Introduce program_space::remove_objfile
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2019 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # Number of bits in a short or unsigned short for the target machine.
351 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
352 # Number of bits in an int or unsigned int for the target machine.
353 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
354 # Number of bits in a long or unsigned long for the target machine.
355 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
356 # Number of bits in a long long or unsigned long long for the target
357 # machine.
358 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
359
360 # The ABI default bit-size and format for "half", "float", "double", and
361 # "long double". These bit/format pairs should eventually be combined
362 # into a single object. For the moment, just initialize them as a pair.
363 # Each format describes both the big and little endian layouts (if
364 # useful).
365
366 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
367 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
368 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
369 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
370 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
372 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
374
375 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
376 # starting with C++11.
377 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
378 # One if \`wchar_t' is signed, zero if unsigned.
379 v;int;wchar_signed;;;1;-1;1
380
381 # Returns the floating-point format to be used for values of length LENGTH.
382 # NAME, if non-NULL, is the type name, which may be used to distinguish
383 # different target formats of the same length.
384 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
397 # addr_bit is the size of a target address as represented in gdb
398 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v;int;char_signed;;;1;-1;1
417 #
418 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
419 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
424 #
425 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
431 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
432 #
433 v;int;num_regs;;;0;-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v;int;num_pseudo_regs;;;0;0;;0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
448
449 # Some targets/architectures can do extra processing/display of
450 # segmentation faults. E.g., Intel MPX boundary faults.
451 # Call the architecture dependent function to handle the fault.
452 # UIOUT is the output stream where the handler will place information.
453 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
454
455 # GDB's standard (or well known) register numbers. These can map onto
456 # a real register or a pseudo (computed) register or not be defined at
457 # all (-1).
458 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
459 v;int;sp_regnum;;;-1;-1;;0
460 v;int;pc_regnum;;;-1;-1;;0
461 v;int;ps_regnum;;;-1;-1;;0
462 v;int;fp0_regnum;;;0;-1;;0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
467 # Convert from an sdb register number to an internal gdb register number.
468 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
470 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
471 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
472 m;const char *;register_name;int regnr;regnr;;0
473
474 # Return the type of a register specified by the architecture. Only
475 # the register cache should call this function directly; others should
476 # use "register_type".
477 M;struct type *;register_type;int reg_nr;reg_nr
478
479 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
480 # a dummy frame. A dummy frame is created before an inferior call,
481 # the frame_id returned here must match the frame_id that was built
482 # for the inferior call. Usually this means the returned frame_id's
483 # stack address should match the address returned by
484 # gdbarch_push_dummy_call, and the returned frame_id's code address
485 # should match the address at which the breakpoint was set in the dummy
486 # frame.
487 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
488 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
489 # deprecated_fp_regnum.
490 v;int;deprecated_fp_regnum;;;-1;-1;;0
491
492 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
493 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
494 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
495
496 # Return true if the code of FRAME is writable.
497 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
498
499 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
500 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
501 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
502 # MAP a GDB RAW register number onto a simulator register number. See
503 # also include/...-sim.h.
504 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
505 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
506 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
507
508 # Determine the address where a longjmp will land and save this address
509 # in PC. Return nonzero on success.
510 #
511 # FRAME corresponds to the longjmp frame.
512 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
513
514 #
515 v;int;believe_pcc_promotion;;;;;;;
516 #
517 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
518 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
519 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
520 # Construct a value representing the contents of register REGNUM in
521 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
522 # allocate and return a struct value with all value attributes
523 # (but not the value contents) filled in.
524 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
525 #
526 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
527 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
528 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
529
530 # Return the return-value convention that will be used by FUNCTION
531 # to return a value of type VALTYPE. FUNCTION may be NULL in which
532 # case the return convention is computed based only on VALTYPE.
533 #
534 # If READBUF is not NULL, extract the return value and save it in this buffer.
535 #
536 # If WRITEBUF is not NULL, it contains a return value which will be
537 # stored into the appropriate register. This can be used when we want
538 # to force the value returned by a function (see the "return" command
539 # for instance).
540 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
541
542 # Return true if the return value of function is stored in the first hidden
543 # parameter. In theory, this feature should be language-dependent, specified
544 # by language and its ABI, such as C++. Unfortunately, compiler may
545 # implement it to a target-dependent feature. So that we need such hook here
546 # to be aware of this in GDB.
547 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
548
549 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
550 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
551 # On some platforms, a single function may provide multiple entry points,
552 # e.g. one that is used for function-pointer calls and a different one
553 # that is used for direct function calls.
554 # In order to ensure that breakpoints set on the function will trigger
555 # no matter via which entry point the function is entered, a platform
556 # may provide the skip_entrypoint callback. It is called with IP set
557 # to the main entry point of a function (as determined by the symbol table),
558 # and should return the address of the innermost entry point, where the
559 # actual breakpoint needs to be set. Note that skip_entrypoint is used
560 # by GDB common code even when debugging optimized code, where skip_prologue
561 # is not used.
562 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
563
564 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
565 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
566
567 # Return the breakpoint kind for this target based on *PCPTR.
568 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
569
570 # Return the software breakpoint from KIND. KIND can have target
571 # specific meaning like the Z0 kind parameter.
572 # SIZE is set to the software breakpoint's length in memory.
573 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
574
575 # Return the breakpoint kind for this target based on the current
576 # processor state (e.g. the current instruction mode on ARM) and the
577 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
578 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
579
580 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
581 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
582 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
583 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
584
585 # A function can be addressed by either it's "pointer" (possibly a
586 # descriptor address) or "entry point" (first executable instruction).
587 # The method "convert_from_func_ptr_addr" converting the former to the
588 # latter. gdbarch_deprecated_function_start_offset is being used to implement
589 # a simplified subset of that functionality - the function's address
590 # corresponds to the "function pointer" and the function's start
591 # corresponds to the "function entry point" - and hence is redundant.
592
593 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
594
595 # Return the remote protocol register number associated with this
596 # register. Normally the identity mapping.
597 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
598
599 # Fetch the target specific address used to represent a load module.
600 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
601
602 # Return the thread-local address at OFFSET in the thread-local
603 # storage for the thread PTID and the shared library or executable
604 # file given by LM_ADDR. If that block of thread-local storage hasn't
605 # been allocated yet, this function may throw an error. LM_ADDR may
606 # be zero for statically linked multithreaded inferiors.
607
608 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
609 #
610 v;CORE_ADDR;frame_args_skip;;;0;;;0
611 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
612 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
613 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
614 # frame-base. Enable frame-base before frame-unwind.
615 F;int;frame_num_args;struct frame_info *frame;frame
616 #
617 M;CORE_ADDR;frame_align;CORE_ADDR address;address
618 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
619 v;int;frame_red_zone_size
620 #
621 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
622 # On some machines there are bits in addresses which are not really
623 # part of the address, but are used by the kernel, the hardware, etc.
624 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
625 # we get a "real" address such as one would find in a symbol table.
626 # This is used only for addresses of instructions, and even then I'm
627 # not sure it's used in all contexts. It exists to deal with there
628 # being a few stray bits in the PC which would mislead us, not as some
629 # sort of generic thing to handle alignment or segmentation (it's
630 # possible it should be in TARGET_READ_PC instead).
631 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
632
633 # On some machines, not all bits of an address word are significant.
634 # For example, on AArch64, the top bits of an address known as the "tag"
635 # are ignored by the kernel, the hardware, etc. and can be regarded as
636 # additional data associated with the address.
637 v;int;significant_addr_bit;;;;;;0
638
639 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
640 # indicates if the target needs software single step. An ISA method to
641 # implement it.
642 #
643 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
644 # target can single step. If not, then implement single step using breakpoints.
645 #
646 # Return a vector of addresses on which the software single step
647 # breakpoints should be inserted. NULL means software single step is
648 # not used.
649 # Multiple breakpoints may be inserted for some instructions such as
650 # conditional branch. However, each implementation must always evaluate
651 # the condition and only put the breakpoint at the branch destination if
652 # the condition is true, so that we ensure forward progress when stepping
653 # past a conditional branch to self.
654 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
655
656 # Return non-zero if the processor is executing a delay slot and a
657 # further single-step is needed before the instruction finishes.
658 M;int;single_step_through_delay;struct frame_info *frame;frame
659 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
660 # disassembler. Perhaps objdump can handle it?
661 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
662 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
663
664
665 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
666 # evaluates non-zero, this is the address where the debugger will place
667 # a step-resume breakpoint to get us past the dynamic linker.
668 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
669 # Some systems also have trampoline code for returning from shared libs.
670 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
671
672 # Return true if PC lies inside an indirect branch thunk.
