5a39dec83da23dc6f0c93d1a14e5cbe0e14546cf
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # Number of bits in a short or unsigned short for the target machine.
351 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
352 # Number of bits in an int or unsigned int for the target machine.
353 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
354 # Number of bits in a long or unsigned long for the target machine.
355 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
356 # Number of bits in a long long or unsigned long long for the target
357 # machine.
358 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
359
360 # The ABI default bit-size and format for "half", "float", "double", and
361 # "long double". These bit/format pairs should eventually be combined
362 # into a single object. For the moment, just initialize them as a pair.
363 # Each format describes both the big and little endian layouts (if
364 # useful).
365
366 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
367 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
368 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
369 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
370 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
372 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
374
375 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
376 # starting with C++11.
377 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
378 # One if \`wchar_t' is signed, zero if unsigned.
379 v;int;wchar_signed;;;1;-1;1
380
381 # Returns the floating-point format to be used for values of length LENGTH.
382 # NAME, if non-NULL, is the type name, which may be used to distinguish
383 # different target formats of the same length.
384 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
397 # addr_bit is the size of a target address as represented in gdb
398 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v;int;char_signed;;;1;-1;1
417 #
418 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
419 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
424 #
425 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
431 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
432 #
433 v;int;num_regs;;;0;-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v;int;num_pseudo_regs;;;0;0;;0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
448
449 # Some targets/architectures can do extra processing/display of
450 # segmentation faults. E.g., Intel MPX boundary faults.
451 # Call the architecture dependent function to handle the fault.
452 # UIOUT is the output stream where the handler will place information.
453 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
454
455 # GDB's standard (or well known) register numbers. These can map onto
456 # a real register or a pseudo (computed) register or not be defined at
457 # all (-1).
458 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
459 v;int;sp_regnum;;;-1;-1;;0
460 v;int;pc_regnum;;;-1;-1;;0
461 v;int;ps_regnum;;;-1;-1;;0
462 v;int;fp0_regnum;;;0;-1;;0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
467 # Convert from an sdb register number to an internal gdb register number.
468 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
470 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
471 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
472 m;const char *;register_name;int regnr;regnr;;0
473
474 # Return the type of a register specified by the architecture. Only
475 # the register cache should call this function directly; others should
476 # use "register_type".
477 M;struct type *;register_type;int reg_nr;reg_nr
478
479 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
480 # a dummy frame. A dummy frame is created before an inferior call,
481 # the frame_id returned here must match the frame_id that was built
482 # for the inferior call. Usually this means the returned frame_id's
483 # stack address should match the address returned by
484 # gdbarch_push_dummy_call, and the returned frame_id's code address
485 # should match the address at which the breakpoint was set in the dummy
486 # frame.
487 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
488 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
489 # deprecated_fp_regnum.
490 v;int;deprecated_fp_regnum;;;-1;-1;;0
491
492 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
493 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
494 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
495
496 # Return true if the code of FRAME is writable.
497 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
498
499 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
500 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
501 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
502 # MAP a GDB RAW register number onto a simulator register number. See
503 # also include/...-sim.h.
504 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
505 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
506 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
507
508 # Determine the address where a longjmp will land and save this address
509 # in PC. Return nonzero on success.
510 #
511 # FRAME corresponds to the longjmp frame.
512 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
513
514 #
515 v;int;believe_pcc_promotion;;;;;;;
516 #
517 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
518 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
519 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
520 # Construct a value representing the contents of register REGNUM in
521 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
522 # allocate and return a struct value with all value attributes
523 # (but not the value contents) filled in.
524 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
525 #
526 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
527 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
528 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
529
530 # Return the return-value convention that will be used by FUNCTION
531 # to return a value of type VALTYPE. FUNCTION may be NULL in which
532 # case the return convention is computed based only on VALTYPE.
533 #
534 # If READBUF is not NULL, extract the return value and save it in this buffer.
535 #
536 # If WRITEBUF is not NULL, it contains a return value which will be
537 # stored into the appropriate register. This can be used when we want
538 # to force the value returned by a function (see the "return" command
539 # for instance).
540 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
541
542 # Return true if the return value of function is stored in the first hidden
543 # parameter. In theory, this feature should be language-dependent, specified
544 # by language and its ABI, such as C++. Unfortunately, compiler may
545 # implement it to a target-dependent feature. So that we need such hook here
546 # to be aware of this in GDB.
547 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
548
549 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
550 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
551 # On some platforms, a single function may provide multiple entry points,
552 # e.g. one that is used for function-pointer calls and a different one
553 # that is used for direct function calls.
554 # In order to ensure that breakpoints set on the function will trigger
555 # no matter via which entry point the function is entered, a platform
556 # may provide the skip_entrypoint callback. It is called with IP set
557 # to the main entry point of a function (as determined by the symbol table),
558 # and should return the address of the innermost entry point, where the
559 # actual breakpoint needs to be set. Note that skip_entrypoint is used
560 # by GDB common code even when debugging optimized code, where skip_prologue
561 # is not used.
562 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
563
564 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
565 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
566
567 # Return the breakpoint kind for this target based on *PCPTR.
568 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
569
570 # Return the software breakpoint from KIND. KIND can have target
571 # specific meaning like the Z0 kind parameter.
572 # SIZE is set to the software breakpoint's length in memory.
573 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
574
575 # Return the breakpoint kind for this target based on the current
576 # processor state (e.g. the current instruction mode on ARM) and the
577 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
578 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
579
580 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
581 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
582 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
583 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
584
585 # A function can be addressed by either it's "pointer" (possibly a
586 # descriptor address) or "entry point" (first executable instruction).
587 # The method "convert_from_func_ptr_addr" converting the former to the
588 # latter. gdbarch_deprecated_function_start_offset is being used to implement
589 # a simplified subset of that functionality - the function's address
590 # corresponds to the "function pointer" and the function's start
591 # corresponds to the "function entry point" - and hence is redundant.
592
593 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
594
595 # Return the remote protocol register number associated with this
596 # register. Normally the identity mapping.
597 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
598
599 # Fetch the target specific address used to represent a load module.
600 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
601
602 # Return the thread-local address at OFFSET in the thread-local
603 # storage for the thread PTID and the shared library or executable
604 # file given by LM_ADDR. If that block of thread-local storage hasn't
605 # been allocated yet, this function may throw an error. LM_ADDR may
606 # be zero for statically linked multithreaded inferiors.
607
608 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
609 #
610 v;CORE_ADDR;frame_args_skip;;;0;;;0
611 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
612 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
613 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
614 # frame-base. Enable frame-base before frame-unwind.
615 F;int;frame_num_args;struct frame_info *frame;frame
616 #
617 M;CORE_ADDR;frame_align;CORE_ADDR address;address
618 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
619 v;int;frame_red_zone_size
620 #
621 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
622 # On some machines there are bits in addresses which are not really
623 # part of the address, but are used by the kernel, the hardware, etc.
624 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
625 # we get a "real" address such as one would find in a symbol table.
626 # This is used only for addresses of instructions, and even then I'm
627 # not sure it's used in all contexts. It exists to deal with there
628 # being a few stray bits in the PC which would mislead us, not as some
629 # sort of generic thing to handle alignment or segmentation (it's
630 # possible it should be in TARGET_READ_PC instead).
631 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
632
633 # On some machines, not all bits of an address word are significant.
634 # For example, on AArch64, the top bits of an address known as the "tag"
635 # are ignored by the kernel, the hardware, etc. and can be regarded as
636 # additional data associated with the address.
637 v;int;significant_addr_bit;;;;;;0
638
639 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
640 # indicates if the target needs software single step. An ISA method to
641 # implement it.
642 #
643 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
644 # target can single step. If not, then implement single step using breakpoints.
645 #
646 # Return a vector of addresses on which the software single step
647 # breakpoints should be inserted. NULL means software single step is
648 # not used.
649 # Multiple breakpoints may be inserted for some instructions such as
650 # conditional branch. However, each implementation must always evaluate
651 # the condition and only put the breakpoint at the branch destination if
652 # the condition is true, so that we ensure forward progress when stepping
653 # past a conditional branch to self.
654 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
655
656 # Return non-zero if the processor is executing a delay slot and a
657 # further single-step is needed before the instruction finishes.
658 M;int;single_step_through_delay;struct frame_info *frame;frame
659 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
660 # disassembler. Perhaps objdump can handle it?
661 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
662 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
663
664
665 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
666 # evaluates non-zero, this is the address where the debugger will place
667 # a step-resume breakpoint to get us past the dynamic linker.
668 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
669 # Some systems also have trampoline code for returning from shared libs.
670 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
671
672 # Return true if PC lies inside an indirect branch thunk.
