Force to insert software single step breakpoint
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # Some targets/architectures can do extra processing/display of
450 # segmentation faults. E.g., Intel MPX boundary faults.
451 # Call the architecture dependent function to handle the fault.
452 # UIOUT is the output stream where the handler will place information.
453 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
455 # GDB's standard (or well known) register numbers. These can map onto
456 # a real register or a pseudo (computed) register or not be defined at
457 # all (-1).
458 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
459 v:int:sp_regnum:::-1:-1::0
460 v:int:pc_regnum:::-1:-1::0
461 v:int:ps_regnum:::-1:-1::0
462 v:int:fp0_regnum:::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
467 # Convert from an sdb register number to an internal gdb register number.
468 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
469 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
470 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
471 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
472 m:const char *:register_name:int regnr:regnr::0
473
474 # Return the type of a register specified by the architecture. Only
475 # the register cache should call this function directly; others should
476 # use "register_type".
477 M:struct type *:register_type:int reg_nr:reg_nr
478
479 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
481 # deprecated_fp_regnum.
482 v:int:deprecated_fp_regnum:::-1:-1::0
483
484 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485 v:int:call_dummy_location::::AT_ENTRY_POINT::0
486 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
487
488 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
489 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
490 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
491 # MAP a GDB RAW register number onto a simulator register number. See
492 # also include/...-sim.h.
493 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
494 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
495 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
496
497 # Determine the address where a longjmp will land and save this address
498 # in PC. Return nonzero on success.
499 #
500 # FRAME corresponds to the longjmp frame.
501 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
502
503 #
504 v:int:believe_pcc_promotion:::::::
505 #
506 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
507 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
508 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
509 # Construct a value representing the contents of register REGNUM in
510 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
511 # allocate and return a struct value with all value attributes
512 # (but not the value contents) filled in.
513 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
514 #
515 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
516 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
517 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
518
519 # Return the return-value convention that will be used by FUNCTION
520 # to return a value of type VALTYPE. FUNCTION may be NULL in which
521 # case the return convention is computed based only on VALTYPE.
522 #
523 # If READBUF is not NULL, extract the return value and save it in this buffer.
524 #
525 # If WRITEBUF is not NULL, it contains a return value which will be
526 # stored into the appropriate register. This can be used when we want
527 # to force the value returned by a function (see the "return" command
528 # for instance).
529 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
530
531 # Return true if the return value of function is stored in the first hidden
532 # parameter. In theory, this feature should be language-dependent, specified
533 # by language and its ABI, such as C++. Unfortunately, compiler may
534 # implement it to a target-dependent feature. So that we need such hook here
535 # to be aware of this in GDB.
536 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
537
538 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
539 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
540 # On some platforms, a single function may provide multiple entry points,
541 # e.g. one that is used for function-pointer calls and a different one
542 # that is used for direct function calls.
543 # In order to ensure that breakpoints set on the function will trigger
544 # no matter via which entry point the function is entered, a platform
545 # may provide the skip_entrypoint callback. It is called with IP set
546 # to the main entry point of a function (as determined by the symbol table),
547 # and should return the address of the innermost entry point, where the
548 # actual breakpoint needs to be set. Note that skip_entrypoint is used
549 # by GDB common code even when debugging optimized code, where skip_prologue
550 # is not used.
551 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
552
553 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
554 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
555 # Return the adjusted address and kind to use for Z0/Z1 packets.
556 # KIND is usually the memory length of the breakpoint, but may have a
557 # different target-specific meaning.
558 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
559 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
560 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
561 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
562 v:CORE_ADDR:decr_pc_after_break:::0:::0
563
564 # A function can be addressed by either it's "pointer" (possibly a
565 # descriptor address) or "entry point" (first executable instruction).
566 # The method "convert_from_func_ptr_addr" converting the former to the
567 # latter. gdbarch_deprecated_function_start_offset is being used to implement
568 # a simplified subset of that functionality - the function's address
569 # corresponds to the "function pointer" and the function's start
570 # corresponds to the "function entry point" - and hence is redundant.
571
572 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
573
574 # Return the remote protocol register number associated with this
575 # register. Normally the identity mapping.
576 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
577
578 # Fetch the target specific address used to represent a load module.
579 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
580 #
581 v:CORE_ADDR:frame_args_skip:::0:::0
582 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
583 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
584 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
585 # frame-base. Enable frame-base before frame-unwind.
586 F:int:frame_num_args:struct frame_info *frame:frame
587 #
588 M:CORE_ADDR:frame_align:CORE_ADDR address:address
589 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
590 v:int:frame_red_zone_size
591 #
592 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
593 # On some machines there are bits in addresses which are not really
594 # part of the address, but are used by the kernel, the hardware, etc.
595 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
596 # we get a "real" address such as one would find in a symbol table.
597 # This is used only for addresses of instructions, and even then I'm
598 # not sure it's used in all contexts. It exists to deal with there
599 # being a few stray bits in the PC which would mislead us, not as some
600 # sort of generic thing to handle alignment or segmentation (it's
601 # possible it should be in TARGET_READ_PC instead).
602 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
603
604 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
605 # indicates if the target needs software single step. An ISA method to
606 # implement it.
607 #
608 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
609 # target can single step. If not, then implement single step using breakpoints.
610 #
611 # A return value of 1 means that the software_single_step breakpoints
612 # were inserted; 0 means they were not. Multiple breakpoints may be
613 # inserted for some instructions such as conditional branch. However,
614 # each implementation must always evaluate the condition and only put
615 # the breakpoint at the branch destination if the condition is true, so
616 # that we ensure forward progress when stepping past a conditional
617 # branch to self.
618 F:int:software_single_step:struct frame_info *frame:frame
619
620 # Return non-zero if the processor is executing a delay slot and a
621 # further single-step is needed before the instruction finishes.
622 M:int:single_step_through_delay:struct frame_info *frame:frame
623 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
624 # disassembler. Perhaps objdump can handle it?
625 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
626 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
627
628
629 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
630 # evaluates non-zero, this is the address where the debugger will place
631 # a step-resume breakpoint to get us past the dynamic linker.
632 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
633 # Some systems also have trampoline code for returning from shared libs.
634 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
635
636 # A target might have problems with watchpoints as soon as the stack
637 # frame of the current function has been destroyed. This mostly happens
638 # as the first action in a function's epilogue. stack_frame_destroyed_p()
639 # is defined to return a non-zero value if either the given addr is one
640 # instruction after the stack destroying instruction up to the trailing
641 # return instruction or if we can figure out that the stack frame has
642 # already been invalidated regardless of the value of addr. Targets
643 # which don't suffer from that problem could just let this functionality
644 # untouched.
645 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
646 # Process an ELF symbol in the minimal symbol table in a backend-specific
647 # way. Normally this hook is supposed to do nothing, however if required,
648 # then this hook can be used to apply tranformations to symbols that are
649 # considered special in some way. For example the MIPS backend uses it
650 # to interpret \`st_other' information to mark compressed code symbols so
651 # that they can be treated in the appropriate manner in the processing of
652 # the main symbol table and DWARF-2 records.
653 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
654 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
655 # Process a symbol in the main symbol table in a backend-specific way.
656 # Normally this hook is supposed to do nothing, however if required,
657 # then this hook can be used to apply tranformations to symbols that
658 # are considered special in some way. This is currently used by the
659 # MIPS backend to make sure compressed code symbols have the ISA bit
660 # set. This in turn is needed for symbol values seen in GDB to match
661 # the values used at the runtime by the program itself, for function
662 # and label references.
663 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
664 # Adjust the address retrieved from a DWARF-2 record other than a line
665 # entry in a backend-specific way. Normally this hook is supposed to
666 # return the address passed unchanged, however if that is incorrect for
667 # any reason, then this hook can be used to fix the address up in the
668 # required manner. This is currently used by the MIPS backend to make
669 # sure addresses in FDE, range records, etc. referring to compressed
670 # code have the ISA bit set, matching line information and the symbol
671 # table.
672 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
673 # Adjust the address updated by a line entry in a backend-specific way.
