* dummy-frame.c (deprecated_pc_in_call_dummy): Add GDBARCH parameter,
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
36 #include "symtab.h"
37 #include "elf-bfd.h"
38 #include "elf/frv.h"
39 #include "osabi.h"
40 #include "infcall.h"
41 #include "solib.h"
42 #include "frv-tdep.h"
43
44 extern void _initialize_frv_tdep (void);
45
46 struct frv_unwind_cache /* was struct frame_extra_info */
47 {
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
51
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
57 };
58
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74 struct gdbarch_tdep
75 {
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93 };
94
95 /* Return the FR-V ABI associated with GDBARCH. */
96 enum frv_abi
97 frv_abi (struct gdbarch *gdbarch)
98 {
99 return gdbarch_tdep (gdbarch)->frv_abi;
100 }
101
102 /* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
105 int
106 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
108 {
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
110 return -1;
111 else
112 {
113 struct regcache *regcache = get_current_regcache ();
114
115 if (interp_addr != NULL)
116 {
117 ULONGEST val;
118 regcache_cooked_read_unsigned (regcache,
119 fdpic_loadmap_interp_regnum, &val);
120 *interp_addr = val;
121 }
122 if (exec_addr != NULL)
123 {
124 ULONGEST val;
125 regcache_cooked_read_unsigned (regcache,
126 fdpic_loadmap_exec_regnum, &val);
127 *exec_addr = val;
128 }
129 return 0;
130 }
131 }
132
133 /* Allocate a new variant structure, and set up default values for all
134 the fields. */
135 static struct gdbarch_tdep *
136 new_variant (void)
137 {
138 struct gdbarch_tdep *var;
139 int r;
140 char buf[20];
141
142 var = xmalloc (sizeof (*var));
143 memset (var, 0, sizeof (*var));
144
145 var->frv_abi = FRV_ABI_EABI;
146 var->num_gprs = 64;
147 var->num_fprs = 64;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
150
151 /* By default, don't supply any general-purpose or floating-point
152 register names. */
153 var->register_names
154 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
155 * sizeof (char *));
156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
157 var->register_names[r] = "";
158
159 /* Do, however, supply default names for the known special-purpose
160 registers. */
161
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
165
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
170
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
177
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
181 var->register_names[iacc0_regnum] = "iacc0";
182
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
185
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
189 elsewhere. */
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
191 {
192 char *buf;
193 buf = xstrprintf ("acc%d", r - acc0_regnum);
194 var->register_names[r] = buf;
195 }
196
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
202
203 for (r = accg0_regnum; r <= accg7_regnum; r++)
204 {
205 char *buf;
206 buf = xstrprintf ("accg%d", r - accg0_regnum);
207 var->register_names[r] = buf;
208 }
209
210 /* msr0 and msr1. */
211
212 var->register_names[msr0_regnum] = "msr0";
213 var->register_names[msr1_regnum] = "msr1";
214
215 /* gner and fner registers. */
216 var->register_names[gner0_regnum] = "gner0";
217 var->register_names[gner1_regnum] = "gner1";
218 var->register_names[fner0_regnum] = "fner0";
219 var->register_names[fner1_regnum] = "fner1";
220
221 return var;
222 }
223
224
225 /* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
227 static void
228 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
229 {
230 int r;
231
232 var->num_gprs = num_gprs;
233
234 for (r = 0; r < num_gprs; ++r)
235 {
236 char buf[20];
237
238 sprintf (buf, "gr%d", r);
239 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
240 }
241 }
242
243
244 /* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
246 static void
247 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
248 {
249 int r;
250
251 var->num_fprs = num_fprs;
252
253 for (r = 0; r < num_fprs; ++r)
254 {
255 char buf[20];
256
257 sprintf (buf, "fr%d", r);
258 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
259 }
260 }
261
262 static void
263 set_variant_abi_fdpic (struct gdbarch_tdep *var)
264 {
265 var->frv_abi = FRV_ABI_FDPIC;
266 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
268 }
269
270 static void
271 set_variant_scratch_registers (struct gdbarch_tdep *var)
272 {
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
277 }
278
279 static const char *
280 frv_register_name (struct gdbarch *gdbarch, int reg)
281 {
282 if (reg < 0)
283 return "?toosmall?";
284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
285 return "?toolarge?";
286
287 return gdbarch_tdep (gdbarch)->register_names[reg];
288 }
289
290
291 static struct type *
292 frv_register_type (struct gdbarch *gdbarch, int reg)
293 {
294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
295 return builtin_type (gdbarch)->builtin_float;
296 else if (reg == iacc0_regnum)
297 return builtin_type_int64;
298 else
299 return builtin_type_int32;
300 }
301
302 static void
303 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
304 int reg, gdb_byte *buffer)
305 {
306 if (reg == iacc0_regnum)
307 {
308 regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
310 }
