* dwarf2-frame.c (dwarf2_frame_cache, dwarf2_frame_this_id)
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "arch-utils.h"
27 #include "regcache.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "dis-asm.h"
33 #include "gdb_assert.h"
34 #include "sim-regno.h"
35 #include "gdb/sim-frv.h"
36 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
37 #include "symtab.h"
38 #include "elf-bfd.h"
39 #include "elf/frv.h"
40 #include "osabi.h"
41 #include "infcall.h"
42 #include "frv-tdep.h"
43
44 extern void _initialize_frv_tdep (void);
45
46 struct frv_unwind_cache /* was struct frame_extra_info */
47 {
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
51
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
57 };
58
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74 struct gdbarch_tdep
75 {
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93 };
94
95 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
96
97 /* Return the FR-V ABI associated with GDBARCH. */
98 enum frv_abi
99 frv_abi (struct gdbarch *gdbarch)
100 {
101 return gdbarch_tdep (gdbarch)->frv_abi;
102 }
103
104 /* Fetch the interpreter and executable loadmap addresses (for shared
105 library support) for the FDPIC ABI. Return 0 if successful, -1 if
106 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
107 int
108 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
109 CORE_ADDR *exec_addr)
110 {
111 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
112 return -1;
113 else
114 {
115 if (interp_addr != NULL)
116 {
117 ULONGEST val;
118 regcache_cooked_read_unsigned (current_regcache,
119 fdpic_loadmap_interp_regnum, &val);
120 *interp_addr = val;
121 }
122 if (exec_addr != NULL)
123 {
124 ULONGEST val;
125 regcache_cooked_read_unsigned (current_regcache,
126 fdpic_loadmap_exec_regnum, &val);
127 *exec_addr = val;
128 }
129 return 0;
130 }
131 }
132
133 /* Allocate a new variant structure, and set up default values for all
134 the fields. */
135 static struct gdbarch_tdep *
136 new_variant (void)
137 {
138 struct gdbarch_tdep *var;
139 int r;
140 char buf[20];
141
142 var = xmalloc (sizeof (*var));
143 memset (var, 0, sizeof (*var));
144
145 var->frv_abi = FRV_ABI_EABI;
146 var->num_gprs = 64;
147 var->num_fprs = 64;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
150
151 /* By default, don't supply any general-purpose or floating-point
152 register names. */
153 var->register_names
154 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
155 * sizeof (char *));
156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
157 var->register_names[r] = "";
158
159 /* Do, however, supply default names for the known special-purpose
160 registers. */
161
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
165
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
170
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
177
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
181 var->register_names[iacc0_regnum] = "iacc0";
182
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
185
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
189 elsewhere. */
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
191 {
192 char *buf;
193 buf = xstrprintf ("acc%d", r - acc0_regnum);
194 var->register_names[r] = buf;
195 }
196
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
202
203 for (r = accg0_regnum; r <= accg7_regnum; r++)
204 {
205 char *buf;
206 buf = xstrprintf ("accg%d", r - accg0_regnum);
207 var->register_names[r] = buf;
208 }
209
210 /* msr0 and msr1. */
211
212 var->register_names[msr0_regnum] = "msr0";
213 var->register_names[msr1_regnum] = "msr1";
214
215 /* gner and fner registers. */
216 var->register_names[gner0_regnum] = "gner0";
217 var->register_names[gner1_regnum] = "gner1";
218 var->register_names[fner0_regnum] = "fner0";
219 var->register_names[fner1_regnum] = "fner1";
220
221 return var;
222 }
223
224
225 /* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
227 static void
228 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
229 {
230 int r;
231
232 var->num_gprs = num_gprs;
233
234 for (r = 0; r < num_gprs; ++r)
235 {
236 char buf[20];
237
238 sprintf (buf, "gr%d", r);
239 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
240 }
241 }
242
243
244 /* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
246 static void
247 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
248 {
249 int r;
250
251 var->num_fprs = num_fprs;
252
253 for (r = 0; r < num_fprs; ++r)
254 {
255 char buf[20];
256
257 sprintf (buf, "fr%d", r);
258 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
259 }
260 }
261
262 static void
263 set_variant_abi_fdpic (struct gdbarch_tdep *var)
264 {
265 var->frv_abi = FRV_ABI_FDPIC;
266 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
268 }
269
270 static void
271 set_variant_scratch_registers (struct gdbarch_tdep *var)
272 {
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
277 }
278
279 static const char *
280 frv_register_name (int reg)
281 {
282 if (reg < 0)
283 return "?toosmall?";
284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
285 return "?toolarge?";
286
287 return CURRENT_VARIANT->register_names[reg];
288 }
289
290
291 static struct type *
292 frv_register_type (struct gdbarch *gdbarch, int reg)
293 {
294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
295 return builtin_type_float;
296 else if (reg == iacc0_regnum)
297 return builtin_type_int64;
298 else
299 return builtin_type_int32;
300 }
301
302 static void