673 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
674
675 # A target might have problems with watchpoints as soon as the stack
676 # frame of the current function has been destroyed. This mostly happens
677 # as the first action in a function's epilogue. stack_frame_destroyed_p()
678 # is defined to return a non-zero value if either the given addr is one
679 # instruction after the stack destroying instruction up to the trailing
680 # return instruction or if we can figure out that the stack frame has
681 # already been invalidated regardless of the value of addr. Targets
682 # which don't suffer from that problem could just let this functionality
683 # untouched.
684 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
685 # Process an ELF symbol in the minimal symbol table in a backend-specific
686 # way. Normally this hook is supposed to do nothing, however if required,
687 # then this hook can be used to apply tranformations to symbols that are
688 # considered special in some way. For example the MIPS backend uses it
689 # to interpret \`st_other' information to mark compressed code symbols so
690 # that they can be treated in the appropriate manner in the processing of
691 # the main symbol table and DWARF-2 records.
692 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
693 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
694 # Process a symbol in the main symbol table in a backend-specific way.
695 # Normally this hook is supposed to do nothing, however if required,
696 # then this hook can be used to apply tranformations to symbols that
697 # are considered special in some way. This is currently used by the
698 # MIPS backend to make sure compressed code symbols have the ISA bit
699 # set. This in turn is needed for symbol values seen in GDB to match
700 # the values used at the runtime by the program itself, for function
701 # and label references.
702 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
703 # Adjust the address retrieved from a DWARF-2 record other than a line
704 # entry in a backend-specific way. Normally this hook is supposed to
705 # return the address passed unchanged, however if that is incorrect for
706 # any reason, then this hook can be used to fix the address up in the
707 # required manner. This is currently used by the MIPS backend to make
708 # sure addresses in FDE, range records, etc. referring to compressed
709 # code have the ISA bit set, matching line information and the symbol
710 # table.
711 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
712 # Adjust the address updated by a line entry in a backend-specific way.
713 # Normally this hook is supposed to return the address passed unchanged,
714 # however in the case of inconsistencies in these records, this hook can
715 # be used to fix them up in the required manner. This is currently used
716 # by the MIPS backend to make sure all line addresses in compressed code
717 # are presented with the ISA bit set, which is not always the case. This
718 # in turn ensures breakpoint addresses are correctly matched against the
719 # stop PC.
720 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
721 v;int;cannot_step_breakpoint;;;0;0;;0
722 # See comment in target.h about continuable, steppable and
723 # non-steppable watchpoints.
724 v;int;have_nonsteppable_watchpoint;;;0;0;;0
725 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
726 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
727 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
728 # FS are passed from the generic execute_cfa_program function.
729 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
730
731 # Return the appropriate type_flags for the supplied address class.
732 # This function should return 1 if the address class was recognized and
733 # type_flags was set, zero otherwise.
734 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
735 # Is a register in a group
736 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
737 # Fetch the pointer to the ith function argument.
738 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
739
740 # Iterate over all supported register notes in a core file. For each
741 # supported register note section, the iterator must call CB and pass
742 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
743 # the supported register note sections based on the current register
744 # values. Otherwise it should enumerate all supported register note
745 # sections.
746 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
747
748 # Create core file notes
749 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
750
751 # Find core file memory regions
752 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
753
754 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
755 # core file into buffer READBUF with length LEN. Return the number of bytes read
756 # (zero indicates failure).
757 # failed, otherwise, return the red length of READBUF.
758 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
759
760 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
761 # libraries list from core file into buffer READBUF with length LEN.
762 # Return the number of bytes read (zero indicates failure).
763 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
764
765 # How the core target converts a PTID from a core file to a string.
766 M;std::string;core_pid_to_str;ptid_t ptid;ptid
767
768 # How the core target extracts the name of a thread from a core file.
769 M;const char *;core_thread_name;struct thread_info *thr;thr
770
771 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
772 # from core file into buffer READBUF with length LEN. Return the number
773 # of bytes read (zero indicates EOF, a negative value indicates failure).
774 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
775
776 # BFD target to use when generating a core file.
777 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
778
779 # If the elements of C++ vtables are in-place function descriptors rather
780 # than normal function pointers (which may point to code or a descriptor),
781 # set this to one.
782 v;int;vtable_function_descriptors;;;0;0;;0
783
784 # Set if the least significant bit of the delta is used instead of the least
785 # significant bit of the pfn for pointers to virtual member functions.
786 v;int;vbit_in_delta;;;0;0;;0
787
788 # Advance PC to next instruction in order to skip a permanent breakpoint.
789 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
790
791 # The maximum length of an instruction on this architecture in bytes.
792 V;ULONGEST;max_insn_length;;;0;0
793
794 # Copy the instruction at FROM to TO, and make any adjustments
795 # necessary to single-step it at that address.
796 #
797 # REGS holds the state the thread's registers will have before
798 # executing the copied instruction; the PC in REGS will refer to FROM,
799 # not the copy at TO. The caller should update it to point at TO later.
800 #
801 # Return a pointer to data of the architecture's choice to be passed
802 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
803 # the instruction's effects have been completely simulated, with the
804 # resulting state written back to REGS.
805 #
806 # For a general explanation of displaced stepping and how GDB uses it,
807 # see the comments in infrun.c.
808 #
809 # The TO area is only guaranteed to have space for
810 # gdbarch_max_insn_length (arch) bytes, so this function must not
811 # write more bytes than that to that area.
812 #
813 # If you do not provide this function, GDB assumes that the
814 # architecture does not support displaced stepping.
815 #
816 # If the instruction cannot execute out of line, return NULL. The
817 # core falls back to stepping past the instruction in-line instead in
818 # that case.
819 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
820
821 # Return true if GDB should use hardware single-stepping to execute
822 # the displaced instruction identified by CLOSURE. If false,
823 # GDB will simply restart execution at the displaced instruction
824 # location, and it is up to the target to ensure GDB will receive
825 # control again (e.g. by placing a software breakpoint instruction
826 # into the displaced instruction buffer).
827 #
828 # The default implementation returns false on all targets that
829 # provide a gdbarch_software_single_step routine, and true otherwise.
830 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
831
832 # Fix up the state resulting from successfully single-stepping a
833 # displaced instruction, to give the result we would have gotten from
834 # stepping the instruction in its original location.
835 #
836 # REGS is the register state resulting from single-stepping the
837 # displaced instruction.
838 #
839 # CLOSURE is the result from the matching call to
840 # gdbarch_displaced_step_copy_insn.
841 #
842 # If you provide gdbarch_displaced_step_copy_insn.but not this
843 # function, then GDB assumes that no fixup is needed after
844 # single-stepping the instruction.
845 #
846 # For a general explanation of displaced stepping and how GDB uses it,
847 # see the comments in infrun.c.
848 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
849
850 # Return the address of an appropriate place to put displaced
851 # instructions while we step over them. There need only be one such
852 # place, since we're only stepping one thread over a breakpoint at a
853 # time.
854 #
855 # For a general explanation of displaced stepping and how GDB uses it,
856 # see the comments in infrun.c.
857 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
858
859 # Relocate an instruction to execute at a different address. OLDLOC
860 # is the address in the inferior memory where the instruction to
861 # relocate is currently at. On input, TO points to the destination
862 # where we want the instruction to be copied (and possibly adjusted)
863 # to. On output, it points to one past the end of the resulting
864 # instruction(s). The effect of executing the instruction at TO shall
865 # be the same as if executing it at FROM. For example, call
866 # instructions that implicitly push the return address on the stack
867 # should be adjusted to return to the instruction after OLDLOC;
868 # relative branches, and other PC-relative instructions need the
869 # offset adjusted; etc.
870 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
871
872 # Refresh overlay mapped state for section OSECT.
873 F;void;overlay_update;struct obj_section *osect;osect
874
875 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
876
877 # Handle special encoding of static variables in stabs debug info.
878 F;const char *;static_transform_name;const char *name;name
879 # Set if the address in N_SO or N_FUN stabs may be zero.
880 v;int;sofun_address_maybe_missing;;;0;0;;0
881
882 # Parse the instruction at ADDR storing in the record execution log
883 # the registers REGCACHE and memory ranges that will be affected when
884 # the instruction executes, along with their current values.
885 # Return -1 if something goes wrong, 0 otherwise.
886 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
887
888 # Save process state after a signal.
889 # Return -1 if something goes wrong, 0 otherwise.
890 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
891
892 # Signal translation: translate inferior's signal (target's) number
893 # into GDB's representation. The implementation of this method must
894 # be host independent. IOW, don't rely on symbols of the NAT_FILE
895 # header (the nm-*.h files), the host <signal.h> header, or similar
896 # headers. This is mainly used when cross-debugging core files ---
897 # "Live" targets hide the translation behind the target interface
898 # (target_wait, target_resume, etc.).