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
318 bfd_byte buf[4];
319
320 regcache_raw_read (regcache, raw_regnum, buf);
321 memset (buffer, 0, 4);
322 /* FR-V is big endian, so put the requested byte in the first byte
323 of the buffer allocated to hold the pseudo-register. */
324 ((bfd_byte *) buffer)[0] = buf[byte_num];
325 }
326 }
327
328 static void
329 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
330 int reg, const gdb_byte *buffer)
331 {
332 if (reg == iacc0_regnum)
333 {
334 regcache_raw_write (regcache, iacc0h_regnum, buffer);
335 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
336 }
337 else if (accg0_regnum <= reg && reg <= accg7_regnum)
338 {
339 /* The accg raw registers have four values in each slot with the
340 lowest register number occupying the first byte. */
341
342 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
343 int byte_num = (reg - accg0_regnum) % 4;
344 char buf[4];
345
346 regcache_raw_read (regcache, raw_regnum, buf);
347 buf[byte_num] = ((bfd_byte *) buffer)[0];
348 regcache_raw_write (regcache, raw_regnum, buf);
349 }
350 }
351
352 static int
353 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
354 {
355 static const int spr_map[] =
356 {
357 H_SPR_PSR, /* psr_regnum */
358 H_SPR_CCR, /* ccr_regnum */
359 H_SPR_CCCR, /* cccr_regnum */
360 -1, /* fdpic_loadmap_exec_regnum */
361 -1, /* fdpic_loadmap_interp_regnum */
362 -1, /* 134 */
363 H_SPR_TBR, /* tbr_regnum */
364 H_SPR_BRR, /* brr_regnum */
365 H_SPR_DBAR0, /* dbar0_regnum */
366 H_SPR_DBAR1, /* dbar1_regnum */
367 H_SPR_DBAR2, /* dbar2_regnum */
368 H_SPR_DBAR3, /* dbar3_regnum */
369 H_SPR_SCR0, /* scr0_regnum */
370 H_SPR_SCR1, /* scr1_regnum */
371 H_SPR_SCR2, /* scr2_regnum */
372 H_SPR_SCR3, /* scr3_regnum */
373 H_SPR_LR, /* lr_regnum */
374 H_SPR_LCR, /* lcr_regnum */
375 H_SPR_IACC0H, /* iacc0h_regnum */
376 H_SPR_IACC0L, /* iacc0l_regnum */
377 H_SPR_FSR0, /* fsr0_regnum */
378 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
379 -1, /* acc0_regnum */
380 -1, /* acc1_regnum */
381 -1, /* acc2_regnum */
382 -1, /* acc3_regnum */
383 -1, /* acc4_regnum */
384 -1, /* acc5_regnum */
385 -1, /* acc6_regnum */
386 -1, /* acc7_regnum */
387 -1, /* acc0123_regnum */
388 -1, /* acc4567_regnum */
389 H_SPR_MSR0, /* msr0_regnum */
390 H_SPR_MSR1, /* msr1_regnum */
391 H_SPR_GNER0, /* gner0_regnum */
392 H_SPR_GNER1, /* gner1_regnum */
393 H_SPR_FNER0, /* fner0_regnum */
394 H_SPR_FNER1, /* fner1_regnum */
395 };
396
397 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
398
399 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
400 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
401 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
402 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
403 else if (pc_regnum == reg)
404 return SIM_FRV_PC_REGNUM;
405 else if (reg >= first_spr_regnum
406 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
407 {
408 int spr_reg_offset = spr_map[reg - first_spr_regnum];
409
410 if (spr_reg_offset < 0)
411 return SIM_REGNO_DOES_NOT_EXIST;
412 else
413 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
414 }
415
416 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
417 }
418
419 static const unsigned char *
420 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
421 {
422 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
423 *lenp = sizeof (breakpoint);
424 return breakpoint;
425 }
426
427 /* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429 static const int max_instrs_per_bundle = 8;
430
431 /* Define the size (in bytes) of an FR-V instruction. */
432 static const int frv_instr_size = 4;
433
434 /* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
437 static CORE_ADDR
438 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
439 {
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
443
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count-- > 0 && addr >= func_start)
448 {
449 char instr[frv_instr_size];
450 int status;
451
452 status = target_read_memory (addr, instr, sizeof instr);
453
454 if (status != 0)
455 break;
456
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
459 packing bit. */
460 if (instr[0] & 0x80)
461 break;
462
463 addr -= frv_instr_size;
464 }
465
466 if (count > 0)
467 bpaddr = addr + frv_instr_size;
468
469 return bpaddr;
470 }
471
472
473 /* Return true if REG is a caller-saves ("scratch") register,
474 false otherwise. */
475 static int
476 is_caller_saves_reg (int reg)
477 {
478 return ((4 <= reg && reg <= 7)
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
481 }
482
483
484 /* Return true if REG is a callee-saves register, false otherwise. */
485 static int
486 is_callee_saves_reg (int reg)
487 {
488 return ((16 <= reg && reg <= 31)
489 || (48 <= reg && reg <= 63));
490 }
491
492
493 /* Return true if REG is an argument register, false otherwise. */
494 static int
495 is_argument_reg (int reg)
496 {
497 return (8 <= reg && reg <= 13);
498 }
499
500 /* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
504
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
512 static CORE_ADDR
513 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
514 struct frame_info *this_frame,
515 struct frv_unwind_cache *info)
516 {
517 /* When writing out instruction bitpatterns, we use the following
518 letters to label instruction fields:
519 P - The parallel bit. We don't use this.
520 J - The register number of GRj in the instruction description.
521 K - The register number of GRk in the instruction description.
522 I - The register number of GRi.
523 S - a signed imediate offset.
524 U - an unsigned immediate offset.
525
526 The dots below the numbers indicate where hex digit boundaries
527 fall, to make it easier to check the numbers. */
528
529 /* Non-zero iff we've seen the instruction that initializes the
530 frame pointer for this function's frame. */
531 int fp_set = 0;
532
533 /* If fp_set is non_zero, then this is the distance from
534 the stack pointer to frame pointer: fp = sp + fp_offset. */
535 int fp_offset = 0;
536
537 /* Total size of frame prior to any alloca operations. */
538 int framesize = 0;
539
540 /* Flag indicating if lr has been saved on the stack. */
541 int lr_saved_on_stack = 0;
542
543 /* The number of the general-purpose register we saved the return
544 address ("link register") in, or -1 if we haven't moved it yet. */
545 int lr_save_reg = -1;
546
547 /* Offset (from sp) at which lr has been saved on the stack. */
548
549 int lr_sp_offset = 0;
550
551 /* If gr_saved[i] is non-zero, then we've noticed that general
552 register i has been saved at gr_sp_offset[i] from the stack
553 pointer. */
554 char gr_saved[64];
555 int gr_sp_offset[64];
556
557 /* The address of the most recently scanned prologue instruction. */
558 CORE_ADDR last_prologue_pc;
559
560 /* The address of the next instruction. */
561 CORE_ADDR next_pc;
562
563 /* The upper bound to of the pc values to scan. */
564 CORE_ADDR lim_pc;
565
566 memset (gr_saved, 0, sizeof (gr_saved));
567
568 last_prologue_pc = pc;
569
570 /* Try to compute an upper limit (on how far to scan) based on the
571 line number info. */
572 lim_pc = skip_prologue_using_sal (gdbarch, pc);
573 /* If there's no line number info, lim_pc will be 0. In that case,
574 set the limit to be 100 instructions away from pc. Hopefully, this
575 will be far enough away to account for the entire prologue. Don't
576 worry about overshooting the end of the function. The scan loop
577 below contains some checks to avoid scanning unreasonably far. */
578 if (lim_pc == 0)
579 lim_pc = pc + 400;
580
581 /* If we have a frame, we don't want to scan past the frame's pc. This
582 will catch those cases where the pc is in the prologue. */
583 if (this_frame)
584 {
585 CORE_ADDR frame_pc = get_frame_pc (this_frame);
586 if (frame_pc < lim_pc)
587 lim_pc = frame_pc;
588 }
589
590 /* Scan the prologue. */
591 while (pc < lim_pc)
592 {
593 char buf[frv_instr_size];
594 LONGEST op;
595
596 if (target_read_memory (pc, buf, sizeof buf) != 0)
597 break;
598 op = extract_signed_integer (buf, sizeof buf);
599
600 next_pc = pc + 4;
601
602 /* The tests in this chain of ifs should be in order of
603 decreasing selectivity, so that more particular patterns get
604 to fire before less particular patterns. */
605
606 /* Some sort of control transfer instruction: stop scanning prologue.
607 Integer Conditional Branch:
608 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
609 Floating-point / media Conditional Branch:
610 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
611 LCR Conditional Branch to LR
612 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
613 Integer conditional Branches to LR
614 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
615 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
616 Floating-point/Media Branches to LR
617 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
618 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
619 Jump and Link
620 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
621 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
622 Call
623 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
624 Return from Trap
625 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
626 Integer Conditional Trap
627 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
628 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
629 Floating-point /media Conditional Trap
630 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
631 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
632 Break
633 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
634 Media Trap
635 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
636 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
637 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
638 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
639 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
640 {
641 /* Stop scanning; not in prologue any longer. */
642 break;
643 }
644
645 /* Loading something from memory into fp probably means that
646 we're in the epilogue. Stop scanning the prologue.
647 ld @(GRi, GRk), fp
648 X 000010 0000010 XXXXXX 000100 XXXXXX
649 ldi @(GRi, d12), fp
650 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
651 else if ((op & 0x7ffc0fc0) == 0x04080100
652 || (op & 0x7ffc0000) == 0x04c80000)
653 {
654 break;
655 }
656
657 /* Setting the FP from the SP:
658 ori sp, 0, fp
659 P 000010 0100010 000001 000000000000 = 0x04881000
660 0 111111 1111111 111111 111111111111 = 0x7fffffff
661 . . . . . . . .
662 We treat this as part of the prologue. */
663 else if ((op & 0x7fffffff) == 0x04881000)
664 {
665 fp_set = 1;
666 fp_offset = 0;
667 last_prologue_pc = next_pc;
668 }
669
670 /* Move the link register to the scratch register grJ, before saving:
671 movsg lr, grJ
672 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
673 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
674 . . . . . . . .
675 We treat this as part of the prologue. */
676 else if ((op & 0x7fffffc0) == 0x080d01c0)
677 {
678 int gr_j = op & 0x3f;
679
680 /* If we're moving it to a scratch register, that's fine. */
681 if (is_caller_saves_reg (gr_j))
682 {
683 lr_save_reg = gr_j;
684 last_prologue_pc = next_pc;
685 }
686 }
687
688 /* To save multiple callee-saves registers on the stack, at
689 offset zero:
690
691 std grK,@(sp,gr0)
692 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
693 0 000000 1111111 111111 111111 111111 = 0x01ffffff
694
695 stq grK,@(sp,gr0)
696 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
697 0 000000 1111111 111111 111111 111111 = 0x01ffffff
698 . . . . . . . .
699 We treat this as part of the prologue, and record the register's
700 saved address in the frame structure. */
701 else if ((op & 0x01ffffff) == 0x000c10c0
702 || (op & 0x01ffffff) == 0x000c1100)
703 {
704 int gr_k = ((op >> 25) & 0x3f);
705 int ope = ((op >> 6) & 0x3f);
706 int count;
707 int i;
708
709 /* Is it an std or an stq? */
710 if (ope == 0x03)
711 count = 2;
712 else
713 count = 4;
714
715 /* Is it really a callee-saves register? */
716 if (is_callee_saves_reg (gr_k))
717 {
718 for (i = 0; i < count; i++)
719 {
720 gr_saved[gr_k + i] = 1;
721 gr_sp_offset[gr_k + i] = 4 * i;
722 }
723 last_prologue_pc = next_pc;
724 }
725 }
726
727 /* Adjusting the stack pointer. (The stack pointer is GR1.)