674 # Normally this hook is supposed to return the address passed unchanged,
675 # however in the case of inconsistencies in these records, this hook can
676 # be used to fix them up in the required manner. This is currently used
677 # by the MIPS backend to make sure all line addresses in compressed code
678 # are presented with the ISA bit set, which is not always the case. This
679 # in turn ensures breakpoint addresses are correctly matched against the
680 # stop PC.
681 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
682 v:int:cannot_step_breakpoint:::0:0::0
683 v:int:have_nonsteppable_watchpoint:::0:0::0
684 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
685 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
686
687 # Return the appropriate type_flags for the supplied address class.
688 # This function should return 1 if the address class was recognized and
689 # type_flags was set, zero otherwise.
690 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
691 # Is a register in a group
692 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
693 # Fetch the pointer to the ith function argument.
694 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
695
696 # Iterate over all supported register notes in a core file. For each
697 # supported register note section, the iterator must call CB and pass
698 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
699 # the supported register note sections based on the current register
700 # values. Otherwise it should enumerate all supported register note
701 # sections.
702 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
703
704 # Create core file notes
705 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
706
707 # The elfcore writer hook to use to write Linux prpsinfo notes to core
708 # files. Most Linux architectures use the same prpsinfo32 or
709 # prpsinfo64 layouts, and so won't need to provide this hook, as we
710 # call the Linux generic routines in bfd to write prpsinfo notes by
711 # default.
712 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
713
714 # Find core file memory regions
715 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
716
717 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
718 # core file into buffer READBUF with length LEN. Return the number of bytes read
719 # (zero indicates failure).
720 # failed, otherwise, return the red length of READBUF.
721 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
722
723 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
724 # libraries list from core file into buffer READBUF with length LEN.
725 # Return the number of bytes read (zero indicates failure).
726 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
727
728 # How the core target converts a PTID from a core file to a string.
729 M:char *:core_pid_to_str:ptid_t ptid:ptid
730
731 # How the core target extracts the name of a thread from a core file.
732 M:const char *:core_thread_name:struct thread_info *thr:thr
733
734 # BFD target to use when generating a core file.
735 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
736
737 # If the elements of C++ vtables are in-place function descriptors rather
738 # than normal function pointers (which may point to code or a descriptor),
739 # set this to one.
740 v:int:vtable_function_descriptors:::0:0::0
741
742 # Set if the least significant bit of the delta is used instead of the least
743 # significant bit of the pfn for pointers to virtual member functions.
744 v:int:vbit_in_delta:::0:0::0
745
746 # Advance PC to next instruction in order to skip a permanent breakpoint.
747 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
748
749 # The maximum length of an instruction on this architecture in bytes.
750 V:ULONGEST:max_insn_length:::0:0
751
752 # Copy the instruction at FROM to TO, and make any adjustments
753 # necessary to single-step it at that address.
754 #
755 # REGS holds the state the thread's registers will have before
756 # executing the copied instruction; the PC in REGS will refer to FROM,
757 # not the copy at TO. The caller should update it to point at TO later.
758 #
759 # Return a pointer to data of the architecture's choice to be passed
760 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
761 # the instruction's effects have been completely simulated, with the
762 # resulting state written back to REGS.
763 #
764 # For a general explanation of displaced stepping and how GDB uses it,
765 # see the comments in infrun.c.
766 #
767 # The TO area is only guaranteed to have space for
768 # gdbarch_max_insn_length (arch) bytes, so this function must not
769 # write more bytes than that to that area.
770 #
771 # If you do not provide this function, GDB assumes that the
772 # architecture does not support displaced stepping.
773 #
774 # If your architecture doesn't need to adjust instructions before
775 # single-stepping them, consider using simple_displaced_step_copy_insn
776 # here.
777 #
778 # If the instruction cannot execute out of line, return NULL. The
779 # core falls back to stepping past the instruction in-line instead in
780 # that case.
781 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
782
783 # Return true if GDB should use hardware single-stepping to execute
784 # the displaced instruction identified by CLOSURE. If false,
785 # GDB will simply restart execution at the displaced instruction
786 # location, and it is up to the target to ensure GDB will receive
787 # control again (e.g. by placing a software breakpoint instruction
788 # into the displaced instruction buffer).
789 #
790 # The default implementation returns false on all targets that
791 # provide a gdbarch_software_single_step routine, and true otherwise.
792 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
793
794 # Fix up the state resulting from successfully single-stepping a
795 # displaced instruction, to give the result we would have gotten from
796 # stepping the instruction in its original location.
797 #
798 # REGS is the register state resulting from single-stepping the
799 # displaced instruction.
800 #
801 # CLOSURE is the result from the matching call to
802 # gdbarch_displaced_step_copy_insn.
803 #
804 # If you provide gdbarch_displaced_step_copy_insn.but not this
805 # function, then GDB assumes that no fixup is needed after
806 # single-stepping the instruction.
807 #
808 # For a general explanation of displaced stepping and how GDB uses it,
809 # see the comments in infrun.c.
810 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
811
812 # Free a closure returned by gdbarch_displaced_step_copy_insn.
813 #
814 # If you provide gdbarch_displaced_step_copy_insn, you must provide
815 # this function as well.
816 #
817 # If your architecture uses closures that don't need to be freed, then
818 # you can use simple_displaced_step_free_closure here.
819 #
820 # For a general explanation of displaced stepping and how GDB uses it,
821 # see the comments in infrun.c.
822 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
823
824 # Return the address of an appropriate place to put displaced
825 # instructions while we step over them. There need only be one such
826 # place, since we're only stepping one thread over a breakpoint at a
827 # time.
828 #
829 # For a general explanation of displaced stepping and how GDB uses it,
830 # see the comments in infrun.c.
831 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
832
833 # Relocate an instruction to execute at a different address. OLDLOC
834 # is the address in the inferior memory where the instruction to
835 # relocate is currently at. On input, TO points to the destination
836 # where we want the instruction to be copied (and possibly adjusted)
837 # to. On output, it points to one past the end of the resulting
838 # instruction(s). The effect of executing the instruction at TO shall
839 # be the same as if executing it at FROM. For example, call
840 # instructions that implicitly push the return address on the stack
841 # should be adjusted to return to the instruction after OLDLOC;
842 # relative branches, and other PC-relative instructions need the
843 # offset adjusted; etc.
844 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
845
846 # Refresh overlay mapped state for section OSECT.
847 F:void:overlay_update:struct obj_section *osect:osect
848
849 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
850
851 # Handle special encoding of static variables in stabs debug info.
852 F:const char *:static_transform_name:const char *name:name
853 # Set if the address in N_SO or N_FUN stabs may be zero.
854 v:int:sofun_address_maybe_missing:::0:0::0
855
856 # Parse the instruction at ADDR storing in the record execution log
857 # the registers REGCACHE and memory ranges that will be affected when
858 # the instruction executes, along with their current values.
859 # Return -1 if something goes wrong, 0 otherwise.
860 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
861
862 # Save process state after a signal.
863 # Return -1 if something goes wrong, 0 otherwise.
864 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
865
866 # Signal translation: translate inferior's signal (target's) number
867 # into GDB's representation. The implementation of this method must
868 # be host independent. IOW, don't rely on symbols of the NAT_FILE
869 # header (the nm-*.h files), the host <signal.h> header, or similar
870 # headers. This is mainly used when cross-debugging core files ---
871 # "Live" targets hide the translation behind the target interface
872 # (target_wait, target_resume, etc.).
873 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
874
875 # Signal translation: translate the GDB's internal signal number into
876 # the inferior's signal (target's) representation. The implementation
877 # of this method must be host independent. IOW, don't rely on symbols
878 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
879 # header, or similar headers.
880 # Return the target signal number if found, or -1 if the GDB internal
881 # signal number is invalid.
882 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
883
884 # Extra signal info inspection.
885 #
886 # Return a type suitable to inspect extra signal information.
887 M:struct type *:get_siginfo_type:void:
888
889 # Record architecture-specific information from the symbol table.
890 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
891
892 # Function for the 'catch syscall' feature.
893
894 # Get architecture-specific system calls information from registers.
895 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
896
897 # The filename of the XML syscall for this architecture.