899 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
900
901 # Signal translation: translate the GDB's internal signal number into
902 # the inferior's signal (target's) representation. The implementation
903 # of this method must be host independent. IOW, don't rely on symbols
904 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
905 # header, or similar headers.
906 # Return the target signal number if found, or -1 if the GDB internal
907 # signal number is invalid.
908 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
909
910 # Extra signal info inspection.
911 #
912 # Return a type suitable to inspect extra signal information.
913 M;struct type *;get_siginfo_type;void;
914
915 # Record architecture-specific information from the symbol table.
916 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
917
918 # Function for the 'catch syscall' feature.
919
920 # Get architecture-specific system calls information from registers.
921 M;LONGEST;get_syscall_number;thread_info *thread;thread
922
923 # The filename of the XML syscall for this architecture.
924 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
925
926 # Information about system calls from this architecture
927 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
928
929 # SystemTap related fields and functions.
930
931 # A NULL-terminated array of prefixes used to mark an integer constant
932 # on the architecture's assembly.
933 # For example, on x86 integer constants are written as:
934 #
935 # \$10 ;; integer constant 10
936 #
937 # in this case, this prefix would be the character \`\$\'.
938 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
939
940 # A NULL-terminated array of suffixes used to mark an integer constant
941 # on the architecture's assembly.
942 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
943
944 # A NULL-terminated array of prefixes used to mark a register name on
945 # the architecture's assembly.
946 # For example, on x86 the register name is written as:
947 #
948 # \%eax ;; register eax
949 #
950 # in this case, this prefix would be the character \`\%\'.
951 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
952
953 # A NULL-terminated array of suffixes used to mark a register name on
954 # the architecture's assembly.
955 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
956
957 # A NULL-terminated array of prefixes used to mark a register
958 # indirection on the architecture's assembly.
959 # For example, on x86 the register indirection is written as:
960 #
961 # \(\%eax\) ;; indirecting eax
962 #
963 # in this case, this prefix would be the charater \`\(\'.
964 #
965 # Please note that we use the indirection prefix also for register
966 # displacement, e.g., \`4\(\%eax\)\' on x86.
967 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
968
969 # A NULL-terminated array of suffixes used to mark a register
970 # indirection on the architecture's assembly.
971 # For example, on x86 the register indirection is written as:
972 #
973 # \(\%eax\) ;; indirecting eax
974 #
975 # in this case, this prefix would be the charater \`\)\'.
976 #
977 # Please note that we use the indirection suffix also for register
978 # displacement, e.g., \`4\(\%eax\)\' on x86.
979 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
980
981 # Prefix(es) used to name a register using GDB's nomenclature.
982 #
983 # For example, on PPC a register is represented by a number in the assembly
984 # language (e.g., \`10\' is the 10th general-purpose register). However,
985 # inside GDB this same register has an \`r\' appended to its name, so the 10th
986 # register would be represented as \`r10\' internally.
987 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
988
989 # Suffix used to name a register using GDB's nomenclature.
990 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
991
992 # Check if S is a single operand.
993 #
994 # Single operands can be:
995 # \- Literal integers, e.g. \`\$10\' on x86
996 # \- Register access, e.g. \`\%eax\' on x86
997 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
998 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
999 #
1000 # This function should check for these patterns on the string
1001 # and return 1 if some were found, or zero otherwise. Please try to match
1002 # as much info as you can from the string, i.e., if you have to match
1003 # something like \`\(\%\', do not match just the \`\(\'.
1004 M;int;stap_is_single_operand;const char *s;s
1005
1006 # Function used to handle a "special case" in the parser.
1007 #
1008 # A "special case" is considered to be an unknown token, i.e., a token
1009 # that the parser does not know how to parse. A good example of special
1010 # case would be ARM's register displacement syntax:
1011 #
1012 # [R0, #4] ;; displacing R0 by 4
1013 #
1014 # Since the parser assumes that a register displacement is of the form:
1015 #
1016 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1017 #
1018 # it means that it will not be able to recognize and parse this odd syntax.
1019 # Therefore, we should add a special case function that will handle this token.
1020 #
1021 # This function should generate the proper expression form of the expression
1022 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1023 # and so on). It should also return 1 if the parsing was successful, or zero
1024 # if the token was not recognized as a special token (in this case, returning
1025 # zero means that the special parser is deferring the parsing to the generic
1026 # parser), and should advance the buffer pointer (p->arg).
1027 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1028
1029 # Perform arch-dependent adjustments to a register name.
1030 #
1031 # In very specific situations, it may be necessary for the register
1032 # name present in a SystemTap probe's argument to be handled in a
1033 # special way. For example, on i386, GCC may over-optimize the
1034 # register allocation and use smaller registers than necessary. In
1035 # such cases, the client that is reading and evaluating the SystemTap
1036 # probe (ourselves) will need to actually fetch values from the wider
1037 # version of the register in question.
1038 #
1039 # To illustrate the example, consider the following probe argument
1040 # (i386):
1041 #
1042 # 4@%ax
1043 #
1044 # This argument says that its value can be found at the %ax register,
1045 # which is a 16-bit register. However, the argument's prefix says
1046 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1047 # this case, GDB should actually fetch the probe's value from register
1048 # %eax, not %ax. In this scenario, this function would actually
1049 # replace the register name from %ax to %eax.
1050 #
1051 # The rationale for this can be found at PR breakpoints/24541.
1052 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1053
1054 # DTrace related functions.
1055
1056 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1057 # NARG must be >= 0.
1058 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1059
1060 # True if the given ADDR does not contain the instruction sequence
1061 # corresponding to a disabled DTrace is-enabled probe.
1062 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1063
1064 # Enable a DTrace is-enabled probe at ADDR.
1065 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1066
1067 # Disable a DTrace is-enabled probe at ADDR.
1068 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1069
1070 # True if the list of shared libraries is one and only for all
1071 # processes, as opposed to a list of shared libraries per inferior.
1072 # This usually means that all processes, although may or may not share
1073 # an address space, will see the same set of symbols at the same
1074 # addresses.
1075 v;int;has_global_solist;;;0;0;;0
1076
1077 # On some targets, even though each inferior has its own private
1078 # address space, the debug interface takes care of making breakpoints
1079 # visible to all address spaces automatically. For such cases,
1080 # this property should be set to true.
1081 v;int;has_global_breakpoints;;;0;0;;0
1082
1083 # True if inferiors share an address space (e.g., uClinux).
1084 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1085
1086 # True if a fast tracepoint can be set at an address.
1087 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1088
1089 # Guess register state based on tracepoint location. Used for tracepoints
1090 # where no registers have been collected, but there's only one location,
1091 # allowing us to guess the PC value, and perhaps some other registers.
1092 # On entry, regcache has all registers marked as unavailable.
1093 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1094
1095 # Return the "auto" target charset.
1096 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1097 # Return the "auto" target wide charset.
1098 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1099
1100 # If non-empty, this is a file extension that will be opened in place
1101 # of the file extension reported by the shared library list.
1102 #
1103 # This is most useful for toolchains that use a post-linker tool,
1104 # where the names of the files run on the target differ in extension
1105 # compared to the names of the files GDB should load for debug info.
1106 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1107
1108 # If true, the target OS has DOS-based file system semantics. That
1109 # is, absolute paths include a drive name, and the backslash is
1110 # considered a directory separator.
1111 v;int;has_dos_based_file_system;;;0;0;;0
1112
1113 # Generate bytecodes to collect the return address in a frame.
1114 # Since the bytecodes run on the target, possibly with GDB not even
1115 # connected, the full unwinding machinery is not available, and
1116 # typically this function will issue bytecodes for one or more likely
1117 # places that the return address may be found.
1118 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1119
1120 # Implement the "info proc" command.
1121 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1122
1123 # Implement the "info proc" command for core files. Noe that there
1124 # are two "info_proc"-like methods on gdbarch -- one for core files,
1125 # one for live targets.
1126 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1127
1128 # Iterate over all objfiles in the order that makes the most sense
1129 # for the architecture to make global symbol searches.
1130 #
1131 # CB is a callback function where OBJFILE is the objfile to be searched,
1132 # and CB_DATA a pointer to user-defined data (the same data that is passed
1133 # when calling this gdbarch method). The iteration stops if this function
1134 # returns nonzero.
1135 #
1136 # CB_DATA is a pointer to some user-defined data to be passed to
1137 # the callback.
1138 #
1139 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1140 # inspected when the symbol search was requested.
1141 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1142
1143 # Ravenscar arch-dependent ops.
1144 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1145
1146 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1147 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1148
1149 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1150 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1151
1152 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1153 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1154
1155 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1156 # Return 0 if *READPTR is already at the end of the buffer.
