gdb/
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "arch-utils.h"
25 #include "regcache.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "dis-asm.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33 #include "gdb/sim-frv.h"
34 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
35 #include "symtab.h"
36 #include "elf-bfd.h"
37 #include "elf/frv.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "solib.h"
41 #include "frv-tdep.h"
42
43 extern void _initialize_frv_tdep (void);
44
45 struct frv_unwind_cache /* was struct frame_extra_info */
46 {
47 /* The previous frame's inner-most stack address. Used as this
48 frame ID's stack_addr. */
49 CORE_ADDR prev_sp;
50
51 /* The frame's base, optionally used by the high-level debug info. */
52 CORE_ADDR base;
53
54 /* Table indicating the location of each and every register. */
55 struct trad_frame_saved_reg *saved_regs;
56 };
57
58 /* A structure describing a particular variant of the FRV.
59 We allocate and initialize one of these structures when we create
60 the gdbarch object for a variant.
61
62 At the moment, all the FR variants we support differ only in which
63 registers are present; the portable code of GDB knows that
64 registers whose names are the empty string don't exist, so the
65 `register_names' array captures all the per-variant information we
66 need.
67
68 in the future, if we need to have per-variant maps for raw size,
69 virtual type, etc., we should replace register_names with an array
70 of structures, each of which gives all the necessary info for one
71 register. Don't stick parallel arrays in here --- that's so
72 Fortran. */
73 struct gdbarch_tdep
74 {
75 /* Which ABI is in use? */
76 enum frv_abi frv_abi;
77
78 /* How many general-purpose registers does this variant have? */
79 int num_gprs;
80
81 /* How many floating-point registers does this variant have? */
82 int num_fprs;
83
84 /* How many hardware watchpoints can it support? */
85 int num_hw_watchpoints;
86
87 /* How many hardware breakpoints can it support? */
88 int num_hw_breakpoints;
89
90 /* Register names. */
91 char **register_names;
92 };
93
94 /* Return the FR-V ABI associated with GDBARCH. */
95 enum frv_abi
96 frv_abi (struct gdbarch *gdbarch)
97 {
98 return gdbarch_tdep (gdbarch)->frv_abi;
99 }
100
101 /* Fetch the interpreter and executable loadmap addresses (for shared
102 library support) for the FDPIC ABI. Return 0 if successful, -1 if
103 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
104 int
105 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
106 CORE_ADDR *exec_addr)
107 {
108 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
109 return -1;
110 else
111 {
112 struct regcache *regcache = get_current_regcache ();
113
114 if (interp_addr != NULL)
115 {
116 ULONGEST val;
117 regcache_cooked_read_unsigned (regcache,
118 fdpic_loadmap_interp_regnum, &val);
119 *interp_addr = val;
120 }
121 if (exec_addr != NULL)
122 {
123 ULONGEST val;
124 regcache_cooked_read_unsigned (regcache,
125 fdpic_loadmap_exec_regnum, &val);
126 *exec_addr = val;
127 }
128 return 0;
129 }
130 }
131
132 /* Allocate a new variant structure, and set up default values for all
133 the fields. */
134 static struct gdbarch_tdep *
135 new_variant (void)
136 {
137 struct gdbarch_tdep *var;
138 int r;
139 char buf[20];
140
141 var = xmalloc (sizeof (*var));
142 memset (var, 0, sizeof (*var));
143
144 var->frv_abi = FRV_ABI_EABI;
145 var->num_gprs = 64;
146 var->num_fprs = 64;
147 var->num_hw_watchpoints = 0;
148 var->num_hw_breakpoints = 0;
149
150 /* By default, don't supply any general-purpose or floating-point
151 register names. */
152 var->register_names
153 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
154 * sizeof (char *));
155 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
156 var->register_names[r] = "";
157
158 /* Do, however, supply default names for the known special-purpose
159 registers. */
160
161 var->register_names[pc_regnum] = "pc";
162 var->register_names[lr_regnum] = "lr";
163 var->register_names[lcr_regnum] = "lcr";
164
165 var->register_names[psr_regnum] = "psr";
166 var->register_names[ccr_regnum] = "ccr";
167 var->register_names[cccr_regnum] = "cccr";
168 var->register_names[tbr_regnum] = "tbr";
169
170 /* Debug registers. */
171 var->register_names[brr_regnum] = "brr";
172 var->register_names[dbar0_regnum] = "dbar0";
173 var->register_names[dbar1_regnum] = "dbar1";
174 var->register_names[dbar2_regnum] = "dbar2";
175 var->register_names[dbar3_regnum] = "dbar3";
176
177 /* iacc0 (Only found on MB93405.) */
178 var->register_names[iacc0h_regnum] = "iacc0h";
179 var->register_names[iacc0l_regnum] = "iacc0l";
180 var->register_names[iacc0_regnum] = "iacc0";
181
182 /* fsr0 (Found on FR555 and FR501.) */
183 var->register_names[fsr0_regnum] = "fsr0";
184
185 /* acc0 - acc7. The architecture provides for the possibility of many
186 more (up to 64 total), but we don't want to make that big of a hole
187 in the G packet. If we need more in the future, we'll add them
188 elsewhere. */
189 for (r = acc0_regnum; r <= acc7_regnum; r++)
190 {
191 char *buf;
192 buf = xstrprintf ("acc%d", r - acc0_regnum);
193 var->register_names[r] = buf;
194 }
195
196 /* accg0 - accg7: These are one byte registers. The remote protocol
197 provides the raw values packed four into a slot. accg0123 and
198 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
199 We don't provide names for accg0123 and accg4567 since the user will
200 likely not want to see these raw values. */
201
202 for (r = accg0_regnum; r <= accg7_regnum; r++)
203 {
204 char *buf;
205 buf = xstrprintf ("accg%d", r - accg0_regnum);
206 var->register_names[r] = buf;
207 }
208
209 /* msr0 and msr1. */
210
211 var->register_names[msr0_regnum] = "msr0";
212 var->register_names[msr1_regnum] = "msr1";
213
214 /* gner and fner registers. */
215 var->register_names[gner0_regnum] = "gner0";
216 var->register_names[gner1_regnum] = "gner1";
217 var->register_names[fner0_regnum] = "fner0";
218 var->register_names[fner1_regnum] = "fner1";
219
220 return var;
221 }
222
223