303 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
304 int reg, gdb_byte *buffer)
305 {
306 if (reg == iacc0_regnum)
307 {
308 regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
310 }
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
318 bfd_byte buf[4];
319
320 regcache_raw_read (regcache, raw_regnum, buf);
321 memset (buffer, 0, 4);
322 /* FR-V is big endian, so put the requested byte in the first byte
323 of the buffer allocated to hold the pseudo-register. */
324 ((bfd_byte *) buffer)[0] = buf[byte_num];
325 }
326 }
327
328 static void
329 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
330 int reg, const gdb_byte *buffer)
331 {
332 if (reg == iacc0_regnum)
333 {
334 regcache_raw_write (regcache, iacc0h_regnum, buffer);
335 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
336 }
337 else if (accg0_regnum <= reg && reg <= accg7_regnum)
338 {
339 /* The accg raw registers have four values in each slot with the
340 lowest register number occupying the first byte. */
341
342 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
343 int byte_num = (reg - accg0_regnum) % 4;
344 char buf[4];
345
346 regcache_raw_read (regcache, raw_regnum, buf);
347 buf[byte_num] = ((bfd_byte *) buffer)[0];
348 regcache_raw_write (regcache, raw_regnum, buf);
349 }
350 }
351
352 static int
353 frv_register_sim_regno (int reg)
354 {
355 static const int spr_map[] =
356 {
357 H_SPR_PSR, /* psr_regnum */
358 H_SPR_CCR, /* ccr_regnum */
359 H_SPR_CCCR, /* cccr_regnum */
360 -1, /* fdpic_loadmap_exec_regnum */
361 -1, /* fdpic_loadmap_interp_regnum */
362 -1, /* 134 */
363 H_SPR_TBR, /* tbr_regnum */
364 H_SPR_BRR, /* brr_regnum */
365 H_SPR_DBAR0, /* dbar0_regnum */
366 H_SPR_DBAR1, /* dbar1_regnum */
367 H_SPR_DBAR2, /* dbar2_regnum */
368 H_SPR_DBAR3, /* dbar3_regnum */
369 H_SPR_SCR0, /* scr0_regnum */
370 H_SPR_SCR1, /* scr1_regnum */
371 H_SPR_SCR2, /* scr2_regnum */
372 H_SPR_SCR3, /* scr3_regnum */
373 H_SPR_LR, /* lr_regnum */
374 H_SPR_LCR, /* lcr_regnum */
375 H_SPR_IACC0H, /* iacc0h_regnum */
376 H_SPR_IACC0L, /* iacc0l_regnum */
377 H_SPR_FSR0, /* fsr0_regnum */
378 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
379 -1, /* acc0_regnum */
380 -1, /* acc1_regnum */
381 -1, /* acc2_regnum */
382 -1, /* acc3_regnum */
383 -1, /* acc4_regnum */
384 -1, /* acc5_regnum */
385 -1, /* acc6_regnum */
386 -1, /* acc7_regnum */
387 -1, /* acc0123_regnum */
388 -1, /* acc4567_regnum */
389 H_SPR_MSR0, /* msr0_regnum */
390 H_SPR_MSR1, /* msr1_regnum */
391 H_SPR_GNER0, /* gner0_regnum */
392 H_SPR_GNER1, /* gner1_regnum */
393 H_SPR_FNER0, /* fner0_regnum */
394 H_SPR_FNER1, /* fner1_regnum */
395 };
396
397 gdb_assert (reg >= 0 && reg < NUM_REGS);
398
399 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
400 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
401 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
402 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
403 else if (pc_regnum == reg)
404 return SIM_FRV_PC_REGNUM;
405 else if (reg >= first_spr_regnum
406 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
407 {
408 int spr_reg_offset = spr_map[reg - first_spr_regnum];
409
410 if (spr_reg_offset < 0)
411 return SIM_REGNO_DOES_NOT_EXIST;
412 else
413 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
414 }
415
416 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
417 }
418
419 static const unsigned char *
420 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
421 {
422 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
423 *lenp = sizeof (breakpoint);
424 return breakpoint;
425 }
426
427 /* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429 static const int max_instrs_per_bundle = 8;
430
431 /* Define the size (in bytes) of an FR-V instruction. */
432 static const int frv_instr_size = 4;
433
434 /* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
437 static CORE_ADDR
438 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
439 {
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
443
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count-- > 0 && addr >= func_start)
448 {
449 char instr[frv_instr_size];
450 int status;
451
452 status = read_memory_nobpt (addr, instr, sizeof instr);
453
454 if (status != 0)
455 break;
456
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
459 packing bit. */
460 if (instr[0] & 0x80)
461 break;
462
463 addr -= frv_instr_size;
464 }
465
466 if (count > 0)
467 bpaddr = addr + frv_instr_size;
468
469 return bpaddr;
470 }
471
472
473 /* Return true if REG is a caller-saves ("scratch") register,
474 false otherwise. */
475 static int
476 is_caller_saves_reg (int reg)
477 {
478 return ((4 <= reg && reg <= 7)
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
481 }
482
483
484 /* Return true if REG is a callee-saves register, false otherwise. */
485 static int
486 is_callee_saves_reg (int reg)
487 {
488 return ((16 <= reg && reg <= 31)
489 || (48 <= reg && reg <= 63));
490 }
491
492
493 /* Return true if REG is an argument register, false otherwise. */
494 static int
495 is_argument_reg (int reg)
496 {
497 return (8 <= reg && reg <= 13);
498 }
499
500 /* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
504
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
512 static CORE_ADDR
513 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
514 struct frv_unwind_cache *info)
515 {
516 /* When writing out instruction bitpatterns, we use the following
517 letters to label instruction fields:
