2007-11-02 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "arch-utils.h"
25 #include "regcache.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "dis-asm.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33 #include "gdb/sim-frv.h"
34 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
35 #include "symtab.h"
36 #include "elf-bfd.h"
37 #include "elf/frv.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "solib.h"
41 #include "frv-tdep.h"
42
43 extern void _initialize_frv_tdep (void);
44
45 struct frv_unwind_cache /* was struct frame_extra_info */
46 {
47 /* The previous frame's inner-most stack address. Used as this
48 frame ID's stack_addr. */
49 CORE_ADDR prev_sp;
50
51 /* The frame's base, optionally used by the high-level debug info. */
52 CORE_ADDR base;
53
54 /* Table indicating the location of each and every register. */
55 struct trad_frame_saved_reg *saved_regs;
56 };
57
58 /* A structure describing a particular variant of the FRV.
59 We allocate and initialize one of these structures when we create
60 the gdbarch object for a variant.
61
62 At the moment, all the FR variants we support differ only in which
63 registers are present; the portable code of GDB knows that
64 registers whose names are the empty string don't exist, so the
65 `register_names' array captures all the per-variant information we
66 need.
67
68 in the future, if we need to have per-variant maps for raw size,
69 virtual type, etc., we should replace register_names with an array
70 of structures, each of which gives all the necessary info for one
71 register. Don't stick parallel arrays in here --- that's so
72 Fortran. */
73 struct gdbarch_tdep
74 {
75 /* Which ABI is in use? */
76 enum frv_abi frv_abi;
77
78 /* How many general-purpose registers does this variant have? */
79 int num_gprs;
80
81 /* How many floating-point registers does this variant have? */
82 int num_fprs;
83
84 /* How many hardware watchpoints can it support? */
85 int num_hw_watchpoints;
86
87 /* How many hardware breakpoints can it support? */
88 int num_hw_breakpoints;
89
90 /* Register names. */
91 char **register_names;
92 };
93
94 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
95
96 /* Return the FR-V ABI associated with GDBARCH. */
97 enum frv_abi
98 frv_abi (struct gdbarch *gdbarch)
99 {
100 return gdbarch_tdep (gdbarch)->frv_abi;
101 }
102
103 /* Fetch the interpreter and executable loadmap addresses (for shared
104 library support) for the FDPIC ABI. Return 0 if successful, -1 if
105 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
106 int
107 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
108 CORE_ADDR *exec_addr)
109 {
110 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
111 return -1;
112 else
113 {
114 struct regcache *regcache = get_current_regcache ();
115
116 if (interp_addr != NULL)
117 {
118 ULONGEST val;
119 regcache_cooked_read_unsigned (regcache,
120 fdpic_loadmap_interp_regnum, &val);
121 *interp_addr = val;
122 }
123 if (exec_addr != NULL)
124 {
125 ULONGEST val;
126 regcache_cooked_read_unsigned (regcache,
127 fdpic_loadmap_exec_regnum, &val);
128 *exec_addr = val;
129 }
130 return 0;
131 }
132 }
133
134 /* Allocate a new variant structure, and set up default values for all
135 the fields. */
136 static struct gdbarch_tdep *
137 new_variant (void)
138 {
139 struct gdbarch_tdep *var;
140 int r;
141 char buf[20];
142
143 var = xmalloc (sizeof (*var));
144 memset (var, 0, sizeof (*var));
145
146 var->frv_abi = FRV_ABI_EABI;
147 var->num_gprs = 64;
148 var->num_fprs = 64;
149 var->num_hw_watchpoints = 0;
150 var->num_hw_breakpoints = 0;
151
152 /* By default, don't supply any general-purpose or floating-point
153 register names. */
154 var->register_names
155 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
156 * sizeof (char *));
157 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
158 var->register_names[r] = "";
159
160 /* Do, however, supply default names for the known special-purpose
161 registers. */
162
163 var->register_names[pc_regnum] = "pc";
164 var->register_names[lr_regnum] = "lr";
165 var->register_names[lcr_regnum] = "lcr";
166
167 var->register_names[psr_regnum] = "psr";
168 var->register_names[ccr_regnum] = "ccr";
169 var->register_names[cccr_regnum] = "cccr";
170 var->register_names[tbr_regnum] = "tbr";
171
172 /* Debug registers. */
173 var->register_names[brr_regnum] = "brr";
174 var->register_names[dbar0_regnum] = "dbar0";
175 var->register_names[dbar1_regnum] = "dbar1";
176 var->register_names[dbar2_regnum] = "dbar2";
177 var->register_names[dbar3_regnum] = "dbar3";
178
179 /* iacc0 (Only found on MB93405.) */
180 var->register_names[iacc0h_regnum] = "iacc0h";
181 var->register_names[iacc0l_regnum] = "iacc0l";
182 var->register_names[iacc0_regnum] = "iacc0";
183
184 /* fsr0 (Found on FR555 and FR501.) */
185 var->register_names[fsr0_regnum] = "fsr0";
186
187 /* acc0 - acc7. The architecture provides for the possibility of many
188 more (up to 64 total), but we don't want to make that big of a hole
189 in the G packet. If we need more in the future, we'll add them
190 elsewhere. */
191 for (r = acc0_regnum; r <= acc7_regnum; r++)
192 {
193 char *buf;
194 buf = xstrprintf ("acc%d", r - acc0_regnum);
195 var->register_names[r] = buf;
196 }
197
198 /* accg0 - accg7: These are one byte registers. The remote protocol
199 provides the raw values packed four into a slot. accg0123 and
200 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
201 We don't provide names for accg0123 and accg4567 since the user will
202 likely not want to see these raw values. */
203
204 for (r = accg0_regnum; r <= accg7_regnum; r++)
205 {
206 char *buf;
207 buf = xstrprintf ("accg%d", r - accg0_regnum);
208 var->register_names[r] = buf;
209 }
210
211 /* msr0 and msr1. */
212
213 var->register_names[msr0_regnum] = "msr0";
214 var->register_names[msr1_regnum] = "msr1";
215
216 /* gner and fner registers. */
217 var->register_names[gner0_regnum] = "gner0";
218 var->register_names[gner1_regnum] = "gner1";
