gdbarch: add addressable_memory_unit_size method
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2015 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a function's epilogue. stack_frame_destroyed_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
638 # Process an ELF symbol in the minimal symbol table in a backend-specific
639 # way. Normally this hook is supposed to do nothing, however if required,
640 # then this hook can be used to apply tranformations to symbols that are
641 # considered special in some way. For example the MIPS backend uses it
642 # to interpret \`st_other' information to mark compressed code symbols so
643 # that they can be treated in the appropriate manner in the processing of
644 # the main symbol table and DWARF-2 records.
645 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647 # Process a symbol in the main symbol table in a backend-specific way.
648 # Normally this hook is supposed to do nothing, however if required,
649 # then this hook can be used to apply tranformations to symbols that
650 # are considered special in some way. This is currently used by the
651 # MIPS backend to make sure compressed code symbols have the ISA bit
652 # set. This in turn is needed for symbol values seen in GDB to match
653 # the values used at the runtime by the program itself, for function
654 # and label references.
655 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656 # Adjust the address retrieved from a DWARF-2 record other than a line
657 # entry in a backend-specific way. Normally this hook is supposed to
658 # return the address passed unchanged, however if that is incorrect for
659 # any reason, then this hook can be used to fix the address up in the
660 # required manner. This is currently used by the MIPS backend to make
661 # sure addresses in FDE, range records, etc. referring to compressed
662 # code have the ISA bit set, matching line information and the symbol
663 # table.
664 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665 # Adjust the address updated by a line entry in a backend-specific way.
666 # Normally this hook is supposed to return the address passed unchanged,
667 # however in the case of inconsistencies in these records, this hook can
668 # be used to fix them up in the required manner. This is currently used
669 # by the MIPS backend to make sure all line addresses in compressed code
670 # are presented with the ISA bit set, which is not always the case. This
671 # in turn ensures breakpoint addresses are correctly matched against the
672 # stop PC.
673 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674 v:int:cannot_step_breakpoint:::0:0::0
675 v:int:have_nonsteppable_watchpoint:::0:0::0
676 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679 # Return the appropriate type_flags for the supplied address class.
680 # This function should return 1 if the address class was recognized and
681 # type_flags was set, zero otherwise.
682 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683 # Is a register in a group
684 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685 # Fetch the pointer to the ith function argument.
686 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688 # Iterate over all supported register notes in a core file. For each
689 # supported register note section, the iterator must call CB and pass
690 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691 # the supported register note sections based on the current register
692 # values. Otherwise it should enumerate all supported register note
693 # sections.
694 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696 # Create core file notes
697 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699 # The elfcore writer hook to use to write Linux prpsinfo notes to core
700 # files. Most Linux architectures use the same prpsinfo32 or
701 # prpsinfo64 layouts, and so won't need to provide this hook, as we
702 # call the Linux generic routines in bfd to write prpsinfo notes by
703 # default.
704 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706 # Find core file memory regions
707 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710 # core file into buffer READBUF with length LEN. Return the number of bytes read
711 # (zero indicates failure).
712 # failed, otherwise, return the red length of READBUF.
713 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716 # libraries list from core file into buffer READBUF with length LEN.
717 # Return the number of bytes read (zero indicates failure).
718 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720 # How the core target converts a PTID from a core file to a string.
721 M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723 # BFD target to use when generating a core file.
724 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726 # If the elements of C++ vtables are in-place function descriptors rather
727 # than normal function pointers (which may point to code or a descriptor),
728 # set this to one.
729 v:int:vtable_function_descriptors:::0:0::0
730
731 # Set if the least significant bit of the delta is used instead of the least
732 # significant bit of the pfn for pointers to virtual member functions.
733 v:int:vbit_in_delta:::0:0::0
734
735 # Advance PC to next instruction in order to skip a permanent breakpoint.
736 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738 # The maximum length of an instruction on this architecture in bytes.