518 P - The parallel bit. We don't use this.
519 J - The register number of GRj in the instruction description.
520 K - The register number of GRk in the instruction description.
521 I - The register number of GRi.
522 S - a signed imediate offset.
523 U - an unsigned immediate offset.
524
525 The dots below the numbers indicate where hex digit boundaries
526 fall, to make it easier to check the numbers. */
527
528 /* Non-zero iff we've seen the instruction that initializes the
529 frame pointer for this function's frame. */
530 int fp_set = 0;
531
532 /* If fp_set is non_zero, then this is the distance from
533 the stack pointer to frame pointer: fp = sp + fp_offset. */
534 int fp_offset = 0;
535
536 /* Total size of frame prior to any alloca operations. */
537 int framesize = 0;
538
539 /* Flag indicating if lr has been saved on the stack. */
540 int lr_saved_on_stack = 0;
541
542 /* The number of the general-purpose register we saved the return
543 address ("link register") in, or -1 if we haven't moved it yet. */
544 int lr_save_reg = -1;
545
546 /* Offset (from sp) at which lr has been saved on the stack. */
547
548 int lr_sp_offset = 0;
549
550 /* If gr_saved[i] is non-zero, then we've noticed that general
551 register i has been saved at gr_sp_offset[i] from the stack
552 pointer. */
553 char gr_saved[64];
554 int gr_sp_offset[64];
555
556 /* The address of the most recently scanned prologue instruction. */
557 CORE_ADDR last_prologue_pc;
558
559 /* The address of the next instruction. */
560 CORE_ADDR next_pc;
561
562 /* The upper bound to of the pc values to scan. */
563 CORE_ADDR lim_pc;
564
565 memset (gr_saved, 0, sizeof (gr_saved));
566
567 last_prologue_pc = pc;
568
569 /* Try to compute an upper limit (on how far to scan) based on the
570 line number info. */
571 lim_pc = skip_prologue_using_sal (pc);
572 /* If there's no line number info, lim_pc will be 0. In that case,
573 set the limit to be 100 instructions away from pc. Hopefully, this
574 will be far enough away to account for the entire prologue. Don't
575 worry about overshooting the end of the function. The scan loop
576 below contains some checks to avoid scanning unreasonably far. */
577 if (lim_pc == 0)
578 lim_pc = pc + 400;
579
580 /* If we have a frame, we don't want to scan past the frame's pc. This
581 will catch those cases where the pc is in the prologue. */
582 if (next_frame)
583 {
584 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
585 if (frame_pc < lim_pc)
586 lim_pc = frame_pc;
587 }
588
589 /* Scan the prologue. */
590 while (pc < lim_pc)
591 {
592 char buf[frv_instr_size];
593 LONGEST op;
594
595 if (target_read_memory (pc, buf, sizeof buf) != 0)
596 break;
597 op = extract_signed_integer (buf, sizeof buf);
598
599 next_pc = pc + 4;
600
601 /* The tests in this chain of ifs should be in order of
602 decreasing selectivity, so that more particular patterns get
603 to fire before less particular patterns. */
604
605 /* Some sort of control transfer instruction: stop scanning prologue.
606 Integer Conditional Branch:
607 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
608 Floating-point / media Conditional Branch:
609 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
610 LCR Conditional Branch to LR
611 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
612 Integer conditional Branches to LR
613 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
614 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
615 Floating-point/Media Branches to LR
616 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
617 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
618 Jump and Link
619 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
620 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
621 Call
622 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
623 Return from Trap
624 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
625 Integer Conditional Trap
626 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
627 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
628 Floating-point /media Conditional Trap
629 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
630 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
631 Break
632 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
633 Media Trap
634 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
635 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
636 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
637 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
638 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
639 {
640 /* Stop scanning; not in prologue any longer. */
641 break;
642 }
643
644 /* Loading something from memory into fp probably means that
645 we're in the epilogue. Stop scanning the prologue.
646 ld @(GRi, GRk), fp
647 X 000010 0000010 XXXXXX 000100 XXXXXX
648 ldi @(GRi, d12), fp
649 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
650 else if ((op & 0x7ffc0fc0) == 0x04080100
651 || (op & 0x7ffc0000) == 0x04c80000)
652 {
653 break;
654 }
655
656 /* Setting the FP from the SP:
657 ori sp, 0, fp
658 P 000010 0100010 000001 000000000000 = 0x04881000
659 0 111111 1111111 111111 111111111111 = 0x7fffffff
660 . . . . . . . .
661 We treat this as part of the prologue. */
662 else if ((op & 0x7fffffff) == 0x04881000)
663 {
664 fp_set = 1;
665 fp_offset = 0;
666 last_prologue_pc = next_pc;
667 }
668
669 /* Move the link register to the scratch register grJ, before saving:
670 movsg lr, grJ
671 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
672 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
673 . . . . . . . .
674 We treat this as part of the prologue. */
675 else if ((op & 0x7fffffc0) == 0x080d01c0)
676 {
677 int gr_j = op & 0x3f;
678
679 /* If we're moving it to a scratch register, that's fine. */
680 if (is_caller_saves_reg (gr_j))
681 {
682 lr_save_reg = gr_j;
683 last_prologue_pc = next_pc;
684 }
685 }
686
687 /* To save multiple callee-saves registers on the stack, at
688 offset zero:
689
690 std grK,@(sp,gr0)
691 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
692 0 000000 1111111 111111 111111 111111 = 0x01ffffff
693
694 stq grK,@(sp,gr0)
695 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
696 0 000000 1111111 111111 111111 111111 = 0x01ffffff
697 . . . . . . . .
