Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ "${postdefault}" != "" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ "${predefault}" != "" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ "${postdefault}" != "" -a "${invalid_p}" != "0" ] \
135 || [ "${predefault}" != "" -a "${invalid_p}" = "0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # A initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After the gdbarch object has
253 # been initialized using PREDEFAULT, it is passed to the
254 # target code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
259 # INVALID_P will be used as default values when when
260 # multi-arch is disabled. Specify a zero PREDEFAULT function
261 # to make that fallback call internal_error().
262
263 # Variable declarations can refer to ``gdbarch'' which will
264 # contain the current architecture. Care should be taken.
265
266 postdefault ) : ;;
267
268 # A value to assign to MEMBER of the new gdbarch object should
269 # the target code fail to change the PREDEFAULT value. Also
270 # use POSTDEFAULT as the fallback value for the non-
271 # multi-arch case.
272
273 # If POSTDEFAULT is empty, no post update is performed.
274
275 # If both INVALID_P and POSTDEFAULT are non-empty then
276 # INVALID_P will be used to determine if MEMBER should be
277 # changed to POSTDEFAULT.
278
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
281 # Variable declarations can refer to ``gdbarch'' which will
282 # contain the current architecture. Care should be taken.
283
284 invalid_p ) : ;;
285
286 # A predicate equation that validates MEMBER. Non-zero is
287 # returned if the code creating the new architecture failed to
288 # initialize MEMBER or the initialized the member is invalid.
289 # If POSTDEFAULT is non-empty then MEMBER will be updated to
290 # that value. If POSTDEFAULT is empty then internal_error()
291 # is called.
292
293 # If INVALID_P is empty, a check that MEMBER is no longer
294 # equal to PREDEFAULT is used.
295
296 # The expression ``0'' disables the INVALID_P check making
297 # PREDEFAULT a legitimate value.
298
299 # See also PREDEFAULT and POSTDEFAULT.
300
301 fmt ) : ;;
302
303 # printf style format string that can be used to print out the
304 # MEMBER. Sometimes "%s" is useful. For functions, this is
305 # ignored and the function address is printed.
306
307 # If FMT is empty, ``%ld'' is used.
308
309 print ) : ;;
310
311 # An optional equation that casts MEMBER to a value suitable
312 # for formatting by FMT.
313
314 # If PRINT is empty, ``(long)'' is used.
315
316 print_p ) : ;;
317
318 # An optional indicator for any predicte to wrap around the
319 # print member code.
320
321 # () -> Call a custom function to do the dump.
322 # exp -> Wrap print up in ``if (${print_p}) ...
323 # ``'' -> No predicate
324
325 # If PRINT_P is empty, ``1'' is always used.
326
327 description ) : ;;
328
329 # Currently unused.
330
331 *) exit 1;;
332 esac
333 done
334
335
336 function_list ()
337 {
338 # See below (DOCO) for description of each field
339 cat <<EOF
340 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
341 #
342 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
343 # Number of bits in a char or unsigned char for the target machine.
344 # Just like CHAR_BIT in <limits.h> but describes the target machine.
345 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
346 #
347 # Number of bits in a short or unsigned short for the target machine.
348 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
349 # Number of bits in an int or unsigned int for the target machine.
350 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
351 # Number of bits in a long or unsigned long for the target machine.
352 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
353 # Number of bits in a long long or unsigned long long for the target
354 # machine.
355 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
356 # Number of bits in a float for the target machine.
357 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
358 # Number of bits in a double for the target machine.
359 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
360 # Number of bits in a long double for the target machine.
361 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
362 # For most targets, a pointer on the target and its representation as an
363 # address in GDB have the same size and "look the same". For such a
364 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
365 # / addr_bit will be set from it.
366 #
367 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
368 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
369 #
370 # ptr_bit is the size of a pointer on the target
371 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
372 # addr_bit is the size of a target address as represented in gdb
373 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
374 # Number of bits in a BFD_VMA for the target object file format.
375 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
376 #
377 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
378 #
379 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
380 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
381 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
382 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
383 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
384 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
385 #
386 M:::void:register_read:int regnum, char *buf:regnum, buf:
387 M:::void:register_write:int regnum, char *buf:regnum, buf:
388 #
389 v:2:NUM_REGS:int:num_regs::::0:-1
390 # This macro gives the number of pseudo-registers that live in the
391 # register namespace but do not get fetched or stored on the target.
392 # These pseudo-registers may be aliases for other registers,
393 # combinations of other registers, or they may be computed by GDB.
394 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
395 v:2:SP_REGNUM:int:sp_regnum::::0:-1
396 v:2:FP_REGNUM:int:fp_regnum::::0:-1
397 v:2:PC_REGNUM:int:pc_regnum::::0:-1
398 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
399 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
400 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
401 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
402 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
403 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
404 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
405 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
406 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
407 # Convert from an sdb register number to an internal gdb register number.
408 # This should be defined in tm.h, if REGISTER_NAMES is not set up
409 # to map one to one onto the sdb register numbers.
410 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
411 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
412 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
413 v:2:REGISTER_SIZE:int:register_size::::0:-1
414 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
415 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
416 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
417 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
418 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
419 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
420 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
421 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
422 # MAP a GDB RAW register number onto a simulator register number. See
423 # also include/...-sim.h.
424 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
425 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
426 #
427 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
428 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
429 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
430 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
431 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
432 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
433 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
434 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
435 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
436 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
437 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
438 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
439 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
440 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
441 #
442 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
443 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
444 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
445 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
446 #
447 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
448 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
449 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
450 # This function is called when the value of a pseudo-register needs to
451 # be updated. Typically it will be defined on a per-architecture
452 # basis.
453 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
454 # This function is called when the value of a pseudo-register needs to
455 # be set or stored. Typically it will be defined on a
456 # per-architecture basis.
457 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
458 #
459 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
460 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
461 #
462 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
463 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
464 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
465 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
466 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
467 f:2:POP_FRAME:void:pop_frame:void:-:::0
468 #
469 # I wish that these would just go away....
470 f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
471 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
472 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
473 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
474 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
475 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
476 #
477 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
478 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
479 f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
480 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
481 #
482 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
483 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
484 #
485 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
486 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
487 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
488 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
489 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
490 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
491 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
492 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
493 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
494 #
495 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
496 #
497 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
498 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
499 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
500 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
501 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
502 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
503 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
504 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
505 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
506 #
507 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
508 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
509 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
510 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
511 v:2:PARM_BOUNDARY:int:parm_boundary
512 #
513 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
514 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
515 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
516 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::default_convert_from_func_ptr_addr::0
517 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
518 # the target needs software single step. An ISA method to implement it.
519 #
520 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
521 # using the breakpoint system instead of blatting memory directly (as with rs6000).
522 #
523 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
524 # single step. If not, then implement single step using breakpoints.
