Use thread_info and inferior pointers more throughout
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2018 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363
364 # The ABI default bit-size and format for "half", "float", "double", and
365 # "long double". These bit/format pairs should eventually be combined
366 # into a single object. For the moment, just initialize them as a pair.
367 # Each format describes both the big and little endian layouts (if
368 # useful).
369
370 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
378
379 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380 # starting with C++11.
381 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
382 # One if \`wchar_t' is signed, zero if unsigned.
383 v;int;wchar_signed;;;1;-1;1
384
385 # Returns the floating-point format to be used for values of length LENGTH.
386 # NAME, if non-NULL, is the type name, which may be used to distinguish
387 # different target formats of the same length.
388 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
389
390 # For most targets, a pointer on the target and its representation as an
391 # address in GDB have the same size and "look the same". For such a
392 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
393 # / addr_bit will be set from it.
394 #
395 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
396 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397 # gdbarch_address_to_pointer as well.
398 #
399 # ptr_bit is the size of a pointer on the target
400 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
401 # addr_bit is the size of a target address as represented in gdb
402 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
403 #
404 # dwarf2_addr_size is the target address size as used in the Dwarf debug
405 # info. For .debug_frame FDEs, this is supposed to be the target address
406 # size from the associated CU header, and which is equivalent to the
407 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408 # Unfortunately there is no good way to determine this value. Therefore
409 # dwarf2_addr_size simply defaults to the target pointer size.
410 #
411 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412 # defined using the target's pointer size so far.
413 #
414 # Note that dwarf2_addr_size only needs to be redefined by a target if the
415 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416 # and if Dwarf versions < 4 need to be supported.
417 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
418 #
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v;int;char_signed;;;1;-1;1
421 #
422 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
423 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
428 #
429 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
430 # Read a register into a new struct value. If the register is wholly
431 # or partly unavailable, this should call mark_value_bytes_unavailable
432 # as appropriate. If this is defined, then pseudo_register_read will
433 # never be called.
434 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
435 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
436 #
437 v;int;num_regs;;;0;-1
438 # This macro gives the number of pseudo-registers that live in the
439 # register namespace but do not get fetched or stored on the target.
440 # These pseudo-registers may be aliases for other registers,
441 # combinations of other registers, or they may be computed by GDB.
442 v;int;num_pseudo_regs;;;0;0;;0
443
444 # Assemble agent expression bytecode to collect pseudo-register REG.
445 # Return -1 if something goes wrong, 0 otherwise.
446 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
447
448 # Assemble agent expression bytecode to push the value of pseudo-register
449 # REG on the interpreter stack.
450 # Return -1 if something goes wrong, 0 otherwise.
451 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
452
453 # Some targets/architectures can do extra processing/display of
454 # segmentation faults. E.g., Intel MPX boundary faults.
455 # Call the architecture dependent function to handle the fault.
456 # UIOUT is the output stream where the handler will place information.
457 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
458
459 # GDB's standard (or well known) register numbers. These can map onto
460 # a real register or a pseudo (computed) register or not be defined at
461 # all (-1).
462 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
463 v;int;sp_regnum;;;-1;-1;;0
464 v;int;pc_regnum;;;-1;-1;;0
465 v;int;ps_regnum;;;-1;-1;;0
466 v;int;fp0_regnum;;;0;-1;;0
467 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
468 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
470 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
471 # Convert from an sdb register number to an internal gdb register number.
472 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
473 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
474 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
475 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476 m;const char *;register_name;int regnr;regnr;;0
477
478 # Return the type of a register specified by the architecture. Only
479 # the register cache should call this function directly; others should
480 # use "register_type".
481 M;struct type *;register_type;int reg_nr;reg_nr
482
483 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
484 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
485 # deprecated_fp_regnum.
486 v;int;deprecated_fp_regnum;;;-1;-1;;0
487
488 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
489 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
490 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
491
492 # Return true if the code of FRAME is writable.
493 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
494
495 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
496 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
497 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
498 # MAP a GDB RAW register number onto a simulator register number. See
499 # also include/...-sim.h.
500 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
501 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
502 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
503
504 # Determine the address where a longjmp will land and save this address
505 # in PC. Return nonzero on success.
506 #
507 # FRAME corresponds to the longjmp frame.
508 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
509
510 #
511 v;int;believe_pcc_promotion;;;;;;;
512 #
513 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
514 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
515 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
516 # Construct a value representing the contents of register REGNUM in
517 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
518 # allocate and return a struct value with all value attributes
519 # (but not the value contents) filled in.
520 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
521 #
522 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
523 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
524 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
525
526 # Return the return-value convention that will be used by FUNCTION
527 # to return a value of type VALTYPE. FUNCTION may be NULL in which
528 # case the return convention is computed based only on VALTYPE.
529 #
530 # If READBUF is not NULL, extract the return value and save it in this buffer.
531 #
532 # If WRITEBUF is not NULL, it contains a return value which will be
533 # stored into the appropriate register. This can be used when we want
534 # to force the value returned by a function (see the "return" command
535 # for instance).
536 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
537
538 # Return true if the return value of function is stored in the first hidden
539 # parameter. In theory, this feature should be language-dependent, specified
540 # by language and its ABI, such as C++. Unfortunately, compiler may
541 # implement it to a target-dependent feature. So that we need such hook here
542 # to be aware of this in GDB.
543 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
544
545 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
546 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
547 # On some platforms, a single function may provide multiple entry points,
548 # e.g. one that is used for function-pointer calls and a different one
549 # that is used for direct function calls.
550 # In order to ensure that breakpoints set on the function will trigger
551 # no matter via which entry point the function is entered, a platform
552 # may provide the skip_entrypoint callback. It is called with IP set
553 # to the main entry point of a function (as determined by the symbol table),
554 # and should return the address of the innermost entry point, where the
555 # actual breakpoint needs to be set. Note that skip_entrypoint is used
556 # by GDB common code even when debugging optimized code, where skip_prologue
557 # is not used.
558 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
559
560 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
561 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
562
563 # Return the breakpoint kind for this target based on *PCPTR.
564 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
565
566 # Return the software breakpoint from KIND. KIND can have target
567 # specific meaning like the Z0 kind parameter.
568 # SIZE is set to the software breakpoint's length in memory.
569 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
570
571 # Return the breakpoint kind for this target based on the current
572 # processor state (e.g. the current instruction mode on ARM) and the
573 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
574 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
575
576 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
577 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
578 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
579 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
580
581 # A function can be addressed by either it's "pointer" (possibly a
582 # descriptor address) or "entry point" (first executable instruction).
583 # The method "convert_from_func_ptr_addr" converting the former to the
584 # latter. gdbarch_deprecated_function_start_offset is being used to implement
585 # a simplified subset of that functionality - the function's address
586 # corresponds to the "function pointer" and the function's start
587 # corresponds to the "function entry point" - and hence is redundant.
588
589 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
590
591 # Return the remote protocol register number associated with this
592 # register. Normally the identity mapping.
593 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
594
595 # Fetch the target specific address used to represent a load module.
596 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
597 #
598 v;CORE_ADDR;frame_args_skip;;;0;;;0
599 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
600 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
601 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602 # frame-base. Enable frame-base before frame-unwind.
603 F;int;frame_num_args;struct frame_info *frame;frame
604 #
605 M;CORE_ADDR;frame_align;CORE_ADDR address;address
606 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
607 v;int;frame_red_zone_size
608 #
609 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
610 # On some machines there are bits in addresses which are not really
611 # part of the address, but are used by the kernel, the hardware, etc.
612 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
613 # we get a "real" address such as one would find in a symbol table.
614 # This is used only for addresses of instructions, and even then I'm
615 # not sure it's used in all contexts. It exists to deal with there
616 # being a few stray bits in the PC which would mislead us, not as some
617 # sort of generic thing to handle alignment or segmentation (it's
618 # possible it should be in TARGET_READ_PC instead).
619 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
620
621 # On some machines, not all bits of an address word are significant.
622 # For example, on AArch64, the top bits of an address known as the "tag"
623 # are ignored by the kernel, the hardware, etc. and can be regarded as
624 # additional data associated with the address.
625 v;int;significant_addr_bit;;;;;;0
626
627 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
628 # indicates if the target needs software single step. An ISA method to
629 # implement it.
630 #
631 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
632 # target can single step. If not, then implement single step using breakpoints.
633 #
634 # Return a vector of addresses on which the software single step
635 # breakpoints should be inserted. NULL means software single step is
636 # not used.
