Implement displaced stepping.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364
365 # The ABI default bit-size and format for "float", "double", and "long
366 # double". These bit/format pairs should eventually be combined into
367 # a single object. For the moment, just initialize them as a pair.
368 # Each format describes both the big and little endian layouts (if
369 # useful).
370
371 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
377
378 # For most targets, a pointer on the target and its representation as an
379 # address in GDB have the same size and "look the same". For such a
380 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381 # / addr_bit will be set from it.
382 #
383 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385 # as well.
386 #
387 # ptr_bit is the size of a pointer on the target
388 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389 # addr_bit is the size of a target address as represented in gdb
390 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
391 #
392 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
393 v:int:char_signed:::1:-1:1
394 #
395 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397 # Function for getting target's idea of a frame pointer. FIXME: GDB's
398 # whole scheme for dealing with "frames" and "frame pointers" needs a
399 # serious shakedown.
400 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
401 #
402 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
404 #
405 v:int:num_regs:::0:-1
406 # This macro gives the number of pseudo-registers that live in the
407 # register namespace but do not get fetched or stored on the target.
408 # These pseudo-registers may be aliases for other registers,
409 # combinations of other registers, or they may be computed by GDB.
410 v:int:num_pseudo_regs:::0:0::0
411
412 # GDB's standard (or well known) register numbers. These can map onto
413 # a real register or a pseudo (computed) register or not be defined at
414 # all (-1).
415 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416 v:int:sp_regnum:::-1:-1::0
417 v:int:pc_regnum:::-1:-1::0
418 v:int:ps_regnum:::-1:-1::0
419 v:int:fp0_regnum:::0:-1::0
420 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
423 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
425 m:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
426 # Convert from an sdb register number to an internal gdb register number.
427 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
487 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
488 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
489 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
490 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
491 v:CORE_ADDR:decr_pc_after_break:::0:::0
492
493 # A function can be addressed by either it's "pointer" (possibly a
494 # descriptor address) or "entry point" (first executable instruction).
495 # The method "convert_from_func_ptr_addr" converting the former to the
496 # latter. gdbarch_deprecated_function_start_offset is being used to implement
497 # a simplified subset of that functionality - the function's address
498 # corresponds to the "function pointer" and the function's start
499 # corresponds to the "function entry point" - and hence is redundant.
500
501 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
502
503 # Return the remote protocol register number associated with this
504 # register. Normally the identity mapping.
505 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
506
507 # Fetch the target specific address used to represent a load module.
508 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
509 #
510 v:CORE_ADDR:frame_args_skip:::0:::0
511 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
512 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
513 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
514 # frame-base. Enable frame-base before frame-unwind.
515 F:int:frame_num_args:struct frame_info *frame:frame
516 #
517 M:CORE_ADDR:frame_align:CORE_ADDR address:address
518 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
519 v:int:frame_red_zone_size
520 #
521 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
522 # On some machines there are bits in addresses which are not really
523 # part of the address, but are used by the kernel, the hardware, etc.
524 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
525 # we get a "real" address such as one would find in a symbol table.
526 # This is used only for addresses of instructions, and even then I'm
527 # not sure it's used in all contexts. It exists to deal with there
528 # being a few stray bits in the PC which would mislead us, not as some
529 # sort of generic thing to handle alignment or segmentation (it's
530 # possible it should be in TARGET_READ_PC instead).
531 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
532 # It is not at all clear why gdbarch_smash_text_address is not folded into
533 # gdbarch_addr_bits_remove.
534 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
535
536 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
537 # indicates if the target needs software single step. An ISA method to
538 # implement it.
539 #
540 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
541 # breakpoints using the breakpoint system instead of blatting memory directly
542 # (as with rs6000).
543 #
544 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
545 # target can single step. If not, then implement single step using breakpoints.
546 #
547 # A return value of 1 means that the software_single_step breakpoints
548 # were inserted; 0 means they were not.
549 F:int:software_single_step:struct frame_info *frame:frame
550
551 # Return non-zero if the processor is executing a delay slot and a
552 # further single-step is needed before the instruction finishes.
553 M:int:single_step_through_delay:struct frame_info *frame:frame
554 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
555 # disassembler. Perhaps objdump can handle it?
556 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
557 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
558
559
560 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
561 # evaluates non-zero, this is the address where the debugger will place
562 # a step-resume breakpoint to get us past the dynamic linker.
563 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
564 # Some systems also have trampoline code for returning from shared libs.
565 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
566
567 # A target might have problems with watchpoints as soon as the stack
568 # frame of the current function has been destroyed. This mostly happens
569 # as the first action in a funtion's epilogue. in_function_epilogue_p()
570 # is defined to return a non-zero value if either the given addr is one
571 # instruction after the stack destroying instruction up to the trailing
572 # return instruction or if we can figure out that the stack frame has
573 # already been invalidated regardless of the value of addr. Targets
574 # which don't suffer from that problem could just let this functionality
575 # untouched.
576 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
577 # Given a vector of command-line arguments, return a newly allocated
578 # string which, when passed to the create_inferior function, will be
579 # parsed (on Unix systems, by the shell) to yield the same vector.
580 # This function should call error() if the argument vector is not
581 # representable for this target or if this target does not support
582 # command-line arguments.
583 # ARGC is the number of elements in the vector.
584 # ARGV is an array of strings, one per argument.
585 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
586 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
587 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
588 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
604 # core file into buffer READBUF with length LEN.
605 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
606
607 # If the elements of C++ vtables are in-place function descriptors rather
608 # than normal function pointers (which may point to code or a descriptor),
609 # set this to one.
610 v:int:vtable_function_descriptors:::0:0::0
611
612 # Set if the least significant bit of the delta is used instead of the least
613 # significant bit of the pfn for pointers to virtual member functions.
614 v:int:vbit_in_delta:::0:0::0
615
616 # Advance PC to next instruction in order to skip a permanent breakpoint.
617 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
618
619 # The maximum length of an instruction on this architecture.
620 V:ULONGEST:max_insn_length:::0:0
621
622 # Copy the instruction at FROM to TO, and make any adjustments
623 # necessary to single-step it at that address.