739 V:ULONGEST:max_insn_length:::0:0
740
741 # Copy the instruction at FROM to TO, and make any adjustments
742 # necessary to single-step it at that address.
743 #
744 # REGS holds the state the thread's registers will have before
745 # executing the copied instruction; the PC in REGS will refer to FROM,
746 # not the copy at TO. The caller should update it to point at TO later.
747 #
748 # Return a pointer to data of the architecture's choice to be passed
749 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750 # the instruction's effects have been completely simulated, with the
751 # resulting state written back to REGS.
752 #
753 # For a general explanation of displaced stepping and how GDB uses it,
754 # see the comments in infrun.c.
755 #
756 # The TO area is only guaranteed to have space for
757 # gdbarch_max_insn_length (arch) bytes, so this function must not
758 # write more bytes than that to that area.
759 #
760 # If you do not provide this function, GDB assumes that the
761 # architecture does not support displaced stepping.
762 #
763 # If your architecture doesn't need to adjust instructions before
764 # single-stepping them, consider using simple_displaced_step_copy_insn
765 # here.
766 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
768 # Return true if GDB should use hardware single-stepping to execute
769 # the displaced instruction identified by CLOSURE. If false,
770 # GDB will simply restart execution at the displaced instruction
771 # location, and it is up to the target to ensure GDB will receive
772 # control again (e.g. by placing a software breakpoint instruction
773 # into the displaced instruction buffer).
774 #
775 # The default implementation returns false on all targets that
776 # provide a gdbarch_software_single_step routine, and true otherwise.
777 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
779 # Fix up the state resulting from successfully single-stepping a
780 # displaced instruction, to give the result we would have gotten from
781 # stepping the instruction in its original location.
782 #
783 # REGS is the register state resulting from single-stepping the
784 # displaced instruction.
785 #
786 # CLOSURE is the result from the matching call to
787 # gdbarch_displaced_step_copy_insn.
788 #
789 # If you provide gdbarch_displaced_step_copy_insn.but not this
790 # function, then GDB assumes that no fixup is needed after
791 # single-stepping the instruction.
792 #
793 # For a general explanation of displaced stepping and how GDB uses it,
794 # see the comments in infrun.c.
795 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797 # Free a closure returned by gdbarch_displaced_step_copy_insn.
798 #
799 # If you provide gdbarch_displaced_step_copy_insn, you must provide
800 # this function as well.
801 #
802 # If your architecture uses closures that don't need to be freed, then
803 # you can use simple_displaced_step_free_closure here.
804 #
805 # For a general explanation of displaced stepping and how GDB uses it,
806 # see the comments in infrun.c.
807 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809 # Return the address of an appropriate place to put displaced
810 # instructions while we step over them. There need only be one such
811 # place, since we're only stepping one thread over a breakpoint at a
812 # time.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
818 # Relocate an instruction to execute at a different address. OLDLOC
819 # is the address in the inferior memory where the instruction to
820 # relocate is currently at. On input, TO points to the destination
821 # where we want the instruction to be copied (and possibly adjusted)
822 # to. On output, it points to one past the end of the resulting
823 # instruction(s). The effect of executing the instruction at TO shall
824 # be the same as if executing it at FROM. For example, call
825 # instructions that implicitly push the return address on the stack
826 # should be adjusted to return to the instruction after OLDLOC;
827 # relative branches, and other PC-relative instructions need the
828 # offset adjusted; etc.
829 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
831 # Refresh overlay mapped state for section OSECT.
832 F:void:overlay_update:struct obj_section *osect:osect
833
834 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
835
836 # Handle special encoding of static variables in stabs debug info.
837 F:const char *:static_transform_name:const char *name:name
838 # Set if the address in N_SO or N_FUN stabs may be zero.
839 v:int:sofun_address_maybe_missing:::0:0::0
840
841 # Parse the instruction at ADDR storing in the record execution log
842 # the registers REGCACHE and memory ranges that will be affected when
843 # the instruction executes, along with their current values.