637 # Multiple breakpoints may be inserted for some instructions such as
638 # conditional branch. However, each implementation must always evaluate
639 # the condition and only put the breakpoint at the branch destination if
640 # the condition is true, so that we ensure forward progress when stepping
641 # past a conditional branch to self.
642 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
643
644 # Return non-zero if the processor is executing a delay slot and a
645 # further single-step is needed before the instruction finishes.
646 M;int;single_step_through_delay;struct frame_info *frame;frame
647 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
648 # disassembler. Perhaps objdump can handle it?
649 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
650 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
651
652
653 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
654 # evaluates non-zero, this is the address where the debugger will place
655 # a step-resume breakpoint to get us past the dynamic linker.
656 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
657 # Some systems also have trampoline code for returning from shared libs.
658 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
659
660 # Return true if PC lies inside an indirect branch thunk.
661 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
662
663 # A target might have problems with watchpoints as soon as the stack
664 # frame of the current function has been destroyed. This mostly happens
665 # as the first action in a function's epilogue. stack_frame_destroyed_p()
666 # is defined to return a non-zero value if either the given addr is one
667 # instruction after the stack destroying instruction up to the trailing
668 # return instruction or if we can figure out that the stack frame has
669 # already been invalidated regardless of the value of addr. Targets
670 # which don't suffer from that problem could just let this functionality
671 # untouched.
672 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
673 # Process an ELF symbol in the minimal symbol table in a backend-specific
674 # way. Normally this hook is supposed to do nothing, however if required,
675 # then this hook can be used to apply tranformations to symbols that are
676 # considered special in some way. For example the MIPS backend uses it
677 # to interpret \`st_other' information to mark compressed code symbols so
678 # that they can be treated in the appropriate manner in the processing of
679 # the main symbol table and DWARF-2 records.
680 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
682 # Process a symbol in the main symbol table in a backend-specific way.
683 # Normally this hook is supposed to do nothing, however if required,
684 # then this hook can be used to apply tranformations to symbols that
685 # are considered special in some way. This is currently used by the
686 # MIPS backend to make sure compressed code symbols have the ISA bit
687 # set. This in turn is needed for symbol values seen in GDB to match
688 # the values used at the runtime by the program itself, for function
689 # and label references.
690 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
691 # Adjust the address retrieved from a DWARF-2 record other than a line
692 # entry in a backend-specific way. Normally this hook is supposed to
693 # return the address passed unchanged, however if that is incorrect for
694 # any reason, then this hook can be used to fix the address up in the
695 # required manner. This is currently used by the MIPS backend to make
696 # sure addresses in FDE, range records, etc. referring to compressed
697 # code have the ISA bit set, matching line information and the symbol
698 # table.
699 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
700 # Adjust the address updated by a line entry in a backend-specific way.
701 # Normally this hook is supposed to return the address passed unchanged,
702 # however in the case of inconsistencies in these records, this hook can
703 # be used to fix them up in the required manner. This is currently used
704 # by the MIPS backend to make sure all line addresses in compressed code
705 # are presented with the ISA bit set, which is not always the case. This
706 # in turn ensures breakpoint addresses are correctly matched against the
707 # stop PC.
708 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709 v;int;cannot_step_breakpoint;;;0;0;;0
710 v;int;have_nonsteppable_watchpoint;;;0;0;;0
711 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
712 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
713 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
714 # FS are passed from the generic execute_cfa_program function.
715 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
716
717 # Return the appropriate type_flags for the supplied address class.
718 # This function should return 1 if the address class was recognized and
719 # type_flags was set, zero otherwise.
720 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
721 # Is a register in a group
722 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
723 # Fetch the pointer to the ith function argument.
724 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
725
726 # Iterate over all supported register notes in a core file. For each
727 # supported register note section, the iterator must call CB and pass
728 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
729 # the supported register note sections based on the current register
730 # values. Otherwise it should enumerate all supported register note
731 # sections.
732 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
733
734 # Create core file notes
735 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
736
737 # Find core file memory regions
738 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
739
740 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
741 # core file into buffer READBUF with length LEN. Return the number of bytes read
742 # (zero indicates failure).
743 # failed, otherwise, return the red length of READBUF.
744 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
745
746 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
747 # libraries list from core file into buffer READBUF with length LEN.
748 # Return the number of bytes read (zero indicates failure).
749 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
750
751 # How the core target converts a PTID from a core file to a string.
752 M;const char *;core_pid_to_str;ptid_t ptid;ptid
753
754 # How the core target extracts the name of a thread from a core file.
755 M;const char *;core_thread_name;struct thread_info *thr;thr
756
757 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
758 # from core file into buffer READBUF with length LEN. Return the number
759 # of bytes read (zero indicates EOF, a negative value indicates failure).
760 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
761
762 # BFD target to use when generating a core file.
763 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
764
765 # If the elements of C++ vtables are in-place function descriptors rather
766 # than normal function pointers (which may point to code or a descriptor),
767 # set this to one.
768 v;int;vtable_function_descriptors;;;0;0;;0
769
770 # Set if the least significant bit of the delta is used instead of the least
771 # significant bit of the pfn for pointers to virtual member functions.
772 v;int;vbit_in_delta;;;0;0;;0
773
774 # Advance PC to next instruction in order to skip a permanent breakpoint.
775 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
776
777 # The maximum length of an instruction on this architecture in bytes.
778 V;ULONGEST;max_insn_length;;;0;0
779
780 # Copy the instruction at FROM to TO, and make any adjustments
781 # necessary to single-step it at that address.
782 #
783 # REGS holds the state the thread's registers will have before
784 # executing the copied instruction; the PC in REGS will refer to FROM,
785 # not the copy at TO. The caller should update it to point at TO later.
786 #
787 # Return a pointer to data of the architecture's choice to be passed
788 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
789 # the instruction's effects have been completely simulated, with the
790 # resulting state written back to REGS.
791 #
792 # For a general explanation of displaced stepping and how GDB uses it,
793 # see the comments in infrun.c.
794 #
795 # The TO area is only guaranteed to have space for
796 # gdbarch_max_insn_length (arch) bytes, so this function must not
797 # write more bytes than that to that area.
798 #
799 # If you do not provide this function, GDB assumes that the
800 # architecture does not support displaced stepping.
801 #
802 # If the instruction cannot execute out of line, return NULL. The
803 # core falls back to stepping past the instruction in-line instead in
804 # that case.
805 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
806
807 # Return true if GDB should use hardware single-stepping to execute
808 # the displaced instruction identified by CLOSURE. If false,
809 # GDB will simply restart execution at the displaced instruction
810 # location, and it is up to the target to ensure GDB will receive
811 # control again (e.g. by placing a software breakpoint instruction
812 # into the displaced instruction buffer).
813 #
814 # The default implementation returns false on all targets that
815 # provide a gdbarch_software_single_step routine, and true otherwise.
816 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
817
818 # Fix up the state resulting from successfully single-stepping a
819 # displaced instruction, to give the result we would have gotten from
820 # stepping the instruction in its original location.
821 #
822 # REGS is the register state resulting from single-stepping the
823 # displaced instruction.
824 #
825 # CLOSURE is the result from the matching call to
826 # gdbarch_displaced_step_copy_insn.
827 #
828 # If you provide gdbarch_displaced_step_copy_insn.but not this
829 # function, then GDB assumes that no fixup is needed after
830 # single-stepping the instruction.
831 #
832 # For a general explanation of displaced stepping and how GDB uses it,
833 # see the comments in infrun.c.
834 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
835
836 # Return the address of an appropriate place to put displaced
837 # instructions while we step over them. There need only be one such
838 # place, since we're only stepping one thread over a breakpoint at a
839 # time.
840 #
841 # For a general explanation of displaced stepping and how GDB uses it,
842 # see the comments in infrun.c.
843 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
844
845 # Relocate an instruction to execute at a different address. OLDLOC
846 # is the address in the inferior memory where the instruction to
847 # relocate is currently at. On input, TO points to the destination
848 # where we want the instruction to be copied (and possibly adjusted)
849 # to. On output, it points to one past the end of the resulting
850 # instruction(s). The effect of executing the instruction at TO shall
851 # be the same as if executing it at FROM. For example, call
852 # instructions that implicitly push the return address on the stack
853 # should be adjusted to return to the instruction after OLDLOC;
854 # relative branches, and other PC-relative instructions need the
855 # offset adjusted; etc.
856 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
857
858 # Refresh overlay mapped state for section OSECT.