624 #
625 # REGS holds the state the thread's registers will have before
626 # executing the copied instruction; the PC in REGS will refer to FROM,
627 # not the copy at TO. The caller should update it to point at TO later.
628 #
629 # Return a pointer to data of the architecture's choice to be passed
630 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
631 # the instruction's effects have been completely simulated, with the
632 # resulting state written back to REGS.
633 #
634 # For a general explanation of displaced stepping and how GDB uses it,
635 # see the comments in infrun.c.
636 #
637 # The TO area is only guaranteed to have space for
638 # gdbarch_max_insn_length (arch) bytes, so this function must not
639 # write more bytes than that to that area.
640 #
641 # If you do not provide this function, GDB assumes that the
642 # architecture does not support displaced stepping.
643 #
644 # If your architecture doesn't need to adjust instructions before
645 # single-stepping them, consider using simple_displaced_step_copy_insn
646 # here.
647 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
648
649 # Fix up the state resulting from successfully single-stepping a
650 # displaced instruction, to give the result we would have gotten from
651 # stepping the instruction in its original location.
652 #
653 # REGS is the register state resulting from single-stepping the
654 # displaced instruction.
655 #
656 # CLOSURE is the result from the matching call to
657 # gdbarch_displaced_step_copy_insn.
658 #
659 # If you provide gdbarch_displaced_step_copy_insn.but not this
660 # function, then GDB assumes that no fixup is needed after
661 # single-stepping the instruction.
662 #
663 # For a general explanation of displaced stepping and how GDB uses it,
664 # see the comments in infrun.c.
665 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
666
667 # Free a closure returned by gdbarch_displaced_step_copy_insn.
668 #
669 # If you provide gdbarch_displaced_step_copy_insn, you must provide
670 # this function as well.
671 #
672 # If your architecture uses closures that don't need to be freed, then
673 # you can use simple_displaced_step_free_closure here.
674 #
675 # For a general explanation of displaced stepping and how GDB uses it,
676 # see the comments in infrun.c.
677 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
678
679 # Return the address of an appropriate place to put displaced
680 # instructions while we step over them. There need only be one such
681 # place, since we're only stepping one thread over a breakpoint at a
682 # time.
683 #
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
686 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
687
688 # Refresh overlay mapped state for section OSECT.
689 F:void:overlay_update:struct obj_section *osect:osect
690
691 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
692
693 # Handle special encoding of static variables in stabs debug info.
694 F:char *:static_transform_name:char *name:name
695 # Set if the address in N_SO or N_FUN stabs may be zero.
696 v:int:sofun_address_maybe_missing:::0:0::0
697
698 # Signal translation: translate inferior's signal (host's) number into
699 # GDB's representation.
700 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
701 # Signal translation: translate GDB's signal number into inferior's host
702 # signal number.
703 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
704 EOF
705 }
706
707 #
708 # The .log file
709 #
710 exec > new-gdbarch.log
711 function_list | while do_read
712 do
713 cat <<EOF
714 ${class} ${returntype} ${function} ($formal)
715 EOF
716 for r in ${read}
717 do
718 eval echo \"\ \ \ \ ${r}=\${${r}}\"
719 done
720 if class_is_predicate_p && fallback_default_p
721 then
722 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
723 kill $$
724 exit 1
725 fi
726 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
727 then
728 echo "Error: postdefault is useless when invalid_p=0" 1>&2
729 kill $$
730 exit 1
731 fi
732 if class_is_multiarch_p
733 then
734 if class_is_predicate_p ; then :
735 elif test "x${predefault}" = "x"
736 then
737 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
738 kill $$
739 exit 1
740 fi
741 fi
742 echo ""
743 done
744
745 exec 1>&2
746 compare_new gdbarch.log
747
748
749 copyright ()
750 {
751 cat <<EOF
752 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
753
754 /* Dynamic architecture support for GDB, the GNU debugger.
755
756 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
757 Free Software Foundation, Inc.
758
759 This file is part of GDB.
760
761 This program is free software; you can redistribute it and/or modify
762 it under the terms of the GNU General Public License as published by
763 the Free Software Foundation; either version 3 of the License, or
764 (at your option) any later version.
765
766 This program is distributed in the hope that it will be useful,
767 but WITHOUT ANY WARRANTY; without even the implied warranty of
768 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
769 GNU General Public License for more details.
770
771 You should have received a copy of the GNU General Public License
772 along with this program. If not, see <http://www.gnu.org/licenses/>. */
773
774 /* This file was created with the aid of \`\`gdbarch.sh''.
775
776 The Bourne shell script \`\`gdbarch.sh'' creates the files
777 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
778 against the existing \`\`gdbarch.[hc]''. Any differences found
779 being reported.
780
781 If editing this file, please also run gdbarch.sh and merge any
782 changes into that script. Conversely, when making sweeping changes
783 to this file, modifying gdbarch.sh and using its output may prove
784 easier. */
785
786 EOF
787 }
788
789 #
790 # The .h file
791 #
792
793 exec > new-gdbarch.h
794 copyright
795 cat <<EOF
796 #ifndef GDBARCH_H
797 #define GDBARCH_H
798
799 struct floatformat;
800 struct ui_file;
801 struct frame_info;
802 struct value;
803 struct objfile;
804 struct obj_section;
805 struct minimal_symbol;
806 struct regcache;
807 struct reggroup;
808 struct regset;
809 struct disassemble_info;
810 struct target_ops;
811 struct obstack;
812 struct bp_target_info;
813 struct target_desc;
814 struct displaced_step_closure;
815
816 extern struct gdbarch *current_gdbarch;
817 EOF
818
819 # function typedef's
820 printf "\n"
821 printf "\n"
822 printf "/* The following are pre-initialized by GDBARCH. */\n"
823 function_list | while do_read
824 do
825 if class_is_info_p
826 then
827 printf "\n"
828 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
829 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
830 fi
831 done
832
833 # function typedef's
834 printf "\n"
835 printf "\n"
836 printf "/* The following are initialized by the target dependent code. */\n"
837 function_list | while do_read
838 do
839 if [ -n "${comment}" ]
840 then
841 echo "${comment}" | sed \
842 -e '2 s,#,/*,' \
843 -e '3,$ s,#, ,' \
844 -e '$ s,$, */,'
845 fi
846
847 if class_is_predicate_p
848 then
849 printf "\n"
850 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
851 fi
852 if class_is_variable_p
853 then
854 printf "\n"
855 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
856 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
857 fi
858 if class_is_function_p
859 then
860 printf "\n"
861 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
862 then
863 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
864 elif class_is_multiarch_p
865 then
866 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
867 else
868 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
869 fi
870 if [ "x${formal}" = "xvoid" ]
871 then
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
873 else
874 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
875 fi
876 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
877 fi
878 done
879
880 # close it off
881 cat <<EOF
882
883 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
884
885
886 /* Mechanism for co-ordinating the selection of a specific
887 architecture.