698 We treat this as part of the prologue, and record the register's
699 saved address in the frame structure. */
700 else if ((op & 0x01ffffff) == 0x000c10c0
701 || (op & 0x01ffffff) == 0x000c1100)
702 {
703 int gr_k = ((op >> 25) & 0x3f);
704 int ope = ((op >> 6) & 0x3f);
705 int count;
706 int i;
707
708 /* Is it an std or an stq? */
709 if (ope == 0x03)
710 count = 2;
711 else
712 count = 4;
713
714 /* Is it really a callee-saves register? */
715 if (is_callee_saves_reg (gr_k))
716 {
717 for (i = 0; i < count; i++)
718 {
719 gr_saved[gr_k + i] = 1;
720 gr_sp_offset[gr_k + i] = 4 * i;
721 }
722 last_prologue_pc = next_pc;
723 }
724 }
725
726 /* Adjusting the stack pointer. (The stack pointer is GR1.)
727 addi sp, S, sp
728 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
729 0 111111 1111111 111111 000000000000 = 0x7ffff000
730 . . . . . . . .
731 We treat this as part of the prologue. */
732 else if ((op & 0x7ffff000) == 0x02401000)
733 {
734 if (framesize == 0)
735 {
736 /* Sign-extend the twelve-bit field.
737 (Isn't there a better way to do this?) */
738 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
739
740 framesize -= s;
741 last_prologue_pc = pc;
742 }
743 else
744 {
745 /* If the prologue is being adjusted again, we've
746 likely gone too far; i.e. we're probably in the
747 epilogue. */
748 break;
749 }
750 }
751
752 /* Setting the FP to a constant distance from the SP:
753 addi sp, S, fp
754 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
755 0 111111 1111111 111111 000000000000 = 0x7ffff000
756 . . . . . . . .
757 We treat this as part of the prologue. */
758 else if ((op & 0x7ffff000) == 0x04401000)
759 {
760 /* Sign-extend the twelve-bit field.
761 (Isn't there a better way to do this?) */
762 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
763 fp_set = 1;
764 fp_offset = s;
765 last_prologue_pc = pc;
766 }
767
768 /* To spill an argument register to a scratch register:
769 ori GRi, 0, GRk
770 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
771 0 000000 1111111 000000 111111111111 = 0x01fc0fff
772 . . . . . . . .
773 For the time being, we treat this as a prologue instruction,
774 assuming that GRi is an argument register. This one's kind
775 of suspicious, because it seems like it could be part of a
776 legitimate body instruction. But we only come here when the
777 source info wasn't helpful, so we have to do the best we can.
778 Hopefully once GCC and GDB agree on how to emit line number
779 info for prologues, then this code will never come into play. */
780 else if ((op & 0x01fc0fff) == 0x00880000)
781 {
782 int gr_i = ((op >> 12) & 0x3f);
783
784 /* Make sure that the source is an arg register; if it is, we'll
785 treat it as a prologue instruction. */
786 if (is_argument_reg (gr_i))
787 last_prologue_pc = next_pc;
788 }
789
790 /* To spill 16-bit values to the stack:
791 sthi GRk, @(fp, s)
792 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
793 0 000000 1111111 111111 000000000000 = 0x01fff000
794 . . . . . . . .
795 And for 8-bit values, we use STB instructions.
796 stbi GRk, @(fp, s)
797 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
798 0 000000 1111111 111111 000000000000 = 0x01fff000
799 . . . . . . . .
800 We check that GRk is really an argument register, and treat
801 all such as part of the prologue. */
802 else if ( (op & 0x01fff000) == 0x01442000
803 || (op & 0x01fff000) == 0x01402000)
804 {
805 int gr_k = ((op >> 25) & 0x3f);
806
807 /* Make sure that GRk is really an argument register; treat
808 it as a prologue instruction if so. */
809 if (is_argument_reg (gr_k))
810 last_prologue_pc = next_pc;
811 }
812
813 /* To save multiple callee-saves register on the stack, at a
814 non-zero offset:
815
816 stdi GRk, @(sp, s)
817 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
818 0 000000 1111111 111111 000000000000 = 0x01fff000
819 . . . . . . . .
820 stqi GRk, @(sp, s)
821 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
822 0 000000 1111111 111111 000000000000 = 0x01fff000
823 . . . . . . . .
824 We treat this as part of the prologue, and record the register's
825 saved address in the frame structure. */
826 else if ((op & 0x01fff000) == 0x014c1000
827 || (op & 0x01fff000) == 0x01501000)
828 {
829 int gr_k = ((op >> 25) & 0x3f);
830 int count;
831 int i;
832
833 /* Is it a stdi or a stqi? */
834 if ((op & 0x01fff000) == 0x014c1000)
835 count = 2;
836 else
837 count = 4;
838
839 /* Is it really a callee-saves register? */
840 if (is_callee_saves_reg (gr_k))
841 {
842 /* Sign-extend the twelve-bit field.
843 (Isn't there a better way to do this?) */
844 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
845
846 for (i = 0; i < count; i++)
847 {
848 gr_saved[gr_k + i] = 1;
849 gr_sp_offset[gr_k + i] = s + (4 * i);
850 }
851 last_prologue_pc = next_pc;
852 }
853 }
854
855 /* Storing any kind of integer register at any constant offset
856 from any other register.
