* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
36 #include "symtab.h"
37 #include "elf-bfd.h"
38 #include "elf/frv.h"
39 #include "osabi.h"
40 #include "infcall.h"
41 #include "solib.h"
42 #include "frv-tdep.h"
43
44 extern void _initialize_frv_tdep (void);
45
46 struct frv_unwind_cache /* was struct frame_extra_info */
47 {
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
51
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
57 };
58
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74 struct gdbarch_tdep
75 {
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93 };
94
95 /* Return the FR-V ABI associated with GDBARCH. */
96 enum frv_abi
97 frv_abi (struct gdbarch *gdbarch)
98 {
99 return gdbarch_tdep (gdbarch)->frv_abi;
100 }
101
102 /* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
105 int
106 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
108 {
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
110 return -1;
111 else
112 {
113 struct regcache *regcache = get_current_regcache ();
114
115 if (interp_addr != NULL)
116 {
117 ULONGEST val;
118 regcache_cooked_read_unsigned (regcache,
119 fdpic_loadmap_interp_regnum, &val);
120 *interp_addr = val;
121 }
122 if (exec_addr != NULL)
123 {
124 ULONGEST val;
125 regcache_cooked_read_unsigned (regcache,
126 fdpic_loadmap_exec_regnum, &val);
127 *exec_addr = val;
128 }
129 return 0;
130 }
131 }
132
133 /* Allocate a new variant structure, and set up default values for all
134 the fields. */
135 static struct gdbarch_tdep *
136 new_variant (void)
137 {
138 struct gdbarch_tdep *var;
139 int r;
140 char buf[20];
141
142 var = xmalloc (sizeof (*var));
143 memset (var, 0, sizeof (*var));
144
145 var->frv_abi = FRV_ABI_EABI;
146 var->num_gprs = 64;
147 var->num_fprs = 64;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
150
151 /* By default, don't supply any general-purpose or floating-point
152 register names. */
153 var->register_names
154 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
155 * sizeof (char *));
156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
157 var->register_names[r] = "";
158
159 /* Do, however, supply default names for the known special-purpose
160 registers. */
161
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
165
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
170
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
177
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
181 var->register_names[iacc0_regnum] = "iacc0";
182
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
185
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
189 elsewhere. */
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
191 {
192 char *buf;
193 buf = xstrprintf ("acc%d", r - acc0_regnum);
194 var->register_names[r] = buf;
195 }
196
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
202
203 for (r = accg0_regnum; r <= accg7_regnum; r++)
204 {
205 char *buf;
206 buf = xstrprintf ("accg%d", r - accg0_regnum);
207 var->register_names[r] = buf;
208 }
209
210 /* msr0 and msr1. */
211
212 var->register_names[msr0_regnum] = "msr0";
213 var->register_names[msr1_regnum] = "msr1";
214
215 /* gner and fner registers. */
216 var->register_names[gner0_regnum] = "gner0";
217 var->register_names[gner1_regnum] = "gner1";
218 var->register_names[fner0_regnum] = "fner0";
219 var->register_names[fner1_regnum] = "fner1";
220
221 return var;
222 }
223
224
225 /* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
227 static void
228 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
229 {
230 int r;
231
232 var->num_gprs = num_gprs;
233
234 for (r = 0; r < num_gprs; ++r)
235 {
236 char buf[20];
237
238 sprintf (buf, "gr%d", r);
239 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
240 }
241 }
242
243
244 /* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
246 static void
247 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
248 {
249 int r;
250
251 var->num_fprs = num_fprs;
252
253 for (r = 0; r < num_fprs; ++r)
254 {
255 char buf[20];
256
257 sprintf (buf, "fr%d", r);
258 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
259 }
260 }
261
262 static void
263 set_variant_abi_fdpic (struct gdbarch_tdep *var)
264 {
265 var->frv_abi = FRV_ABI_FDPIC;
266 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
268 }
269
270 static void
271 set_variant_scratch_registers (struct gdbarch_tdep *var)
272 {
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
277 }
278
279 static const char *
280 frv_register_name (struct gdbarch *gdbarch, int reg)
281 {
282 if (reg < 0)
283 return "?toosmall?";
284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
285 return "?toolarge?";
286
287 return gdbarch_tdep (gdbarch)->register_names[reg];
288 }
289
290
291 static struct type *
292 frv_register_type (struct gdbarch *gdbarch, int reg)
293 {
294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
295 return builtin_type (gdbarch)->builtin_float;
296 else if (reg == iacc0_regnum)
297 return builtin_type (gdbarch)->builtin_int64;
298 else
299 return builtin_type (gdbarch)->builtin_int32;
300 }
301
302 static void
303 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
304 int reg, gdb_byte *buffer)
305 {
306 if (reg == iacc0_regnum)
307 {
308 regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
310 }
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