525 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
526 EOF
527 }
528
529 #
530 # The .log file
531 #
532 exec > new-gdbarch.log
533 function_list | while do_read
534 do
535 cat <<EOF
536 ${class} ${macro}(${actual})
537 ${returntype} ${function} ($formal)${attrib}
538 EOF
539 for r in ${read}
540 do
541 eval echo \"\ \ \ \ ${r}=\${${r}}\"
542 done
543 # #fallbackdefault=${fallbackdefault}
544 # #valid_p=${valid_p}
545 #EOF
546 if class_is_predicate_p && fallback_default_p
547 then
548 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
549 kill $$
550 exit 1
551 fi
552 if [ "${invalid_p}" = "0" -a "${postdefault}" != "" ]
553 then
554 echo "Error: postdefault is useless when invalid_p=0" 1>&2
555 kill $$
556 exit 1
557 fi
558 echo ""
559 done
560
561 exec 1>&2
562 compare_new gdbarch.log
563
564
565 copyright ()
566 {
567 cat <<EOF
568 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
569
570 /* Dynamic architecture support for GDB, the GNU debugger.
571 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
572
573 This file is part of GDB.
574
575 This program is free software; you can redistribute it and/or modify
576 it under the terms of the GNU General Public License as published by
577 the Free Software Foundation; either version 2 of the License, or
578 (at your option) any later version.
579
580 This program is distributed in the hope that it will be useful,
581 but WITHOUT ANY WARRANTY; without even the implied warranty of
582 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
583 GNU General Public License for more details.
584
585 You should have received a copy of the GNU General Public License
586 along with this program; if not, write to the Free Software
587 Foundation, Inc., 59 Temple Place - Suite 330,
588 Boston, MA 02111-1307, USA. */
589
590 /* This file was created with the aid of \`\`gdbarch.sh''.
591
592 The Bourne shell script \`\`gdbarch.sh'' creates the files
593 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
594 against the existing \`\`gdbarch.[hc]''. Any differences found
595 being reported.
596
597 If editing this file, please also run gdbarch.sh and merge any
598 changes into that script. Conversely, when making sweeping changes
599 to this file, modifying gdbarch.sh and using its output may prove
600 easier. */
601
602 EOF
603 }
604
605 #
606 # The .h file
607 #
608
609 exec > new-gdbarch.h
610 copyright
611 cat <<EOF
612 #ifndef GDBARCH_H
613 #define GDBARCH_H
614
615 struct frame_info;
616 struct value;
617
618
619 extern struct gdbarch *current_gdbarch;
620
621
622 /* If any of the following are defined, the target wasn't correctly
623 converted. */
624
625 #if GDB_MULTI_ARCH
626 #if defined (EXTRA_FRAME_INFO)
627 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
628 #endif
629 #endif
630
631 #if GDB_MULTI_ARCH
632 #if defined (FRAME_FIND_SAVED_REGS)
633 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
634 #endif
635 #endif
636 EOF
637
638 # function typedef's
639 printf "\n"
640 printf "\n"
641 printf "/* The following are pre-initialized by GDBARCH. */\n"
642 function_list | while do_read
643 do
644 if class_is_info_p
645 then
646 printf "\n"
647 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
648 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
649 printf "#if GDB_MULTI_ARCH\n"
650 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
651 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
652 printf "#endif\n"
653 printf "#endif\n"
654 fi
655 done
656
657 # function typedef's
658 printf "\n"
659 printf "\n"
660 printf "/* The following are initialized by the target dependent code. */\n"
661 function_list | while do_read
662 do
663 if [ "${comment}" ]
664 then
665 echo "${comment}" | sed \
666 -e '2 s,#,/*,' \
667 -e '3,$ s,#, ,' \
668 -e '$ s,$, */,'
669 fi
670 if class_is_multiarch_p
671 then
672 if class_is_predicate_p
673 then
674 printf "\n"
675 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
676 fi
677 else
678 if class_is_predicate_p
679 then
680 printf "\n"
681 printf "#if defined (${macro})\n"
682 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
683 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
684 printf "#if !defined (${macro}_P)\n"
685 printf "#define ${macro}_P() (1)\n"
686 printf "#endif\n"
687 printf "#endif\n"
688 printf "\n"
689 printf "/* Default predicate for non- multi-arch targets. */\n"
690 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
691 printf "#define ${macro}_P() (0)\n"
692 printf "#endif\n"
693 printf "\n"
694 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
695 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
696 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
697 printf "#endif\n"
698 fi
699 fi
700 if class_is_variable_p
701 then
702 if fallback_default_p || class_is_predicate_p
703 then
704 printf "\n"
705 printf "/* Default (value) for non- multi-arch platforms. */\n"
706 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
707 echo "#define ${macro} (${fallbackdefault})" \
708 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
709 printf "#endif\n"
710 fi
711 printf "\n"
712 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
713 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
714 printf "#if GDB_MULTI_ARCH\n"
715 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
716 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
717 printf "#endif\n"
718 printf "#endif\n"
719 fi
720 if class_is_function_p
721 then
722 if class_is_multiarch_p ; then :
723 elif fallback_default_p || class_is_predicate_p
724 then
725 printf "\n"
726 printf "/* Default (function) for non- multi-arch platforms. */\n"
727 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
728 if [ "${fallbackdefault}" = "0" ]
729 then
730 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
731 else
732 # FIXME: Should be passing current_gdbarch through!
733 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
734 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
735 fi
736 printf "#endif\n"
737 fi
738 printf "\n"
739 if [ "${formal}" = "void" ] && class_is_multiarch_p
740 then
741 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
742 elif class_is_multiarch_p
743 then
744 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
745 else
746 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
747 fi
748 if [ "${formal}" = "void" ]
749 then
750 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
751 else
752 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
753 fi
754 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
755 if class_is_multiarch_p ; then :
756 else
757 printf "#if GDB_MULTI_ARCH\n"
758 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
759 if [ "${actual}" = "" ]
760 then
761 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
762 elif [ "${actual}" = "-" ]
763 then
764 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
765 else
766 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
767 fi
768 printf "#endif\n"
769 printf "#endif\n"
770 fi
771 fi
772 done
773
774 # close it off
775 cat <<EOF
776
777 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
778
779
780 /* Mechanism for co-ordinating the selection of a specific
781 architecture.
782
783 GDB targets (*-tdep.c) can register an interest in a specific
784 architecture. Other GDB components can register a need to maintain
785 per-architecture data.
786
787 The mechanisms below ensures that there is only a loose connection
788 between the set-architecture command and the various GDB
789 components. Each component can independently register their need
790 to maintain architecture specific data with gdbarch.
791
792 Pragmatics:
793
794 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
795 didn't scale.
796
797 The more traditional mega-struct containing architecture specific
798 data for all the various GDB components was also considered. Since
799 GDB is built from a variable number of (fairly independent)
800 components it was determined that the global aproach was not
801 applicable. */
802
803
804 /* Register a new architectural family with GDB.
805
806 Register support for the specified ARCHITECTURE with GDB. When
807 gdbarch determines that the specified architecture has been
808 selected, the corresponding INIT function is called.