844 # Return -1 if something goes wrong, 0 otherwise.
845 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
847 # Save process state after a signal.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
850
851 # Signal translation: translate inferior's signal (target's) number
852 # into GDB's representation. The implementation of this method must
853 # be host independent. IOW, don't rely on symbols of the NAT_FILE
854 # header (the nm-*.h files), the host <signal.h> header, or similar
855 # headers. This is mainly used when cross-debugging core files ---
856 # "Live" targets hide the translation behind the target interface
857 # (target_wait, target_resume, etc.).
858 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
859
860 # Signal translation: translate the GDB's internal signal number into
861 # the inferior's signal (target's) representation. The implementation
862 # of this method must be host independent. IOW, don't rely on symbols
863 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864 # header, or similar headers.
865 # Return the target signal number if found, or -1 if the GDB internal
866 # signal number is invalid.
867 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
869 # Extra signal info inspection.
870 #
871 # Return a type suitable to inspect extra signal information.
872 M:struct type *:get_siginfo_type:void:
873
874 # Record architecture-specific information from the symbol table.
875 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
876
877 # Function for the 'catch syscall' feature.
878
879 # Get architecture-specific system calls information from registers.
880 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
882 # The filename of the XML syscall for this architecture.
883 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885 # Information about system calls from this architecture
886 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
888 # SystemTap related fields and functions.
889
890 # A NULL-terminated array of prefixes used to mark an integer constant
891 # on the architecture's assembly.
892 # For example, on x86 integer constants are written as:
893 #
894 # \$10 ;; integer constant 10
895 #
896 # in this case, this prefix would be the character \`\$\'.
897 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
898
899 # A NULL-terminated array of suffixes used to mark an integer constant
900 # on the architecture's assembly.
901 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
902
903 # A NULL-terminated array of prefixes used to mark a register name on
904 # the architecture's assembly.
905 # For example, on x86 the register name is written as:
906 #
907 # \%eax ;; register eax
908 #
909 # in this case, this prefix would be the character \`\%\'.
910 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
911
912 # A NULL-terminated array of suffixes used to mark a register name on
913 # the architecture's assembly.
914 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
915
916 # A NULL-terminated array of prefixes used to mark a register
917 # indirection on the architecture's assembly.
918 # For example, on x86 the register indirection is written as:
919 #
920 # \(\%eax\) ;; indirecting eax
921 #
922 # in this case, this prefix would be the charater \`\(\'.
923 #
924 # Please note that we use the indirection prefix also for register
925 # displacement, e.g., \`4\(\%eax\)\' on x86.
926 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
927
928 # A NULL-terminated array of suffixes used to mark a register
929 # indirection on the architecture's assembly.
930 # For example, on x86 the register indirection is written as:
931 #
932 # \(\%eax\) ;; indirecting eax
933 #
934 # in this case, this prefix would be the charater \`\)\'.
935 #
936 # Please note that we use the indirection suffix also for register
937 # displacement, e.g., \`4\(\%eax\)\' on x86.
938 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
939
940 # Prefix(es) used to name a register using GDB's nomenclature.
941 #
942 # For example, on PPC a register is represented by a number in the assembly
943 # language (e.g., \`10\' is the 10th general-purpose register). However,
944 # inside GDB this same register has an \`r\' appended to its name, so the 10th
945 # register would be represented as \`r10\' internally.
946 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
947
948 # Suffix used to name a register using GDB's nomenclature.
949 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
950
951 # Check if S is a single operand.
952 #
953 # Single operands can be:
954 # \- Literal integers, e.g. \`\$10\' on x86
955 # \- Register access, e.g. \`\%eax\' on x86
956 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
957 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958 #
959 # This function should check for these patterns on the string
960 # and return 1 if some were found, or zero otherwise. Please try to match
961 # as much info as you can from the string, i.e., if you have to match
962 # something like \`\(\%\', do not match just the \`\(\'.
