAL_SIGTRAMP)
195 {
196 /* For a normal sigtramp frame, the sigcontext struct starts
197 at SP + 8. */
198 sc_addr = sp + 8;
199 }
200 else if (tramp_type == RT_SIGTRAMP)
201 {
202 /* For a realtime sigtramp frame, SP + 12 contains a pointer
203 to a ucontext struct. The ucontext struct contains a
204 sigcontext struct starting 24 bytes in. (The offset of
205 uc_mcontext within struct ucontext is derived as follows:
206 stack_t is a 12-byte struct and struct sigcontext is
207 8-byte aligned. This gives an offset of 8 + 12 + 4 (for
208 padding) = 24.) */
209 if (target_read_memory (sp + 12, buf, sizeof buf) != 0)
210 {
211 warning (_("Can't read realtime sigtramp frame."));
212 return 0;
213 }
214 sc_addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
215 sc_addr += 24;
216 }
217 else
218 internal_error (__FILE__, __LINE__, _("not a signal trampoline"));
219
220 if (sc_addr_cache_ptr)
221 *sc_addr_cache_ptr = sc_addr;
222 }
223
224 switch (regno)
225 {
226 case psr_regnum :
227 return sc_addr + 0;
228 /* sc_addr + 4 has "isr", the Integer Status Register. */
229 case ccr_regnum :
230 return sc_addr + 8;
231 case cccr_regnum :
232 return sc_addr + 12;
233 case lr_regnum :
234 return sc_addr + 16;
235 case lcr_regnum :
236 return sc_addr + 20;
237 case pc_regnum :
238 return sc_addr + 24;
239 /* sc_addr + 28 is __status, the exception status.
240 sc_addr + 32 is syscallno, the syscall number or -1.
241 sc_addr + 36 is orig_gr8, the original syscall arg #1.
242 sc_addr + 40 is gner[0].
243 sc_addr + 44 is gner[1]. */
244 case iacc0h_regnum :
245 return sc_addr + 48;
246 case iacc0l_regnum :
247 return sc_addr + 52;
248 default :
249 if (first_gpr_regnum <= regno && regno <= last_gpr_regnum)
250 return sc_addr + 56 + 4 * (regno - first_gpr_regnum);
251 else if (first_fpr_regnum <= regno && regno <= last_fpr_regnum)
252 return sc_addr + 312 + 4 * (regno - first_fpr_regnum);
253 else
254 return -1; /* not saved. */
255 }
256 }
257
258 /* Signal trampolines. */
259
260 static struct trad_frame_cache *
261 frv_linux_sigtramp_frame_cache (struct frame_info *this_frame,
262 void **this_cache)
263 {
264 struct gdbarch *gdbarch = get_frame_arch (this_frame);
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
267 struct trad_frame_cache *cache;
268 CORE_ADDR addr;
269 char buf[4];
270 int regnum;
271 CORE_ADDR sc_addr_cache_val = 0;
272 struct frame_id this_id;
273
274 if (*this_cache)
275 return *this_cache;
276
277 cache = trad_frame_cache_zalloc (this_frame);
278
279 /* FIXME: cagney/2004-05-01: This is is long standing broken code.
280 The frame ID's code address should be the start-address of the
281 signal trampoline and not the current PC within that
282 trampoline. */
283 get_frame_register (this_frame, sp_regnum, buf);
284 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
285 this_id = frame_id_build (addr, get_frame_pc (this_frame));
286 trad_frame_set_id (cache, this_id);
287
288 for (regnum = 0; regnum < frv_num_regs; regnum++)
289 {
290 LONGEST reg_addr = frv_linux_sigcontext_reg_addr (this_frame, regnum,
291 &sc_addr_cache_val);
292 if (reg_addr != -1)
293 trad_frame_set_reg_addr (cache, regnum, reg_addr);
294 }
295
296 *this_cache = cache;
297 return cache;
298 }
299
300 static void
301 frv_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
302 void **this_cache,
303 struct frame_id *this_id)
304 {
305 struct trad_frame_cache *cache
306 = frv_linux_sigtramp_frame_cache (this_frame, this_cache);
307 trad_frame_get_id (cache, this_id);
308 }
309
310 static struct value *
311 frv_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
312 void **this_cache, int regnum)
313 {