318 bfd_byte buf[4];
319
320 regcache_raw_read (regcache, raw_regnum, buf);
321 memset (buffer, 0, 4);
322 /* FR-V is big endian, so put the requested byte in the first byte
323 of the buffer allocated to hold the pseudo-register. */
324 ((bfd_byte *) buffer)[0] = buf[byte_num];
325 }
326 }
327
328 static void
329 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
330 int reg, const gdb_byte *buffer)
331 {
332 if (reg == iacc0_regnum)
333 {
334 regcache_raw_write (regcache, iacc0h_regnum, buffer);
335 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
336 }
337 else if (accg0_regnum <= reg && reg <= accg7_regnum)
338 {
339 /* The accg raw registers have four values in each slot with the
340 lowest register number occupying the first byte. */
341
342 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
343 int byte_num = (reg - accg0_regnum) % 4;
344 char buf[4];
345
346 regcache_raw_read (regcache, raw_regnum, buf);
347 buf[byte_num] = ((bfd_byte *) buffer)[0];
348 regcache_raw_write (regcache, raw_regnum, buf);
349 }
350 }
351
352 static int
353 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
354 {
355 static const int spr_map[] =
356 {
357 H_SPR_PSR, /* psr_regnum */
358 H_SPR_CCR, /* ccr_regnum */
359 H_SPR_CCCR, /* cccr_regnum */
360 -1, /* fdpic_loadmap_exec_regnum */
361 -1, /* fdpic_loadmap_interp_regnum */
362 -1, /* 134 */
363 H_SPR_TBR, /* tbr_regnum */
364 H_SPR_BRR, /* brr_regnum */
365 H_SPR_DBAR0, /* dbar0_regnum */
366 H_SPR_DBAR1, /* dbar1_regnum */
367 H_SPR_DBAR2, /* dbar2_regnum */
368 H_SPR_DBAR3, /* dbar3_regnum */
369 H_SPR_SCR0, /* scr0_regnum */
370 H_SPR_SCR1, /* scr1_regnum */
371 H_SPR_SCR2, /* scr2_regnum */
372 H_SPR_SCR3, /* scr3_regnum */
373 H_SPR_LR, /* lr_regnum */
374 H_SPR_LCR, /* lcr_regnum */
375 H_SPR_IACC0H, /* iacc0h_regnum */
376 H_SPR_IACC0L, /* iacc0l_regnum */
377 H_SPR_FSR0, /* fsr0_regnum */
378 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
379 -1, /* acc0_regnum */
380 -1, /* acc1_regnum */
381 -1, /* acc2_regnum */
382 -1, /* acc3_regnum */
383 -1, /* acc4_regnum */
384 -1, /* acc5_regnum */
385 -1, /* acc6_regnum */
386 -1, /* acc7_regnum */
387 -1, /* acc0123_regnum */
388 -1, /* acc4567_regnum */
389 H_SPR_MSR0, /* msr0_regnum */
390 H_SPR_MSR1, /* msr1_regnum */
391 H_SPR_GNER0, /* gner0_regnum */
392 H_SPR_GNER1, /* gner1_regnum */
393 H_SPR_FNER0, /* fner0_regnum */
394 H_SPR_FNER1, /* fner1_regnum */
395 };
396
397 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
398
399 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
400 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
401 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
402 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
403 else if (pc_regnum == reg)
404 return SIM_FRV_PC_REGNUM;
405 else if (reg >= first_spr_regnum
406 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
407 {
408 int spr_reg_offset = spr_map[reg - first_spr_regnum];
409
410 if (spr_reg_offset < 0)
411 return SIM_REGNO_DOES_NOT_EXIST;
412 else
413 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
414 }
415
416 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
417 }
418
419 static const unsigned char *
420 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
421 {
422 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
423 *lenp = sizeof (breakpoint);
424 return breakpoint;
425 }
426
427 /* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429 static const int max_instrs_per_bundle = 8;
430
431 /* Define the size (in bytes) of an FR-V instruction. */
432 static const int frv_instr_size = 4;
433
434 /* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
437 static CORE_ADDR
438 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
439 {
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
443
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count-- > 0 && addr >= func_start)
448 {
449 char instr[frv_instr_size];
450 int status;
451
452 status = target_read_memory (addr, instr, sizeof instr);
453
454 if (status != 0)
455 break;
456
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
459 packing bit. */
460 if (instr[0] & 0x80)
461 break;
462
463 addr -= frv_instr_size;
464 }
465
466 if (count > 0)
467 bpaddr = addr + frv_instr_size;
468
469 return bpaddr;
470 }
471
472
473 /* Return true if REG is a caller-saves ("scratch") register,
474 false otherwise. */
475 static int
476 is_caller_saves_reg (int reg)
477 {
478 return ((4 <= reg && reg <= 7)
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
481 }
482
483
484 /* Return true if REG is a callee-saves register, false otherwise. */
485 static int
486 is_callee_saves_reg (int reg)
487 {
488 return ((16 <= reg && reg <= 31)
489 || (48 <= reg && reg <= 63));
490 }
491
492
493 /* Return true if REG is an argument register, false otherwise. */
494 static int
495 is_argument_reg (int reg)
496 {
497 return (8 <= reg && reg <= 13);
498 }
499
500 /* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
504
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
512 static CORE_ADDR
513 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
514 struct frame_info *this_frame,
515 struct frv_unwind_cache *info)
516 {
517 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
518
519 /* When writing out instruction bitpatterns, we use the following
520 letters to label instruction fields:
521 P - The parallel bit. We don't use this.
522 J - The register number of GRj in the instruction description.
523 K - The register number of GRk in the instruction description.
524 I - The register number of GRi.
525 S - a signed imediate offset.
526 U - an unsigned immediate offset.
527
528 The dots below the numbers indicate where hex digit boundaries
529 fall, to make it easier to check the numbers. */
530
531 /* Non-zero iff we've seen the instruction that initializes the
532 frame pointer for this function's frame. */
533 int fp_set = 0;
534
535 /* If fp_set is non_zero, then this is the distance from
536 the stack pointer to frame pointer: fp = sp + fp_offset. */
537 int fp_offset = 0;
538
539 /* Total size of frame prior to any alloca operations. */
540 int framesize = 0;
541
542 /* Flag indicating if lr has been saved on the stack. */
543 int lr_saved_on_stack = 0;
544
545 /* The number of the general-purpose register we saved the return
546 address ("link register") in, or -1 if we haven't moved it yet. */
547 int lr_save_reg = -1;
548
549 /* Offset (from sp) at which lr has been saved on the stack. */
550
551 int lr_sp_offset = 0;
552
553 /* If gr_saved[i] is non-zero, then we've noticed that general
554 register i has been saved at gr_sp_offset[i] from the stack
555 pointer. */
556 char gr_saved[64];
557 int gr_sp_offset[64];
558
559 /* The address of the most recently scanned prologue instruction. */
560 CORE_ADDR last_prologue_pc;
561
562 /* The address of the next instruction. */
563 CORE_ADDR next_pc;
564
565 /* The upper bound to of the pc values to scan. */
566 CORE_ADDR lim_pc;
567
568 memset (gr_saved, 0, sizeof (gr_saved));
569
570 last_prologue_pc = pc;
571
572 /* Try to compute an upper limit (on how far to scan) based on the
573 line number info. */
574 lim_pc = skip_prologue_using_sal (gdbarch, pc);
575 /* If there's no line number info, lim_pc will be 0. In that case,
576 set the limit to be 100 instructions away from pc. Hopefully, this
577 will be far enough away to account for the entire prologue. Don't
578 worry about overshooting the end of the function. The scan loop
579 below contains some checks to avoid scanning unreasonably far. */
580 if (lim_pc == 0)
581 lim_pc = pc + 400;
582
583 /* If we have a frame, we don't want to scan past the frame's pc. This
584 will catch those cases where the pc is in the prologue. */
585 if (this_frame)
586 {
587 CORE_ADDR frame_pc = get_frame_pc (this_frame);
588 if (frame_pc < lim_pc)
589 lim_pc = frame_pc;
590 }
591
592 /* Scan the prologue. */
593 while (pc < lim_pc)
594 {
595 char buf[frv_instr_size];
596 LONGEST op;
597
598 if (target_read_memory (pc, buf, sizeof buf) != 0)
599 break;
600 op = extract_signed_integer (buf, sizeof buf, byte_order);
601
602 next_pc = pc + 4;
603
604 /* The tests in this chain of ifs should be in order of
605 decreasing selectivity, so that more particular patterns get
606 to fire before less particular patterns. */
607
608 /* Some sort of control transfer instruction: stop scanning prologue.
609 Integer Conditional Branch:
610 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
611 Floating-point / media Conditional Branch:
612 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
613 LCR Conditional Branch to LR
614 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
615 Integer conditional Branches to LR
616 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
617 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
618 Floating-point/Media Branches to LR
619 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
620 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
621 Jump and Link
622 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
623 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
624 Call
625 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
626 Return from Trap
627 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
628 Integer Conditional Trap
629 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
630 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
631 Floating-point /media Conditional Trap
632 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
633 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
634 Break
635 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
636 Media Trap
637 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
638 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
639 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
640 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
641 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
642 {
643 /* Stop scanning; not in prologue any longer. */
644 break;
645 }
646
647 /* Loading something from memory into fp probably means that
648 we're in the epilogue. Stop scanning the prologue.
649 ld @(GRi, GRk), fp
650 X 000010 0000010 XXXXXX 000100 XXXXXX
651 ldi @(GRi, d12), fp
652 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
653 else if ((op & 0x7ffc0fc0) == 0x04080100
654 || (op & 0x7ffc0000) == 0x04c80000)
655 {
656 break;
657 }
658
659 /* Setting the FP from the SP:
660 ori sp, 0, fp
661 P 000010 0100010 000001 000000000000 = 0x04881000
662 0 111111 1111111 111111 111111111111 = 0x7fffffff
663 . . . . . . . .
664 We treat this as part of the prologue. */
665 else if ((op & 0x7fffffff) == 0x04881000)
666 {
667 fp_set = 1;
668 fp_offset = 0;
669 last_prologue_pc = next_pc;
670 }
671
672 /* Move the link register to the scratch register grJ, before saving:
673 movsg lr, grJ
674 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
675 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
676 . . . . . . . .
677 We treat this as part of the prologue. */
678 else if ((op & 0x7fffffc0) == 0x080d01c0)
679 {
680 int gr_j = op & 0x3f;
681
682 /* If we're moving it to a scratch register, that's fine. */
683 if (is_caller_saves_reg (gr_j))
684 {
685 lr_save_reg = gr_j;
686 last_prologue_pc = next_pc;
687 }
688 }
689
690 /* To save multiple callee-saves registers on the stack, at
691 offset zero:
692
693 std grK,@(sp,gr0)
694 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
695 0 000000 1111111 111111 111111 111111 = 0x01ffffff
696
697 stq grK,@(sp,gr0)
698 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
700 . . . . . . . .
701 We treat this as part of the prologue, and record the register's
702 saved address in the frame structure. */
703 else if ((op & 0x01ffffff) == 0x000c10c0
704 || (op & 0x01ffffff) == 0x000c1100)
705 {
706 int gr_k = ((op >> 25) & 0x3f);
707 int ope = ((op >> 6) & 0x3f);
708 int count;
709 int i;
710
711 /* Is it an std or an stq? */
712 if (ope == 0x03)
713 count = 2;
714 else
715 count = 4;
716
717 /* Is it really a callee-saves register? */
718 if (is_callee_saves_reg (gr_k))
719 {
720 for (i = 0; i < count; i++)
721 {
722 gr_saved[gr_k + i] = 1;
723 gr_sp_offset[gr_k + i] = 4 * i;
724 }
725 last_prologue_pc = next_pc;
726 }
727 }
728
729 /* Adjusting the stack pointer. (The stack pointer is GR1.)