963 M:int:stap_is_single_operand:const char *s:s
964
965 # Function used to handle a "special case" in the parser.
966 #
967 # A "special case" is considered to be an unknown token, i.e., a token
968 # that the parser does not know how to parse. A good example of special
969 # case would be ARM's register displacement syntax:
970 #
971 # [R0, #4] ;; displacing R0 by 4
972 #
973 # Since the parser assumes that a register displacement is of the form:
974 #
975 # <number> <indirection_prefix> <register_name> <indirection_suffix>
976 #
977 # it means that it will not be able to recognize and parse this odd syntax.
978 # Therefore, we should add a special case function that will handle this token.
979 #
980 # This function should generate the proper expression form of the expression
981 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982 # and so on). It should also return 1 if the parsing was successful, or zero
983 # if the token was not recognized as a special token (in this case, returning
984 # zero means that the special parser is deferring the parsing to the generic
985 # parser), and should advance the buffer pointer (p->arg).
986 M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988 # DTrace related functions.
989
990 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
991 # NARG must be >= 0.
992 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
993
994 # True if the given ADDR does not contain the instruction sequence
995 # corresponding to a disabled DTrace is-enabled probe.
996 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
997
998 # Enable a DTrace is-enabled probe at ADDR.
999 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1000
1001 # Disable a DTrace is-enabled probe at ADDR.
1002 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1003
1004 # True if the list of shared libraries is one and only for all
1005 # processes, as opposed to a list of shared libraries per inferior.
1006 # This usually means that all processes, although may or may not share
1007 # an address space, will see the same set of symbols at the same
1008 # addresses.
1009 v:int:has_global_solist:::0:0::0
1010
1011 # On some targets, even though each inferior has its own private
1012 # address space, the debug interface takes care of making breakpoints
1013 # visible to all address spaces automatically. For such cases,
1014 # this property should be set to true.
1015 v:int:has_global_breakpoints:::0:0::0
1016
1017 # True if inferiors share an address space (e.g., uClinux).
1018 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1019
1020 # True if a fast tracepoint can be set at an address.
1021 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
1022
1023 # Return the "auto" target charset.
1024 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1025 # Return the "auto" target wide charset.
1026 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1027
1028 # If non-empty, this is a file extension that will be opened in place
1029 # of the file extension reported by the shared library list.
1030 #
1031 # This is most useful for toolchains that use a post-linker tool,
1032 # where the names of the files run on the target differ in extension
1033 # compared to the names of the files GDB should load for debug info.
1034 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1035
1036 # If true, the target OS has DOS-based file system semantics. That
1037 # is, absolute paths include a drive name, and the backslash is
1038 # considered a directory separator.
1039 v:int:has_dos_based_file_system:::0:0::0
1040
1041 # Generate bytecodes to collect the return address in a frame.
1042 # Since the bytecodes run on the target, possibly with GDB not even
1043 # connected, the full unwinding machinery is not available, and
1044 # typically this function will issue bytecodes for one or more likely
1045 # places that the return address may be found.
1046 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1047
1048 # Implement the "info proc" command.
1049 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1050
1051 # Implement the "info proc" command for core files. Noe that there
1052 # are two "info_proc"-like methods on gdbarch -- one for core files,
1053 # one for live targets.
1054 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1055
1056 # Iterate over all objfiles in the order that makes the most sense
1057 # for the architecture to make global symbol searches.
1058 #
1059 # CB is a callback function where OBJFILE is the objfile to be searched,
1060 # and CB_DATA a pointer to user-defined data (the same data that is passed
1061 # when calling this gdbarch method). The iteration stops if this function
1062 # returns nonzero.
1063 #
1064 # CB_DATA is a pointer to some user-defined data to be passed to
1065 # the callback.
1066 #
1067 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1068 # inspected when the symbol search was requested.
1069 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1070
1071 # Ravenscar arch-dependent ops.