898 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
899
900 # Information about system calls from this architecture
901 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
902
903 # SystemTap related fields and functions.
904
905 # A NULL-terminated array of prefixes used to mark an integer constant
906 # on the architecture's assembly.
907 # For example, on x86 integer constants are written as:
908 #
909 # \$10 ;; integer constant 10
910 #
911 # in this case, this prefix would be the character \`\$\'.
912 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
913
914 # A NULL-terminated array of suffixes used to mark an integer constant
915 # on the architecture's assembly.
916 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
917
918 # A NULL-terminated array of prefixes used to mark a register name on
919 # the architecture's assembly.
920 # For example, on x86 the register name is written as:
921 #
922 # \%eax ;; register eax
923 #
924 # in this case, this prefix would be the character \`\%\'.
925 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
926
927 # A NULL-terminated array of suffixes used to mark a register name on
928 # the architecture's assembly.
929 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
930
931 # A NULL-terminated array of prefixes used to mark a register
932 # indirection on the architecture's assembly.
933 # For example, on x86 the register indirection is written as:
934 #
935 # \(\%eax\) ;; indirecting eax
936 #
937 # in this case, this prefix would be the charater \`\(\'.
938 #
939 # Please note that we use the indirection prefix also for register
940 # displacement, e.g., \`4\(\%eax\)\' on x86.
941 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
942
943 # A NULL-terminated array of suffixes used to mark a register
944 # indirection on the architecture's assembly.
945 # For example, on x86 the register indirection is written as:
946 #
947 # \(\%eax\) ;; indirecting eax
948 #
949 # in this case, this prefix would be the charater \`\)\'.
950 #
951 # Please note that we use the indirection suffix also for register
952 # displacement, e.g., \`4\(\%eax\)\' on x86.
953 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
954
955 # Prefix(es) used to name a register using GDB's nomenclature.
956 #
957 # For example, on PPC a register is represented by a number in the assembly
958 # language (e.g., \`10\' is the 10th general-purpose register). However,
959 # inside GDB this same register has an \`r\' appended to its name, so the 10th
960 # register would be represented as \`r10\' internally.
961 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
962
963 # Suffix used to name a register using GDB's nomenclature.
964 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
965
966 # Check if S is a single operand.
967 #
968 # Single operands can be:
969 # \- Literal integers, e.g. \`\$10\' on x86
970 # \- Register access, e.g. \`\%eax\' on x86
971 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
972 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
973 #
974 # This function should check for these patterns on the string
975 # and return 1 if some were found, or zero otherwise. Please try to match
976 # as much info as you can from the string, i.e., if you have to match
977 # something like \`\(\%\', do not match just the \`\(\'.
978 M:int:stap_is_single_operand:const char *s:s
979
980 # Function used to handle a "special case" in the parser.
981 #
982 # A "special case" is considered to be an unknown token, i.e., a token
983 # that the parser does not know how to parse. A good example of special
984 # case would be ARM's register displacement syntax:
985 #
986 # [R0, #4] ;; displacing R0 by 4
987 #
988 # Since the parser assumes that a register displacement is of the form:
989 #
990 # <number> <indirection_prefix> <register_name> <indirection_suffix>
991 #
992 # it means that it will not be able to recognize and parse this odd syntax.
993 # Therefore, we should add a special case function that will handle this token.
994 #
995 # This function should generate the proper expression form of the expression
996 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
997 # and so on). It should also return 1 if the parsing was successful, or zero
998 # if the token was not recognized as a special token (in this case, returning
999 # zero means that the special parser is deferring the parsing to the generic
1000 # parser), and should advance the buffer pointer (p->arg).
1001 M:int:stap_parse_special_token:struct stap_parse_info *p:p
1002
1003 # DTrace related functions.
1004
1005 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1006 # NARG must be >= 0.
1007 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1008
1009 # True if the given ADDR does not contain the instruction sequence
1010 # corresponding to a disabled DTrace is-enabled probe.
1011 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1012
1013 # Enable a DTrace is-enabled probe at ADDR.
1014 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1015
1016 # Disable a DTrace is-enabled probe at ADDR.
1017 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1018
1019 # True if the list of shared libraries is one and only for all
1020 # processes, as opposed to a list of shared libraries per inferior.
1021 # This usually means that all processes, although may or may not share
1022 # an address space, will see the same set of symbols at the same
1023 # addresses.
1024 v:int:has_global_solist:::0:0::0
1025
1026 # On some targets, even though each inferior has its own private
1027 # address space, the debug interface takes care of making breakpoints
1028 # visible to all address spaces automatically. For such cases,
1029 # this property should be set to true.
1030 v:int:has_global_breakpoints:::0:0::0
1031
1032 # True if inferiors share an address space (e.g., uClinux).
1033 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1034
1035 # True if a fast tracepoint can be set at an address.
1036 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1037
1038 # Guess register state based on tracepoint location. Used for tracepoints
1039 # where no registers have been collected, but there's only one location,
1040 # allowing us to guess the PC value, and perhaps some other registers.
1041 # On entry, regcache has all registers marked as unavailable.
1042 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1043
1044 # Return the "auto" target charset.
1045 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1046 # Return the "auto" target wide charset.
1047 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1048
1049 # If non-empty, this is a file extension that will be opened in place
1050 # of the file extension reported by the shared library list.
1051 #
1052 # This is most useful for toolchains that use a post-linker tool,
1053 # where the names of the files run on the target differ in extension
1054 # compared to the names of the files GDB should load for debug info.
1055 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1056
1057 # If true, the target OS has DOS-based file system semantics. That
1058 # is, absolute paths include a drive name, and the backslash is
1059 # considered a directory separator.
1060 v:int:has_dos_based_file_system:::0:0::0
1061
1062 # Generate bytecodes to collect the return address in a frame.
1063 # Since the bytecodes run on the target, possibly with GDB not even
1064 # connected, the full unwinding machinery is not available, and
1065 # typically this function will issue bytecodes for one or more likely
1066 # places that the return address may be found.
1067 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1068
1069 # Implement the "info proc" command.
1070 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1071
1072 # Implement the "info proc" command for core files. Noe that there
1073 # are two "info_proc"-like methods on gdbarch -- one for core files,
1074 # one for live targets.
1075 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1076
1077 # Iterate over all objfiles in the order that makes the most sense
1078 # for the architecture to make global symbol searches.
1079 #
1080 # CB is a callback function where OBJFILE is the objfile to be searched,
1081 # and CB_DATA a pointer to user-defined data (the same data that is passed
1082 # when calling this gdbarch method). The iteration stops if this function
1083 # returns nonzero.
1084 #
1085 # CB_DATA is a pointer to some user-defined data to be passed to
1086 # the callback.
1087 #
1088 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1089 # inspected when the symbol search was requested.
1090 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1091
1092 # Ravenscar arch-dependent ops.
1093 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1094
1095 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1096 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1097
1098 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1099 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1100
1101 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1102 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1103
1104 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1105 # Return 0 if *READPTR is already at the end of the buffer.
1106 # Return -1 if there is insufficient buffer for a whole entry.
1107 # Return 1 if an entry was read into *TYPEP and *VALP.
1108 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1109
1110 # Find the address range of the current inferior's vsyscall/vDSO, and
1111 # write it to *RANGE. If the vsyscall's length can't be determined, a
1112 # range with zero length is returned. Returns true if the vsyscall is
1113 # found, false otherwise.
1114 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1115
1116 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1117 # PROT has GDB_MMAP_PROT_* bitmask format.
1118 # Throw an error if it is not possible. Returned address is always valid.
1119 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1120
1121 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1122 # Print a warning if it is not possible.
1123 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1124
1125 # Return string (caller has to use xfree for it) with options for GCC
1126 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1127 # These options are put before CU's DW_AT_producer compilation options so that
1128 # they can override it. Method may also return NULL.
1129 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1130
1131 # Return a regular expression that matches names used by this
1132 # architecture in GNU configury triplets. The result is statically
1133 # allocated and must not be freed. The default implementation simply
1134 # returns the BFD architecture name, which is correct in nearly every
1135 # case.