730 addi sp, S, sp
731 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
732 0 111111 1111111 111111 000000000000 = 0x7ffff000
733 . . . . . . . .
734 We treat this as part of the prologue. */
735 else if ((op & 0x7ffff000) == 0x02401000)
736 {
737 if (framesize == 0)
738 {
739 /* Sign-extend the twelve-bit field.
740 (Isn't there a better way to do this?) */
741 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
742
743 framesize -= s;
744 last_prologue_pc = pc;
745 }
746 else
747 {
748 /* If the prologue is being adjusted again, we've
749 likely gone too far; i.e. we're probably in the
750 epilogue. */
751 break;
752 }
753 }
754
755 /* Setting the FP to a constant distance from the SP:
756 addi sp, S, fp
757 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
758 0 111111 1111111 111111 000000000000 = 0x7ffff000
759 . . . . . . . .
760 We treat this as part of the prologue. */
761 else if ((op & 0x7ffff000) == 0x04401000)
762 {
763 /* Sign-extend the twelve-bit field.
764 (Isn't there a better way to do this?) */
765 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
766 fp_set = 1;
767 fp_offset = s;
768 last_prologue_pc = pc;
769 }
770
771 /* To spill an argument register to a scratch register:
772 ori GRi, 0, GRk
773 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
774 0 000000 1111111 000000 111111111111 = 0x01fc0fff
775 . . . . . . . .
776 For the time being, we treat this as a prologue instruction,
777 assuming that GRi is an argument register. This one's kind
778 of suspicious, because it seems like it could be part of a
779 legitimate body instruction. But we only come here when the
780 source info wasn't helpful, so we have to do the best we can.
781 Hopefully once GCC and GDB agree on how to emit line number
782 info for prologues, then this code will never come into play. */
783 else if ((op & 0x01fc0fff) == 0x00880000)
784 {
785 int gr_i = ((op >> 12) & 0x3f);
786
787 /* Make sure that the source is an arg register; if it is, we'll
788 treat it as a prologue instruction. */
789 if (is_argument_reg (gr_i))
790 last_prologue_pc = next_pc;
791 }
792
793 /* To spill 16-bit values to the stack:
794 sthi GRk, @(fp, s)
795 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
796 0 000000 1111111 111111 000000000000 = 0x01fff000
797 . . . . . . . .
798 And for 8-bit values, we use STB instructions.
799 stbi GRk, @(fp, s)
800 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
801 0 000000 1111111 111111 000000000000 = 0x01fff000
802 . . . . . . . .
803 We check that GRk is really an argument register, and treat
804 all such as part of the prologue. */
805 else if ( (op & 0x01fff000) == 0x01442000
806 || (op & 0x01fff000) == 0x01402000)
807 {
808 int gr_k = ((op >> 25) & 0x3f);
809
810 /* Make sure that GRk is really an argument register; treat
811 it as a prologue instruction if so. */
812 if (is_argument_reg (gr_k))
813 last_prologue_pc = next_pc;
814 }
815
816 /* To save multiple callee-saves register on the stack, at a
817 non-zero offset:
818
819 stdi GRk, @(sp, s)
820 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
821 0 000000 1111111 111111 000000000000 = 0x01fff000
822 . . . . . . . .
823 stqi GRk, @(sp, s)
824 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
826 . . . . . . . .
827 We treat this as part of the prologue, and record the register's
828 saved address in the frame structure. */
829 else if ((op & 0x01fff000) == 0x014c1000
830 || (op & 0x01fff000) == 0x01501000)
831 {
832 int gr_k = ((op >> 25) & 0x3f);
833 int count;
834 int i;
835
836 /* Is it a stdi or a stqi? */
837 if ((op & 0x01fff000) == 0x014c1000)
838 count = 2;
839 else
840 count = 4;
841
842 /* Is it really a callee-saves register? */
843 if (is_callee_saves_reg (gr_k))
844 {
845 /* Sign-extend the twelve-bit field.
846 (Isn't there a better way to do this?) */
847 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
848
849 for (i = 0; i < count; i++)
850 {
851 gr_saved[gr_k + i] = 1;
852 gr_sp_offset[gr_k + i] = s + (4 * i);
853 }
854 last_prologue_pc = next_pc;
855 }
856 }
857
858 /* Storing any kind of integer register at any constant offset
859 from any other register.
860
861 st GRk, @(GRi, gr0)
862 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
863 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
864 . . . . . . . .
865 sti GRk, @(GRi, d12)
866 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
867 0 000000 1111111 000000 000000000000 = 0x01fc0000
868 . . . . . . . .