1072 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1073
1074 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1075 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1076
1077 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1078 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1079
1080 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1081 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1082
1083 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1084 # Return 0 if *READPTR is already at the end of the buffer.
1085 # Return -1 if there is insufficient buffer for a whole entry.
1086 # Return 1 if an entry was read into *TYPEP and *VALP.
1087 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1088
1089 # Find the address range of the current inferior's vsyscall/vDSO, and
1090 # write it to *RANGE. If the vsyscall's length can't be determined, a
1091 # range with zero length is returned. Returns true if the vsyscall is
1092 # found, false otherwise.
1093 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1094
1095 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1096 # PROT has GDB_MMAP_PROT_* bitmask format.
1097 # Throw an error if it is not possible. Returned address is always valid.
1098 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1099
1100 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1101 # Print a warning if it is not possible.
1102 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1103
1104 # Return string (caller has to use xfree for it) with options for GCC
1105 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1106 # These options are put before CU's DW_AT_producer compilation options so that
1107 # they can override it. Method may also return NULL.
1108 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1109
1110 # Return a regular expression that matches names used by this
1111 # architecture in GNU configury triplets. The result is statically
1112 # allocated and must not be freed. The default implementation simply
1113 # returns the BFD architecture name, which is correct in nearly every
1114 # case.
1115 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1116
1117 # Return the size in 8-bit bytes of an addressable memory unit on this
1118 # architecture. This corresponds to the number of 8-bit bytes associated to
1119 # each address in memory.
1120 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1121
1122 EOF
1123 }
1124
1125 #
1126 # The .log file
1127 #
1128 exec > new-gdbarch.log
1129 function_list | while do_read
1130 do
1131 cat <<EOF
1132 ${class} ${returntype} ${function} ($formal)
1133 EOF
1134 for r in ${read}
1135 do
1136 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1137 done
1138 if class_is_predicate_p && fallback_default_p
1139 then
1140 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1141 kill $$
1142 exit 1
1143 fi
1144 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1145 then
1146 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1147 kill $$
1148 exit 1
1149 fi
1150 if class_is_multiarch_p
1151 then
1152 if class_is_predicate_p ; then :
1153 elif test "x${predefault}" = "x"
1154 then
1155 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1156 kill $$
1157 exit 1
1158 fi
1159 fi
1160 echo ""
1161 done
1162
1163 exec 1>&2
1164 compare_new gdbarch.log
1165
1166
1167 copyright ()
1168 {
1169 cat <<EOF
1170 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1171 /* vi:set ro: */
1172
1173 /* Dynamic architecture support for GDB, the GNU debugger.
1174
1175 Copyright (C) 1998-2015 Free Software Foundation, Inc.
1176
1177 This file is part of GDB.
1178
1179 This program is free software; you can redistribute it and/or modify
1180 it under the terms of the GNU General Public License as published by
1181 the Free Software Foundation; either version 3 of the License, or
1182 (at your option) any later version.
1183
1184 This program is distributed in the hope that it will be useful,
1185 but WITHOUT ANY WARRANTY; without even the implied warranty of
1186 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1187 GNU General Public License for more details.
1188
1189 You should have received a copy of the GNU General Public License
1190 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1191
1192 /* This file was created with the aid of \`\`gdbarch.sh''.
1193
1194 The Bourne shell script \`\`gdbarch.sh'' creates the files
1195 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1196 against the existing \`\`gdbarch.[hc]''. Any differences found
1197 being reported.