673 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
674
675 # A target might have problems with watchpoints as soon as the stack
676 # frame of the current function has been destroyed. This mostly happens
677 # as the first action in a function's epilogue. stack_frame_destroyed_p()
678 # is defined to return a non-zero value if either the given addr is one
679 # instruction after the stack destroying instruction up to the trailing
680 # return instruction or if we can figure out that the stack frame has
681 # already been invalidated regardless of the value of addr. Targets
682 # which don't suffer from that problem could just let this functionality
683 # untouched.
684 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
685 # Process an ELF symbol in the minimal symbol table in a backend-specific
686 # way. Normally this hook is supposed to do nothing, however if required,
687 # then this hook can be used to apply tranformations to symbols that are
688 # considered special in some way. For example the MIPS backend uses it
689 # to interpret \`st_other' information to mark compressed code symbols so
690 # that they can be treated in the appropriate manner in the processing of
691 # the main symbol table and DWARF-2 records.
692 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
693 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
694 # Process a symbol in the main symbol table in a backend-specific way.
695 # Normally this hook is supposed to do nothing, however if required,
696 # then this hook can be used to apply tranformations to symbols that
697 # are considered special in some way. This is currently used by the
698 # MIPS backend to make sure compressed code symbols have the ISA bit
699 # set. This in turn is needed for symbol values seen in GDB to match
700 # the values used at the runtime by the program itself, for function
701 # and label references.
702 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
703 # Adjust the address retrieved from a DWARF-2 record other than a line
704 # entry in a backend-specific way. Normally this hook is supposed to
705 # return the address passed unchanged, however if that is incorrect for
706 # any reason, then this hook can be used to fix the address up in the
707 # required manner. This is currently used by the MIPS backend to make
708 # sure addresses in FDE, range records, etc. referring to compressed
709 # code have the ISA bit set, matching line information and the symbol
710 # table.
711 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
712 # Adjust the address updated by a line entry in a backend-specific way.
713 # Normally this hook is supposed to return the address passed unchanged,
714 # however in the case of inconsistencies in these records, this hook can
715 # be used to fix them up in the required manner. This is currently used
716 # by the MIPS backend to make sure all line addresses in compressed code
717 # are presented with the ISA bit set, which is not always the case. This
718 # in turn ensures breakpoint addresses are correctly matched against the
719 # stop PC.
720 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
721 v;int;cannot_step_breakpoint;;;0;0;;0
722 # See comment in target.h about continuable, steppable and
723 # non-steppable watchpoints.
724 v;int;have_nonsteppable_watchpoint;;;0;0;;0
725 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
726 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
727 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
728 # FS are passed from the generic execute_cfa_program function.
729 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
730
731 # Return the appropriate type_flags for the supplied address class.
732 # This function should return 1 if the address class was recognized and
733 # type_flags was set, zero otherwise.
734 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
735 # Is a register in a group
736 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
737 # Fetch the pointer to the ith function argument.
738 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
739
740 # Iterate over all supported register notes in a core file. For each
741 # supported register note section, the iterator must call CB and pass
742 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
743 # the supported register note sections based on the current register
744 # values. Otherwise it should enumerate all supported register note
745 # sections.
746 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
747
748 # Create core file notes
749 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
750
751 # Find core file memory regions
752 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
753
754 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
755 # core file into buffer READBUF with length LEN. Return the number of bytes read
756 # (zero indicates failure).
757 # failed, otherwise, return the red length of READBUF.
758 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
759
760 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
761 # libraries list from core file into buffer READBUF with length LEN.
762 # Return the number of bytes read (zero indicates failure).
763 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
764
765 # How the core target converts a PTID from a core file to a string.
766 M;std::string;core_pid_to_str;ptid_t ptid;ptid
767
768 # How the core target extracts the name of a thread from a core file.
769 M;const char *;core_thread_name;struct thread_info *thr;thr
770
771 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
772 # from core file into buffer READBUF with length LEN. Return the number
773 # of bytes read (zero indicates EOF, a negative value indicates failure).
774 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
775
776 # BFD target to use when generating a core file.
777 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
778
779 # If the elements of C++ vtables are in-place function descriptors rather
780 # than normal function pointers (which may point to code or a descriptor),
781 # set this to one.
782 v;int;vtable_function_descriptors;;;0;0;;0
783
784 # Set if the least significant bit of the delta is used instead of the least
785 # significant bit of the pfn for pointers to virtual member functions.
786 v;int;vbit_in_delta;;;0;0;;0
787
788 # Advance PC to next instruction in order to skip a permanent breakpoint.
789 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
790
791 # The maximum length of an instruction on this architecture in bytes.
792 V;ULONGEST;max_insn_length;;;0;0
793
794 # Copy the instruction at FROM to TO, and make any adjustments
795 # necessary to single-step it at that address.
796 #
797 # REGS holds the state the thread's registers will have before
798 # executing the copied instruction; the PC in REGS will refer to FROM,
799 # not the copy at TO. The caller should update it to point at TO later.
800 #
801 # Return a pointer to data of the architecture's choice to be passed
802 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
803 # the instruction's effects have been completely simulated, with the
804 # resulting state written back to REGS.
805 #
806 # For a general explanation of displaced stepping and how GDB uses it,
807 # see the comments in infrun.c.
808 #
809 # The TO area is only guaranteed to have space for
810 # gdbarch_max_insn_length (arch) bytes, so this function must not
811 # write more bytes than that to that area.
812 #
813 # If you do not provide this function, GDB assumes that the
814 # architecture does not support displaced stepping.
815 #
816 # If the instruction cannot execute out of line, return NULL. The
817 # core falls back to stepping past the instruction in-line instead in
818 # that case.
819 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
820
821 # Return true if GDB should use hardware single-stepping to execute
822 # the displaced instruction identified by CLOSURE. If false,
823 # GDB will simply restart execution at the displaced instruction
824 # location, and it is up to the target to ensure GDB will receive
825 # control again (e.g. by placing a software breakpoint instruction
826 # into the displaced instruction buffer).
827 #
828 # The default implementation returns false on all targets that
829 # provide a gdbarch_software_single_step routine, and true otherwise.
830 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
831
832 # Fix up the state resulting from successfully single-stepping a
833 # displaced instruction, to give the result we would have gotten from
834 # stepping the instruction in its original location.
835 #
836 # REGS is the register state resulting from single-stepping the
837 # displaced instruction.
838 #
839 # CLOSURE is the result from the matching call to
840 # gdbarch_displaced_step_copy_insn.
841 #
842 # If you provide gdbarch_displaced_step_copy_insn.but not this
843 # function, then GDB assumes that no fixup is needed after
844 # single-stepping the instruction.
845 #
846 # For a general explanation of displaced stepping and how GDB uses it,
847 # see the comments in infrun.c.
848 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
849
850 # Return the address of an appropriate place to put displaced
851 # instructions while we step over them. There need only be one such
852 # place, since we're only stepping one thread over a breakpoint at a
853 # time.
854 #
855 # For a general explanation of displaced stepping and how GDB uses it,
856 # see the comments in infrun.c.
857 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
858
859 # Relocate an instruction to execute at a different address. OLDLOC
860 # is the address in the inferior memory where the instruction to
861 # relocate is currently at. On input, TO points to the destination
862 # where we want the instruction to be copied (and possibly adjusted)
863 # to. On output, it points to one past the end of the resulting
864 # instruction(s). The effect of executing the instruction at TO shall
865 # be the same as if executing it at FROM. For example, call
866 # instructions that implicitly push the return address on the stack
867 # should be adjusted to return to the instruction after OLDLOC;
868 # relative branches, and other PC-relative instructions need the
869 # offset adjusted; etc.
870 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
871
872 # Refresh overlay mapped state for section OSECT.
873 F;void;overlay_update;struct obj_section *osect;osect
874
875 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
876
877 # Handle special encoding of static variables in stabs debug info.
878 F;const char *;static_transform_name;const char *name;name
879 # Set if the address in N_SO or N_FUN stabs may be zero.
880 v;int;sofun_address_maybe_missing;;;0;0;;0
881
882 # Parse the instruction at ADDR storing in the record execution log
883 # the registers REGCACHE and memory ranges that will be affected when
884 # the instruction executes, along with their current values.
885 # Return -1 if something goes wrong, 0 otherwise.
886 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
887
888 # Save process state after a signal.
889 # Return -1 if something goes wrong, 0 otherwise.
890 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
891
892 # Signal translation: translate inferior's signal (target's) number
893 # into GDB's representation. The implementation of this method must
894 # be host independent. IOW, don't rely on symbols of the NAT_FILE
895 # header (the nm-*.h files), the host <signal.h> header, or similar
896 # headers. This is mainly used when cross-debugging core files ---
897 # "Live" targets hide the translation behind the target interface
898 # (target_wait, target_resume, etc.).