809
810 --
811
812 The INIT function takes two parameters: INFO which contains the
813 information available to gdbarch about the (possibly new)
814 architecture; ARCHES which is a list of the previously created
815 \`\`struct gdbarch'' for this architecture.
816
817 The INIT function parameter INFO shall, as far as possible, be
818 pre-initialized with information obtained from INFO.ABFD or
819 previously selected architecture (if similar). INIT shall ensure
820 that the INFO.BYTE_ORDER is non-zero.
821
822 The INIT function shall return any of: NULL - indicating that it
823 doesn't recognize the selected architecture; an existing \`\`struct
824 gdbarch'' from the ARCHES list - indicating that the new
825 architecture is just a synonym for an earlier architecture (see
826 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
827 - that describes the selected architecture (see gdbarch_alloc()).
828
829 The DUMP_TDEP function shall print out all target specific values.
830 Care should be taken to ensure that the function works in both the
831 multi-arch and non- multi-arch cases. */
832
833 struct gdbarch_list
834 {
835 struct gdbarch *gdbarch;
836 struct gdbarch_list *next;
837 };
838
839 struct gdbarch_info
840 {
841 /* Use default: bfd_arch_unknown (ZERO). */
842 enum bfd_architecture bfd_architecture;
843
844 /* Use default: NULL (ZERO). */
845 const struct bfd_arch_info *bfd_arch_info;
846
847 /* Use default: 0 (ZERO). */
848 int byte_order;
849
850 /* Use default: NULL (ZERO). */
851 bfd *abfd;
852
853 /* Use default: NULL (ZERO). */
854 struct gdbarch_tdep_info *tdep_info;
855 };
856
857 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
858 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
859
860 /* DEPRECATED - use gdbarch_register() */
861 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
862
863 extern void gdbarch_register (enum bfd_architecture architecture,
864 gdbarch_init_ftype *,
865 gdbarch_dump_tdep_ftype *);
866
867
868 /* Return a freshly allocated, NULL terminated, array of the valid
869 architecture names. Since architectures are registered during the
870 _initialize phase this function only returns useful information
871 once initialization has been completed. */
872
873 extern const char **gdbarch_printable_names (void);
874
875
876 /* Helper function. Search the list of ARCHES for a GDBARCH that
877 matches the information provided by INFO. */
878
879 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
880
881
882 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
883 basic initialization using values obtained from the INFO andTDEP
884 parameters. set_gdbarch_*() functions are called to complete the
885 initialization of the object. */
886
887 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
888
889
890 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
891 It is assumed that the caller freeds the \`\`struct
892 gdbarch_tdep''. */
893
894 extern void gdbarch_free (struct gdbarch *);
895
896
897 /* Helper function. Force an update of the current architecture. Used
898 by legacy targets that have added their own target specific
899 architecture manipulation commands.
900
901 The INFO parameter shall be fully initialized (\`\`memset (&INFO,
902 sizeof (info), 0)'' set relevant fields) before gdbarch_update_p()
903 is called. gdbarch_update_p() shall initialize any \`\`default''
904 fields using information obtained from the previous architecture or
905 INFO.ABFD (if specified) before calling the corresponding
906 architectures INIT function.
907
908 Returns non-zero if the update succeeds */
909
910 extern int gdbarch_update_p (struct gdbarch_info info);
911
912
913
914 /* Register per-architecture data-pointer.
915
916 Reserve space for a per-architecture data-pointer. An identifier
917 for the reserved data-pointer is returned. That identifer should
918 be saved in a local static variable.
919
920 The per-architecture data-pointer can be initialized in one of two
921 ways: The value can be set explicitly using a call to
922 set_gdbarch_data(); the value can be set implicitly using the value
923 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
924 called after the basic architecture vector has been created.
925
926 When a previously created architecture is re-selected, the
927 per-architecture data-pointer for that previous architecture is
928 restored. INIT() is not called.
929
930 During initialization, multiple assignments of the data-pointer are
931 allowed, non-NULL values are deleted by calling FREE(). If the
932 architecture is deleted using gdbarch_free() all non-NULL data
933 pointers are also deleted using FREE().
934
935 Multiple registrarants for any architecture are allowed (and
936 strongly encouraged). */
937
938 struct gdbarch_data;
939
940 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
941 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
942 void *pointer);
943 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
944 gdbarch_data_free_ftype *free);
945 extern void set_gdbarch_data (struct gdbarch *gdbarch,
946 struct gdbarch_data *data,
947 void *pointer);
948
949 extern void *gdbarch_data (struct gdbarch_data*);
950
951
952 /* Register per-architecture memory region.
953
954 Provide a memory-region swap mechanism. Per-architecture memory
955 region are created. These memory regions are swapped whenever the
956 architecture is changed. For a new architecture, the memory region
957 is initialized with zero (0) and the INIT function is called.
958
959 Memory regions are swapped / initialized in the order that they are
960 registered. NULL DATA and/or INIT values can be specified.
961
962 New code should use register_gdbarch_data(). */
963
964 typedef void (gdbarch_swap_ftype) (void);
965 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
966 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
967
968
969
970 /* The target-system-dependent byte order is dynamic */
971
972 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
973 is selectable at runtime. The user can use the \`\`set endian''
974 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
975 target_byte_order should be auto-detected (from the program image
976 say). */
977
978 #if GDB_MULTI_ARCH
979 /* Multi-arch GDB is always bi-endian. */
980 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
981 #endif
982
983 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
984 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
985 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
986 #ifdef TARGET_BYTE_ORDER_SELECTABLE
987 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
988 #else
989 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
990 #endif
991 #endif
992
993 extern int target_byte_order;
994 #ifdef TARGET_BYTE_ORDER_SELECTABLE
995 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
996 and expect defs.h to re-define TARGET_BYTE_ORDER. */
997 #undef TARGET_BYTE_ORDER
998 #endif
999 #ifndef TARGET_BYTE_ORDER
1000 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1001 #endif
1002
1003 extern int target_byte_order_auto;
1004 #ifndef TARGET_BYTE_ORDER_AUTO
1005 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1006 #endif
1007
1008
1009
1010 /* The target-system-dependent BFD architecture is dynamic */
1011
1012 extern int target_architecture_auto;
1013 #ifndef TARGET_ARCHITECTURE_AUTO
1014 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1015 #endif
1016
1017 extern const struct bfd_arch_info *target_architecture;
1018 #ifndef TARGET_ARCHITECTURE
1019 #define TARGET_ARCHITECTURE (target_architecture + 0)
1020 #endif
1021
1022
1023 /* The target-system-dependent disassembler is semi-dynamic */
1024
1025 #include "dis-asm.h" /* Get defs for disassemble_info */
1026
1027 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1028 unsigned int len, disassemble_info *info);
1029
1030 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1031 disassemble_info *info);
1032
1033 extern void dis_asm_print_address (bfd_vma addr,
1034 disassemble_info *info);
1035
1036 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1037 extern disassemble_info tm_print_insn_info;
1038 #ifndef TARGET_PRINT_INSN
1039 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1040 #endif
1041 #ifndef TARGET_PRINT_INSN_INFO
1042 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1043 #endif
1044
1045
1046
1047 /* Explicit test for D10V architecture.