1157 # Return -1 if there is insufficient buffer for a whole entry.
1158 # Return 1 if an entry was read into *TYPEP and *VALP.
1159 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1160
1161 # Print the description of a single auxv entry described by TYPE and VAL
1162 # to FILE.
1163 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1164
1165 # Find the address range of the current inferior's vsyscall/vDSO, and
1166 # write it to *RANGE. If the vsyscall's length can't be determined, a
1167 # range with zero length is returned. Returns true if the vsyscall is
1168 # found, false otherwise.
1169 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1170
1171 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1172 # PROT has GDB_MMAP_PROT_* bitmask format.
1173 # Throw an error if it is not possible. Returned address is always valid.
1174 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1175
1176 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1177 # Print a warning if it is not possible.
1178 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1179
1180 # Return string (caller has to use xfree for it) with options for GCC
1181 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1182 # These options are put before CU's DW_AT_producer compilation options so that
1183 # they can override it.
1184 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1185
1186 # Return a regular expression that matches names used by this
1187 # architecture in GNU configury triplets. The result is statically
1188 # allocated and must not be freed. The default implementation simply
1189 # returns the BFD architecture name, which is correct in nearly every
1190 # case.
1191 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1192
1193 # Return the size in 8-bit bytes of an addressable memory unit on this
1194 # architecture. This corresponds to the number of 8-bit bytes associated to
1195 # each address in memory.
1196 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1197
1198 # Functions for allowing a target to modify its disassembler options.
1199 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1200 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1201 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1202
1203 # Type alignment override method. Return the architecture specific
1204 # alignment required for TYPE. If there is no special handling
1205 # required for TYPE then return the value 0, GDB will then apply the
1206 # default rules as laid out in gdbtypes.c:type_align.
1207 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1208
1209 # Return a string containing any flags for the given PC in the given FRAME.
1210 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1211
1212 EOF
1213 }
1214
1215 #
1216 # The .log file
1217 #
1218 exec > new-gdbarch.log
1219 function_list | while do_read
1220 do
1221 cat <<EOF
1222 ${class} ${returntype} ${function} ($formal)
1223 EOF
1224 for r in ${read}
1225 do
1226 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1227 done
1228 if class_is_predicate_p && fallback_default_p
1229 then
1230 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1231 kill $$
1232 exit 1
1233 fi
1234 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1235 then
1236 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1237 kill $$
1238 exit 1
1239 fi
1240 if class_is_multiarch_p
1241 then
1242 if class_is_predicate_p ; then :
1243 elif test "x${predefault}" = "x"
1244 then
1245 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1246 kill $$
1247 exit 1
1248 fi
1249 fi
1250 echo ""
1251 done
1252
1253 exec 1>&2
1254 compare_new gdbarch.log
1255
1256
1257 copyright ()
1258 {
1259 cat <<EOF
1260 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1261 /* vi:set ro: */
1262
1263 /* Dynamic architecture support for GDB, the GNU debugger.
1264
1265 Copyright (C) 1998-2019 Free Software Foundation, Inc.
1266
1267 This file is part of GDB.
1268
1269 This program is free software; you can redistribute it and/or modify
1270 it under the terms of the GNU General Public License as published by
1271 the Free Software Foundation; either version 3 of the License, or
1272 (at your option) any later version.
1273
1274 This program is distributed in the hope that it will be useful,
1275 but WITHOUT ANY WARRANTY; without even the implied warranty of
1276 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1277 GNU General Public License for more details.
1278
1279 You should have received a copy of the GNU General Public License
1280 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1281
1282 /* This file was created with the aid of \`\`gdbarch.sh''.
1283
1284 The Bourne shell script \`\`gdbarch.sh'' creates the files
1285 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1286 against the existing \`\`gdbarch.[hc]''. Any differences found
1287 being reported.
1288
1289 If editing this file, please also run gdbarch.sh and merge any
1290 changes into that script. Conversely, when making sweeping changes
1291 to this file, modifying gdbarch.sh and using its output may prove
1292 easier. */
1293
1294 EOF
1295 }
1296
1297 #
1298 # The .h file
1299 #
1300
1301 exec > new-gdbarch.h
1302 copyright
1303 cat <<EOF
1304 #ifndef GDBARCH_H
1305 #define GDBARCH_H
1306
1307 #include <vector>
1308 #include "frame.h"
1309 #include "dis-asm.h"
1310 #include "gdb_obstack.h"
1311
1312 struct floatformat;
1313 struct ui_file;
1314 struct value;
1315 struct objfile;
1316 struct obj_section;
1317 struct minimal_symbol;
1318 struct regcache;
1319 struct reggroup;
1320 struct regset;
1321 struct disassemble_info;
1322 struct target_ops;
1323 struct obstack;
1324 struct bp_target_info;
1325 struct target_desc;
1326 struct symbol;
1327 struct displaced_step_closure;
1328 struct syscall;
1329 struct agent_expr;
1330 struct axs_value;
1331 struct stap_parse_info;
1332 struct expr_builder;
1333 struct ravenscar_arch_ops;
1334 struct mem_range;
1335 struct syscalls_info;
1336 struct thread_info;
1337 struct ui_out;
1338
1339 #include "regcache.h"
1340
1341 /* The architecture associated with the inferior through the
1342 connection to the target.
1343
1344 The architecture vector provides some information that is really a
1345 property of the inferior, accessed through a particular target:
1346 ptrace operations; the layout of certain RSP packets; the solib_ops
1347 vector; etc. To differentiate architecture accesses to
1348 per-inferior/target properties from
1349 per-thread/per-frame/per-objfile properties, accesses to
1350 per-inferior/target properties should be made through this
1351 gdbarch. */
1352
1353 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1354 extern struct gdbarch *target_gdbarch (void);
1355
1356 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1357 gdbarch method. */
1358
1359 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1360 (struct objfile *objfile, void *cb_data);
1361
1362 /* Callback type for regset section iterators. The callback usually
1363 invokes the REGSET's supply or collect method, to which it must
1364 pass a buffer - for collects this buffer will need to be created using
1365 COLLECT_SIZE, for supply the existing buffer being read from should
1366 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1367 is used for diagnostic messages. CB_DATA should have been passed
1368 unchanged through the iterator. */
1369
1370 typedef void (iterate_over_regset_sections_cb)
1371 (const char *sect_name, int supply_size, int collect_size,
1372 const struct regset *regset, const char *human_name, void *cb_data);
1373
1374 /* For a function call, does the function return a value using a
1375 normal value return or a structure return - passing a hidden
1376 argument pointing to storage. For the latter, there are two
1377 cases: language-mandated structure return and target ABI
1378 structure return. */
1379
1380 enum function_call_return_method
1381 {
1382 /* Standard value return. */
1383 return_method_normal = 0,
1384
1385 /* Language ABI structure return. This is handled
1386 by passing the return location as the first parameter to
1387 the function, even preceding "this". */
1388 return_method_hidden_param,
1389
1390 /* Target ABI struct return. This is target-specific; for instance,
1391 on ia64 the first argument is passed in out0 but the hidden
1392 structure return pointer would normally be passed in r8. */
1393 return_method_struct,
1394 };
1395
1396 EOF
1397
1398 # function typedef's
1399 printf "\n"
1400 printf "\n"
1401 printf "/* The following are pre-initialized by GDBARCH. */\n"
1402 function_list | while do_read
1403 do
1404 if class_is_info_p
1405 then
1406 printf "\n"
1407 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1408 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1409 fi
1410 done
1411
1412 # function typedef's
1413 printf "\n"
1414 printf "\n"
1415 printf "/* The following are initialized by the target dependent code. */\n"
1416 function_list | while do_read
1417 do
1418 if [ -n "${comment}" ]
1419 then
1420 echo "${comment}" | sed \
1421 -e '2 s,#,/*,' \
1422 -e '3,$ s,#, ,' \
1423 -e '$ s,$, */,'
1424 fi
1425
1426 if class_is_predicate_p
1427 then
1428 printf "\n"
1429 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1430 fi
1431 if class_is_variable_p
1432 then
1433 printf "\n"
1434 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1435 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1436 fi
1437 if class_is_function_p
1438 then
1439 printf "\n"
1440 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1441 then
1442 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1443 elif class_is_multiarch_p
1444 then
1445 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1446 else
1447 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1448 fi
1449 if [ "x${formal}" = "xvoid" ]
1450 then
1451 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1452 else
1453 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1454 fi
1455 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1456 fi
1457 done
1458
1459 # close it off
1460 cat <<EOF
1461
1462 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1463
1464
1465 /* Mechanism for co-ordinating the selection of a specific
1466 architecture.
1467
1468 GDB targets (*-tdep.c) can register an interest in a specific
1469 architecture. Other GDB components can register a need to maintain
1470 per-architecture data.