899 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
900
901 # Signal translation: translate the GDB's internal signal number into
902 # the inferior's signal (target's) representation. The implementation
903 # of this method must be host independent. IOW, don't rely on symbols
904 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
905 # header, or similar headers.
906 # Return the target signal number if found, or -1 if the GDB internal
907 # signal number is invalid.
908 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
909
910 # Extra signal info inspection.
911 #
912 # Return a type suitable to inspect extra signal information.
913 M;struct type *;get_siginfo_type;void;
914
915 # Record architecture-specific information from the symbol table.
916 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
917
918 # Function for the 'catch syscall' feature.
919
920 # Get architecture-specific system calls information from registers.
921 M;LONGEST;get_syscall_number;thread_info *thread;thread
922
923 # The filename of the XML syscall for this architecture.
924 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
925
926 # Information about system calls from this architecture
927 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
928
929 # SystemTap related fields and functions.
930
931 # A NULL-terminated array of prefixes used to mark an integer constant
932 # on the architecture's assembly.
933 # For example, on x86 integer constants are written as:
934 #
935 # \$10 ;; integer constant 10
936 #
937 # in this case, this prefix would be the character \`\$\'.
938 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
939
940 # A NULL-terminated array of suffixes used to mark an integer constant
941 # on the architecture's assembly.
942 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
943
944 # A NULL-terminated array of prefixes used to mark a register name on
945 # the architecture's assembly.
946 # For example, on x86 the register name is written as:
947 #
948 # \%eax ;; register eax
949 #
950 # in this case, this prefix would be the character \`\%\'.
951 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
952
953 # A NULL-terminated array of suffixes used to mark a register name on
954 # the architecture's assembly.
955 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
956
957 # A NULL-terminated array of prefixes used to mark a register
958 # indirection on the architecture's assembly.
959 # For example, on x86 the register indirection is written as:
960 #
961 # \(\%eax\) ;; indirecting eax
962 #
963 # in this case, this prefix would be the charater \`\(\'.
964 #
965 # Please note that we use the indirection prefix also for register
966 # displacement, e.g., \`4\(\%eax\)\' on x86.
967 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
968
969 # A NULL-terminated array of suffixes used to mark a register
970 # indirection on the architecture's assembly.
971 # For example, on x86 the register indirection is written as:
972 #
973 # \(\%eax\) ;; indirecting eax
974 #
975 # in this case, this prefix would be the charater \`\)\'.
976 #
977 # Please note that we use the indirection suffix also for register
978 # displacement, e.g., \`4\(\%eax\)\' on x86.
979 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
980
981 # Prefix(es) used to name a register using GDB's nomenclature.
982 #
983 # For example, on PPC a register is represented by a number in the assembly
984 # language (e.g., \`10\' is the 10th general-purpose register). However,
985 # inside GDB this same register has an \`r\' appended to its name, so the 10th
986 # register would be represented as \`r10\' internally.
987 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
988
989 # Suffix used to name a register using GDB's nomenclature.
990 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
991
992 # Check if S is a single operand.
993 #
994 # Single operands can be:
995 # \- Literal integers, e.g. \`\$10\' on x86
996 # \- Register access, e.g. \`\%eax\' on x86
997 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
998 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
999 #
1000 # This function should check for these patterns on the string
1001 # and return 1 if some were found, or zero otherwise. Please try to match
1002 # as much info as you can from the string, i.e., if you have to match
1003 # something like \`\(\%\', do not match just the \`\(\'.
1004 M;int;stap_is_single_operand;const char *s;s
1005
1006 # Function used to handle a "special case" in the parser.
1007 #
1008 # A "special case" is considered to be an unknown token, i.e., a token
1009 # that the parser does not know how to parse. A good example of special
1010 # case would be ARM's register displacement syntax:
1011 #
1012 # [R0, #4] ;; displacing R0 by 4
1013 #
1014 # Since the parser assumes that a register displacement is of the form:
1015 #
1016 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1017 #
1018 # it means that it will not be able to recognize and parse this odd syntax.
1019 # Therefore, we should add a special case function that will handle this token.
1020 #
1021 # This function should generate the proper expression form of the expression
1022 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1023 # and so on). It should also return 1 if the parsing was successful, or zero
1024 # if the token was not recognized as a special token (in this case, returning
1025 # zero means that the special parser is deferring the parsing to the generic
1026 # parser), and should advance the buffer pointer (p->arg).
1027 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1028
1029 # Perform arch-dependent adjustments to a register name.
1030 #
1031 # In very specific situations, it may be necessary for the register
1032 # name present in a SystemTap probe's argument to be handled in a
1033 # special way. For example, on i386, GCC may over-optimize the
1034 # register allocation and use smaller registers than necessary. In
1035 # such cases, the client that is reading and evaluating the SystemTap
1036 # probe (ourselves) will need to actually fetch values from the wider
1037 # version of the register in question.
1038 #
1039 # To illustrate the example, consider the following probe argument
1040 # (i386):
1041 #
1042 # 4@%ax
1043 #
1044 # This argument says that its value can be found at the %ax register,
1045 # which is a 16-bit register. However, the argument's prefix says
1046 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1047 # this case, GDB should actually fetch the probe's value from register
1048 # %eax, not %ax. In this scenario, this function would actually
1049 # replace the register name from %ax to %eax.
1050 #
1051 # The rationale for this can be found at PR breakpoints/24541.
1052 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1053
1054 # DTrace related functions.
1055
1056 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1057 # NARG must be >= 0.
1058 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1059
1060 # True if the given ADDR does not contain the instruction sequence
1061 # corresponding to a disabled DTrace is-enabled probe.
1062 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1063
1064 # Enable a DTrace is-enabled probe at ADDR.
1065 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1066
1067 # Disable a DTrace is-enabled probe at ADDR.
1068 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1069
1070 # True if the list of shared libraries is one and only for all
1071 # processes, as opposed to a list of shared libraries per inferior.
1072 # This usually means that all processes, although may or may not share
1073 # an address space, will see the same set of symbols at the same
1074 # addresses.
1075 v;int;has_global_solist;;;0;0;;0
1076
1077 # On some targets, even though each inferior has its own private
1078 # address space, the debug interface takes care of making breakpoints
1079 # visible to all address spaces automatically. For such cases,
1080 # this property should be set to true.
1081 v;int;has_global_breakpoints;;;0;0;;0
1082
1083 # True if inferiors share an address space (e.g., uClinux).
1084 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1085
1086 # True if a fast tracepoint can be set at an address.
1087 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1088
1089 # Guess register state based on tracepoint location. Used for tracepoints
1090 # where no registers have been collected, but there's only one location,
1091 # allowing us to guess the PC value, and perhaps some other registers.
1092 # On entry, regcache has all registers marked as unavailable.
1093 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1094
1095 # Return the "auto" target charset.
1096 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1097 # Return the "auto" target wide charset.
1098 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1099
1100 # If non-empty, this is a file extension that will be opened in place
1101 # of the file extension reported by the shared library list.
1102 #
1103 # This is most useful for toolchains that use a post-linker tool,
1104 # where the names of the files run on the target differ in extension
1105 # compared to the names of the files GDB should load for debug info.
1106 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1107
1108 # If true, the target OS has DOS-based file system semantics. That
1109 # is, absolute paths include a drive name, and the backslash is
1110 # considered a directory separator.
1111 v;int;has_dos_based_file_system;;;0;0;;0
1112
1113 # Generate bytecodes to collect the return address in a frame.
1114 # Since the bytecodes run on the target, possibly with GDB not even
1115 # connected, the full unwinding machinery is not available, and
1116 # typically this function will issue bytecodes for one or more likely
1117 # places that the return address may be found.
1118 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1119
1120 # Implement the "info proc" command.
1121 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1122
1123 # Implement the "info proc" command for core files. Noe that there
1124 # are two "info_proc"-like methods on gdbarch -- one for core files,
1125 # one for live targets.
1126 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1127
1128 # Iterate over all objfiles in the order that makes the most sense
1129 # for the architecture to make global symbol searches.
1130 #
1131 # CB is a callback function where OBJFILE is the objfile to be searched,
1132 # and CB_DATA a pointer to user-defined data (the same data that is passed
1133 # when calling this gdbarch method). The iteration stops if this function
1134 # returns nonzero.
1135 #
1136 # CB_DATA is a pointer to some user-defined data to be passed to
1137 # the callback.
1138 #
1139 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1140 # inspected when the symbol search was requested.
1141 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1142
1143 # Ravenscar arch-dependent ops.
1144 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1145
1146 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1147 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1148
1149 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1150 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1151
1152 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1153 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1154
1155 # Return true if there's a program/permanent breakpoint planted in
1156 # memory at ADDRESS, return false otherwise.