728 addi sp, S, sp
729 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
730 0 111111 1111111 111111 000000000000 = 0x7ffff000
731 . . . . . . . .
732 We treat this as part of the prologue. */
733 else if ((op & 0x7ffff000) == 0x02401000)
734 {
735 if (framesize == 0)
736 {
737 /* Sign-extend the twelve-bit field.
738 (Isn't there a better way to do this?) */
739 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
740
741 framesize -= s;
742 last_prologue_pc = pc;
743 }
744 else
745 {
746 /* If the prologue is being adjusted again, we've
747 likely gone too far; i.e. we're probably in the
748 epilogue. */
749 break;
750 }
751 }
752
753 /* Setting the FP to a constant distance from the SP:
754 addi sp, S, fp
755 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
756 0 111111 1111111 111111 000000000000 = 0x7ffff000
757 . . . . . . . .
758 We treat this as part of the prologue. */
759 else if ((op & 0x7ffff000) == 0x04401000)
760 {
761 /* Sign-extend the twelve-bit field.
762 (Isn't there a better way to do this?) */
763 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
764 fp_set = 1;
765 fp_offset = s;
766 last_prologue_pc = pc;
767 }
768
769 /* To spill an argument register to a scratch register:
770 ori GRi, 0, GRk
771 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
772 0 000000 1111111 000000 111111111111 = 0x01fc0fff
773 . . . . . . . .
774 For the time being, we treat this as a prologue instruction,
775 assuming that GRi is an argument register. This one's kind
776 of suspicious, because it seems like it could be part of a
777 legitimate body instruction. But we only come here when the
778 source info wasn't helpful, so we have to do the best we can.
779 Hopefully once GCC and GDB agree on how to emit line number
780 info for prologues, then this code will never come into play. */
781 else if ((op & 0x01fc0fff) == 0x00880000)
782 {
783 int gr_i = ((op >> 12) & 0x3f);
784
785 /* Make sure that the source is an arg register; if it is, we'll
786 treat it as a prologue instruction. */
787 if (is_argument_reg (gr_i))
788 last_prologue_pc = next_pc;
789 }
790
791 /* To spill 16-bit values to the stack:
792 sthi GRk, @(fp, s)
793 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
794 0 000000 1111111 111111 000000000000 = 0x01fff000
795 . . . . . . . .
796 And for 8-bit values, we use STB instructions.
797 stbi GRk, @(fp, s)
798 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
799 0 000000 1111111 111111 000000000000 = 0x01fff000
800 . . . . . . . .
801 We check that GRk is really an argument register, and treat
802 all such as part of the prologue. */
803 else if ( (op & 0x01fff000) == 0x01442000
804 || (op & 0x01fff000) == 0x01402000)
805 {
806 int gr_k = ((op >> 25) & 0x3f);
807
808 /* Make sure that GRk is really an argument register; treat
809 it as a prologue instruction if so. */
810 if (is_argument_reg (gr_k))
811 last_prologue_pc = next_pc;
812 }
813
814 /* To save multiple callee-saves register on the stack, at a
815 non-zero offset:
816
817 stdi GRk, @(sp, s)
818 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
819 0 000000 1111111 111111 000000000000 = 0x01fff000
820 . . . . . . . .
821 stqi GRk, @(sp, s)
822 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
823 0 000000 1111111 111111 000000000000 = 0x01fff000
824 . . . . . . . .
825 We treat this as part of the prologue, and record the register's
826 saved address in the frame structure. */
827 else if ((op & 0x01fff000) == 0x014c1000
828 || (op & 0x01fff000) == 0x01501000)
829 {
830 int gr_k = ((op >> 25) & 0x3f);
831 int count;
832 int i;
833
834 /* Is it a stdi or a stqi? */
835 if ((op & 0x01fff000) == 0x014c1000)
836 count = 2;
837 else
838 count = 4;
839
840 /* Is it really a callee-saves register? */
841 if (is_callee_saves_reg (gr_k))
842 {
843 /* Sign-extend the twelve-bit field.
844 (Isn't there a better way to do this?) */
845 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
846
847 for (i = 0; i < count; i++)
848 {
849 gr_saved[gr_k + i] = 1;
850 gr_sp_offset[gr_k + i] = s + (4 * i);
851 }
852 last_prologue_pc = next_pc;
853 }
854 }
855
856 /* Storing any kind of integer register at any constant offset
857 from any other register.
858
859 st GRk, @(GRi, gr0)
860 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
861 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
862 . . . . . . . .
863 sti GRk, @(GRi, d12)
864 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
865 0 000000 1111111 000000 000000000000 = 0x01fc0000
866 . . . . . . . .