1136 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1137
1138 # Return the size in 8-bit bytes of an addressable memory unit on this
1139 # architecture. This corresponds to the number of 8-bit bytes associated to
1140 # each address in memory.
1141 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1142
1143 EOF
1144 }
1145
1146 #
1147 # The .log file
1148 #
1149 exec > new-gdbarch.log
1150 function_list | while do_read
1151 do
1152 cat <<EOF
1153 ${class} ${returntype} ${function} ($formal)
1154 EOF
1155 for r in ${read}
1156 do
1157 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1158 done
1159 if class_is_predicate_p && fallback_default_p
1160 then
1161 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1162 kill $$
1163 exit 1
1164 fi
1165 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1166 then
1167 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1168 kill $$
1169 exit 1
1170 fi
1171 if class_is_multiarch_p
1172 then
1173 if class_is_predicate_p ; then :
1174 elif test "x${predefault}" = "x"
1175 then
1176 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1177 kill $$
1178 exit 1
1179 fi
1180 fi
1181 echo ""
1182 done
1183
1184 exec 1>&2
1185 compare_new gdbarch.log
1186
1187
1188 copyright ()
1189 {
1190 cat <<EOF
1191 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1192 /* vi:set ro: */
1193
1194 /* Dynamic architecture support for GDB, the GNU debugger.
1195
1196 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1197
1198 This file is part of GDB.
1199
1200 This program is free software; you can redistribute it and/or modify
1201 it under the terms of the GNU General Public License as published by
1202 the Free Software Foundation; either version 3 of the License, or
1203 (at your option) any later version.
1204
1205 This program is distributed in the hope that it will be useful,
1206 but WITHOUT ANY WARRANTY; without even the implied warranty of
1207 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1208 GNU General Public License for more details.
1209
1210 You should have received a copy of the GNU General Public License
1211 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1212
1213 /* This file was created with the aid of \`\`gdbarch.sh''.
1214
1215 The Bourne shell script \`\`gdbarch.sh'' creates the files
1216 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1217 against the existing \`\`gdbarch.[hc]''. Any differences found
1218 being reported.
1219
1220 If editing this file, please also run gdbarch.sh and merge any
1221 changes into that script. Conversely, when making sweeping changes
1222 to this file, modifying gdbarch.sh and using its output may prove
1223 easier. */
1224
1225 EOF
1226 }
1227
1228 #
1229 # The .h file
1230 #
1231
1232 exec > new-gdbarch.h
1233 copyright
1234 cat <<EOF
1235 #ifndef GDBARCH_H
1236 #define GDBARCH_H
1237
1238 #include "frame.h"
1239
1240 struct floatformat;
1241 struct ui_file;
1242 struct value;
1243 struct objfile;
1244 struct obj_section;
1245 struct minimal_symbol;
1246 struct regcache;
1247 struct reggroup;
1248 struct regset;
1249 struct disassemble_info;
1250 struct target_ops;
1251 struct obstack;
1252 struct bp_target_info;
1253 struct target_desc;
1254 struct objfile;
1255 struct symbol;
1256 struct displaced_step_closure;
1257 struct syscall;
1258 struct agent_expr;
1259 struct axs_value;
1260 struct stap_parse_info;
1261 struct parser_state;
1262 struct ravenscar_arch_ops;
1263 struct elf_internal_linux_prpsinfo;
1264 struct mem_range;
1265 struct syscalls_info;
1266 struct thread_info;
1267 struct ui_out;
1268
1269 #include "regcache.h"
1270
1271 /* The architecture associated with the inferior through the
1272 connection to the target.
1273
1274 The architecture vector provides some information that is really a
1275 property of the inferior, accessed through a particular target:
1276 ptrace operations; the layout of certain RSP packets; the solib_ops
1277 vector; etc. To differentiate architecture accesses to
1278 per-inferior/target properties from
1279 per-thread/per-frame/per-objfile properties, accesses to
1280 per-inferior/target properties should be made through this
1281 gdbarch. */
1282
1283 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1284 extern struct gdbarch *target_gdbarch (void);
1285
1286 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1287 gdbarch method. */
1288
1289 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1290 (struct objfile *objfile, void *cb_data);
1291
1292 /* Callback type for regset section iterators. The callback usually
1293 invokes the REGSET's supply or collect method, to which it must
1294 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1295 section name, and HUMAN_NAME is used for diagnostic messages.
1296 CB_DATA should have been passed unchanged through the iterator. */
1297
1298 typedef void (iterate_over_regset_sections_cb)
1299 (const char *sect_name, int size, const struct regset *regset,
1300 const char *human_name, void *cb_data);
1301 EOF
1302
1303 # function typedef's
1304 printf "\n"
1305 printf "\n"
1306 printf "/* The following are pre-initialized by GDBARCH. */\n"
1307 function_list | while do_read
1308 do
1309 if class_is_info_p
1310 then
1311 printf "\n"
1312 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1313 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1314 fi
1315 done
1316
1317 # function typedef's
1318 printf "\n"
1319 printf "\n"
1320 printf "/* The following are initialized by the target dependent code. */\n"
1321 function_list | while do_read
1322 do
1323 if [ -n "${comment}" ]
1324 then
1325 echo "${comment}" | sed \
1326 -e '2 s,#,/*,' \
1327 -e '3,$ s,#, ,' \
1328 -e '$ s,$, */,'
1329 fi
1330
1331 if class_is_predicate_p
1332 then
1333 printf "\n"
1334 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1335 fi
1336 if class_is_variable_p
1337 then
1338 printf "\n"
1339 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1340 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1341 fi
1342 if class_is_function_p
1343 then
1344 printf "\n"
1345 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1346 then
1347 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1348 elif class_is_multiarch_p
1349 then
1350 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1351 else
1352 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1353 fi
1354 if [ "x${formal}" = "xvoid" ]
1355 then
1356 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1357 else
1358 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1359 fi
1360 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1361 fi
1362 done
1363
1364 # close it off
1365 cat <<EOF
1366
1367 /* Definition for an unknown syscall, used basically in error-cases. */
1368 #define UNKNOWN_SYSCALL (-1)
1369
1370 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1371
1372
1373 /* Mechanism for co-ordinating the selection of a specific
1374 architecture.
1375
1376 GDB targets (*-tdep.c) can register an interest in a specific
1377 architecture. Other GDB components can register a need to maintain
1378 per-architecture data.
1379
1380 The mechanisms below ensures that there is only a loose connection
1381 between the set-architecture command and the various GDB
1382 components. Each component can independently register their need
1383 to maintain architecture specific data with gdbarch.
1384
1385 Pragmatics:
1386
1387 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1388 didn't scale.
1389
1390 The more traditional mega-struct containing architecture specific
1391 data for all the various GDB components was also considered. Since
1392 GDB is built from a variable number of (fairly independent)
1393 components it was determined that the global aproach was not
1394 applicable. */
1395
1396
1397 /* Register a new architectural family with GDB.
1398
1399 Register support for the specified ARCHITECTURE with GDB. When
1400 gdbarch determines that the specified architecture has been
1401 selected, the corresponding INIT function is called.
1402
1403 --
1404
1405 The INIT function takes two parameters: INFO which contains the
1406 information available to gdbarch about the (possibly new)
1407 architecture; ARCHES which is a list of the previously created
1408 \`\`struct gdbarch'' for this architecture.
1409
1410 The INFO parameter is, as far as possible, be pre-initialized with
1411 information obtained from INFO.ABFD or the global defaults.
1412
1413 The ARCHES parameter is a linked list (sorted most recently used)
1414 of all the previously created architures for this architecture
1415 family. The (possibly NULL) ARCHES->gdbarch can used to access
1416 values from the previously selected architecture for this
1417 architecture family.
1418
1419 The INIT function shall return any of: NULL - indicating that it
1420 doesn't recognize the selected architecture; an existing \`\`struct
1421 gdbarch'' from the ARCHES list - indicating that the new
1422 architecture is just a synonym for an earlier architecture (see
1423 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1424 - that describes the selected architecture (see gdbarch_alloc()).