1157 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1158
1159 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1160 # Return 0 if *READPTR is already at the end of the buffer.
1161 # Return -1 if there is insufficient buffer for a whole entry.
1162 # Return 1 if an entry was read into *TYPEP and *VALP.
1163 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1164
1165 # Print the description of a single auxv entry described by TYPE and VAL
1166 # to FILE.
1167 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1168
1169 # Find the address range of the current inferior's vsyscall/vDSO, and
1170 # write it to *RANGE. If the vsyscall's length can't be determined, a
1171 # range with zero length is returned. Returns true if the vsyscall is
1172 # found, false otherwise.
1173 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1174
1175 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1176 # PROT has GDB_MMAP_PROT_* bitmask format.
1177 # Throw an error if it is not possible. Returned address is always valid.
1178 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1179
1180 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1181 # Print a warning if it is not possible.
1182 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1183
1184 # Return string (caller has to use xfree for it) with options for GCC
1185 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1186 # These options are put before CU's DW_AT_producer compilation options so that
1187 # they can override it.
1188 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1189
1190 # Return a regular expression that matches names used by this
1191 # architecture in GNU configury triplets. The result is statically
1192 # allocated and must not be freed. The default implementation simply
1193 # returns the BFD architecture name, which is correct in nearly every
1194 # case.
1195 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1196
1197 # Return the size in 8-bit bytes of an addressable memory unit on this
1198 # architecture. This corresponds to the number of 8-bit bytes associated to
1199 # each address in memory.
1200 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1201
1202 # Functions for allowing a target to modify its disassembler options.
1203 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1204 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1205 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1206
1207 # Type alignment override method. Return the architecture specific
1208 # alignment required for TYPE. If there is no special handling
1209 # required for TYPE then return the value 0, GDB will then apply the
1210 # default rules as laid out in gdbtypes.c:type_align.
1211 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1212
1213 # Return a string containing any flags for the given PC in the given FRAME.
1214 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1215
1216 EOF
1217 }
1218
1219 #
1220 # The .log file
1221 #
1222 exec > new-gdbarch.log
1223 function_list | while do_read
1224 do
1225 cat <<EOF
1226 ${class} ${returntype} ${function} ($formal)
1227 EOF
1228 for r in ${read}
1229 do
1230 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1231 done
1232 if class_is_predicate_p && fallback_default_p
1233 then
1234 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1235 kill $$
1236 exit 1
1237 fi
1238 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1239 then
1240 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1241 kill $$
1242 exit 1
1243 fi
1244 if class_is_multiarch_p
1245 then
1246 if class_is_predicate_p ; then :
1247 elif test "x${predefault}" = "x"
1248 then
1249 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1250 kill $$
1251 exit 1
1252 fi
1253 fi
1254 echo ""
1255 done
1256
1257 exec 1>&2
1258 compare_new gdbarch.log
1259
1260
1261 copyright ()
1262 {
1263 cat <<EOF
1264 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1265 /* vi:set ro: */
1266
1267 /* Dynamic architecture support for GDB, the GNU debugger.
1268
1269 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1270
1271 This file is part of GDB.
1272
1273 This program is free software; you can redistribute it and/or modify
1274 it under the terms of the GNU General Public License as published by
1275 the Free Software Foundation; either version 3 of the License, or
1276 (at your option) any later version.
1277
1278 This program is distributed in the hope that it will be useful,
1279 but WITHOUT ANY WARRANTY; without even the implied warranty of
1280 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1281 GNU General Public License for more details.
1282
1283 You should have received a copy of the GNU General Public License
1284 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1285
1286 /* This file was created with the aid of \`\`gdbarch.sh''.
1287
1288 The Bourne shell script \`\`gdbarch.sh'' creates the files
1289 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1290 against the existing \`\`gdbarch.[hc]''. Any differences found
1291 being reported.
1292
1293 If editing this file, please also run gdbarch.sh and merge any
1294 changes into that script. Conversely, when making sweeping changes
1295 to this file, modifying gdbarch.sh and using its output may prove
1296 easier. */
1297
1298 EOF
1299 }
1300
1301 #
1302 # The .h file
1303 #
1304
1305 exec > new-gdbarch.h
1306 copyright
1307 cat <<EOF
1308 #ifndef GDBARCH_H
1309 #define GDBARCH_H
1310
1311 #include <vector>
1312 #include "frame.h"
1313 #include "dis-asm.h"
1314 #include "gdb_obstack.h"
1315 #include "infrun.h"
1316 #include "osabi.h"
1317
1318 struct floatformat;
1319 struct ui_file;
1320 struct value;
1321 struct objfile;
1322 struct obj_section;
1323 struct minimal_symbol;
1324 struct regcache;
1325 struct reggroup;
1326 struct regset;
1327 struct disassemble_info;
1328 struct target_ops;
1329 struct obstack;
1330 struct bp_target_info;
1331 struct target_desc;
1332 struct symbol;
1333 struct syscall;
1334 struct agent_expr;
1335 struct axs_value;
1336 struct stap_parse_info;
1337 struct expr_builder;
1338 struct ravenscar_arch_ops;
1339 struct mem_range;
1340 struct syscalls_info;
1341 struct thread_info;
1342 struct ui_out;
1343
1344 #include "regcache.h"
1345
1346 /* The architecture associated with the inferior through the
1347 connection to the target.
1348
1349 The architecture vector provides some information that is really a
1350 property of the inferior, accessed through a particular target:
1351 ptrace operations; the layout of certain RSP packets; the solib_ops
1352 vector; etc. To differentiate architecture accesses to
1353 per-inferior/target properties from
1354 per-thread/per-frame/per-objfile properties, accesses to
1355 per-inferior/target properties should be made through this
1356 gdbarch. */
1357
1358 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1359 extern struct gdbarch *target_gdbarch (void);
1360
1361 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1362 gdbarch method. */
1363
1364 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1365 (struct objfile *objfile, void *cb_data);
1366
1367 /* Callback type for regset section iterators. The callback usually
1368 invokes the REGSET's supply or collect method, to which it must
1369 pass a buffer - for collects this buffer will need to be created using
1370 COLLECT_SIZE, for supply the existing buffer being read from should
1371 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1372 is used for diagnostic messages. CB_DATA should have been passed
1373 unchanged through the iterator. */
1374
1375 typedef void (iterate_over_regset_sections_cb)
1376 (const char *sect_name, int supply_size, int collect_size,
1377 const struct regset *regset, const char *human_name, void *cb_data);
1378
1379 /* For a function call, does the function return a value using a
1380 normal value return or a structure return - passing a hidden
1381 argument pointing to storage. For the latter, there are two
1382 cases: language-mandated structure return and target ABI
1383 structure return. */
1384
1385 enum function_call_return_method
1386 {
1387 /* Standard value return. */
1388 return_method_normal = 0,
1389
1390 /* Language ABI structure return. This is handled
1391 by passing the return location as the first parameter to
1392 the function, even preceding "this". */
1393 return_method_hidden_param,
1394
1395 /* Target ABI struct return. This is target-specific; for instance,
1396 on ia64 the first argument is passed in out0 but the hidden
1397 structure return pointer would normally be passed in r8. */
1398 return_method_struct,
1399 };
1400
1401 EOF
1402
1403 # function typedef's
1404 printf "\n"
1405 printf "\n"
1406 printf "/* The following are pre-initialized by GDBARCH. */\n"
1407 function_list | while do_read
1408 do
1409 if class_is_info_p
1410 then
1411 printf "\n"
1412 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1413 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1414 fi
1415 done
1416
1417 # function typedef's
1418 printf "\n"
1419 printf "\n"
1420 printf "/* The following are initialized by the target dependent code. */\n"
1421 function_list | while do_read
1422 do
1423 if [ -n "${comment}" ]
1424 then
1425 echo "${comment}" | sed \
1426 -e '2 s,#,/*,' \
1427 -e '3,$ s,#, ,' \
1428 -e '$ s,$, */,'
1429 fi
1430
1431 if class_is_predicate_p
1432 then
1433 printf "\n"
1434 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1435 fi
1436 if class_is_variable_p
1437 then
1438 printf "\n"
1439 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1440 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1441 fi
1442 if class_is_function_p
1443 then
1444 printf "\n"
1445 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1446 then
1447 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1448 elif class_is_multiarch_p
1449 then
1450 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1451 else
1452 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1453 fi
1454 if [ "x${formal}" = "xvoid" ]
1455 then
1456 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1457 else
1458 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1459 fi
1460 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1461 fi
1462 done
1463
1464 # close it off
1465 cat <<EOF
1466
1467 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1468
1469
1470 /* Mechanism for co-ordinating the selection of a specific
1471 architecture.
