windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2015 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 # Process an ELF symbol in the minimal symbol table in a backend-specific
639 # way. Normally this hook is supposed to do nothing, however if required,
640 # then this hook can be used to apply tranformations to symbols that are
641 # considered special in some way. For example the MIPS backend uses it
642 # to interpret \`st_other' information to mark compressed code symbols so
643 # that they can be treated in the appropriate manner in the processing of
644 # the main symbol table and DWARF-2 records.
645 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647 # Process a symbol in the main symbol table in a backend-specific way.
648 # Normally this hook is supposed to do nothing, however if required,
649 # then this hook can be used to apply tranformations to symbols that
650 # are considered special in some way. This is currently used by the
651 # MIPS backend to make sure compressed code symbols have the ISA bit
652 # set. This in turn is needed for symbol values seen in GDB to match
653 # the values used at the runtime by the program itself, for function
654 # and label references.
655 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656 # Adjust the address retrieved from a DWARF-2 record other than a line
657 # entry in a backend-specific way. Normally this hook is supposed to
658 # return the address passed unchanged, however if that is incorrect for
659 # any reason, then this hook can be used to fix the address up in the
660 # required manner. This is currently used by the MIPS backend to make
661 # sure addresses in FDE, range records, etc. referring to compressed
662 # code have the ISA bit set, matching line information and the symbol
663 # table.
664 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665 # Adjust the address updated by a line entry in a backend-specific way.
666 # Normally this hook is supposed to return the address passed unchanged,
667 # however in the case of inconsistencies in these records, this hook can
668 # be used to fix them up in the required manner. This is currently used
669 # by the MIPS backend to make sure all line addresses in compressed code
670 # are presented with the ISA bit set, which is not always the case. This
671 # in turn ensures breakpoint addresses are correctly matched against the
672 # stop PC.
673 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674 v:int:cannot_step_breakpoint:::0:0::0
675 v:int:have_nonsteppable_watchpoint:::0:0::0
676 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679 # Return the appropriate type_flags for the supplied address class.
680 # This function should return 1 if the address class was recognized and
681 # type_flags was set, zero otherwise.
682 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683 # Is a register in a group
684 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685 # Fetch the pointer to the ith function argument.
686 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688 # Iterate over all supported register notes in a core file. For each
689 # supported register note section, the iterator must call CB and pass
690 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691 # the supported register note sections based on the current register
692 # values. Otherwise it should enumerate all supported register note
693 # sections.
694 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696 # Create core file notes
697 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699 # The elfcore writer hook to use to write Linux prpsinfo notes to core
700 # files. Most Linux architectures use the same prpsinfo32 or
701 # prpsinfo64 layouts, and so won't need to provide this hook, as we
702 # call the Linux generic routines in bfd to write prpsinfo notes by
703 # default.
704 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706 # Find core file memory regions
707 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710 # core file into buffer READBUF with length LEN. Return the number of bytes read
711 # (zero indicates failure).
712 # failed, otherwise, return the red length of READBUF.
713 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716 # libraries list from core file into buffer READBUF with length LEN.
717 # Return the number of bytes read (zero indicates failure).
718 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720 # How the core target converts a PTID from a core file to a string.
721 M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723 # BFD target to use when generating a core file.
724 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726 # If the elements of C++ vtables are in-place function descriptors rather
727 # than normal function pointers (which may point to code or a descriptor),
728 # set this to one.
729 v:int:vtable_function_descriptors:::0:0::0
730
731 # Set if the least significant bit of the delta is used instead of the least
732 # significant bit of the pfn for pointers to virtual member functions.
733 v:int:vbit_in_delta:::0:0::0
734
735 # Advance PC to next instruction in order to skip a permanent breakpoint.
736 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738 # The maximum length of an instruction on this architecture in bytes.
739 V:ULONGEST:max_insn_length:::0:0
740
741 # Copy the instruction at FROM to TO, and make any adjustments
742 # necessary to single-step it at that address.
743 #
744 # REGS holds the state the thread's registers will have before
745 # executing the copied instruction; the PC in REGS will refer to FROM,
746 # not the copy at TO. The caller should update it to point at TO later.
747 #
748 # Return a pointer to data of the architecture's choice to be passed
749 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750 # the instruction's effects have been completely simulated, with the
751 # resulting state written back to REGS.
752 #
753 # For a general explanation of displaced stepping and how GDB uses it,
754 # see the comments in infrun.c.
755 #
756 # The TO area is only guaranteed to have space for
757 # gdbarch_max_insn_length (arch) bytes, so this function must not
758 # write more bytes than that to that area.
759 #
760 # If you do not provide this function, GDB assumes that the
761 # architecture does not support displaced stepping.
762 #
763 # If your architecture doesn't need to adjust instructions before
764 # single-stepping them, consider using simple_displaced_step_copy_insn
765 # here.
766 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
768 # Return true if GDB should use hardware single-stepping to execute
769 # the displaced instruction identified by CLOSURE. If false,
770 # GDB will simply restart execution at the displaced instruction
771 # location, and it is up to the target to ensure GDB will receive
772 # control again (e.g. by placing a software breakpoint instruction
773 # into the displaced instruction buffer).
774 #
775 # The default implementation returns false on all targets that
776 # provide a gdbarch_software_single_step routine, and true otherwise.
777 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
779 # Fix up the state resulting from successfully single-stepping a
780 # displaced instruction, to give the result we would have gotten from
781 # stepping the instruction in its original location.
782 #
783 # REGS is the register state resulting from single-stepping the
784 # displaced instruction.
785 #
786 # CLOSURE is the result from the matching call to
787 # gdbarch_displaced_step_copy_insn.
788 #
789 # If you provide gdbarch_displaced_step_copy_insn.but not this
790 # function, then GDB assumes that no fixup is needed after
791 # single-stepping the instruction.
792 #
793 # For a general explanation of displaced stepping and how GDB uses it,
794 # see the comments in infrun.c.
795 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797 # Free a closure returned by gdbarch_displaced_step_copy_insn.
798 #
799 # If you provide gdbarch_displaced_step_copy_insn, you must provide
800 # this function as well.
801 #
802 # If your architecture uses closures that don't need to be freed, then
803 # you can use simple_displaced_step_free_closure here.
804 #
805 # For a general explanation of displaced stepping and how GDB uses it,
806 # see the comments in infrun.c.
807 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809 # Return the address of an appropriate place to put displaced
810 # instructions while we step over them. There need only be one such
811 # place, since we're only stepping one thread over a breakpoint at a
812 # time.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
818 # Relocate an instruction to execute at a different address. OLDLOC
819 # is the address in the inferior memory where the instruction to
820 # relocate is currently at. On input, TO points to the destination
821 # where we want the instruction to be copied (and possibly adjusted)
822 # to. On output, it points to one past the end of the resulting
823 # instruction(s). The effect of executing the instruction at TO shall
824 # be the same as if executing it at FROM. For example, call
825 # instructions that implicitly push the return address on the stack
826 # should be adjusted to return to the instruction after OLDLOC;
827 # relative branches, and other PC-relative instructions need the
828 # offset adjusted; etc.