1425
1426 The DUMP_TDEP function shall print out all target specific values.
1427 Care should be taken to ensure that the function works in both the
1428 multi-arch and non- multi-arch cases. */
1429
1430 struct gdbarch_list
1431 {
1432 struct gdbarch *gdbarch;
1433 struct gdbarch_list *next;
1434 };
1435
1436 struct gdbarch_info
1437 {
1438 /* Use default: NULL (ZERO). */
1439 const struct bfd_arch_info *bfd_arch_info;
1440
1441 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1442 enum bfd_endian byte_order;
1443
1444 enum bfd_endian byte_order_for_code;
1445
1446 /* Use default: NULL (ZERO). */
1447 bfd *abfd;
1448
1449 /* Use default: NULL (ZERO). */
1450 void *tdep_info;
1451
1452 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1453 enum gdb_osabi osabi;
1454
1455 /* Use default: NULL (ZERO). */
1456 const struct target_desc *target_desc;
1457 };
1458
1459 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1460 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1461
1462 /* DEPRECATED - use gdbarch_register() */
1463 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1464
1465 extern void gdbarch_register (enum bfd_architecture architecture,
1466 gdbarch_init_ftype *,
1467 gdbarch_dump_tdep_ftype *);
1468
1469
1470 /* Return a freshly allocated, NULL terminated, array of the valid
1471 architecture names. Since architectures are registered during the
1472 _initialize phase this function only returns useful information
1473 once initialization has been completed. */
1474
1475 extern const char **gdbarch_printable_names (void);
1476
1477
1478 /* Helper function. Search the list of ARCHES for a GDBARCH that
1479 matches the information provided by INFO. */
1480
1481 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1482
1483
1484 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1485 basic initialization using values obtained from the INFO and TDEP
1486 parameters. set_gdbarch_*() functions are called to complete the
1487 initialization of the object. */
1488
1489 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1490
1491
1492 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1493 It is assumed that the caller freeds the \`\`struct
1494 gdbarch_tdep''. */
1495
1496 extern void gdbarch_free (struct gdbarch *);
1497
1498
1499 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1500 obstack. The memory is freed when the corresponding architecture
1501 is also freed. */
1502
1503 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1504 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1505 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1506
1507 /* Duplicate STRING, returning an equivalent string that's allocated on the
1508 obstack associated with GDBARCH. The string is freed when the corresponding
1509 architecture is also freed. */
1510
1511 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1512
1513 /* Helper function. Force an update of the current architecture.
1514
1515 The actual architecture selected is determined by INFO, \`\`(gdb) set
1516 architecture'' et.al., the existing architecture and BFD's default
1517 architecture. INFO should be initialized to zero and then selected
1518 fields should be updated.
1519
1520 Returns non-zero if the update succeeds. */
1521
1522 extern int gdbarch_update_p (struct gdbarch_info info);
1523
1524
1525 /* Helper function. Find an architecture matching info.
1526
1527 INFO should be initialized using gdbarch_info_init, relevant fields
1528 set, and then finished using gdbarch_info_fill.
1529
1530 Returns the corresponding architecture, or NULL if no matching
1531 architecture was found. */
1532
1533 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1534
1535
1536 /* Helper function. Set the target gdbarch to "gdbarch". */
1537
1538 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1539
1540
1541 /* Register per-architecture data-pointer.
1542
1543 Reserve space for a per-architecture data-pointer. An identifier
1544 for the reserved data-pointer is returned. That identifer should
1545 be saved in a local static variable.
1546
1547 Memory for the per-architecture data shall be allocated using
1548 gdbarch_obstack_zalloc. That memory will be deleted when the
1549 corresponding architecture object is deleted.
1550
1551 When a previously created architecture is re-selected, the
1552 per-architecture data-pointer for that previous architecture is
1553 restored. INIT() is not re-called.
1554
1555 Multiple registrarants for any architecture are allowed (and
1556 strongly encouraged). */
1557
1558 struct gdbarch_data;
1559
1560 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1561 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1562 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1563 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1564 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1565 struct gdbarch_data *data,
1566 void *pointer);
1567
1568 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1569
1570
1571 /* Set the dynamic target-system-dependent parameters (architecture,
1572 byte-order, ...) using information found in the BFD. */
1573
1574 extern void set_gdbarch_from_file (bfd *);
1575
1576
1577 /* Initialize the current architecture to the "first" one we find on
1578 our list. */
1579
1580 extern void initialize_current_architecture (void);
1581
1582 /* gdbarch trace variable */
1583 extern unsigned int gdbarch_debug;
1584
1585 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1586
1587 #endif
1588 EOF
1589 exec 1>&2
1590 #../move-if-change new-gdbarch.h gdbarch.h
1591 compare_new gdbarch.h
1592
1593
1594 #
1595 # C file
1596 #
1597
1598 exec > new-gdbarch.c
1599 copyright
1600 cat <<EOF
1601
1602 #include "defs.h"
1603 #include "arch-utils.h"
1604
1605 #include "gdbcmd.h"
1606 #include "inferior.h"
1607 #include "symcat.h"
1608
1609 #include "floatformat.h"
1610 #include "reggroups.h"
1611 #include "osabi.h"
1612 #include "gdb_obstack.h"
1613 #include "observer.h"
1614 #include "regcache.h"
1615 #include "objfiles.h"
1616
1617 /* Static function declarations */
1618
1619 static void alloc_gdbarch_data (struct gdbarch *);
1620
1621 /* Non-zero if we want to trace architecture code. */
1622
1623 #ifndef GDBARCH_DEBUG
1624 #define GDBARCH_DEBUG 0
1625 #endif
1626 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1627 static void
1628 show_gdbarch_debug (struct ui_file *file, int from_tty,
1629 struct cmd_list_element *c, const char *value)
1630 {
1631 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1632 }
1633
1634 static const char *
1635 pformat (const struct floatformat **format)
1636 {
1637 if (format == NULL)
1638 return "(null)";
1639 else
1640 /* Just print out one of them - this is only for diagnostics. */
1641 return format[0]->name;
1642 }
1643
1644 static const char *
1645 pstring (const char *string)
1646 {
1647 if (string == NULL)
1648 return "(null)";
1649 return string;
1650 }
1651
1652 /* Helper function to print a list of strings, represented as "const
1653 char *const *". The list is printed comma-separated. */
1654
1655 static char *
1656 pstring_list (const char *const *list)
1657 {
1658 static char ret[100];
1659 const char *const *p;
1660 size_t offset = 0;
1661
1662 if (list == NULL)
1663 return "(null)";
1664
1665 ret[0] = '\0';
1666 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1667 {
1668 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1669 offset += 2 + s;
1670 }
1671
1672 if (offset > 0)
1673 {
1674 gdb_assert (offset - 2 < sizeof (ret));
1675 ret[offset - 2] = '\0';
1676 }
1677
1678 return ret;
1679 }
1680
1681 EOF
1682
1683 # gdbarch open the gdbarch object
1684 printf "\n"
1685 printf "/* Maintain the struct gdbarch object. */\n"
1686 printf "\n"
1687 printf "struct gdbarch\n"
1688 printf "{\n"
1689 printf " /* Has this architecture been fully initialized? */\n"
1690 printf " int initialized_p;\n"
1691 printf "\n"
1692 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1693 printf " struct obstack *obstack;\n"
1694 printf "\n"
1695 printf " /* basic architectural information. */\n"
1696 function_list | while do_read
1697 do
1698 if class_is_info_p
1699 then
1700 printf " ${returntype} ${function};\n"
1701 fi
1702 done
1703 printf "\n"
1704 printf " /* target specific vector. */\n"
1705 printf " struct gdbarch_tdep *tdep;\n"
1706 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1707 printf "\n"
1708 printf " /* per-architecture data-pointers. */\n"
1709 printf " unsigned nr_data;\n"
1710 printf " void **data;\n"
1711 printf "\n"
1712 cat <<EOF
1713 /* Multi-arch values.
1714
1715 When extending this structure you must:
1716
1717 Add the field below.
1718
1719 Declare set/get functions and define the corresponding
1720 macro in gdbarch.h.