314 /* Make sure we've initialized the cache. */
315 struct trad_frame_cache *cache
316 = frv_linux_sigtramp_frame_cache (this_frame, this_cache);
317 return trad_frame_get_register (cache, this_frame, regnum);
318 }
319
320 static int
321 frv_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
322 struct frame_info *this_frame,
323 void **this_cache)
324 {
325 struct gdbarch *gdbarch = get_frame_arch (this_frame);
326 CORE_ADDR pc = get_frame_pc (this_frame);
327 char *name;
328
329 find_pc_partial_function (pc, &name, NULL, NULL);
330 if (frv_linux_pc_in_sigtramp (gdbarch, pc, name))
331 return 1;
332
333 return 0;
334 }
335
336 static const struct frame_unwind frv_linux_sigtramp_frame_unwind =
337 {
338 SIGTRAMP_FRAME,
339 frv_linux_sigtramp_frame_this_id,
340 frv_linux_sigtramp_frame_prev_register,
341 NULL,
342 frv_linux_sigtramp_frame_sniffer
343 };
344 \f
345 /* The FRV kernel defines ELF_NGREG as 46. We add 2 in order to include
346 the loadmap addresses in the register set. (See below for more info.) */
347 #define FRV_ELF_NGREG (46 + 2)
348 typedef unsigned char frv_elf_greg_t[4];
349 typedef struct { frv_elf_greg_t reg[FRV_ELF_NGREG]; } frv_elf_gregset_t;
350
351 typedef unsigned char frv_elf_fpreg_t[4];
352 typedef struct
353 {
354 frv_elf_fpreg_t fr[64];
355 frv_elf_fpreg_t fner[2];
356 frv_elf_fpreg_t msr[2];
357 frv_elf_fpreg_t acc[8];
358 unsigned char accg[8];
359 frv_elf_fpreg_t fsr[1];
360 } frv_elf_fpregset_t;
361
362 /* Constants for accessing elements of frv_elf_gregset_t. */
363
364 #define FRV_PT_PSR 0
365 #define FRV_PT_ISR 1
366 #define FRV_PT_CCR 2
367 #define FRV_PT_CCCR 3
368 #define FRV_PT_LR 4
369 #define FRV_PT_LCR 5
370 #define FRV_PT_PC 6
371 #define FRV_PT_GNER0 10
372 #define FRV_PT_GNER1 11
373 #define FRV_PT_IACC0H 12
374 #define FRV_PT_IACC0L 13
375
376 /* Note: Only 32 of the GRs will be found in the corefile. */
377 #define FRV_PT_GR(j) ( 14 + (j)) /* GRj for 0<=j<=63. */
378
379 #define FRV_PT_TBR FRV_PT_GR(0) /* gr0 is always 0, so TBR is stuffed
380 there. */
381
382 /* Technically, the loadmap addresses are not part of `pr_reg' as
383 found in the elf_prstatus struct. The fields which communicate the
384 loadmap address appear (by design) immediately after `pr_reg'
385 though, and the BFD function elf32_frv_grok_prstatus() has been
386 implemented to include these fields in the register section that it
387 extracts from the core file. So, for our purposes, they may be
388 viewed as registers. */
389
390 #define FRV_PT_EXEC_FDPIC_LOADMAP 46
391 #define FRV_PT_INTERP_FDPIC_LOADMAP 47
392
393
394 /* Unpack an frv_elf_gregset_t into GDB's register cache. */
395
396 static void
397 frv_linux_supply_gregset (const struct regset *regset,
398 struct regcache *regcache,
399 int regnum, const void *gregs, size_t len)
400 {
401 int regi;
402 char zerobuf[MAX_REGISTER_SIZE];
403 const frv_elf_gregset_t *gregsetp = gregs;
404
405 memset (zerobuf, 0, MAX_REGISTER_SIZE);
406
407 /* gr0 always contains 0. Also, the kernel passes the TBR value in
408 this slot. */
409 regcache_raw_supply (regcache, first_gpr_regnum, zerobuf);
410
411 for (regi = first_gpr_regnum + 1; regi <= last_gpr_regnum; regi++)
412 {
413 if (regi >= first_gpr_regnum + 32)
414 regcache_raw_supply (regcache, regi, zerobuf);
415 else
416 regcache_raw_supply (regcache, regi,
417 gregsetp->reg[FRV_PT_GR (regi
418 - first_gpr_regnum)]);
419 }
420
421 regcache_raw_supply (regcache, pc_regnum, gregsetp->reg[FRV_PT_PC]);
422 regcache_raw_supply (regcache, psr_regnum, gregsetp->reg[FRV_PT_PSR]);
423 regcache_raw_supply (regcache, ccr_regnum, gregsetp->reg[FRV_PT_CCR]);