888
889 GDB targets (*-tdep.c) can register an interest in a specific
890 architecture. Other GDB components can register a need to maintain
891 per-architecture data.
892
893 The mechanisms below ensures that there is only a loose connection
894 between the set-architecture command and the various GDB
895 components. Each component can independently register their need
896 to maintain architecture specific data with gdbarch.
897
898 Pragmatics:
899
900 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
901 didn't scale.
902
903 The more traditional mega-struct containing architecture specific
904 data for all the various GDB components was also considered. Since
905 GDB is built from a variable number of (fairly independent)
906 components it was determined that the global aproach was not
907 applicable. */
908
909
910 /* Register a new architectural family with GDB.
911
912 Register support for the specified ARCHITECTURE with GDB. When
913 gdbarch determines that the specified architecture has been
914 selected, the corresponding INIT function is called.
915
916 --
917
918 The INIT function takes two parameters: INFO which contains the
919 information available to gdbarch about the (possibly new)
920 architecture; ARCHES which is a list of the previously created
921 \`\`struct gdbarch'' for this architecture.
922
923 The INFO parameter is, as far as possible, be pre-initialized with
924 information obtained from INFO.ABFD or the global defaults.
925
926 The ARCHES parameter is a linked list (sorted most recently used)
927 of all the previously created architures for this architecture
928 family. The (possibly NULL) ARCHES->gdbarch can used to access
929 values from the previously selected architecture for this
930 architecture family. The global \`\`current_gdbarch'' shall not be
931 used.
932
933 The INIT function shall return any of: NULL - indicating that it
934 doesn't recognize the selected architecture; an existing \`\`struct
935 gdbarch'' from the ARCHES list - indicating that the new
936 architecture is just a synonym for an earlier architecture (see
937 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
938 - that describes the selected architecture (see gdbarch_alloc()).
939
940 The DUMP_TDEP function shall print out all target specific values.
941 Care should be taken to ensure that the function works in both the
942 multi-arch and non- multi-arch cases. */
943
944 struct gdbarch_list
945 {
946 struct gdbarch *gdbarch;
947 struct gdbarch_list *next;
948 };
949
950 struct gdbarch_info
951 {
952 /* Use default: NULL (ZERO). */
953 const struct bfd_arch_info *bfd_arch_info;
954
955 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
956 int byte_order;
957
958 /* Use default: NULL (ZERO). */
959 bfd *abfd;
960
961 /* Use default: NULL (ZERO). */
962 struct gdbarch_tdep_info *tdep_info;
963
964 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
965 enum gdb_osabi osabi;
966
967 /* Use default: NULL (ZERO). */
968 const struct target_desc *target_desc;
969 };
970
971 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
972 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
973
974 /* DEPRECATED - use gdbarch_register() */
975 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
976
977 extern void gdbarch_register (enum bfd_architecture architecture,
978 gdbarch_init_ftype *,
979 gdbarch_dump_tdep_ftype *);
980
981
982 /* Return a freshly allocated, NULL terminated, array of the valid
983 architecture names. Since architectures are registered during the
984 _initialize phase this function only returns useful information
985 once initialization has been completed. */
986
987 extern const char **gdbarch_printable_names (void);
988
989
990 /* Helper function. Search the list of ARCHES for a GDBARCH that
991 matches the information provided by INFO. */
992
993 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
994
995
996 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
997 basic initialization using values obtained from the INFO and TDEP
998 parameters. set_gdbarch_*() functions are called to complete the
999 initialization of the object. */
1000
1001 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1002
1003
1004 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1005 It is assumed that the caller freeds the \`\`struct
1006 gdbarch_tdep''. */
1007
1008 extern void gdbarch_free (struct gdbarch *);
1009
1010
1011 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1012 obstack. The memory is freed when the corresponding architecture
1013 is also freed. */
1014
1015 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1016 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1017 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1018
1019
1020 /* Helper function. Force an update of the current architecture.
1021
1022 The actual architecture selected is determined by INFO, \`\`(gdb) set
1023 architecture'' et.al., the existing architecture and BFD's default
1024 architecture. INFO should be initialized to zero and then selected
1025 fields should be updated.
1026
1027 Returns non-zero if the update succeeds */
1028
1029 extern int gdbarch_update_p (struct gdbarch_info info);
1030
1031
1032 /* Helper function. Find an architecture matching info.
1033
1034 INFO should be initialized using gdbarch_info_init, relevant fields
1035 set, and then finished using gdbarch_info_fill.
1036
1037 Returns the corresponding architecture, or NULL if no matching
1038 architecture was found. "current_gdbarch" is not updated. */
1039
1040 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1041
1042
1043 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1044
1045 FIXME: kettenis/20031124: Of the functions that follow, only
1046 gdbarch_from_bfd is supposed to survive. The others will
1047 dissappear since in the future GDB will (hopefully) be truly
1048 multi-arch. However, for now we're still stuck with the concept of
1049 a single active architecture. */
1050
1051 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1052
1053
1054 /* Register per-architecture data-pointer.
1055
1056 Reserve space for a per-architecture data-pointer. An identifier
1057 for the reserved data-pointer is returned. That identifer should
1058 be saved in a local static variable.
1059
1060 Memory for the per-architecture data shall be allocated using
1061 gdbarch_obstack_zalloc. That memory will be deleted when the
1062 corresponding architecture object is deleted.