867 These could be almost anything, but a lot of prologue
868 instructions fall into this pattern, so let's decode the
869 instruction once, and then work at a higher level. */
870 else if (((op & 0x01fc0fff) == 0x000c0080)
871 || ((op & 0x01fc0000) == 0x01480000))
872 {
873 int gr_k = ((op >> 25) & 0x3f);
874 int gr_i = ((op >> 12) & 0x3f);
875 int offset;
876
877 /* Are we storing with gr0 as an offset, or using an
878 immediate value? */
879 if ((op & 0x01fc0fff) == 0x000c0080)
880 offset = 0;
881 else
882 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
883
884 /* If the address isn't relative to the SP or FP, it's not a
885 prologue instruction. */
886 if (gr_i != sp_regnum && gr_i != fp_regnum)
887 {
888 /* Do nothing; not a prologue instruction. */
889 }
890
891 /* Saving the old FP in the new frame (relative to the SP). */
892 else if (gr_k == fp_regnum && gr_i == sp_regnum)
893 {
894 gr_saved[fp_regnum] = 1;
895 gr_sp_offset[fp_regnum] = offset;
896 last_prologue_pc = next_pc;
897 }
898
899 /* Saving callee-saves register(s) on the stack, relative to
900 the SP. */
901 else if (gr_i == sp_regnum
902 && is_callee_saves_reg (gr_k))
903 {
904 gr_saved[gr_k] = 1;
905 if (gr_i == sp_regnum)
906 gr_sp_offset[gr_k] = offset;
907 else
908 gr_sp_offset[gr_k] = offset + fp_offset;
909 last_prologue_pc = next_pc;
910 }
911
912 /* Saving the scratch register holding the return address. */
913 else if (lr_save_reg != -1
914 && gr_k == lr_save_reg)
915 {
916 lr_saved_on_stack = 1;
917 if (gr_i == sp_regnum)
918 lr_sp_offset = offset;
919 else
920 lr_sp_offset = offset + fp_offset;
921 last_prologue_pc = next_pc;
922 }
923
924 /* Spilling int-sized arguments to the stack. */
925 else if (is_argument_reg (gr_k))
926 last_prologue_pc = next_pc;
927 }
928 pc = next_pc;
929 }
930
931 if (this_frame && info)
932 {
933 int i;
934 ULONGEST this_base;
935
936 /* If we know the relationship between the stack and frame
937 pointers, record the addresses of the registers we noticed.
938 Note that we have to do this as a separate step at the end,
939 because instructions may save relative to the SP, but we need
940 their addresses relative to the FP. */
941 if (fp_set)
942 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
943 else
944 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
945
946 for (i = 0; i < 64; i++)
947 if (gr_saved[i])
948 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
949
950 info->prev_sp = this_base - fp_offset + framesize;
951 info->base = this_base;
952
953 /* If LR was saved on the stack, record its location. */
954 if (lr_saved_on_stack)
955 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
956
957 /* The call instruction moves the caller's PC in the callee's LR.
958 Since this is an unwind, do the reverse. Copy the location of LR
959 into PC (the address / regnum) so that a request for PC will be
960 converted into a request for the LR. */
961 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
962
963 /* Save the previous frame's computed SP value. */
964 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
965 }
966
967 return last_prologue_pc;
968 }
969
970
971 static CORE_ADDR
972 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
973 {
974 CORE_ADDR func_addr, func_end, new_pc;
975
976 new_pc = pc;
977
978 /* If the line table has entry for a line *within* the function
979 (i.e., not in the prologue, and not past the end), then that's
980 our location. */
981 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
982 {
983 struct symtab_and_line sal;
984
985 sal = find_pc_line (func_addr, 0);
986
987 if (sal.line != 0 && sal.end < func_end)
988 {
989 new_pc = sal.end;
990 }
991 }
992
993 /* The FR-V prologue is at least five instructions long (twenty bytes).
994 If we didn't find a real source location past that, then
995 do a full analysis of the prologue. */
996 if (new_pc < pc + 20)
997 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
998
999 return new_pc;
1000 }
1001
1002
1003 /* Examine the instruction pointed to by PC. If it corresponds to
1004 a call to __main, return the address of the next instruction.
1005 Otherwise, return PC. */
1006
1007 static CORE_ADDR
1008 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1009 {
1010 gdb_byte buf[4];
1011 unsigned long op;
1012 CORE_ADDR orig_pc = pc;
1013
1014 if (target_read_memory (pc, buf, 4))
1015 return pc;
1016 op = extract_unsigned_integer (buf, 4);
1017
1018 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1019 to the call instruction.
1020
1021 Skip over this instruction if present. It won't be present in
1022 non-PIC code, and even in PIC code, it might not be present.
1023 (This is due to the fact that GR15, the FDPIC register, already
1024 contains the correct value.)
1025
1026 The general form of the LDI is given first, followed by the
1027 specific instruction with the GRi and GRk filled in as FP and
1028 GR15.
1029
1030 ldi @(GRi, d12), GRk
1031 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1032 0 000000 1111111 000000 000000000000 = 0x01fc0000
1033 . . . . . . . .
1034 ldi @(FP, d12), GR15
1035 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1036 0 001111 1111111 000010 000000000000 = 0x7ffff000
1037 . . . . . . . . */
1038
1039 if ((op & 0x7ffff000) == 0x1ec82000)
1040 {
1041 pc += 4;
1042 if (target_read_memory (pc, buf, 4))
1043 return orig_pc;
1044 op = extract_unsigned_integer (buf, 4);
1045 }
1046
1047 /* The format of an FRV CALL instruction is as follows:
1048
1049 call label24
1050 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1051 0 000000 1111111 000000000000000000 = 0x01fc0000
1052 . . . . . . . .