424 regcache_raw_supply (regcache, cccr_regnum, gregsetp->reg[FRV_PT_CCCR]);
425 regcache_raw_supply (regcache, lr_regnum, gregsetp->reg[FRV_PT_LR]);
426 regcache_raw_supply (regcache, lcr_regnum, gregsetp->reg[FRV_PT_LCR]);
427 regcache_raw_supply (regcache, gner0_regnum, gregsetp->reg[FRV_PT_GNER0]);
428 regcache_raw_supply (regcache, gner1_regnum, gregsetp->reg[FRV_PT_GNER1]);
429 regcache_raw_supply (regcache, tbr_regnum, gregsetp->reg[FRV_PT_TBR]);
430 regcache_raw_supply (regcache, fdpic_loadmap_exec_regnum,
431 gregsetp->reg[FRV_PT_EXEC_FDPIC_LOADMAP]);
432 regcache_raw_supply (regcache, fdpic_loadmap_interp_regnum,
433 gregsetp->reg[FRV_PT_INTERP_FDPIC_LOADMAP]);
434 }
435
436 /* Unpack an frv_elf_fpregset_t into GDB's register cache. */
437
438 static void
439 frv_linux_supply_fpregset (const struct regset *regset,
440 struct regcache *regcache,
441 int regnum, const void *gregs, size_t len)
442 {
443 int regi;
444 const frv_elf_fpregset_t *fpregsetp = gregs;
445
446 for (regi = first_fpr_regnum; regi <= last_fpr_regnum; regi++)
447 regcache_raw_supply (regcache, regi,
448 fpregsetp->fr[regi - first_fpr_regnum]);
449
450 regcache_raw_supply (regcache, fner0_regnum, fpregsetp->fner[0]);
451 regcache_raw_supply (regcache, fner1_regnum, fpregsetp->fner[1]);
452
453 regcache_raw_supply (regcache, msr0_regnum, fpregsetp->msr[0]);
454 regcache_raw_supply (regcache, msr1_regnum, fpregsetp->msr[1]);
455
456 for (regi = acc0_regnum; regi <= acc7_regnum; regi++)
457 regcache_raw_supply (regcache, regi, fpregsetp->acc[regi - acc0_regnum]);
458
459 regcache_raw_supply (regcache, accg0123_regnum, fpregsetp->accg);
460 regcache_raw_supply (regcache, accg4567_regnum, fpregsetp->accg + 4);
461
462 regcache_raw_supply (regcache, fsr0_regnum, fpregsetp->fsr[0]);
463 }
464
465 /* FRV Linux kernel register sets. */
466
467 static struct regset frv_linux_gregset =
468 {
469 NULL,
470 frv_linux_supply_gregset
471 };
472
473 static struct regset frv_linux_fpregset =
474 {
475 NULL,
476 frv_linux_supply_fpregset
477 };
478
479 static const struct regset *
480 frv_linux_regset_from_core_section (struct gdbarch *gdbarch,
481 const char *sect_name, size_t sect_size)
482 {
483 if (strcmp (sect_name, ".reg") == 0
484 && sect_size >= sizeof (frv_elf_gregset_t))
485 return &frv_linux_gregset;
486
487 if (strcmp (sect_name, ".reg2") == 0
488 && sect_size >= sizeof (frv_elf_fpregset_t))
489 return &frv_linux_fpregset;
490
491 return NULL;
492 }
493
494 \f
495 static void
496 frv_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
497 {
498 linux_init_abi (info, gdbarch);
499
500 /* Set the sigtramp frame sniffer. */
501 frame_unwind_append_unwinder (gdbarch, &frv_linux_sigtramp_frame_unwind);
502
503 set_gdbarch_regset_from_core_section (gdbarch,
504 frv_linux_regset_from_core_section);
505 }
506
507 static enum gdb_osabi
508 frv_linux_elf_osabi_sniffer (bfd *abfd)
509 {
510 int elf_flags;
511
512 elf_flags = elf_elfheader (abfd)->e_flags;
513
514 /* Assume GNU/Linux if using the FDPIC ABI. If/when another OS shows
515 up that uses this ABI, we'll need to start using .note sections
516 or some such. */
517 if (elf_flags & EF_FRV_FDPIC)
518 return GDB_OSABI_LINUX;
519 else
520 return GDB_OSABI_UNKNOWN;
521 }
522
523 /* Provide a prototype to silence -Wmissing-prototypes. */
524 void _initialize_frv_linux_tdep (void);
525
526 void
527 _initialize_frv_linux_tdep (void)
528 {
529 gdbarch_register_osabi (bfd_arch_frv, 0, GDB_OSABI_LINUX,
530 frv_linux_init_abi);
531 gdbarch_register_osabi_sniffer (bfd_arch_frv,
532 bfd_target_elf_flavour,
533 frv_linux_elf_osabi_sniffer);
534 }
This page took 0.054998 seconds and 4 git commands to generate.