219 var->register_names[fner0_regnum] = "fner0";
220 var->register_names[fner1_regnum] = "fner1";
221
222 return var;
223 }
224
225
226 /* Indicate that the variant VAR has NUM_GPRS general-purpose
227 registers, and fill in the names array appropriately. */
228 static void
229 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
230 {
231 int r;
232
233 var->num_gprs = num_gprs;
234
235 for (r = 0; r < num_gprs; ++r)
236 {
237 char buf[20];
238
239 sprintf (buf, "gr%d", r);
240 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
241 }
242 }
243
244
245 /* Indicate that the variant VAR has NUM_FPRS floating-point
246 registers, and fill in the names array appropriately. */
247 static void
248 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
249 {
250 int r;
251
252 var->num_fprs = num_fprs;
253
254 for (r = 0; r < num_fprs; ++r)
255 {
256 char buf[20];
257
258 sprintf (buf, "fr%d", r);
259 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
260 }
261 }
262
263 static void
264 set_variant_abi_fdpic (struct gdbarch_tdep *var)
265 {
266 var->frv_abi = FRV_ABI_FDPIC;
267 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
268 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
269 }
270
271 static void
272 set_variant_scratch_registers (struct gdbarch_tdep *var)
273 {
274 var->register_names[scr0_regnum] = xstrdup ("scr0");
275 var->register_names[scr1_regnum] = xstrdup ("scr1");
276 var->register_names[scr2_regnum] = xstrdup ("scr2");
277 var->register_names[scr3_regnum] = xstrdup ("scr3");
278 }
279
280 static const char *
281 frv_register_name (struct gdbarch *gdbarch, int reg)
282 {
283 if (reg < 0)
284 return "?toosmall?";
285 if (reg >= frv_num_regs + frv_num_pseudo_regs)
286 return "?toolarge?";
287
288 return CURRENT_VARIANT->register_names[reg];
289 }
290
291
292 static struct type *
293 frv_register_type (struct gdbarch *gdbarch, int reg)
294 {
295 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
296 return builtin_type_float;
297 else if (reg == iacc0_regnum)
298 return builtin_type_int64;
299 else
300 return builtin_type_int32;
301 }
302
303 static void
304 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
305 int reg, gdb_byte *buffer)
306 {
307 if (reg == iacc0_regnum)
308 {
309 regcache_raw_read (regcache, iacc0h_regnum, buffer);
310 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
311 }
312 else if (accg0_regnum <= reg && reg <= accg7_regnum)
313 {
314 /* The accg raw registers have four values in each slot with the
315 lowest register number occupying the first byte. */
316
317 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
318 int byte_num = (reg - accg0_regnum) % 4;
319 bfd_byte buf[4];
320
321 regcache_raw_read (regcache, raw_regnum, buf);
322 memset (buffer, 0, 4);
323 /* FR-V is big endian, so put the requested byte in the first byte
324 of the buffer allocated to hold the pseudo-register. */
325 ((bfd_byte *) buffer)[0] = buf[byte_num];
326 }
327 }
328
329 static void
330 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
331 int reg, const gdb_byte *buffer)
332 {
333 if (reg == iacc0_regnum)
334 {
335 regcache_raw_write (regcache, iacc0h_regnum, buffer);
336 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
337 }
338 else if (accg0_regnum <= reg && reg <= accg7_regnum)
339 {
340 /* The accg raw registers have four values in each slot with the
341 lowest register number occupying the first byte. */
342
343 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
344 int byte_num = (reg - accg0_regnum) % 4;
345 char buf[4];
346
347 regcache_raw_read (regcache, raw_regnum, buf);
348 buf[byte_num] = ((bfd_byte *) buffer)[0];
349 regcache_raw_write (regcache, raw_regnum, buf);
350 }
351 }
352
353 static int
354 frv_register_sim_regno (int reg)
355 {
356 static const int spr_map[] =
357 {
358 H_SPR_PSR, /* psr_regnum */
359 H_SPR_CCR, /* ccr_regnum */
360 H_SPR_CCCR, /* cccr_regnum */
361 -1, /* fdpic_loadmap_exec_regnum */
362 -1, /* fdpic_loadmap_interp_regnum */
363 -1, /* 134 */
364 H_SPR_TBR, /* tbr_regnum */
365 H_SPR_BRR, /* brr_regnum */
366 H_SPR_DBAR0, /* dbar0_regnum */
367 H_SPR_DBAR1, /* dbar1_regnum */
368 H_SPR_DBAR2, /* dbar2_regnum */
369 H_SPR_DBAR3, /* dbar3_regnum */
370 H_SPR_SCR0, /* scr0_regnum */
371 H_SPR_SCR1, /* scr1_regnum */
372 H_SPR_SCR2, /* scr2_regnum */
373 H_SPR_SCR3, /* scr3_regnum */
374 H_SPR_LR, /* lr_regnum */
375 H_SPR_LCR, /* lcr_regnum */
376 H_SPR_IACC0H, /* iacc0h_regnum */
377 H_SPR_IACC0L, /* iacc0l_regnum */
378 H_SPR_FSR0, /* fsr0_regnum */
379 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
380 -1, /* acc0_regnum */
381 -1, /* acc1_regnum */
382 -1, /* acc2_regnum */
383 -1, /* acc3_regnum */
384 -1, /* acc4_regnum */
385 -1, /* acc5_regnum */
386 -1, /* acc6_regnum */
387 -1, /* acc7_regnum */
388 -1, /* acc0123_regnum */
389 -1, /* acc4567_regnum */
390 H_SPR_MSR0, /* msr0_regnum */
391 H_SPR_MSR1, /* msr1_regnum */
392 H_SPR_GNER0, /* gner0_regnum */
393 H_SPR_GNER1, /* gner1_regnum */
394 H_SPR_FNER0, /* fner0_regnum */
395 H_SPR_FNER1, /* fner1_regnum */
396 };
397
398 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
399
400 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
401 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
402 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
403 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
404 else if (pc_regnum == reg)
405 return SIM_FRV_PC_REGNUM;
406 else if (reg >= first_spr_regnum
407 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
408 {
409 int spr_reg_offset = spr_map[reg - first_spr_regnum];
410
411 if (spr_reg_offset < 0)
412 return SIM_REGNO_DOES_NOT_EXIST;
413 else
414 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
415 }
416
417 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
418 }
419
420 static const unsigned char *
421 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
422 {
423 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
424 *lenp = sizeof (breakpoint);
425 return breakpoint;
426 }
427
