Add some more casts (1/2)
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "arch-utils.h"
24 #include "regcache.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dis-asm.h"
30 #include "sim-regno.h"
31 #include "gdb/sim-frv.h"
32 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
33 #include "symtab.h"
34 #include "elf-bfd.h"
35 #include "elf/frv.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "solib.h"
39 #include "frv-tdep.h"
40 #include "objfiles.h"
41
42 extern void _initialize_frv_tdep (void);
43
44 struct frv_unwind_cache /* was struct frame_extra_info */
45 {
46 /* The previous frame's inner-most stack address. Used as this
47 frame ID's stack_addr. */
48 CORE_ADDR prev_sp;
49
50 /* The frame's base, optionally used by the high-level debug info. */
51 CORE_ADDR base;
52
53 /* Table indicating the location of each and every register. */
54 struct trad_frame_saved_reg *saved_regs;
55 };
56
57 /* A structure describing a particular variant of the FRV.
58 We allocate and initialize one of these structures when we create
59 the gdbarch object for a variant.
60
61 At the moment, all the FR variants we support differ only in which
62 registers are present; the portable code of GDB knows that
63 registers whose names are the empty string don't exist, so the
64 `register_names' array captures all the per-variant information we
65 need.
66
67 in the future, if we need to have per-variant maps for raw size,
68 virtual type, etc., we should replace register_names with an array
69 of structures, each of which gives all the necessary info for one
70 register. Don't stick parallel arrays in here --- that's so
71 Fortran. */
72 struct gdbarch_tdep
73 {
74 /* Which ABI is in use? */
75 enum frv_abi frv_abi;
76
77 /* How many general-purpose registers does this variant have? */
78 int num_gprs;
79
80 /* How many floating-point registers does this variant have? */
81 int num_fprs;
82
83 /* How many hardware watchpoints can it support? */
84 int num_hw_watchpoints;
85
86 /* How many hardware breakpoints can it support? */
87 int num_hw_breakpoints;
88
89 /* Register names. */
90 char **register_names;
91 };
92
93 /* Return the FR-V ABI associated with GDBARCH. */
94 enum frv_abi
95 frv_abi (struct gdbarch *gdbarch)
96 {
97 return gdbarch_tdep (gdbarch)->frv_abi;
98 }
99
100 /* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103 int
104 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
105 CORE_ADDR *exec_addr)
106 {
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
111 struct regcache *regcache = get_current_regcache ();
112
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
116 regcache_cooked_read_unsigned (regcache,
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
123 regcache_cooked_read_unsigned (regcache,
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129 }
130
131 /* Allocate a new variant structure, and set up default values for all
132 the fields. */
133 static struct gdbarch_tdep *
134 new_variant (void)
135 {
136 struct gdbarch_tdep *var;
137 int r;
138
139 var = XCNEW (struct gdbarch_tdep);
140
141 var->frv_abi = FRV_ABI_EABI;
142 var->num_gprs = 64;
143 var->num_fprs = 64;
144 var->num_hw_watchpoints = 0;
145 var->num_hw_breakpoints = 0;
146
147 /* By default, don't supply any general-purpose or floating-point
148 register names. */
149 var->register_names
150 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
151 * sizeof (char *));
152 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
153 var->register_names[r] = "";
154
155 /* Do, however, supply default names for the known special-purpose
156 registers. */
157
158 var->register_names[pc_regnum] = "pc";
159 var->register_names[lr_regnum] = "lr";
160 var->register_names[lcr_regnum] = "lcr";
161
162 var->register_names[psr_regnum] = "psr";
163 var->register_names[ccr_regnum] = "ccr";
164 var->register_names[cccr_regnum] = "cccr";
165 var->register_names[tbr_regnum] = "tbr";
166
167 /* Debug registers. */
168 var->register_names[brr_regnum] = "brr";
169 var->register_names[dbar0_regnum] = "dbar0";
170 var->register_names[dbar1_regnum] = "dbar1";
171 var->register_names[dbar2_regnum] = "dbar2";
172 var->register_names[dbar3_regnum] = "dbar3";
173
174 /* iacc0 (Only found on MB93405.) */
175 var->register_names[iacc0h_regnum] = "iacc0h";
176 var->register_names[iacc0l_regnum] = "iacc0l";
177 var->register_names[iacc0_regnum] = "iacc0";
178
179 /* fsr0 (Found on FR555 and FR501.) */
180 var->register_names[fsr0_regnum] = "fsr0";
181
182 /* acc0 - acc7. The architecture provides for the possibility of many
183 more (up to 64 total), but we don't want to make that big of a hole
184 in the G packet. If we need more in the future, we'll add them
185 elsewhere. */
186 for (r = acc0_regnum; r <= acc7_regnum; r++)
187 {
188 char *buf;
189 buf = xstrprintf ("acc%d", r - acc0_regnum);
190 var->register_names[r] = buf;
191 }
192
193 /* accg0 - accg7: These are one byte registers. The remote protocol
194 provides the raw values packed four into a slot. accg0123 and
195 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
196 We don't provide names for accg0123 and accg4567 since the user will
197 likely not want to see these raw values. */
198
199 for (r = accg0_regnum; r <= accg7_regnum; r++)
200 {
201 char *buf;
202 buf = xstrprintf ("accg%d", r - accg0_regnum);
203 var->register_names[r] = buf;
204 }
205
206 /* msr0 and msr1. */
207
208 var->register_names[msr0_regnum] = "msr0";
209 var->register_names[msr1_regnum] = "msr1";
210
211 /* gner and fner registers. */
212 var->register_names[gner0_regnum] = "gner0";
213 var->register_names[gner1_regnum] = "gner1";
214 var->register_names[fner0_regnum] = "fner0";
215 var->register_names[fner1_regnum] = "fner1";
216
217 return var;
218 }
219
220
221 /* Indicate that the variant VAR has NUM_GPRS general-purpose
222 registers, and fill in the names array appropriately. */
223 static void
224 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
225 {