224 /* Indicate that the variant VAR has NUM_GPRS general-purpose
225 registers, and fill in the names array appropriately. */
226 static void
227 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
228 {
229 int r;
230
231 var->num_gprs = num_gprs;
232
233 for (r = 0; r < num_gprs; ++r)
234 {
235 char buf[20];
236
237 sprintf (buf, "gr%d", r);
238 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
239 }
240 }
241
242
243 /* Indicate that the variant VAR has NUM_FPRS floating-point
244 registers, and fill in the names array appropriately. */
245 static void
246 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
247 {
248 int r;
249
250 var->num_fprs = num_fprs;
251
252 for (r = 0; r < num_fprs; ++r)
253 {
254 char buf[20];
255
256 sprintf (buf, "fr%d", r);
257 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
258 }
259 }
260
261 static void
262 set_variant_abi_fdpic (struct gdbarch_tdep *var)
263 {
264 var->frv_abi = FRV_ABI_FDPIC;
265 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
266 var->register_names[fdpic_loadmap_interp_regnum]
267 = xstrdup ("loadmap_interp");
268 }
269
270 static void
271 set_variant_scratch_registers (struct gdbarch_tdep *var)
272 {
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
277 }
278
279 static const char *
280 frv_register_name (struct gdbarch *gdbarch, int reg)
281 {
282 if (reg < 0)
283 return "?toosmall?";
284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
285 return "?toolarge?";
286
287 return gdbarch_tdep (gdbarch)->register_names[reg];
288 }
289
290
291 static struct type *
292 frv_register_type (struct gdbarch *gdbarch, int reg)
293 {
294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
295 return builtin_type (gdbarch)->builtin_float;
296 else if (reg == iacc0_regnum)
297 return builtin_type (gdbarch)->builtin_int64;
298 else
299 return builtin_type (gdbarch)->builtin_int32;
300 }
301
302 static enum register_status
303 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
304 int reg, gdb_byte *buffer)
305 {
306 enum register_status status;
307
308 if (reg == iacc0_regnum)
309 {
310 status = regcache_raw_read (regcache, iacc0h_regnum, buffer);
311 if (status == REG_VALID)
312 status = regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
313 }
314 else if (accg0_regnum <= reg && reg <= accg7_regnum)
315 {
316 /* The accg raw registers have four values in each slot with the
317 lowest register number occupying the first byte. */
318
319 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
320 int byte_num = (reg - accg0_regnum) % 4;
321 gdb_byte buf[4];
322
323 status = regcache_raw_read (regcache, raw_regnum, buf);
324 if (status == REG_VALID)
325 {
326 memset (buffer, 0, 4);
327 /* FR-V is big endian, so put the requested byte in the
328 first byte of the buffer allocated to hold the
329 pseudo-register. */
330 buffer[0] = buf[byte_num];
331 }
332 }
333 else
334 gdb_assert_not_reached ("invalid pseudo register number");
335
336 return status;
337 }
338
339 static void
340 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
341 int reg, const gdb_byte *buffer)
342 {
343 if (reg == iacc0_regnum)
344 {
345 regcache_raw_write (regcache, iacc0h_regnum, buffer);
346 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
347 }
348 else if (accg0_regnum <= reg && reg <= accg7_regnum)
349 {
350 /* The accg raw registers have four values in each slot with the
351 lowest register number occupying the first byte. */
352
353 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
354 int byte_num = (reg - accg0_regnum) % 4;
355 char buf[4];
356
357 regcache_raw_read (regcache, raw_regnum, buf);
358 buf[byte_num] = ((bfd_byte *) buffer)[0];
359 regcache_raw_write (regcache, raw_regnum, buf);
360 }
361 }
362
363 static int
364 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
365 {
366 static const int spr_map[] =
367 {
368 H_SPR_PSR, /* psr_regnum */
369 H_SPR_CCR, /* ccr_regnum */
370 H_SPR_CCCR, /* cccr_regnum */
371 -1, /* fdpic_loadmap_exec_regnum */
372 -1, /* fdpic_loadmap_interp_regnum */
373 -1, /* 134 */
374 H_SPR_TBR, /* tbr_regnum */
375 H_SPR_BRR, /* brr_regnum */
376 H_SPR_DBAR0, /* dbar0_regnum */
377 H_SPR_DBAR1, /* dbar1_regnum */
378 H_SPR_DBAR2, /* dbar2_regnum */
379 H_SPR_DBAR3, /* dbar3_regnum */
380 H_SPR_SCR0, /* scr0_regnum */
381 H_SPR_SCR1, /* scr1_regnum */
382 H_SPR_SCR2, /* scr2_regnum */
383 H_SPR_SCR3, /* scr3_regnum */
384 H_SPR_LR, /* lr_regnum */
385 H_SPR_LCR, /* lcr_regnum */
386 H_SPR_IACC0H, /* iacc0h_regnum */
387 H_SPR_IACC0L, /* iacc0l_regnum */
388 H_SPR_FSR0, /* fsr0_regnum */
389 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
390 -1, /* acc0_regnum */
391 -1, /* acc1_regnum */
392 -1, /* acc2_regnum */
393 -1, /* acc3_regnum */
394 -1, /* acc4_regnum */
395 -1, /* acc5_regnum */
396 -1, /* acc6_regnum */
397 -1, /* acc7_regnum */
398 -1, /* acc0123_regnum */
399 -1, /* acc4567_regnum */
400 H_SPR_MSR0, /* msr0_regnum */
401 H_SPR_MSR1, /* msr1_regnum */
402 H_SPR_GNER0, /* gner0_regnum */
403 H_SPR_GNER1, /* gner1_regnum */
404 H_SPR_FNER0, /* fner0_regnum */
405 H_SPR_FNER1, /* fner1_regnum */
406 };
407
408 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
409
410 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
411 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
412 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
413 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
414 else if (pc_regnum == reg)
415 return SIM_FRV_PC_REGNUM;
416 else if (reg >= first_spr_regnum
417 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
418 {
419 int spr_reg_offset = spr_map[reg - first_spr_regnum];
420
421 if (spr_reg_offset < 0)
422 return SIM_REGNO_DOES_NOT_EXIST;
423 else
424 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
425 }
426
427 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
428 }
429
430 static const unsigned char *
431 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
432 {
433 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
434 *lenp = sizeof (breakpoint);
435 return breakpoint;
436 }
437
438 /* Define the maximum number of instructions which may be packed into a