428 /* Define the maximum number of instructions which may be packed into a
429 bundle (VLIW instruction). */
430 static const int max_instrs_per_bundle = 8;
431
432 /* Define the size (in bytes) of an FR-V instruction. */
433 static const int frv_instr_size = 4;
434
435 /* Adjust a breakpoint's address to account for the FR-V architecture's
436 constraint that a break instruction must not appear as any but the
437 first instruction in the bundle. */
438 static CORE_ADDR
439 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
440 {
441 int count = max_instrs_per_bundle;
442 CORE_ADDR addr = bpaddr - frv_instr_size;
443 CORE_ADDR func_start = get_pc_function_start (bpaddr);
444
445 /* Find the end of the previous packing sequence. This will be indicated
446 by either attempting to access some inaccessible memory or by finding
447 an instruction word whose packing bit is set to one. */
448 while (count-- > 0 && addr >= func_start)
449 {
450 char instr[frv_instr_size];
451 int status;
452
453 status = read_memory_nobpt (addr, instr, sizeof instr);
454
455 if (status != 0)
456 break;
457
458 /* This is a big endian architecture, so byte zero will have most
459 significant byte. The most significant bit of this byte is the
460 packing bit. */
461 if (instr[0] & 0x80)
462 break;
463
464 addr -= frv_instr_size;
465 }
466
467 if (count > 0)
468 bpaddr = addr + frv_instr_size;
469
470 return bpaddr;
471 }
472
473
474 /* Return true if REG is a caller-saves ("scratch") register,
475 false otherwise. */
476 static int
477 is_caller_saves_reg (int reg)
478 {
479 return ((4 <= reg && reg <= 7)
480 || (14 <= reg && reg <= 15)
481 || (32 <= reg && reg <= 47));
482 }
483
484
485 /* Return true if REG is a callee-saves register, false otherwise. */
486 static int
487 is_callee_saves_reg (int reg)
488 {
489 return ((16 <= reg && reg <= 31)
490 || (48 <= reg && reg <= 63));
491 }
492
493
494 /* Return true if REG is an argument register, false otherwise. */
495 static int
496 is_argument_reg (int reg)
497 {
498 return (8 <= reg && reg <= 13);
499 }
500
501 /* Scan an FR-V prologue, starting at PC, until frame->PC.
502 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
503 We assume FRAME's saved_regs array has already been allocated and cleared.
504 Return the first PC value after the prologue.
505
506 Note that, for unoptimized code, we almost don't need this function
507 at all; all arguments and locals live on the stack, so we just need
508 the FP to find everything. The catch: structures passed by value
509 have their addresses living in registers; they're never spilled to
510 the stack. So if you ever want to be able to get to these
511 arguments in any frame but the top, you'll need to do this serious
512 prologue analysis. */
513 static CORE_ADDR
514 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
515 struct frv_unwind_cache *info)
516 {
517 /* When writing out instruction bitpatterns, we use the following
518 letters to label instruction fields:
519 P - The parallel bit. We don't use this.
520 J - The register number of GRj in the instruction description.
521 K - The register number of GRk in the instruction description.
522 I - The register number of GRi.
523 S - a signed imediate offset.
524 U - an unsigned immediate offset.
525
526 The dots below the numbers indicate where hex digit boundaries
527 fall, to make it easier to check the numbers. */
528
529 /* Non-zero iff we've seen the instruction that initializes the
530 frame pointer for this function's frame. */
531 int fp_set = 0;
532
533 /* If fp_set is non_zero, then this is the distance from
534 the stack pointer to frame pointer: fp = sp + fp_offset. */
535 int fp_offset = 0;
536
537 /* Total size of frame prior to any alloca operations. */
538 int framesize = 0;
539
540 /* Flag indicating if lr has been saved on the stack. */
541 int lr_saved_on_stack = 0;
542
543 /* The number of the general-purpose register we saved the return
544 address ("link register") in, or -1 if we haven't moved it yet. */
545 int lr_save_reg = -1;
546
547 /* Offset (from sp) at which lr has been saved on the stack. */
548
549 int lr_sp_offset = 0;
550
551 /* If gr_saved[i] is non-zero, then we've noticed that general
552 register i has been saved at gr_sp_offset[i] from the stack
553 pointer. */
554 char gr_saved[64];
555 int gr_sp_offset[64];
556
557 /* The address of the most recently scanned prologue instruction. */
558 CORE_ADDR last_prologue_pc;
559
560 /* The address of the next instruction. */
561 CORE_ADDR next_pc;
562
563 /* The upper bound to of the pc values to scan. */
564 CORE_ADDR lim_pc;
565
566 memset (gr_saved, 0, sizeof (gr_saved));
567
568 last_prologue_pc = pc;
569
570 /* Try to compute an upper limit (on how far to scan) based on the
571 line number info. */
572 lim_pc = skip_prologue_using_sal (pc);
573 /* If there's no line number info, lim_pc will be 0. In that case,
574 set the limit to be 100 instructions away from pc. Hopefully, this
575 will be far enough away to account for the entire prologue. Don't
576 worry about overshooting the end of the function. The scan loop
577 below contains some checks to avoid scanning unreasonably far. */
578 if (lim_pc == 0)
579 lim_pc = pc + 400;
580
581 /* If we have a frame, we don't want to scan past the frame's pc. This
582 will catch those cases where the pc is in the prologue. */
583 if (next_frame)
584 {
585 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
586 if (frame_pc < lim_pc)
587 lim_pc = frame_pc;
588 }
589
590 /* Scan the prologue. */
591 while (pc < lim_pc)
592 {
593 char buf[frv_instr_size];
594 LONGEST op;
595
596 if (target_read_memory (pc, buf, sizeof buf) != 0)
597 break;
598 op = extract_signed_integer (buf, sizeof buf);
599
600 next_pc = pc + 4;
601
602 /* The tests in this chain of ifs should be in order of
603 decreasing selectivity, so that more particular patterns get
604 to fire before less particular patterns. */
605
606 /* Some sort of control transfer instruction: stop scanning prologue.