226 int r;
227
228 var->num_gprs = num_gprs;
229
230 for (r = 0; r < num_gprs; ++r)
231 {
232 char buf[20];
233
234 xsnprintf (buf, sizeof (buf), "gr%d", r);
235 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
236 }
237 }
238
239
240 /* Indicate that the variant VAR has NUM_FPRS floating-point
241 registers, and fill in the names array appropriately. */
242 static void
243 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
244 {
245 int r;
246
247 var->num_fprs = num_fprs;
248
249 for (r = 0; r < num_fprs; ++r)
250 {
251 char buf[20];
252
253 xsnprintf (buf, sizeof (buf), "fr%d", r);
254 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
255 }
256 }
257
258 static void
259 set_variant_abi_fdpic (struct gdbarch_tdep *var)
260 {
261 var->frv_abi = FRV_ABI_FDPIC;
262 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
263 var->register_names[fdpic_loadmap_interp_regnum]
264 = xstrdup ("loadmap_interp");
265 }
266
267 static void
268 set_variant_scratch_registers (struct gdbarch_tdep *var)
269 {
270 var->register_names[scr0_regnum] = xstrdup ("scr0");
271 var->register_names[scr1_regnum] = xstrdup ("scr1");
272 var->register_names[scr2_regnum] = xstrdup ("scr2");
273 var->register_names[scr3_regnum] = xstrdup ("scr3");
274 }
275
276 static const char *
277 frv_register_name (struct gdbarch *gdbarch, int reg)
278 {
279 if (reg < 0)
280 return "?toosmall?";
281 if (reg >= frv_num_regs + frv_num_pseudo_regs)
282 return "?toolarge?";
283
284 return gdbarch_tdep (gdbarch)->register_names[reg];
285 }
286
287
288 static struct type *
289 frv_register_type (struct gdbarch *gdbarch, int reg)
290 {
291 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
292 return builtin_type (gdbarch)->builtin_float;
293 else if (reg == iacc0_regnum)
294 return builtin_type (gdbarch)->builtin_int64;
295 else
296 return builtin_type (gdbarch)->builtin_int32;
297 }
298
299 static enum register_status
300 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
301 int reg, gdb_byte *buffer)
302 {
303 enum register_status status;
304
305 if (reg == iacc0_regnum)
306 {
307 status = regcache_raw_read (regcache, iacc0h_regnum, buffer);
308 if (status == REG_VALID)
309 status = regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
310 }
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
318 gdb_byte buf[4];
319
320 status = regcache_raw_read (regcache, raw_regnum, buf);
321 if (status == REG_VALID)
322 {
323 memset (buffer, 0, 4);
324 /* FR-V is big endian, so put the requested byte in the
325 first byte of the buffer allocated to hold the
326 pseudo-register. */
327 buffer[0] = buf[byte_num];
328 }
329 }
330 else
331 gdb_assert_not_reached ("invalid pseudo register number");
332
333 return status;
334 }
335
336 static void
337 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
338 int reg, const gdb_byte *buffer)
339 {
340 if (reg == iacc0_regnum)
341 {
342 regcache_raw_write (regcache, iacc0h_regnum, buffer);
343 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
344 }
345 else if (accg0_regnum <= reg && reg <= accg7_regnum)
346 {
347 /* The accg raw registers have four values in each slot with the
348 lowest register number occupying the first byte. */
349
350 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
351 int byte_num = (reg - accg0_regnum) % 4;
352 gdb_byte buf[4];
353
354 regcache_raw_read (regcache, raw_regnum, buf);
355 buf[byte_num] = ((bfd_byte *) buffer)[0];
356 regcache_raw_write (regcache, raw_regnum, buf);
357 }
358 }
359
360 static int
361 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
362 {
363 static const int spr_map[] =
364 {
365 H_SPR_PSR, /* psr_regnum */
366 H_SPR_CCR, /* ccr_regnum */
367 H_SPR_CCCR, /* cccr_regnum */
368 -1, /* fdpic_loadmap_exec_regnum */
369 -1, /* fdpic_loadmap_interp_regnum */
370 -1, /* 134 */
371 H_SPR_TBR, /* tbr_regnum */
372 H_SPR_BRR, /* brr_regnum */
373 H_SPR_DBAR0, /* dbar0_regnum */
374 H_SPR_DBAR1, /* dbar1_regnum */
375 H_SPR_DBAR2, /* dbar2_regnum */
376 H_SPR_DBAR3, /* dbar3_regnum */
377 H_SPR_SCR0, /* scr0_regnum */
378 H_SPR_SCR1, /* scr1_regnum */
379 H_SPR_SCR2, /* scr2_regnum */
380 H_SPR_SCR3, /* scr3_regnum */
381 H_SPR_LR, /* lr_regnum */
382 H_SPR_LCR, /* lcr_regnum */
383 H_SPR_IACC0H, /* iacc0h_regnum */
384 H_SPR_IACC0L, /* iacc0l_regnum */
385 H_SPR_FSR0, /* fsr0_regnum */
386 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
387 -1, /* acc0_regnum */
388 -1, /* acc1_regnum */
389 -1, /* acc2_regnum */
390 -1, /* acc3_regnum */
391 -1, /* acc4_regnum */
392 -1, /* acc5_regnum */
393 -1, /* acc6_regnum */
394 -1, /* acc7_regnum */
395 -1, /* acc0123_regnum */
396 -1, /* acc4567_regnum */
397 H_SPR_MSR0, /* msr0_regnum */
398 H_SPR_MSR1, /* msr1_regnum */
399 H_SPR_GNER0, /* gner0_regnum */
400 H_SPR_GNER1, /* gner1_regnum */
401 H_SPR_FNER0, /* fner0_regnum */
402 H_SPR_FNER1, /* fner1_regnum */
403 };
404
405 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
406
407 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
408 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
409 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
410 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
411 else if (pc_regnum == reg)
412 return SIM_FRV_PC_REGNUM;
413 else if (reg >= first_spr_regnum
414 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
415 {
416 int spr_reg_offset = spr_map[reg - first_spr_regnum];
417
418 if (spr_reg_offset < 0)
419 return SIM_REGNO_DOES_NOT_EXIST;
420 else
421 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
422 }
423
424 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
425 }
426
427 static const unsigned char *
428 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
429 {
430 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
431 *lenp = sizeof (breakpoint);
432 return breakpoint;
433 }
434
435 /* Define the maximum number of instructions which may be packed into a
436 bundle (VLIW instruction). */
437 static const int max_instrs_per_bundle = 8;
438