1721
1722 gdbarch_alloc(): If zero/NULL is not a suitable default,
1723 initialize the new field.
1724
1725 verify_gdbarch(): Confirm that the target updated the field
1726 correctly.
1727
1728 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1729 field is dumped out
1730
1731 get_gdbarch(): Implement the set/get functions (probably using
1732 the macro's as shortcuts).
1733
1734 */
1735
1736 EOF
1737 function_list | while do_read
1738 do
1739 if class_is_variable_p
1740 then
1741 printf " ${returntype} ${function};\n"
1742 elif class_is_function_p
1743 then
1744 printf " gdbarch_${function}_ftype *${function};\n"
1745 fi
1746 done
1747 printf "};\n"
1748
1749 # Create a new gdbarch struct
1750 cat <<EOF
1751
1752 /* Create a new \`\`struct gdbarch'' based on information provided by
1753 \`\`struct gdbarch_info''. */
1754 EOF
1755 printf "\n"
1756 cat <<EOF
1757 struct gdbarch *
1758 gdbarch_alloc (const struct gdbarch_info *info,
1759 struct gdbarch_tdep *tdep)
1760 {
1761 struct gdbarch *gdbarch;
1762
1763 /* Create an obstack for allocating all the per-architecture memory,
1764 then use that to allocate the architecture vector. */
1765 struct obstack *obstack = XNEW (struct obstack);
1766 obstack_init (obstack);
1767 gdbarch = XOBNEW (obstack, struct gdbarch);
1768 memset (gdbarch, 0, sizeof (*gdbarch));
1769 gdbarch->obstack = obstack;
1770
1771 alloc_gdbarch_data (gdbarch);
1772
1773 gdbarch->tdep = tdep;
1774 EOF
1775 printf "\n"
1776 function_list | while do_read
1777 do
1778 if class_is_info_p
1779 then
1780 printf " gdbarch->${function} = info->${function};\n"
1781 fi
1782 done
1783 printf "\n"
1784 printf " /* Force the explicit initialization of these. */\n"
1785 function_list | while do_read
1786 do
1787 if class_is_function_p || class_is_variable_p
1788 then
1789 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1790 then
1791 printf " gdbarch->${function} = ${predefault};\n"
1792 fi
1793 fi
1794 done
1795 cat <<EOF
1796 /* gdbarch_alloc() */
1797
1798 return gdbarch;
1799 }
1800 EOF
1801
1802 # Free a gdbarch struct.
1803 printf "\n"
1804 printf "\n"
1805 cat <<EOF
1806 /* Allocate extra space using the per-architecture obstack. */
1807
1808 void *
1809 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1810 {
1811 void *data = obstack_alloc (arch->obstack, size);
1812
1813 memset (data, 0, size);
1814 return data;
1815 }
1816
1817 /* See gdbarch.h. */
1818
1819 char *
1820 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1821 {
1822 return obstack_strdup (arch->obstack, string);
1823 }
1824
1825
1826 /* Free a gdbarch struct. This should never happen in normal
1827 operation --- once you've created a gdbarch, you keep it around.
1828 However, if an architecture's init function encounters an error
1829 building the structure, it may need to clean up a partially
1830 constructed gdbarch. */
1831
1832 void
1833 gdbarch_free (struct gdbarch *arch)
1834 {
1835 struct obstack *obstack;
1836
1837 gdb_assert (arch != NULL);
1838 gdb_assert (!arch->initialized_p);
1839 obstack = arch->obstack;
1840 obstack_free (obstack, 0); /* Includes the ARCH. */
1841 xfree (obstack);
1842 }
1843 EOF
1844
1845 # verify a new architecture
1846 cat <<EOF
1847
1848
1849 /* Ensure that all values in a GDBARCH are reasonable. */
1850
1851 static void
1852 verify_gdbarch (struct gdbarch *gdbarch)
1853 {
1854 struct ui_file *log;
1855 struct cleanup *cleanups;
1856 long length;
1857 char *buf;
1858
1859 log = mem_fileopen ();
1860 cleanups = make_cleanup_ui_file_delete (log);
1861 /* fundamental */
1862 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1863 fprintf_unfiltered (log, "\n\tbyte-order");
1864 if (gdbarch->bfd_arch_info == NULL)
1865 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1866 /* Check those that need to be defined for the given multi-arch level. */
1867 EOF
1868 function_list | while do_read
1869 do
1870 if class_is_function_p || class_is_variable_p
1871 then
1872 if [ "x${invalid_p}" = "x0" ]
1873 then
1874 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1875 elif class_is_predicate_p
1876 then
1877 printf " /* Skip verify of ${function}, has predicate. */\n"
1878 # FIXME: See do_read for potential simplification
1879 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1880 then
1881 printf " if (${invalid_p})\n"
1882 printf " gdbarch->${function} = ${postdefault};\n"
1883 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1884 then
1885 printf " if (gdbarch->${function} == ${predefault})\n"
1886 printf " gdbarch->${function} = ${postdefault};\n"
1887 elif [ -n "${postdefault}" ]
1888 then
1889 printf " if (gdbarch->${function} == 0)\n"
1890 printf " gdbarch->${function} = ${postdefault};\n"
1891 elif [ -n "${invalid_p}" ]
1892 then
1893 printf " if (${invalid_p})\n"
1894 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1895 elif [ -n "${predefault}" ]
1896 then
1897 printf " if (gdbarch->${function} == ${predefault})\n"
1898 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1899 fi
1900 fi
1901 done
1902 cat <<EOF
1903 buf = ui_file_xstrdup (log, &length);
1904 make_cleanup (xfree, buf);
1905 if (length > 0)
1906 internal_error (__FILE__, __LINE__,
1907 _("verify_gdbarch: the following are invalid ...%s"),
1908 buf);
1909 do_cleanups (cleanups);
1910 }
1911 EOF
1912
1913 # dump the structure
1914 printf "\n"
1915 printf "\n"
1916 cat <<EOF
1917 /* Print out the details of the current architecture. */
1918
1919 void
1920 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1921 {
1922 const char *gdb_nm_file = "<not-defined>";
1923
1924 #if defined (GDB_NM_FILE)
1925 gdb_nm_file = GDB_NM_FILE;
1926 #endif
1927 fprintf_unfiltered (file,
1928 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1929 gdb_nm_file);
1930 EOF
1931 function_list | sort -t: -k 3 | while do_read
1932 do
1933 # First the predicate
1934 if class_is_predicate_p
1935 then
1936 printf " fprintf_unfiltered (file,\n"
1937 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1938 printf " gdbarch_${function}_p (gdbarch));\n"
1939 fi
1940 # Print the corresponding value.
1941 if class_is_function_p
1942 then
1943 printf " fprintf_unfiltered (file,\n"
1944 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1945 printf " host_address_to_string (gdbarch->${function}));\n"
1946 else
1947 # It is a variable
1948 case "${print}:${returntype}" in
1949 :CORE_ADDR )
1950 fmt="%s"
1951 print="core_addr_to_string_nz (gdbarch->${function})"
1952 ;;
1953 :* )
1954 fmt="%s"
1955 print="plongest (gdbarch->${function})"
1956 ;;
1957 * )
1958 fmt="%s"
1959 ;;
1960 esac
1961 printf " fprintf_unfiltered (file,\n"
1962 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1963 printf " ${print});\n"
1964 fi
1965 done
1966 cat <<EOF
1967 if (gdbarch->dump_tdep != NULL)
1968 gdbarch->dump_tdep (gdbarch, file);
1969 }
1970 EOF
1971
1972
1973 # GET/SET
1974 printf "\n"
1975 cat <<EOF
1976 struct gdbarch_tdep *
1977 gdbarch_tdep (struct gdbarch *gdbarch)
1978 {
1979 if (gdbarch_debug >= 2)
1980 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1981 return gdbarch->tdep;
1982 }
1983 EOF
1984 printf "\n"
1985 function_list | while do_read
1986 do
1987 if class_is_predicate_p
1988 then
1989 printf "\n"
1990 printf "int\n"
1991 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1992 printf "{\n"
1993 printf " gdb_assert (gdbarch != NULL);\n"
1994 printf " return ${predicate};\n"
1995 printf "}\n"
1996 fi
1997 if class_is_function_p
1998 then
1999 printf "\n"
2000 printf "${returntype}\n"
2001 if [ "x${formal}" = "xvoid" ]
2002 then
2003 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2004 else
2005 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2006 fi
2007 printf "{\n"
2008 printf " gdb_assert (gdbarch != NULL);\n"
2009 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2010 if class_is_predicate_p && test -n "${predefault}"
2011 then
2012 # Allow a call to a function with a predicate.