1063
1064 When a previously created architecture is re-selected, the
1065 per-architecture data-pointer for that previous architecture is
1066 restored. INIT() is not re-called.
1067
1068 Multiple registrarants for any architecture are allowed (and
1069 strongly encouraged). */
1070
1071 struct gdbarch_data;
1072
1073 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1074 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1075 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1076 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1077 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1078 struct gdbarch_data *data,
1079 void *pointer);
1080
1081 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1082
1083
1084 /* Set the dynamic target-system-dependent parameters (architecture,
1085 byte-order, ...) using information found in the BFD */
1086
1087 extern void set_gdbarch_from_file (bfd *);
1088
1089
1090 /* Initialize the current architecture to the "first" one we find on
1091 our list. */
1092
1093 extern void initialize_current_architecture (void);
1094
1095 /* gdbarch trace variable */
1096 extern int gdbarch_debug;
1097
1098 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1099
1100 #endif
1101 EOF
1102 exec 1>&2
1103 #../move-if-change new-gdbarch.h gdbarch.h
1104 compare_new gdbarch.h
1105
1106
1107 #
1108 # C file
1109 #
1110
1111 exec > new-gdbarch.c
1112 copyright
1113 cat <<EOF
1114
1115 #include "defs.h"
1116 #include "arch-utils.h"
1117
1118 #include "gdbcmd.h"
1119 #include "inferior.h"
1120 #include "symcat.h"
1121
1122 #include "floatformat.h"
1123
1124 #include "gdb_assert.h"
1125 #include "gdb_string.h"
1126 #include "gdb-events.h"
1127 #include "reggroups.h"
1128 #include "osabi.h"
1129 #include "gdb_obstack.h"
1130
1131 /* Static function declarations */
1132
1133 static void alloc_gdbarch_data (struct gdbarch *);
1134
1135 /* Non-zero if we want to trace architecture code. */
1136
1137 #ifndef GDBARCH_DEBUG
1138 #define GDBARCH_DEBUG 0
1139 #endif
1140 int gdbarch_debug = GDBARCH_DEBUG;
1141 static void
1142 show_gdbarch_debug (struct ui_file *file, int from_tty,
1143 struct cmd_list_element *c, const char *value)
1144 {
1145 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1146 }
1147
1148 static const char *
1149 pformat (const struct floatformat **format)
1150 {
1151 if (format == NULL)
1152 return "(null)";
1153 else
1154 /* Just print out one of them - this is only for diagnostics. */
1155 return format[0]->name;
1156 }
1157
1158 EOF
1159
1160 # gdbarch open the gdbarch object
1161 printf "\n"
1162 printf "/* Maintain the struct gdbarch object */\n"
1163 printf "\n"
1164 printf "struct gdbarch\n"
1165 printf "{\n"
1166 printf " /* Has this architecture been fully initialized? */\n"
1167 printf " int initialized_p;\n"
1168 printf "\n"
1169 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1170 printf " struct obstack *obstack;\n"
1171 printf "\n"
1172 printf " /* basic architectural information */\n"
1173 function_list | while do_read
1174 do
1175 if class_is_info_p
1176 then
1177 printf " ${returntype} ${function};\n"
1178 fi
1179 done
1180 printf "\n"
1181 printf " /* target specific vector. */\n"
1182 printf " struct gdbarch_tdep *tdep;\n"
1183 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1184 printf "\n"
1185 printf " /* per-architecture data-pointers */\n"
1186 printf " unsigned nr_data;\n"
1187 printf " void **data;\n"
1188 printf "\n"
1189 printf " /* per-architecture swap-regions */\n"
1190 printf " struct gdbarch_swap *swap;\n"
1191 printf "\n"
1192 cat <<EOF
1193 /* Multi-arch values.
1194
1195 When extending this structure you must:
1196
1197 Add the field below.
1198
1199 Declare set/get functions and define the corresponding
1200 macro in gdbarch.h.
1201
1202 gdbarch_alloc(): If zero/NULL is not a suitable default,
1203 initialize the new field.
1204
1205 verify_gdbarch(): Confirm that the target updated the field
1206 correctly.
1207
1208 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1209 field is dumped out
1210
1211 \`\`startup_gdbarch()'': Append an initial value to the static
1212 variable (base values on the host's c-type system).
1213
1214 get_gdbarch(): Implement the set/get functions (probably using
1215 the macro's as shortcuts).
1216
1217 */
1218
1219 EOF
1220 function_list | while do_read
1221 do
1222 if class_is_variable_p
1223 then
1224 printf " ${returntype} ${function};\n"
1225 elif class_is_function_p
1226 then
1227 printf " gdbarch_${function}_ftype *${function};\n"
1228 fi
1229 done
1230 printf "};\n"
1231
1232 # A pre-initialized vector
1233 printf "\n"
1234 printf "\n"
1235 cat <<EOF
1236 /* The default architecture uses host values (for want of a better
1237 choice). */
1238 EOF
1239 printf "\n"
1240 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1241 printf "\n"
1242 printf "struct gdbarch startup_gdbarch =\n"
1243 printf "{\n"
1244 printf " 1, /* Always initialized. */\n"
1245 printf " NULL, /* The obstack. */\n"
1246 printf " /* basic architecture information */\n"
1247 function_list | while do_read
1248 do
1249 if class_is_info_p
1250 then
1251 printf " ${staticdefault}, /* ${function} */\n"
1252 fi
1253 done
1254 cat <<EOF
1255 /* target specific vector and its dump routine */
1256 NULL, NULL,
1257 /*per-architecture data-pointers and swap regions */
1258 0, NULL, NULL,
1259 /* Multi-arch values */
1260 EOF
1261 function_list | while do_read
1262 do
1263 if class_is_function_p || class_is_variable_p
1264 then
1265 printf " ${staticdefault}, /* ${function} */\n"
1266 fi
1267 done
1268 cat <<EOF
1269 /* startup_gdbarch() */
1270 };
1271
1272 struct gdbarch *current_gdbarch = &startup_gdbarch;
1273 EOF
1274
1275 # Create a new gdbarch struct
1276 cat <<EOF
1277
1278 /* Create a new \`\`struct gdbarch'' based on information provided by
1279 \`\`struct gdbarch_info''. */
1280 EOF
1281 printf "\n"
1282 cat <<EOF
1283 struct gdbarch *
1284 gdbarch_alloc (const struct gdbarch_info *info,
1285 struct gdbarch_tdep *tdep)
1286 {
1287 struct gdbarch *gdbarch;
1288
1289 /* Create an obstack for allocating all the per-architecture memory,
1290 then use that to allocate the architecture vector. */
1291 struct obstack *obstack = XMALLOC (struct obstack);
1292 obstack_init (obstack);
1293 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1294 memset (gdbarch, 0, sizeof (*gdbarch));
1295 gdbarch->obstack = obstack;
1296
1297 alloc_gdbarch_data (gdbarch);
1298
1299 gdbarch->tdep = tdep;
1300 EOF
1301 printf "\n"
1302 function_list | while do_read
1303 do
1304 if class_is_info_p
1305 then
1306 printf " gdbarch->${function} = info->${function};\n"
1307 fi
1308 done
1309 printf "\n"
1310 printf " /* Force the explicit initialization of these. */\n"
1311 function_list | while do_read
1312 do
1313 if class_is_function_p || class_is_variable_p
1314 then
1315 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1316 then
1317 printf " gdbarch->${function} = ${predefault};\n"
1318 fi
1319 fi
1320 done
1321 cat <<EOF
1322 /* gdbarch_alloc() */
1323
1324 return gdbarch;
1325 }
1326 EOF
1327
1328 # Free a gdbarch struct.