1048 USE of these macro's is *STRONGLY* discouraged. */
1049
1050 #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
1051
1052
1053 /* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
1054 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS
1055 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
1056 #define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error (__FILE__, __LINE__, "gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
1057 #else
1058 #ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
1059 #define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
1060 #endif
1061 #endif
1062
1063
1064 /* Set the dynamic target-system-dependent parameters (architecture,
1065 byte-order, ...) using information found in the BFD */
1066
1067 extern void set_gdbarch_from_file (bfd *);
1068
1069
1070 /* Initialize the current architecture to the "first" one we find on
1071 our list. */
1072
1073 extern void initialize_current_architecture (void);
1074
1075
1076 /* gdbarch trace variable */
1077 extern int gdbarch_debug;
1078
1079 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1080
1081 #endif
1082 EOF
1083 exec 1>&2
1084 #../move-if-change new-gdbarch.h gdbarch.h
1085 compare_new gdbarch.h
1086
1087
1088 #
1089 # C file
1090 #
1091
1092 exec > new-gdbarch.c
1093 copyright
1094 cat <<EOF
1095
1096 #include "defs.h"
1097 #include "arch-utils.h"
1098
1099 #if GDB_MULTI_ARCH
1100 #include "gdbcmd.h"
1101 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1102 #else
1103 /* Just include everything in sight so that the every old definition
1104 of macro is visible. */
1105 #include "gdb_string.h"
1106 #include <ctype.h>
1107 #include "symtab.h"
1108 #include "frame.h"
1109 #include "inferior.h"
1110 #include "breakpoint.h"
1111 #include "gdb_wait.h"
1112 #include "gdbcore.h"
1113 #include "gdbcmd.h"
1114 #include "target.h"
1115 #include "gdbthread.h"
1116 #include "annotate.h"
1117 #include "symfile.h" /* for overlay functions */
1118 #endif
1119 #include "symcat.h"
1120
1121 #include "floatformat.h"
1122
1123 #include "gdb_assert.h"
1124
1125 /* Static function declarations */
1126
1127 static void verify_gdbarch (struct gdbarch *gdbarch);
1128 static void alloc_gdbarch_data (struct gdbarch *);
1129 static void init_gdbarch_data (struct gdbarch *);
1130 static void free_gdbarch_data (struct gdbarch *);
1131 static void init_gdbarch_swap (struct gdbarch *);
1132 static void swapout_gdbarch_swap (struct gdbarch *);
1133 static void swapin_gdbarch_swap (struct gdbarch *);
1134
1135 /* Convenience macro for allocting typesafe memory. */
1136
1137 #ifndef XMALLOC
1138 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1139 #endif
1140
1141
1142 /* Non-zero if we want to trace architecture code. */
1143
1144 #ifndef GDBARCH_DEBUG
1145 #define GDBARCH_DEBUG 0
1146 #endif
1147 int gdbarch_debug = GDBARCH_DEBUG;
1148
1149 EOF
1150
1151 # gdbarch open the gdbarch object
1152 printf "\n"
1153 printf "/* Maintain the struct gdbarch object */\n"
1154 printf "\n"
1155 printf "struct gdbarch\n"
1156 printf "{\n"
1157 printf " /* basic architectural information */\n"
1158 function_list | while do_read
1159 do
1160 if class_is_info_p
1161 then
1162 printf " ${returntype} ${function};\n"
1163 fi
1164 done
1165 printf "\n"
1166 printf " /* target specific vector. */\n"
1167 printf " struct gdbarch_tdep *tdep;\n"
1168 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1169 printf "\n"
1170 printf " /* per-architecture data-pointers */\n"
1171 printf " unsigned nr_data;\n"
1172 printf " void **data;\n"
1173 printf "\n"
1174 printf " /* per-architecture swap-regions */\n"
1175 printf " struct gdbarch_swap *swap;\n"
1176 printf "\n"
1177 cat <<EOF
1178 /* Multi-arch values.
1179
1180 When extending this structure you must:
1181
1182 Add the field below.
1183
1184 Declare set/get functions and define the corresponding
1185 macro in gdbarch.h.
1186
1187 gdbarch_alloc(): If zero/NULL is not a suitable default,
1188 initialize the new field.
1189
1190 verify_gdbarch(): Confirm that the target updated the field
1191 correctly.
1192
1193 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1194 field is dumped out
1195
1196 \`\`startup_gdbarch()'': Append an initial value to the static
1197 variable (base values on the host's c-type system).
1198
1199 get_gdbarch(): Implement the set/get functions (probably using
1200 the macro's as shortcuts).
1201
1202 */
1203
1204 EOF
1205 function_list | while do_read
1206 do
1207 if class_is_variable_p
1208 then
1209 printf " ${returntype} ${function};\n"
1210 elif class_is_function_p
1211 then
1212 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1213 fi
1214 done
1215 printf "};\n"
1216
1217 # A pre-initialized vector
1218 printf "\n"
1219 printf "\n"
1220 cat <<EOF
1221 /* The default architecture uses host values (for want of a better
1222 choice). */
1223 EOF
1224 printf "\n"
1225 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1226 printf "\n"
1227 printf "struct gdbarch startup_gdbarch =\n"
1228 printf "{\n"
1229 printf " /* basic architecture information */\n"
1230 function_list | while do_read
1231 do
1232 if class_is_info_p
1233 then
1234 printf " ${staticdefault},\n"
1235 fi
1236 done
1237 cat <<EOF
1238 /* target specific vector and its dump routine */
1239 NULL, NULL,
1240 /*per-architecture data-pointers and swap regions */
1241 0, NULL, NULL,
1242 /* Multi-arch values */
1243 EOF
1244 function_list | while do_read
1245 do
1246 if class_is_function_p || class_is_variable_p
1247 then
1248 printf " ${staticdefault},\n"
1249 fi
1250 done
1251 cat <<EOF
1252 /* startup_gdbarch() */
1253 };
1254
1255 struct gdbarch *current_gdbarch = &startup_gdbarch;
1256 EOF
1257
1258 # Create a new gdbarch struct
1259 printf "\n"
1260 printf "\n"
1261 cat <<EOF
1262 /* Create a new \`\`struct gdbarch'' based on information provided by
1263 \`\`struct gdbarch_info''. */
1264 EOF
1265 printf "\n"
1266 cat <<EOF
1267 struct gdbarch *
1268 gdbarch_alloc (const struct gdbarch_info *info,
1269 struct gdbarch_tdep *tdep)
1270 {
1271 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1272 memset (gdbarch, 0, sizeof (*gdbarch));
1273
1274 alloc_gdbarch_data (gdbarch);
1275
1276 gdbarch->tdep = tdep;
1277 EOF
1278 printf "\n"
1279 function_list | while do_read
1280 do
1281 if class_is_info_p
1282 then
1283 printf " gdbarch->${function} = info->${function};\n"
1284 fi
1285 done
1286 printf "\n"
1287 printf " /* Force the explicit initialization of these. */\n"
1288 function_list | while do_read
1289 do
1290 if class_is_function_p || class_is_variable_p
1291 then
1292 if [ "${predefault}" != "" -a "${predefault}" != "0" ]
1293 then
1294 printf " gdbarch->${function} = ${predefault};\n"
1295 fi
1296 fi
1297 done
1298 cat <<EOF
1299 /* gdbarch_alloc() */
1300
1301 return gdbarch;
1302 }
1303 EOF
1304
1305 # Free a gdbarch struct.