439 /* Define the size (in bytes) of an FR-V instruction. */
440 static const int frv_instr_size = 4;
441
442 /* Adjust a breakpoint's address to account for the FR-V architecture's
443 constraint that a break instruction must not appear as any but the
444 first instruction in the bundle. */
445 static CORE_ADDR
446 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
447 {
448 int count = max_instrs_per_bundle;
449 CORE_ADDR addr = bpaddr - frv_instr_size;
450 CORE_ADDR func_start = get_pc_function_start (bpaddr);
451
452 /* Find the end of the previous packing sequence. This will be indicated
453 by either attempting to access some inaccessible memory or by finding
454 an instruction word whose packing bit is set to one. */
455 while (count-- > 0 && addr >= func_start)
456 {
457 gdb_byte instr[frv_instr_size];
458 int status;
459
460 status = target_read_memory (addr, instr, sizeof instr);
461
462 if (status != 0)
463 break;
464
465 /* This is a big endian architecture, so byte zero will have most
466 significant byte. The most significant bit of this byte is the
467 packing bit. */
468 if (instr[0] & 0x80)
469 break;
470
471 addr -= frv_instr_size;
472 }
473
474 if (count > 0)
475 bpaddr = addr + frv_instr_size;
476
477 return bpaddr;
478 }
479
480
481 /* Return true if REG is a caller-saves ("scratch") register,
482 false otherwise. */
483 static int
484 is_caller_saves_reg (int reg)
485 {
486 return ((4 <= reg && reg <= 7)
487 || (14 <= reg && reg <= 15)
488 || (32 <= reg && reg <= 47));
489 }
490
491
492 /* Return true if REG is a callee-saves register, false otherwise. */
493 static int
494 is_callee_saves_reg (int reg)
495 {
496 return ((16 <= reg && reg <= 31)
497 || (48 <= reg && reg <= 63));
498 }
499
500
501 /* Return true if REG is an argument register, false otherwise. */
502 static int
503 is_argument_reg (int reg)
504 {
505 return (8 <= reg && reg <= 13);
506 }
507
508 /* Scan an FR-V prologue, starting at PC, until frame->PC.
509 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
510 We assume FRAME's saved_regs array has already been allocated and cleared.
511 Return the first PC value after the prologue.
512
513 Note that, for unoptimized code, we almost don't need this function
514 at all; all arguments and locals live on the stack, so we just need
515 the FP to find everything. The catch: structures passed by value
516 have their addresses living in registers; they're never spilled to
517 the stack. So if you ever want to be able to get to these
518 arguments in any frame but the top, you'll need to do this serious
519 prologue analysis. */
520 static CORE_ADDR
521 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
522 struct frame_info *this_frame,
523 struct frv_unwind_cache *info)
524 {
525 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
526
527 /* When writing out instruction bitpatterns, we use the following
528 letters to label instruction fields:
529 P - The parallel bit. We don't use this.
530 J - The register number of GRj in the instruction description.
531 K - The register number of GRk in the instruction description.
532 I - The register number of GRi.
533 S - a signed imediate offset.
534 U - an unsigned immediate offset.
535
536 The dots below the numbers indicate where hex digit boundaries
537 fall, to make it easier to check the numbers. */
538
539 /* Non-zero iff we've seen the instruction that initializes the
540 frame pointer for this function's frame. */
541 int fp_set = 0;
542
543 /* If fp_set is non_zero, then this is the distance from
544 the stack pointer to frame pointer: fp = sp + fp_offset. */
545 int fp_offset = 0;
546
547 /* Total size of frame prior to any alloca operations. */
548 int framesize = 0;
549
550 /* Flag indicating if lr has been saved on the stack. */
551 int lr_saved_on_stack = 0;
552
553 /* The number of the general-purpose register we saved the return
554 address ("link register") in, or -1 if we haven't moved it yet. */
555 int lr_save_reg = -1;
556
557 /* Offset (from sp) at which lr has been saved on the stack. */
558
559 int lr_sp_offset = 0;
560
561 /* If gr_saved[i] is non-zero, then we've noticed that general
562 register i has been saved at gr_sp_offset[i] from the stack
563 pointer. */
564 char gr_saved[64];
565 int gr_sp_offset[64];
566
567 /* The address of the most recently scanned prologue instruction. */
568 CORE_ADDR last_prologue_pc;
569
570 /* The address of the next instruction. */
571 CORE_ADDR next_pc;
572
573 /* The upper bound to of the pc values to scan. */
574 CORE_ADDR lim_pc;
575
576 memset (gr_saved, 0, sizeof (gr_saved));
577
578 last_prologue_pc = pc;
579
580 /* Try to compute an upper limit (on how far to scan) based on the
581 line number info. */
582 lim_pc = skip_prologue_using_sal (gdbarch, pc);
583 /* If there's no line number info, lim_pc will be 0. In that case,
584 set the limit to be 100 instructions away from pc. Hopefully, this
585 will be far enough away to account for the entire prologue. Don't
586 worry about overshooting the end of the function. The scan loop
587 below contains some checks to avoid scanning unreasonably far. */
588 if (lim_pc == 0)
589 lim_pc = pc + 400;
590
591 /* If we have a frame, we don't want to scan past the frame's pc. This
592 will catch those cases where the pc is in the prologue. */
593 if (this_frame)
594 {
595 CORE_ADDR frame_pc = get_frame_pc (this_frame);
596 if (frame_pc < lim_pc)
597 lim_pc = frame_pc;
598 }
599
600 /* Scan the prologue. */
601 while (pc < lim_pc)
602 {
603 gdb_byte buf[frv_instr_size];
604 LONGEST op;
605
606 if (target_read_memory (pc, buf, sizeof buf) != 0)
607 break;
608 op = extract_signed_integer (buf, sizeof buf, byte_order);
609
610 next_pc = pc + 4;
611
612 /* The tests in this chain of ifs should be in order of
613 decreasing selectivity, so that more particular patterns get
614 to fire before less particular patterns. */
615
616 /* Some sort of control transfer instruction: stop scanning prologue.