859 F;void;overlay_update;struct obj_section *osect;osect
860
861 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
862
863 # Handle special encoding of static variables in stabs debug info.
864 F;const char *;static_transform_name;const char *name;name
865 # Set if the address in N_SO or N_FUN stabs may be zero.
866 v;int;sofun_address_maybe_missing;;;0;0;;0
867
868 # Parse the instruction at ADDR storing in the record execution log
869 # the registers REGCACHE and memory ranges that will be affected when
870 # the instruction executes, along with their current values.
871 # Return -1 if something goes wrong, 0 otherwise.
872 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
873
874 # Save process state after a signal.
875 # Return -1 if something goes wrong, 0 otherwise.
876 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
877
878 # Signal translation: translate inferior's signal (target's) number
879 # into GDB's representation. The implementation of this method must
880 # be host independent. IOW, don't rely on symbols of the NAT_FILE
881 # header (the nm-*.h files), the host <signal.h> header, or similar
882 # headers. This is mainly used when cross-debugging core files ---
883 # "Live" targets hide the translation behind the target interface
884 # (target_wait, target_resume, etc.).
885 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
886
887 # Signal translation: translate the GDB's internal signal number into
888 # the inferior's signal (target's) representation. The implementation
889 # of this method must be host independent. IOW, don't rely on symbols
890 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
891 # header, or similar headers.
892 # Return the target signal number if found, or -1 if the GDB internal
893 # signal number is invalid.
894 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
895
896 # Extra signal info inspection.
897 #
898 # Return a type suitable to inspect extra signal information.
899 M;struct type *;get_siginfo_type;void;
900
901 # Record architecture-specific information from the symbol table.
902 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
903
904 # Function for the 'catch syscall' feature.
905
906 # Get architecture-specific system calls information from registers.
907 M;LONGEST;get_syscall_number;thread_info *thread;thread
908
909 # The filename of the XML syscall for this architecture.
910 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
911
912 # Information about system calls from this architecture
913 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
914
915 # SystemTap related fields and functions.
916
917 # A NULL-terminated array of prefixes used to mark an integer constant
918 # on the architecture's assembly.
919 # For example, on x86 integer constants are written as:
920 #
921 # \$10 ;; integer constant 10
922 #
923 # in this case, this prefix would be the character \`\$\'.
924 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
925
926 # A NULL-terminated array of suffixes used to mark an integer constant
927 # on the architecture's assembly.
928 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
929
930 # A NULL-terminated array of prefixes used to mark a register name on
931 # the architecture's assembly.
932 # For example, on x86 the register name is written as:
933 #
934 # \%eax ;; register eax
935 #
936 # in this case, this prefix would be the character \`\%\'.
937 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
938
939 # A NULL-terminated array of suffixes used to mark a register name on
940 # the architecture's assembly.
941 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
942
943 # A NULL-terminated array of prefixes used to mark a register
944 # indirection on the architecture's assembly.
945 # For example, on x86 the register indirection is written as:
946 #
947 # \(\%eax\) ;; indirecting eax
948 #
949 # in this case, this prefix would be the charater \`\(\'.
950 #
951 # Please note that we use the indirection prefix also for register
952 # displacement, e.g., \`4\(\%eax\)\' on x86.
953 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
954
955 # A NULL-terminated array of suffixes used to mark a register
956 # indirection on the architecture's assembly.
957 # For example, on x86 the register indirection is written as:
958 #
959 # \(\%eax\) ;; indirecting eax
960 #
961 # in this case, this prefix would be the charater \`\)\'.
962 #
963 # Please note that we use the indirection suffix also for register
964 # displacement, e.g., \`4\(\%eax\)\' on x86.
965 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
966
967 # Prefix(es) used to name a register using GDB's nomenclature.
968 #
969 # For example, on PPC a register is represented by a number in the assembly
970 # language (e.g., \`10\' is the 10th general-purpose register). However,
971 # inside GDB this same register has an \`r\' appended to its name, so the 10th
972 # register would be represented as \`r10\' internally.
973 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
974
975 # Suffix used to name a register using GDB's nomenclature.
976 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
977
978 # Check if S is a single operand.
979 #
980 # Single operands can be:
981 # \- Literal integers, e.g. \`\$10\' on x86
982 # \- Register access, e.g. \`\%eax\' on x86
983 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
984 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
985 #
986 # This function should check for these patterns on the string
987 # and return 1 if some were found, or zero otherwise. Please try to match
988 # as much info as you can from the string, i.e., if you have to match
989 # something like \`\(\%\', do not match just the \`\(\'.
990 M;int;stap_is_single_operand;const char *s;s
991
992 # Function used to handle a "special case" in the parser.
993 #
994 # A "special case" is considered to be an unknown token, i.e., a token
995 # that the parser does not know how to parse. A good example of special
996 # case would be ARM's register displacement syntax:
997 #
998 # [R0, #4] ;; displacing R0 by 4
999 #
1000 # Since the parser assumes that a register displacement is of the form:
1001 #
1002 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1003 #
1004 # it means that it will not be able to recognize and parse this odd syntax.
1005 # Therefore, we should add a special case function that will handle this token.
1006 #
1007 # This function should generate the proper expression form of the expression
1008 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1009 # and so on). It should also return 1 if the parsing was successful, or zero
1010 # if the token was not recognized as a special token (in this case, returning
1011 # zero means that the special parser is deferring the parsing to the generic
1012 # parser), and should advance the buffer pointer (p->arg).
1013 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1014
1015 # DTrace related functions.
1016
1017 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1018 # NARG must be >= 0.
1019 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1020
1021 # True if the given ADDR does not contain the instruction sequence
1022 # corresponding to a disabled DTrace is-enabled probe.
1023 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1024
1025 # Enable a DTrace is-enabled probe at ADDR.
1026 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1027
1028 # Disable a DTrace is-enabled probe at ADDR.
1029 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1030
1031 # True if the list of shared libraries is one and only for all
1032 # processes, as opposed to a list of shared libraries per inferior.
1033 # This usually means that all processes, although may or may not share
1034 # an address space, will see the same set of symbols at the same
1035 # addresses.
1036 v;int;has_global_solist;;;0;0;;0
1037
1038 # On some targets, even though each inferior has its own private
1039 # address space, the debug interface takes care of making breakpoints
1040 # visible to all address spaces automatically. For such cases,
1041 # this property should be set to true.
1042 v;int;has_global_breakpoints;;;0;0;;0
1043
1044 # True if inferiors share an address space (e.g., uClinux).
1045 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1046
1047 # True if a fast tracepoint can be set at an address.
1048 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1049
1050 # Guess register state based on tracepoint location. Used for tracepoints
1051 # where no registers have been collected, but there's only one location,
1052 # allowing us to guess the PC value, and perhaps some other registers.
1053 # On entry, regcache has all registers marked as unavailable.
1054 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1055
1056 # Return the "auto" target charset.
1057 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1058 # Return the "auto" target wide charset.
1059 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1060
1061 # If non-empty, this is a file extension that will be opened in place
1062 # of the file extension reported by the shared library list.
1063 #
1064 # This is most useful for toolchains that use a post-linker tool,
1065 # where the names of the files run on the target differ in extension
1066 # compared to the names of the files GDB should load for debug info.
1067 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1068
1069 # If true, the target OS has DOS-based file system semantics. That
1070 # is, absolute paths include a drive name, and the backslash is
1071 # considered a directory separator.
1072 v;int;has_dos_based_file_system;;;0;0;;0
1073
1074 # Generate bytecodes to collect the return address in a frame.
1075 # Since the bytecodes run on the target, possibly with GDB not even
1076 # connected, the full unwinding machinery is not available, and
1077 # typically this function will issue bytecodes for one or more likely
1078 # places that the return address may be found.
1079 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1080
1081 # Implement the "info proc" command.
1082 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1083
1084 # Implement the "info proc" command for core files. Noe that there
1085 # are two "info_proc"-like methods on gdbarch -- one for core files,
1086 # one for live targets.
1087 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1088
1089 # Iterate over all objfiles in the order that makes the most sense
1090 # for the architecture to make global symbol searches.
1091 #
1092 # CB is a callback function where OBJFILE is the objfile to be searched,
1093 # and CB_DATA a pointer to user-defined data (the same data that is passed
1094 # when calling this gdbarch method). The iteration stops if this function
1095 # returns nonzero.
1096 #
1097 # CB_DATA is a pointer to some user-defined data to be passed to
1098 # the callback.
1099 #
1100 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1101 # inspected when the symbol search was requested.
1102 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1103
1104 # Ravenscar arch-dependent ops.