829 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
831 # Refresh overlay mapped state for section OSECT.
832 F:void:overlay_update:struct obj_section *osect:osect
833
834 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
835
836 # Handle special encoding of static variables in stabs debug info.
837 F:const char *:static_transform_name:const char *name:name
838 # Set if the address in N_SO or N_FUN stabs may be zero.
839 v:int:sofun_address_maybe_missing:::0:0::0
840
841 # Parse the instruction at ADDR storing in the record execution log
842 # the registers REGCACHE and memory ranges that will be affected when
843 # the instruction executes, along with their current values.
844 # Return -1 if something goes wrong, 0 otherwise.
845 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
847 # Save process state after a signal.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
850
851 # Signal translation: translate inferior's signal (target's) number
852 # into GDB's representation. The implementation of this method must
853 # be host independent. IOW, don't rely on symbols of the NAT_FILE
854 # header (the nm-*.h files), the host <signal.h> header, or similar
855 # headers. This is mainly used when cross-debugging core files ---
856 # "Live" targets hide the translation behind the target interface
857 # (target_wait, target_resume, etc.).
858 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
859
860 # Signal translation: translate the GDB's internal signal number into
861 # the inferior's signal (target's) representation. The implementation
862 # of this method must be host independent. IOW, don't rely on symbols
863 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864 # header, or similar headers.
865 # Return the target signal number if found, or -1 if the GDB internal
866 # signal number is invalid.
867 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
869 # Extra signal info inspection.
870 #
871 # Return a type suitable to inspect extra signal information.
872 M:struct type *:get_siginfo_type:void:
873
874 # Record architecture-specific information from the symbol table.
875 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
876
877 # Function for the 'catch syscall' feature.
878
879 # Get architecture-specific system calls information from registers.
880 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
882 # The filename of the XML syscall for this architecture.
883 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885 # Information about system calls from this architecture
886 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
888 # SystemTap related fields and functions.
889
890 # A NULL-terminated array of prefixes used to mark an integer constant
891 # on the architecture's assembly.
892 # For example, on x86 integer constants are written as:
893 #
894 # \$10 ;; integer constant 10
895 #
896 # in this case, this prefix would be the character \`\$\'.
897 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
898
899 # A NULL-terminated array of suffixes used to mark an integer constant
900 # on the architecture's assembly.
901 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
902
903 # A NULL-terminated array of prefixes used to mark a register name on
904 # the architecture's assembly.
905 # For example, on x86 the register name is written as:
906 #
907 # \%eax ;; register eax
908 #
909 # in this case, this prefix would be the character \`\%\'.
910 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
911
912 # A NULL-terminated array of suffixes used to mark a register name on
913 # the architecture's assembly.
914 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
915
916 # A NULL-terminated array of prefixes used to mark a register
917 # indirection on the architecture's assembly.
918 # For example, on x86 the register indirection is written as:
919 #
920 # \(\%eax\) ;; indirecting eax
921 #
922 # in this case, this prefix would be the charater \`\(\'.
923 #
924 # Please note that we use the indirection prefix also for register
925 # displacement, e.g., \`4\(\%eax\)\' on x86.
926 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
927
928 # A NULL-terminated array of suffixes used to mark a register
929 # indirection on the architecture's assembly.
930 # For example, on x86 the register indirection is written as:
931 #
932 # \(\%eax\) ;; indirecting eax
933 #
934 # in this case, this prefix would be the charater \`\)\'.
935 #
936 # Please note that we use the indirection suffix also for register
937 # displacement, e.g., \`4\(\%eax\)\' on x86.
938 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
939
940 # Prefix(es) used to name a register using GDB's nomenclature.
941 #
942 # For example, on PPC a register is represented by a number in the assembly
943 # language (e.g., \`10\' is the 10th general-purpose register). However,
944 # inside GDB this same register has an \`r\' appended to its name, so the 10th
945 # register would be represented as \`r10\' internally.
946 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
947
948 # Suffix used to name a register using GDB's nomenclature.
949 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
950
951 # Check if S is a single operand.
952 #
953 # Single operands can be:
954 # \- Literal integers, e.g. \`\$10\' on x86
955 # \- Register access, e.g. \`\%eax\' on x86
956 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
957 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958 #
959 # This function should check for these patterns on the string
960 # and return 1 if some were found, or zero otherwise. Please try to match
961 # as much info as you can from the string, i.e., if you have to match
962 # something like \`\(\%\', do not match just the \`\(\'.
963 M:int:stap_is_single_operand:const char *s:s
964
965 # Function used to handle a "special case" in the parser.
966 #
967 # A "special case" is considered to be an unknown token, i.e., a token
968 # that the parser does not know how to parse. A good example of special
969 # case would be ARM's register displacement syntax:
970 #
971 # [R0, #4] ;; displacing R0 by 4
972 #
973 # Since the parser assumes that a register displacement is of the form:
974 #
975 # <number> <indirection_prefix> <register_name> <indirection_suffix>
976 #
977 # it means that it will not be able to recognize and parse this odd syntax.
978 # Therefore, we should add a special case function that will handle this token.
979 #
980 # This function should generate the proper expression form of the expression
981 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982 # and so on). It should also return 1 if the parsing was successful, or zero
983 # if the token was not recognized as a special token (in this case, returning
984 # zero means that the special parser is deferring the parsing to the generic
985 # parser), and should advance the buffer pointer (p->arg).
986 M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988 # DTrace related functions.
989
990 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
991 # NARG must be >= 0.
992 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
993
994 # True if the given ADDR does not contain the instruction sequence
995 # corresponding to a disabled DTrace is-enabled probe.
996 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
997
998 # Enable a DTrace is-enabled probe at ADDR.
999 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1000
1001 # Disable a DTrace is-enabled probe at ADDR.
1002 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1003
1004 # True if the list of shared libraries is one and only for all
1005 # processes, as opposed to a list of shared libraries per inferior.
1006 # This usually means that all processes, although may or may not share
1007 # an address space, will see the same set of symbols at the same
1008 # addresses.
1009 v:int:has_global_solist:::0:0::0
1010
1011 # On some targets, even though each inferior has its own private
1012 # address space, the debug interface takes care of making breakpoints
1013 # visible to all address spaces automatically. For such cases,
1014 # this property should be set to true.
1015 v:int:has_global_breakpoints:::0:0::0
1016
1017 # True if inferiors share an address space (e.g., uClinux).
1018 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1019
1020 # True if a fast tracepoint can be set at an address.
1021 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
1022
1023 # Return the "auto" target charset.
1024 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1025 # Return the "auto" target wide charset.
1026 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1027
1028 # If non-empty, this is a file extension that will be opened in place
1029 # of the file extension reported by the shared library list.
1030 #
1031 # This is most useful for toolchains that use a post-linker tool,
1032 # where the names of the files run on the target differ in extension
1033 # compared to the names of the files GDB should load for debug info.
1034 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1035
1036 # If true, the target OS has DOS-based file system semantics. That
1037 # is, absolute paths include a drive name, and the backslash is
1038 # considered a directory separator.