617 Integer Conditional Branch:
618 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
619 Floating-point / media Conditional Branch:
620 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
621 LCR Conditional Branch to LR
622 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
623 Integer conditional Branches to LR
624 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
625 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
626 Floating-point/Media Branches to LR
627 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
628 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
629 Jump and Link
630 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
631 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
632 Call
633 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
634 Return from Trap
635 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
636 Integer Conditional Trap
637 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
638 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
639 Floating-point /media Conditional Trap
640 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
641 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
642 Break
643 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
644 Media Trap
645 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
646 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
647 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
648 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
649 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
650 {
651 /* Stop scanning; not in prologue any longer. */
652 break;
653 }
654
655 /* Loading something from memory into fp probably means that
656 we're in the epilogue. Stop scanning the prologue.
657 ld @(GRi, GRk), fp
658 X 000010 0000010 XXXXXX 000100 XXXXXX
659 ldi @(GRi, d12), fp
660 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
661 else if ((op & 0x7ffc0fc0) == 0x04080100
662 || (op & 0x7ffc0000) == 0x04c80000)
663 {
664 break;
665 }
666
667 /* Setting the FP from the SP:
668 ori sp, 0, fp
669 P 000010 0100010 000001 000000000000 = 0x04881000
670 0 111111 1111111 111111 111111111111 = 0x7fffffff
671 . . . . . . . .
672 We treat this as part of the prologue. */
673 else if ((op & 0x7fffffff) == 0x04881000)
674 {
675 fp_set = 1;
676 fp_offset = 0;
677 last_prologue_pc = next_pc;
678 }
679
680 /* Move the link register to the scratch register grJ, before saving:
681 movsg lr, grJ
682 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
683 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
684 . . . . . . . .
685 We treat this as part of the prologue. */
686 else if ((op & 0x7fffffc0) == 0x080d01c0)
687 {
688 int gr_j = op & 0x3f;
689
690 /* If we're moving it to a scratch register, that's fine. */
691 if (is_caller_saves_reg (gr_j))
692 {
693 lr_save_reg = gr_j;
694 last_prologue_pc = next_pc;
695 }
696 }
697
698 /* To save multiple callee-saves registers on the stack, at
699 offset zero:
700
701 std grK,@(sp,gr0)
702 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
703 0 000000 1111111 111111 111111 111111 = 0x01ffffff
704
705 stq grK,@(sp,gr0)
706 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
707 0 000000 1111111 111111 111111 111111 = 0x01ffffff
708 . . . . . . . .
709 We treat this as part of the prologue, and record the register's
710 saved address in the frame structure. */
711 else if ((op & 0x01ffffff) == 0x000c10c0
712 || (op & 0x01ffffff) == 0x000c1100)
713 {
714 int gr_k = ((op >> 25) & 0x3f);
715 int ope = ((op >> 6) & 0x3f);
716 int count;
717 int i;
718
719 /* Is it an std or an stq? */
720 if (ope == 0x03)
721 count = 2;
722 else
723 count = 4;
724
725 /* Is it really a callee-saves register? */
726 if (is_callee_saves_reg (gr_k))
727 {
728 for (i = 0; i < count; i++)
729 {
730 gr_saved[gr_k + i] = 1;
731 gr_sp_offset[gr_k + i] = 4 * i;
732 }
733 last_prologue_pc = next_pc;
734 }
735 }
736
737 /* Adjusting the stack pointer. (The stack pointer is GR1.)
738 addi sp, S, sp
739 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
740 0 111111 1111111 111111 000000000000 = 0x7ffff000
741 . . . . . . . .
742 We treat this as part of the prologue. */
743 else if ((op & 0x7ffff000) == 0x02401000)
744 {
745 if (framesize == 0)
746 {
747 /* Sign-extend the twelve-bit field.
748 (Isn't there a better way to do this?) */
749 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
750
751 framesize -= s;
752 last_prologue_pc = pc;
753 }
754 else
755 {
756 /* If the prologue is being adjusted again, we've
757 likely gone too far; i.e. we're probably in the
758 epilogue. */
759 break;
760 }
761 }
762
763 /* Setting the FP to a constant distance from the SP:
764 addi sp, S, fp
765 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
766 0 111111 1111111 111111 000000000000 = 0x7ffff000
767 . . . . . . . .
768 We treat this as part of the prologue. */
769 else if ((op & 0x7ffff000) == 0x04401000)
770 {
771 /* Sign-extend the twelve-bit field.
772 (Isn't there a better way to do this?) */
773 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
774 fp_set = 1;
775 fp_offset = s;
776 last_prologue_pc = pc;
777 }
778
779 /* To spill an argument register to a scratch register:
780 ori GRi, 0, GRk
781 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
782 0 000000 1111111 000000 111111111111 = 0x01fc0fff
783 . . . . . . . .
784 For the time being, we treat this as a prologue instruction,
785 assuming that GRi is an argument register. This one's kind
786 of suspicious, because it seems like it could be part of a
787 legitimate body instruction. But we only come here when the
788 source info wasn't helpful, so we have to do the best we can.
789 Hopefully once GCC and GDB agree on how to emit line number
790 info for prologues, then this code will never come into play. */
791 else if ((op & 0x01fc0fff) == 0x00880000)
792 {
793 int gr_i = ((op >> 12) & 0x3f);
794
795 /* Make sure that the source is an arg register; if it is, we'll
796 treat it as a prologue instruction. */
797 if (is_argument_reg (gr_i))
798 last_prologue_pc = next_pc;
799 }
800
801 /* To spill 16-bit values to the stack:
802 sthi GRk, @(fp, s)
803 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
804 0 000000 1111111 111111 000000000000 = 0x01fff000
805 . . . . . . . .