439 bundle (VLIW instruction). */
440 static const int max_instrs_per_bundle = 8;
441
442 /* Define the size (in bytes) of an FR-V instruction. */
443 static const int frv_instr_size = 4;
444
445 /* Adjust a breakpoint's address to account for the FR-V architecture's
446 constraint that a break instruction must not appear as any but the
447 first instruction in the bundle. */
448 static CORE_ADDR
449 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
450 {
451 int count = max_instrs_per_bundle;
452 CORE_ADDR addr = bpaddr - frv_instr_size;
453 CORE_ADDR func_start = get_pc_function_start (bpaddr);
454
455 /* Find the end of the previous packing sequence. This will be indicated
456 by either attempting to access some inaccessible memory or by finding
457 an instruction word whose packing bit is set to one. */
458 while (count-- > 0 && addr >= func_start)
459 {
460 char instr[frv_instr_size];
461 int status;
462
463 status = target_read_memory (addr, instr, sizeof instr);
464
465 if (status != 0)
466 break;
467
468 /* This is a big endian architecture, so byte zero will have most
469 significant byte. The most significant bit of this byte is the
470 packing bit. */
471 if (instr[0] & 0x80)
472 break;
473
474 addr -= frv_instr_size;
475 }
476
477 if (count > 0)
478 bpaddr = addr + frv_instr_size;
479
480 return bpaddr;
481 }
482
483
484 /* Return true if REG is a caller-saves ("scratch") register,
485 false otherwise. */
486 static int
487 is_caller_saves_reg (int reg)
488 {
489 return ((4 <= reg && reg <= 7)
490 || (14 <= reg && reg <= 15)
491 || (32 <= reg && reg <= 47));
492 }
493
494
495 /* Return true if REG is a callee-saves register, false otherwise. */
496 static int
497 is_callee_saves_reg (int reg)
498 {
499 return ((16 <= reg && reg <= 31)
500 || (48 <= reg && reg <= 63));
501 }
502
503
504 /* Return true if REG is an argument register, false otherwise. */
505 static int
506 is_argument_reg (int reg)
507 {
508 return (8 <= reg && reg <= 13);
509 }
510
511 /* Scan an FR-V prologue, starting at PC, until frame->PC.
512 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
513 We assume FRAME's saved_regs array has already been allocated and cleared.
514 Return the first PC value after the prologue.
515
516 Note that, for unoptimized code, we almost don't need this function
517 at all; all arguments and locals live on the stack, so we just need
518 the FP to find everything. The catch: structures passed by value
519 have their addresses living in registers; they're never spilled to
520 the stack. So if you ever want to be able to get to these
521 arguments in any frame but the top, you'll need to do this serious
522 prologue analysis. */
523 static CORE_ADDR
524 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
525 struct frame_info *this_frame,
526 struct frv_unwind_cache *info)
527 {
528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
529
530 /* When writing out instruction bitpatterns, we use the following
531 letters to label instruction fields:
532 P - The parallel bit. We don't use this.
533 J - The register number of GRj in the instruction description.
534 K - The register number of GRk in the instruction description.
535 I - The register number of GRi.
536 S - a signed imediate offset.
537 U - an unsigned immediate offset.
538
539 The dots below the numbers indicate where hex digit boundaries
540 fall, to make it easier to check the numbers. */
541
542 /* Non-zero iff we've seen the instruction that initializes the
543 frame pointer for this function's frame. */
544 int fp_set = 0;
545
546 /* If fp_set is non_zero, then this is the distance from
547 the stack pointer to frame pointer: fp = sp + fp_offset. */
548 int fp_offset = 0;
549
550 /* Total size of frame prior to any alloca operations. */
551 int framesize = 0;
552
553 /* Flag indicating if lr has been saved on the stack. */
554 int lr_saved_on_stack = 0;
555
556 /* The number of the general-purpose register we saved the return
557 address ("link register") in, or -1 if we haven't moved it yet. */
558 int lr_save_reg = -1;
559
560 /* Offset (from sp) at which lr has been saved on the stack. */
561
562 int lr_sp_offset = 0;
563
564 /* If gr_saved[i] is non-zero, then we've noticed that general
565 register i has been saved at gr_sp_offset[i] from the stack
566 pointer. */
567 char gr_saved[64];
568 int gr_sp_offset[64];
569
570 /* The address of the most recently scanned prologue instruction. */
571 CORE_ADDR last_prologue_pc;
572
573 /* The address of the next instruction. */
574 CORE_ADDR next_pc;
575
576 /* The upper bound to of the pc values to scan. */
577 CORE_ADDR lim_pc;
578
579 memset (gr_saved, 0, sizeof (gr_saved));
580
581 last_prologue_pc = pc;
582
583 /* Try to compute an upper limit (on how far to scan) based on the
584 line number info. */
585 lim_pc = skip_prologue_using_sal (gdbarch, pc);
586 /* If there's no line number info, lim_pc will be 0. In that case,
587 set the limit to be 100 instructions away from pc. Hopefully, this
588 will be far enough away to account for the entire prologue. Don't
589 worry about overshooting the end of the function. The scan loop
590 below contains some checks to avoid scanning unreasonably far. */
591 if (lim_pc == 0)
592 lim_pc = pc + 400;
593
594 /* If we have a frame, we don't want to scan past the frame's pc. This
595 will catch those cases where the pc is in the prologue. */
596 if (this_frame)
597 {
598 CORE_ADDR frame_pc = get_frame_pc (this_frame);
599 if (frame_pc < lim_pc)
600 lim_pc = frame_pc;
601 }
602
603 /* Scan the prologue. */
604 while (pc < lim_pc)
605 {
606 char buf[frv_instr_size];
607 LONGEST op;
608
609 if (target_read_memory (pc, buf, sizeof buf) != 0)
610 break;
611 op = extract_signed_integer (buf, sizeof buf, byte_order);
612
613 next_pc = pc + 4;
614
615 /* The tests in this chain of ifs should be in order of
616 decreasing selectivity, so that more particular patterns get
617 to fire before less particular patterns. */
618
619 /* Some sort of control transfer instruction: stop scanning prologue.