1329 printf "\n"
1330 printf "\n"
1331 cat <<EOF
1332 /* Allocate extra space using the per-architecture obstack. */
1333
1334 void *
1335 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1336 {
1337 void *data = obstack_alloc (arch->obstack, size);
1338 memset (data, 0, size);
1339 return data;
1340 }
1341
1342
1343 /* Free a gdbarch struct. This should never happen in normal
1344 operation --- once you've created a gdbarch, you keep it around.
1345 However, if an architecture's init function encounters an error
1346 building the structure, it may need to clean up a partially
1347 constructed gdbarch. */
1348
1349 void
1350 gdbarch_free (struct gdbarch *arch)
1351 {
1352 struct obstack *obstack;
1353 gdb_assert (arch != NULL);
1354 gdb_assert (!arch->initialized_p);
1355 obstack = arch->obstack;
1356 obstack_free (obstack, 0); /* Includes the ARCH. */
1357 xfree (obstack);
1358 }
1359 EOF
1360
1361 # verify a new architecture
1362 cat <<EOF
1363
1364
1365 /* Ensure that all values in a GDBARCH are reasonable. */
1366
1367 static void
1368 verify_gdbarch (struct gdbarch *gdbarch)
1369 {
1370 struct ui_file *log;
1371 struct cleanup *cleanups;
1372 long dummy;
1373 char *buf;
1374 log = mem_fileopen ();
1375 cleanups = make_cleanup_ui_file_delete (log);
1376 /* fundamental */
1377 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1378 fprintf_unfiltered (log, "\n\tbyte-order");
1379 if (gdbarch->bfd_arch_info == NULL)
1380 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1381 /* Check those that need to be defined for the given multi-arch level. */
1382 EOF
1383 function_list | while do_read
1384 do
1385 if class_is_function_p || class_is_variable_p
1386 then
1387 if [ "x${invalid_p}" = "x0" ]
1388 then
1389 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1390 elif class_is_predicate_p
1391 then
1392 printf " /* Skip verify of ${function}, has predicate */\n"
1393 # FIXME: See do_read for potential simplification
1394 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1395 then
1396 printf " if (${invalid_p})\n"
1397 printf " gdbarch->${function} = ${postdefault};\n"
1398 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1399 then
1400 printf " if (gdbarch->${function} == ${predefault})\n"
1401 printf " gdbarch->${function} = ${postdefault};\n"
1402 elif [ -n "${postdefault}" ]
1403 then
1404 printf " if (gdbarch->${function} == 0)\n"
1405 printf " gdbarch->${function} = ${postdefault};\n"
1406 elif [ -n "${invalid_p}" ]
1407 then
1408 printf " if (${invalid_p})\n"
1409 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1410 elif [ -n "${predefault}" ]
1411 then
1412 printf " if (gdbarch->${function} == ${predefault})\n"
1413 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1414 fi
1415 fi
1416 done
1417 cat <<EOF
1418 buf = ui_file_xstrdup (log, &dummy);
1419 make_cleanup (xfree, buf);
1420 if (strlen (buf) > 0)
1421 internal_error (__FILE__, __LINE__,
1422 _("verify_gdbarch: the following are invalid ...%s"),
1423 buf);
1424 do_cleanups (cleanups);
1425 }
1426 EOF
1427
1428 # dump the structure
1429 printf "\n"
1430 printf "\n"
1431 cat <<EOF
1432 /* Print out the details of the current architecture. */
1433
1434 void
1435 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1436 {
1437 const char *gdb_nm_file = "<not-defined>";
1438 #if defined (GDB_NM_FILE)
1439 gdb_nm_file = GDB_NM_FILE;
1440 #endif
1441 fprintf_unfiltered (file,
1442 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1443 gdb_nm_file);
1444 EOF
1445 function_list | sort -t: -k 3 | while do_read
1446 do
1447 # First the predicate
1448 if class_is_predicate_p
1449 then
1450 printf " fprintf_unfiltered (file,\n"
1451 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1452 printf " gdbarch_${function}_p (gdbarch));\n"
1453 fi
1454 # Print the corresponding value.