1306 printf "\n"
1307 printf "\n"
1308 cat <<EOF
1309 /* Free a gdbarch struct. This should never happen in normal
1310 operation --- once you've created a gdbarch, you keep it around.
1311 However, if an architecture's init function encounters an error
1312 building the structure, it may need to clean up a partially
1313 constructed gdbarch. */
1314
1315 void
1316 gdbarch_free (struct gdbarch *arch)
1317 {
1318 gdb_assert (arch != NULL);
1319 free_gdbarch_data (arch);
1320 xfree (arch);
1321 }
1322 EOF
1323
1324 # verify a new architecture
1325 printf "\n"
1326 printf "\n"
1327 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1328 printf "\n"
1329 cat <<EOF
1330 static void
1331 verify_gdbarch (struct gdbarch *gdbarch)
1332 {
1333 /* Only perform sanity checks on a multi-arch target. */
1334 if (!GDB_MULTI_ARCH)
1335 return;
1336 /* fundamental */
1337 if (gdbarch->byte_order == 0)
1338 internal_error (__FILE__, __LINE__,
1339 "verify_gdbarch: byte-order unset");
1340 if (gdbarch->bfd_arch_info == NULL)
1341 internal_error (__FILE__, __LINE__,
1342 "verify_gdbarch: bfd_arch_info unset");
1343 /* Check those that need to be defined for the given multi-arch level. */
1344 EOF
1345 function_list | while do_read
1346 do
1347 if class_is_function_p || class_is_variable_p
1348 then
1349 if [ "${invalid_p}" = "0" ]
1350 then
1351 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1352 elif class_is_predicate_p
1353 then
1354 printf " /* Skip verify of ${function}, has predicate */\n"
1355 # FIXME: See do_read for potential simplification
1356 elif [ "${invalid_p}" -a "${postdefault}" ]
1357 then
1358 printf " if (${invalid_p})\n"
1359 printf " gdbarch->${function} = ${postdefault};\n"
1360 elif [ "${predefault}" -a "${postdefault}" ]
1361 then
1362 printf " if (gdbarch->${function} == ${predefault})\n"
1363 printf " gdbarch->${function} = ${postdefault};\n"
1364 elif [ "${postdefault}" ]
1365 then
1366 printf " if (gdbarch->${function} == 0)\n"
1367 printf " gdbarch->${function} = ${postdefault};\n"
1368 elif [ "${invalid_p}" ]
1369 then
1370 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1371 printf " && (${invalid_p}))\n"
1372 printf " internal_error (__FILE__, __LINE__,\n"
1373 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1374 elif [ "${predefault}" ]
1375 then
1376 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1377 printf " && (gdbarch->${function} == ${predefault}))\n"
1378 printf " internal_error (__FILE__, __LINE__,\n"
1379 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1380 fi
1381 fi
1382 done
1383 cat <<EOF
1384 }
1385 EOF
1386
1387 # dump the structure
1388 printf "\n"
1389 printf "\n"
1390 cat <<EOF
1391 /* Print out the details of the current architecture. */
1392
1393 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1394 just happens to match the global variable \`\`current_gdbarch''. That
1395 way macros refering to that variable get the local and not the global
1396 version - ulgh. Once everything is parameterised with gdbarch, this
1397 will go away. */
1398
1399 void
1400 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1401 {
1402 fprintf_unfiltered (file,
1403 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1404 GDB_MULTI_ARCH);
1405 EOF
1406 function_list | while do_read
1407 do
1408 # multiarch functions don't have macros.
1409 class_is_multiarch_p && continue
1410 if [ "${returntype}" = "void" ]
1411 then
1412 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1413 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1414 else
1415 printf "#ifdef ${macro}\n"
1416 fi
1417 if class_is_function_p
1418 then
1419 printf " fprintf_unfiltered (file,\n"
1420 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1421 printf " \"${macro}(${actual})\",\n"
1422 printf " XSTRING (${macro} (${actual})));\n"
1423 else
1424 printf " fprintf_unfiltered (file,\n"
1425 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1426 printf " XSTRING (${macro}));\n"
1427 fi
1428 printf "#endif\n"
1429 done
1430 function_list | while do_read
1431 do
1432 if class_is_multiarch_p
1433 then
1434 printf " if (GDB_MULTI_ARCH)\n"
1435 printf " fprintf_unfiltered (file,\n"
1436 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1437 printf " (long) current_gdbarch->${function});\n"
1438 continue
1439 fi
1440 printf "#ifdef ${macro}\n"
1441 if [ "${print_p}" = "()" ]
1442 then
1443 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1444 elif [ "${print_p}" = "0" ]
1445 then
1446 printf " /* skip print of ${macro}, print_p == 0. */\n"
1447 elif [ "${print_p}" ]
1448 then
1449 printf " if (${print_p})\n"
1450 printf " fprintf_unfiltered (file,\n"
1451 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1452 printf " ${print});\n"
1453 elif class_is_function_p
1454 then
1455 printf " if (GDB_MULTI_ARCH)\n"
1456 printf " fprintf_unfiltered (file,\n"
1457 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1458 printf " (long) current_gdbarch->${function}\n"
1459 printf " /*${macro} ()*/);\n"
1460 else
1461 printf " fprintf_unfiltered (file,\n"
1462 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1463 printf " ${print});\n"
1464 fi
1465 printf "#endif\n"
1466 done
1467 cat <<EOF
1468 if (current_gdbarch->dump_tdep != NULL)
1469 current_gdbarch->dump_tdep (current_gdbarch, file);
1470 }
1471 EOF
1472
1473
1474 # GET/SET
1475 printf "\n"
1476 cat <<EOF
1477 struct gdbarch_tdep *
1478 gdbarch_tdep (struct gdbarch *gdbarch)
1479 {
1480 if (gdbarch_debug >= 2)
1481 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1482 return gdbarch->tdep;
1483 }
1484 EOF
1485 printf "\n"
1486 function_list | while do_read
1487 do
1488 if class_is_predicate_p
1489 then
1490 printf "\n"
1491 printf "int\n"
1492 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1493 printf "{\n"
1494 if [ "${valid_p}" ]
1495 then
1496 printf " return ${valid_p};\n"
1497 else
1498 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1499 fi
1500 printf "}\n"
1501 fi
1502 if class_is_function_p
1503 then
1504 printf "\n"
1505 printf "${returntype}\n"
1506 if [ "${formal}" = "void" ]
1507 then
1508 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1509 else