620 Integer Conditional Branch:
621 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
622 Floating-point / media Conditional Branch:
623 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
624 LCR Conditional Branch to LR
625 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
626 Integer conditional Branches to LR
627 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
628 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
629 Floating-point/Media Branches to LR
630 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
631 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
632 Jump and Link
633 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
634 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
635 Call
636 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
637 Return from Trap
638 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
639 Integer Conditional Trap
640 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
641 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
642 Floating-point /media Conditional Trap
643 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
644 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
645 Break
646 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
647 Media Trap
648 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
649 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
650 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
651 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
652 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
653 {
654 /* Stop scanning; not in prologue any longer. */
655 break;
656 }
657
658 /* Loading something from memory into fp probably means that
659 we're in the epilogue. Stop scanning the prologue.
660 ld @(GRi, GRk), fp
661 X 000010 0000010 XXXXXX 000100 XXXXXX
662 ldi @(GRi, d12), fp
663 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
664 else if ((op & 0x7ffc0fc0) == 0x04080100
665 || (op & 0x7ffc0000) == 0x04c80000)
666 {
667 break;
668 }
669
670 /* Setting the FP from the SP:
671 ori sp, 0, fp
672 P 000010 0100010 000001 000000000000 = 0x04881000
673 0 111111 1111111 111111 111111111111 = 0x7fffffff
674 . . . . . . . .
675 We treat this as part of the prologue. */
676 else if ((op & 0x7fffffff) == 0x04881000)
677 {
678 fp_set = 1;
679 fp_offset = 0;
680 last_prologue_pc = next_pc;
681 }
682
683 /* Move the link register to the scratch register grJ, before saving:
684 movsg lr, grJ
685 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
686 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
687 . . . . . . . .
688 We treat this as part of the prologue. */
689 else if ((op & 0x7fffffc0) == 0x080d01c0)
690 {
691 int gr_j = op & 0x3f;
692
693 /* If we're moving it to a scratch register, that's fine. */
694 if (is_caller_saves_reg (gr_j))
695 {
696 lr_save_reg = gr_j;
697 last_prologue_pc = next_pc;
698 }
699 }
700
701 /* To save multiple callee-saves registers on the stack, at
702 offset zero:
703
704 std grK,@(sp,gr0)
705 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
706 0 000000 1111111 111111 111111 111111 = 0x01ffffff
707
708 stq grK,@(sp,gr0)
709 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
710 0 000000 1111111 111111 111111 111111 = 0x01ffffff
711 . . . . . . . .
712 We treat this as part of the prologue, and record the register's
713 saved address in the frame structure. */
714 else if ((op & 0x01ffffff) == 0x000c10c0
715 || (op & 0x01ffffff) == 0x000c1100)
716 {
717 int gr_k = ((op >> 25) & 0x3f);
718 int ope = ((op >> 6) & 0x3f);
719 int count;
720 int i;
721
722 /* Is it an std or an stq? */
723 if (ope == 0x03)
724 count = 2;
725 else
726 count = 4;
727
728 /* Is it really a callee-saves register? */
729 if (is_callee_saves_reg (gr_k))
730 {
731 for (i = 0; i < count; i++)
732 {
733 gr_saved[gr_k + i] = 1;
734 gr_sp_offset[gr_k + i] = 4 * i;
735 }
736 last_prologue_pc = next_pc;
737 }
738 }
739
740 /* Adjusting the stack pointer. (The stack pointer is GR1.)
741 addi sp, S, sp
742 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
743 0 111111 1111111 111111 000000000000 = 0x7ffff000
744 . . . . . . . .
745 We treat this as part of the prologue. */
746 else if ((op & 0x7ffff000) == 0x02401000)
747 {
748 if (framesize == 0)
749 {
750 /* Sign-extend the twelve-bit field.
751 (Isn't there a better way to do this?) */
752 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
753
754 framesize -= s;
755 last_prologue_pc = pc;
756 }
757 else
758 {
759 /* If the prologue is being adjusted again, we've
760 likely gone too far; i.e. we're probably in the
761 epilogue. */
762 break;
763 }
764 }
765
766 /* Setting the FP to a constant distance from the SP:
767 addi sp, S, fp
768 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
769 0 111111 1111111 111111 000000000000 = 0x7ffff000
770 . . . . . . . .
771 We treat this as part of the prologue. */
772 else if ((op & 0x7ffff000) == 0x04401000)
773 {
774 /* Sign-extend the twelve-bit field.
775 (Isn't there a better way to do this?) */
776 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
777 fp_set = 1;
778 fp_offset = s;
779 last_prologue_pc = pc;
780 }
781
782 /* To spill an argument register to a scratch register:
783 ori GRi, 0, GRk
784 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
785 0 000000 1111111 000000 111111111111 = 0x01fc0fff
786 . . . . . . . .
787 For the time being, we treat this as a prologue instruction,
788 assuming that GRi is an argument register. This one's kind
789 of suspicious, because it seems like it could be part of a
790 legitimate body instruction. But we only come here when the
791 source info wasn't helpful, so we have to do the best we can.
792 Hopefully once GCC and GDB agree on how to emit line number
793 info for prologues, then this code will never come into play. */
794 else if ((op & 0x01fc0fff) == 0x00880000)
795 {
796 int gr_i = ((op >> 12) & 0x3f);
797
798 /* Make sure that the source is an arg register; if it is, we'll
799 treat it as a prologue instruction. */
800 if (is_argument_reg (gr_i))
801 last_prologue_pc = next_pc;
802 }
803
804 /* To spill 16-bit values to the stack:
805 sthi GRk, @(fp, s)
806 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
807 0 000000 1111111 111111 000000000000 = 0x01fff000
808 . . . . . . . .