857
858 st GRk, @(GRi, gr0)
859 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
860 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
861 . . . . . . . .
862 sti GRk, @(GRi, d12)
863 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
864 0 000000 1111111 000000 000000000000 = 0x01fc0000
865 . . . . . . . .
866 These could be almost anything, but a lot of prologue
867 instructions fall into this pattern, so let's decode the
868 instruction once, and then work at a higher level. */
869 else if (((op & 0x01fc0fff) == 0x000c0080)
870 || ((op & 0x01fc0000) == 0x01480000))
871 {
872 int gr_k = ((op >> 25) & 0x3f);
873 int gr_i = ((op >> 12) & 0x3f);
874 int offset;
875
876 /* Are we storing with gr0 as an offset, or using an
877 immediate value? */
878 if ((op & 0x01fc0fff) == 0x000c0080)
879 offset = 0;
880 else
881 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
882
883 /* If the address isn't relative to the SP or FP, it's not a
884 prologue instruction. */
885 if (gr_i != sp_regnum && gr_i != fp_regnum)
886 {
887 /* Do nothing; not a prologue instruction. */
888 }
889
890 /* Saving the old FP in the new frame (relative to the SP). */
891 else if (gr_k == fp_regnum && gr_i == sp_regnum)
892 {
893 gr_saved[fp_regnum] = 1;
894 gr_sp_offset[fp_regnum] = offset;
895 last_prologue_pc = next_pc;
896 }
897
898 /* Saving callee-saves register(s) on the stack, relative to
899 the SP. */
900 else if (gr_i == sp_regnum
901 && is_callee_saves_reg (gr_k))
902 {
903 gr_saved[gr_k] = 1;
904 if (gr_i == sp_regnum)
905 gr_sp_offset[gr_k] = offset;
906 else
907 gr_sp_offset[gr_k] = offset + fp_offset;
908 last_prologue_pc = next_pc;
909 }
910
911 /* Saving the scratch register holding the return address. */
912 else if (lr_save_reg != -1
913 && gr_k == lr_save_reg)
914 {
915 lr_saved_on_stack = 1;
916 if (gr_i == sp_regnum)
917 lr_sp_offset = offset;
918 else
919 lr_sp_offset = offset + fp_offset;
920 last_prologue_pc = next_pc;
921 }
922
923 /* Spilling int-sized arguments to the stack. */
924 else if (is_argument_reg (gr_k))
925 last_prologue_pc = next_pc;
926 }
927 pc = next_pc;
928 }
929
930 if (next_frame && info)
931 {
932 int i;
933 ULONGEST this_base;
934
935 /* If we know the relationship between the stack and frame
936 pointers, record the addresses of the registers we noticed.
937 Note that we have to do this as a separate step at the end,
938 because instructions may save relative to the SP, but we need
939 their addresses relative to the FP. */
940 if (fp_set)
941 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
942 else
943 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
944
945 for (i = 0; i < 64; i++)
946 if (gr_saved[i])
947 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
948
949 info->prev_sp = this_base - fp_offset + framesize;
950 info->base = this_base;
951
952 /* If LR was saved on the stack, record its location. */
953 if (lr_saved_on_stack)
954 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
955
956 /* The call instruction moves the caller's PC in the callee's LR.
957 Since this is an unwind, do the reverse. Copy the location of LR
958 into PC (the address / regnum) so that a request for PC will be
959 converted into a request for the LR. */
960 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
961
962 /* Save the previous frame's computed SP value. */
963 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
964 }
965
966 return last_prologue_pc;
967 }
968
969
970 static CORE_ADDR
971 frv_skip_prologue (CORE_ADDR pc)
972 {
973 CORE_ADDR func_addr, func_end, new_pc;
974
975 new_pc = pc;
976
977 /* If the line table has entry for a line *within* the function
978 (i.e., not in the prologue, and not past the end), then that's
979 our location. */
980 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
981 {
982 struct symtab_and_line sal;
983
984 sal = find_pc_line (func_addr, 0);
985
986 if (sal.line != 0 && sal.end < func_end)
987 {
988 new_pc = sal.end;
989 }
990 }
991
992 /* The FR-V prologue is at least five instructions long (twenty bytes).