806 And for 8-bit values, we use STB instructions.
807 stbi GRk, @(fp, s)
808 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
809 0 000000 1111111 111111 000000000000 = 0x01fff000
810 . . . . . . . .
811 We check that GRk is really an argument register, and treat
812 all such as part of the prologue. */
813 else if ( (op & 0x01fff000) == 0x01442000
814 || (op & 0x01fff000) == 0x01402000)
815 {
816 int gr_k = ((op >> 25) & 0x3f);
817
818 /* Make sure that GRk is really an argument register; treat
819 it as a prologue instruction if so. */
820 if (is_argument_reg (gr_k))
821 last_prologue_pc = next_pc;
822 }
823
824 /* To save multiple callee-saves register on the stack, at a
825 non-zero offset:
826
827 stdi GRk, @(sp, s)
828 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
829 0 000000 1111111 111111 000000000000 = 0x01fff000
830 . . . . . . . .
831 stqi GRk, @(sp, s)
832 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
833 0 000000 1111111 111111 000000000000 = 0x01fff000
834 . . . . . . . .
835 We treat this as part of the prologue, and record the register's
836 saved address in the frame structure. */
837 else if ((op & 0x01fff000) == 0x014c1000
838 || (op & 0x01fff000) == 0x01501000)
839 {
840 int gr_k = ((op >> 25) & 0x3f);
841 int count;
842 int i;
843
844 /* Is it a stdi or a stqi? */
845 if ((op & 0x01fff000) == 0x014c1000)
846 count = 2;
847 else
848 count = 4;
849
850 /* Is it really a callee-saves register? */
851 if (is_callee_saves_reg (gr_k))
852 {
853 /* Sign-extend the twelve-bit field.
854 (Isn't there a better way to do this?) */
855 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
856
857 for (i = 0; i < count; i++)
858 {
859 gr_saved[gr_k + i] = 1;
860 gr_sp_offset[gr_k + i] = s + (4 * i);
861 }
862 last_prologue_pc = next_pc;
863 }
864 }
865
866 /* Storing any kind of integer register at any constant offset
867 from any other register.
868
869 st GRk, @(GRi, gr0)
870 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
871 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
872 . . . . . . . .
873 sti GRk, @(GRi, d12)
874 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
875 0 000000 1111111 000000 000000000000 = 0x01fc0000
876 . . . . . . . .
877 These could be almost anything, but a lot of prologue
878 instructions fall into this pattern, so let's decode the
879 instruction once, and then work at a higher level. */
880 else if (((op & 0x01fc0fff) == 0x000c0080)
881 || ((op & 0x01fc0000) == 0x01480000))
882 {
883 int gr_k = ((op >> 25) & 0x3f);
884 int gr_i = ((op >> 12) & 0x3f);
885 int offset;
886
887 /* Are we storing with gr0 as an offset, or using an
888 immediate value? */
889 if ((op & 0x01fc0fff) == 0x000c0080)
890 offset = 0;
891 else
892 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
893
894 /* If the address isn't relative to the SP or FP, it's not a
895 prologue instruction. */
896 if (gr_i != sp_regnum && gr_i != fp_regnum)
897 {
898 /* Do nothing; not a prologue instruction. */
899 }
900
901 /* Saving the old FP in the new frame (relative to the SP). */
902 else if (gr_k == fp_regnum && gr_i == sp_regnum)
903 {
904 gr_saved[fp_regnum] = 1;
905 gr_sp_offset[fp_regnum] = offset;
906 last_prologue_pc = next_pc;
907 }
908
909 /* Saving callee-saves register(s) on the stack, relative to
910 the SP. */
911 else if (gr_i == sp_regnum
912 && is_callee_saves_reg (gr_k))
913 {
914 gr_saved[gr_k] = 1;
915 if (gr_i == sp_regnum)
916 gr_sp_offset[gr_k] = offset;
917 else
918 gr_sp_offset[gr_k] = offset + fp_offset;
919 last_prologue_pc = next_pc;
920 }
921
922 /* Saving the scratch register holding the return address. */
923 else if (lr_save_reg != -1
924 && gr_k == lr_save_reg)
925 {
926 lr_saved_on_stack = 1;
927 if (gr_i == sp_regnum)
928 lr_sp_offset = offset;
929 else
930 lr_sp_offset = offset + fp_offset;
931 last_prologue_pc = next_pc;
932 }
933
934 /* Spilling int-sized arguments to the stack. */
935 else if (is_argument_reg (gr_k))
936 last_prologue_pc = next_pc;
937 }
938 pc = next_pc;
939 }
940
941 if (this_frame && info)
942 {
943 int i;
944 ULONGEST this_base;
945
946 /* If we know the relationship between the stack and frame
947 pointers, record the addresses of the registers we noticed.
948 Note that we have to do this as a separate step at the end,
949 because instructions may save relative to the SP, but we need
950 their addresses relative to the FP. */
951 if (fp_set)
952 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
953 else
954 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
955
956 for (i = 0; i < 64; i++)
957 if (gr_saved[i])
958 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
959
960 info->prev_sp = this_base - fp_offset + framesize;
961 info->base = this_base;
962
963 /* If LR was saved on the stack, record its location. */
964 if (lr_saved_on_stack)
965 info->saved_regs[lr_regnum].addr
966 = this_base - fp_offset + lr_sp_offset;
967
968 /* The call instruction moves the caller's PC in the callee's LR.
969 Since this is an unwind, do the reverse. Copy the location of LR
970 into PC (the address / regnum) so that a request for PC will be
971 converted into a request for the LR. */
972 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
973
974 /* Save the previous frame's computed SP value. */
975 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
976 }
977
978 return last_prologue_pc;
979 }
980
981
982 static CORE_ADDR
983 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
984 {
985 CORE_ADDR func_addr, func_end, new_pc;
986
987 new_pc = pc;
988
989 /* If the line table has entry for a line *within* the function
990 (i.e., not in the prologue, and not past the end), then that's
991 our location. */
992 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
993 {
994 struct symtab_and_line sal;
995
996 sal = find_pc_line (func_addr, 0);
997
998 if (sal.line != 0 && sal.end < func_end)
999 {
1000 new_pc = sal.end;
1001 }
1002 }
1003
1004 /* The FR-V prologue is at least five instructions long (twenty bytes).