809 And for 8-bit values, we use STB instructions.
810 stbi GRk, @(fp, s)
811 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
812 0 000000 1111111 111111 000000000000 = 0x01fff000
813 . . . . . . . .
814 We check that GRk is really an argument register, and treat
815 all such as part of the prologue. */
816 else if ( (op & 0x01fff000) == 0x01442000
817 || (op & 0x01fff000) == 0x01402000)
818 {
819 int gr_k = ((op >> 25) & 0x3f);
820
821 /* Make sure that GRk is really an argument register; treat
822 it as a prologue instruction if so. */
823 if (is_argument_reg (gr_k))
824 last_prologue_pc = next_pc;
825 }
826
827 /* To save multiple callee-saves register on the stack, at a
828 non-zero offset:
829
830 stdi GRk, @(sp, s)
831 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
832 0 000000 1111111 111111 000000000000 = 0x01fff000
833 . . . . . . . .
834 stqi GRk, @(sp, s)
835 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
836 0 000000 1111111 111111 000000000000 = 0x01fff000
837 . . . . . . . .
838 We treat this as part of the prologue, and record the register's
839 saved address in the frame structure. */
840 else if ((op & 0x01fff000) == 0x014c1000
841 || (op & 0x01fff000) == 0x01501000)
842 {
843 int gr_k = ((op >> 25) & 0x3f);
844 int count;
845 int i;
846
847 /* Is it a stdi or a stqi? */
848 if ((op & 0x01fff000) == 0x014c1000)
849 count = 2;
850 else
851 count = 4;
852
853 /* Is it really a callee-saves register? */
854 if (is_callee_saves_reg (gr_k))
855 {
856 /* Sign-extend the twelve-bit field.
857 (Isn't there a better way to do this?) */
858 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
859
860 for (i = 0; i < count; i++)
861 {
862 gr_saved[gr_k + i] = 1;
863 gr_sp_offset[gr_k + i] = s + (4 * i);
864 }
865 last_prologue_pc = next_pc;
866 }
867 }
868
869 /* Storing any kind of integer register at any constant offset
870 from any other register.
871
872 st GRk, @(GRi, gr0)
873 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
874 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
875 . . . . . . . .
876 sti GRk, @(GRi, d12)
877 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
878 0 000000 1111111 000000 000000000000 = 0x01fc0000
879 . . . . . . . .
880 These could be almost anything, but a lot of prologue
881 instructions fall into this pattern, so let's decode the
882 instruction once, and then work at a higher level. */
883 else if (((op & 0x01fc0fff) == 0x000c0080)
884 || ((op & 0x01fc0000) == 0x01480000))
885 {
886 int gr_k = ((op >> 25) & 0x3f);
887 int gr_i = ((op >> 12) & 0x3f);
888 int offset;
889
890 /* Are we storing with gr0 as an offset, or using an
891 immediate value? */
892 if ((op & 0x01fc0fff) == 0x000c0080)
893 offset = 0;
894 else
895 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
896
897 /* If the address isn't relative to the SP or FP, it's not a
898 prologue instruction. */
899 if (gr_i != sp_regnum && gr_i != fp_regnum)
900 {
901 /* Do nothing; not a prologue instruction. */
902 }
903
904 /* Saving the old FP in the new frame (relative to the SP). */
905 else if (gr_k == fp_regnum && gr_i == sp_regnum)
906 {
907 gr_saved[fp_regnum] = 1;
908 gr_sp_offset[fp_regnum] = offset;
909 last_prologue_pc = next_pc;
910 }
911
912 /* Saving callee-saves register(s) on the stack, relative to
913 the SP. */
914 else if (gr_i == sp_regnum
915 && is_callee_saves_reg (gr_k))
916 {
917 gr_saved[gr_k] = 1;
918 if (gr_i == sp_regnum)
919 gr_sp_offset[gr_k] = offset;
920 else
921 gr_sp_offset[gr_k] = offset + fp_offset;
922 last_prologue_pc = next_pc;
923 }
924
925 /* Saving the scratch register holding the return address. */
926 else if (lr_save_reg != -1
927 && gr_k == lr_save_reg)
928 {
929 lr_saved_on_stack = 1;
930 if (gr_i == sp_regnum)
931 lr_sp_offset = offset;
932 else
933 lr_sp_offset = offset + fp_offset;
934 last_prologue_pc = next_pc;
935 }
936
937 /* Spilling int-sized arguments to the stack. */
938 else if (is_argument_reg (gr_k))
939 last_prologue_pc = next_pc;
940 }
941 pc = next_pc;
942 }
943
944 if (this_frame && info)
945 {
946 int i;
947 ULONGEST this_base;
948
949 /* If we know the relationship between the stack and frame
950 pointers, record the addresses of the registers we noticed.
951 Note that we have to do this as a separate step at the end,
952 because instructions may save relative to the SP, but we need
953 their addresses relative to the FP. */
954 if (fp_set)
955 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
956 else
957 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
958
959 for (i = 0; i < 64; i++)
960 if (gr_saved[i])
961 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
962
963 info->prev_sp = this_base - fp_offset + framesize;
964 info->base = this_base;
965
966 /* If LR was saved on the stack, record its location. */
967 if (lr_saved_on_stack)
968 info->saved_regs[lr_regnum].addr
969 = this_base - fp_offset + lr_sp_offset;
970
971 /* The call instruction moves the caller's PC in the callee's LR.
972 Since this is an unwind, do the reverse. Copy the location of LR
973 into PC (the address / regnum) so that a request for PC will be
974 converted into a request for the LR. */
975 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
976
977 /* Save the previous frame's computed SP value. */
978 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
979 }
980
981 return last_prologue_pc;
982 }
983
984
985 static CORE_ADDR
986 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
987 {
988 CORE_ADDR func_addr, func_end, new_pc;
989
990 new_pc = pc;
991
992 /* If the line table has entry for a line *within* the function
993 (i.e., not in the prologue, and not past the end), then that's
994 our location. */
995 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
996 {
997 struct symtab_and_line sal;
998
999 sal = find_pc_line (func_addr, 0);
1000
1001 if (sal.line != 0 && sal.end < func_end)
1002 {
1003 new_pc = sal.end;
1004 }
1005 }
1006
1007 /* The FR-V prologue is at least five instructions long (twenty bytes).