1472
1473 GDB targets (*-tdep.c) can register an interest in a specific
1474 architecture. Other GDB components can register a need to maintain
1475 per-architecture data.
1476
1477 The mechanisms below ensures that there is only a loose connection
1478 between the set-architecture command and the various GDB
1479 components. Each component can independently register their need
1480 to maintain architecture specific data with gdbarch.
1481
1482 Pragmatics:
1483
1484 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1485 didn't scale.
1486
1487 The more traditional mega-struct containing architecture specific
1488 data for all the various GDB components was also considered. Since
1489 GDB is built from a variable number of (fairly independent)
1490 components it was determined that the global aproach was not
1491 applicable. */
1492
1493
1494 /* Register a new architectural family with GDB.
1495
1496 Register support for the specified ARCHITECTURE with GDB. When
1497 gdbarch determines that the specified architecture has been
1498 selected, the corresponding INIT function is called.
1499
1500 --
1501
1502 The INIT function takes two parameters: INFO which contains the
1503 information available to gdbarch about the (possibly new)
1504 architecture; ARCHES which is a list of the previously created
1505 \`\`struct gdbarch'' for this architecture.
1506
1507 The INFO parameter is, as far as possible, be pre-initialized with
1508 information obtained from INFO.ABFD or the global defaults.
1509
1510 The ARCHES parameter is a linked list (sorted most recently used)
1511 of all the previously created architures for this architecture
1512 family. The (possibly NULL) ARCHES->gdbarch can used to access
1513 values from the previously selected architecture for this
1514 architecture family.
1515
1516 The INIT function shall return any of: NULL - indicating that it
1517 doesn't recognize the selected architecture; an existing \`\`struct
1518 gdbarch'' from the ARCHES list - indicating that the new
1519 architecture is just a synonym for an earlier architecture (see
1520 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1521 - that describes the selected architecture (see gdbarch_alloc()).
1522
1523 The DUMP_TDEP function shall print out all target specific values.
1524 Care should be taken to ensure that the function works in both the
1525 multi-arch and non- multi-arch cases. */
1526
1527 struct gdbarch_list
1528 {
1529 struct gdbarch *gdbarch;
1530 struct gdbarch_list *next;
1531 };
1532
1533 struct gdbarch_info
1534 {
1535 /* Use default: NULL (ZERO). */
1536 const struct bfd_arch_info *bfd_arch_info;
1537
1538 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1539 enum bfd_endian byte_order;
1540
1541 enum bfd_endian byte_order_for_code;
1542
1543 /* Use default: NULL (ZERO). */
1544 bfd *abfd;
1545
1546 /* Use default: NULL (ZERO). */
1547 union
1548 {
1549 /* Architecture-specific information. The generic form for targets
1550 that have extra requirements. */
1551 struct gdbarch_tdep_info *tdep_info;
1552
1553 /* Architecture-specific target description data. Numerous targets
1554 need only this, so give them an easy way to hold it. */
1555 struct tdesc_arch_data *tdesc_data;
1556
1557 /* SPU file system ID. This is a single integer, so using the
1558 generic form would only complicate code. Other targets may
1559 reuse this member if suitable. */
1560 int *id;
1561 };
1562
1563 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1564 enum gdb_osabi osabi;
1565
1566 /* Use default: NULL (ZERO). */
1567 const struct target_desc *target_desc;
1568 };
1569
1570 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1571 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1572
1573 /* DEPRECATED - use gdbarch_register() */
1574 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1575
1576 extern void gdbarch_register (enum bfd_architecture architecture,
1577 gdbarch_init_ftype *,
1578 gdbarch_dump_tdep_ftype *);
1579
1580
1581 /* Return a freshly allocated, NULL terminated, array of the valid
1582 architecture names. Since architectures are registered during the
1583 _initialize phase this function only returns useful information
1584 once initialization has been completed. */
1585
1586 extern const char **gdbarch_printable_names (void);
1587
1588
1589 /* Helper function. Search the list of ARCHES for a GDBARCH that
1590 matches the information provided by INFO. */
1591
1592 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1593
1594
1595 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1596 basic initialization using values obtained from the INFO and TDEP
1597 parameters. set_gdbarch_*() functions are called to complete the
1598 initialization of the object. */
1599
1600 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1601
1602
1603 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1604 It is assumed that the caller freeds the \`\`struct
1605 gdbarch_tdep''. */
1606
1607 extern void gdbarch_free (struct gdbarch *);
1608
1609 /* Get the obstack owned by ARCH. */
1610
1611 extern obstack *gdbarch_obstack (gdbarch *arch);
1612
1613 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1614 obstack. The memory is freed when the corresponding architecture
1615 is also freed. */
1616
1617 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1618 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1619
1620 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1621 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1622
1623 /* Duplicate STRING, returning an equivalent string that's allocated on the
1624 obstack associated with GDBARCH. The string is freed when the corresponding
1625 architecture is also freed. */
1626
1627 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1628
1629 /* Helper function. Force an update of the current architecture.
1630
1631 The actual architecture selected is determined by INFO, \`\`(gdb) set
1632 architecture'' et.al., the existing architecture and BFD's default
1633 architecture. INFO should be initialized to zero and then selected
1634 fields should be updated.
1635
1636 Returns non-zero if the update succeeds. */
1637
1638 extern int gdbarch_update_p (struct gdbarch_info info);
1639
1640
1641 /* Helper function. Find an architecture matching info.
1642
1643 INFO should be initialized using gdbarch_info_init, relevant fields
1644 set, and then finished using gdbarch_info_fill.
1645
1646 Returns the corresponding architecture, or NULL if no matching
1647 architecture was found. */
1648
1649 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1650
1651
1652 /* Helper function. Set the target gdbarch to "gdbarch". */
1653
1654 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1655
1656
1657 /* Register per-architecture data-pointer.
1658
1659 Reserve space for a per-architecture data-pointer. An identifier
1660 for the reserved data-pointer is returned. That identifer should
1661 be saved in a local static variable.
1662
1663 Memory for the per-architecture data shall be allocated using
1664 gdbarch_obstack_zalloc. That memory will be deleted when the
1665 corresponding architecture object is deleted.
1666
1667 When a previously created architecture is re-selected, the
1668 per-architecture data-pointer for that previous architecture is
1669 restored. INIT() is not re-called.
1670
1671 Multiple registrarants for any architecture are allowed (and
1672 strongly encouraged). */
1673
1674 struct gdbarch_data;
1675
1676 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1677 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1678 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1679 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1680 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1681 struct gdbarch_data *data,
1682 void *pointer);
1683
1684 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1685
1686
1687 /* Set the dynamic target-system-dependent parameters (architecture,
1688 byte-order, ...) using information found in the BFD. */
1689
1690 extern void set_gdbarch_from_file (bfd *);
1691
1692
1693 /* Initialize the current architecture to the "first" one we find on
1694 our list. */
1695
1696 extern void initialize_current_architecture (void);
1697
1698 /* gdbarch trace variable */
1699 extern unsigned int gdbarch_debug;
1700
1701 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1702
1703 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1704
1705 static inline int
1706 gdbarch_num_cooked_regs (gdbarch *arch)
1707 {
1708 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1709 }
1710
1711 #endif
1712 EOF
1713 exec 1>&2
1714 #../move-if-change new-gdbarch.h gdbarch.h
1715 compare_new gdbarch.h
1716
1717
1718 #
1719 # C file
1720 #
1721
1722 exec > new-gdbarch.c
1723 copyright
1724 cat <<EOF
1725
1726 #include "defs.h"
1727 #include "arch-utils.h"
1728
1729 #include "gdbcmd.h"
1730 #include "inferior.h"
1731 #include "symcat.h"
1732
1733 #include "floatformat.h"
1734 #include "reggroups.h"
1735 #include "osabi.h"
1736 #include "gdb_obstack.h"
1737 #include "observable.h"
1738 #include "regcache.h"
1739 #include "objfiles.h"
1740 #include "auxv.h"
1741 #include "frame-unwind.h"
1742 #include "dummy-frame.h"
1743
1744 /* Static function declarations */
1745
1746 static void alloc_gdbarch_data (struct gdbarch *);
1747
1748 /* Non-zero if we want to trace architecture code. */
1749
1750 #ifndef GDBARCH_DEBUG
1751 #define GDBARCH_DEBUG 0
1752 #endif
1753 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1754 static void
1755 show_gdbarch_debug (struct ui_file *file, int from_tty,
1756 struct cmd_list_element *c, const char *value)
1757 {
1758 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1759 }
1760
1761 static const char *
1762 pformat (const struct floatformat **format)
1763 {
1764 if (format == NULL)
1765 return "(null)";
1766 else
1767 /* Just print out one of them - this is only for diagnostics. */
1768 return format[0]->name;
1769 }
1770
1771 static const char *
1772 pstring (const char *string)
1773 {
1774 if (string == NULL)
1775 return "(null)";
1776 return string;
1777 }
1778
1779 static const char *
1780 pstring_ptr (char **string)
1781 {
1782 if (string == NULL || *string == NULL)
1783 return "(null)";
1784 return *string;
1785 }
1786
1787 /* Helper function to print a list of strings, represented as "const
1788 char *const *". The list is printed comma-separated. */
1789
1790 static const char *
1791 pstring_list (const char *const *list)
1792 {
1793 static char ret[100];
1794 const char *const *p;
1795 size_t offset = 0;
1796
1797 if (list == NULL)
1798 return "(null)";
1799
1800 ret[0] = '\0';
1801 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1802 {
1803 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1804 offset += 2 + s;
1805 }
1806
1807 if (offset > 0)
1808 {
1809 gdb_assert (offset - 2 < sizeof (ret));
1810 ret[offset - 2] = '\0';
1811 }
1812
1813 return ret;
1814 }
1815
1816 EOF
1817
1818 # gdbarch open the gdbarch object
1819 printf "\n"
1820 printf "/* Maintain the struct gdbarch object. */\n"
1821 printf "\n"
1822 printf "struct gdbarch\n"
1823 printf "{\n"
1824 printf " /* Has this architecture been fully initialized? */\n"
1825 printf " int initialized_p;\n"
1826 printf "\n"
1827 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1828 printf " struct obstack *obstack;\n"
1829 printf "\n"
1830 printf " /* basic architectural information. */\n"
1831 function_list | while do_read
1832 do
1833 if class_is_info_p
1834 then
1835 printf " ${returntype} ${function};\n"
1836 fi
1837 done
1838 printf "\n"
1839 printf " /* target specific vector. */\n"
1840 printf " struct gdbarch_tdep *tdep;\n"
1841 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1842 printf "\n"
1843 printf " /* per-architecture data-pointers. */\n"
1844 printf " unsigned nr_data;\n"
1845 printf " void **data;\n"
1846 printf "\n"
1847 cat <<EOF
1848 /* Multi-arch values.