1053
1054 where label24 is constructed by concatenating the H bits with the
1055 L bits. The call target is PC + (4 * sign_ext(label24)). */
1056
1057 if ((op & 0x01fc0000) == 0x003c0000)
1058 {
1059 LONGEST displ;
1060 CORE_ADDR call_dest;
1061 struct minimal_symbol *s;
1062
1063 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1064 if ((displ & 0x00800000) != 0)
1065 displ |= ~((LONGEST) 0x00ffffff);
1066
1067 call_dest = pc + 4 * displ;
1068 s = lookup_minimal_symbol_by_pc (call_dest);
1069
1070 if (s != NULL
1071 && SYMBOL_LINKAGE_NAME (s) != NULL
1072 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1073 {
1074 pc += 4;
1075 return pc;
1076 }
1077 }
1078 return orig_pc;
1079 }
1080
1081
1082 static struct frv_unwind_cache *
1083 frv_frame_unwind_cache (struct frame_info *this_frame,
1084 void **this_prologue_cache)
1085 {
1086 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1087 CORE_ADDR pc;
1088 ULONGEST this_base;
1089 struct frv_unwind_cache *info;
1090
1091 if ((*this_prologue_cache))
1092 return (*this_prologue_cache);
1093
1094 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1095 (*this_prologue_cache) = info;
1096 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1097
1098 /* Prologue analysis does the rest... */
1099 frv_analyze_prologue (gdbarch,
1100 get_frame_func (this_frame), this_frame, info);
1101
1102 return info;
1103 }
1104
1105 static void
1106 frv_extract_return_value (struct type *type, struct regcache *regcache,
1107 gdb_byte *valbuf)
1108 {
1109 int len = TYPE_LENGTH (type);
1110
1111 if (len <= 4)
1112 {
1113 ULONGEST gpr8_val;
1114 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1115 store_unsigned_integer (valbuf, len, gpr8_val);
1116 }
1117 else if (len == 8)
1118 {
1119 ULONGEST regval;
1120 regcache_cooked_read_unsigned (regcache, 8, &regval);
1121 store_unsigned_integer (valbuf, 4, regval);
1122 regcache_cooked_read_unsigned (regcache, 9, &regval);
1123 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1124 }
1125 else
1126 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1127 }
1128
1129 static CORE_ADDR
1130 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1131 {
1132 /* Require dword alignment. */
1133 return align_down (sp, 8);
1134 }
1135
1136 static CORE_ADDR
1137 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1138 {
1139 CORE_ADDR descr;
1140 char valbuf[4];
1141 CORE_ADDR start_addr;
1142
1143 /* If we can't find the function in the symbol table, then we assume
1144 that the function address is already in descriptor form. */
1145 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1146 || entry_point != start_addr)
1147 return entry_point;
1148
1149 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1150
1151 if (descr != 0)
1152 return descr;
1153
1154 /* Construct a non-canonical descriptor from space allocated on
1155 the stack. */
1156
1157 descr = value_as_long (value_allocate_space_in_inferior (8));
1158 store_unsigned_integer (valbuf, 4, entry_point);
1159 write_memory (descr, valbuf, 4);
1160 store_unsigned_integer (valbuf, 4,
1161 frv_fdpic_find_global_pointer (entry_point));
1162 write_memory (descr + 4, valbuf, 4);
1163 return descr;
1164 }
1165
1166 static CORE_ADDR
1167 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1168 struct target_ops *targ)
1169 {
1170 CORE_ADDR entry_point;
1171 CORE_ADDR got_address;
1172
1173 entry_point = get_target_memory_unsigned (targ, addr, 4);
1174 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1175
1176 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1177 return entry_point;
1178 else
1179 return addr;
1180 }
1181
1182 static CORE_ADDR
1183 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1184 struct regcache *regcache, CORE_ADDR bp_addr,
1185 int nargs, struct value **args, CORE_ADDR sp,
1186 int struct_return, CORE_ADDR struct_addr)
1187 {
1188 int argreg;
1189 int argnum;
1190 char *val;
1191 char valbuf[4];
1192 struct value *arg;
1193 struct type *arg_type;
1194 int len;
1195 enum type_code typecode;
1196 CORE_ADDR regval;
1197 int stack_space;
1198 int stack_offset;
1199 enum frv_abi abi = frv_abi (gdbarch);
1200 CORE_ADDR func_addr = find_function_addr (function, NULL);
1201
1202 #if 0
1203 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1204 nargs, (int) sp, struct_return, struct_addr);
1205 #endif
1206
1207 stack_space = 0;
1208 for (argnum = 0; argnum < nargs; ++argnum)
1209 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1210
1211 stack_space -= (6 * 4);
1212 if (stack_space > 0)
1213 sp -= stack_space;
1214
1215 /* Make sure stack is dword aligned. */
1216 sp = align_down (sp, 8);
1217
1218 stack_offset = 0;
1219
1220 argreg = 8;
1221
1222 if (struct_return)
1223 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1224 struct_addr);
1225
1226 for (argnum = 0; argnum < nargs; ++argnum)
1227 {
1228 arg = args[argnum];
1229 arg_type = check_typedef (value_type (arg));
1230 len = TYPE_LENGTH (arg_type);
1231 typecode = TYPE_CODE (arg_type);
1232
1233 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1234 {
1235 store_unsigned_integer (valbuf, 4, value_address (arg));
1236 typecode = TYPE_CODE_PTR;
1237 len = 4;
1238 val = valbuf;
1239 }
1240 else if (abi == FRV_ABI_FDPIC
1241 && len == 4
1242 && typecode == TYPE_CODE_PTR
1243 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1244 {
1245 /* The FDPIC ABI requires function descriptors to be passed instead
1246 of entry points. */
1247 store_unsigned_integer
1248 (valbuf, 4,
1249 find_func_descr (gdbarch,
1250 extract_unsigned_integer (value_contents (arg),
1251 4)));
1252 typecode = TYPE_CODE_PTR;
1253 len = 4;
1254 val = valbuf;
1255 }
1256 else
1257 {
1258 val = (char *) value_contents (arg);
1259 }
1260
1261 while (len > 0)
1262 {
1263 int partial_len = (len < 4 ? len : 4);
1264