1510 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1511 fi
1512 printf "{\n"
1513 printf " if (gdbarch->${function} == 0)\n"
1514 printf " internal_error (__FILE__, __LINE__,\n"
1515 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1516 printf " if (gdbarch_debug >= 2)\n"
1517 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1518 if [ "${actual}" = "-" -o "${actual}" = "" ]
1519 then
1520 if class_is_multiarch_p
1521 then
1522 params="gdbarch"
1523 else
1524 params=""
1525 fi
1526 else
1527 if class_is_multiarch_p
1528 then
1529 params="gdbarch, ${actual}"
1530 else
1531 params="${actual}"
1532 fi
1533 fi
1534 if [ "${returntype}" = "void" ]
1535 then
1536 printf " gdbarch->${function} (${params});\n"
1537 else
1538 printf " return gdbarch->${function} (${params});\n"
1539 fi
1540 printf "}\n"
1541 printf "\n"
1542 printf "void\n"
1543 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1544 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1545 printf "{\n"
1546 printf " gdbarch->${function} = ${function};\n"
1547 printf "}\n"
1548 elif class_is_variable_p
1549 then
1550 printf "\n"
1551 printf "${returntype}\n"
1552 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1553 printf "{\n"
1554 if [ "${invalid_p}" = "0" ]
1555 then
1556 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1557 elif [ "${invalid_p}" ]
1558 then
1559 printf " if (${invalid_p})\n"
1560 printf " internal_error (__FILE__, __LINE__,\n"
1561 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1562 elif [ "${predefault}" ]
1563 then
1564 printf " if (gdbarch->${function} == ${predefault})\n"
1565 printf " internal_error (__FILE__, __LINE__,\n"
1566 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1567 fi
1568 printf " if (gdbarch_debug >= 2)\n"
1569 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1570 printf " return gdbarch->${function};\n"
1571 printf "}\n"
1572 printf "\n"
1573 printf "void\n"
1574 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1575 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1576 printf "{\n"
1577 printf " gdbarch->${function} = ${function};\n"
1578 printf "}\n"
1579 elif class_is_info_p
1580 then
1581 printf "\n"
1582 printf "${returntype}\n"
1583 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1584 printf "{\n"
1585 printf " if (gdbarch_debug >= 2)\n"
1586 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1587 printf " return gdbarch->${function};\n"
1588 printf "}\n"
1589 fi
1590 done
1591
1592 # All the trailing guff
1593 cat <<EOF
1594
1595
1596 /* Keep a registry of per-architecture data-pointers required by GDB
1597 modules. */
1598
1599 struct gdbarch_data
1600 {
1601 unsigned index;
1602 gdbarch_data_init_ftype *init;
1603 gdbarch_data_free_ftype *free;
1604 };
1605
1606 struct gdbarch_data_registration
1607 {
1608 struct gdbarch_data *data;
1609 struct gdbarch_data_registration *next;
1610 };
1611
1612 struct gdbarch_data_registry
1613 {
1614 unsigned nr;
1615 struct gdbarch_data_registration *registrations;
1616 };
1617
1618 struct gdbarch_data_registry gdbarch_data_registry =
1619 {
1620 0, NULL,
1621 };
1622
1623 struct gdbarch_data *
1624 register_gdbarch_data (gdbarch_data_init_ftype *init,
1625 gdbarch_data_free_ftype *free)
1626 {
1627 struct gdbarch_data_registration **curr;
1628 for (curr = &gdbarch_data_registry.registrations;
1629 (*curr) != NULL;
1630 curr = &(*curr)->next);
1631 (*curr) = XMALLOC (struct gdbarch_data_registration);
1632 (*curr)->next = NULL;
1633 (*curr)->data = XMALLOC (struct gdbarch_data);
1634 (*curr)->data->index = gdbarch_data_registry.nr++;
1635 (*curr)->data->init = init;
1636 (*curr)->data->free = free;
1637 return (*curr)->data;
1638 }
1639
1640
1641 /* Walk through all the registered users initializing each in turn. */
1642
1643 static void
1644 init_gdbarch_data (struct gdbarch *gdbarch)
1645 {
1646 struct gdbarch_data_registration *rego;
1647 for (rego = gdbarch_data_registry.registrations;
1648 rego != NULL;
1649 rego = rego->next)
1650 {
1651 struct gdbarch_data *data = rego->data;
1652 gdb_assert (data->index < gdbarch->nr_data);
1653 if (data->init != NULL)
1654 {
1655 void *pointer = data->init (gdbarch);
1656 set_gdbarch_data (gdbarch, data, pointer);
1657 }
1658 }
1659 }
1660
1661 /* Create/delete the gdbarch data vector. */
1662
1663 static void
1664 alloc_gdbarch_data (struct gdbarch *gdbarch)
1665 {
1666 gdb_assert (gdbarch->data == NULL);
1667 gdbarch->nr_data = gdbarch_data_registry.nr;
1668 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1669 }
1670
1671 static void
1672 free_gdbarch_data (struct gdbarch *gdbarch)
1673 {
1674 struct gdbarch_data_registration *rego;
1675 gdb_assert (gdbarch->data != NULL);
1676 for (rego = gdbarch_data_registry.registrations;
1677 rego != NULL;
1678 rego = rego->next)
1679 {
1680 struct gdbarch_data *data = rego->data;
1681 gdb_assert (data->index < gdbarch->nr_data);
1682 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1683 {
1684 data->free (gdbarch, gdbarch->data[data->index]);
1685 gdbarch->data[data->index] = NULL;
1686 }
1687 }
1688 xfree (gdbarch->data);
1689 gdbarch->data = NULL;
1690 }
1691
1692
1693 /* Initialize the current value of thee specified per-architecture
1694 data-pointer. */
1695
1696 void
1697 set_gdbarch_data (struct gdbarch *gdbarch,
1698 struct gdbarch_data *data,
1699 void *pointer)
1700 {
1701 gdb_assert (data->index < gdbarch->nr_data);
1702 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1703 data->free (gdbarch, gdbarch->data[data->index]);
1704 gdbarch->data[data->index] = pointer;
1705 }
1706
1707 /* Return the current value of the specified per-architecture
1708 data-pointer. */
1709
1710 void *
1711 gdbarch_data (struct gdbarch_data *data)
1712 {
1713 gdb_assert (data->index < current_gdbarch->nr_data);
1714 return current_gdbarch->data[data->index];
1715 }
1716
1717
1718
1719 /* Keep a registry of swapped data required by GDB modules. */
1720
1721 struct gdbarch_swap
1722 {
1723 void *swap;
1724 struct gdbarch_swap_registration *source;
1725 struct gdbarch_swap *next;
1726 };
1727
1728 struct gdbarch_swap_registration