993 If we didn't find a real source location past that, then
994 do a full analysis of the prologue. */
995 if (new_pc < pc + 20)
996 new_pc = frv_analyze_prologue (pc, 0, 0);
997
998 return new_pc;
999 }
1000
1001
1002 static struct frv_unwind_cache *
1003 frv_frame_unwind_cache (struct frame_info *next_frame,
1004 void **this_prologue_cache)
1005 {
1006 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1007 CORE_ADDR pc;
1008 ULONGEST this_base;
1009 struct frv_unwind_cache *info;
1010
1011 if ((*this_prologue_cache))
1012 return (*this_prologue_cache);
1013
1014 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1015 (*this_prologue_cache) = info;
1016 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1017
1018 /* Prologue analysis does the rest... */
1019 frv_analyze_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
1020 next_frame, info);
1021
1022 return info;
1023 }
1024
1025 static void
1026 frv_extract_return_value (struct type *type, struct regcache *regcache,
1027 gdb_byte *valbuf)
1028 {
1029 int len = TYPE_LENGTH (type);
1030
1031 if (len <= 4)
1032 {
1033 ULONGEST gpr8_val;
1034 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1035 store_unsigned_integer (valbuf, len, gpr8_val);
1036 }
1037 else if (len == 8)
1038 {
1039 ULONGEST regval;
1040 regcache_cooked_read_unsigned (regcache, 8, &regval);
1041 store_unsigned_integer (valbuf, 4, regval);
1042 regcache_cooked_read_unsigned (regcache, 9, &regval);
1043 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1044 }
1045 else
1046 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1047 }
1048
1049 static CORE_ADDR
1050 frv_extract_struct_value_address (struct regcache *regcache)
1051 {
1052 ULONGEST addr;
1053 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1054 return addr;
1055 }
1056
1057 static void
1058 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1059 {
1060 write_register (struct_return_regnum, addr);
1061 }
1062
1063 static CORE_ADDR
1064 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1065 {
1066 /* Require dword alignment. */
1067 return align_down (sp, 8);
1068 }
1069
1070 static CORE_ADDR
1071 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1072 {
1073 CORE_ADDR descr;
1074 char valbuf[4];
1075 CORE_ADDR start_addr;
1076
1077 /* If we can't find the function in the symbol table, then we assume
1078 that the function address is already in descriptor form. */
1079 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1080 || entry_point != start_addr)
1081 return entry_point;
1082
1083 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1084
1085 if (descr != 0)
1086 return descr;
1087
1088 /* Construct a non-canonical descriptor from space allocated on
1089 the stack. */
1090
1091 descr = value_as_long (value_allocate_space_in_inferior (8));
1092 store_unsigned_integer (valbuf, 4, entry_point);
1093 write_memory (descr, valbuf, 4);
1094 store_unsigned_integer (valbuf, 4,
1095 frv_fdpic_find_global_pointer (entry_point));
1096 write_memory (descr + 4, valbuf, 4);
1097 return descr;
1098 }
1099
1100 static CORE_ADDR
1101 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1102 struct target_ops *targ)
1103 {
1104 CORE_ADDR entry_point;
1105 CORE_ADDR got_address;
1106
1107 entry_point = get_target_memory_unsigned (targ, addr, 4);
1108 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1109
1110 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1111 return entry_point;
1112 else
1113 return addr;
1114 }
1115
1116 static CORE_ADDR
1117 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1118 struct regcache *regcache, CORE_ADDR bp_addr,
1119 int nargs, struct value **args, CORE_ADDR sp,
1120 int struct_return, CORE_ADDR struct_addr)
1121 {
1122 int argreg;
1123 int argnum;
1124 char *val;
1125 char valbuf[4];
1126 struct value *arg;
1127 struct type *arg_type;
1128 int len;
1129 enum type_code typecode;
1130 CORE_ADDR regval;
1131 int stack_space;
1132 int stack_offset;
1133 enum frv_abi abi = frv_abi (gdbarch);
1134 CORE_ADDR func_addr = find_function_addr (function, NULL);
1135
1136 #if 0
1137 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1138 nargs, (int) sp, struct_return, struct_addr);
1139 #endif
1140
1141 stack_space = 0;
1142 for (argnum = 0; argnum < nargs; ++argnum)
1143 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1144
1145 stack_space -= (6 * 4);
1146 if (stack_space > 0)
1147 sp -= stack_space;
1148
1149 /* Make sure stack is dword aligned. */
1150 sp = align_down (sp, 8);
1151
1152 stack_offset = 0;
1153
1154 argreg = 8;
1155
1156 if (struct_return)
1157 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1158 struct_addr);
1159
1160 for (argnum = 0; argnum < nargs; ++argnum)
1161 {
1162 arg = args[argnum];
1163 arg_type = check_typedef (value_type (arg));
1164 len = TYPE_LENGTH (arg_type);
1165 typecode = TYPE_CODE (arg_type);
1166
1167 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1168 {
1169 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1170 typecode = TYPE_CODE_PTR;
1171 len = 4;
1172 val = valbuf;
1173 }
1174 else if (abi == FRV_ABI_FDPIC
1175 && len == 4
1176 && typecode == TYPE_CODE_PTR
1177 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1178 {
1179 /* The FDPIC ABI requires function descriptors to be passed instead
1180 of entry points. */
1181 store_unsigned_integer
1182 (valbuf, 4,
1183 find_func_descr (gdbarch,
1184 extract_unsigned_integer (value_contents (arg),
1185 4)));
1186 typecode = TYPE_CODE_PTR;
1187 len = 4;
1188 val = valbuf;
1189 }
1190 else
1191 {
1192 val = (char *) value_contents (arg);
1193 }
1194
1195 while (len > 0)
1196 {
1197 int partial_len = (len < 4 ? len : 4);