869 These could be almost anything, but a lot of prologue
870 instructions fall into this pattern, so let's decode the
871 instruction once, and then work at a higher level. */
872 else if (((op & 0x01fc0fff) == 0x000c0080)
873 || ((op & 0x01fc0000) == 0x01480000))
874 {
875 int gr_k = ((op >> 25) & 0x3f);
876 int gr_i = ((op >> 12) & 0x3f);
877 int offset;
878
879 /* Are we storing with gr0 as an offset, or using an
880 immediate value? */
881 if ((op & 0x01fc0fff) == 0x000c0080)
882 offset = 0;
883 else
884 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
885
886 /* If the address isn't relative to the SP or FP, it's not a
887 prologue instruction. */
888 if (gr_i != sp_regnum && gr_i != fp_regnum)
889 {
890 /* Do nothing; not a prologue instruction. */
891 }
892
893 /* Saving the old FP in the new frame (relative to the SP). */
894 else if (gr_k == fp_regnum && gr_i == sp_regnum)
895 {
896 gr_saved[fp_regnum] = 1;
897 gr_sp_offset[fp_regnum] = offset;
898 last_prologue_pc = next_pc;
899 }
900
901 /* Saving callee-saves register(s) on the stack, relative to
902 the SP. */
903 else if (gr_i == sp_regnum
904 && is_callee_saves_reg (gr_k))
905 {
906 gr_saved[gr_k] = 1;
907 if (gr_i == sp_regnum)
908 gr_sp_offset[gr_k] = offset;
909 else
910 gr_sp_offset[gr_k] = offset + fp_offset;
911 last_prologue_pc = next_pc;
912 }
913
914 /* Saving the scratch register holding the return address. */
915 else if (lr_save_reg != -1
916 && gr_k == lr_save_reg)
917 {
918 lr_saved_on_stack = 1;
919 if (gr_i == sp_regnum)
920 lr_sp_offset = offset;
921 else
922 lr_sp_offset = offset + fp_offset;
923 last_prologue_pc = next_pc;
924 }
925
926 /* Spilling int-sized arguments to the stack. */
927 else if (is_argument_reg (gr_k))
928 last_prologue_pc = next_pc;
929 }
930 pc = next_pc;
931 }
932
933 if (this_frame && info)
934 {
935 int i;
936 ULONGEST this_base;
937
938 /* If we know the relationship between the stack and frame
939 pointers, record the addresses of the registers we noticed.
940 Note that we have to do this as a separate step at the end,
941 because instructions may save relative to the SP, but we need
942 their addresses relative to the FP. */
943 if (fp_set)
944 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
945 else
946 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
947
948 for (i = 0; i < 64; i++)
949 if (gr_saved[i])
950 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
951
952 info->prev_sp = this_base - fp_offset + framesize;
953 info->base = this_base;
954
955 /* If LR was saved on the stack, record its location. */
956 if (lr_saved_on_stack)
957 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
958
959 /* The call instruction moves the caller's PC in the callee's LR.
960 Since this is an unwind, do the reverse. Copy the location of LR
961 into PC (the address / regnum) so that a request for PC will be
962 converted into a request for the LR. */
963 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
964
965 /* Save the previous frame's computed SP value. */
966 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
967 }
968
969 return last_prologue_pc;
970 }
971
972
973 static CORE_ADDR
974 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
975 {
976 CORE_ADDR func_addr, func_end, new_pc;
977
978 new_pc = pc;
979
980 /* If the line table has entry for a line *within* the function
981 (i.e., not in the prologue, and not past the end), then that's
982 our location. */
983 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
984 {
985 struct symtab_and_line sal;
986
987 sal = find_pc_line (func_addr, 0);
988
989 if (sal.line != 0 && sal.end < func_end)
990 {
991 new_pc = sal.end;
992 }
993 }
994
995 /* The FR-V prologue is at least five instructions long (twenty bytes).
996 If we didn't find a real source location past that, then
997 do a full analysis of the prologue. */
998 if (new_pc < pc + 20)
999 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1000
1001 return new_pc;
1002 }
1003
1004
1005 /* Examine the instruction pointed to by PC. If it corresponds to
1006 a call to __main, return the address of the next instruction.
1007 Otherwise, return PC. */
1008
1009 static CORE_ADDR
1010 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1011 {
1012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1013 gdb_byte buf[4];
1014 unsigned long op;
1015 CORE_ADDR orig_pc = pc;
1016
1017 if (target_read_memory (pc, buf, 4))
1018 return pc;
1019 op = extract_unsigned_integer (buf, 4, byte_order);
1020
1021 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1022 to the call instruction.
1023
1024 Skip over this instruction if present. It won't be present in
1025 non-PIC code, and even in PIC code, it might not be present.
1026 (This is due to the fact that GR15, the FDPIC register, already
1027 contains the correct value.)
1028
1029 The general form of the LDI is given first, followed by the
1030 specific instruction with the GRi and GRk filled in as FP and
1031 GR15.
1032
1033 ldi @(GRi, d12), GRk
1034 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1035 0 000000 1111111 000000 000000000000 = 0x01fc0000
1036 . . . . . . . .
1037 ldi @(FP, d12), GR15
1038 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1039 0 001111 1111111 000010 000000000000 = 0x7ffff000
1040 . . . . . . . . */
1041
1042 if ((op & 0x7ffff000) == 0x1ec82000)
1043 {
1044 pc += 4;
1045 if (target_read_memory (pc, buf, 4))
1046 return orig_pc;
1047 op = extract_unsigned_integer (buf, 4, byte_order);
1048 }
1049
1050 /* The format of an FRV CALL instruction is as follows:
1051
1052 call label24
1053 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1054 0 000000 1111111 000000000000000000 = 0x01fc0000
1055 . . . . . . . .