1008 If we didn't find a real source location past that, then
1009 do a full analysis of the prologue. */
1010 if (new_pc < pc + 20)
1011 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1012
1013 return new_pc;
1014 }
1015
1016
1017 /* Examine the instruction pointed to by PC. If it corresponds to
1018 a call to __main, return the address of the next instruction.
1019 Otherwise, return PC. */
1020
1021 static CORE_ADDR
1022 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1023 {
1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1025 gdb_byte buf[4];
1026 unsigned long op;
1027 CORE_ADDR orig_pc = pc;
1028
1029 if (target_read_memory (pc, buf, 4))
1030 return pc;
1031 op = extract_unsigned_integer (buf, 4, byte_order);
1032
1033 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1034 to the call instruction.
1035
1036 Skip over this instruction if present. It won't be present in
1037 non-PIC code, and even in PIC code, it might not be present.
1038 (This is due to the fact that GR15, the FDPIC register, already
1039 contains the correct value.)
1040
1041 The general form of the LDI is given first, followed by the
1042 specific instruction with the GRi and GRk filled in as FP and
1043 GR15.
1044
1045 ldi @(GRi, d12), GRk
1046 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1047 0 000000 1111111 000000 000000000000 = 0x01fc0000
1048 . . . . . . . .
1049 ldi @(FP, d12), GR15
1050 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1051 0 001111 1111111 000010 000000000000 = 0x7ffff000
1052 . . . . . . . . */
1053
1054 if ((op & 0x7ffff000) == 0x1ec82000)
1055 {
1056 pc += 4;
1057 if (target_read_memory (pc, buf, 4))
1058 return orig_pc;
1059 op = extract_unsigned_integer (buf, 4, byte_order);
1060 }
1061
1062 /* The format of an FRV CALL instruction is as follows:
1063
1064 call label24
1065 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1066 0 000000 1111111 000000000000000000 = 0x01fc0000
1067 . . . . . . . .
1068
1069 where label24 is constructed by concatenating the H bits with the
1070 L bits. The call target is PC + (4 * sign_ext(label24)). */
1071
1072 if ((op & 0x01fc0000) == 0x003c0000)
1073 {
1074 LONGEST displ;
1075 CORE_ADDR call_dest;
1076 struct minimal_symbol *s;
1077
1078 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1079 if ((displ & 0x00800000) != 0)
1080 displ |= ~((LONGEST) 0x00ffffff);
1081
1082 call_dest = pc + 4 * displ;
1083 s = lookup_minimal_symbol_by_pc (call_dest);
1084
1085 if (s != NULL
1086 && SYMBOL_LINKAGE_NAME (s) != NULL
1087 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1088 {
1089 pc += 4;
1090 return pc;
1091 }
1092 }
1093 return orig_pc;
1094 }
1095
1096
1097 static struct frv_unwind_cache *
1098 frv_frame_unwind_cache (struct frame_info *this_frame,
1099 void **this_prologue_cache)
1100 {
1101 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1102 CORE_ADDR pc;
1103 ULONGEST this_base;
1104 struct frv_unwind_cache *info;
1105
1106 if ((*this_prologue_cache))
1107 return (*this_prologue_cache);
1108
1109 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1110 (*this_prologue_cache) = info;
1111 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1112
1113 /* Prologue analysis does the rest... */
1114 frv_analyze_prologue (gdbarch,
1115 get_frame_func (this_frame), this_frame, info);
1116
1117 return info;
1118 }
1119
1120 static void
1121 frv_extract_return_value (struct type *type, struct regcache *regcache,
1122 gdb_byte *valbuf)
1123 {
1124 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1125 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1126 int len = TYPE_LENGTH (type);
1127
1128 if (len <= 4)
1129 {
1130 ULONGEST gpr8_val;
1131 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1132 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1133 }
1134 else if (len == 8)
1135 {
1136 ULONGEST regval;
1137
1138 regcache_cooked_read_unsigned (regcache, 8, &regval);
1139 store_unsigned_integer (valbuf, 4, byte_order, regval);
1140 regcache_cooked_read_unsigned (regcache, 9, &regval);
1141 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1142 }
1143 else
1144 internal_error (__FILE__, __LINE__,
1145 _("Illegal return value length: %d"), len);
1146 }
1147
1148 static CORE_ADDR
1149 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1150 {
1151 /* Require dword alignment. */
1152 return align_down (sp, 8);
1153 }
1154
1155 static CORE_ADDR
1156 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1157 {
1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1159 CORE_ADDR descr;
1160 char valbuf[4];
1161 CORE_ADDR start_addr;
1162
1163 /* If we can't find the function in the symbol table, then we assume
1164 that the function address is already in descriptor form. */
1165 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1166 || entry_point != start_addr)
1167 return entry_point;
1168
1169 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1170
1171 if (descr != 0)
1172 return descr;
1173
1174 /* Construct a non-canonical descriptor from space allocated on
1175 the stack. */
1176
1177 descr = value_as_long (value_allocate_space_in_inferior (8));
1178 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1179 write_memory (descr, valbuf, 4);
1180 store_unsigned_integer (valbuf, 4, byte_order,
1181 frv_fdpic_find_global_pointer (entry_point));
1182 write_memory (descr + 4, valbuf, 4);
1183 return descr;
1184 }
1185
1186 static CORE_ADDR
1187 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1188 struct target_ops *targ)
1189 {
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191 CORE_ADDR entry_point;
1192 CORE_ADDR got_address;
1193
1194 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1195 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1196
1197 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1198 return entry_point;
1199 else
1200 return addr;
1201 }
1202
1203 static CORE_ADDR
1204 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1205 struct regcache *regcache, CORE_ADDR bp_addr,
1206 int nargs, struct value **args, CORE_ADDR sp,
1207 int struct_return, CORE_ADDR struct_addr)