1198
1199 if (argreg < 14)
1200 {
1201 regval = extract_unsigned_integer (val, partial_len);
1202 #if 0
1203 printf(" Argnum %d data %x -> reg %d\n",
1204 argnum, (int) regval, argreg);
1205 #endif
1206 regcache_cooked_write_unsigned (regcache, argreg, regval);
1207 ++argreg;
1208 }
1209 else
1210 {
1211 #if 0
1212 printf(" Argnum %d data %x -> offset %d (%x)\n",
1213 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1214 #endif
1215 write_memory (sp + stack_offset, val, partial_len);
1216 stack_offset += align_up (partial_len, 4);
1217 }
1218 len -= partial_len;
1219 val += partial_len;
1220 }
1221 }
1222
1223 /* Set the return address. For the frv, the return breakpoint is
1224 always at BP_ADDR. */
1225 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1226
1227 if (abi == FRV_ABI_FDPIC)
1228 {
1229 /* Set the GOT register for the FDPIC ABI. */
1230 regcache_cooked_write_unsigned
1231 (regcache, first_gpr_regnum + 15,
1232 frv_fdpic_find_global_pointer (func_addr));
1233 }
1234
1235 /* Finally, update the SP register. */
1236 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1237
1238 return sp;
1239 }
1240
1241 static void
1242 frv_store_return_value (struct type *type, struct regcache *regcache,
1243 const gdb_byte *valbuf)
1244 {
1245 int len = TYPE_LENGTH (type);
1246
1247 if (len <= 4)
1248 {
1249 bfd_byte val[4];
1250 memset (val, 0, sizeof (val));
1251 memcpy (val + (4 - len), valbuf, len);
1252 regcache_cooked_write (regcache, 8, val);
1253 }
1254 else if (len == 8)
1255 {
1256 regcache_cooked_write (regcache, 8, valbuf);
1257 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1258 }
1259 else
1260 internal_error (__FILE__, __LINE__,
1261 _("Don't know how to return a %d-byte value."), len);
1262 }
1263
1264
1265 /* Hardware watchpoint / breakpoint support for the FR500
1266 and FR400. */
1267
1268 int
1269 frv_check_watch_resources (int type, int cnt, int ot)
1270 {
1271 struct gdbarch_tdep *var = CURRENT_VARIANT;
1272
1273 /* Watchpoints not supported on simulator. */
1274 if (strcmp (target_shortname, "sim") == 0)
1275 return 0;
1276
1277 if (type == bp_hardware_breakpoint)
1278 {
1279 if (var->num_hw_breakpoints == 0)
1280 return 0;
1281 else if (cnt <= var->num_hw_breakpoints)
1282 return 1;
1283 }
1284 else
1285 {
1286 if (var->num_hw_watchpoints == 0)
1287 return 0;
1288 else if (ot)
1289 return -1;
1290 else if (cnt <= var->num_hw_watchpoints)
1291 return 1;
1292 }
1293 return -1;
1294 }
1295
1296
1297 int
1298 frv_stopped_data_address (CORE_ADDR *addr_p)
1299 {
1300 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1301
1302 brr = read_register (brr_regnum);
1303 dbar0 = read_register (dbar0_regnum);
1304 dbar1 = read_register (dbar1_regnum);
1305 dbar2 = read_register (dbar2_regnum);
1306 dbar3 = read_register (dbar3_regnum);
1307
1308 if (brr & (1<<11))
1309 *addr_p = dbar0;
1310 else if (brr & (1<<10))
1311 *addr_p = dbar1;
1312 else if (brr & (1<<9))
1313 *addr_p = dbar2;
1314 else if (brr & (1<<8))
1315 *addr_p = dbar3;
1316 else
1317 return 0;
1318
1319 return 1;
1320 }
1321
1322 int
1323 frv_have_stopped_data_address (void)
1324 {
1325 CORE_ADDR addr = 0;
1326 return frv_stopped_data_address (&addr);
1327 }
1328
1329 static CORE_ADDR
1330 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1331 {
1332 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1333 }
1334
1335 /* Given a GDB frame, determine the address of the calling function's
1336 frame. This will be used to create a new GDB frame struct. */
1337
1338 static void
1339 frv_frame_this_id (struct frame_info *next_frame,
1340 void **this_prologue_cache, struct frame_id *this_id)
1341 {
1342 struct frv_unwind_cache *info
1343 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1344 CORE_ADDR base;
1345 CORE_ADDR func;
1346 struct minimal_symbol *msym_stack;
1347 struct frame_id id;
1348
1349 /* The FUNC is easy. */
1350 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1351
1352 /* Check if the stack is empty. */
1353 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1354 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1355 return;
1356
1357 /* Hopefully the prologue analysis either correctly determined the
1358 frame's base (which is the SP from the previous frame), or set
1359 that base to "NULL". */
1360 base = info->prev_sp;
1361 if (base == 0)
1362 return;
1363
1364 id = frame_id_build (base, func);
1365 (*this_id) = id;
1366 }
1367
1368 static void
1369 frv_frame_prev_register (struct frame_info *next_frame,
1370 void **this_prologue_cache,
1371 int regnum, int *optimizedp,
1372 enum lval_type *lvalp, CORE_ADDR *addrp,
1373 int *realnump, gdb_byte *bufferp)
1374 {
1375 struct frv_unwind_cache *info
1376 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1377 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1378 optimizedp, lvalp, addrp, realnump, bufferp);
1379 }
1380
1381 static const struct frame_unwind frv_frame_unwind = {
1382 NORMAL_FRAME,
1383 frv_frame_this_id,
1384 frv_frame_prev_register
1385 };
1386
1387 static const struct frame_unwind *
1388 frv_frame_sniffer (struct frame_info *next_frame)
1389 {
1390 return &frv_frame_unwind;
1391 }
1392
1393 static CORE_ADDR
1394 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1395 {
1396 struct frv_unwind_cache *info
1397 = frv_frame_unwind_cache (next_frame, this_cache);
1398 return info->base;
1399 }
1400
1401 static const struct frame_base frv_frame_base = {
1402 &frv_frame_unwind,
1403 frv_frame_base_address,
1404 frv_frame_base_address,
1405 frv_frame_base_address
1406 };
1407
1408 static CORE_ADDR
1409 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1410 {