1056
1057 where label24 is constructed by concatenating the H bits with the
1058 L bits. The call target is PC + (4 * sign_ext(label24)). */
1059
1060 if ((op & 0x01fc0000) == 0x003c0000)
1061 {
1062 LONGEST displ;
1063 CORE_ADDR call_dest;
1064 struct minimal_symbol *s;
1065
1066 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1067 if ((displ & 0x00800000) != 0)
1068 displ |= ~((LONGEST) 0x00ffffff);
1069
1070 call_dest = pc + 4 * displ;
1071 s = lookup_minimal_symbol_by_pc (call_dest);
1072
1073 if (s != NULL
1074 && SYMBOL_LINKAGE_NAME (s) != NULL
1075 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1076 {
1077 pc += 4;
1078 return pc;
1079 }
1080 }
1081 return orig_pc;
1082 }
1083
1084
1085 static struct frv_unwind_cache *
1086 frv_frame_unwind_cache (struct frame_info *this_frame,
1087 void **this_prologue_cache)
1088 {
1089 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1090 CORE_ADDR pc;
1091 ULONGEST this_base;
1092 struct frv_unwind_cache *info;
1093
1094 if ((*this_prologue_cache))
1095 return (*this_prologue_cache);
1096
1097 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1098 (*this_prologue_cache) = info;
1099 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1100
1101 /* Prologue analysis does the rest... */
1102 frv_analyze_prologue (gdbarch,
1103 get_frame_func (this_frame), this_frame, info);
1104
1105 return info;
1106 }
1107
1108 static void
1109 frv_extract_return_value (struct type *type, struct regcache *regcache,
1110 gdb_byte *valbuf)
1111 {
1112 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1113 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1114 int len = TYPE_LENGTH (type);
1115
1116 if (len <= 4)
1117 {
1118 ULONGEST gpr8_val;
1119 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1120 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1121 }
1122 else if (len == 8)
1123 {
1124 ULONGEST regval;
1125 regcache_cooked_read_unsigned (regcache, 8, &regval);
1126 store_unsigned_integer (valbuf, 4, byte_order, regval);
1127 regcache_cooked_read_unsigned (regcache, 9, &regval);
1128 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1129 }
1130 else
1131 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1132 }
1133
1134 static CORE_ADDR
1135 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1136 {
1137 /* Require dword alignment. */
1138 return align_down (sp, 8);
1139 }
1140
1141 static CORE_ADDR
1142 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1143 {
1144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1145 CORE_ADDR descr;
1146 char valbuf[4];
1147 CORE_ADDR start_addr;
1148
1149 /* If we can't find the function in the symbol table, then we assume
1150 that the function address is already in descriptor form. */
1151 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1152 || entry_point != start_addr)
1153 return entry_point;
1154
1155 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1156
1157 if (descr != 0)
1158 return descr;
1159
1160 /* Construct a non-canonical descriptor from space allocated on
1161 the stack. */
1162
1163 descr = value_as_long (value_allocate_space_in_inferior (8));
1164 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1165 write_memory (descr, valbuf, 4);
1166 store_unsigned_integer (valbuf, 4, byte_order,
1167 frv_fdpic_find_global_pointer (entry_point));
1168 write_memory (descr + 4, valbuf, 4);
1169 return descr;
1170 }
1171
1172 static CORE_ADDR
1173 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1174 struct target_ops *targ)
1175 {
1176 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1177 CORE_ADDR entry_point;
1178 CORE_ADDR got_address;
1179
1180 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1181 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1182
1183 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1184 return entry_point;
1185 else
1186 return addr;
1187 }
1188
1189 static CORE_ADDR
1190 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1191 struct regcache *regcache, CORE_ADDR bp_addr,
1192 int nargs, struct value **args, CORE_ADDR sp,
1193 int struct_return, CORE_ADDR struct_addr)
1194 {
1195 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1196 int argreg;
1197 int argnum;
1198 char *val;
1199 char valbuf[4];
1200 struct value *arg;
1201 struct type *arg_type;
1202 int len;
1203 enum type_code typecode;
1204 CORE_ADDR regval;
1205 int stack_space;
1206 int stack_offset;
1207 enum frv_abi abi = frv_abi (gdbarch);
1208 CORE_ADDR func_addr = find_function_addr (function, NULL);
1209
1210 #if 0
1211 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1212 nargs, (int) sp, struct_return, struct_addr);
1213 #endif
1214
1215 stack_space = 0;
1216 for (argnum = 0; argnum < nargs; ++argnum)
1217 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1218
1219 stack_space -= (6 * 4);
1220 if (stack_space > 0)
1221 sp -= stack_space;
1222
1223 /* Make sure stack is dword aligned. */
1224 sp = align_down (sp, 8);
1225
1226 stack_offset = 0;
1227
1228 argreg = 8;
1229
1230 if (struct_return)
1231 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1232 struct_addr);
1233
1234 for (argnum = 0; argnum < nargs; ++argnum)
1235 {
1236 arg = args[argnum];
1237 arg_type = check_typedef (value_type (arg));
1238 len = TYPE_LENGTH (arg_type);
1239 typecode = TYPE_CODE (arg_type);
1240
1241 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1242 {
1243 store_unsigned_integer (valbuf, 4, byte_order,
1244 value_address (arg));
1245 typecode = TYPE_CODE_PTR;
1246 len = 4;
1247 val = valbuf;
1248 }
1249 else if (abi == FRV_ABI_FDPIC
1250 && len == 4
1251 && typecode == TYPE_CODE_PTR
1252 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1253 {
1254 /* The FDPIC ABI requires function descriptors to be passed instead
1255 of entry points. */
1256 CORE_ADDR addr = extract_unsigned_integer
1257 (value_contents (arg), 4, byte_order);
1258 addr = find_func_descr (gdbarch, addr);
1259 store_unsigned_integer (valbuf, 4, byte_order, addr);