2013 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2014 fi
2015 printf " if (gdbarch_debug >= 2)\n"
2016 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2017 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2018 then
2019 if class_is_multiarch_p
2020 then
2021 params="gdbarch"
2022 else
2023 params=""
2024 fi
2025 else
2026 if class_is_multiarch_p
2027 then
2028 params="gdbarch, ${actual}"
2029 else
2030 params="${actual}"
2031 fi
2032 fi
2033 if [ "x${returntype}" = "xvoid" ]
2034 then
2035 printf " gdbarch->${function} (${params});\n"
2036 else
2037 printf " return gdbarch->${function} (${params});\n"
2038 fi
2039 printf "}\n"
2040 printf "\n"
2041 printf "void\n"
2042 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2043 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2044 printf "{\n"
2045 printf " gdbarch->${function} = ${function};\n"
2046 printf "}\n"
2047 elif class_is_variable_p
2048 then
2049 printf "\n"
2050 printf "${returntype}\n"
2051 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2052 printf "{\n"
2053 printf " gdb_assert (gdbarch != NULL);\n"
2054 if [ "x${invalid_p}" = "x0" ]
2055 then
2056 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2057 elif [ -n "${invalid_p}" ]
2058 then
2059 printf " /* Check variable is valid. */\n"
2060 printf " gdb_assert (!(${invalid_p}));\n"
2061 elif [ -n "${predefault}" ]
2062 then
2063 printf " /* Check variable changed from pre-default. */\n"
2064 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2065 fi
2066 printf " if (gdbarch_debug >= 2)\n"
2067 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2068 printf " return gdbarch->${function};\n"
2069 printf "}\n"
2070 printf "\n"
2071 printf "void\n"
2072 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2073 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2074 printf "{\n"
2075 printf " gdbarch->${function} = ${function};\n"
2076 printf "}\n"
2077 elif class_is_info_p
2078 then
2079 printf "\n"
2080 printf "${returntype}\n"
2081 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2082 printf "{\n"
2083 printf " gdb_assert (gdbarch != NULL);\n"
2084 printf " if (gdbarch_debug >= 2)\n"
2085 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2086 printf " return gdbarch->${function};\n"
2087 printf "}\n"
2088 fi
2089 done
2090
2091 # All the trailing guff
2092 cat <<EOF
2093
2094
2095 /* Keep a registry of per-architecture data-pointers required by GDB
2096 modules. */
2097
2098 struct gdbarch_data
2099 {
2100 unsigned index;
2101 int init_p;
2102 gdbarch_data_pre_init_ftype *pre_init;
2103 gdbarch_data_post_init_ftype *post_init;
2104 };
2105
2106 struct gdbarch_data_registration
2107 {
2108 struct gdbarch_data *data;
2109 struct gdbarch_data_registration *next;
2110 };
2111
2112 struct gdbarch_data_registry
2113 {
2114 unsigned nr;
2115 struct gdbarch_data_registration *registrations;
2116 };
2117
2118 struct gdbarch_data_registry gdbarch_data_registry =
2119 {
2120 0, NULL,
2121 };
2122
2123 static struct gdbarch_data *
2124 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2125 gdbarch_data_post_init_ftype *post_init)
2126 {
2127 struct gdbarch_data_registration **curr;
2128
2129 /* Append the new registration. */
2130 for (curr = &gdbarch_data_registry.registrations;
2131 (*curr) != NULL;
2132 curr = &(*curr)->next);
2133 (*curr) = XNEW (struct gdbarch_data_registration);
2134 (*curr)->next = NULL;
2135 (*curr)->data = XNEW (struct gdbarch_data);
2136 (*curr)->data->index = gdbarch_data_registry.nr++;
2137 (*curr)->data->pre_init = pre_init;
2138 (*curr)->data->post_init = post_init;
2139 (*curr)->data->init_p = 1;
2140 return (*curr)->data;
2141 }
2142
2143 struct gdbarch_data *
2144 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2145 {
2146 return gdbarch_data_register (pre_init, NULL);
2147 }
2148
2149 struct gdbarch_data *
2150 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2151 {
2152 return gdbarch_data_register (NULL, post_init);
2153 }
2154
2155 /* Create/delete the gdbarch data vector. */
2156
2157 static void
2158 alloc_gdbarch_data (struct gdbarch *gdbarch)
2159 {
2160 gdb_assert (gdbarch->data == NULL);
2161 gdbarch->nr_data = gdbarch_data_registry.nr;
2162 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2163 }
2164
2165 /* Initialize the current value of the specified per-architecture
2166 data-pointer. */
2167
2168 void
2169 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2170 struct gdbarch_data *data,
2171 void *pointer)
2172 {
2173 gdb_assert (data->index < gdbarch->nr_data);
2174 gdb_assert (gdbarch->data[data->index] == NULL);
2175 gdb_assert (data->pre_init == NULL);
2176 gdbarch->data[data->index] = pointer;
2177 }
2178
2179 /* Return the current value of the specified per-architecture
2180 data-pointer. */
2181
2182 void *
2183 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2184 {
2185 gdb_assert (data->index < gdbarch->nr_data);
2186 if (gdbarch->data[data->index] == NULL)
2187 {
2188 /* The data-pointer isn't initialized, call init() to get a
2189 value. */
2190 if (data->pre_init != NULL)
2191 /* Mid architecture creation: pass just the obstack, and not
2192 the entire architecture, as that way it isn't possible for
2193 pre-init code to refer to undefined architecture
2194 fields. */
2195 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2196 else if (gdbarch->initialized_p
2197 && data->post_init != NULL)
2198 /* Post architecture creation: pass the entire architecture
2199 (as all fields are valid), but be careful to also detect
2200 recursive references. */
2201 {
2202 gdb_assert (data->init_p);
2203 data->init_p = 0;
2204 gdbarch->data[data->index] = data->post_init (gdbarch);
2205 data->init_p = 1;
2206 }
2207 else
2208 /* The architecture initialization hasn't completed - punt -
2209 hope that the caller knows what they are doing. Once
2210 deprecated_set_gdbarch_data has been initialized, this can be
2211 changed to an internal error. */
2212 return NULL;
2213 gdb_assert (gdbarch->data[data->index] != NULL);
2214 }
2215 return gdbarch->data[data->index];
2216 }
2217
2218
2219 /* Keep a registry of the architectures known by GDB. */
2220
2221 struct gdbarch_registration
2222 {
2223 enum bfd_architecture bfd_architecture;
2224 gdbarch_init_ftype *init;
2225 gdbarch_dump_tdep_ftype *dump_tdep;
2226 struct gdbarch_list *arches;
2227 struct gdbarch_registration *next;
2228 };
2229
2230 static struct gdbarch_registration *gdbarch_registry = NULL;
2231
2232 static void
2233 append_name (const char ***buf, int *nr, const char *name)
2234 {
2235 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2236 (*buf)[*nr] = name;
2237 *nr += 1;
2238 }
2239
2240 const char **
2241 gdbarch_printable_names (void)
2242 {
2243 /* Accumulate a list of names based on the registed list of
2244 architectures. */
2245 int nr_arches = 0;
2246 const char **arches = NULL;
2247 struct gdbarch_registration *rego;
2248
2249 for (rego = gdbarch_registry;
2250 rego != NULL;
2251 rego = rego->next)
2252 {
2253 const struct bfd_arch_info *ap;
2254 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2255 if (ap == NULL)
2256 internal_error (__FILE__, __LINE__,
2257 _("gdbarch_architecture_names: multi-arch unknown"));
2258 do
2259 {
2260 append_name (&arches, &nr_arches, ap->printable_name);
2261 ap = ap->next;
2262 }
2263 while (ap != NULL);
2264 }
2265 append_name (&arches, &nr_arches, NULL);
2266 return arches;