1265 if (argreg < 14)
1266 {
1267 regval = extract_unsigned_integer (val, partial_len);
1268 #if 0
1269 printf(" Argnum %d data %x -> reg %d\n",
1270 argnum, (int) regval, argreg);
1271 #endif
1272 regcache_cooked_write_unsigned (regcache, argreg, regval);
1273 ++argreg;
1274 }
1275 else
1276 {
1277 #if 0
1278 printf(" Argnum %d data %x -> offset %d (%x)\n",
1279 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1280 #endif
1281 write_memory (sp + stack_offset, val, partial_len);
1282 stack_offset += align_up (partial_len, 4);
1283 }
1284 len -= partial_len;
1285 val += partial_len;
1286 }
1287 }
1288
1289 /* Set the return address. For the frv, the return breakpoint is
1290 always at BP_ADDR. */
1291 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1292
1293 if (abi == FRV_ABI_FDPIC)
1294 {
1295 /* Set the GOT register for the FDPIC ABI. */
1296 regcache_cooked_write_unsigned
1297 (regcache, first_gpr_regnum + 15,
1298 frv_fdpic_find_global_pointer (func_addr));
1299 }
1300
1301 /* Finally, update the SP register. */
1302 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1303
1304 return sp;
1305 }
1306
1307 static void
1308 frv_store_return_value (struct type *type, struct regcache *regcache,
1309 const gdb_byte *valbuf)
1310 {
1311 int len = TYPE_LENGTH (type);
1312
1313 if (len <= 4)
1314 {
1315 bfd_byte val[4];
1316 memset (val, 0, sizeof (val));
1317 memcpy (val + (4 - len), valbuf, len);
1318 regcache_cooked_write (regcache, 8, val);
1319 }
1320 else if (len == 8)
1321 {
1322 regcache_cooked_write (regcache, 8, valbuf);
1323 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1324 }
1325 else
1326 internal_error (__FILE__, __LINE__,
1327 _("Don't know how to return a %d-byte value."), len);
1328 }
1329
1330 static enum return_value_convention
1331 frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1332 struct type *valtype, struct regcache *regcache,
1333 gdb_byte *readbuf, const gdb_byte *writebuf)
1334 {
1335 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1336 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1337 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1338
1339 if (writebuf != NULL)
1340 {
1341 gdb_assert (!struct_return);
1342 frv_store_return_value (valtype, regcache, writebuf);
1343 }
1344
1345 if (readbuf != NULL)
1346 {
1347 gdb_assert (!struct_return);
1348 frv_extract_return_value (valtype, regcache, readbuf);
1349 }
1350
1351 if (struct_return)
1352 return RETURN_VALUE_STRUCT_CONVENTION;
1353 else
1354 return RETURN_VALUE_REGISTER_CONVENTION;
1355 }
1356
1357
1358 /* Hardware watchpoint / breakpoint support for the FR500
1359 and FR400. */
1360
1361 int
1362 frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
1363 {
1364 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
1365
1366 /* Watchpoints not supported on simulator. */
1367 if (strcmp (target_shortname, "sim") == 0)
1368 return 0;
1369
1370 if (type == bp_hardware_breakpoint)
1371 {
1372 if (var->num_hw_breakpoints == 0)
1373 return 0;
1374 else if (cnt <= var->num_hw_breakpoints)
1375 return 1;
1376 }
1377 else
1378 {
1379 if (var->num_hw_watchpoints == 0)
1380 return 0;
1381 else if (ot)
1382 return -1;
1383 else if (cnt <= var->num_hw_watchpoints)
1384 return 1;
1385 }
1386 return -1;
1387 }
1388
1389
1390 int
1391 frv_stopped_data_address (CORE_ADDR *addr_p)
1392 {
1393 struct frame_info *frame = get_current_frame ();
1394 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1395
1396 brr = get_frame_register_unsigned (frame, brr_regnum);
1397 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1398 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1399 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1400 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1401
1402 if (brr & (1<<11))
1403 *addr_p = dbar0;
1404 else if (brr & (1<<10))
1405 *addr_p = dbar1;
1406 else if (brr & (1<<9))
1407 *addr_p = dbar2;
1408 else if (brr & (1<<8))
1409 *addr_p = dbar3;
1410 else
1411 return 0;
1412
1413 return 1;
1414 }
1415
1416 int
1417 frv_have_stopped_data_address (void)
1418 {
1419 CORE_ADDR addr = 0;
1420 return frv_stopped_data_address (&addr);
1421 }
1422
1423 static CORE_ADDR
1424 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1425 {
1426 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1427 }
1428
1429 /* Given a GDB frame, determine the address of the calling function's
1430 frame. This will be used to create a new GDB frame struct. */
1431
1432 static void
1433 frv_frame_this_id (struct frame_info *this_frame,
1434 void **this_prologue_cache, struct frame_id *this_id)
1435 {
1436 struct frv_unwind_cache *info
1437 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1438 CORE_ADDR base;
1439 CORE_ADDR func;
1440 struct minimal_symbol *msym_stack;
1441 struct frame_id id;
1442
1443 /* The FUNC is easy. */
1444 func = get_frame_func (this_frame);
1445
1446 /* Check if the stack is empty. */
1447 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1448 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1449 return;
1450
1451 /* Hopefully the prologue analysis either correctly determined the
1452 frame's base (which is the SP from the previous frame), or set
1453 that base to "NULL". */
1454 base = info->prev_sp;
1455 if (base == 0)
1456 return;
1457
1458 id = frame_id_build (base, func);
1459 (*this_id) = id;
1460 }
1461
1462 static struct value *
1463 frv_frame_prev_register (struct frame_info *this_frame,
1464 void **this_prologue_cache, int regnum)
1465 {
1466 struct frv_unwind_cache *info
1467 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1468 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1469 }
1470
1471 static const struct frame_unwind frv_frame_unwind = {
1472 NORMAL_FRAME,
1473 frv_frame_this_id,
1474 frv_frame_prev_register,
1475 NULL,
1476 default_frame_sniffer