1260 typecode = TYPE_CODE_PTR;
1261 len = 4;
1262 val = valbuf;
1263 }
1264 else
1265 {
1266 val = (char *) value_contents (arg);
1267 }
1268
1269 while (len > 0)
1270 {
1271 int partial_len = (len < 4 ? len : 4);
1272
1273 if (argreg < 14)
1274 {
1275 regval = extract_unsigned_integer (val, partial_len, byte_order);
1276 #if 0
1277 printf(" Argnum %d data %x -> reg %d\n",
1278 argnum, (int) regval, argreg);
1279 #endif
1280 regcache_cooked_write_unsigned (regcache, argreg, regval);
1281 ++argreg;
1282 }
1283 else
1284 {
1285 #if 0
1286 printf(" Argnum %d data %x -> offset %d (%x)\n",
1287 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1288 #endif
1289 write_memory (sp + stack_offset, val, partial_len);
1290 stack_offset += align_up (partial_len, 4);
1291 }
1292 len -= partial_len;
1293 val += partial_len;
1294 }
1295 }
1296
1297 /* Set the return address. For the frv, the return breakpoint is
1298 always at BP_ADDR. */
1299 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1300
1301 if (abi == FRV_ABI_FDPIC)
1302 {
1303 /* Set the GOT register for the FDPIC ABI. */
1304 regcache_cooked_write_unsigned
1305 (regcache, first_gpr_regnum + 15,
1306 frv_fdpic_find_global_pointer (func_addr));
1307 }
1308
1309 /* Finally, update the SP register. */
1310 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1311
1312 return sp;
1313 }
1314
1315 static void
1316 frv_store_return_value (struct type *type, struct regcache *regcache,
1317 const gdb_byte *valbuf)
1318 {
1319 int len = TYPE_LENGTH (type);
1320
1321 if (len <= 4)
1322 {
1323 bfd_byte val[4];
1324 memset (val, 0, sizeof (val));
1325 memcpy (val + (4 - len), valbuf, len);
1326 regcache_cooked_write (regcache, 8, val);
1327 }
1328 else if (len == 8)
1329 {
1330 regcache_cooked_write (regcache, 8, valbuf);
1331 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1332 }
1333 else
1334 internal_error (__FILE__, __LINE__,
1335 _("Don't know how to return a %d-byte value."), len);
1336 }
1337
1338 static enum return_value_convention
1339 frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1340 struct type *valtype, struct regcache *regcache,
1341 gdb_byte *readbuf, const gdb_byte *writebuf)
1342 {
1343 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1344 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1345 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1346
1347 if (writebuf != NULL)
1348 {
1349 gdb_assert (!struct_return);
1350 frv_store_return_value (valtype, regcache, writebuf);
1351 }
1352
1353 if (readbuf != NULL)
1354 {
1355 gdb_assert (!struct_return);
1356 frv_extract_return_value (valtype, regcache, readbuf);
1357 }
1358
1359 if (struct_return)
1360 return RETURN_VALUE_STRUCT_CONVENTION;
1361 else
1362 return RETURN_VALUE_REGISTER_CONVENTION;
1363 }
1364
1365
1366 /* Hardware watchpoint / breakpoint support for the FR500
1367 and FR400. */
1368
1369 int
1370 frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
1371 {
1372 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
1373
1374 /* Watchpoints not supported on simulator. */
1375 if (strcmp (target_shortname, "sim") == 0)
1376 return 0;
1377
1378 if (type == bp_hardware_breakpoint)
1379 {
1380 if (var->num_hw_breakpoints == 0)
1381 return 0;
1382 else if (cnt <= var->num_hw_breakpoints)
1383 return 1;
1384 }
1385 else
1386 {
1387 if (var->num_hw_watchpoints == 0)
1388 return 0;
1389 else if (ot)
1390 return -1;
1391 else if (cnt <= var->num_hw_watchpoints)
1392 return 1;
1393 }
1394 return -1;
1395 }
1396
1397
1398 int
1399 frv_stopped_data_address (CORE_ADDR *addr_p)
1400 {
1401 struct frame_info *frame = get_current_frame ();
1402 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1403
1404 brr = get_frame_register_unsigned (frame, brr_regnum);
1405 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1406 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1407 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1408 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1409
1410 if (brr & (1<<11))
1411 *addr_p = dbar0;
1412 else if (brr & (1<<10))
1413 *addr_p = dbar1;
1414 else if (brr & (1<<9))
1415 *addr_p = dbar2;
1416 else if (brr & (1<<8))
1417 *addr_p = dbar3;
1418 else
1419 return 0;
1420
1421 return 1;
1422 }
1423
1424 int
1425 frv_have_stopped_data_address (void)
1426 {
1427 CORE_ADDR addr = 0;
1428 return frv_stopped_data_address (&addr);
1429 }
1430
1431 static CORE_ADDR
1432 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1433 {
1434 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1435 }
1436
1437 /* Given a GDB frame, determine the address of the calling function's
1438 frame. This will be used to create a new GDB frame struct. */
1439
1440 static void
1441 frv_frame_this_id (struct frame_info *this_frame,
1442 void **this_prologue_cache, struct frame_id *this_id)
1443 {
1444 struct frv_unwind_cache *info
1445 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1446 CORE_ADDR base;
1447 CORE_ADDR func;
1448 struct minimal_symbol *msym_stack;
1449 struct frame_id id;
1450
1451 /* The FUNC is easy. */
1452 func = get_frame_func (this_frame);
1453
1454 /* Check if the stack is empty. */
1455 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1456 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1457 return;
1458
1459 /* Hopefully the prologue analysis either correctly determined the
1460 frame's base (which is the SP from the previous frame), or set
1461 that base to "NULL". */
1462 base = info->prev_sp;
1463 if (base == 0)
1464 return;
1465
1466 id = frame_id_build (base, func);
1467 (*this_id) = id;
1468 }
1469
1470 static struct value *
1471 frv_frame_prev_register (struct frame_info *this_frame,
1472 void **this_prologue_cache, int regnum)
1473 {
1474 struct frv_unwind_cache *info
1475 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1476 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1477 }
1478
1479 static const struct frame_unwind frv_frame_unwind = {