1105 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1106
1107 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1108 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1109
1110 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1111 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1112
1113 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1114 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1115
1116 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1117 # Return 0 if *READPTR is already at the end of the buffer.
1118 # Return -1 if there is insufficient buffer for a whole entry.
1119 # Return 1 if an entry was read into *TYPEP and *VALP.
1120 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1121
1122 # Print the description of a single auxv entry described by TYPE and VAL
1123 # to FILE.
1124 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1125
1126 # Find the address range of the current inferior's vsyscall/vDSO, and
1127 # write it to *RANGE. If the vsyscall's length can't be determined, a
1128 # range with zero length is returned. Returns true if the vsyscall is
1129 # found, false otherwise.
1130 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1131
1132 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1133 # PROT has GDB_MMAP_PROT_* bitmask format.
1134 # Throw an error if it is not possible. Returned address is always valid.
1135 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1136
1137 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1138 # Print a warning if it is not possible.
1139 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1140
1141 # Return string (caller has to use xfree for it) with options for GCC
1142 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1143 # These options are put before CU's DW_AT_producer compilation options so that
1144 # they can override it. Method may also return NULL.
1145 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1146
1147 # Return a regular expression that matches names used by this
1148 # architecture in GNU configury triplets. The result is statically
1149 # allocated and must not be freed. The default implementation simply
1150 # returns the BFD architecture name, which is correct in nearly every
1151 # case.
1152 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1153
1154 # Return the size in 8-bit bytes of an addressable memory unit on this
1155 # architecture. This corresponds to the number of 8-bit bytes associated to
1156 # each address in memory.
1157 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1158
1159 # Functions for allowing a target to modify its disassembler options.
1160 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1161 v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1162
1163 # Type alignment.
1164 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1165
1166 EOF
1167 }
1168
1169 #
1170 # The .log file
1171 #
1172 exec > new-gdbarch.log
1173 function_list | while do_read
1174 do
1175 cat <<EOF
1176 ${class} ${returntype} ${function} ($formal)
1177 EOF
1178 for r in ${read}
1179 do
1180 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1181 done
1182 if class_is_predicate_p && fallback_default_p
1183 then
1184 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1185 kill $$
1186 exit 1
1187 fi
1188 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1189 then
1190 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1191 kill $$
1192 exit 1
1193 fi
1194 if class_is_multiarch_p
1195 then
1196 if class_is_predicate_p ; then :
1197 elif test "x${predefault}" = "x"
1198 then
1199 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1200 kill $$
1201 exit 1
1202 fi
1203 fi
1204 echo ""
1205 done
1206
1207 exec 1>&2
1208 compare_new gdbarch.log
1209
1210
1211 copyright ()
1212 {
1213 cat <<EOF
1214 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1215 /* vi:set ro: */
1216
1217 /* Dynamic architecture support for GDB, the GNU debugger.
1218
1219 Copyright (C) 1998-2018 Free Software Foundation, Inc.
1220
1221 This file is part of GDB.
1222
1223 This program is free software; you can redistribute it and/or modify
1224 it under the terms of the GNU General Public License as published by
1225 the Free Software Foundation; either version 3 of the License, or
1226 (at your option) any later version.
1227
1228 This program is distributed in the hope that it will be useful,
1229 but WITHOUT ANY WARRANTY; without even the implied warranty of
1230 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1231 GNU General Public License for more details.
1232
1233 You should have received a copy of the GNU General Public License
1234 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1235
1236 /* This file was created with the aid of \`\`gdbarch.sh''.
1237
1238 The Bourne shell script \`\`gdbarch.sh'' creates the files
1239 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1240 against the existing \`\`gdbarch.[hc]''. Any differences found
1241 being reported.
1242
1243 If editing this file, please also run gdbarch.sh and merge any
1244 changes into that script. Conversely, when making sweeping changes
1245 to this file, modifying gdbarch.sh and using its output may prove
1246 easier. */
1247
1248 EOF
1249 }
1250
1251 #
1252 # The .h file
1253 #
1254
1255 exec > new-gdbarch.h
1256 copyright
1257 cat <<EOF
1258 #ifndef GDBARCH_H
1259 #define GDBARCH_H
1260
1261 #include <vector>
1262 #include "frame.h"
1263 #include "dis-asm.h"
1264 #include "gdb_obstack.h"
1265
1266 struct floatformat;
1267 struct ui_file;
1268 struct value;
1269 struct objfile;
1270 struct obj_section;
1271 struct minimal_symbol;
1272 struct regcache;
1273 struct reggroup;
1274 struct regset;
1275 struct disassemble_info;
1276 struct target_ops;
1277 struct obstack;
1278 struct bp_target_info;
1279 struct target_desc;
1280 struct symbol;
1281 struct displaced_step_closure;
1282 struct syscall;
1283 struct agent_expr;
1284 struct axs_value;
1285 struct stap_parse_info;
1286 struct parser_state;
1287 struct ravenscar_arch_ops;
1288 struct mem_range;
1289 struct syscalls_info;
1290 struct thread_info;
1291 struct ui_out;
1292
1293 #include "regcache.h"
1294
1295 /* The architecture associated with the inferior through the
1296 connection to the target.
1297
1298 The architecture vector provides some information that is really a
1299 property of the inferior, accessed through a particular target:
1300 ptrace operations; the layout of certain RSP packets; the solib_ops
1301 vector; etc. To differentiate architecture accesses to
1302 per-inferior/target properties from
1303 per-thread/per-frame/per-objfile properties, accesses to
1304 per-inferior/target properties should be made through this
1305 gdbarch. */
1306
1307 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1308 extern struct gdbarch *target_gdbarch (void);
1309
1310 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1311 gdbarch method. */
1312
1313 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1314 (struct objfile *objfile, void *cb_data);
1315
1316 /* Callback type for regset section iterators. The callback usually
1317 invokes the REGSET's supply or collect method, to which it must
1318 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1319 section name, and HUMAN_NAME is used for diagnostic messages.
1320 CB_DATA should have been passed unchanged through the iterator. */
1321
1322 typedef void (iterate_over_regset_sections_cb)
1323 (const char *sect_name, int size, const struct regset *regset,
1324 const char *human_name, void *cb_data);
1325 EOF
1326
1327 # function typedef's
1328 printf "\n"
1329 printf "\n"
1330 printf "/* The following are pre-initialized by GDBARCH. */\n"
1331 function_list | while do_read
1332 do
1333 if class_is_info_p
1334 then
1335 printf "\n"
1336 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1337 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1338 fi
1339 done
1340
1341 # function typedef's
1342 printf "\n"
1343 printf "\n"
1344 printf "/* The following are initialized by the target dependent code. */\n"
1345 function_list | while do_read
1346 do
1347 if [ -n "${comment}" ]
1348 then
1349 echo "${comment}" | sed \
1350 -e '2 s,#,/*,' \
1351 -e '3,$ s,#, ,' \
1352 -e '$ s,$, */,'
1353 fi
1354
1355 if class_is_predicate_p
1356 then
1357 printf "\n"
1358 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1359 fi
1360 if class_is_variable_p
1361 then
1362 printf "\n"
1363 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1364 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1365 fi
1366 if class_is_function_p
1367 then
1368 printf "\n"
1369 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1370 then
1371 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1372 elif class_is_multiarch_p
1373 then
1374 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1375 else
1376 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1377 fi
1378 if [ "x${formal}" = "xvoid" ]
1379 then
1380 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1381 else
1382 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1383 fi
1384 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1385 fi
1386 done
1387
1388 # close it off
1389 cat <<EOF
1390
1391 /* Definition for an unknown syscall, used basically in error-cases. */
1392 #define UNKNOWN_SYSCALL (-1)
1393
1394 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1395
1396
1397 /* Mechanism for co-ordinating the selection of a specific
1398 architecture.
1399
1400 GDB targets (*-tdep.c) can register an interest in a specific
1401 architecture. Other GDB components can register a need to maintain
1402 per-architecture data.
1403
1404 The mechanisms below ensures that there is only a loose connection
1405 between the set-architecture command and the various GDB
1406 components. Each component can independently register their need
1407 to maintain architecture specific data with gdbarch.
1408
1409 Pragmatics:
1410
1411 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1412 didn't scale.
1413
1414 The more traditional mega-struct containing architecture specific
1415 data for all the various GDB components was also considered. Since
1416 GDB is built from a variable number of (fairly independent)
1417 components it was determined that the global aproach was not
1418 applicable. */
1419
1420
1421 /* Register a new architectural family with GDB.