1849
1850 When extending this structure you must:
1851
1852 Add the field below.
1853
1854 Declare set/get functions and define the corresponding
1855 macro in gdbarch.h.
1856
1857 gdbarch_alloc(): If zero/NULL is not a suitable default,
1858 initialize the new field.
1859
1860 verify_gdbarch(): Confirm that the target updated the field
1861 correctly.
1862
1863 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1864 field is dumped out
1865
1866 get_gdbarch(): Implement the set/get functions (probably using
1867 the macro's as shortcuts).
1868
1869 */
1870
1871 EOF
1872 function_list | while do_read
1873 do
1874 if class_is_variable_p
1875 then
1876 printf " ${returntype} ${function};\n"
1877 elif class_is_function_p
1878 then
1879 printf " gdbarch_${function}_ftype *${function};\n"
1880 fi
1881 done
1882 printf "};\n"
1883
1884 # Create a new gdbarch struct
1885 cat <<EOF
1886
1887 /* Create a new \`\`struct gdbarch'' based on information provided by
1888 \`\`struct gdbarch_info''. */
1889 EOF
1890 printf "\n"
1891 cat <<EOF
1892 struct gdbarch *
1893 gdbarch_alloc (const struct gdbarch_info *info,
1894 struct gdbarch_tdep *tdep)
1895 {
1896 struct gdbarch *gdbarch;
1897
1898 /* Create an obstack for allocating all the per-architecture memory,
1899 then use that to allocate the architecture vector. */
1900 struct obstack *obstack = XNEW (struct obstack);
1901 obstack_init (obstack);
1902 gdbarch = XOBNEW (obstack, struct gdbarch);
1903 memset (gdbarch, 0, sizeof (*gdbarch));
1904 gdbarch->obstack = obstack;
1905
1906 alloc_gdbarch_data (gdbarch);
1907
1908 gdbarch->tdep = tdep;
1909 EOF
1910 printf "\n"
1911 function_list | while do_read
1912 do
1913 if class_is_info_p
1914 then
1915 printf " gdbarch->${function} = info->${function};\n"
1916 fi
1917 done
1918 printf "\n"
1919 printf " /* Force the explicit initialization of these. */\n"
1920 function_list | while do_read
1921 do
1922 if class_is_function_p || class_is_variable_p
1923 then
1924 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1925 then
1926 printf " gdbarch->${function} = ${predefault};\n"
1927 fi
1928 fi
1929 done
1930 cat <<EOF
1931 /* gdbarch_alloc() */
1932
1933 return gdbarch;
1934 }
1935 EOF
1936
1937 # Free a gdbarch struct.
1938 printf "\n"
1939 printf "\n"
1940 cat <<EOF
1941
1942 obstack *gdbarch_obstack (gdbarch *arch)
1943 {
1944 return arch->obstack;
1945 }
1946
1947 /* See gdbarch.h. */
1948
1949 char *
1950 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1951 {
1952 return obstack_strdup (arch->obstack, string);
1953 }
1954
1955
1956 /* Free a gdbarch struct. This should never happen in normal
1957 operation --- once you've created a gdbarch, you keep it around.
1958 However, if an architecture's init function encounters an error
1959 building the structure, it may need to clean up a partially
1960 constructed gdbarch. */
1961
1962 void
1963 gdbarch_free (struct gdbarch *arch)
1964 {
1965 struct obstack *obstack;
1966
1967 gdb_assert (arch != NULL);
1968 gdb_assert (!arch->initialized_p);
1969 obstack = arch->obstack;
1970 obstack_free (obstack, 0); /* Includes the ARCH. */
1971 xfree (obstack);
1972 }
1973 EOF
1974
1975 # verify a new architecture
1976 cat <<EOF
1977
1978
1979 /* Ensure that all values in a GDBARCH are reasonable. */
1980
1981 static void
1982 verify_gdbarch (struct gdbarch *gdbarch)
1983 {
1984 string_file log;
1985
1986 /* fundamental */
1987 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1988 log.puts ("\n\tbyte-order");
1989 if (gdbarch->bfd_arch_info == NULL)
1990 log.puts ("\n\tbfd_arch_info");
1991 /* Check those that need to be defined for the given multi-arch level. */
1992 EOF
1993 function_list | while do_read
1994 do
1995 if class_is_function_p || class_is_variable_p
1996 then
1997 if [ "x${invalid_p}" = "x0" ]
1998 then
1999 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2000 elif class_is_predicate_p
2001 then
2002 printf " /* Skip verify of ${function}, has predicate. */\n"
2003 # FIXME: See do_read for potential simplification
2004 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
2005 then
2006 printf " if (${invalid_p})\n"
2007 printf " gdbarch->${function} = ${postdefault};\n"
2008 elif [ -n "${predefault}" -a -n "${postdefault}" ]
2009 then
2010 printf " if (gdbarch->${function} == ${predefault})\n"
2011 printf " gdbarch->${function} = ${postdefault};\n"
2012 elif [ -n "${postdefault}" ]
2013 then
2014 printf " if (gdbarch->${function} == 0)\n"
2015 printf " gdbarch->${function} = ${postdefault};\n"
2016 elif [ -n "${invalid_p}" ]
2017 then
2018 printf " if (${invalid_p})\n"
2019 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
2020 elif [ -n "${predefault}" ]
2021 then
2022 printf " if (gdbarch->${function} == ${predefault})\n"
2023 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
2024 fi
2025 fi
2026 done
2027 cat <<EOF
2028 if (!log.empty ())
2029 internal_error (__FILE__, __LINE__,
2030 _("verify_gdbarch: the following are invalid ...%s"),
2031 log.c_str ());
2032 }
2033 EOF
2034
2035 # dump the structure
2036 printf "\n"
2037 printf "\n"
2038 cat <<EOF
2039 /* Print out the details of the current architecture. */
2040
2041 void
2042 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2043 {
2044 const char *gdb_nm_file = "<not-defined>";
2045
2046 #if defined (GDB_NM_FILE)
2047 gdb_nm_file = GDB_NM_FILE;
2048 #endif
2049 fprintf_unfiltered (file,
2050 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2051 gdb_nm_file);
2052 EOF
2053 function_list | sort '-t;' -k 3 | while do_read
2054 do
2055 # First the predicate
2056 if class_is_predicate_p
2057 then
2058 printf " fprintf_unfiltered (file,\n"
2059 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
2060 printf " gdbarch_${function}_p (gdbarch));\n"
2061 fi
2062 # Print the corresponding value.