1480 NORMAL_FRAME,
1481 frv_frame_this_id,
1482 frv_frame_prev_register,
1483 NULL,
1484 default_frame_sniffer
1485 };
1486
1487 static CORE_ADDR
1488 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1489 {
1490 struct frv_unwind_cache *info
1491 = frv_frame_unwind_cache (this_frame, this_cache);
1492 return info->base;
1493 }
1494
1495 static const struct frame_base frv_frame_base = {
1496 &frv_frame_unwind,
1497 frv_frame_base_address,
1498 frv_frame_base_address,
1499 frv_frame_base_address
1500 };
1501
1502 static CORE_ADDR
1503 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1504 {
1505 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1506 }
1507
1508
1509 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1510 frame. The frame ID's base needs to match the TOS value saved by
1511 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1512
1513 static struct frame_id
1514 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1515 {
1516 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1517 return frame_id_build (sp, get_frame_pc (this_frame));
1518 }
1519
1520 static struct gdbarch *
1521 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1522 {
1523 struct gdbarch *gdbarch;
1524 struct gdbarch_tdep *var;
1525 int elf_flags = 0;
1526
1527 /* Check to see if we've already built an appropriate architecture
1528 object for this executable. */
1529 arches = gdbarch_list_lookup_by_info (arches, &info);
1530 if (arches)
1531 return arches->gdbarch;
1532
1533 /* Select the right tdep structure for this variant. */
1534 var = new_variant ();
1535 switch (info.bfd_arch_info->mach)
1536 {
1537 case bfd_mach_frv:
1538 case bfd_mach_frvsimple:
1539 case bfd_mach_fr500:
1540 case bfd_mach_frvtomcat:
1541 case bfd_mach_fr550:
1542 set_variant_num_gprs (var, 64);
1543 set_variant_num_fprs (var, 64);
1544 break;
1545
1546 case bfd_mach_fr400:
1547 case bfd_mach_fr450:
1548 set_variant_num_gprs (var, 32);
1549 set_variant_num_fprs (var, 32);
1550 break;
1551
1552 default:
1553 /* Never heard of this variant. */
1554 return 0;
1555 }
1556
1557 /* Extract the ELF flags, if available. */
1558 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1559 elf_flags = elf_elfheader (info.abfd)->e_flags;
1560
1561 if (elf_flags & EF_FRV_FDPIC)
1562 set_variant_abi_fdpic (var);
1563
1564 if (elf_flags & EF_FRV_CPU_FR450)
1565 set_variant_scratch_registers (var);
1566
1567 gdbarch = gdbarch_alloc (&info, var);
1568
1569 set_gdbarch_short_bit (gdbarch, 16);
1570 set_gdbarch_int_bit (gdbarch, 32);
1571 set_gdbarch_long_bit (gdbarch, 32);
1572 set_gdbarch_long_long_bit (gdbarch, 64);
1573 set_gdbarch_float_bit (gdbarch, 32);
1574 set_gdbarch_double_bit (gdbarch, 64);
1575 set_gdbarch_long_double_bit (gdbarch, 64);
1576 set_gdbarch_ptr_bit (gdbarch, 32);
1577
1578 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1579 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1580
1581 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1582 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1583 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1584
1585 set_gdbarch_register_name (gdbarch, frv_register_name);
1586 set_gdbarch_register_type (gdbarch, frv_register_type);
1587 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1588
1589 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1590 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1591
1592 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1593 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1594 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1595 set_gdbarch_adjust_breakpoint_address
1596 (gdbarch, frv_adjust_breakpoint_address);
1597
1598 set_gdbarch_return_value (gdbarch, frv_return_value);
1599
1600 /* Frame stuff. */
1601 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1602 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1603 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1604 frame_base_set_default (gdbarch, &frv_frame_base);
1605 /* We set the sniffer lower down after the OSABI hooks have been
1606 established. */
1607
1608 /* Settings for calling functions in the inferior. */
1609 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1610 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1611
1612 /* Settings that should be unnecessary. */
1613 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1614
1615 /* Hardware watchpoint / breakpoint support. */
1616 switch (info.bfd_arch_info->mach)
1617 {
1618 case bfd_mach_frv:
1619 case bfd_mach_frvsimple:
1620 case bfd_mach_fr500:
1621 case bfd_mach_frvtomcat:
1622 /* fr500-style hardware debugging support. */
1623 var->num_hw_watchpoints = 4;
1624 var->num_hw_breakpoints = 4;
1625 break;
1626
1627 case bfd_mach_fr400:
1628 case bfd_mach_fr450:
1629 /* fr400-style hardware debugging support. */
1630 var->num_hw_watchpoints = 2;
1631 var->num_hw_breakpoints = 4;
1632 break;
1633
1634 default:
1635 /* Otherwise, assume we don't have hardware debugging support. */
1636 var->num_hw_watchpoints = 0;
1637 var->num_hw_breakpoints = 0;
1638 break;
1639 }
1640
1641 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1642 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1643 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1644 frv_convert_from_func_ptr_addr);
1645
1646 set_solib_ops (gdbarch, &frv_so_ops);
1647
1648 /* Hook in ABI-specific overrides, if they have been registered. */
1649 gdbarch_init_osabi (info, gdbarch);
1650
1651 /* Set the fallback (prologue based) frame sniffer. */
1652 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1653
1654 /* Enable TLS support. */
1655 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1656 frv_fetch_objfile_link_map);
1657
1658 return gdbarch;
1659 }
1660
1661 void
1662 _initialize_frv_tdep (void)
1663 {
1664 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1665 }
This page took 0.102032 seconds and 5 git commands to generate.