2267 }
2268
2269
2270 void
2271 gdbarch_register (enum bfd_architecture bfd_architecture,
2272 gdbarch_init_ftype *init,
2273 gdbarch_dump_tdep_ftype *dump_tdep)
2274 {
2275 struct gdbarch_registration **curr;
2276 const struct bfd_arch_info *bfd_arch_info;
2277
2278 /* Check that BFD recognizes this architecture */
2279 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2280 if (bfd_arch_info == NULL)
2281 {
2282 internal_error (__FILE__, __LINE__,
2283 _("gdbarch: Attempt to register "
2284 "unknown architecture (%d)"),
2285 bfd_architecture);
2286 }
2287 /* Check that we haven't seen this architecture before. */
2288 for (curr = &gdbarch_registry;
2289 (*curr) != NULL;
2290 curr = &(*curr)->next)
2291 {
2292 if (bfd_architecture == (*curr)->bfd_architecture)
2293 internal_error (__FILE__, __LINE__,
2294 _("gdbarch: Duplicate registration "
2295 "of architecture (%s)"),
2296 bfd_arch_info->printable_name);
2297 }
2298 /* log it */
2299 if (gdbarch_debug)
2300 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2301 bfd_arch_info->printable_name,
2302 host_address_to_string (init));
2303 /* Append it */
2304 (*curr) = XNEW (struct gdbarch_registration);
2305 (*curr)->bfd_architecture = bfd_architecture;
2306 (*curr)->init = init;
2307 (*curr)->dump_tdep = dump_tdep;
2308 (*curr)->arches = NULL;
2309 (*curr)->next = NULL;
2310 }
2311
2312 void
2313 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2314 gdbarch_init_ftype *init)
2315 {
2316 gdbarch_register (bfd_architecture, init, NULL);
2317 }
2318
2319
2320 /* Look for an architecture using gdbarch_info. */
2321
2322 struct gdbarch_list *
2323 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2324 const struct gdbarch_info *info)
2325 {
2326 for (; arches != NULL; arches = arches->next)
2327 {
2328 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2329 continue;
2330 if (info->byte_order != arches->gdbarch->byte_order)
2331 continue;
2332 if (info->osabi != arches->gdbarch->osabi)
2333 continue;
2334 if (info->target_desc != arches->gdbarch->target_desc)
2335 continue;
2336 return arches;
2337 }
2338 return NULL;
2339 }
2340
2341
2342 /* Find an architecture that matches the specified INFO. Create a new
2343 architecture if needed. Return that new architecture. */
2344
2345 struct gdbarch *
2346 gdbarch_find_by_info (struct gdbarch_info info)
2347 {
2348 struct gdbarch *new_gdbarch;
2349 struct gdbarch_registration *rego;
2350
2351 /* Fill in missing parts of the INFO struct using a number of
2352 sources: "set ..."; INFOabfd supplied; and the global
2353 defaults. */
2354 gdbarch_info_fill (&info);
2355
2356 /* Must have found some sort of architecture. */
2357 gdb_assert (info.bfd_arch_info != NULL);
2358
2359 if (gdbarch_debug)
2360 {
2361 fprintf_unfiltered (gdb_stdlog,
2362 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2363 (info.bfd_arch_info != NULL
2364 ? info.bfd_arch_info->printable_name
2365 : "(null)"));
2366 fprintf_unfiltered (gdb_stdlog,
2367 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2368 info.byte_order,
2369 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2370 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2371 : "default"));
2372 fprintf_unfiltered (gdb_stdlog,
2373 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2374 info.osabi, gdbarch_osabi_name (info.osabi));
2375 fprintf_unfiltered (gdb_stdlog,
2376 "gdbarch_find_by_info: info.abfd %s\n",
2377 host_address_to_string (info.abfd));
2378 fprintf_unfiltered (gdb_stdlog,
2379 "gdbarch_find_by_info: info.tdep_info %s\n",
2380 host_address_to_string (info.tdep_info));
2381 }
2382
2383 /* Find the tdep code that knows about this architecture. */
2384 for (rego = gdbarch_registry;
2385 rego != NULL;
2386 rego = rego->next)
2387 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2388 break;
2389 if (rego == NULL)
2390 {
2391 if (gdbarch_debug)
2392 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2393 "No matching architecture\n");
2394 return 0;
2395 }
2396
2397 /* Ask the tdep code for an architecture that matches "info". */
2398 new_gdbarch = rego->init (info, rego->arches);
2399
2400 /* Did the tdep code like it? No. Reject the change and revert to
2401 the old architecture. */
2402 if (new_gdbarch == NULL)
2403 {
2404 if (gdbarch_debug)
2405 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2406 "Target rejected architecture\n");
2407 return NULL;
2408 }
2409
2410 /* Is this a pre-existing architecture (as determined by already
2411 being initialized)? Move it to the front of the architecture
2412 list (keeping the list sorted Most Recently Used). */
2413 if (new_gdbarch->initialized_p)
2414 {
2415 struct gdbarch_list **list;
2416 struct gdbarch_list *self;
2417 if (gdbarch_debug)
2418 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2419 "Previous architecture %s (%s) selected\n",
2420 host_address_to_string (new_gdbarch),
2421 new_gdbarch->bfd_arch_info->printable_name);
2422 /* Find the existing arch in the list. */
2423 for (list = &rego->arches;
2424 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2425 list = &(*list)->next);
2426 /* It had better be in the list of architectures. */
2427 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2428 /* Unlink SELF. */
2429 self = (*list);
2430 (*list) = self->next;
2431 /* Insert SELF at the front. */
2432 self->next = rego->arches;
2433 rego->arches = self;
2434 /* Return it. */
2435 return new_gdbarch;
2436 }
2437
2438 /* It's a new architecture. */
2439 if (gdbarch_debug)
2440 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2441 "New architecture %s (%s) selected\n",
2442 host_address_to_string (new_gdbarch),
2443 new_gdbarch->bfd_arch_info->printable_name);
2444
2445 /* Insert the new architecture into the front of the architecture
2446 list (keep the list sorted Most Recently Used). */
2447 {
2448 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2449 self->next = rego->arches;
2450 self->gdbarch = new_gdbarch;
2451 rego->arches = self;
2452 }
2453
2454 /* Check that the newly installed architecture is valid. Plug in
2455 any post init values. */
2456 new_gdbarch->dump_tdep = rego->dump_tdep;
2457 verify_gdbarch (new_gdbarch);
2458 new_gdbarch->initialized_p = 1;
2459
2460 if (gdbarch_debug)
2461 gdbarch_dump (new_gdbarch, gdb_stdlog);
2462
2463 return new_gdbarch;
2464 }
2465
2466 /* Make the specified architecture current. */
2467
2468 void
2469 set_target_gdbarch (struct gdbarch *new_gdbarch)
2470 {
2471 gdb_assert (new_gdbarch != NULL);
2472 gdb_assert (new_gdbarch->initialized_p);
2473 current_inferior ()->gdbarch = new_gdbarch;
2474 observer_notify_architecture_changed (new_gdbarch);
2475 registers_changed ();
2476 }
2477
2478 /* Return the current inferior's arch. */
2479
2480 struct gdbarch *
2481 target_gdbarch (void)
2482 {
2483 return current_inferior ()->gdbarch;
2484 }
2485
2486 extern void _initialize_gdbarch (void);
2487
2488 void
2489 _initialize_gdbarch (void)
2490 {
2491 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2492 Set architecture debugging."), _("\\
2493 Show architecture debugging."), _("\\
2494 When non-zero, architecture debugging is enabled."),
2495 NULL,
2496 show_gdbarch_debug,
2497 &setdebuglist, &showdebuglist);
2498 }
2499 EOF
2500
2501 # close things off
2502 exec 1>&2
2503 #../move-if-change new-gdbarch.c gdbarch.c
2504 compare_new gdbarch.c
This page took 0.111357 seconds and 5 git commands to generate.