607 Integer Conditional Branch:
608 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
609 Floating-point / media Conditional Branch:
610 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
611 LCR Conditional Branch to LR
612 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
613 Integer conditional Branches to LR
614 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
615 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
616 Floating-point/Media Branches to LR
617 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
618 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
619 Jump and Link
620 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
621 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
622 Call
623 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
624 Return from Trap
625 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
626 Integer Conditional Trap
627 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
628 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
629 Floating-point /media Conditional Trap
630 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
631 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
632 Break
633 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
634 Media Trap
635 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
636 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
637 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
638 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
639 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
640 {
641 /* Stop scanning; not in prologue any longer. */
642 break;
643 }
644
645 /* Loading something from memory into fp probably means that
646 we're in the epilogue. Stop scanning the prologue.
647 ld @(GRi, GRk), fp
648 X 000010 0000010 XXXXXX 000100 XXXXXX
649 ldi @(GRi, d12), fp
650 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
651 else if ((op & 0x7ffc0fc0) == 0x04080100
652 || (op & 0x7ffc0000) == 0x04c80000)
653 {
654 break;
655 }
656
657 /* Setting the FP from the SP:
658 ori sp, 0, fp
659 P 000010 0100010 000001 000000000000 = 0x04881000
660 0 111111 1111111 111111 111111111111 = 0x7fffffff
661 . . . . . . . .
662 We treat this as part of the prologue. */
663 else if ((op & 0x7fffffff) == 0x04881000)
664 {
665 fp_set = 1;
666 fp_offset = 0;
667 last_prologue_pc = next_pc;
668 }
669
670 /* Move the link register to the scratch register grJ, before saving:
671 movsg lr, grJ
672 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
673 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
674 . . . . . . . .
675 We treat this as part of the prologue. */
676 else if ((op & 0x7fffffc0) == 0x080d01c0)
677 {
678 int gr_j = op & 0x3f;
679
680 /* If we're moving it to a scratch register, that's fine. */
681 if (is_caller_saves_reg (gr_j))
682 {
683 lr_save_reg = gr_j;
684 last_prologue_pc = next_pc;
685 }
686 }
687
688 /* To save multiple callee-saves registers on the stack, at
689 offset zero:
690
691 std grK,@(sp,gr0)
692 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
693 0 000000 1111111 111111 111111 111111 = 0x01ffffff
694
695 stq grK,@(sp,gr0)
696 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
697 0 000000 1111111 111111 111111 111111 = 0x01ffffff
698 . . . . . . . .
699 We treat this as part of the prologue, and record the register's
700 saved address in the frame structure. */
701 else if ((op & 0x01ffffff) == 0x000c10c0
702 || (op & 0x01ffffff) == 0x000c1100)
703 {
704 int gr_k = ((op >> 25) & 0x3f);
705 int ope = ((op >> 6) & 0x3f);
706 int count;
707 int i;
708
709 /* Is it an std or an stq? */
710 if (ope == 0x03)
711 count = 2;
712 else
713 count = 4;
714
715 /* Is it really a callee-saves register? */
716 if (is_callee_saves_reg (gr_k))
717 {
718 for (i = 0; i < count; i++)
719 {
720 gr_saved[gr_k + i] = 1;
721 gr_sp_offset[gr_k + i] = 4 * i;
722 }
723 last_prologue_pc = next_pc;
724 }
725 }
726
727 /* Adjusting the stack pointer. (The stack pointer is GR1.)
728 addi sp, S, sp
729 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
730 0 111111 1111111 111111 000000000000 = 0x7ffff000
731 . . . . . . . .
732 We treat this as part of the prologue. */
733 else if ((op & 0x7ffff000) == 0x02401000)
734 {
735 if (framesize == 0)
736 {
737 /* Sign-extend the twelve-bit field.
738 (Isn't there a better way to do this?) */
739 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
740
741 framesize -= s;
742 last_prologue_pc = pc;
743 }
744 else
745 {
746 /* If the prologue is being adjusted again, we've
747 likely gone too far; i.e. we're probably in the
748 epilogue. */
749 break;
750 }
751 }
752
753 /* Setting the FP to a constant distance from the SP:
754 addi sp, S, fp
755 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
756 0 111111 1111111 111111 000000000000 = 0x7ffff000
757 . . . . . . . .
758 We treat this as part of the prologue. */
759 else if ((op & 0x7ffff000) == 0x04401000)
760 {
761 /* Sign-extend the twelve-bit field.
762 (Isn't there a better way to do this?) */
763 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
764 fp_set = 1;
765 fp_offset = s;
766 last_prologue_pc = pc;
767 }
768
769 /* To spill an argument register to a scratch register:
770 ori GRi, 0, GRk
771 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
772 0 000000 1111111 000000 111111111111 = 0x01fc0fff
773 . . . . . . . .
774 For the time being, we treat this as a prologue instruction,
775 assuming that GRi is an argument register. This one's kind
776 of suspicious, because it seems like it could be part of a
777 legitimate body instruction. But we only come here when the
778 source info wasn't helpful, so we have to do the best we can.
779 Hopefully once GCC and GDB agree on how to emit line number
780 info for prologues, then this code will never come into play. */
781 else if ((op & 0x01fc0fff) == 0x00880000)
782 {
783 int gr_i = ((op >> 12) & 0x3f);
784
785 /* Make sure that the source is an arg register; if it is, we'll
786 treat it as a prologue instruction. */
787 if (is_argument_reg (gr_i))
788 last_prologue_pc = next_pc;
789 }
790
791 /* To spill 16-bit values to the stack:
792 sthi GRk, @(fp, s)
793 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
794 0 000000 1111111 111111 000000000000 = 0x01fff000
795 . . . . . . . .