1039 v:int:has_dos_based_file_system:::0:0::0
1040
1041 # Generate bytecodes to collect the return address in a frame.
1042 # Since the bytecodes run on the target, possibly with GDB not even
1043 # connected, the full unwinding machinery is not available, and
1044 # typically this function will issue bytecodes for one or more likely
1045 # places that the return address may be found.
1046 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1047
1048 # Implement the "info proc" command.
1049 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1050
1051 # Implement the "info proc" command for core files. Noe that there
1052 # are two "info_proc"-like methods on gdbarch -- one for core files,
1053 # one for live targets.
1054 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1055
1056 # Iterate over all objfiles in the order that makes the most sense
1057 # for the architecture to make global symbol searches.
1058 #
1059 # CB is a callback function where OBJFILE is the objfile to be searched,
1060 # and CB_DATA a pointer to user-defined data (the same data that is passed
1061 # when calling this gdbarch method). The iteration stops if this function
1062 # returns nonzero.
1063 #
1064 # CB_DATA is a pointer to some user-defined data to be passed to
1065 # the callback.
1066 #
1067 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1068 # inspected when the symbol search was requested.
1069 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1070
1071 # Ravenscar arch-dependent ops.
1072 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1073
1074 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1075 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1076
1077 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1078 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1079
1080 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1081 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1082
1083 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1084 # Return 0 if *READPTR is already at the end of the buffer.
1085 # Return -1 if there is insufficient buffer for a whole entry.
1086 # Return 1 if an entry was read into *TYPEP and *VALP.
1087 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1088
1089 # Find the address range of the current inferior's vsyscall/vDSO, and
1090 # write it to *RANGE. If the vsyscall's length can't be determined, a
1091 # range with zero length is returned. Returns true if the vsyscall is
1092 # found, false otherwise.
1093 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1094
1095 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1096 # PROT has GDB_MMAP_PROT_* bitmask format.
1097 # Throw an error if it is not possible. Returned address is always valid.
1098 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1099
1100 # Return string (caller has to use xfree for it) with options for GCC
1101 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1102 # These options are put before CU's DW_AT_producer compilation options so that
1103 # they can override it. Method may also return NULL.
1104 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1105
1106 # Return a regular expression that matches names used by this
1107 # architecture in GNU configury triplets. The result is statically
1108 # allocated and must not be freed. The default implementation simply
1109 # returns the BFD architecture name, which is correct in nearly every
1110 # case.
1111 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1112 EOF
1113 }
1114
1115 #
1116 # The .log file
1117 #
1118 exec > new-gdbarch.log
1119 function_list | while do_read
1120 do
1121 cat <<EOF
1122 ${class} ${returntype} ${function} ($formal)
1123 EOF
1124 for r in ${read}
1125 do
1126 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1127 done
1128 if class_is_predicate_p && fallback_default_p
1129 then
1130 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1131 kill $$
1132 exit 1
1133 fi
1134 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1135 then
1136 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1137 kill $$
1138 exit 1
1139 fi
1140 if class_is_multiarch_p
1141 then
1142 if class_is_predicate_p ; then :
1143 elif test "x${predefault}" = "x"
1144 then
1145 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1146 kill $$
1147 exit 1
1148 fi
1149 fi
1150 echo ""
1151 done
1152
1153 exec 1>&2
1154 compare_new gdbarch.log
1155
1156
1157 copyright ()
1158 {
1159 cat <<EOF
1160 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1161 /* vi:set ro: */
1162
1163 /* Dynamic architecture support for GDB, the GNU debugger.
1164
1165 Copyright (C) 1998-2015 Free Software Foundation, Inc.
1166
1167 This file is part of GDB.
1168
1169 This program is free software; you can redistribute it and/or modify
1170 it under the terms of the GNU General Public License as published by
1171 the Free Software Foundation; either version 3 of the License, or
1172 (at your option) any later version.
1173
1174 This program is distributed in the hope that it will be useful,
1175 but WITHOUT ANY WARRANTY; without even the implied warranty of
1176 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1177 GNU General Public License for more details.
1178
1179 You should have received a copy of the GNU General Public License
1180 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1181
1182 /* This file was created with the aid of \`\`gdbarch.sh''.
1183
1184 The Bourne shell script \`\`gdbarch.sh'' creates the files
1185 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1186 against the existing \`\`gdbarch.[hc]''. Any differences found
1187 being reported.
1188
1189 If editing this file, please also run gdbarch.sh and merge any
1190 changes into that script. Conversely, when making sweeping changes
1191 to this file, modifying gdbarch.sh and using its output may prove
1192 easier. */
1193
1194 EOF
1195 }
1196
1197 #
1198 # The .h file
1199 #
1200
1201 exec > new-gdbarch.h
1202 copyright
1203 cat <<EOF
1204 #ifndef GDBARCH_H
1205 #define GDBARCH_H
1206
1207 #include "frame.h"
1208
1209 struct floatformat;
1210 struct ui_file;
1211 struct value;
1212 struct objfile;
1213 struct obj_section;
1214 struct minimal_symbol;
1215 struct regcache;
1216 struct reggroup;
1217 struct regset;
1218 struct disassemble_info;
1219 struct target_ops;
1220 struct obstack;
1221 struct bp_target_info;
1222 struct target_desc;
1223 struct objfile;
1224 struct symbol;
1225 struct displaced_step_closure;
1226 struct core_regset_section;
1227 struct syscall;
1228 struct agent_expr;
1229 struct axs_value;
1230 struct stap_parse_info;
1231 struct parser_state;
1232 struct ravenscar_arch_ops;
1233 struct elf_internal_linux_prpsinfo;
1234 struct mem_range;
1235 struct syscalls_info;
1236
1237 #include "regcache.h"
1238
1239 /* The architecture associated with the inferior through the
1240 connection to the target.
1241
1242 The architecture vector provides some information that is really a
1243 property of the inferior, accessed through a particular target:
1244 ptrace operations; the layout of certain RSP packets; the solib_ops
1245 vector; etc. To differentiate architecture accesses to
1246 per-inferior/target properties from
1247 per-thread/per-frame/per-objfile properties, accesses to
1248 per-inferior/target properties should be made through this
1249 gdbarch. */
1250
1251 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1252 extern struct gdbarch *target_gdbarch (void);
1253
1254 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1255 gdbarch method. */
1256
1257 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1258 (struct objfile *objfile, void *cb_data);
1259
1260 /* Callback type for regset section iterators. The callback usually
1261 invokes the REGSET's supply or collect method, to which it must
1262 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1263 section name, and HUMAN_NAME is used for diagnostic messages.