1455 if class_is_function_p
1456 then
1457 printf " fprintf_unfiltered (file,\n"
1458 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1459 printf " (long) gdbarch->${function});\n"
1460 else
1461 # It is a variable
1462 case "${print}:${returntype}" in
1463 :CORE_ADDR )
1464 fmt="0x%s"
1465 print="paddr_nz (gdbarch->${function})"
1466 ;;
1467 :* )
1468 fmt="%s"
1469 print="paddr_d (gdbarch->${function})"
1470 ;;
1471 * )
1472 fmt="%s"
1473 ;;
1474 esac
1475 printf " fprintf_unfiltered (file,\n"
1476 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1477 printf " ${print});\n"
1478 fi
1479 done
1480 cat <<EOF
1481 if (gdbarch->dump_tdep != NULL)
1482 gdbarch->dump_tdep (gdbarch, file);
1483 }
1484 EOF
1485
1486
1487 # GET/SET
1488 printf "\n"
1489 cat <<EOF
1490 struct gdbarch_tdep *
1491 gdbarch_tdep (struct gdbarch *gdbarch)
1492 {
1493 if (gdbarch_debug >= 2)
1494 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1495 return gdbarch->tdep;
1496 }
1497 EOF
1498 printf "\n"
1499 function_list | while do_read
1500 do
1501 if class_is_predicate_p
1502 then
1503 printf "\n"
1504 printf "int\n"
1505 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1506 printf "{\n"
1507 printf " gdb_assert (gdbarch != NULL);\n"
1508 printf " return ${predicate};\n"
1509 printf "}\n"
1510 fi
1511 if class_is_function_p
1512 then
1513 printf "\n"
1514 printf "${returntype}\n"
1515 if [ "x${formal}" = "xvoid" ]
1516 then
1517 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1518 else
1519 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1520 fi
1521 printf "{\n"
1522 printf " gdb_assert (gdbarch != NULL);\n"
1523 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1524 if class_is_predicate_p && test -n "${predefault}"
1525 then
1526 # Allow a call to a function with a predicate.
1527 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1528 fi
1529 printf " if (gdbarch_debug >= 2)\n"
1530 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1531 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1532 then
1533 if class_is_multiarch_p
1534 then
1535 params="gdbarch"
1536 else
1537 params=""
1538 fi
1539 else
1540 if class_is_multiarch_p
1541 then
1542 params="gdbarch, ${actual}"
1543 else
1544 params="${actual}"
1545 fi
1546 fi
1547 if [ "x${returntype}" = "xvoid" ]
1548 then
1549 printf " gdbarch->${function} (${params});\n"
1550 else
1551 printf " return gdbarch->${function} (${params});\n"
1552 fi
1553 printf "}\n"
1554 printf "\n"
1555 printf "void\n"
1556 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1557 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1558 printf "{\n"
1559 printf " gdbarch->${function} = ${function};\n"
1560 printf "}\n"
1561 elif class_is_variable_p
1562 then
1563 printf "\n"
1564 printf "${returntype}\n"
1565 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1566 printf "{\n"
1567 printf " gdb_assert (gdbarch != NULL);\n"
1568 if [ "x${invalid_p}" = "x0" ]
1569 then
1570 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1571 elif [ -n "${invalid_p}" ]
1572 then
1573 printf " /* Check variable is valid. */\n"
1574 printf " gdb_assert (!(${invalid_p}));\n"
1575 elif [ -n "${predefault}" ]
1576 then
1577 printf " /* Check variable changed from pre-default. */\n"
1578 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1579 fi
1580 printf " if (gdbarch_debug >= 2)\n"
1581 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1582 printf " return gdbarch->${function};\n"
1583 printf "}\n"
1584 printf "\n"
1585 printf "void\n"
1586 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1587 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1588 printf "{\n"
1589 printf " gdbarch->${function} = ${function};\n"
1590 printf "}\n"
1591 elif class_is_info_p
1592 then
1593 printf "\n"
1594 printf "${returntype}\n"
1595 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1596 printf "{\n"
1597 printf " gdb_assert (gdbarch != NULL);\n"
1598 printf " if (gdbarch_debug >= 2)\n"
1599 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1600 printf " return gdbarch->${function};\n"
1601 printf "}\n"
1602 fi
1603 done
1604
1605 # All the trailing guff
1606 cat <<EOF
1607
1608
1609 /* Keep a registry of per-architecture data-pointers required by GDB
1610 modules. */
1611
1612 struct gdbarch_data
1613 {
1614 unsigned index;
1615 int init_p;
1616 gdbarch_data_pre_init_ftype *pre_init;
1617 gdbarch_data_post_init_ftype *post_init;
1618 };
1619
1620 struct gdbarch_data_registration
1621 {
1622 struct gdbarch_data *data;
1623 struct gdbarch_data_registration *next;
1624 };
1625
1626 struct gdbarch_data_registry
1627 {
1628 unsigned nr;
1629 struct gdbarch_data_registration *registrations;
1630 };
1631
1632 struct gdbarch_data_registry gdbarch_data_registry =
1633 {
1634 0, NULL,
1635 };
1636
1637 static struct gdbarch_data *
1638 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1639 gdbarch_data_post_init_ftype *post_init)
1640 {
1641 struct gdbarch_data_registration **curr;
1642 /* Append the new registraration. */
1643 for (curr = &gdbarch_data_registry.registrations;
1644 (*curr) != NULL;
1645 curr = &(*curr)->next);
1646 (*curr) = XMALLOC (struct gdbarch_data_registration);
1647 (*curr)->next = NULL;
1648 (*curr)->data = XMALLOC (struct gdbarch_data);
1649 (*curr)->data->index = gdbarch_data_registry.nr++;
1650 (*curr)->data->pre_init = pre_init;
1651 (*curr)->data->post_init = post_init;
1652 (*curr)->data->init_p = 1;
1653 return (*curr)->data;
1654 }
1655
1656 struct gdbarch_data *
1657 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1658 {
1659 return gdbarch_data_register (pre_init, NULL);
1660 }
1661
1662 struct gdbarch_data *
1663 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1664 {
1665 return gdbarch_data_register (NULL, post_init);
1666 }
1667
1668 /* Create/delete the gdbarch data vector. */