796 And for 8-bit values, we use STB instructions.
797 stbi GRk, @(fp, s)
798 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
799 0 000000 1111111 111111 000000000000 = 0x01fff000
800 . . . . . . . .
801 We check that GRk is really an argument register, and treat
802 all such as part of the prologue. */
803 else if ( (op & 0x01fff000) == 0x01442000
804 || (op & 0x01fff000) == 0x01402000)
805 {
806 int gr_k = ((op >> 25) & 0x3f);
807
808 /* Make sure that GRk is really an argument register; treat
809 it as a prologue instruction if so. */
810 if (is_argument_reg (gr_k))
811 last_prologue_pc = next_pc;
812 }
813
814 /* To save multiple callee-saves register on the stack, at a
815 non-zero offset:
816
817 stdi GRk, @(sp, s)
818 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
819 0 000000 1111111 111111 000000000000 = 0x01fff000
820 . . . . . . . .
821 stqi GRk, @(sp, s)
822 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
823 0 000000 1111111 111111 000000000000 = 0x01fff000
824 . . . . . . . .
825 We treat this as part of the prologue, and record the register's
826 saved address in the frame structure. */
827 else if ((op & 0x01fff000) == 0x014c1000
828 || (op & 0x01fff000) == 0x01501000)
829 {
830 int gr_k = ((op >> 25) & 0x3f);
831 int count;
832 int i;
833
834 /* Is it a stdi or a stqi? */
835 if ((op & 0x01fff000) == 0x014c1000)
836 count = 2;
837 else
838 count = 4;
839
840 /* Is it really a callee-saves register? */
841 if (is_callee_saves_reg (gr_k))
842 {
843 /* Sign-extend the twelve-bit field.
844 (Isn't there a better way to do this?) */
845 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
846
847 for (i = 0; i < count; i++)
848 {
849 gr_saved[gr_k + i] = 1;
850 gr_sp_offset[gr_k + i] = s + (4 * i);
851 }
852 last_prologue_pc = next_pc;
853 }
854 }
855
856 /* Storing any kind of integer register at any constant offset
857 from any other register.
858
859 st GRk, @(GRi, gr0)
860 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
861 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
862 . . . . . . . .
863 sti GRk, @(GRi, d12)
864 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
865 0 000000 1111111 000000 000000000000 = 0x01fc0000
866 . . . . . . . .
867 These could be almost anything, but a lot of prologue
868 instructions fall into this pattern, so let's decode the
869 instruction once, and then work at a higher level. */
870 else if (((op & 0x01fc0fff) == 0x000c0080)
871 || ((op & 0x01fc0000) == 0x01480000))
872 {
873 int gr_k = ((op >> 25) & 0x3f);
874 int gr_i = ((op >> 12) & 0x3f);
875 int offset;
876
877 /* Are we storing with gr0 as an offset, or using an
878 immediate value? */
879 if ((op & 0x01fc0fff) == 0x000c0080)
880 offset = 0;
881 else
882 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
883
884 /* If the address isn't relative to the SP or FP, it's not a
885 prologue instruction. */
886 if (gr_i != sp_regnum && gr_i != fp_regnum)
887 {
888 /* Do nothing; not a prologue instruction. */
889 }
890
891 /* Saving the old FP in the new frame (relative to the SP). */
892 else if (gr_k == fp_regnum && gr_i == sp_regnum)
893 {
894 gr_saved[fp_regnum] = 1;
895 gr_sp_offset[fp_regnum] = offset;
896 last_prologue_pc = next_pc;
897 }
898
899 /* Saving callee-saves register(s) on the stack, relative to
900 the SP. */
901 else if (gr_i == sp_regnum
902 && is_callee_saves_reg (gr_k))
903 {
904 gr_saved[gr_k] = 1;
905 if (gr_i == sp_regnum)
906 gr_sp_offset[gr_k] = offset;
907 else
908 gr_sp_offset[gr_k] = offset + fp_offset;
909 last_prologue_pc = next_pc;
910 }
911
912 /* Saving the scratch register holding the return address. */
913 else if (lr_save_reg != -1
914 && gr_k == lr_save_reg)
915 {
916 lr_saved_on_stack = 1;
917 if (gr_i == sp_regnum)
918 lr_sp_offset = offset;
919 else
920 lr_sp_offset = offset + fp_offset;
921 last_prologue_pc = next_pc;
922 }
923
924 /* Spilling int-sized arguments to the stack. */
925 else if (is_argument_reg (gr_k))
926 last_prologue_pc = next_pc;
927 }
928 pc = next_pc;
929 }
930
931 if (next_frame && info)
932 {
933 int i;
934 ULONGEST this_base;
935
936 /* If we know the relationship between the stack and frame
937 pointers, record the addresses of the registers we noticed.
938 Note that we have to do this as a separate step at the end,
939 because instructions may save relative to the SP, but we need
940 their addresses relative to the FP. */
941 if (fp_set)
942 this_base = frame_unwind_register_unsigned (next_frame, fp_regnum);
943 else
944 this_base = frame_unwind_register_unsigned (next_frame, sp_regnum);
945
946 for (i = 0; i < 64; i++)
947 if (gr_saved[i])
948 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
949
950 info->prev_sp = this_base - fp_offset + framesize;
951 info->base = this_base;
952
953 /* If LR was saved on the stack, record its location. */
954 if (lr_saved_on_stack)
955 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
956
957 /* The call instruction moves the caller's PC in the callee's LR.