2063 if class_is_function_p
2064 then
2065 printf " fprintf_unfiltered (file,\n"
2066 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2067 printf " host_address_to_string (gdbarch->${function}));\n"
2068 else
2069 # It is a variable
2070 case "${print}:${returntype}" in
2071 :CORE_ADDR )
2072 fmt="%s"
2073 print="core_addr_to_string_nz (gdbarch->${function})"
2074 ;;
2075 :* )
2076 fmt="%s"
2077 print="plongest (gdbarch->${function})"
2078 ;;
2079 * )
2080 fmt="%s"
2081 ;;
2082 esac
2083 printf " fprintf_unfiltered (file,\n"
2084 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2085 printf " ${print});\n"
2086 fi
2087 done
2088 cat <<EOF
2089 if (gdbarch->dump_tdep != NULL)
2090 gdbarch->dump_tdep (gdbarch, file);
2091 }
2092 EOF
2093
2094
2095 # GET/SET
2096 printf "\n"
2097 cat <<EOF
2098 struct gdbarch_tdep *
2099 gdbarch_tdep (struct gdbarch *gdbarch)
2100 {
2101 if (gdbarch_debug >= 2)
2102 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2103 return gdbarch->tdep;
2104 }
2105 EOF
2106 printf "\n"
2107 function_list | while do_read
2108 do
2109 if class_is_predicate_p
2110 then
2111 printf "\n"
2112 printf "int\n"
2113 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2114 printf "{\n"
2115 printf " gdb_assert (gdbarch != NULL);\n"
2116 printf " return ${predicate};\n"
2117 printf "}\n"
2118 fi
2119 if class_is_function_p
2120 then
2121 printf "\n"
2122 printf "${returntype}\n"
2123 if [ "x${formal}" = "xvoid" ]
2124 then
2125 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2126 else
2127 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2128 fi
2129 printf "{\n"
2130 printf " gdb_assert (gdbarch != NULL);\n"
2131 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2132 if class_is_predicate_p && test -n "${predefault}"
2133 then
2134 # Allow a call to a function with a predicate.
2135 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2136 fi
2137 printf " if (gdbarch_debug >= 2)\n"
2138 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2139 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2140 then
2141 if class_is_multiarch_p
2142 then
2143 params="gdbarch"
2144 else
2145 params=""
2146 fi
2147 else
2148 if class_is_multiarch_p
2149 then
2150 params="gdbarch, ${actual}"
2151 else
2152 params="${actual}"
2153 fi
2154 fi
2155 if [ "x${returntype}" = "xvoid" ]
2156 then
2157 printf " gdbarch->${function} (${params});\n"
2158 else
2159 printf " return gdbarch->${function} (${params});\n"
2160 fi
2161 printf "}\n"
2162 printf "\n"
2163 printf "void\n"
2164 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2165 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2166 printf "{\n"
2167 printf " gdbarch->${function} = ${function};\n"
2168 printf "}\n"
2169 elif class_is_variable_p
2170 then
2171 printf "\n"
2172 printf "${returntype}\n"
2173 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2174 printf "{\n"
2175 printf " gdb_assert (gdbarch != NULL);\n"
2176 if [ "x${invalid_p}" = "x0" ]
2177 then
2178 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2179 elif [ -n "${invalid_p}" ]
2180 then
2181 printf " /* Check variable is valid. */\n"
2182 printf " gdb_assert (!(${invalid_p}));\n"
2183 elif [ -n "${predefault}" ]
2184 then
2185 printf " /* Check variable changed from pre-default. */\n"
2186 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2187 fi
2188 printf " if (gdbarch_debug >= 2)\n"
2189 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2190 printf " return gdbarch->${function};\n"
2191 printf "}\n"
2192 printf "\n"
2193 printf "void\n"
2194 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2195 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2196 printf "{\n"
2197 printf " gdbarch->${function} = ${function};\n"
2198 printf "}\n"
2199 elif class_is_info_p
2200 then
2201 printf "\n"
2202 printf "${returntype}\n"
2203 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2204 printf "{\n"
2205 printf " gdb_assert (gdbarch != NULL);\n"
2206 printf " if (gdbarch_debug >= 2)\n"
2207 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2208 printf " return gdbarch->${function};\n"
2209 printf "}\n"
2210 fi
2211 done
2212
2213 # All the trailing guff
2214 cat <<EOF
2215
2216
2217 /* Keep a registry of per-architecture data-pointers required by GDB
2218 modules. */
2219
2220 struct gdbarch_data
2221 {
2222 unsigned index;
2223 int init_p;
2224 gdbarch_data_pre_init_ftype *pre_init;
2225 gdbarch_data_post_init_ftype *post_init;
2226 };
2227
2228 struct gdbarch_data_registration
2229 {
2230 struct gdbarch_data *data;
2231 struct gdbarch_data_registration *next;
2232 };
2233
2234 struct gdbarch_data_registry
2235 {
2236 unsigned nr;
2237 struct gdbarch_data_registration *registrations;
2238 };
2239
2240 struct gdbarch_data_registry gdbarch_data_registry =
2241 {
2242 0, NULL,
2243 };
2244
2245 static struct gdbarch_data *
2246 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2247 gdbarch_data_post_init_ftype *post_init)
2248 {
2249 struct gdbarch_data_registration **curr;
2250
2251 /* Append the new registration. */
2252 for (curr = &gdbarch_data_registry.registrations;
2253 (*curr) != NULL;
2254 curr = &(*curr)->next);
2255 (*curr) = XNEW (struct gdbarch_data_registration);
2256 (*curr)->next = NULL;
2257 (*curr)->data = XNEW (struct gdbarch_data);
2258 (*curr)->data->index = gdbarch_data_registry.nr++;
2259 (*curr)->data->pre_init = pre_init;
2260 (*curr)->data->post_init = post_init;
2261 (*curr)->data->init_p = 1;
2262 return (*curr)->data;
2263 }
2264
2265 struct gdbarch_data *
2266 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2267 {
2268 return gdbarch_data_register (pre_init, NULL);
2269 }
2270
2271 struct gdbarch_data *
2272 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2273 {
2274 return gdbarch_data_register (NULL, post_init);
2275 }
2276
2277 /* Create/delete the gdbarch data vector. */
2278
2279 static void
2280 alloc_gdbarch_data (struct gdbarch *gdbarch)
2281 {
2282 gdb_assert (gdbarch->data == NULL);
2283 gdbarch->nr_data = gdbarch_data_registry.nr;
2284 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2285 }
2286
2287 /* Initialize the current value of the specified per-architecture
2288 data-pointer. */
2289
2290 void
2291 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2292 struct gdbarch_data *data,
2293 void *pointer)
2294 {
2295 gdb_assert (data->index < gdbarch->nr_data);
2296 gdb_assert (gdbarch->data[data->index] == NULL);
2297 gdb_assert (data->pre_init == NULL);
2298 gdbarch->data[data->index] = pointer;
2299 }
2300
2301 /* Return the current value of the specified per-architecture
2302 data-pointer. */
2303
2304 void *
2305 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2306 {
2307 gdb_assert (data->index < gdbarch->nr_data);
2308 if (gdbarch->data[data->index] == NULL)
2309 {
2310 /* The data-pointer isn't initialized, call init() to get a
2311 value. */
2312 if (data->pre_init != NULL)
2313 /* Mid architecture creation: pass just the obstack, and not
2314 the entire architecture, as that way it isn't possible for
2315 pre-init code to refer to undefined architecture
2316 fields. */
2317 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2318 else if (gdbarch->initialized_p
2319 && data->post_init != NULL)
2320 /* Post architecture creation: pass the entire architecture
2321 (as all fields are valid), but be careful to also detect
2322 recursive references. */
2323 {
2324 gdb_assert (data->init_p);
2325 data->init_p = 0;
2326 gdbarch->data[data->index] = data->post_init (gdbarch);
2327 data->init_p = 1;
2328 }
2329 else
2330 /* The architecture initialization hasn't completed - punt -
2331 hope that the caller knows what they are doing. Once
2332 deprecated_set_gdbarch_data has been initialized, this can be
2333 changed to an internal error. */
2334 return NULL;
2335 gdb_assert (gdbarch->data[data->index] != NULL);
2336 }
2337 return gdbarch->data[data->index];
2338 }
2339
2340
2341 /* Keep a registry of the architectures known by GDB. */
2342
2343 struct gdbarch_registration
2344 {
2345 enum bfd_architecture bfd_architecture;
2346 gdbarch_init_ftype *init;
2347 gdbarch_dump_tdep_ftype *dump_tdep;
2348 struct gdbarch_list *arches;
2349 struct gdbarch_registration *next;
2350 };
2351
2352 static struct gdbarch_registration *gdbarch_registry = NULL;
2353
2354 static void