1422
1423 Register support for the specified ARCHITECTURE with GDB. When
1424 gdbarch determines that the specified architecture has been
1425 selected, the corresponding INIT function is called.
1426
1427 --
1428
1429 The INIT function takes two parameters: INFO which contains the
1430 information available to gdbarch about the (possibly new)
1431 architecture; ARCHES which is a list of the previously created
1432 \`\`struct gdbarch'' for this architecture.
1433
1434 The INFO parameter is, as far as possible, be pre-initialized with
1435 information obtained from INFO.ABFD or the global defaults.
1436
1437 The ARCHES parameter is a linked list (sorted most recently used)
1438 of all the previously created architures for this architecture
1439 family. The (possibly NULL) ARCHES->gdbarch can used to access
1440 values from the previously selected architecture for this
1441 architecture family.
1442
1443 The INIT function shall return any of: NULL - indicating that it
1444 doesn't recognize the selected architecture; an existing \`\`struct
1445 gdbarch'' from the ARCHES list - indicating that the new
1446 architecture is just a synonym for an earlier architecture (see
1447 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1448 - that describes the selected architecture (see gdbarch_alloc()).
1449
1450 The DUMP_TDEP function shall print out all target specific values.
1451 Care should be taken to ensure that the function works in both the
1452 multi-arch and non- multi-arch cases. */
1453
1454 struct gdbarch_list
1455 {
1456 struct gdbarch *gdbarch;
1457 struct gdbarch_list *next;
1458 };
1459
1460 struct gdbarch_info
1461 {
1462 /* Use default: NULL (ZERO). */
1463 const struct bfd_arch_info *bfd_arch_info;
1464
1465 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1466 enum bfd_endian byte_order;
1467
1468 enum bfd_endian byte_order_for_code;
1469
1470 /* Use default: NULL (ZERO). */
1471 bfd *abfd;
1472
1473 /* Use default: NULL (ZERO). */
1474 union
1475 {
1476 /* Architecture-specific information. The generic form for targets
1477 that have extra requirements. */
1478 struct gdbarch_tdep_info *tdep_info;
1479
1480 /* Architecture-specific target description data. Numerous targets
1481 need only this, so give them an easy way to hold it. */
1482 struct tdesc_arch_data *tdesc_data;
1483
1484 /* SPU file system ID. This is a single integer, so using the
1485 generic form would only complicate code. Other targets may
1486 reuse this member if suitable. */
1487 int *id;
1488 };
1489
1490 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1491 enum gdb_osabi osabi;
1492
1493 /* Use default: NULL (ZERO). */
1494 const struct target_desc *target_desc;
1495 };
1496
1497 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1498 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1499
1500 /* DEPRECATED - use gdbarch_register() */
1501 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1502
1503 extern void gdbarch_register (enum bfd_architecture architecture,
1504 gdbarch_init_ftype *,
1505 gdbarch_dump_tdep_ftype *);
1506
1507
1508 /* Return a freshly allocated, NULL terminated, array of the valid
1509 architecture names. Since architectures are registered during the
1510 _initialize phase this function only returns useful information
1511 once initialization has been completed. */
1512
1513 extern const char **gdbarch_printable_names (void);
1514
1515
1516 /* Helper function. Search the list of ARCHES for a GDBARCH that
1517 matches the information provided by INFO. */
1518
1519 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1520
1521
1522 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1523 basic initialization using values obtained from the INFO and TDEP
1524 parameters. set_gdbarch_*() functions are called to complete the
1525 initialization of the object. */
1526
1527 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1528
1529
1530 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1531 It is assumed that the caller freeds the \`\`struct
1532 gdbarch_tdep''. */
1533
1534 extern void gdbarch_free (struct gdbarch *);
1535
1536 /* Get the obstack owned by ARCH. */
1537
1538 extern obstack *gdbarch_obstack (gdbarch *arch);
1539
1540 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1541 obstack. The memory is freed when the corresponding architecture
1542 is also freed. */
1543
1544 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1545 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1546
1547 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1548 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1549
1550 /* Duplicate STRING, returning an equivalent string that's allocated on the
1551 obstack associated with GDBARCH. The string is freed when the corresponding
1552 architecture is also freed. */
1553
1554 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1555
1556 /* Helper function. Force an update of the current architecture.
1557
1558 The actual architecture selected is determined by INFO, \`\`(gdb) set
1559 architecture'' et.al., the existing architecture and BFD's default
1560 architecture. INFO should be initialized to zero and then selected
1561 fields should be updated.
1562
1563 Returns non-zero if the update succeeds. */
1564
1565 extern int gdbarch_update_p (struct gdbarch_info info);
1566
1567
1568 /* Helper function. Find an architecture matching info.
1569
1570 INFO should be initialized using gdbarch_info_init, relevant fields
1571 set, and then finished using gdbarch_info_fill.
1572
1573 Returns the corresponding architecture, or NULL if no matching
1574 architecture was found. */
1575
1576 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1577
1578
1579 /* Helper function. Set the target gdbarch to "gdbarch". */
1580
1581 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1582
1583
1584 /* Register per-architecture data-pointer.
1585
1586 Reserve space for a per-architecture data-pointer. An identifier
1587 for the reserved data-pointer is returned. That identifer should
1588 be saved in a local static variable.
1589
1590 Memory for the per-architecture data shall be allocated using
1591 gdbarch_obstack_zalloc. That memory will be deleted when the
1592 corresponding architecture object is deleted.
1593
1594 When a previously created architecture is re-selected, the
1595 per-architecture data-pointer for that previous architecture is
1596 restored. INIT() is not re-called.
1597
1598 Multiple registrarants for any architecture are allowed (and
1599 strongly encouraged). */
1600
1601 struct gdbarch_data;
1602
1603 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1604 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1605 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1606 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1607 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1608 struct gdbarch_data *data,
1609 void *pointer);
1610
1611 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1612
1613
1614 /* Set the dynamic target-system-dependent parameters (architecture,
1615 byte-order, ...) using information found in the BFD. */
1616
1617 extern void set_gdbarch_from_file (bfd *);
1618
1619
1620 /* Initialize the current architecture to the "first" one we find on
1621 our list. */
1622
1623 extern void initialize_current_architecture (void);
1624
1625 /* gdbarch trace variable */
1626 extern unsigned int gdbarch_debug;
1627
1628 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1629
1630 #endif
1631 EOF
1632 exec 1>&2
1633 #../move-if-change new-gdbarch.h gdbarch.h
1634 compare_new gdbarch.h
1635
1636
1637 #
1638 # C file
1639 #
1640
1641 exec > new-gdbarch.c
1642 copyright
1643 cat <<EOF
1644
1645 #include "defs.h"
1646 #include "arch-utils.h"
1647
1648 #include "gdbcmd.h"
1649 #include "inferior.h"
1650 #include "symcat.h"
1651
1652 #include "floatformat.h"
1653 #include "reggroups.h"
1654 #include "osabi.h"
1655 #include "gdb_obstack.h"
1656 #include "observable.h"
1657 #include "regcache.h"
1658 #include "objfiles.h"
1659 #include "auxv.h"
1660
1661 /* Static function declarations */
1662
1663 static void alloc_gdbarch_data (struct gdbarch *);
1664
1665 /* Non-zero if we want to trace architecture code. */
1666
1667 #ifndef GDBARCH_DEBUG
1668 #define GDBARCH_DEBUG 0
1669 #endif
1670 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1671 static void
1672 show_gdbarch_debug (struct ui_file *file, int from_tty,
1673 struct cmd_list_element *c, const char *value)
1674 {
1675 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1676 }
1677
1678 static const char *
1679 pformat (const struct floatformat **format)
1680 {
1681 if (format == NULL)
1682 return "(null)";
1683 else
1684 /* Just print out one of them - this is only for diagnostics. */
1685 return format[0]->name;
1686 }
1687
1688 static const char *
1689 pstring (const char *string)
1690 {
1691 if (string == NULL)
1692 return "(null)";
1693 return string;
1694 }
1695
1696 static const char *
1697 pstring_ptr (char **string)
1698 {
1699 if (string == NULL || *string == NULL)
1700 return "(null)";
1701 return *string;
1702 }
1703
1704 /* Helper function to print a list of strings, represented as "const
1705 char *const *". The list is printed comma-separated. */
1706
1707 static const char *
1708 pstring_list (const char *const *list)
1709 {
1710 static char ret[100];
1711 const char *const *p;
1712 size_t offset = 0;
1713
1714 if (list == NULL)
1715 return "(null)";
1716
1717 ret[0] = '\0';
1718 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1719 {
1720 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1721 offset += 2 + s;
1722 }
1723
1724 if (offset > 0)
1725 {
1726 gdb_assert (offset - 2 < sizeof (ret));
1727 ret[offset - 2] = '\0';
1728 }
1729
1730 return ret;
1731 }
1732
1733 EOF
1734
1735 # gdbarch open the gdbarch object
1736 printf "\n"
1737 printf "/* Maintain the struct gdbarch object. */\n"
1738 printf "\n"
1739 printf "struct gdbarch\n"
1740 printf "{\n"
1741 printf " /* Has this architecture been fully initialized? */\n"
1742 printf " int initialized_p;\n"
1743 printf "\n"
1744 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1745 printf " struct obstack *obstack;\n"
1746 printf "\n"
1747 printf " /* basic architectural information. */\n"
1748 function_list | while do_read
1749 do
1750 if class_is_info_p
1751 then
1752 printf " ${returntype} ${function};\n"
1753 fi
1754 done
1755 printf "\n"
1756 printf " /* target specific vector. */\n"
1757 printf " struct gdbarch_tdep *tdep;\n"
1758 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1759 printf "\n"
1760 printf " /* per-architecture data-pointers. */\n"
1761 printf " unsigned nr_data;\n"
1762 printf " void **data;\n"
1763 printf "\n"
1764 cat <<EOF
1765 /* Multi-arch values.