1208 {
1209 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1210 int argreg;
1211 int argnum;
1212 char *val;
1213 char valbuf[4];
1214 struct value *arg;
1215 struct type *arg_type;
1216 int len;
1217 enum type_code typecode;
1218 CORE_ADDR regval;
1219 int stack_space;
1220 int stack_offset;
1221 enum frv_abi abi = frv_abi (gdbarch);
1222 CORE_ADDR func_addr = find_function_addr (function, NULL);
1223
1224 #if 0
1225 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1226 nargs, (int) sp, struct_return, struct_addr);
1227 #endif
1228
1229 stack_space = 0;
1230 for (argnum = 0; argnum < nargs; ++argnum)
1231 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1232
1233 stack_space -= (6 * 4);
1234 if (stack_space > 0)
1235 sp -= stack_space;
1236
1237 /* Make sure stack is dword aligned. */
1238 sp = align_down (sp, 8);
1239
1240 stack_offset = 0;
1241
1242 argreg = 8;
1243
1244 if (struct_return)
1245 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1246 struct_addr);
1247
1248 for (argnum = 0; argnum < nargs; ++argnum)
1249 {
1250 arg = args[argnum];
1251 arg_type = check_typedef (value_type (arg));
1252 len = TYPE_LENGTH (arg_type);
1253 typecode = TYPE_CODE (arg_type);
1254
1255 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1256 {
1257 store_unsigned_integer (valbuf, 4, byte_order,
1258 value_address (arg));
1259 typecode = TYPE_CODE_PTR;
1260 len = 4;
1261 val = valbuf;
1262 }
1263 else if (abi == FRV_ABI_FDPIC
1264 && len == 4
1265 && typecode == TYPE_CODE_PTR
1266 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1267 {
1268 /* The FDPIC ABI requires function descriptors to be passed instead
1269 of entry points. */
1270 CORE_ADDR addr = extract_unsigned_integer
1271 (value_contents (arg), 4, byte_order);
1272 addr = find_func_descr (gdbarch, addr);
1273 store_unsigned_integer (valbuf, 4, byte_order, addr);
1274 typecode = TYPE_CODE_PTR;
1275 len = 4;
1276 val = valbuf;
1277 }
1278 else
1279 {
1280 val = (char *) value_contents (arg);
1281 }
1282
1283 while (len > 0)
1284 {
1285 int partial_len = (len < 4 ? len : 4);
1286
1287 if (argreg < 14)
1288 {
1289 regval = extract_unsigned_integer (val, partial_len, byte_order);
1290 #if 0
1291 printf(" Argnum %d data %x -> reg %d\n",
1292 argnum, (int) regval, argreg);
1293 #endif
1294 regcache_cooked_write_unsigned (regcache, argreg, regval);
1295 ++argreg;
1296 }
1297 else
1298 {
1299 #if 0
1300 printf(" Argnum %d data %x -> offset %d (%x)\n",
1301 argnum, *((int *)val), stack_offset,
1302 (int) (sp + stack_offset));
1303 #endif
1304 write_memory (sp + stack_offset, val, partial_len);
1305 stack_offset += align_up (partial_len, 4);
1306 }
1307 len -= partial_len;
1308 val += partial_len;
1309 }
1310 }
1311
1312 /* Set the return address. For the frv, the return breakpoint is
1313 always at BP_ADDR. */
1314 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1315
1316 if (abi == FRV_ABI_FDPIC)
1317 {
1318 /* Set the GOT register for the FDPIC ABI. */
1319 regcache_cooked_write_unsigned
1320 (regcache, first_gpr_regnum + 15,
1321 frv_fdpic_find_global_pointer (func_addr));
1322 }
1323
1324 /* Finally, update the SP register. */
1325 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1326
1327 return sp;
1328 }
1329
1330 static void
1331 frv_store_return_value (struct type *type, struct regcache *regcache,
1332 const gdb_byte *valbuf)
1333 {
1334 int len = TYPE_LENGTH (type);
1335
1336 if (len <= 4)
1337 {
1338 bfd_byte val[4];
1339 memset (val, 0, sizeof (val));
1340 memcpy (val + (4 - len), valbuf, len);
1341 regcache_cooked_write (regcache, 8, val);
1342 }
1343 else if (len == 8)
1344 {
1345 regcache_cooked_write (regcache, 8, valbuf);
1346 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1347 }
1348 else
1349 internal_error (__FILE__, __LINE__,
1350 _("Don't know how to return a %d-byte value."), len);
1351 }
1352
1353 static enum return_value_convention
1354 frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1355 struct type *valtype, struct regcache *regcache,
1356 gdb_byte *readbuf, const gdb_byte *writebuf)
1357 {
1358 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1359 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1360 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1361
1362 if (writebuf != NULL)
1363 {
1364 gdb_assert (!struct_return);
1365 frv_store_return_value (valtype, regcache, writebuf);
1366 }
1367
1368 if (readbuf != NULL)
1369 {
1370 gdb_assert (!struct_return);
1371 frv_extract_return_value (valtype, regcache, readbuf);
1372 }
1373
1374 if (struct_return)
1375 return RETURN_VALUE_STRUCT_CONVENTION;
1376 else
1377 return RETURN_VALUE_REGISTER_CONVENTION;
1378 }
1379
1380 static CORE_ADDR
1381 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1382 {
1383 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1384 }
1385
1386 /* Given a GDB frame, determine the address of the calling function's
1387 frame. This will be used to create a new GDB frame struct. */
1388
1389 static void
1390 frv_frame_this_id (struct frame_info *this_frame,
1391 void **this_prologue_cache, struct frame_id *this_id)
1392 {
1393 struct frv_unwind_cache *info
1394 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1395 CORE_ADDR base;
1396 CORE_ADDR func;
1397 struct minimal_symbol *msym_stack;
1398 struct frame_id id;
1399
1400 /* The FUNC is easy. */
1401 func = get_frame_func (this_frame);
1402
1403 /* Check if the stack is empty. */
1404 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1405 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1406 return;
1407
1408 /* Hopefully the prologue analysis either correctly determined the
1409 frame's base (which is the SP from the previous frame), or set
1410 that base to "NULL". */
1411 base = info->prev_sp;
1412 if (base == 0)
1413 return;
1414
1415 id = frame_id_build (base, func);
1416 (*this_id) = id;
1417 }
1418
1419 static struct value *
1420 frv_frame_prev_register (struct frame_info *this_frame,
1421 void **this_prologue_cache, int regnum)
1422 {
1423 struct frv_unwind_cache *info