1198
1199 If editing this file, please also run gdbarch.sh and merge any
1200 changes into that script. Conversely, when making sweeping changes
1201 to this file, modifying gdbarch.sh and using its output may prove
1202 easier. */
1203
1204 EOF
1205 }
1206
1207 #
1208 # The .h file
1209 #
1210
1211 exec > new-gdbarch.h
1212 copyright
1213 cat <<EOF
1214 #ifndef GDBARCH_H
1215 #define GDBARCH_H
1216
1217 #include "frame.h"
1218
1219 struct floatformat;
1220 struct ui_file;
1221 struct value;
1222 struct objfile;
1223 struct obj_section;
1224 struct minimal_symbol;
1225 struct regcache;
1226 struct reggroup;
1227 struct regset;
1228 struct disassemble_info;
1229 struct target_ops;
1230 struct obstack;
1231 struct bp_target_info;
1232 struct target_desc;
1233 struct objfile;
1234 struct symbol;
1235 struct displaced_step_closure;
1236 struct core_regset_section;
1237 struct syscall;
1238 struct agent_expr;
1239 struct axs_value;
1240 struct stap_parse_info;
1241 struct parser_state;
1242 struct ravenscar_arch_ops;
1243 struct elf_internal_linux_prpsinfo;
1244 struct mem_range;
1245 struct syscalls_info;
1246
1247 #include "regcache.h"
1248
1249 /* The architecture associated with the inferior through the
1250 connection to the target.
1251
1252 The architecture vector provides some information that is really a
1253 property of the inferior, accessed through a particular target:
1254 ptrace operations; the layout of certain RSP packets; the solib_ops
1255 vector; etc. To differentiate architecture accesses to
1256 per-inferior/target properties from
1257 per-thread/per-frame/per-objfile properties, accesses to
1258 per-inferior/target properties should be made through this
1259 gdbarch. */
1260
1261 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1262 extern struct gdbarch *target_gdbarch (void);
1263
1264 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1265 gdbarch method. */
1266
1267 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1268 (struct objfile *objfile, void *cb_data);
1269
1270 /* Callback type for regset section iterators. The callback usually
1271 invokes the REGSET's supply or collect method, to which it must
1272 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1273 section name, and HUMAN_NAME is used for diagnostic messages.
1274 CB_DATA should have been passed unchanged through the iterator. */
1275
1276 typedef void (iterate_over_regset_sections_cb)
1277 (const char *sect_name, int size, const struct regset *regset,
1278 const char *human_name, void *cb_data);
1279 EOF
1280
1281 # function typedef's
1282 printf "\n"
1283 printf "\n"
1284 printf "/* The following are pre-initialized by GDBARCH. */\n"
1285 function_list | while do_read
1286 do
1287 if class_is_info_p
1288 then
1289 printf "\n"
1290 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1291 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1292 fi
1293 done
1294
1295 # function typedef's
1296 printf "\n"
1297 printf "\n"
1298 printf "/* The following are initialized by the target dependent code. */\n"
1299 function_list | while do_read
1300 do
1301 if [ -n "${comment}" ]
1302 then
1303 echo "${comment}" | sed \
1304 -e '2 s,#,/*,' \
1305 -e '3,$ s,#, ,' \
1306 -e '$ s,$, */,'
1307 fi
1308
1309 if class_is_predicate_p
1310 then
1311 printf "\n"
1312 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1313 fi
1314 if class_is_variable_p
1315 then
1316 printf "\n"
1317 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1318 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1319 fi
1320 if class_is_function_p
1321 then
1322 printf "\n"
1323 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1324 then
1325 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1326 elif class_is_multiarch_p
1327 then
1328 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1329 else
1330 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1331 fi
1332 if [ "x${formal}" = "xvoid" ]
1333 then
1334 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1335 else
1336 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1337 fi
1338 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1339 fi
1340 done
1341
1342 # close it off
1343 cat <<EOF
1344
1345 /* Definition for an unknown syscall, used basically in error-cases. */
1346 #define UNKNOWN_SYSCALL (-1)
1347
1348 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1349
1350
1351 /* Mechanism for co-ordinating the selection of a specific
1352 architecture.
1353
1354 GDB targets (*-tdep.c) can register an interest in a specific
1355 architecture. Other GDB components can register a need to maintain
1356 per-architecture data.
1357
1358 The mechanisms below ensures that there is only a loose connection
1359 between the set-architecture command and the various GDB
1360 components. Each component can independently register their need
1361 to maintain architecture specific data with gdbarch.