1264 CB_DATA should have been passed unchanged through the iterator. */
1265
1266 typedef void (iterate_over_regset_sections_cb)
1267 (const char *sect_name, int size, const struct regset *regset,
1268 const char *human_name, void *cb_data);
1269 EOF
1270
1271 # function typedef's
1272 printf "\n"
1273 printf "\n"
1274 printf "/* The following are pre-initialized by GDBARCH. */\n"
1275 function_list | while do_read
1276 do
1277 if class_is_info_p
1278 then
1279 printf "\n"
1280 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1281 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1282 fi
1283 done
1284
1285 # function typedef's
1286 printf "\n"
1287 printf "\n"
1288 printf "/* The following are initialized by the target dependent code. */\n"
1289 function_list | while do_read
1290 do
1291 if [ -n "${comment}" ]
1292 then
1293 echo "${comment}" | sed \
1294 -e '2 s,#,/*,' \
1295 -e '3,$ s,#, ,' \
1296 -e '$ s,$, */,'
1297 fi
1298
1299 if class_is_predicate_p
1300 then
1301 printf "\n"
1302 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1303 fi
1304 if class_is_variable_p
1305 then
1306 printf "\n"
1307 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1308 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1309 fi
1310 if class_is_function_p
1311 then
1312 printf "\n"
1313 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1314 then
1315 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1316 elif class_is_multiarch_p
1317 then
1318 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1319 else
1320 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1321 fi
1322 if [ "x${formal}" = "xvoid" ]
1323 then
1324 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1325 else
1326 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1327 fi
1328 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1329 fi
1330 done
1331
1332 # close it off
1333 cat <<EOF
1334
1335 /* Definition for an unknown syscall, used basically in error-cases. */
1336 #define UNKNOWN_SYSCALL (-1)
1337
1338 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1339
1340
1341 /* Mechanism for co-ordinating the selection of a specific
1342 architecture.
1343
1344 GDB targets (*-tdep.c) can register an interest in a specific
1345 architecture. Other GDB components can register a need to maintain
1346 per-architecture data.
1347
1348 The mechanisms below ensures that there is only a loose connection
1349 between the set-architecture command and the various GDB
1350 components. Each component can independently register their need
1351 to maintain architecture specific data with gdbarch.
1352
1353 Pragmatics:
1354
1355 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1356 didn't scale.
1357
1358 The more traditional mega-struct containing architecture specific
1359 data for all the various GDB components was also considered. Since
1360 GDB is built from a variable number of (fairly independent)
1361 components it was determined that the global aproach was not
1362 applicable. */
1363
1364
1365 /* Register a new architectural family with GDB.
1366
1367 Register support for the specified ARCHITECTURE with GDB. When
1368 gdbarch determines that the specified architecture has been
1369 selected, the corresponding INIT function is called.
1370
1371 --
1372
1373 The INIT function takes two parameters: INFO which contains the
1374 information available to gdbarch about the (possibly new)
1375 architecture; ARCHES which is a list of the previously created
1376 \`\`struct gdbarch'' for this architecture.
1377
1378 The INFO parameter is, as far as possible, be pre-initialized with
1379 information obtained from INFO.ABFD or the global defaults.
1380
1381 The ARCHES parameter is a linked list (sorted most recently used)
1382 of all the previously created architures for this architecture
1383 family. The (possibly NULL) ARCHES->gdbarch can used to access
1384 values from the previously selected architecture for this
1385 architecture family.
1386
1387 The INIT function shall return any of: NULL - indicating that it
1388 doesn't recognize the selected architecture; an existing \`\`struct
1389 gdbarch'' from the ARCHES list - indicating that the new
1390 architecture is just a synonym for an earlier architecture (see
1391 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1392 - that describes the selected architecture (see gdbarch_alloc()).
1393
1394 The DUMP_TDEP function shall print out all target specific values.
1395 Care should be taken to ensure that the function works in both the
1396 multi-arch and non- multi-arch cases. */
1397
1398 struct gdbarch_list
1399 {
1400 struct gdbarch *gdbarch;
1401 struct gdbarch_list *next;
1402 };
1403
1404 struct gdbarch_info
1405 {
1406 /* Use default: NULL (ZERO). */
1407 const struct bfd_arch_info *bfd_arch_info;
1408
1409 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1410 enum bfd_endian byte_order;
1411
1412 enum bfd_endian byte_order_for_code;
1413
1414 /* Use default: NULL (ZERO). */
1415 bfd *abfd;
1416
1417 /* Use default: NULL (ZERO). */
1418 struct gdbarch_tdep_info *tdep_info;
1419
1420 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1421 enum gdb_osabi osabi;
1422
1423 /* Use default: NULL (ZERO). */
1424 const struct target_desc *target_desc;
1425 };
1426
1427 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1428 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1429
1430 /* DEPRECATED - use gdbarch_register() */
1431 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1432
1433 extern void gdbarch_register (enum bfd_architecture architecture,
1434 gdbarch_init_ftype *,
1435 gdbarch_dump_tdep_ftype *);
1436
1437
1438 /* Return a freshly allocated, NULL terminated, array of the valid
1439 architecture names. Since architectures are registered during the
1440 _initialize phase this function only returns useful information
1441 once initialization has been completed. */
1442
1443 extern const char **gdbarch_printable_names (void);
1444
1445
1446 /* Helper function. Search the list of ARCHES for a GDBARCH that
1447 matches the information provided by INFO. */
1448
1449 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1450
1451
1452 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1453 basic initialization using values obtained from the INFO and TDEP
1454 parameters. set_gdbarch_*() functions are called to complete the
1455 initialization of the object. */
1456
1457 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1458
1459
1460 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1461 It is assumed that the caller freeds the \`\`struct
1462 gdbarch_tdep''. */
1463
1464 extern void gdbarch_free (struct gdbarch *);
1465
1466
1467 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1468 obstack. The memory is freed when the corresponding architecture
1469 is also freed. */
1470
1471 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1472 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1473 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1474
1475
1476 /* Helper function. Force an update of the current architecture.
1477
1478 The actual architecture selected is determined by INFO, \`\`(gdb) set
1479 architecture'' et.al., the existing architecture and BFD's default
1480 architecture. INFO should be initialized to zero and then selected
1481 fields should be updated.
1482
1483 Returns non-zero if the update succeeds. */
1484
1485 extern int gdbarch_update_p (struct gdbarch_info info);
1486
1487
1488 /* Helper function. Find an architecture matching info.
1489
1490 INFO should be initialized using gdbarch_info_init, relevant fields
1491 set, and then finished using gdbarch_info_fill.
1492
1493 Returns the corresponding architecture, or NULL if no matching
1494 architecture was found. */
1495
1496 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1497
1498
1499 /* Helper function. Set the target gdbarch to "gdbarch". */
1500
1501 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1502
1503
1504 /* Register per-architecture data-pointer.
1505
1506 Reserve space for a per-architecture data-pointer. An identifier
1507 for the reserved data-pointer is returned. That identifer should
1508 be saved in a local static variable.
1509
1510 Memory for the per-architecture data shall be allocated using
1511 gdbarch_obstack_zalloc. That memory will be deleted when the
1512 corresponding architecture object is deleted.
1513
1514 When a previously created architecture is re-selected, the
1515 per-architecture data-pointer for that previous architecture is
1516 restored. INIT() is not re-called.