1424 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1425 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1426 }
1427
1428 static const struct frame_unwind frv_frame_unwind = {
1429 NORMAL_FRAME,
1430 default_frame_unwind_stop_reason,
1431 frv_frame_this_id,
1432 frv_frame_prev_register,
1433 NULL,
1434 default_frame_sniffer
1435 };
1436
1437 static CORE_ADDR
1438 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1439 {
1440 struct frv_unwind_cache *info
1441 = frv_frame_unwind_cache (this_frame, this_cache);
1442 return info->base;
1443 }
1444
1445 static const struct frame_base frv_frame_base = {
1446 &frv_frame_unwind,
1447 frv_frame_base_address,
1448 frv_frame_base_address,
1449 frv_frame_base_address
1450 };
1451
1452 static CORE_ADDR
1453 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1454 {
1455 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1456 }
1457
1458
1459 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1460 frame. The frame ID's base needs to match the TOS value saved by
1461 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1462
1463 static struct frame_id
1464 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1465 {
1466 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1467 return frame_id_build (sp, get_frame_pc (this_frame));
1468 }
1469
1470 static struct gdbarch *
1471 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1472 {
1473 struct gdbarch *gdbarch;
1474 struct gdbarch_tdep *var;
1475 int elf_flags = 0;
1476
1477 /* Check to see if we've already built an appropriate architecture
1478 object for this executable. */
1479 arches = gdbarch_list_lookup_by_info (arches, &info);
1480 if (arches)
1481 return arches->gdbarch;
1482
1483 /* Select the right tdep structure for this variant. */
1484 var = new_variant ();
1485 switch (info.bfd_arch_info->mach)
1486 {
1487 case bfd_mach_frv:
1488 case bfd_mach_frvsimple:
1489 case bfd_mach_fr500:
1490 case bfd_mach_frvtomcat:
1491 case bfd_mach_fr550:
1492 set_variant_num_gprs (var, 64);
1493 set_variant_num_fprs (var, 64);
1494 break;
1495
1496 case bfd_mach_fr400:
1497 case bfd_mach_fr450:
1498 set_variant_num_gprs (var, 32);
1499 set_variant_num_fprs (var, 32);
1500 break;
1501
1502 default:
1503 /* Never heard of this variant. */
1504 return 0;
1505 }
1506
1507 /* Extract the ELF flags, if available. */
1508 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1509 elf_flags = elf_elfheader (info.abfd)->e_flags;
1510
1511 if (elf_flags & EF_FRV_FDPIC)
1512 set_variant_abi_fdpic (var);
1513
1514 if (elf_flags & EF_FRV_CPU_FR450)
1515 set_variant_scratch_registers (var);
1516
1517 gdbarch = gdbarch_alloc (&info, var);
1518
1519 set_gdbarch_short_bit (gdbarch, 16);
1520 set_gdbarch_int_bit (gdbarch, 32);
1521 set_gdbarch_long_bit (gdbarch, 32);
1522 set_gdbarch_long_long_bit (gdbarch, 64);
1523 set_gdbarch_float_bit (gdbarch, 32);
1524 set_gdbarch_double_bit (gdbarch, 64);
1525 set_gdbarch_long_double_bit (gdbarch, 64);
1526 set_gdbarch_ptr_bit (gdbarch, 32);
1527
1528 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1529 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1530
1531 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1532 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1533 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1534
1535 set_gdbarch_register_name (gdbarch, frv_register_name);
1536 set_gdbarch_register_type (gdbarch, frv_register_type);
1537 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1538
1539 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1540 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1541
1542 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1543 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1544 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1545 set_gdbarch_adjust_breakpoint_address
1546 (gdbarch, frv_adjust_breakpoint_address);
1547
1548 set_gdbarch_return_value (gdbarch, frv_return_value);
1549
1550 /* Frame stuff. */
1551 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1552 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1553 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1554 frame_base_set_default (gdbarch, &frv_frame_base);
1555 /* We set the sniffer lower down after the OSABI hooks have been
1556 established. */
1557
1558 /* Settings for calling functions in the inferior. */
1559 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1560 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1561
1562 /* Settings that should be unnecessary. */
1563 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1564
1565 /* Hardware watchpoint / breakpoint support. */
1566 switch (info.bfd_arch_info->mach)
1567 {
1568 case bfd_mach_frv:
1569 case bfd_mach_frvsimple:
1570 case bfd_mach_fr500:
1571 case bfd_mach_frvtomcat:
1572 /* fr500-style hardware debugging support. */
1573 var->num_hw_watchpoints = 4;
1574 var->num_hw_breakpoints = 4;
1575 break;
1576
1577 case bfd_mach_fr400:
1578 case bfd_mach_fr450:
1579 /* fr400-style hardware debugging support. */
1580 var->num_hw_watchpoints = 2;
1581 var->num_hw_breakpoints = 4;
1582 break;
1583
1584 default:
1585 /* Otherwise, assume we don't have hardware debugging support. */
1586 var->num_hw_watchpoints = 0;
1587 var->num_hw_breakpoints = 0;
1588 break;
1589 }
1590
1591 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1592 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1593 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1594 frv_convert_from_func_ptr_addr);
1595
1596 set_solib_ops (gdbarch, &frv_so_ops);
1597
1598 /* Hook in ABI-specific overrides, if they have been registered. */
1599 gdbarch_init_osabi (info, gdbarch);
1600
1601 /* Set the fallback (prologue based) frame sniffer. */
1602 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1603
1604 /* Enable TLS support. */
1605 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1606 frv_fetch_objfile_link_map);
1607
1608 return gdbarch;
1609 }
1610
1611 void
1612 _initialize_frv_tdep (void)
1613 {
1614 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1615 }
This page took 0.060411 seconds and 5 git commands to generate.