2355 append_name (const char ***buf, int *nr, const char *name)
2356 {
2357 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2358 (*buf)[*nr] = name;
2359 *nr += 1;
2360 }
2361
2362 const char **
2363 gdbarch_printable_names (void)
2364 {
2365 /* Accumulate a list of names based on the registed list of
2366 architectures. */
2367 int nr_arches = 0;
2368 const char **arches = NULL;
2369 struct gdbarch_registration *rego;
2370
2371 for (rego = gdbarch_registry;
2372 rego != NULL;
2373 rego = rego->next)
2374 {
2375 const struct bfd_arch_info *ap;
2376 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2377 if (ap == NULL)
2378 internal_error (__FILE__, __LINE__,
2379 _("gdbarch_architecture_names: multi-arch unknown"));
2380 do
2381 {
2382 append_name (&arches, &nr_arches, ap->printable_name);
2383 ap = ap->next;
2384 }
2385 while (ap != NULL);
2386 }
2387 append_name (&arches, &nr_arches, NULL);
2388 return arches;
2389 }
2390
2391
2392 void
2393 gdbarch_register (enum bfd_architecture bfd_architecture,
2394 gdbarch_init_ftype *init,
2395 gdbarch_dump_tdep_ftype *dump_tdep)
2396 {
2397 struct gdbarch_registration **curr;
2398 const struct bfd_arch_info *bfd_arch_info;
2399
2400 /* Check that BFD recognizes this architecture */
2401 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2402 if (bfd_arch_info == NULL)
2403 {
2404 internal_error (__FILE__, __LINE__,
2405 _("gdbarch: Attempt to register "
2406 "unknown architecture (%d)"),
2407 bfd_architecture);
2408 }
2409 /* Check that we haven't seen this architecture before. */
2410 for (curr = &gdbarch_registry;
2411 (*curr) != NULL;
2412 curr = &(*curr)->next)
2413 {
2414 if (bfd_architecture == (*curr)->bfd_architecture)
2415 internal_error (__FILE__, __LINE__,
2416 _("gdbarch: Duplicate registration "
2417 "of architecture (%s)"),
2418 bfd_arch_info->printable_name);
2419 }
2420 /* log it */
2421 if (gdbarch_debug)
2422 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2423 bfd_arch_info->printable_name,
2424 host_address_to_string (init));
2425 /* Append it */
2426 (*curr) = XNEW (struct gdbarch_registration);
2427 (*curr)->bfd_architecture = bfd_architecture;
2428 (*curr)->init = init;
2429 (*curr)->dump_tdep = dump_tdep;
2430 (*curr)->arches = NULL;
2431 (*curr)->next = NULL;
2432 }
2433
2434 void
2435 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2436 gdbarch_init_ftype *init)
2437 {
2438 gdbarch_register (bfd_architecture, init, NULL);
2439 }
2440
2441
2442 /* Look for an architecture using gdbarch_info. */
2443
2444 struct gdbarch_list *
2445 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2446 const struct gdbarch_info *info)
2447 {
2448 for (; arches != NULL; arches = arches->next)
2449 {
2450 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2451 continue;
2452 if (info->byte_order != arches->gdbarch->byte_order)
2453 continue;
2454 if (info->osabi != arches->gdbarch->osabi)
2455 continue;
2456 if (info->target_desc != arches->gdbarch->target_desc)
2457 continue;
2458 return arches;
2459 }
2460 return NULL;
2461 }
2462
2463
2464 /* Find an architecture that matches the specified INFO. Create a new
2465 architecture if needed. Return that new architecture. */
2466
2467 struct gdbarch *
2468 gdbarch_find_by_info (struct gdbarch_info info)
2469 {
2470 struct gdbarch *new_gdbarch;
2471 struct gdbarch_registration *rego;
2472
2473 /* Fill in missing parts of the INFO struct using a number of
2474 sources: "set ..."; INFOabfd supplied; and the global
2475 defaults. */
2476 gdbarch_info_fill (&info);
2477
2478 /* Must have found some sort of architecture. */
2479 gdb_assert (info.bfd_arch_info != NULL);
2480
2481 if (gdbarch_debug)
2482 {
2483 fprintf_unfiltered (gdb_stdlog,
2484 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2485 (info.bfd_arch_info != NULL
2486 ? info.bfd_arch_info->printable_name
2487 : "(null)"));
2488 fprintf_unfiltered (gdb_stdlog,
2489 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2490 info.byte_order,
2491 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2492 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2493 : "default"));
2494 fprintf_unfiltered (gdb_stdlog,
2495 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2496 info.osabi, gdbarch_osabi_name (info.osabi));
2497 fprintf_unfiltered (gdb_stdlog,
2498 "gdbarch_find_by_info: info.abfd %s\n",
2499 host_address_to_string (info.abfd));
2500 fprintf_unfiltered (gdb_stdlog,
2501 "gdbarch_find_by_info: info.tdep_info %s\n",
2502 host_address_to_string (info.tdep_info));
2503 }
2504
2505 /* Find the tdep code that knows about this architecture. */
2506 for (rego = gdbarch_registry;
2507 rego != NULL;
2508 rego = rego->next)
2509 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2510 break;
2511 if (rego == NULL)
2512 {
2513 if (gdbarch_debug)
2514 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2515 "No matching architecture\n");
2516 return 0;
2517 }
2518
2519 /* Ask the tdep code for an architecture that matches "info". */
2520 new_gdbarch = rego->init (info, rego->arches);
2521
2522 /* Did the tdep code like it? No. Reject the change and revert to
2523 the old architecture. */
2524 if (new_gdbarch == NULL)
2525 {
2526 if (gdbarch_debug)
2527 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2528 "Target rejected architecture\n");
2529 return NULL;
2530 }
2531
2532 /* Is this a pre-existing architecture (as determined by already
2533 being initialized)? Move it to the front of the architecture
2534 list (keeping the list sorted Most Recently Used). */
2535 if (new_gdbarch->initialized_p)
2536 {
2537 struct gdbarch_list **list;
2538 struct gdbarch_list *self;
2539 if (gdbarch_debug)
2540 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2541 "Previous architecture %s (%s) selected\n",
2542 host_address_to_string (new_gdbarch),
2543 new_gdbarch->bfd_arch_info->printable_name);
2544 /* Find the existing arch in the list. */
2545 for (list = &rego->arches;
2546 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2547 list = &(*list)->next);
2548 /* It had better be in the list of architectures. */
2549 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2550 /* Unlink SELF. */
2551 self = (*list);
2552 (*list) = self->next;
2553 /* Insert SELF at the front. */
2554 self->next = rego->arches;
2555 rego->arches = self;
2556 /* Return it. */
2557 return new_gdbarch;
2558 }
2559
2560 /* It's a new architecture. */
2561 if (gdbarch_debug)
2562 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2563 "New architecture %s (%s) selected\n",
2564 host_address_to_string (new_gdbarch),
2565 new_gdbarch->bfd_arch_info->printable_name);
2566
2567 /* Insert the new architecture into the front of the architecture
2568 list (keep the list sorted Most Recently Used). */
2569 {
2570 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2571 self->next = rego->arches;
2572 self->gdbarch = new_gdbarch;
2573 rego->arches = self;
2574 }
2575
2576 /* Check that the newly installed architecture is valid. Plug in
2577 any post init values. */
2578 new_gdbarch->dump_tdep = rego->dump_tdep;
2579 verify_gdbarch (new_gdbarch);
2580 new_gdbarch->initialized_p = 1;
2581
2582 if (gdbarch_debug)
2583 gdbarch_dump (new_gdbarch, gdb_stdlog);
2584
2585 return new_gdbarch;
2586 }
2587
2588 /* Make the specified architecture current. */
2589
2590 void
2591 set_target_gdbarch (struct gdbarch *new_gdbarch)
2592 {
2593 gdb_assert (new_gdbarch != NULL);
2594 gdb_assert (new_gdbarch->initialized_p);
2595 current_inferior ()->gdbarch = new_gdbarch;
2596 gdb::observers::architecture_changed.notify (new_gdbarch);
2597 registers_changed ();
2598 }
2599
2600 /* Return the current inferior's arch. */
2601
2602 struct gdbarch *
2603 target_gdbarch (void)
2604 {
2605 return current_inferior ()->gdbarch;
2606 }
2607
2608 void _initialize_gdbarch ();
2609 void
2610 _initialize_gdbarch ()
2611 {
2612 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2613 Set architecture debugging."), _("\\
2614 Show architecture debugging."), _("\\
2615 When non-zero, architecture debugging is enabled."),
2616 NULL,
2617 show_gdbarch_debug,
2618 &setdebuglist, &showdebuglist);
2619 }
2620 EOF
2621
2622 # close things off
2623 exec 1>&2
2624 #../move-if-change new-gdbarch.c gdbarch.c
2625 compare_new gdbarch.c
This page took 0.107515 seconds and 3 git commands to generate.