1005 If we didn't find a real source location past that, then
1006 do a full analysis of the prologue. */
1007 if (new_pc < pc + 20)
1008 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1009
1010 return new_pc;
1011 }
1012
1013
1014 /* Examine the instruction pointed to by PC. If it corresponds to
1015 a call to __main, return the address of the next instruction.
1016 Otherwise, return PC. */
1017
1018 static CORE_ADDR
1019 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1020 {
1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1022 gdb_byte buf[4];
1023 unsigned long op;
1024 CORE_ADDR orig_pc = pc;
1025
1026 if (target_read_memory (pc, buf, 4))
1027 return pc;
1028 op = extract_unsigned_integer (buf, 4, byte_order);
1029
1030 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1031 to the call instruction.
1032
1033 Skip over this instruction if present. It won't be present in
1034 non-PIC code, and even in PIC code, it might not be present.
1035 (This is due to the fact that GR15, the FDPIC register, already
1036 contains the correct value.)
1037
1038 The general form of the LDI is given first, followed by the
1039 specific instruction with the GRi and GRk filled in as FP and
1040 GR15.
1041
1042 ldi @(GRi, d12), GRk
1043 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1044 0 000000 1111111 000000 000000000000 = 0x01fc0000
1045 . . . . . . . .
1046 ldi @(FP, d12), GR15
1047 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1048 0 001111 1111111 000010 000000000000 = 0x7ffff000
1049 . . . . . . . . */
1050
1051 if ((op & 0x7ffff000) == 0x1ec82000)
1052 {
1053 pc += 4;
1054 if (target_read_memory (pc, buf, 4))
1055 return orig_pc;
1056 op = extract_unsigned_integer (buf, 4, byte_order);
1057 }
1058
1059 /* The format of an FRV CALL instruction is as follows:
1060
1061 call label24
1062 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1063 0 000000 1111111 000000000000000000 = 0x01fc0000
1064 . . . . . . . .
1065
1066 where label24 is constructed by concatenating the H bits with the
1067 L bits. The call target is PC + (4 * sign_ext(label24)). */
1068
1069 if ((op & 0x01fc0000) == 0x003c0000)
1070 {
1071 LONGEST displ;
1072 CORE_ADDR call_dest;
1073 struct bound_minimal_symbol s;
1074
1075 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1076 if ((displ & 0x00800000) != 0)
1077 displ |= ~((LONGEST) 0x00ffffff);
1078
1079 call_dest = pc + 4 * displ;
1080 s = lookup_minimal_symbol_by_pc (call_dest);
1081
1082 if (s.minsym != NULL
1083 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1084 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1085 {
1086 pc += 4;
1087 return pc;
1088 }
1089 }
1090 return orig_pc;
1091 }
1092
1093
1094 static struct frv_unwind_cache *
1095 frv_frame_unwind_cache (struct frame_info *this_frame,
1096 void **this_prologue_cache)
1097 {
1098 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1099 struct frv_unwind_cache *info;
1100
1101 if ((*this_prologue_cache))
1102 return (struct frv_unwind_cache *) (*this_prologue_cache);
1103
1104 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1105 (*this_prologue_cache) = info;
1106 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1107
1108 /* Prologue analysis does the rest... */
1109 frv_analyze_prologue (gdbarch,
1110 get_frame_func (this_frame), this_frame, info);
1111
1112 return info;
1113 }
1114
1115 static void
1116 frv_extract_return_value (struct type *type, struct regcache *regcache,
1117 gdb_byte *valbuf)
1118 {
1119 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1120 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1121 int len = TYPE_LENGTH (type);
1122
1123 if (len <= 4)
1124 {
1125 ULONGEST gpr8_val;
1126 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1127 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1128 }
1129 else if (len == 8)
1130 {
1131 ULONGEST regval;
1132
1133 regcache_cooked_read_unsigned (regcache, 8, &regval);
1134 store_unsigned_integer (valbuf, 4, byte_order, regval);
1135 regcache_cooked_read_unsigned (regcache, 9, &regval);
1136 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1137 }
1138 else
1139 internal_error (__FILE__, __LINE__,
1140 _("Illegal return value length: %d"), len);
1141 }
1142
1143 static CORE_ADDR
1144 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1145 {
1146 /* Require dword alignment. */
1147 return align_down (sp, 8);
1148 }
1149
1150 static CORE_ADDR
1151 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1152 {
1153 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1154 CORE_ADDR descr;
1155 gdb_byte valbuf[4];
1156 CORE_ADDR start_addr;
1157
1158 /* If we can't find the function in the symbol table, then we assume
1159 that the function address is already in descriptor form. */
1160 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1161 || entry_point != start_addr)
1162 return entry_point;
1163
1164 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1165
1166 if (descr != 0)
1167 return descr;
1168
1169 /* Construct a non-canonical descriptor from space allocated on
1170 the stack. */
1171
1172 descr = value_as_long (value_allocate_space_in_inferior (8));
1173 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1174 write_memory (descr, valbuf, 4);
1175 store_unsigned_integer (valbuf, 4, byte_order,
1176 frv_fdpic_find_global_pointer (entry_point));
1177 write_memory (descr + 4, valbuf, 4);
1178 return descr;
1179 }
1180
1181 static CORE_ADDR
1182 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1183 struct target_ops *targ)
1184 {
1185 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1186 CORE_ADDR entry_point;
1187 CORE_ADDR got_address;
1188
1189 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1190 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1191
1192 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1193 return entry_point;
1194 else
1195 return addr;
1196 }
1197
1198 static CORE_ADDR
1199 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1200 struct regcache *regcache, CORE_ADDR bp_addr,
1201 int nargs, struct value **args, CORE_ADDR sp,
1202 int struct_return, CORE_ADDR struct_addr)