1471
1472 The mechanisms below ensures that there is only a loose connection
1473 between the set-architecture command and the various GDB
1474 components. Each component can independently register their need
1475 to maintain architecture specific data with gdbarch.
1476
1477 Pragmatics:
1478
1479 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1480 didn't scale.
1481
1482 The more traditional mega-struct containing architecture specific
1483 data for all the various GDB components was also considered. Since
1484 GDB is built from a variable number of (fairly independent)
1485 components it was determined that the global aproach was not
1486 applicable. */
1487
1488
1489 /* Register a new architectural family with GDB.
1490
1491 Register support for the specified ARCHITECTURE with GDB. When
1492 gdbarch determines that the specified architecture has been
1493 selected, the corresponding INIT function is called.
1494
1495 --
1496
1497 The INIT function takes two parameters: INFO which contains the
1498 information available to gdbarch about the (possibly new)
1499 architecture; ARCHES which is a list of the previously created
1500 \`\`struct gdbarch'' for this architecture.
1501
1502 The INFO parameter is, as far as possible, be pre-initialized with
1503 information obtained from INFO.ABFD or the global defaults.
1504
1505 The ARCHES parameter is a linked list (sorted most recently used)
1506 of all the previously created architures for this architecture
1507 family. The (possibly NULL) ARCHES->gdbarch can used to access
1508 values from the previously selected architecture for this
1509 architecture family.
1510
1511 The INIT function shall return any of: NULL - indicating that it
1512 doesn't recognize the selected architecture; an existing \`\`struct
1513 gdbarch'' from the ARCHES list - indicating that the new
1514 architecture is just a synonym for an earlier architecture (see
1515 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1516 - that describes the selected architecture (see gdbarch_alloc()).
1517
1518 The DUMP_TDEP function shall print out all target specific values.
1519 Care should be taken to ensure that the function works in both the
1520 multi-arch and non- multi-arch cases. */
1521
1522 struct gdbarch_list
1523 {
1524 struct gdbarch *gdbarch;
1525 struct gdbarch_list *next;
1526 };
1527
1528 struct gdbarch_info
1529 {
1530 /* Use default: NULL (ZERO). */
1531 const struct bfd_arch_info *bfd_arch_info;
1532
1533 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1534 enum bfd_endian byte_order;
1535
1536 enum bfd_endian byte_order_for_code;
1537
1538 /* Use default: NULL (ZERO). */
1539 bfd *abfd;
1540
1541 /* Use default: NULL (ZERO). */
1542 union
1543 {
1544 /* Architecture-specific information. The generic form for targets
1545 that have extra requirements. */
1546 struct gdbarch_tdep_info *tdep_info;
1547
1548 /* Architecture-specific target description data. Numerous targets
1549 need only this, so give them an easy way to hold it. */
1550 struct tdesc_arch_data *tdesc_data;
1551
1552 /* SPU file system ID. This is a single integer, so using the
1553 generic form would only complicate code. Other targets may
1554 reuse this member if suitable. */
1555 int *id;
1556 };
1557
1558 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1559 enum gdb_osabi osabi;
1560
1561 /* Use default: NULL (ZERO). */
1562 const struct target_desc *target_desc;
1563 };
1564
1565 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1566 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1567
1568 /* DEPRECATED - use gdbarch_register() */
1569 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1570
1571 extern void gdbarch_register (enum bfd_architecture architecture,
1572 gdbarch_init_ftype *,
1573 gdbarch_dump_tdep_ftype *);
1574
1575
1576 /* Return a freshly allocated, NULL terminated, array of the valid
1577 architecture names. Since architectures are registered during the
1578 _initialize phase this function only returns useful information
1579 once initialization has been completed. */
1580
1581 extern const char **gdbarch_printable_names (void);
1582
1583
1584 /* Helper function. Search the list of ARCHES for a GDBARCH that
1585 matches the information provided by INFO. */
1586
1587 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1588
1589
1590 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1591 basic initialization using values obtained from the INFO and TDEP
1592 parameters. set_gdbarch_*() functions are called to complete the
1593 initialization of the object. */
1594
1595 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1596
1597
1598 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1599 It is assumed that the caller freeds the \`\`struct
1600 gdbarch_tdep''. */
1601
1602 extern void gdbarch_free (struct gdbarch *);
1603
1604 /* Get the obstack owned by ARCH. */
1605
1606 extern obstack *gdbarch_obstack (gdbarch *arch);
1607
1608 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1609 obstack. The memory is freed when the corresponding architecture
1610 is also freed. */
1611
1612 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1613 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1614
1615 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1616 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1617
1618 /* Duplicate STRING, returning an equivalent string that's allocated on the
1619 obstack associated with GDBARCH. The string is freed when the corresponding
1620 architecture is also freed. */
1621
1622 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1623
1624 /* Helper function. Force an update of the current architecture.
1625
1626 The actual architecture selected is determined by INFO, \`\`(gdb) set
1627 architecture'' et.al., the existing architecture and BFD's default
1628 architecture. INFO should be initialized to zero and then selected
1629 fields should be updated.
1630
1631 Returns non-zero if the update succeeds. */
1632
1633 extern int gdbarch_update_p (struct gdbarch_info info);
1634
1635
1636 /* Helper function. Find an architecture matching info.
1637
1638 INFO should be initialized using gdbarch_info_init, relevant fields
1639 set, and then finished using gdbarch_info_fill.
1640
1641 Returns the corresponding architecture, or NULL if no matching
1642 architecture was found. */
1643
1644 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1645
1646
1647 /* Helper function. Set the target gdbarch to "gdbarch". */
1648
1649 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1650
1651
1652 /* Register per-architecture data-pointer.
1653
1654 Reserve space for a per-architecture data-pointer. An identifier
1655 for the reserved data-pointer is returned. That identifer should
1656 be saved in a local static variable.
1657
1658 Memory for the per-architecture data shall be allocated using
1659 gdbarch_obstack_zalloc. That memory will be deleted when the
1660 corresponding architecture object is deleted.
1661
1662 When a previously created architecture is re-selected, the
1663 per-architecture data-pointer for that previous architecture is
1664 restored. INIT() is not re-called.
1665
1666 Multiple registrarants for any architecture are allowed (and
1667 strongly encouraged). */
1668
1669 struct gdbarch_data;
1670
1671 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1672 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1673 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1674 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1675 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1676 struct gdbarch_data *data,
1677 void *pointer);
1678
1679 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1680
1681
1682 /* Set the dynamic target-system-dependent parameters (architecture,
1683 byte-order, ...) using information found in the BFD. */
1684
1685 extern void set_gdbarch_from_file (bfd *);
1686
1687
1688 /* Initialize the current architecture to the "first" one we find on
1689 our list. */
1690
1691 extern void initialize_current_architecture (void);
1692
1693 /* gdbarch trace variable */
1694 extern unsigned int gdbarch_debug;
1695
1696 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1697
1698 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1699
1700 static inline int
1701 gdbarch_num_cooked_regs (gdbarch *arch)
1702 {
1703 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1704 }
1705
1706 #endif
1707 EOF
1708 exec 1>&2
1709 #../move-if-change new-gdbarch.h gdbarch.h
1710 compare_new gdbarch.h
1711
1712
1713 #
1714 # C file
1715 #
1716
1717 exec > new-gdbarch.c
1718 copyright
1719 cat <<EOF
1720
1721 #include "defs.h"
1722 #include "arch-utils.h"
1723
1724 #include "gdbcmd.h"
1725 #include "inferior.h"
1726 #include "symcat.h"
1727
1728 #include "floatformat.h"
1729 #include "reggroups.h"
1730 #include "osabi.h"
1731 #include "gdb_obstack.h"
1732 #include "observable.h"
1733 #include "regcache.h"
1734 #include "objfiles.h"
1735 #include "auxv.h"
1736 #include "frame-unwind.h"
1737 #include "dummy-frame.h"
1738
1739 /* Static function declarations */
1740
1741 static void alloc_gdbarch_data (struct gdbarch *);
1742
1743 /* Non-zero if we want to trace architecture code. */
1744
1745 #ifndef GDBARCH_DEBUG
1746 #define GDBARCH_DEBUG 0
1747 #endif
1748 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1749 static void
1750 show_gdbarch_debug (struct ui_file *file, int from_tty,
1751 struct cmd_list_element *c, const char *value)
1752 {
1753 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1754 }
1755
1756 static const char *
1757 pformat (const struct floatformat **format)
1758 {
1759 if (format == NULL)
1760 return "(null)";
1761 else
1762 /* Just print out one of them - this is only for diagnostics. */
1763 return format[0]->name;
1764 }
1765
1766 static const char *
1767 pstring (const char *string)
1768 {
1769 if (string == NULL)
1770 return "(null)";
1771 return string;
1772 }
1773
1774 static const char *
1775 pstring_ptr (char **string)
1776 {
1777 if (string == NULL || *string == NULL)
1778 return "(null)";
1779 return *string;
1780 }
1781
1782 /* Helper function to print a list of strings, represented as "const
1783 char *const *". The list is printed comma-separated. */
1784
1785 static const char *
1786 pstring_list (const char *const *list)
1787 {
1788 static char ret[100];
1789 const char *const *p;
1790 size_t offset = 0;
1791
1792 if (list == NULL)
1793 return "(null)";
1794
1795 ret[0] = '\0';
1796 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1797 {
1798 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1799 offset += 2 + s;
1800 }
1801
1802 if (offset > 0)
1803 {
1804 gdb_assert (offset - 2 < sizeof (ret));
1805 ret[offset - 2] = '\0';
1806 }
1807
1808 return ret;
1809 }
1810
1811 EOF
1812
1813 # gdbarch open the gdbarch object
1814 printf "\n"
1815 printf "/* Maintain the struct gdbarch object. */\n"
1816 printf "\n"
1817 printf "struct gdbarch\n"
1818 printf "{\n"
1819 printf " /* Has this architecture been fully initialized? */\n"
1820 printf " int initialized_p;\n"
1821 printf "\n"
1822 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1823 printf " struct obstack *obstack;\n"
1824 printf "\n"
1825 printf " /* basic architectural information. */\n"
1826 function_list | while do_read
1827 do
1828 if class_is_info_p
1829 then
1830 printf " ${returntype} ${function};\n"
1831 fi
1832 done
1833 printf "\n"
1834 printf " /* target specific vector. */\n"
1835 printf " struct gdbarch_tdep *tdep;\n"
1836 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1837 printf "\n"
1838 printf " /* per-architecture data-pointers. */\n"
1839 printf " unsigned nr_data;\n"
1840 printf " void **data;\n"
1841 printf "\n"
1842 cat <<EOF
1843 /* Multi-arch values.