1517
1518 Multiple registrarants for any architecture are allowed (and
1519 strongly encouraged). */
1520
1521 struct gdbarch_data;
1522
1523 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1524 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1525 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1526 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1527 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1528 struct gdbarch_data *data,
1529 void *pointer);
1530
1531 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1532
1533
1534 /* Set the dynamic target-system-dependent parameters (architecture,
1535 byte-order, ...) using information found in the BFD. */
1536
1537 extern void set_gdbarch_from_file (bfd *);
1538
1539
1540 /* Initialize the current architecture to the "first" one we find on
1541 our list. */
1542
1543 extern void initialize_current_architecture (void);
1544
1545 /* gdbarch trace variable */
1546 extern unsigned int gdbarch_debug;
1547
1548 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1549
1550 #endif
1551 EOF
1552 exec 1>&2
1553 #../move-if-change new-gdbarch.h gdbarch.h
1554 compare_new gdbarch.h
1555
1556
1557 #
1558 # C file
1559 #
1560
1561 exec > new-gdbarch.c
1562 copyright
1563 cat <<EOF
1564
1565 #include "defs.h"
1566 #include "arch-utils.h"
1567
1568 #include "gdbcmd.h"
1569 #include "inferior.h"
1570 #include "symcat.h"
1571
1572 #include "floatformat.h"
1573 #include "reggroups.h"
1574 #include "osabi.h"
1575 #include "gdb_obstack.h"
1576 #include "observer.h"
1577 #include "regcache.h"
1578 #include "objfiles.h"
1579
1580 /* Static function declarations */
1581
1582 static void alloc_gdbarch_data (struct gdbarch *);
1583
1584 /* Non-zero if we want to trace architecture code. */
1585
1586 #ifndef GDBARCH_DEBUG
1587 #define GDBARCH_DEBUG 0
1588 #endif
1589 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1590 static void
1591 show_gdbarch_debug (struct ui_file *file, int from_tty,
1592 struct cmd_list_element *c, const char *value)
1593 {
1594 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1595 }
1596
1597 static const char *
1598 pformat (const struct floatformat **format)
1599 {
1600 if (format == NULL)
1601 return "(null)";
1602 else
1603 /* Just print out one of them - this is only for diagnostics. */
1604 return format[0]->name;
1605 }
1606
1607 static const char *
1608 pstring (const char *string)
1609 {
1610 if (string == NULL)
1611 return "(null)";
1612 return string;
1613 }
1614
1615 /* Helper function to print a list of strings, represented as "const
1616 char *const *". The list is printed comma-separated. */
1617
1618 static char *
1619 pstring_list (const char *const *list)
1620 {
1621 static char ret[100];
1622 const char *const *p;
1623 size_t offset = 0;
1624
1625 if (list == NULL)
1626 return "(null)";
1627
1628 ret[0] = '\0';
1629 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1630 {
1631 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1632 offset += 2 + s;
1633 }
1634
1635 if (offset > 0)
1636 {
1637 gdb_assert (offset - 2 < sizeof (ret));
1638 ret[offset - 2] = '\0';
1639 }
1640
1641 return ret;
1642 }
1643
1644 EOF
1645
1646 # gdbarch open the gdbarch object
1647 printf "\n"
1648 printf "/* Maintain the struct gdbarch object. */\n"
1649 printf "\n"
1650 printf "struct gdbarch\n"
1651 printf "{\n"
1652 printf " /* Has this architecture been fully initialized? */\n"
1653 printf " int initialized_p;\n"
1654 printf "\n"
1655 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1656 printf " struct obstack *obstack;\n"
1657 printf "\n"
1658 printf " /* basic architectural information. */\n"
1659 function_list | while do_read
1660 do
1661 if class_is_info_p
1662 then
1663 printf " ${returntype} ${function};\n"
1664 fi
1665 done
1666 printf "\n"
1667 printf " /* target specific vector. */\n"
1668 printf " struct gdbarch_tdep *tdep;\n"
1669 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1670 printf "\n"
1671 printf " /* per-architecture data-pointers. */\n"
1672 printf " unsigned nr_data;\n"
1673 printf " void **data;\n"
1674 printf "\n"
1675 cat <<EOF
1676 /* Multi-arch values.
1677
1678 When extending this structure you must:
1679
1680 Add the field below.
1681
1682 Declare set/get functions and define the corresponding
1683 macro in gdbarch.h.
1684
1685 gdbarch_alloc(): If zero/NULL is not a suitable default,
1686 initialize the new field.
1687
1688 verify_gdbarch(): Confirm that the target updated the field
1689 correctly.
1690
1691 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1692 field is dumped out
1693
1694 get_gdbarch(): Implement the set/get functions (probably using
1695 the macro's as shortcuts).
1696
1697 */
1698
1699 EOF
1700 function_list | while do_read
1701 do
1702 if class_is_variable_p
1703 then
1704 printf " ${returntype} ${function};\n"
1705 elif class_is_function_p
1706 then
1707 printf " gdbarch_${function}_ftype *${function};\n"
1708 fi
1709 done
1710 printf "};\n"
1711
1712 # Create a new gdbarch struct
1713 cat <<EOF
1714
1715 /* Create a new \`\`struct gdbarch'' based on information provided by
1716 \`\`struct gdbarch_info''. */
1717 EOF
1718 printf "\n"
1719 cat <<EOF
1720 struct gdbarch *
1721 gdbarch_alloc (const struct gdbarch_info *info,
1722 struct gdbarch_tdep *tdep)
1723 {
1724 struct gdbarch *gdbarch;
1725
1726 /* Create an obstack for allocating all the per-architecture memory,
1727 then use that to allocate the architecture vector. */
1728 struct obstack *obstack = XNEW (struct obstack);
1729 obstack_init (obstack);
1730 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1731 memset (gdbarch, 0, sizeof (*gdbarch));
1732 gdbarch->obstack = obstack;
1733
1734 alloc_gdbarch_data (gdbarch);
1735
1736 gdbarch->tdep = tdep;
1737 EOF
1738 printf "\n"
1739 function_list | while do_read
1740 do
1741 if class_is_info_p
1742 then
1743 printf " gdbarch->${function} = info->${function};\n"
1744 fi
1745 done
1746 printf "\n"
1747 printf " /* Force the explicit initialization of these. */\n"
1748 function_list | while do_read
1749 do
1750 if class_is_function_p || class_is_variable_p
1751 then
1752 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1753 then
1754 printf " gdbarch->${function} = ${predefault};\n"
1755 fi
1756 fi
1757 done
1758 cat <<EOF
1759 /* gdbarch_alloc() */
1760
1761 return gdbarch;
1762 }
1763 EOF
1764
1765 # Free a gdbarch struct.
1766 printf "\n"
1767 printf "\n"
1768 cat <<EOF
1769 /* Allocate extra space using the per-architecture obstack. */
1770
1771 void *
1772 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1773 {
1774 void *data = obstack_alloc (arch->obstack, size);
1775
1776 memset (data, 0, size);
1777 return data;
1778 }
1779
1780
1781 /* Free a gdbarch struct. This should never happen in normal
1782 operation --- once you've created a gdbarch, you keep it around.