958 Since this is an unwind, do the reverse. Copy the location of LR
959 into PC (the address / regnum) so that a request for PC will be
960 converted into a request for the LR. */
961 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
962
963 /* Save the previous frame's computed SP value. */
964 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
965 }
966
967 return last_prologue_pc;
968 }
969
970
971 static CORE_ADDR
972 frv_skip_prologue (CORE_ADDR pc)
973 {
974 CORE_ADDR func_addr, func_end, new_pc;
975
976 new_pc = pc;
977
978 /* If the line table has entry for a line *within* the function
979 (i.e., not in the prologue, and not past the end), then that's
980 our location. */
981 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
982 {
983 struct symtab_and_line sal;
984
985 sal = find_pc_line (func_addr, 0);
986
987 if (sal.line != 0 && sal.end < func_end)
988 {
989 new_pc = sal.end;
990 }
991 }
992
993 /* The FR-V prologue is at least five instructions long (twenty bytes).
994 If we didn't find a real source location past that, then
995 do a full analysis of the prologue. */
996 if (new_pc < pc + 20)
997 new_pc = frv_analyze_prologue (pc, 0, 0);
998
999 return new_pc;
1000 }
1001
1002
1003 static struct frv_unwind_cache *
1004 frv_frame_unwind_cache (struct frame_info *next_frame,
1005 void **this_prologue_cache)
1006 {
1007 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1008 CORE_ADDR pc;
1009 ULONGEST this_base;
1010 struct frv_unwind_cache *info;
1011
1012 if ((*this_prologue_cache))
1013 return (*this_prologue_cache);
1014
1015 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1016 (*this_prologue_cache) = info;
1017 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1018
1019 /* Prologue analysis does the rest... */
1020 frv_analyze_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
1021 next_frame, info);
1022
1023 return info;
1024 }
1025
1026 static void
1027 frv_extract_return_value (struct type *type, struct regcache *regcache,
1028 gdb_byte *valbuf)
1029 {
1030 int len = TYPE_LENGTH (type);
1031
1032 if (len <= 4)
1033 {
1034 ULONGEST gpr8_val;
1035 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1036 store_unsigned_integer (valbuf, len, gpr8_val);
1037 }
1038 else if (len == 8)
1039 {
1040 ULONGEST regval;
1041 regcache_cooked_read_unsigned (regcache, 8, &regval);
1042 store_unsigned_integer (valbuf, 4, regval);
1043 regcache_cooked_read_unsigned (regcache, 9, &regval);
1044 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1045 }
1046 else
1047 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1048 }
1049
1050 static CORE_ADDR
1051 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1052 {
1053 /* Require dword alignment. */
1054 return align_down (sp, 8);
1055 }
1056
1057 static CORE_ADDR
1058 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1059 {
1060 CORE_ADDR descr;
1061 char valbuf[4];
1062 CORE_ADDR start_addr;
1063
1064 /* If we can't find the function in the symbol table, then we assume
1065 that the function address is already in descriptor form. */
1066 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1067 || entry_point != start_addr)
1068 return entry_point;
1069
1070 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1071
1072 if (descr != 0)
1073 return descr;
1074
1075 /* Construct a non-canonical descriptor from space allocated on
1076 the stack. */
1077
1078 descr = value_as_long (value_allocate_space_in_inferior (8));
1079 store_unsigned_integer (valbuf, 4, entry_point);
1080 write_memory (descr, valbuf, 4);
1081 store_unsigned_integer (valbuf, 4,
1082 frv_fdpic_find_global_pointer (entry_point));
1083 write_memory (descr + 4, valbuf, 4);
1084 return descr;
1085 }
1086
1087 static CORE_ADDR
1088 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1089 struct target_ops *targ)
1090 {
1091 CORE_ADDR entry_point;
1092 CORE_ADDR got_address;
1093
1094 entry_point = get_target_memory_unsigned (targ, addr, 4);
1095 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1096
1097 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1098 return entry_point;
1099 else
1100 return addr;
1101 }
1102
1103 static CORE_ADDR
1104 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1105 struct regcache *regcache, CORE_ADDR bp_addr,
1106 int nargs, struct value **args, CORE_ADDR sp,
1107 int struct_return, CORE_ADDR struct_addr)
1108 {
1109 int argreg;
1110 int argnum;
1111 char *val;
1112 char valbuf[4];
1113 struct value *arg;
1114 struct type *arg_type;
1115 int len;
1116 enum type_code typecode;
1117 CORE_ADDR regval;
1118 int stack_space;
1119 int stack_offset;
1120 enum frv_abi abi = frv_abi (gdbarch);
1121 CORE_ADDR func_addr = find_function_addr (function, NULL);
1122
1123 #if 0
1124 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1125 nargs, (int) sp, struct_return, struct_addr);
1126 #endif
1127
1128 stack_space = 0;
1129 for (argnum = 0; argnum < nargs; ++argnum)
1130 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1131
1132 stack_space -= (6 * 4);
1133 if (stack_space > 0)
1134 sp -= stack_space;
1135
1136 /* Make sure stack is dword aligned. */
1137 sp = align_down (sp, 8);
1138
1139 stack_offset = 0;
1140
1141 argreg = 8;
1142
1143 if (struct_return)
1144 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1145 struct_addr);
1146
1147 for (argnum = 0; argnum < nargs; ++argnum)
1148 {
1149 arg = args[argnum];
1150 arg_type = check_typedef (value_type (arg));
1151 len = TYPE_LENGTH (arg_type);
1152 typecode = TYPE_CODE (arg_type);
1153
1154 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1155 {
1156 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1157 typecode = TYPE_CODE_PTR;
1158 len = 4;
1159 val = valbuf;
1160 }
1161 else if (abi == FRV_ABI_FDPIC
1162 && len == 4
1163 && typecode == TYPE_CODE_PTR
1164 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1165 {
1166 /* The FDPIC ABI requires function descriptors to be passed instead
1167 of entry points. */
1168 store_unsigned_integer
1169 (valbuf, 4,
1170 find_func_descr (gdbarch,