1844
1845 When extending this structure you must:
1846
1847 Add the field below.
1848
1849 Declare set/get functions and define the corresponding
1850 macro in gdbarch.h.
1851
1852 gdbarch_alloc(): If zero/NULL is not a suitable default,
1853 initialize the new field.
1854
1855 verify_gdbarch(): Confirm that the target updated the field
1856 correctly.
1857
1858 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1859 field is dumped out
1860
1861 get_gdbarch(): Implement the set/get functions (probably using
1862 the macro's as shortcuts).
1863
1864 */
1865
1866 EOF
1867 function_list | while do_read
1868 do
1869 if class_is_variable_p
1870 then
1871 printf " ${returntype} ${function};\n"
1872 elif class_is_function_p
1873 then
1874 printf " gdbarch_${function}_ftype *${function};\n"
1875 fi
1876 done
1877 printf "};\n"
1878
1879 # Create a new gdbarch struct
1880 cat <<EOF
1881
1882 /* Create a new \`\`struct gdbarch'' based on information provided by
1883 \`\`struct gdbarch_info''. */
1884 EOF
1885 printf "\n"
1886 cat <<EOF
1887 struct gdbarch *
1888 gdbarch_alloc (const struct gdbarch_info *info,
1889 struct gdbarch_tdep *tdep)
1890 {
1891 struct gdbarch *gdbarch;
1892
1893 /* Create an obstack for allocating all the per-architecture memory,
1894 then use that to allocate the architecture vector. */
1895 struct obstack *obstack = XNEW (struct obstack);
1896 obstack_init (obstack);
1897 gdbarch = XOBNEW (obstack, struct gdbarch);
1898 memset (gdbarch, 0, sizeof (*gdbarch));
1899 gdbarch->obstack = obstack;
1900
1901 alloc_gdbarch_data (gdbarch);
1902
1903 gdbarch->tdep = tdep;
1904 EOF
1905 printf "\n"
1906 function_list | while do_read
1907 do
1908 if class_is_info_p
1909 then
1910 printf " gdbarch->${function} = info->${function};\n"
1911 fi
1912 done
1913 printf "\n"
1914 printf " /* Force the explicit initialization of these. */\n"
1915 function_list | while do_read
1916 do
1917 if class_is_function_p || class_is_variable_p
1918 then
1919 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1920 then
1921 printf " gdbarch->${function} = ${predefault};\n"
1922 fi
1923 fi
1924 done
1925 cat <<EOF
1926 /* gdbarch_alloc() */
1927
1928 return gdbarch;
1929 }
1930 EOF
1931
1932 # Free a gdbarch struct.
1933 printf "\n"
1934 printf "\n"
1935 cat <<EOF
1936
1937 obstack *gdbarch_obstack (gdbarch *arch)
1938 {
1939 return arch->obstack;
1940 }
1941
1942 /* See gdbarch.h. */
1943
1944 char *
1945 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1946 {
1947 return obstack_strdup (arch->obstack, string);
1948 }
1949
1950
1951 /* Free a gdbarch struct. This should never happen in normal
1952 operation --- once you've created a gdbarch, you keep it around.
1953 However, if an architecture's init function encounters an error
1954 building the structure, it may need to clean up a partially
1955 constructed gdbarch. */
1956
1957 void
1958 gdbarch_free (struct gdbarch *arch)
1959 {
1960 struct obstack *obstack;
1961
1962 gdb_assert (arch != NULL);
1963 gdb_assert (!arch->initialized_p);
1964 obstack = arch->obstack;
1965 obstack_free (obstack, 0); /* Includes the ARCH. */
1966 xfree (obstack);
1967 }
1968 EOF
1969
1970 # verify a new architecture
1971 cat <<EOF
1972
1973
1974 /* Ensure that all values in a GDBARCH are reasonable. */
1975
1976 static void
1977 verify_gdbarch (struct gdbarch *gdbarch)
1978 {
1979 string_file log;
1980
1981 /* fundamental */
1982 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1983 log.puts ("\n\tbyte-order");
1984 if (gdbarch->bfd_arch_info == NULL)
1985 log.puts ("\n\tbfd_arch_info");
1986 /* Check those that need to be defined for the given multi-arch level. */
1987 EOF
1988 function_list | while do_read
1989 do
1990 if class_is_function_p || class_is_variable_p
1991 then
1992 if [ "x${invalid_p}" = "x0" ]
1993 then
1994 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1995 elif class_is_predicate_p
1996 then
1997 printf " /* Skip verify of ${function}, has predicate. */\n"
1998 # FIXME: See do_read for potential simplification
1999 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
2000 then
2001 printf " if (${invalid_p})\n"
2002 printf " gdbarch->${function} = ${postdefault};\n"
2003 elif [ -n "${predefault}" -a -n "${postdefault}" ]
2004 then
2005 printf " if (gdbarch->${function} == ${predefault})\n"
2006 printf " gdbarch->${function} = ${postdefault};\n"
2007 elif [ -n "${postdefault}" ]
2008 then
2009 printf " if (gdbarch->${function} == 0)\n"
2010 printf " gdbarch->${function} = ${postdefault};\n"
2011 elif [ -n "${invalid_p}" ]
2012 then
2013 printf " if (${invalid_p})\n"
2014 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
2015 elif [ -n "${predefault}" ]
2016 then
2017 printf " if (gdbarch->${function} == ${predefault})\n"
2018 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
2019 fi
2020 fi
2021 done
2022 cat <<EOF
2023 if (!log.empty ())
2024 internal_error (__FILE__, __LINE__,
2025 _("verify_gdbarch: the following are invalid ...%s"),
2026 log.c_str ());
2027 }
2028 EOF
2029
2030 # dump the structure
2031 printf "\n"
2032 printf "\n"
2033 cat <<EOF
2034 /* Print out the details of the current architecture. */
2035
2036 void
2037 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2038 {
2039 const char *gdb_nm_file = "<not-defined>";
2040
2041 #if defined (GDB_NM_FILE)
2042 gdb_nm_file = GDB_NM_FILE;
2043 #endif
2044 fprintf_unfiltered (file,
2045 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2046 gdb_nm_file);
2047 EOF
2048 function_list | sort '-t;' -k 3 | while do_read
2049 do
2050 # First the predicate
2051 if class_is_predicate_p
2052 then
2053 printf " fprintf_unfiltered (file,\n"
2054 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
2055 printf " gdbarch_${function}_p (gdbarch));\n"
2056 fi
2057 # Print the corresponding value.