1669
1670 static void
1671 alloc_gdbarch_data (struct gdbarch *gdbarch)
1672 {
1673 gdb_assert (gdbarch->data == NULL);
1674 gdbarch->nr_data = gdbarch_data_registry.nr;
1675 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1676 }
1677
1678 /* Initialize the current value of the specified per-architecture
1679 data-pointer. */
1680
1681 void
1682 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1683 struct gdbarch_data *data,
1684 void *pointer)
1685 {
1686 gdb_assert (data->index < gdbarch->nr_data);
1687 gdb_assert (gdbarch->data[data->index] == NULL);
1688 gdb_assert (data->pre_init == NULL);
1689 gdbarch->data[data->index] = pointer;
1690 }
1691
1692 /* Return the current value of the specified per-architecture
1693 data-pointer. */
1694
1695 void *
1696 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1697 {
1698 gdb_assert (data->index < gdbarch->nr_data);
1699 if (gdbarch->data[data->index] == NULL)
1700 {
1701 /* The data-pointer isn't initialized, call init() to get a
1702 value. */
1703 if (data->pre_init != NULL)
1704 /* Mid architecture creation: pass just the obstack, and not
1705 the entire architecture, as that way it isn't possible for
1706 pre-init code to refer to undefined architecture
1707 fields. */
1708 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1709 else if (gdbarch->initialized_p
1710 && data->post_init != NULL)
1711 /* Post architecture creation: pass the entire architecture
1712 (as all fields are valid), but be careful to also detect
1713 recursive references. */
1714 {
1715 gdb_assert (data->init_p);
1716 data->init_p = 0;
1717 gdbarch->data[data->index] = data->post_init (gdbarch);
1718 data->init_p = 1;
1719 }
1720 else
1721 /* The architecture initialization hasn't completed - punt -
1722 hope that the caller knows what they are doing. Once
1723 deprecated_set_gdbarch_data has been initialized, this can be
1724 changed to an internal error. */
1725 return NULL;
1726 gdb_assert (gdbarch->data[data->index] != NULL);
1727 }
1728 return gdbarch->data[data->index];
1729 }
1730
1731
1732 /* Keep a registry of the architectures known by GDB. */
1733
1734 struct gdbarch_registration
1735 {
1736 enum bfd_architecture bfd_architecture;
1737 gdbarch_init_ftype *init;
1738 gdbarch_dump_tdep_ftype *dump_tdep;
1739 struct gdbarch_list *arches;
1740 struct gdbarch_registration *next;
1741 };
1742
1743 static struct gdbarch_registration *gdbarch_registry = NULL;
1744
1745 static void
1746 append_name (const char ***buf, int *nr, const char *name)
1747 {
1748 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1749 (*buf)[*nr] = name;
1750 *nr += 1;
1751 }
1752
1753 const char **
1754 gdbarch_printable_names (void)
1755 {
1756 /* Accumulate a list of names based on the registed list of
1757 architectures. */
1758 enum bfd_architecture a;
1759 int nr_arches = 0;
1760 const char **arches = NULL;
1761 struct gdbarch_registration *rego;
1762 for (rego = gdbarch_registry;
1763 rego != NULL;
1764 rego = rego->next)
1765 {
1766 const struct bfd_arch_info *ap;
1767 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1768 if (ap == NULL)
1769 internal_error (__FILE__, __LINE__,
1770 _("gdbarch_architecture_names: multi-arch unknown"));
1771 do
1772 {
1773 append_name (&arches, &nr_arches, ap->printable_name);
1774 ap = ap->next;
1775 }
1776 while (ap != NULL);
1777 }
1778 append_name (&arches, &nr_arches, NULL);
1779 return arches;
1780 }
1781
1782
1783 void
1784 gdbarch_register (enum bfd_architecture bfd_architecture,
1785 gdbarch_init_ftype *init,
1786 gdbarch_dump_tdep_ftype *dump_tdep)
1787 {
1788 struct gdbarch_registration **curr;
1789 const struct bfd_arch_info *bfd_arch_info;
1790 /* Check that BFD recognizes this architecture */
1791 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1792 if (bfd_arch_info == NULL)
1793 {
1794 internal_error (__FILE__, __LINE__,
1795 _("gdbarch: Attempt to register unknown architecture (%d)"),
1796 bfd_architecture);
1797 }
1798 /* Check that we haven't seen this architecture before */
1799 for (curr = &gdbarch_registry;
1800 (*curr) != NULL;
1801 curr = &(*curr)->next)
1802 {
1803 if (bfd_architecture == (*curr)->bfd_architecture)
1804 internal_error (__FILE__, __LINE__,
1805 _("gdbarch: Duplicate registraration of architecture (%s)"),
1806 bfd_arch_info->printable_name);
1807 }
1808 /* log it */
1809 if (gdbarch_debug)
1810 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1811 bfd_arch_info->printable_name,
1812 (long) init);
1813 /* Append it */
1814 (*curr) = XMALLOC (struct gdbarch_registration);
1815 (*curr)->bfd_architecture = bfd_architecture;
1816 (*curr)->init = init;
1817 (*curr)->dump_tdep = dump_tdep;
1818 (*curr)->arches = NULL;
1819 (*curr)->next = NULL;
1820 }
1821
1822 void
1823 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1824 gdbarch_init_ftype *init)
1825 {
1826 gdbarch_register (bfd_architecture, init, NULL);
1827 }
1828
1829
1830 /* Look for an architecture using gdbarch_info. */
1831
1832 struct gdbarch_list *
1833 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1834 const struct gdbarch_info *info)
1835 {
1836 for (; arches != NULL; arches = arches->next)
1837 {
1838 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1839 continue;
1840 if (info->byte_order != arches->gdbarch->byte_order)
1841 continue;
1842 if (info->osabi != arches->gdbarch->osabi)
1843 continue;
1844 if (info->target_desc != arches->gdbarch->target_desc)
1845 continue;
1846 return arches;
1847 }
1848 return NULL;
1849 }
1850
1851
1852 /* Find an architecture that matches the specified INFO. Create a new
1853 architecture if needed. Return that new architecture. Assumes
1854 that there is no current architecture. */
1855
1856 static struct gdbarch *
1857 find_arch_by_info (struct gdbarch_info info)
1858 {
1859 struct gdbarch *new_gdbarch;