1783 However, if an architecture's init function encounters an error
1784 building the structure, it may need to clean up a partially
1785 constructed gdbarch. */
1786
1787 void
1788 gdbarch_free (struct gdbarch *arch)
1789 {
1790 struct obstack *obstack;
1791
1792 gdb_assert (arch != NULL);
1793 gdb_assert (!arch->initialized_p);
1794 obstack = arch->obstack;
1795 obstack_free (obstack, 0); /* Includes the ARCH. */
1796 xfree (obstack);
1797 }
1798 EOF
1799
1800 # verify a new architecture
1801 cat <<EOF
1802
1803
1804 /* Ensure that all values in a GDBARCH are reasonable. */
1805
1806 static void
1807 verify_gdbarch (struct gdbarch *gdbarch)
1808 {
1809 struct ui_file *log;
1810 struct cleanup *cleanups;
1811 long length;
1812 char *buf;
1813
1814 log = mem_fileopen ();
1815 cleanups = make_cleanup_ui_file_delete (log);
1816 /* fundamental */
1817 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1818 fprintf_unfiltered (log, "\n\tbyte-order");
1819 if (gdbarch->bfd_arch_info == NULL)
1820 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1821 /* Check those that need to be defined for the given multi-arch level. */
1822 EOF
1823 function_list | while do_read
1824 do
1825 if class_is_function_p || class_is_variable_p
1826 then
1827 if [ "x${invalid_p}" = "x0" ]
1828 then
1829 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1830 elif class_is_predicate_p
1831 then
1832 printf " /* Skip verify of ${function}, has predicate. */\n"
1833 # FIXME: See do_read for potential simplification
1834 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1835 then
1836 printf " if (${invalid_p})\n"
1837 printf " gdbarch->${function} = ${postdefault};\n"
1838 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1839 then
1840 printf " if (gdbarch->${function} == ${predefault})\n"
1841 printf " gdbarch->${function} = ${postdefault};\n"
1842 elif [ -n "${postdefault}" ]
1843 then
1844 printf " if (gdbarch->${function} == 0)\n"
1845 printf " gdbarch->${function} = ${postdefault};\n"
1846 elif [ -n "${invalid_p}" ]
1847 then
1848 printf " if (${invalid_p})\n"
1849 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1850 elif [ -n "${predefault}" ]
1851 then
1852 printf " if (gdbarch->${function} == ${predefault})\n"
1853 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1854 fi
1855 fi
1856 done
1857 cat <<EOF
1858 buf = ui_file_xstrdup (log, &length);
1859 make_cleanup (xfree, buf);
1860 if (length > 0)
1861 internal_error (__FILE__, __LINE__,
1862 _("verify_gdbarch: the following are invalid ...%s"),
1863 buf);
1864 do_cleanups (cleanups);
1865 }
1866 EOF
1867
1868 # dump the structure
1869 printf "\n"
1870 printf "\n"
1871 cat <<EOF
1872 /* Print out the details of the current architecture. */
1873
1874 void
1875 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1876 {
1877 const char *gdb_nm_file = "<not-defined>";
1878
1879 #if defined (GDB_NM_FILE)
1880 gdb_nm_file = GDB_NM_FILE;
1881 #endif
1882 fprintf_unfiltered (file,
1883 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1884 gdb_nm_file);
1885 EOF
1886 function_list | sort -t: -k 3 | while do_read
1887 do
1888 # First the predicate
1889 if class_is_predicate_p
1890 then
1891 printf " fprintf_unfiltered (file,\n"
1892 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1893 printf " gdbarch_${function}_p (gdbarch));\n"
1894 fi
1895 # Print the corresponding value.
1896 if class_is_function_p
1897 then
1898 printf " fprintf_unfiltered (file,\n"
1899 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1900 printf " host_address_to_string (gdbarch->${function}));\n"
1901 else
1902 # It is a variable
1903 case "${print}:${returntype}" in
1904 :CORE_ADDR )
1905 fmt="%s"
1906 print="core_addr_to_string_nz (gdbarch->${function})"
1907 ;;
1908 :* )
1909 fmt="%s"
1910 print="plongest (gdbarch->${function})"
1911 ;;
1912 * )
1913 fmt="%s"
1914 ;;
1915 esac
1916 printf " fprintf_unfiltered (file,\n"
1917 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1918 printf " ${print});\n"
1919 fi
1920 done
1921 cat <<EOF
1922 if (gdbarch->dump_tdep != NULL)
1923 gdbarch->dump_tdep (gdbarch, file);
1924 }
1925 EOF
1926
1927
1928 # GET/SET
1929 printf "\n"
1930 cat <<EOF
1931 struct gdbarch_tdep *
1932 gdbarch_tdep (struct gdbarch *gdbarch)
1933 {
1934 if (gdbarch_debug >= 2)
1935 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1936 return gdbarch->tdep;
1937 }
1938 EOF
1939 printf "\n"
1940 function_list | while do_read
1941 do
1942 if class_is_predicate_p
1943 then
1944 printf "\n"
1945 printf "int\n"
1946 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1947 printf "{\n"
1948 printf " gdb_assert (gdbarch != NULL);\n"
1949 printf " return ${predicate};\n"
1950 printf "}\n"
1951 fi
1952 if class_is_function_p
1953 then
1954 printf "\n"
1955 printf "${returntype}\n"
1956 if [ "x${formal}" = "xvoid" ]
1957 then
1958 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1959 else
1960 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1961 fi
1962 printf "{\n"
1963 printf " gdb_assert (gdbarch != NULL);\n"
1964 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1965 if class_is_predicate_p && test -n "${predefault}"
1966 then
1967 # Allow a call to a function with a predicate.