2058 if class_is_function_p
2059 then
2060 printf " fprintf_unfiltered (file,\n"
2061 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2062 printf " host_address_to_string (gdbarch->${function}));\n"
2063 else
2064 # It is a variable
2065 case "${print}:${returntype}" in
2066 :CORE_ADDR )
2067 fmt="%s"
2068 print="core_addr_to_string_nz (gdbarch->${function})"
2069 ;;
2070 :* )
2071 fmt="%s"
2072 print="plongest (gdbarch->${function})"
2073 ;;
2074 * )
2075 fmt="%s"
2076 ;;
2077 esac
2078 printf " fprintf_unfiltered (file,\n"
2079 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2080 printf " ${print});\n"
2081 fi
2082 done
2083 cat <<EOF
2084 if (gdbarch->dump_tdep != NULL)
2085 gdbarch->dump_tdep (gdbarch, file);
2086 }
2087 EOF
2088
2089
2090 # GET/SET
2091 printf "\n"
2092 cat <<EOF
2093 struct gdbarch_tdep *
2094 gdbarch_tdep (struct gdbarch *gdbarch)
2095 {
2096 if (gdbarch_debug >= 2)
2097 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2098 return gdbarch->tdep;
2099 }
2100 EOF
2101 printf "\n"
2102 function_list | while do_read
2103 do
2104 if class_is_predicate_p
2105 then
2106 printf "\n"
2107 printf "int\n"
2108 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2109 printf "{\n"
2110 printf " gdb_assert (gdbarch != NULL);\n"
2111 printf " return ${predicate};\n"
2112 printf "}\n"
2113 fi
2114 if class_is_function_p
2115 then
2116 printf "\n"
2117 printf "${returntype}\n"
2118 if [ "x${formal}" = "xvoid" ]
2119 then
2120 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2121 else
2122 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2123 fi
2124 printf "{\n"
2125 printf " gdb_assert (gdbarch != NULL);\n"
2126 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2127 if class_is_predicate_p && test -n "${predefault}"
2128 then
2129 # Allow a call to a function with a predicate.
2130 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2131 fi
2132 printf " if (gdbarch_debug >= 2)\n"
2133 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2134 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2135 then
2136 if class_is_multiarch_p
2137 then
2138 params="gdbarch"
2139 else
2140 params=""
2141 fi
2142 else
2143 if class_is_multiarch_p
2144 then
2145 params="gdbarch, ${actual}"
2146 else
2147 params="${actual}"
2148 fi
2149 fi
2150 if [ "x${returntype}" = "xvoid" ]
2151 then
2152 printf " gdbarch->${function} (${params});\n"
2153 else
2154 printf " return gdbarch->${function} (${params});\n"
2155 fi
2156 printf "}\n"
2157 printf "\n"
2158 printf "void\n"
2159 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2160 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2161 printf "{\n"
2162 printf " gdbarch->${function} = ${function};\n"
2163 printf "}\n"
2164 elif class_is_variable_p
2165 then
2166 printf "\n"
2167 printf "${returntype}\n"
2168 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2169 printf "{\n"
2170 printf " gdb_assert (gdbarch != NULL);\n"
2171 if [ "x${invalid_p}" = "x0" ]
2172 then
2173 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2174 elif [ -n "${invalid_p}" ]
2175 then
2176 printf " /* Check variable is valid. */\n"
2177 printf " gdb_assert (!(${invalid_p}));\n"
2178 elif [ -n "${predefault}" ]
2179 then
2180 printf " /* Check variable changed from pre-default. */\n"
2181 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2182 fi
2183 printf " if (gdbarch_debug >= 2)\n"
2184 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2185 printf " return gdbarch->${function};\n"
2186 printf "}\n"
2187 printf "\n"
2188 printf "void\n"
2189 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2190 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2191 printf "{\n"
2192 printf " gdbarch->${function} = ${function};\n"
2193 printf "}\n"
2194 elif class_is_info_p
2195 then
2196 printf "\n"
2197 printf "${returntype}\n"
2198 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2199 printf "{\n"
2200 printf " gdb_assert (gdbarch != NULL);\n"
2201 printf " if (gdbarch_debug >= 2)\n"
2202 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2203 printf " return gdbarch->${function};\n"
2204 printf "}\n"
2205 fi
2206 done
2207
2208 # All the trailing guff
2209 cat <<EOF
2210
2211
2212 /* Keep a registry of per-architecture data-pointers required by GDB
2213 modules. */
2214
2215 struct gdbarch_data
2216 {
2217 unsigned index;
2218 int init_p;
2219 gdbarch_data_pre_init_ftype *pre_init;
2220 gdbarch_data_post_init_ftype *post_init;
2221 };
2222
2223 struct gdbarch_data_registration
2224 {
2225 struct gdbarch_data *data;
2226 struct gdbarch_data_registration *next;
2227 };
2228
2229 struct gdbarch_data_registry
2230 {
2231 unsigned nr;
2232 struct gdbarch_data_registration *registrations;
2233 };
2234
2235 struct gdbarch_data_registry gdbarch_data_registry =
2236 {
2237 0, NULL,
2238 };
2239
2240 static struct gdbarch_data *
2241 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2242 gdbarch_data_post_init_ftype *post_init)
2243 {
2244 struct gdbarch_data_registration **curr;
2245
2246 /* Append the new registration. */
2247 for (curr = &gdbarch_data_registry.registrations;
2248 (*curr) != NULL;
2249 curr = &(*curr)->next);
2250 (*curr) = XNEW (struct gdbarch_data_registration);
2251 (*curr)->next = NULL;
2252 (*curr)->data = XNEW (struct gdbarch_data);
2253 (*curr)->data->index = gdbarch_data_registry.nr++;
2254 (*curr)->data->pre_init = pre_init;
2255 (*curr)->data->post_init = post_init;
2256 (*curr)->data->init_p = 1;
2257 return (*curr)->data;
2258 }
2259
2260 struct gdbarch_data *
2261 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2262 {
2263 return gdbarch_data_register (pre_init, NULL);
2264 }
2265
2266 struct gdbarch_data *
2267 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2268 {
2269 return gdbarch_data_register (NULL, post_init);
2270 }
2271
2272 /* Create/delete the gdbarch data vector. */
2273
2274 static void
2275 alloc_gdbarch_data (struct gdbarch *gdbarch)
2276 {
2277 gdb_assert (gdbarch->data == NULL);
2278 gdbarch->nr_data = gdbarch_data_registry.nr;
2279 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2280 }
2281
2282 /* Initialize the current value of the specified per-architecture
2283 data-pointer. */
2284
2285 void
2286 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2287 struct gdbarch_data *data,
2288 void *pointer)
2289 {
2290 gdb_assert (data->index < gdbarch->nr_data);
2291 gdb_assert (gdbarch->data[data->index] == NULL);
2292 gdb_assert (data->pre_init == NULL);
2293 gdbarch->data[data->index] = pointer;
2294 }
2295
2296 /* Return the current value of the specified per-architecture
2297 data-pointer. */
2298
2299 void *
2300 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2301 {
2302 gdb_assert (data->index < gdbarch->nr_data);
2303 if (gdbarch->data[data->index] == NULL)
2304 {
2305 /* The data-pointer isn't initialized, call init() to get a
2306 value. */
2307 if (data->pre_init != NULL)
2308 /* Mid architecture creation: pass just the obstack, and not
2309 the entire architecture, as that way it isn't possible for
2310 pre-init code to refer to undefined architecture
2311 fields. */
2312 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2313 else if (gdbarch->initialized_p
2314 && data->post_init != NULL)
2315 /* Post architecture creation: pass the entire architecture
2316 (as all fields are valid), but be careful to also detect
2317 recursive references. */
2318 {
2319 gdb_assert (data->init_p);
2320 data->init_p = 0;
2321 gdbarch->data[data->index] = data->post_init (gdbarch);
2322 data->init_p = 1;
2323 }
2324 else
2325 /* The architecture initialization hasn't completed - punt -
2326 hope that the caller knows what they are doing. Once
2327 deprecated_set_gdbarch_data has been initialized, this can be
2328 changed to an internal error. */
2329 return NULL;
2330 gdb_assert (gdbarch->data[data->index] != NULL);
2331 }
2332 return gdbarch->data[data->index];
2333 }
2334
2335
2336 /* Keep a registry of the architectures known by GDB. */
2337
2338 struct gdbarch_registration
2339 {
2340 enum bfd_architecture bfd_architecture;
2341 gdbarch_init_ftype *init;
2342 gdbarch_dump_tdep_ftype *dump_tdep;
2343 struct gdbarch_list *arches;
2344 struct gdbarch_registration *next;
2345 };
2346
2347 static struct gdbarch_registration *gdbarch_registry = NULL;
2348