1171 extract_unsigned_integer (value_contents (arg),
1172 4)));
1173 typecode = TYPE_CODE_PTR;
1174 len = 4;
1175 val = valbuf;
1176 }
1177 else
1178 {
1179 val = (char *) value_contents (arg);
1180 }
1181
1182 while (len > 0)
1183 {
1184 int partial_len = (len < 4 ? len : 4);
1185
1186 if (argreg < 14)
1187 {
1188 regval = extract_unsigned_integer (val, partial_len);
1189 #if 0
1190 printf(" Argnum %d data %x -> reg %d\n",
1191 argnum, (int) regval, argreg);
1192 #endif
1193 regcache_cooked_write_unsigned (regcache, argreg, regval);
1194 ++argreg;
1195 }
1196 else
1197 {
1198 #if 0
1199 printf(" Argnum %d data %x -> offset %d (%x)\n",
1200 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1201 #endif
1202 write_memory (sp + stack_offset, val, partial_len);
1203 stack_offset += align_up (partial_len, 4);
1204 }
1205 len -= partial_len;
1206 val += partial_len;
1207 }
1208 }
1209
1210 /* Set the return address. For the frv, the return breakpoint is
1211 always at BP_ADDR. */
1212 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1213
1214 if (abi == FRV_ABI_FDPIC)
1215 {
1216 /* Set the GOT register for the FDPIC ABI. */
1217 regcache_cooked_write_unsigned
1218 (regcache, first_gpr_regnum + 15,
1219 frv_fdpic_find_global_pointer (func_addr));
1220 }
1221
1222 /* Finally, update the SP register. */
1223 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1224
1225 return sp;
1226 }
1227
1228 static void
1229 frv_store_return_value (struct type *type, struct regcache *regcache,
1230 const gdb_byte *valbuf)
1231 {
1232 int len = TYPE_LENGTH (type);
1233
1234 if (len <= 4)
1235 {
1236 bfd_byte val[4];
1237 memset (val, 0, sizeof (val));
1238 memcpy (val + (4 - len), valbuf, len);
1239 regcache_cooked_write (regcache, 8, val);
1240 }
1241 else if (len == 8)
1242 {
1243 regcache_cooked_write (regcache, 8, valbuf);
1244 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1245 }
1246 else
1247 internal_error (__FILE__, __LINE__,
1248 _("Don't know how to return a %d-byte value."), len);
1249 }
1250
1251 enum return_value_convention
1252 frv_return_value (struct gdbarch *gdbarch, struct type *valtype,
1253 struct regcache *regcache, gdb_byte *readbuf,
1254 const gdb_byte *writebuf)
1255 {
1256 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1257 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1258 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1259
1260 if (writebuf != NULL)
1261 {
1262 gdb_assert (!struct_return);
1263 frv_store_return_value (valtype, regcache, writebuf);
1264 }
1265
1266 if (readbuf != NULL)
1267 {
1268 gdb_assert (!struct_return);
1269 frv_extract_return_value (valtype, regcache, readbuf);
1270 }
1271
1272 if (struct_return)
1273 return RETURN_VALUE_STRUCT_CONVENTION;
1274 else
1275 return RETURN_VALUE_REGISTER_CONVENTION;
1276 }
1277
1278
1279 /* Hardware watchpoint / breakpoint support for the FR500
1280 and FR400. */
1281
1282 int
1283 frv_check_watch_resources (int type, int cnt, int ot)
1284 {
1285 struct gdbarch_tdep *var = CURRENT_VARIANT;
1286
1287 /* Watchpoints not supported on simulator. */
1288 if (strcmp (target_shortname, "sim") == 0)
1289 return 0;
1290
1291 if (type == bp_hardware_breakpoint)
1292 {
1293 if (var->num_hw_breakpoints == 0)
1294 return 0;
1295 else if (cnt <= var->num_hw_breakpoints)
1296 return 1;
1297 }
1298 else
1299 {
1300 if (var->num_hw_watchpoints == 0)
1301 return 0;
1302 else if (ot)
1303 return -1;
1304 else if (cnt <= var->num_hw_watchpoints)
1305 return 1;
1306 }
1307 return -1;
1308 }
1309
1310
1311 int
1312 frv_stopped_data_address (CORE_ADDR *addr_p)
1313 {
1314 struct frame_info *frame = get_current_frame ();
1315 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1316
1317 brr = get_frame_register_unsigned (frame, brr_regnum);
1318 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1319 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1320 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1321 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1322
1323 if (brr & (1<<11))
1324 *addr_p = dbar0;
1325 else if (brr & (1<<10))
1326 *addr_p = dbar1;
1327 else if (brr & (1<<9))
1328 *addr_p = dbar2;
1329 else if (brr & (1<<8))
1330 *addr_p = dbar3;
1331 else
1332 return 0;
1333
1334 return 1;
1335 }
1336
1337 int
1338 frv_have_stopped_data_address (void)
1339 {
1340 CORE_ADDR addr = 0;
1341 return frv_stopped_data_address (&addr);
1342 }
1343
1344 static CORE_ADDR
1345 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1346 {
1347 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1348 }
1349
1350 /* Given a GDB frame, determine the address of the calling function's
1351 frame. This will be used to create a new GDB frame struct. */
1352
1353 static void
1354 frv_frame_this_id (struct frame_info *next_frame,
1355 void **this_prologue_cache, struct frame_id *this_id)
1356 {
1357 struct frv_unwind_cache *info
1358 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1359 CORE_ADDR base;
1360 CORE_ADDR func;
1361 struct minimal_symbol *msym_stack;
1362 struct frame_id id;
1363
1364 /* The FUNC is easy. */
1365 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1366
1367 /* Check if the stack is empty. */
1368 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1369 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1370 return;
1371
1372 /* Hopefully the prologue analysis either correctly determined the
1373 frame's base (which is the SP from the previous frame), or set
1374 that base to "NULL". */
1375 base = info->prev_sp;
1376 if (base == 0)
1377 return;
1378
1379 id = frame_id_build (base, func);
1380 (*this_id) = id;
1381 }
1382
1383 static void
1384 frv_frame_prev_register (struct frame_info *next_frame,
1385 void **this_prologue_cache,
1386 int regnum, int *optimizedp,
1387 enum lval_type *lvalp, CORE_ADDR *addrp,
1388 int *realnump, gdb_byte *bufferp)
1389 {
1390 struct frv_unwind_cache *info
1391 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1392 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1393 optimizedp, lvalp, addrp, realnump, bufferp);