1203 {
1204 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1205 int argreg;
1206 int argnum;
1207 const gdb_byte *val;
1208 gdb_byte valbuf[4];
1209 struct value *arg;
1210 struct type *arg_type;
1211 int len;
1212 enum type_code typecode;
1213 CORE_ADDR regval;
1214 int stack_space;
1215 int stack_offset;
1216 enum frv_abi abi = frv_abi (gdbarch);
1217 CORE_ADDR func_addr = find_function_addr (function, NULL);
1218
1219 #if 0
1220 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1221 nargs, (int) sp, struct_return, struct_addr);
1222 #endif
1223
1224 stack_space = 0;
1225 for (argnum = 0; argnum < nargs; ++argnum)
1226 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1227
1228 stack_space -= (6 * 4);
1229 if (stack_space > 0)
1230 sp -= stack_space;
1231
1232 /* Make sure stack is dword aligned. */
1233 sp = align_down (sp, 8);
1234
1235 stack_offset = 0;
1236
1237 argreg = 8;
1238
1239 if (struct_return)
1240 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1241 struct_addr);
1242
1243 for (argnum = 0; argnum < nargs; ++argnum)
1244 {
1245 arg = args[argnum];
1246 arg_type = check_typedef (value_type (arg));
1247 len = TYPE_LENGTH (arg_type);
1248 typecode = TYPE_CODE (arg_type);
1249
1250 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1251 {
1252 store_unsigned_integer (valbuf, 4, byte_order,
1253 value_address (arg));
1254 typecode = TYPE_CODE_PTR;
1255 len = 4;
1256 val = valbuf;
1257 }
1258 else if (abi == FRV_ABI_FDPIC
1259 && len == 4
1260 && typecode == TYPE_CODE_PTR
1261 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1262 {
1263 /* The FDPIC ABI requires function descriptors to be passed instead
1264 of entry points. */
1265 CORE_ADDR addr = extract_unsigned_integer
1266 (value_contents (arg), 4, byte_order);
1267 addr = find_func_descr (gdbarch, addr);
1268 store_unsigned_integer (valbuf, 4, byte_order, addr);
1269 typecode = TYPE_CODE_PTR;
1270 len = 4;
1271 val = valbuf;
1272 }
1273 else
1274 {
1275 val = value_contents (arg);
1276 }
1277
1278 while (len > 0)
1279 {
1280 int partial_len = (len < 4 ? len : 4);
1281
1282 if (argreg < 14)
1283 {
1284 regval = extract_unsigned_integer (val, partial_len, byte_order);
1285 #if 0
1286 printf(" Argnum %d data %x -> reg %d\n",
1287 argnum, (int) regval, argreg);
1288 #endif
1289 regcache_cooked_write_unsigned (regcache, argreg, regval);
1290 ++argreg;
1291 }
1292 else
1293 {
1294 #if 0
1295 printf(" Argnum %d data %x -> offset %d (%x)\n",
1296 argnum, *((int *)val), stack_offset,
1297 (int) (sp + stack_offset));
1298 #endif
1299 write_memory (sp + stack_offset, val, partial_len);
1300 stack_offset += align_up (partial_len, 4);
1301 }
1302 len -= partial_len;
1303 val += partial_len;
1304 }
1305 }
1306
1307 /* Set the return address. For the frv, the return breakpoint is
1308 always at BP_ADDR. */
1309 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1310
1311 if (abi == FRV_ABI_FDPIC)
1312 {
1313 /* Set the GOT register for the FDPIC ABI. */
1314 regcache_cooked_write_unsigned
1315 (regcache, first_gpr_regnum + 15,
1316 frv_fdpic_find_global_pointer (func_addr));
1317 }
1318
1319 /* Finally, update the SP register. */
1320 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1321
1322 return sp;
1323 }
1324
1325 static void
1326 frv_store_return_value (struct type *type, struct regcache *regcache,
1327 const gdb_byte *valbuf)
1328 {
1329 int len = TYPE_LENGTH (type);
1330
1331 if (len <= 4)
1332 {
1333 bfd_byte val[4];
1334 memset (val, 0, sizeof (val));
1335 memcpy (val + (4 - len), valbuf, len);
1336 regcache_cooked_write (regcache, 8, val);
1337 }
1338 else if (len == 8)
1339 {
1340 regcache_cooked_write (regcache, 8, valbuf);
1341 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1342 }
1343 else
1344 internal_error (__FILE__, __LINE__,
1345 _("Don't know how to return a %d-byte value."), len);
1346 }
1347
1348 static enum return_value_convention
1349 frv_return_value (struct gdbarch *gdbarch, struct value *function,
1350 struct type *valtype, struct regcache *regcache,
1351 gdb_byte *readbuf, const gdb_byte *writebuf)
1352 {
1353 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1354 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1355 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1356
1357 if (writebuf != NULL)
1358 {
1359 gdb_assert (!struct_return);
1360 frv_store_return_value (valtype, regcache, writebuf);
1361 }
1362
1363 if (readbuf != NULL)
1364 {
1365 gdb_assert (!struct_return);
1366 frv_extract_return_value (valtype, regcache, readbuf);
1367 }
1368
1369 if (struct_return)
1370 return RETURN_VALUE_STRUCT_CONVENTION;
1371 else
1372 return RETURN_VALUE_REGISTER_CONVENTION;
1373 }
1374
1375 static CORE_ADDR
1376 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1377 {
1378 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1379 }
1380
1381 /* Given a GDB frame, determine the address of the calling function's
1382 frame. This will be used to create a new GDB frame struct. */
1383
1384 static void
1385 frv_frame_this_id (struct frame_info *this_frame,
1386 void **this_prologue_cache, struct frame_id *this_id)
1387 {
1388 struct frv_unwind_cache *info
1389 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1390 CORE_ADDR base;
1391 CORE_ADDR func;
1392 struct bound_minimal_symbol msym_stack;
1393 struct frame_id id;
1394
1395 /* The FUNC is easy. */
1396 func = get_frame_func (this_frame);
1397
1398 /* Check if the stack is empty. */
1399 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1400 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1401 return;
1402
1403 /* Hopefully the prologue analysis either correctly determined the
1404 frame's base (which is the SP from the previous frame), or set
1405 that base to "NULL". */
1406 base = info->prev_sp;
1407 if (base == 0)
1408 return;
1409
1410 id = frame_id_build (base, func);
1411 (*this_id) = id;
1412 }
1413
1414 static struct value *
1415 frv_frame_prev_register (struct frame_info *this_frame,
1416 void **this_prologue_cache, int regnum)
1417 {
1418 struct frv_unwind_cache *info