2349 static void
2350 append_name (const char ***buf, int *nr, const char *name)
2351 {
2352 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2353 (*buf)[*nr] = name;
2354 *nr += 1;
2355 }
2356
2357 const char **
2358 gdbarch_printable_names (void)
2359 {
2360 /* Accumulate a list of names based on the registed list of
2361 architectures. */
2362 int nr_arches = 0;
2363 const char **arches = NULL;
2364 struct gdbarch_registration *rego;
2365
2366 for (rego = gdbarch_registry;
2367 rego != NULL;
2368 rego = rego->next)
2369 {
2370 const struct bfd_arch_info *ap;
2371 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2372 if (ap == NULL)
2373 internal_error (__FILE__, __LINE__,
2374 _("gdbarch_architecture_names: multi-arch unknown"));
2375 do
2376 {
2377 append_name (&arches, &nr_arches, ap->printable_name);
2378 ap = ap->next;
2379 }
2380 while (ap != NULL);
2381 }
2382 append_name (&arches, &nr_arches, NULL);
2383 return arches;
2384 }
2385
2386
2387 void
2388 gdbarch_register (enum bfd_architecture bfd_architecture,
2389 gdbarch_init_ftype *init,
2390 gdbarch_dump_tdep_ftype *dump_tdep)
2391 {
2392 struct gdbarch_registration **curr;
2393 const struct bfd_arch_info *bfd_arch_info;
2394
2395 /* Check that BFD recognizes this architecture */
2396 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2397 if (bfd_arch_info == NULL)
2398 {
2399 internal_error (__FILE__, __LINE__,
2400 _("gdbarch: Attempt to register "
2401 "unknown architecture (%d)"),
2402 bfd_architecture);
2403 }
2404 /* Check that we haven't seen this architecture before. */
2405 for (curr = &gdbarch_registry;
2406 (*curr) != NULL;
2407 curr = &(*curr)->next)
2408 {
2409 if (bfd_architecture == (*curr)->bfd_architecture)
2410 internal_error (__FILE__, __LINE__,
2411 _("gdbarch: Duplicate registration "
2412 "of architecture (%s)"),
2413 bfd_arch_info->printable_name);
2414 }
2415 /* log it */
2416 if (gdbarch_debug)
2417 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2418 bfd_arch_info->printable_name,
2419 host_address_to_string (init));
2420 /* Append it */
2421 (*curr) = XNEW (struct gdbarch_registration);
2422 (*curr)->bfd_architecture = bfd_architecture;
2423 (*curr)->init = init;
2424 (*curr)->dump_tdep = dump_tdep;
2425 (*curr)->arches = NULL;
2426 (*curr)->next = NULL;
2427 }
2428
2429 void
2430 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2431 gdbarch_init_ftype *init)
2432 {
2433 gdbarch_register (bfd_architecture, init, NULL);
2434 }
2435
2436
2437 /* Look for an architecture using gdbarch_info. */
2438
2439 struct gdbarch_list *
2440 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2441 const struct gdbarch_info *info)
2442 {
2443 for (; arches != NULL; arches = arches->next)
2444 {
2445 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2446 continue;
2447 if (info->byte_order != arches->gdbarch->byte_order)
2448 continue;
2449 if (info->osabi != arches->gdbarch->osabi)
2450 continue;
2451 if (info->target_desc != arches->gdbarch->target_desc)
2452 continue;
2453 return arches;
2454 }
2455 return NULL;
2456 }
2457
2458
2459 /* Find an architecture that matches the specified INFO. Create a new
2460 architecture if needed. Return that new architecture. */
2461
2462 struct gdbarch *
2463 gdbarch_find_by_info (struct gdbarch_info info)
2464 {
2465 struct gdbarch *new_gdbarch;
2466 struct gdbarch_registration *rego;
2467
2468 /* Fill in missing parts of the INFO struct using a number of
2469 sources: "set ..."; INFOabfd supplied; and the global
2470 defaults. */
2471 gdbarch_info_fill (&info);
2472
2473 /* Must have found some sort of architecture. */
2474 gdb_assert (info.bfd_arch_info != NULL);
2475
2476 if (gdbarch_debug)
2477 {
2478 fprintf_unfiltered (gdb_stdlog,
2479 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2480 (info.bfd_arch_info != NULL
2481 ? info.bfd_arch_info->printable_name
2482 : "(null)"));
2483 fprintf_unfiltered (gdb_stdlog,
2484 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2485 info.byte_order,
2486 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2487 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2488 : "default"));
2489 fprintf_unfiltered (gdb_stdlog,
2490 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2491 info.osabi, gdbarch_osabi_name (info.osabi));
2492 fprintf_unfiltered (gdb_stdlog,
2493 "gdbarch_find_by_info: info.abfd %s\n",
2494 host_address_to_string (info.abfd));
2495 fprintf_unfiltered (gdb_stdlog,
2496 "gdbarch_find_by_info: info.tdep_info %s\n",
2497 host_address_to_string (info.tdep_info));
2498 }
2499
2500 /* Find the tdep code that knows about this architecture. */
2501 for (rego = gdbarch_registry;
2502 rego != NULL;
2503 rego = rego->next)
2504 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2505 break;
2506 if (rego == NULL)
2507 {
2508 if (gdbarch_debug)
2509 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2510 "No matching architecture\n");
2511 return 0;
2512 }
2513
2514 /* Ask the tdep code for an architecture that matches "info". */
2515 new_gdbarch = rego->init (info, rego->arches);
2516
2517 /* Did the tdep code like it? No. Reject the change and revert to
2518 the old architecture. */
2519 if (new_gdbarch == NULL)
2520 {
2521 if (gdbarch_debug)
2522 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2523 "Target rejected architecture\n");
2524 return NULL;
2525 }
2526
2527 /* Is this a pre-existing architecture (as determined by already
2528 being initialized)? Move it to the front of the architecture
2529 list (keeping the list sorted Most Recently Used). */
2530 if (new_gdbarch->initialized_p)
2531 {
2532 struct gdbarch_list **list;
2533 struct gdbarch_list *self;
2534 if (gdbarch_debug)
2535 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2536 "Previous architecture %s (%s) selected\n",
2537 host_address_to_string (new_gdbarch),
2538 new_gdbarch->bfd_arch_info->printable_name);
2539 /* Find the existing arch in the list. */
2540 for (list = &rego->arches;
2541 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2542 list = &(*list)->next);
2543 /* It had better be in the list of architectures. */
2544 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2545 /* Unlink SELF. */
2546 self = (*list);
2547 (*list) = self->next;
2548 /* Insert SELF at the front. */
2549 self->next = rego->arches;
2550 rego->arches = self;
2551 /* Return it. */
2552 return new_gdbarch;
2553 }
2554
2555 /* It's a new architecture. */
2556 if (gdbarch_debug)
2557 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2558 "New architecture %s (%s) selected\n",
2559 host_address_to_string (new_gdbarch),
2560 new_gdbarch->bfd_arch_info->printable_name);
2561
2562 /* Insert the new architecture into the front of the architecture
2563 list (keep the list sorted Most Recently Used). */
2564 {
2565 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2566 self->next = rego->arches;
2567 self->gdbarch = new_gdbarch;
2568 rego->arches = self;
2569 }
2570
2571 /* Check that the newly installed architecture is valid. Plug in
2572 any post init values. */
2573 new_gdbarch->dump_tdep = rego->dump_tdep;
2574 verify_gdbarch (new_gdbarch);
2575 new_gdbarch->initialized_p = 1;
2576
2577 if (gdbarch_debug)
2578 gdbarch_dump (new_gdbarch, gdb_stdlog);
2579
2580 return new_gdbarch;
2581 }
2582
2583 /* Make the specified architecture current. */
2584
2585 void
2586 set_target_gdbarch (struct gdbarch *new_gdbarch)
2587 {
2588 gdb_assert (new_gdbarch != NULL);
2589 gdb_assert (new_gdbarch->initialized_p);
2590 current_inferior ()->gdbarch = new_gdbarch;
2591 gdb::observers::architecture_changed.notify (new_gdbarch);
2592 registers_changed ();
2593 }
2594
2595 /* Return the current inferior's arch. */
2596
2597 struct gdbarch *
2598 target_gdbarch (void)
2599 {
2600 return current_inferior ()->gdbarch;
2601 }
2602
2603 void
2604 _initialize_gdbarch (void)
2605 {
2606 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2607 Set architecture debugging."), _("\\
2608 Show architecture debugging."), _("\\
2609 When non-zero, architecture debugging is enabled."),
2610 NULL,
2611 show_gdbarch_debug,
2612 &setdebuglist, &showdebuglist);
2613 }
2614 EOF
2615
2616 # close things off
2617 exec 1>&2
2618 #../move-if-change new-gdbarch.c gdbarch.c
2619 compare_new gdbarch.c
This page took 0.092453 seconds and 4 git commands to generate.