1477 };
1478
1479 static CORE_ADDR
1480 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1481 {
1482 struct frv_unwind_cache *info
1483 = frv_frame_unwind_cache (this_frame, this_cache);
1484 return info->base;
1485 }
1486
1487 static const struct frame_base frv_frame_base = {
1488 &frv_frame_unwind,
1489 frv_frame_base_address,
1490 frv_frame_base_address,
1491 frv_frame_base_address
1492 };
1493
1494 static CORE_ADDR
1495 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1496 {
1497 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1498 }
1499
1500
1501 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1502 frame. The frame ID's base needs to match the TOS value saved by
1503 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1504
1505 static struct frame_id
1506 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1507 {
1508 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1509 return frame_id_build (sp, get_frame_pc (this_frame));
1510 }
1511
1512 static struct gdbarch *
1513 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1514 {
1515 struct gdbarch *gdbarch;
1516 struct gdbarch_tdep *var;
1517 int elf_flags = 0;
1518
1519 /* Check to see if we've already built an appropriate architecture
1520 object for this executable. */
1521 arches = gdbarch_list_lookup_by_info (arches, &info);
1522 if (arches)
1523 return arches->gdbarch;
1524
1525 /* Select the right tdep structure for this variant. */
1526 var = new_variant ();
1527 switch (info.bfd_arch_info->mach)
1528 {
1529 case bfd_mach_frv:
1530 case bfd_mach_frvsimple:
1531 case bfd_mach_fr500:
1532 case bfd_mach_frvtomcat:
1533 case bfd_mach_fr550:
1534 set_variant_num_gprs (var, 64);
1535 set_variant_num_fprs (var, 64);
1536 break;
1537
1538 case bfd_mach_fr400:
1539 case bfd_mach_fr450:
1540 set_variant_num_gprs (var, 32);
1541 set_variant_num_fprs (var, 32);
1542 break;
1543
1544 default:
1545 /* Never heard of this variant. */
1546 return 0;
1547 }
1548
1549 /* Extract the ELF flags, if available. */
1550 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1551 elf_flags = elf_elfheader (info.abfd)->e_flags;
1552
1553 if (elf_flags & EF_FRV_FDPIC)
1554 set_variant_abi_fdpic (var);
1555
1556 if (elf_flags & EF_FRV_CPU_FR450)
1557 set_variant_scratch_registers (var);
1558
1559 gdbarch = gdbarch_alloc (&info, var);
1560
1561 set_gdbarch_short_bit (gdbarch, 16);
1562 set_gdbarch_int_bit (gdbarch, 32);
1563 set_gdbarch_long_bit (gdbarch, 32);
1564 set_gdbarch_long_long_bit (gdbarch, 64);
1565 set_gdbarch_float_bit (gdbarch, 32);
1566 set_gdbarch_double_bit (gdbarch, 64);
1567 set_gdbarch_long_double_bit (gdbarch, 64);
1568 set_gdbarch_ptr_bit (gdbarch, 32);
1569
1570 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1571 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1572
1573 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1574 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1575 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1576
1577 set_gdbarch_register_name (gdbarch, frv_register_name);
1578 set_gdbarch_register_type (gdbarch, frv_register_type);
1579 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1580
1581 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1582 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1583
1584 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1585 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1586 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1587 set_gdbarch_adjust_breakpoint_address
1588 (gdbarch, frv_adjust_breakpoint_address);
1589
1590 set_gdbarch_return_value (gdbarch, frv_return_value);
1591
1592 /* Frame stuff. */
1593 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1594 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1595 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1596 frame_base_set_default (gdbarch, &frv_frame_base);
1597 /* We set the sniffer lower down after the OSABI hooks have been
1598 established. */
1599
1600 /* Settings for calling functions in the inferior. */
1601 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1602 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1603
1604 /* Settings that should be unnecessary. */
1605 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1606
1607 /* Hardware watchpoint / breakpoint support. */
1608 switch (info.bfd_arch_info->mach)
1609 {
1610 case bfd_mach_frv:
1611 case bfd_mach_frvsimple:
1612 case bfd_mach_fr500:
1613 case bfd_mach_frvtomcat:
1614 /* fr500-style hardware debugging support. */
1615 var->num_hw_watchpoints = 4;
1616 var->num_hw_breakpoints = 4;
1617 break;
1618
1619 case bfd_mach_fr400:
1620 case bfd_mach_fr450:
1621 /* fr400-style hardware debugging support. */
1622 var->num_hw_watchpoints = 2;
1623 var->num_hw_breakpoints = 4;
1624 break;
1625
1626 default:
1627 /* Otherwise, assume we don't have hardware debugging support. */
1628 var->num_hw_watchpoints = 0;
1629 var->num_hw_breakpoints = 0;
1630 break;
1631 }
1632
1633 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1634 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1635 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1636 frv_convert_from_func_ptr_addr);
1637
1638 set_solib_ops (gdbarch, &frv_so_ops);
1639
1640 /* Hook in ABI-specific overrides, if they have been registered. */
1641 gdbarch_init_osabi (info, gdbarch);
1642
1643 /* Set the fallback (prologue based) frame sniffer. */
1644 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1645
1646 /* Enable TLS support. */
1647 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1648 frv_fetch_objfile_link_map);
1649
1650 return gdbarch;
1651 }
1652
1653 void
1654 _initialize_frv_tdep (void)
1655 {
1656 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1657 }
This page took 0.068383 seconds and 5 git commands to generate.