1766
1767 When extending this structure you must:
1768
1769 Add the field below.
1770
1771 Declare set/get functions and define the corresponding
1772 macro in gdbarch.h.
1773
1774 gdbarch_alloc(): If zero/NULL is not a suitable default,
1775 initialize the new field.
1776
1777 verify_gdbarch(): Confirm that the target updated the field
1778 correctly.
1779
1780 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1781 field is dumped out
1782
1783 get_gdbarch(): Implement the set/get functions (probably using
1784 the macro's as shortcuts).
1785
1786 */
1787
1788 EOF
1789 function_list | while do_read
1790 do
1791 if class_is_variable_p
1792 then
1793 printf " ${returntype} ${function};\n"
1794 elif class_is_function_p
1795 then
1796 printf " gdbarch_${function}_ftype *${function};\n"
1797 fi
1798 done
1799 printf "};\n"
1800
1801 # Create a new gdbarch struct
1802 cat <<EOF
1803
1804 /* Create a new \`\`struct gdbarch'' based on information provided by
1805 \`\`struct gdbarch_info''. */
1806 EOF
1807 printf "\n"
1808 cat <<EOF
1809 struct gdbarch *
1810 gdbarch_alloc (const struct gdbarch_info *info,
1811 struct gdbarch_tdep *tdep)
1812 {
1813 struct gdbarch *gdbarch;
1814
1815 /* Create an obstack for allocating all the per-architecture memory,
1816 then use that to allocate the architecture vector. */
1817 struct obstack *obstack = XNEW (struct obstack);
1818 obstack_init (obstack);
1819 gdbarch = XOBNEW (obstack, struct gdbarch);
1820 memset (gdbarch, 0, sizeof (*gdbarch));
1821 gdbarch->obstack = obstack;
1822
1823 alloc_gdbarch_data (gdbarch);
1824
1825 gdbarch->tdep = tdep;
1826 EOF
1827 printf "\n"
1828 function_list | while do_read
1829 do
1830 if class_is_info_p
1831 then
1832 printf " gdbarch->${function} = info->${function};\n"
1833 fi
1834 done
1835 printf "\n"
1836 printf " /* Force the explicit initialization of these. */\n"
1837 function_list | while do_read
1838 do
1839 if class_is_function_p || class_is_variable_p
1840 then
1841 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1842 then
1843 printf " gdbarch->${function} = ${predefault};\n"
1844 fi
1845 fi
1846 done
1847 cat <<EOF
1848 /* gdbarch_alloc() */
1849
1850 return gdbarch;
1851 }
1852 EOF
1853
1854 # Free a gdbarch struct.
1855 printf "\n"
1856 printf "\n"
1857 cat <<EOF
1858
1859 obstack *gdbarch_obstack (gdbarch *arch)
1860 {
1861 return arch->obstack;
1862 }
1863
1864 /* See gdbarch.h. */
1865
1866 char *
1867 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1868 {
1869 return obstack_strdup (arch->obstack, string);
1870 }
1871
1872
1873 /* Free a gdbarch struct. This should never happen in normal
1874 operation --- once you've created a gdbarch, you keep it around.
1875 However, if an architecture's init function encounters an error
1876 building the structure, it may need to clean up a partially
1877 constructed gdbarch. */
1878
1879 void
1880 gdbarch_free (struct gdbarch *arch)
1881 {
1882 struct obstack *obstack;
1883
1884 gdb_assert (arch != NULL);
1885 gdb_assert (!arch->initialized_p);
1886 obstack = arch->obstack;
1887 obstack_free (obstack, 0); /* Includes the ARCH. */
1888 xfree (obstack);
1889 }
1890 EOF
1891
1892 # verify a new architecture
1893 cat <<EOF
1894
1895
1896 /* Ensure that all values in a GDBARCH are reasonable. */
1897
1898 static void
1899 verify_gdbarch (struct gdbarch *gdbarch)
1900 {
1901 string_file log;
1902
1903 /* fundamental */
1904 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1905 log.puts ("\n\tbyte-order");
1906 if (gdbarch->bfd_arch_info == NULL)
1907 log.puts ("\n\tbfd_arch_info");
1908 /* Check those that need to be defined for the given multi-arch level. */
1909 EOF
1910 function_list | while do_read
1911 do
1912 if class_is_function_p || class_is_variable_p
1913 then
1914 if [ "x${invalid_p}" = "x0" ]
1915 then
1916 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1917 elif class_is_predicate_p
1918 then
1919 printf " /* Skip verify of ${function}, has predicate. */\n"
1920 # FIXME: See do_read for potential simplification
1921 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1922 then
1923 printf " if (${invalid_p})\n"
1924 printf " gdbarch->${function} = ${postdefault};\n"
1925 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1926 then
1927 printf " if (gdbarch->${function} == ${predefault})\n"
1928 printf " gdbarch->${function} = ${postdefault};\n"
1929 elif [ -n "${postdefault}" ]
1930 then
1931 printf " if (gdbarch->${function} == 0)\n"
1932 printf " gdbarch->${function} = ${postdefault};\n"
1933 elif [ -n "${invalid_p}" ]
1934 then
1935 printf " if (${invalid_p})\n"
1936 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1937 elif [ -n "${predefault}" ]
1938 then
1939 printf " if (gdbarch->${function} == ${predefault})\n"
1940 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1941 fi
1942 fi
1943 done
1944 cat <<EOF
1945 if (!log.empty ())
1946 internal_error (__FILE__, __LINE__,
1947 _("verify_gdbarch: the following are invalid ...%s"),
1948 log.c_str ());
1949 }
1950 EOF
1951
1952 # dump the structure
1953 printf "\n"
1954 printf "\n"
1955 cat <<EOF
1956 /* Print out the details of the current architecture. */
1957
1958 void
1959 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1960 {
1961 const char *gdb_nm_file = "<not-defined>";
1962
1963 #if defined (GDB_NM_FILE)
1964 gdb_nm_file = GDB_NM_FILE;
1965 #endif
1966 fprintf_unfiltered (file,
1967 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1968 gdb_nm_file);
1969 EOF
1970 function_list | sort '-t;' -k 3 | while do_read
1971 do
1972 # First the predicate
1973 if class_is_predicate_p
1974 then
1975 printf " fprintf_unfiltered (file,\n"
1976 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1977 printf " gdbarch_${function}_p (gdbarch));\n"
1978 fi
1979 # Print the corresponding value.