1968 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1969 fi
1970 printf " if (gdbarch_debug >= 2)\n"
1971 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1972 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1973 then
1974 if class_is_multiarch_p
1975 then
1976 params="gdbarch"
1977 else
1978 params=""
1979 fi
1980 else
1981 if class_is_multiarch_p
1982 then
1983 params="gdbarch, ${actual}"
1984 else
1985 params="${actual}"
1986 fi
1987 fi
1988 if [ "x${returntype}" = "xvoid" ]
1989 then
1990 printf " gdbarch->${function} (${params});\n"
1991 else
1992 printf " return gdbarch->${function} (${params});\n"
1993 fi
1994 printf "}\n"
1995 printf "\n"
1996 printf "void\n"
1997 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1998 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1999 printf "{\n"
2000 printf " gdbarch->${function} = ${function};\n"
2001 printf "}\n"
2002 elif class_is_variable_p
2003 then
2004 printf "\n"
2005 printf "${returntype}\n"
2006 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2007 printf "{\n"
2008 printf " gdb_assert (gdbarch != NULL);\n"
2009 if [ "x${invalid_p}" = "x0" ]
2010 then
2011 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2012 elif [ -n "${invalid_p}" ]
2013 then
2014 printf " /* Check variable is valid. */\n"
2015 printf " gdb_assert (!(${invalid_p}));\n"
2016 elif [ -n "${predefault}" ]
2017 then
2018 printf " /* Check variable changed from pre-default. */\n"
2019 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2020 fi
2021 printf " if (gdbarch_debug >= 2)\n"
2022 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2023 printf " return gdbarch->${function};\n"
2024 printf "}\n"
2025 printf "\n"
2026 printf "void\n"
2027 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2028 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2029 printf "{\n"
2030 printf " gdbarch->${function} = ${function};\n"
2031 printf "}\n"
2032 elif class_is_info_p
2033 then
2034 printf "\n"
2035 printf "${returntype}\n"
2036 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2037 printf "{\n"
2038 printf " gdb_assert (gdbarch != NULL);\n"
2039 printf " if (gdbarch_debug >= 2)\n"
2040 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2041 printf " return gdbarch->${function};\n"
2042 printf "}\n"
2043 fi
2044 done
2045
2046 # All the trailing guff
2047 cat <<EOF
2048
2049
2050 /* Keep a registry of per-architecture data-pointers required by GDB
2051 modules. */
2052
2053 struct gdbarch_data
2054 {
2055 unsigned index;
2056 int init_p;
2057 gdbarch_data_pre_init_ftype *pre_init;
2058 gdbarch_data_post_init_ftype *post_init;
2059 };
2060
2061 struct gdbarch_data_registration
2062 {
2063 struct gdbarch_data *data;
2064 struct gdbarch_data_registration *next;
2065 };
2066
2067 struct gdbarch_data_registry
2068 {
2069 unsigned nr;
2070 struct gdbarch_data_registration *registrations;
2071 };
2072
2073 struct gdbarch_data_registry gdbarch_data_registry =
2074 {
2075 0, NULL,
2076 };
2077
2078 static struct gdbarch_data *
2079 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2080 gdbarch_data_post_init_ftype *post_init)
2081 {
2082 struct gdbarch_data_registration **curr;
2083
2084 /* Append the new registration. */
2085 for (curr = &gdbarch_data_registry.registrations;
2086 (*curr) != NULL;
2087 curr = &(*curr)->next);
2088 (*curr) = XNEW (struct gdbarch_data_registration);
2089 (*curr)->next = NULL;
2090 (*curr)->data = XNEW (struct gdbarch_data);
2091 (*curr)->data->index = gdbarch_data_registry.nr++;
2092 (*curr)->data->pre_init = pre_init;
2093 (*curr)->data->post_init = post_init;
2094 (*curr)->data->init_p = 1;
2095 return (*curr)->data;
2096 }
2097
2098 struct gdbarch_data *
2099 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2100 {
2101 return gdbarch_data_register (pre_init, NULL);
2102 }
2103
2104 struct gdbarch_data *
2105 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2106 {
2107 return gdbarch_data_register (NULL, post_init);
2108 }
2109
2110 /* Create/delete the gdbarch data vector. */
2111
2112 static void
2113 alloc_gdbarch_data (struct gdbarch *gdbarch)
2114 {
2115 gdb_assert (gdbarch->data == NULL);
2116 gdbarch->nr_data = gdbarch_data_registry.nr;
2117 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2118 }
2119
2120 /* Initialize the current value of the specified per-architecture
2121 data-pointer. */
2122
2123 void
2124 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2125 struct gdbarch_data *data,
2126 void *pointer)
2127 {
2128 gdb_assert (data->index < gdbarch->nr_data);
2129 gdb_assert (gdbarch->data[data->index] == NULL);
2130 gdb_assert (data->pre_init == NULL);
2131 gdbarch->data[data->index] = pointer;
2132 }
2133
2134 /* Return the current value of the specified per-architecture
2135 data-pointer. */
2136
2137 void *
2138 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2139 {
2140 gdb_assert (data->index < gdbarch->nr_data);
2141 if (gdbarch->data[data->index] == NULL)
2142 {
2143 /* The data-pointer isn't initialized, call init() to get a
2144 value. */
2145 if (data->pre_init != NULL)
2146 /* Mid architecture creation: pass just the obstack, and not
2147 the entire architecture, as that way it isn't possible for
2148 pre-init code to refer to undefined architecture
2149 fields. */
2150 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2151 else if (gdbarch->initialized_p
2152 && data->post_init != NULL)
2153 /* Post architecture creation: pass the entire architecture
2154 (as all fields are valid), but be careful to also detect
2155 recursive references. */
2156 {
2157 gdb_assert (data->init_p);
2158 data->init_p = 0;
2159 gdbarch->data[data->index] = data->post_init (gdbarch);
2160 data->init_p = 1;
2161 }
2162 else
2163 /* The architecture initialization hasn't completed - punt -
2164 hope that the caller knows what they are doing. Once
2165 deprecated_set_gdbarch_data has been initialized, this can be
2166 changed to an internal error. */
2167 return NULL;
2168 gdb_assert (gdbarch->data[data->index] != NULL);
2169 }
2170 return gdbarch->data[data->index];
2171 }
2172
2173
2174 /* Keep a registry of the architectures known by GDB. */
2175
2176 struct gdbarch_registration
2177 {
2178 enum bfd_architecture bfd_architecture;
2179 gdbarch_init_ftype *init;
2180 gdbarch_dump_tdep_ftype *dump_tdep;
2181 struct gdbarch_list *arches;
2182 struct gdbarch_registration *next;
2183 };
2184
2185 static struct gdbarch_registration *gdbarch_registry = NULL;
2186
2187 static void
2188 append_name (const char ***buf, int *nr, const char *name)
2189 {
2190 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2191 (*buf)[*nr] = name;
2192 *nr += 1;
2193 }
2194
2195 const char **
2196 gdbarch_printable_names (void)
2197 {
2198 /* Accumulate a list of names based on the registed list of
2199 architectures. */
2200 int nr_arches = 0;
2201 const char **arches = NULL;
2202 struct gdbarch_registration *rego;
2203
2204 for (rego = gdbarch_registry;
2205 rego != NULL;
2206 rego = rego->next)
2207 {
2208 const struct bfd_arch_info *ap;
2209 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2210 if (ap == NULL)
2211 internal_error (__FILE__, __LINE__,
2212 _("gdbarch_architecture_names: multi-arch unknown"));
2213 do
2214 {
2215 append_name (&arches, &nr_arches, ap->printable_name);
2216 ap = ap->next;
2217 }
2218 while (ap != NULL);
2219 }
2220 append_name (&arches, &nr_arches, NULL);
2221 return arches;