1860 struct gdbarch_registration *rego;
1861
1862 /* The existing architecture has been swapped out - all this code
1863 works from a clean slate. */
1864 gdb_assert (current_gdbarch == NULL);
1865
1866 /* Fill in missing parts of the INFO struct using a number of
1867 sources: "set ..."; INFOabfd supplied; and the global
1868 defaults. */
1869 gdbarch_info_fill (&info);
1870
1871 /* Must have found some sort of architecture. */
1872 gdb_assert (info.bfd_arch_info != NULL);
1873
1874 if (gdbarch_debug)
1875 {
1876 fprintf_unfiltered (gdb_stdlog,
1877 "find_arch_by_info: info.bfd_arch_info %s\n",
1878 (info.bfd_arch_info != NULL
1879 ? info.bfd_arch_info->printable_name
1880 : "(null)"));
1881 fprintf_unfiltered (gdb_stdlog,
1882 "find_arch_by_info: info.byte_order %d (%s)\n",
1883 info.byte_order,
1884 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1885 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1886 : "default"));
1887 fprintf_unfiltered (gdb_stdlog,
1888 "find_arch_by_info: info.osabi %d (%s)\n",
1889 info.osabi, gdbarch_osabi_name (info.osabi));
1890 fprintf_unfiltered (gdb_stdlog,
1891 "find_arch_by_info: info.abfd 0x%lx\n",
1892 (long) info.abfd);
1893 fprintf_unfiltered (gdb_stdlog,
1894 "find_arch_by_info: info.tdep_info 0x%lx\n",
1895 (long) info.tdep_info);
1896 }
1897
1898 /* Find the tdep code that knows about this architecture. */
1899 for (rego = gdbarch_registry;
1900 rego != NULL;
1901 rego = rego->next)
1902 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1903 break;
1904 if (rego == NULL)
1905 {
1906 if (gdbarch_debug)
1907 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1908 "No matching architecture\n");
1909 return 0;
1910 }
1911
1912 /* Ask the tdep code for an architecture that matches "info". */
1913 new_gdbarch = rego->init (info, rego->arches);
1914
1915 /* Did the tdep code like it? No. Reject the change and revert to
1916 the old architecture. */
1917 if (new_gdbarch == NULL)
1918 {
1919 if (gdbarch_debug)
1920 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1921 "Target rejected architecture\n");
1922 return NULL;
1923 }
1924
1925 /* Is this a pre-existing architecture (as determined by already
1926 being initialized)? Move it to the front of the architecture
1927 list (keeping the list sorted Most Recently Used). */
1928 if (new_gdbarch->initialized_p)
1929 {
1930 struct gdbarch_list **list;
1931 struct gdbarch_list *this;
1932 if (gdbarch_debug)
1933 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1934 "Previous architecture 0x%08lx (%s) selected\n",
1935 (long) new_gdbarch,
1936 new_gdbarch->bfd_arch_info->printable_name);
1937 /* Find the existing arch in the list. */
1938 for (list = &rego->arches;
1939 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1940 list = &(*list)->next);
1941 /* It had better be in the list of architectures. */
1942 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1943 /* Unlink THIS. */
1944 this = (*list);
1945 (*list) = this->next;
1946 /* Insert THIS at the front. */
1947 this->next = rego->arches;
1948 rego->arches = this;
1949 /* Return it. */
1950 return new_gdbarch;
1951 }
1952
1953 /* It's a new architecture. */
1954 if (gdbarch_debug)
1955 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1956 "New architecture 0x%08lx (%s) selected\n",
1957 (long) new_gdbarch,
1958 new_gdbarch->bfd_arch_info->printable_name);
1959
1960 /* Insert the new architecture into the front of the architecture
1961 list (keep the list sorted Most Recently Used). */
1962 {
1963 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1964 this->next = rego->arches;
1965 this->gdbarch = new_gdbarch;
1966 rego->arches = this;
1967 }
1968
1969 /* Check that the newly installed architecture is valid. Plug in
1970 any post init values. */
1971 new_gdbarch->dump_tdep = rego->dump_tdep;
1972 verify_gdbarch (new_gdbarch);
1973 new_gdbarch->initialized_p = 1;
1974
1975 if (gdbarch_debug)
1976 gdbarch_dump (new_gdbarch, gdb_stdlog);
1977
1978 return new_gdbarch;
1979 }
1980
1981 struct gdbarch *
1982 gdbarch_find_by_info (struct gdbarch_info info)
1983 {
1984 struct gdbarch *new_gdbarch;
1985
1986 /* Save the previously selected architecture, setting the global to
1987 NULL. This stops things like gdbarch->init() trying to use the
1988 previous architecture's configuration. The previous architecture
1989 may not even be of the same architecture family. The most recent
1990 architecture of the same family is found at the head of the
1991 rego->arches list. */
1992 struct gdbarch *old_gdbarch = current_gdbarch;
1993 current_gdbarch = NULL;
1994
1995 /* Find the specified architecture. */
1996 new_gdbarch = find_arch_by_info (info);
1997
1998 /* Restore the existing architecture. */
1999 gdb_assert (current_gdbarch == NULL);
2000 current_gdbarch = old_gdbarch;
2001
2002 return new_gdbarch;
2003 }
2004
2005 /* Make the specified architecture current. */
2006
2007 void
2008 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2009 {
2010 gdb_assert (new_gdbarch != NULL);
2011 gdb_assert (current_gdbarch != NULL);
2012 gdb_assert (new_gdbarch->initialized_p);
2013 current_gdbarch = new_gdbarch;
2014 architecture_changed_event ();
2015 reinit_frame_cache ();
2016 }
2017
2018 extern void _initialize_gdbarch (void);
2019
2020 void
2021 _initialize_gdbarch (void)
2022 {
2023 struct cmd_list_element *c;
2024
2025 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2026 Set architecture debugging."), _("\\
2027 Show architecture debugging."), _("\\
2028 When non-zero, architecture debugging is enabled."),
2029 NULL,
2030 show_gdbarch_debug,
2031 &setdebuglist, &showdebuglist);
2032 }
2033 EOF
2034
2035 # close things off
2036 exec 1>&2
2037 #../move-if-change new-gdbarch.c gdbarch.c
2038 compare_new gdbarch.c
This page took 0.10956 seconds and 4 git commands to generate.