1980 if class_is_function_p
1981 then
1982 printf " fprintf_unfiltered (file,\n"
1983 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1984 printf " host_address_to_string (gdbarch->${function}));\n"
1985 else
1986 # It is a variable
1987 case "${print}:${returntype}" in
1988 :CORE_ADDR )
1989 fmt="%s"
1990 print="core_addr_to_string_nz (gdbarch->${function})"
1991 ;;
1992 :* )
1993 fmt="%s"
1994 print="plongest (gdbarch->${function})"
1995 ;;
1996 * )
1997 fmt="%s"
1998 ;;
1999 esac
2000 printf " fprintf_unfiltered (file,\n"
2001 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2002 printf " ${print});\n"
2003 fi
2004 done
2005 cat <<EOF
2006 if (gdbarch->dump_tdep != NULL)
2007 gdbarch->dump_tdep (gdbarch, file);
2008 }
2009 EOF
2010
2011
2012 # GET/SET
2013 printf "\n"
2014 cat <<EOF
2015 struct gdbarch_tdep *
2016 gdbarch_tdep (struct gdbarch *gdbarch)
2017 {
2018 if (gdbarch_debug >= 2)
2019 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2020 return gdbarch->tdep;
2021 }
2022 EOF
2023 printf "\n"
2024 function_list | while do_read
2025 do
2026 if class_is_predicate_p
2027 then
2028 printf "\n"
2029 printf "int\n"
2030 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2031 printf "{\n"
2032 printf " gdb_assert (gdbarch != NULL);\n"
2033 printf " return ${predicate};\n"
2034 printf "}\n"
2035 fi
2036 if class_is_function_p
2037 then
2038 printf "\n"
2039 printf "${returntype}\n"
2040 if [ "x${formal}" = "xvoid" ]
2041 then
2042 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2043 else
2044 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2045 fi
2046 printf "{\n"
2047 printf " gdb_assert (gdbarch != NULL);\n"
2048 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2049 if class_is_predicate_p && test -n "${predefault}"
2050 then
2051 # Allow a call to a function with a predicate.
2052 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2053 fi
2054 printf " if (gdbarch_debug >= 2)\n"
2055 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2056 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2057 then
2058 if class_is_multiarch_p
2059 then
2060 params="gdbarch"
2061 else
2062 params=""
2063 fi
2064 else
2065 if class_is_multiarch_p
2066 then
2067 params="gdbarch, ${actual}"
2068 else
2069 params="${actual}"
2070 fi
2071 fi
2072 if [ "x${returntype}" = "xvoid" ]
2073 then
2074 printf " gdbarch->${function} (${params});\n"
2075 else
2076 printf " return gdbarch->${function} (${params});\n"
2077 fi
2078 printf "}\n"
2079 printf "\n"
2080 printf "void\n"
2081 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2082 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2083 printf "{\n"
2084 printf " gdbarch->${function} = ${function};\n"
2085 printf "}\n"
2086 elif class_is_variable_p
2087 then
2088 printf "\n"
2089 printf "${returntype}\n"
2090 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2091 printf "{\n"
2092 printf " gdb_assert (gdbarch != NULL);\n"
2093 if [ "x${invalid_p}" = "x0" ]
2094 then
2095 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2096 elif [ -n "${invalid_p}" ]
2097 then
2098 printf " /* Check variable is valid. */\n"
2099 printf " gdb_assert (!(${invalid_p}));\n"
2100 elif [ -n "${predefault}" ]
2101 then
2102 printf " /* Check variable changed from pre-default. */\n"
2103 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2104 fi
2105 printf " if (gdbarch_debug >= 2)\n"
2106 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2107 printf " return gdbarch->${function};\n"
2108 printf "}\n"
2109 printf "\n"
2110 printf "void\n"
2111 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2112 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2113 printf "{\n"
2114 printf " gdbarch->${function} = ${function};\n"
2115 printf "}\n"
2116 elif class_is_info_p
2117 then
2118 printf "\n"
2119 printf "${returntype}\n"
2120 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2121 printf "{\n"
2122 printf " gdb_assert (gdbarch != NULL);\n"
2123 printf " if (gdbarch_debug >= 2)\n"
2124 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2125 printf " return gdbarch->${function};\n"
2126 printf "}\n"
2127 fi
2128 done
2129
2130 # All the trailing guff
2131 cat <<EOF
2132
2133
2134 /* Keep a registry of per-architecture data-pointers required by GDB
2135 modules. */
2136
2137 struct gdbarch_data
2138 {
2139 unsigned index;
2140 int init_p;
2141 gdbarch_data_pre_init_ftype *pre_init;
2142 gdbarch_data_post_init_ftype *post_init;
2143 };
2144
2145 struct gdbarch_data_registration
2146 {
2147 struct gdbarch_data *data;
2148 struct gdbarch_data_registration *next;
2149 };
2150
2151 struct gdbarch_data_registry
2152 {
2153 unsigned nr;
2154 struct gdbarch_data_registration *registrations;
2155 };
2156
2157 struct gdbarch_data_registry gdbarch_data_registry =
2158 {
2159 0, NULL,
2160 };
2161
2162 static struct gdbarch_data *
2163 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2164 gdbarch_data_post_init_ftype *post_init)
2165 {
2166 struct gdbarch_data_registration **curr;
2167
2168 /* Append the new registration. */
2169 for (curr = &gdbarch_data_registry.registrations;
2170 (*curr) != NULL;
2171 curr = &(*curr)->next);
2172 (*curr) = XNEW (struct gdbarch_data_registration);
2173 (*curr)->next = NULL;
2174 (*curr)->data = XNEW (struct gdbarch_data);
2175 (*curr)->data->index = gdbarch_data_registry.nr++;
2176 (*curr)->data->pre_init = pre_init;
2177 (*curr)->data->post_init = post_init;
2178 (*curr)->data->init_p = 1;
2179 return (*curr)->data;
2180 }
2181
2182 struct gdbarch_data *
2183 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2184 {
2185 return gdbarch_data_register (pre_init, NULL);
2186 }
2187
2188 struct gdbarch_data *
2189 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2190 {
2191 return gdbarch_data_register (NULL, post_init);
2192 }
2193
2194 /* Create/delete the gdbarch data vector. */
2195
2196 static void
2197 alloc_gdbarch_data (struct gdbarch *gdbarch)
2198 {
2199 gdb_assert (gdbarch->data == NULL);
2200 gdbarch->nr_data = gdbarch_data_registry.nr;
2201 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2202 }
2203
2204 /* Initialize the current value of the specified per-architecture
2205 data-pointer. */
2206
2207 void
2208 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2209 struct gdbarch_data *data,
2210 void *pointer)
2211 {
2212 gdb_assert (data->index < gdbarch->nr_data);
2213 gdb_assert (gdbarch->data[data->index] == NULL);
2214 gdb_assert (data->pre_init == NULL);
2215 gdbarch->data[data->index] = pointer;
2216 }
2217
2218 /* Return the current value of the specified per-architecture
2219 data-pointer. */
2220
2221 void *
2222 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2223 {
2224 gdb_assert (data->index < gdbarch->nr_data);
2225 if (gdbarch->data[data->index] == NULL)
2226 {
2227 /* The data-pointer isn't initialized, call init() to get a
2228 value. */
2229 if (data->pre_init != NULL)
2230 /* Mid architecture creation: pass just the obstack, and not
2231 the entire architecture, as that way it isn't possible for
2232 pre-init code to refer to undefined architecture
2233 fields. */
2234 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2235 else if (gdbarch->initialized_p
2236 && data->post_init != NULL)
2237 /* Post architecture creation: pass the entire architecture
2238 (as all fields are valid), but be careful to also detect
2239 recursive references. */
2240 {
2241 gdb_assert (data->init_p);
2242 data->init_p = 0;
2243 gdbarch->data[data->index] = data->post_init (gdbarch);
2244 data->init_p = 1;
2245 }
2246 else
2247 /* The architecture initialization hasn't completed - punt -
2248 hope that the caller knows what they are doing. Once
2249 deprecated_set_gdbarch_data has been initialized, this can be
2250 changed to an internal error. */
2251 return NULL;
2252 gdb_assert (gdbarch->data[data->index] != NULL);
2253 }
2254 return gdbarch->data[data->index];
2255 }
2256
2257
2258 /* Keep a registry of the architectures known by GDB. */
2259
2260 struct gdbarch_registration
2261 {
2262 enum bfd_architecture bfd_architecture;
2263 gdbarch_init_ftype *init;
2264 gdbarch_dump_tdep_ftype *dump_tdep;
2265 struct gdbarch_list *arches;
2266 struct gdbarch_registration *next;
2267 };
2268
2269 static struct gdbarch_registration *gdbarch_registry = NULL;
2270