2222 }
2223
2224
2225 void
2226 gdbarch_register (enum bfd_architecture bfd_architecture,
2227 gdbarch_init_ftype *init,
2228 gdbarch_dump_tdep_ftype *dump_tdep)
2229 {
2230 struct gdbarch_registration **curr;
2231 const struct bfd_arch_info *bfd_arch_info;
2232
2233 /* Check that BFD recognizes this architecture */
2234 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2235 if (bfd_arch_info == NULL)
2236 {
2237 internal_error (__FILE__, __LINE__,
2238 _("gdbarch: Attempt to register "
2239 "unknown architecture (%d)"),
2240 bfd_architecture);
2241 }
2242 /* Check that we haven't seen this architecture before. */
2243 for (curr = &gdbarch_registry;
2244 (*curr) != NULL;
2245 curr = &(*curr)->next)
2246 {
2247 if (bfd_architecture == (*curr)->bfd_architecture)
2248 internal_error (__FILE__, __LINE__,
2249 _("gdbarch: Duplicate registration "
2250 "of architecture (%s)"),
2251 bfd_arch_info->printable_name);
2252 }
2253 /* log it */
2254 if (gdbarch_debug)
2255 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2256 bfd_arch_info->printable_name,
2257 host_address_to_string (init));
2258 /* Append it */
2259 (*curr) = XNEW (struct gdbarch_registration);
2260 (*curr)->bfd_architecture = bfd_architecture;
2261 (*curr)->init = init;
2262 (*curr)->dump_tdep = dump_tdep;
2263 (*curr)->arches = NULL;
2264 (*curr)->next = NULL;
2265 }
2266
2267 void
2268 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2269 gdbarch_init_ftype *init)
2270 {
2271 gdbarch_register (bfd_architecture, init, NULL);
2272 }
2273
2274
2275 /* Look for an architecture using gdbarch_info. */
2276
2277 struct gdbarch_list *
2278 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2279 const struct gdbarch_info *info)
2280 {
2281 for (; arches != NULL; arches = arches->next)
2282 {
2283 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2284 continue;
2285 if (info->byte_order != arches->gdbarch->byte_order)
2286 continue;
2287 if (info->osabi != arches->gdbarch->osabi)
2288 continue;
2289 if (info->target_desc != arches->gdbarch->target_desc)
2290 continue;
2291 return arches;
2292 }
2293 return NULL;
2294 }
2295
2296
2297 /* Find an architecture that matches the specified INFO. Create a new
2298 architecture if needed. Return that new architecture. */
2299
2300 struct gdbarch *
2301 gdbarch_find_by_info (struct gdbarch_info info)
2302 {
2303 struct gdbarch *new_gdbarch;
2304 struct gdbarch_registration *rego;
2305
2306 /* Fill in missing parts of the INFO struct using a number of
2307 sources: "set ..."; INFOabfd supplied; and the global
2308 defaults. */
2309 gdbarch_info_fill (&info);
2310
2311 /* Must have found some sort of architecture. */
2312 gdb_assert (info.bfd_arch_info != NULL);
2313
2314 if (gdbarch_debug)
2315 {
2316 fprintf_unfiltered (gdb_stdlog,
2317 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2318 (info.bfd_arch_info != NULL
2319 ? info.bfd_arch_info->printable_name
2320 : "(null)"));
2321 fprintf_unfiltered (gdb_stdlog,
2322 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2323 info.byte_order,
2324 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2325 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2326 : "default"));
2327 fprintf_unfiltered (gdb_stdlog,
2328 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2329 info.osabi, gdbarch_osabi_name (info.osabi));
2330 fprintf_unfiltered (gdb_stdlog,
2331 "gdbarch_find_by_info: info.abfd %s\n",
2332 host_address_to_string (info.abfd));
2333 fprintf_unfiltered (gdb_stdlog,
2334 "gdbarch_find_by_info: info.tdep_info %s\n",
2335 host_address_to_string (info.tdep_info));
2336 }
2337
2338 /* Find the tdep code that knows about this architecture. */
2339 for (rego = gdbarch_registry;
2340 rego != NULL;
2341 rego = rego->next)
2342 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2343 break;
2344 if (rego == NULL)
2345 {
2346 if (gdbarch_debug)
2347 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2348 "No matching architecture\n");
2349 return 0;
2350 }
2351
2352 /* Ask the tdep code for an architecture that matches "info". */
2353 new_gdbarch = rego->init (info, rego->arches);
2354
2355 /* Did the tdep code like it? No. Reject the change and revert to
2356 the old architecture. */
2357 if (new_gdbarch == NULL)
2358 {
2359 if (gdbarch_debug)
2360 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2361 "Target rejected architecture\n");
2362 return NULL;
2363 }
2364
2365 /* Is this a pre-existing architecture (as determined by already
2366 being initialized)? Move it to the front of the architecture
2367 list (keeping the list sorted Most Recently Used). */
2368 if (new_gdbarch->initialized_p)
2369 {
2370 struct gdbarch_list **list;
2371 struct gdbarch_list *self;
2372 if (gdbarch_debug)
2373 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2374 "Previous architecture %s (%s) selected\n",
2375 host_address_to_string (new_gdbarch),
2376 new_gdbarch->bfd_arch_info->printable_name);
2377 /* Find the existing arch in the list. */
2378 for (list = &rego->arches;
2379 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2380 list = &(*list)->next);
2381 /* It had better be in the list of architectures. */
2382 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2383 /* Unlink SELF. */
2384 self = (*list);
2385 (*list) = self->next;
2386 /* Insert SELF at the front. */
2387 self->next = rego->arches;
2388 rego->arches = self;
2389 /* Return it. */
2390 return new_gdbarch;
2391 }
2392
2393 /* It's a new architecture. */
2394 if (gdbarch_debug)
2395 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2396 "New architecture %s (%s) selected\n",
2397 host_address_to_string (new_gdbarch),
2398 new_gdbarch->bfd_arch_info->printable_name);
2399
2400 /* Insert the new architecture into the front of the architecture
2401 list (keep the list sorted Most Recently Used). */
2402 {
2403 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2404 self->next = rego->arches;
2405 self->gdbarch = new_gdbarch;
2406 rego->arches = self;
2407 }
2408
2409 /* Check that the newly installed architecture is valid. Plug in
2410 any post init values. */
2411 new_gdbarch->dump_tdep = rego->dump_tdep;
2412 verify_gdbarch (new_gdbarch);
2413 new_gdbarch->initialized_p = 1;
2414
2415 if (gdbarch_debug)
2416 gdbarch_dump (new_gdbarch, gdb_stdlog);
2417
2418 return new_gdbarch;
2419 }
2420
2421 /* Make the specified architecture current. */
2422
2423 void
2424 set_target_gdbarch (struct gdbarch *new_gdbarch)
2425 {
2426 gdb_assert (new_gdbarch != NULL);
2427 gdb_assert (new_gdbarch->initialized_p);
2428 current_inferior ()->gdbarch = new_gdbarch;
2429 observer_notify_architecture_changed (new_gdbarch);
2430 registers_changed ();
2431 }
2432
2433 /* Return the current inferior's arch. */
2434
2435 struct gdbarch *
2436 target_gdbarch (void)
2437 {
2438 return current_inferior ()->gdbarch;
2439 }
2440
2441 extern void _initialize_gdbarch (void);
2442
2443 void
2444 _initialize_gdbarch (void)
2445 {
2446 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2447 Set architecture debugging."), _("\\
2448 Show architecture debugging."), _("\\
2449 When non-zero, architecture debugging is enabled."),
2450 NULL,
2451 show_gdbarch_debug,
2452 &setdebuglist, &showdebuglist);
2453 }
2454 EOF
2455
2456 # close things off
2457 exec 1>&2
2458 #../move-if-change new-gdbarch.c gdbarch.c
2459 compare_new gdbarch.c
This page took 0.136834 seconds and 4 git commands to generate.