1394 }
1395
1396 static const struct frame_unwind frv_frame_unwind = {
1397 NORMAL_FRAME,
1398 frv_frame_this_id,
1399 frv_frame_prev_register
1400 };
1401
1402 static const struct frame_unwind *
1403 frv_frame_sniffer (struct frame_info *next_frame)
1404 {
1405 return &frv_frame_unwind;
1406 }
1407
1408 static CORE_ADDR
1409 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1410 {
1411 struct frv_unwind_cache *info
1412 = frv_frame_unwind_cache (next_frame, this_cache);
1413 return info->base;
1414 }
1415
1416 static const struct frame_base frv_frame_base = {
1417 &frv_frame_unwind,
1418 frv_frame_base_address,
1419 frv_frame_base_address,
1420 frv_frame_base_address
1421 };
1422
1423 static CORE_ADDR
1424 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1425 {
1426 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1427 }
1428
1429
1430 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1431 dummy frame. The frame ID's base needs to match the TOS value
1432 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1433 breakpoint. */
1434
1435 static struct frame_id
1436 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1437 {
1438 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1439 frame_pc_unwind (next_frame));
1440 }
1441
1442 static struct gdbarch *
1443 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1444 {
1445 struct gdbarch *gdbarch;
1446 struct gdbarch_tdep *var;
1447 int elf_flags = 0;
1448
1449 /* Check to see if we've already built an appropriate architecture
1450 object for this executable. */
1451 arches = gdbarch_list_lookup_by_info (arches, &info);
1452 if (arches)
1453 return arches->gdbarch;
1454
1455 /* Select the right tdep structure for this variant. */
1456 var = new_variant ();
1457 switch (info.bfd_arch_info->mach)
1458 {
1459 case bfd_mach_frv:
1460 case bfd_mach_frvsimple:
1461 case bfd_mach_fr500:
1462 case bfd_mach_frvtomcat:
1463 case bfd_mach_fr550:
1464 set_variant_num_gprs (var, 64);
1465 set_variant_num_fprs (var, 64);
1466 break;
1467
1468 case bfd_mach_fr400:
1469 case bfd_mach_fr450:
1470 set_variant_num_gprs (var, 32);
1471 set_variant_num_fprs (var, 32);
1472 break;
1473
1474 default:
1475 /* Never heard of this variant. */
1476 return 0;
1477 }
1478
1479 /* Extract the ELF flags, if available. */
1480 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1481 elf_flags = elf_elfheader (info.abfd)->e_flags;
1482
1483 if (elf_flags & EF_FRV_FDPIC)
1484 set_variant_abi_fdpic (var);
1485
1486 if (elf_flags & EF_FRV_CPU_FR450)
1487 set_variant_scratch_registers (var);
1488
1489 gdbarch = gdbarch_alloc (&info, var);
1490
1491 set_gdbarch_short_bit (gdbarch, 16);
1492 set_gdbarch_int_bit (gdbarch, 32);
1493 set_gdbarch_long_bit (gdbarch, 32);
1494 set_gdbarch_long_long_bit (gdbarch, 64);
1495 set_gdbarch_float_bit (gdbarch, 32);
1496 set_gdbarch_double_bit (gdbarch, 64);
1497 set_gdbarch_long_double_bit (gdbarch, 64);
1498 set_gdbarch_ptr_bit (gdbarch, 32);
1499
1500 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1501 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1502
1503 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1504 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1505 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1506
1507 set_gdbarch_register_name (gdbarch, frv_register_name);
1508 set_gdbarch_register_type (gdbarch, frv_register_type);
1509 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1510
1511 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1512 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1513
1514 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1515 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1516 set_gdbarch_adjust_breakpoint_address
1517 (gdbarch, frv_adjust_breakpoint_address);
1518
1519 set_gdbarch_return_value (gdbarch, frv_return_value);
1520
1521 /* Frame stuff. */
1522 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1523 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1524 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1525 frame_base_set_default (gdbarch, &frv_frame_base);
1526 /* We set the sniffer lower down after the OSABI hooks have been
1527 established. */
1528
1529 /* Settings for calling functions in the inferior. */
1530 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1531 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1532
1533 /* Settings that should be unnecessary. */
1534 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1535
1536 /* Hardware watchpoint / breakpoint support. */
1537 switch (info.bfd_arch_info->mach)
1538 {
1539 case bfd_mach_frv:
1540 case bfd_mach_frvsimple:
1541 case bfd_mach_fr500:
1542 case bfd_mach_frvtomcat:
1543 /* fr500-style hardware debugging support. */
1544 var->num_hw_watchpoints = 4;
1545 var->num_hw_breakpoints = 4;
1546 break;
1547
1548 case bfd_mach_fr400:
1549 case bfd_mach_fr450:
1550 /* fr400-style hardware debugging support. */
1551 var->num_hw_watchpoints = 2;
1552 var->num_hw_breakpoints = 4;
1553 break;
1554
1555 default:
1556 /* Otherwise, assume we don't have hardware debugging support. */
1557 var->num_hw_watchpoints = 0;
1558 var->num_hw_breakpoints = 0;
1559 break;
1560 }
1561
1562 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1563 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1564 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1565 frv_convert_from_func_ptr_addr);
1566
1567 set_solib_ops (gdbarch, &frv_so_ops);
1568
1569 /* Hook in ABI-specific overrides, if they have been registered. */
1570 gdbarch_init_osabi (info, gdbarch);
1571
1572 /* Set the fallback (prologue based) frame sniffer. */
1573 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1574
1575 /* Enable TLS support. */
1576 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1577 frv_fetch_objfile_link_map);
1578
1579 return gdbarch;
1580 }
1581
1582 void
1583 _initialize_frv_tdep (void)
1584 {
1585 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1586 }
This page took 0.086037 seconds and 4 git commands to generate.