1411 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1412 }
1413
1414
1415 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1416 dummy frame. The frame ID's base needs to match the TOS value
1417 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1418 breakpoint. */
1419
1420 static struct frame_id
1421 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1422 {
1423 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1424 frame_pc_unwind (next_frame));
1425 }
1426
1427 static struct gdbarch *
1428 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1429 {
1430 struct gdbarch *gdbarch;
1431 struct gdbarch_tdep *var;
1432 int elf_flags = 0;
1433
1434 /* Check to see if we've already built an appropriate architecture
1435 object for this executable. */
1436 arches = gdbarch_list_lookup_by_info (arches, &info);
1437 if (arches)
1438 return arches->gdbarch;
1439
1440 /* Select the right tdep structure for this variant. */
1441 var = new_variant ();
1442 switch (info.bfd_arch_info->mach)
1443 {
1444 case bfd_mach_frv:
1445 case bfd_mach_frvsimple:
1446 case bfd_mach_fr500:
1447 case bfd_mach_frvtomcat:
1448 case bfd_mach_fr550:
1449 set_variant_num_gprs (var, 64);
1450 set_variant_num_fprs (var, 64);
1451 break;
1452
1453 case bfd_mach_fr400:
1454 case bfd_mach_fr450:
1455 set_variant_num_gprs (var, 32);
1456 set_variant_num_fprs (var, 32);
1457 break;
1458
1459 default:
1460 /* Never heard of this variant. */
1461 return 0;
1462 }
1463
1464 /* Extract the ELF flags, if available. */
1465 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1466 elf_flags = elf_elfheader (info.abfd)->e_flags;
1467
1468 if (elf_flags & EF_FRV_FDPIC)
1469 set_variant_abi_fdpic (var);
1470
1471 if (elf_flags & EF_FRV_CPU_FR450)
1472 set_variant_scratch_registers (var);
1473
1474 gdbarch = gdbarch_alloc (&info, var);
1475
1476 set_gdbarch_short_bit (gdbarch, 16);
1477 set_gdbarch_int_bit (gdbarch, 32);
1478 set_gdbarch_long_bit (gdbarch, 32);
1479 set_gdbarch_long_long_bit (gdbarch, 64);
1480 set_gdbarch_float_bit (gdbarch, 32);
1481 set_gdbarch_double_bit (gdbarch, 64);
1482 set_gdbarch_long_double_bit (gdbarch, 64);
1483 set_gdbarch_ptr_bit (gdbarch, 32);
1484
1485 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1486 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1487
1488 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1489 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1490 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1491
1492 set_gdbarch_register_name (gdbarch, frv_register_name);
1493 set_gdbarch_register_type (gdbarch, frv_register_type);
1494 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1495
1496 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1497 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1498
1499 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1500 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1501 set_gdbarch_adjust_breakpoint_address
1502 (gdbarch, frv_adjust_breakpoint_address);
1503
1504 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
1505 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1506
1507 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1508 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1509 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1510
1511 /* Frame stuff. */
1512 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1513 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1514 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1515 frame_base_set_default (gdbarch, &frv_frame_base);
1516 /* We set the sniffer lower down after the OSABI hooks have been
1517 established. */
1518
1519 /* Settings for calling functions in the inferior. */
1520 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1521 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1522
1523 /* Settings that should be unnecessary. */
1524 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1525
1526 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1527
1528 set_gdbarch_remote_translate_xfer_address
1529 (gdbarch, generic_remote_translate_xfer_address);
1530
1531 /* Hardware watchpoint / breakpoint support. */
1532 switch (info.bfd_arch_info->mach)
1533 {
1534 case bfd_mach_frv:
1535 case bfd_mach_frvsimple:
1536 case bfd_mach_fr500:
1537 case bfd_mach_frvtomcat:
1538 /* fr500-style hardware debugging support. */
1539 var->num_hw_watchpoints = 4;
1540 var->num_hw_breakpoints = 4;
1541 break;
1542
1543 case bfd_mach_fr400:
1544 case bfd_mach_fr450:
1545 /* fr400-style hardware debugging support. */
1546 var->num_hw_watchpoints = 2;
1547 var->num_hw_breakpoints = 4;
1548 break;
1549
1550 default:
1551 /* Otherwise, assume we don't have hardware debugging support. */
1552 var->num_hw_watchpoints = 0;
1553 var->num_hw_breakpoints = 0;
1554 break;
1555 }
1556
1557 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1558 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1559 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1560 frv_convert_from_func_ptr_addr);
1561
1562 /* Hook in ABI-specific overrides, if they have been registered. */
1563 gdbarch_init_osabi (info, gdbarch);
1564
1565 /* Set the fallback (prologue based) frame sniffer. */
1566 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1567
1568 /* Enable TLS support. */
1569 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1570 frv_fetch_objfile_link_map);
1571
1572 return gdbarch;
1573 }
1574
1575 void
1576 _initialize_frv_tdep (void)
1577 {
1578 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1579 }
This page took 0.06477 seconds and 5 git commands to generate.