2271 static void
2272 append_name (const char ***buf, int *nr, const char *name)
2273 {
2274 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2275 (*buf)[*nr] = name;
2276 *nr += 1;
2277 }
2278
2279 const char **
2280 gdbarch_printable_names (void)
2281 {
2282 /* Accumulate a list of names based on the registed list of
2283 architectures. */
2284 int nr_arches = 0;
2285 const char **arches = NULL;
2286 struct gdbarch_registration *rego;
2287
2288 for (rego = gdbarch_registry;
2289 rego != NULL;
2290 rego = rego->next)
2291 {
2292 const struct bfd_arch_info *ap;
2293 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2294 if (ap == NULL)
2295 internal_error (__FILE__, __LINE__,
2296 _("gdbarch_architecture_names: multi-arch unknown"));
2297 do
2298 {
2299 append_name (&arches, &nr_arches, ap->printable_name);
2300 ap = ap->next;
2301 }
2302 while (ap != NULL);
2303 }
2304 append_name (&arches, &nr_arches, NULL);
2305 return arches;
2306 }
2307
2308
2309 void
2310 gdbarch_register (enum bfd_architecture bfd_architecture,
2311 gdbarch_init_ftype *init,
2312 gdbarch_dump_tdep_ftype *dump_tdep)
2313 {
2314 struct gdbarch_registration **curr;
2315 const struct bfd_arch_info *bfd_arch_info;
2316
2317 /* Check that BFD recognizes this architecture */
2318 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2319 if (bfd_arch_info == NULL)
2320 {
2321 internal_error (__FILE__, __LINE__,
2322 _("gdbarch: Attempt to register "
2323 "unknown architecture (%d)"),
2324 bfd_architecture);
2325 }
2326 /* Check that we haven't seen this architecture before. */
2327 for (curr = &gdbarch_registry;
2328 (*curr) != NULL;
2329 curr = &(*curr)->next)
2330 {
2331 if (bfd_architecture == (*curr)->bfd_architecture)
2332 internal_error (__FILE__, __LINE__,
2333 _("gdbarch: Duplicate registration "
2334 "of architecture (%s)"),
2335 bfd_arch_info->printable_name);
2336 }
2337 /* log it */
2338 if (gdbarch_debug)
2339 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2340 bfd_arch_info->printable_name,
2341 host_address_to_string (init));
2342 /* Append it */
2343 (*curr) = XNEW (struct gdbarch_registration);
2344 (*curr)->bfd_architecture = bfd_architecture;
2345 (*curr)->init = init;
2346 (*curr)->dump_tdep = dump_tdep;
2347 (*curr)->arches = NULL;
2348 (*curr)->next = NULL;
2349 }
2350
2351 void
2352 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2353 gdbarch_init_ftype *init)
2354 {
2355 gdbarch_register (bfd_architecture, init, NULL);
2356 }
2357
2358
2359 /* Look for an architecture using gdbarch_info. */
2360
2361 struct gdbarch_list *
2362 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2363 const struct gdbarch_info *info)
2364 {
2365 for (; arches != NULL; arches = arches->next)
2366 {
2367 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2368 continue;
2369 if (info->byte_order != arches->gdbarch->byte_order)
2370 continue;
2371 if (info->osabi != arches->gdbarch->osabi)
2372 continue;
2373 if (info->target_desc != arches->gdbarch->target_desc)
2374 continue;
2375 return arches;
2376 }
2377 return NULL;
2378 }
2379
2380
2381 /* Find an architecture that matches the specified INFO. Create a new
2382 architecture if needed. Return that new architecture. */
2383
2384 struct gdbarch *
2385 gdbarch_find_by_info (struct gdbarch_info info)
2386 {
2387 struct gdbarch *new_gdbarch;
2388 struct gdbarch_registration *rego;
2389
2390 /* Fill in missing parts of the INFO struct using a number of
2391 sources: "set ..."; INFOabfd supplied; and the global
2392 defaults. */
2393 gdbarch_info_fill (&info);
2394
2395 /* Must have found some sort of architecture. */
2396 gdb_assert (info.bfd_arch_info != NULL);
2397
2398 if (gdbarch_debug)
2399 {
2400 fprintf_unfiltered (gdb_stdlog,
2401 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2402 (info.bfd_arch_info != NULL
2403 ? info.bfd_arch_info->printable_name
2404 : "(null)"));
2405 fprintf_unfiltered (gdb_stdlog,
2406 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2407 info.byte_order,
2408 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2409 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2410 : "default"));
2411 fprintf_unfiltered (gdb_stdlog,
2412 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2413 info.osabi, gdbarch_osabi_name (info.osabi));
2414 fprintf_unfiltered (gdb_stdlog,
2415 "gdbarch_find_by_info: info.abfd %s\n",
2416 host_address_to_string (info.abfd));
2417 fprintf_unfiltered (gdb_stdlog,
2418 "gdbarch_find_by_info: info.tdep_info %s\n",
2419 host_address_to_string (info.tdep_info));
2420 }
2421
2422 /* Find the tdep code that knows about this architecture. */
2423 for (rego = gdbarch_registry;
2424 rego != NULL;
2425 rego = rego->next)
2426 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2427 break;
2428 if (rego == NULL)
2429 {
2430 if (gdbarch_debug)
2431 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2432 "No matching architecture\n");
2433 return 0;
2434 }
2435
2436 /* Ask the tdep code for an architecture that matches "info". */
2437 new_gdbarch = rego->init (info, rego->arches);
2438
2439 /* Did the tdep code like it? No. Reject the change and revert to
2440 the old architecture. */
2441 if (new_gdbarch == NULL)
2442 {
2443 if (gdbarch_debug)
2444 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2445 "Target rejected architecture\n");
2446 return NULL;
2447 }
2448
2449 /* Is this a pre-existing architecture (as determined by already
2450 being initialized)? Move it to the front of the architecture
2451 list (keeping the list sorted Most Recently Used). */
2452 if (new_gdbarch->initialized_p)
2453 {
2454 struct gdbarch_list **list;
2455 struct gdbarch_list *self;
2456 if (gdbarch_debug)
2457 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2458 "Previous architecture %s (%s) selected\n",
2459 host_address_to_string (new_gdbarch),
2460 new_gdbarch->bfd_arch_info->printable_name);
2461 /* Find the existing arch in the list. */
2462 for (list = &rego->arches;
2463 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2464 list = &(*list)->next);
2465 /* It had better be in the list of architectures. */
2466 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2467 /* Unlink SELF. */
2468 self = (*list);
2469 (*list) = self->next;
2470 /* Insert SELF at the front. */
2471 self->next = rego->arches;
2472 rego->arches = self;
2473 /* Return it. */
2474 return new_gdbarch;
2475 }
2476
2477 /* It's a new architecture. */
2478 if (gdbarch_debug)
2479 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2480 "New architecture %s (%s) selected\n",
2481 host_address_to_string (new_gdbarch),
2482 new_gdbarch->bfd_arch_info->printable_name);
2483
2484 /* Insert the new architecture into the front of the architecture
2485 list (keep the list sorted Most Recently Used). */
2486 {
2487 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2488 self->next = rego->arches;
2489 self->gdbarch = new_gdbarch;
2490 rego->arches = self;
2491 }
2492
2493 /* Check that the newly installed architecture is valid. Plug in
2494 any post init values. */
2495 new_gdbarch->dump_tdep = rego->dump_tdep;
2496 verify_gdbarch (new_gdbarch);
2497 new_gdbarch->initialized_p = 1;
2498
2499 if (gdbarch_debug)
2500 gdbarch_dump (new_gdbarch, gdb_stdlog);
2501
2502 return new_gdbarch;
2503 }
2504
2505 /* Make the specified architecture current. */
2506
2507 void
2508 set_target_gdbarch (struct gdbarch *new_gdbarch)
2509 {
2510 gdb_assert (new_gdbarch != NULL);
2511 gdb_assert (new_gdbarch->initialized_p);
2512 current_inferior ()->gdbarch = new_gdbarch;
2513 gdb::observers::architecture_changed.notify (new_gdbarch);
2514 registers_changed ();
2515 }
2516
2517 /* Return the current inferior's arch. */
2518
2519 struct gdbarch *
2520 target_gdbarch (void)
2521 {
2522 return current_inferior ()->gdbarch;
2523 }
2524
2525 void
2526 _initialize_gdbarch (void)
2527 {
2528 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2529 Set architecture debugging."), _("\\
2530 Show architecture debugging."), _("\\
2531 When non-zero, architecture debugging is enabled."),
2532 NULL,
2533 show_gdbarch_debug,
2534 &setdebuglist, &showdebuglist);
2535 }
2536 EOF
2537
2538 # close things off
2539 exec 1>&2
2540 #../move-if-change new-gdbarch.c gdbarch.c
2541 compare_new gdbarch.c
This page took 0.090814 seconds and 4 git commands to generate.