1419 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1420 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1421 }
1422
1423 static const struct frame_unwind frv_frame_unwind = {
1424 NORMAL_FRAME,
1425 default_frame_unwind_stop_reason,
1426 frv_frame_this_id,
1427 frv_frame_prev_register,
1428 NULL,
1429 default_frame_sniffer
1430 };
1431
1432 static CORE_ADDR
1433 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1434 {
1435 struct frv_unwind_cache *info
1436 = frv_frame_unwind_cache (this_frame, this_cache);
1437 return info->base;
1438 }
1439
1440 static const struct frame_base frv_frame_base = {
1441 &frv_frame_unwind,
1442 frv_frame_base_address,
1443 frv_frame_base_address,
1444 frv_frame_base_address
1445 };
1446
1447 static CORE_ADDR
1448 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1449 {
1450 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1451 }
1452
1453
1454 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1455 frame. The frame ID's base needs to match the TOS value saved by
1456 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1457
1458 static struct frame_id
1459 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1460 {
1461 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1462 return frame_id_build (sp, get_frame_pc (this_frame));
1463 }
1464
1465 static struct gdbarch *
1466 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1467 {
1468 struct gdbarch *gdbarch;
1469 struct gdbarch_tdep *var;
1470 int elf_flags = 0;
1471
1472 /* Check to see if we've already built an appropriate architecture
1473 object for this executable. */
1474 arches = gdbarch_list_lookup_by_info (arches, &info);
1475 if (arches)
1476 return arches->gdbarch;
1477
1478 /* Select the right tdep structure for this variant. */
1479 var = new_variant ();
1480 switch (info.bfd_arch_info->mach)
1481 {
1482 case bfd_mach_frv:
1483 case bfd_mach_frvsimple:
1484 case bfd_mach_fr500:
1485 case bfd_mach_frvtomcat:
1486 case bfd_mach_fr550:
1487 set_variant_num_gprs (var, 64);
1488 set_variant_num_fprs (var, 64);
1489 break;
1490
1491 case bfd_mach_fr400:
1492 case bfd_mach_fr450:
1493 set_variant_num_gprs (var, 32);
1494 set_variant_num_fprs (var, 32);
1495 break;
1496
1497 default:
1498 /* Never heard of this variant. */
1499 return 0;
1500 }
1501
1502 /* Extract the ELF flags, if available. */
1503 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1504 elf_flags = elf_elfheader (info.abfd)->e_flags;
1505
1506 if (elf_flags & EF_FRV_FDPIC)
1507 set_variant_abi_fdpic (var);
1508
1509 if (elf_flags & EF_FRV_CPU_FR450)
1510 set_variant_scratch_registers (var);
1511
1512 gdbarch = gdbarch_alloc (&info, var);
1513
1514 set_gdbarch_short_bit (gdbarch, 16);
1515 set_gdbarch_int_bit (gdbarch, 32);
1516 set_gdbarch_long_bit (gdbarch, 32);
1517 set_gdbarch_long_long_bit (gdbarch, 64);
1518 set_gdbarch_float_bit (gdbarch, 32);
1519 set_gdbarch_double_bit (gdbarch, 64);
1520 set_gdbarch_long_double_bit (gdbarch, 64);
1521 set_gdbarch_ptr_bit (gdbarch, 32);
1522
1523 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1524 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1525
1526 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1527 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1528 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1529
1530 set_gdbarch_register_name (gdbarch, frv_register_name);
1531 set_gdbarch_register_type (gdbarch, frv_register_type);
1532 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1533
1534 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1535 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1536
1537 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1538 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1539 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1540 set_gdbarch_adjust_breakpoint_address
1541 (gdbarch, frv_adjust_breakpoint_address);
1542
1543 set_gdbarch_return_value (gdbarch, frv_return_value);
1544
1545 /* Frame stuff. */
1546 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1547 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1548 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1549 frame_base_set_default (gdbarch, &frv_frame_base);
1550 /* We set the sniffer lower down after the OSABI hooks have been
1551 established. */
1552
1553 /* Settings for calling functions in the inferior. */
1554 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1555 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1556
1557 /* Settings that should be unnecessary. */
1558 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1559
1560 /* Hardware watchpoint / breakpoint support. */
1561 switch (info.bfd_arch_info->mach)
1562 {
1563 case bfd_mach_frv:
1564 case bfd_mach_frvsimple:
1565 case bfd_mach_fr500:
1566 case bfd_mach_frvtomcat:
1567 /* fr500-style hardware debugging support. */
1568 var->num_hw_watchpoints = 4;
1569 var->num_hw_breakpoints = 4;
1570 break;
1571
1572 case bfd_mach_fr400:
1573 case bfd_mach_fr450:
1574 /* fr400-style hardware debugging support. */
1575 var->num_hw_watchpoints = 2;
1576 var->num_hw_breakpoints = 4;
1577 break;
1578
1579 default:
1580 /* Otherwise, assume we don't have hardware debugging support. */
1581 var->num_hw_watchpoints = 0;
1582 var->num_hw_breakpoints = 0;
1583 break;
1584 }
1585
1586 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1587 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1588 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1589 frv_convert_from_func_ptr_addr);
1590
1591 set_solib_ops (gdbarch, &frv_so_ops);
1592
1593 /* Hook in ABI-specific overrides, if they have been registered. */
1594 gdbarch_init_osabi (info, gdbarch);
1595
1596 /* Set the fallback (prologue based) frame sniffer. */
1597 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1598
1599 /* Enable TLS support. */
1600 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1601 frv_fetch_objfile_link_map);
1602
1603 return gdbarch;
1604 }
1605
1606 void
1607 _initialize_frv_tdep (void)
1608 {
1609 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1610 }
This page took 0.116776 seconds and 5 git commands to generate.