1729 {
1730 void *data;
1731 unsigned long sizeof_data;
1732 gdbarch_swap_ftype *init;
1733 struct gdbarch_swap_registration *next;
1734 };
1735
1736 struct gdbarch_swap_registry
1737 {
1738 int nr;
1739 struct gdbarch_swap_registration *registrations;
1740 };
1741
1742 struct gdbarch_swap_registry gdbarch_swap_registry =
1743 {
1744 0, NULL,
1745 };
1746
1747 void
1748 register_gdbarch_swap (void *data,
1749 unsigned long sizeof_data,
1750 gdbarch_swap_ftype *init)
1751 {
1752 struct gdbarch_swap_registration **rego;
1753 for (rego = &gdbarch_swap_registry.registrations;
1754 (*rego) != NULL;
1755 rego = &(*rego)->next);
1756 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1757 (*rego)->next = NULL;
1758 (*rego)->init = init;
1759 (*rego)->data = data;
1760 (*rego)->sizeof_data = sizeof_data;
1761 }
1762
1763
1764 static void
1765 init_gdbarch_swap (struct gdbarch *gdbarch)
1766 {
1767 struct gdbarch_swap_registration *rego;
1768 struct gdbarch_swap **curr = &gdbarch->swap;
1769 for (rego = gdbarch_swap_registry.registrations;
1770 rego != NULL;
1771 rego = rego->next)
1772 {
1773 if (rego->data != NULL)
1774 {
1775 (*curr) = XMALLOC (struct gdbarch_swap);
1776 (*curr)->source = rego;
1777 (*curr)->swap = xmalloc (rego->sizeof_data);
1778 (*curr)->next = NULL;
1779 memset (rego->data, 0, rego->sizeof_data);
1780 curr = &(*curr)->next;
1781 }
1782 if (rego->init != NULL)
1783 rego->init ();
1784 }
1785 }
1786
1787 static void
1788 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1789 {
1790 struct gdbarch_swap *curr;
1791 for (curr = gdbarch->swap;
1792 curr != NULL;
1793 curr = curr->next)
1794 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1795 }
1796
1797 static void
1798 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1799 {
1800 struct gdbarch_swap *curr;
1801 for (curr = gdbarch->swap;
1802 curr != NULL;
1803 curr = curr->next)
1804 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1805 }
1806
1807
1808 /* Keep a registry of the architectures known by GDB. */
1809
1810 struct gdbarch_registration
1811 {
1812 enum bfd_architecture bfd_architecture;
1813 gdbarch_init_ftype *init;
1814 gdbarch_dump_tdep_ftype *dump_tdep;
1815 struct gdbarch_list *arches;
1816 struct gdbarch_registration *next;
1817 };
1818
1819 static struct gdbarch_registration *gdbarch_registry = NULL;
1820
1821 static void
1822 append_name (const char ***buf, int *nr, const char *name)
1823 {
1824 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1825 (*buf)[*nr] = name;
1826 *nr += 1;
1827 }
1828
1829 const char **
1830 gdbarch_printable_names (void)
1831 {
1832 if (GDB_MULTI_ARCH)
1833 {
1834 /* Accumulate a list of names based on the registed list of
1835 architectures. */
1836 enum bfd_architecture a;
1837 int nr_arches = 0;
1838 const char **arches = NULL;
1839 struct gdbarch_registration *rego;
1840 for (rego = gdbarch_registry;
1841 rego != NULL;
1842 rego = rego->next)
1843 {
1844 const struct bfd_arch_info *ap;
1845 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1846 if (ap == NULL)
1847 internal_error (__FILE__, __LINE__,
1848 "gdbarch_architecture_names: multi-arch unknown");
1849 do
1850 {
1851 append_name (&arches, &nr_arches, ap->printable_name);
1852 ap = ap->next;
1853 }
1854 while (ap != NULL);
1855 }
1856 append_name (&arches, &nr_arches, NULL);
1857 return arches;
1858 }
1859 else
1860 /* Just return all the architectures that BFD knows. Assume that
1861 the legacy architecture framework supports them. */
1862 return bfd_arch_list ();
1863 }
1864
1865
1866 void
1867 gdbarch_register (enum bfd_architecture bfd_architecture,
1868 gdbarch_init_ftype *init,
1869 gdbarch_dump_tdep_ftype *dump_tdep)
1870 {
1871 struct gdbarch_registration **curr;
1872 const struct bfd_arch_info *bfd_arch_info;
1873 /* Check that BFD recognizes this architecture */
1874 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1875 if (bfd_arch_info == NULL)
1876 {
1877 internal_error (__FILE__, __LINE__,
1878 "gdbarch: Attempt to register unknown architecture (%d)",
1879 bfd_architecture);
1880 }
1881 /* Check that we haven't seen this architecture before */
1882 for (curr = &gdbarch_registry;
1883 (*curr) != NULL;
1884 curr = &(*curr)->next)
1885 {
1886 if (bfd_architecture == (*curr)->bfd_architecture)
1887 internal_error (__FILE__, __LINE__,
1888 "gdbarch: Duplicate registraration of architecture (%s)",
1889 bfd_arch_info->printable_name);
1890 }
1891 /* log it */
1892 if (gdbarch_debug)
1893 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1894 bfd_arch_info->printable_name,
1895 (long) init);
1896 /* Append it */
1897 (*curr) = XMALLOC (struct gdbarch_registration);
1898 (*curr)->bfd_architecture = bfd_architecture;
1899 (*curr)->init = init;
1900 (*curr)->dump_tdep = dump_tdep;
1901 (*curr)->arches = NULL;
1902 (*curr)->next = NULL;
1903 /* When non- multi-arch, install whatever target dump routine we've
1904 been provided - hopefully that routine has been written correctly
1905 and works regardless of multi-arch. */
1906 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1907 && startup_gdbarch.dump_tdep == NULL)
1908 startup_gdbarch.dump_tdep = dump_tdep;
1909 }
1910
1911 void
1912 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1913 gdbarch_init_ftype *init)
1914 {
1915 gdbarch_register (bfd_architecture, init, NULL);
1916 }
1917
1918
1919 /* Look for an architecture using gdbarch_info. Base search on only
1920 BFD_ARCH_INFO and BYTE_ORDER. */
1921
1922 struct gdbarch_list *
1923 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1924 const struct gdbarch_info *info)
1925 {
1926 for (; arches != NULL; arches = arches->next)
1927 {
1928 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1929 continue;
1930 if (info->byte_order != arches->gdbarch->byte_order)
1931 continue;
1932 return arches;
1933 }
1934 return NULL;
1935 }
1936
1937
1938 /* Update the current architecture. Return ZERO if the update request
1939 failed. */
1940
1941 int
1942 gdbarch_update_p (struct gdbarch_info info)
1943 {
1944 struct gdbarch *new_gdbarch;
1945 struct gdbarch_list **list;
1946 struct gdbarch_registration *rego;
1947
1948 /* Fill in any missing bits. Most important is the bfd_architecture
1949 which is used to select the target architecture. */
1950 if (info.bfd_architecture == bfd_arch_unknown)
1951 {
1952 if (info.bfd_arch_info != NULL)
1953 info.bfd_architecture = info.bfd_arch_info->arch;
1954 else if (info.abfd != NULL)
1955 info.bfd_architecture = bfd_get_arch (info.abfd);
1956 /* FIXME - should query BFD for its default architecture. */
1957 else
1958 info.bfd_architecture = current_gdbarch->bfd_arch_info->arch;
1959 }
1960 if (info.bfd_arch_info == NULL)
1961 {
1962 if (target_architecture_auto && info.abfd != NULL)
1963 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1964 else
1965 info.bfd_arch_info = current_gdbarch->bfd_arch_info;
1966 }
1967 if (info.byte_order == 0)
1968 {
1969 if (target_byte_order_auto && info.abfd != NULL)
1970 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1971 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1972 : 0);
1973 else
1974 info.byte_order = current_gdbarch->byte_order;
1975 /* FIXME - should query BFD for its default byte-order. */
1976 }
1977 /* A default for abfd? */
1978
1979 /* Find the target that knows about this architecture. */
1980 for (rego = gdbarch_registry;
1981 rego != NULL;
1982 rego = rego->next)
1983 if (rego->bfd_architecture == info.bfd_architecture)
1984 break;
1985 if (rego == NULL)
1986 {
1987 if (gdbarch_debug)
1988 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
1989 return 0;
1990 }
1991
1992 if (gdbarch_debug)
1993 {
1994 fprintf_unfiltered (gdb_stdlog,
1995 "gdbarch_update: info.bfd_architecture %d (%s)\\n",
1996 info.bfd_architecture,
1997 bfd_lookup_arch (info.bfd_architecture, 0)->printable_name);
1998 fprintf_unfiltered (gdb_stdlog,
1999 "gdbarch_update: info.bfd_arch_info %s\\n",
2000 (info.bfd_arch_info != NULL
2001 ? info.bfd_arch_info->printable_name
2002 : "(null)"));
2003 fprintf_unfiltered (gdb_stdlog,
2004 "gdbarch_update: info.byte_order %d (%s)\\n",
2005 info.byte_order,
2006 (info.byte_order == BIG_ENDIAN ? "big"
2007 : info.byte_order == LITTLE_ENDIAN ? "little"
2008 : "default"));
2009 fprintf_unfiltered (gdb_stdlog,
2010 "gdbarch_update: info.abfd 0x%lx\\n",
2011 (long) info.abfd);
2012 fprintf_unfiltered (gdb_stdlog,
2013 "gdbarch_update: info.tdep_info 0x%lx\\n",
2014 (long) info.tdep_info);
2015 }
2016
2017 /* Ask the target for a replacement architecture. */
2018 new_gdbarch = rego->init (info, rego->arches);
2019
2020 /* Did the target like it? No. Reject the change. */
2021 if (new_gdbarch == NULL)
2022 {
2023 if (gdbarch_debug)
2024 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2025 return 0;
2026 }
2027
2028 /* Did the architecture change? No. Do nothing. */
2029 if (current_gdbarch == new_gdbarch)
2030 {
2031 if (gdbarch_debug)
2032 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2033 (long) new_gdbarch,
2034 new_gdbarch->bfd_arch_info->printable_name);
2035 return 1;
2036 }
2037
2038 /* Swap all data belonging to the old target out */
2039 swapout_gdbarch_swap (current_gdbarch);
2040
2041 /* Is this a pre-existing architecture? Yes. Swap it in. */
2042 for (list = &rego->arches;
2043 (*list) != NULL;
2044 list = &(*list)->next)
2045 {
2046 if ((*list)->gdbarch == new_gdbarch)
2047 {
2048 if (gdbarch_debug)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2051 (long) new_gdbarch,
2052 new_gdbarch->bfd_arch_info->printable_name);
2053 current_gdbarch = new_gdbarch;
2054 swapin_gdbarch_swap (new_gdbarch);
2055 return 1;
2056 }
2057 }
2058
2059 /* Append this new architecture to this targets list. */
2060 (*list) = XMALLOC (struct gdbarch_list);
2061 (*list)->next = NULL;
2062 (*list)->gdbarch = new_gdbarch;
2063
2064 /* Switch to this new architecture. Dump it out. */
2065 current_gdbarch = new_gdbarch;
2066 if (gdbarch_debug)
2067 {
2068 fprintf_unfiltered (gdb_stdlog,
2069 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2070 (long) new_gdbarch,
2071 new_gdbarch->bfd_arch_info->printable_name);
2072 }
2073
2074 /* Check that the newly installed architecture is valid. Plug in
2075 any post init values. */
2076 new_gdbarch->dump_tdep = rego->dump_tdep;
2077 verify_gdbarch (new_gdbarch);
2078
2079 /* Initialize the per-architecture memory (swap) areas.
2080 CURRENT_GDBARCH must be update before these modules are
2081 called. */
2082 init_gdbarch_swap (new_gdbarch);
2083
2084 /* Initialize the per-architecture data-pointer of all parties that
2085 registered an interest in this architecture. CURRENT_GDBARCH
2086 must be updated before these modules are called. */
2087 init_gdbarch_data (new_gdbarch);
2088
2089 if (gdbarch_debug)
2090 gdbarch_dump (current_gdbarch, gdb_stdlog);
2091
2092 return 1;
2093 }
2094
2095
2096 /* Disassembler */
2097
2098 /* Pointer to the target-dependent disassembly function. */
2099 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2100 disassemble_info tm_print_insn_info;
2101
2102
2103 extern void _initialize_gdbarch (void);
2104
2105 void
2106 _initialize_gdbarch (void)
2107 {
2108 struct cmd_list_element *c;
2109
2110 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2111 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2112 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2113 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2114 tm_print_insn_info.print_address_func = dis_asm_print_address;
2115
2116 add_show_from_set (add_set_cmd ("arch",
2117 class_maintenance,
2118 var_zinteger,
2119 (char *)&gdbarch_debug,
2120 "Set architecture debugging.\\n\\
2121 When non-zero, architecture debugging is enabled.", &setdebuglist),
2122 &showdebuglist);
2123 c = add_set_cmd ("archdebug",
2124 class_maintenance,
2125 var_zinteger,
2126 (char *)&gdbarch_debug,
2127 "Set architecture debugging.\\n\\
2128 When non-zero, architecture debugging is enabled.", &setlist);
2129
2130 deprecate_cmd (c, "set debug arch");
2131 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2132 }
2133 EOF
2134
2135 # close things off
2136 exec 1>&2
2137 #../move-if-change new-gdbarch.c gdbarch.c
2138 compare_new gdbarch.c
This page took 0.098043 seconds and 4 git commands to generate.