1362
1363 Pragmatics:
1364
1365 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1366 didn't scale.
1367
1368 The more traditional mega-struct containing architecture specific
1369 data for all the various GDB components was also considered. Since
1370 GDB is built from a variable number of (fairly independent)
1371 components it was determined that the global aproach was not
1372 applicable. */
1373
1374
1375 /* Register a new architectural family with GDB.
1376
1377 Register support for the specified ARCHITECTURE with GDB. When
1378 gdbarch determines that the specified architecture has been
1379 selected, the corresponding INIT function is called.
1380
1381 --
1382
1383 The INIT function takes two parameters: INFO which contains the
1384 information available to gdbarch about the (possibly new)
1385 architecture; ARCHES which is a list of the previously created
1386 \`\`struct gdbarch'' for this architecture.
1387
1388 The INFO parameter is, as far as possible, be pre-initialized with
1389 information obtained from INFO.ABFD or the global defaults.
1390
1391 The ARCHES parameter is a linked list (sorted most recently used)
1392 of all the previously created architures for this architecture
1393 family. The (possibly NULL) ARCHES->gdbarch can used to access
1394 values from the previously selected architecture for this
1395 architecture family.
1396
1397 The INIT function shall return any of: NULL - indicating that it
1398 doesn't recognize the selected architecture; an existing \`\`struct
1399 gdbarch'' from the ARCHES list - indicating that the new
1400 architecture is just a synonym for an earlier architecture (see
1401 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1402 - that describes the selected architecture (see gdbarch_alloc()).
1403
1404 The DUMP_TDEP function shall print out all target specific values.
1405 Care should be taken to ensure that the function works in both the
1406 multi-arch and non- multi-arch cases. */
1407
1408 struct gdbarch_list
1409 {
1410 struct gdbarch *gdbarch;
1411 struct gdbarch_list *next;
1412 };
1413
1414 struct gdbarch_info
1415 {
1416 /* Use default: NULL (ZERO). */
1417 const struct bfd_arch_info *bfd_arch_info;
1418
1419 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1420 enum bfd_endian byte_order;
1421
1422 enum bfd_endian byte_order_for_code;
1423
1424 /* Use default: NULL (ZERO). */
1425 bfd *abfd;
1426
1427 /* Use default: NULL (ZERO). */
1428 struct gdbarch_tdep_info *tdep_info;
1429
1430 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1431 enum gdb_osabi osabi;
1432
1433 /* Use default: NULL (ZERO). */
1434 const struct target_desc *target_desc;
1435 };
1436
1437 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1438 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1439
1440 /* DEPRECATED - use gdbarch_register() */
1441 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1442
1443 extern void gdbarch_register (enum bfd_architecture architecture,
1444 gdbarch_init_ftype *,
1445 gdbarch_dump_tdep_ftype *);
1446
1447
1448 /* Return a freshly allocated, NULL terminated, array of the valid
1449 architecture names. Since architectures are registered during the
1450 _initialize phase this function only returns useful information
1451 once initialization has been completed. */
1452
1453 extern const char **gdbarch_printable_names (void);
1454
1455
1456 /* Helper function. Search the list of ARCHES for a GDBARCH that
1457 matches the information provided by INFO. */
1458
1459 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1460
1461
1462 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1463 basic initialization using values obtained from the INFO and TDEP
1464 parameters. set_gdbarch_*() functions are called to complete the
1465 initialization of the object. */
1466
1467 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1468
1469
1470 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1471 It is assumed that the caller freeds the \`\`struct
1472 gdbarch_tdep''. */
1473
1474 extern void gdbarch_free (struct gdbarch *);
1475
1476
1477 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1478 obstack. The memory is freed when the corresponding architecture
1479 is also freed. */
1480
1481 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1482 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1483 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1484
1485
1486 /* Helper function. Force an update of the current architecture.
1487
1488 The actual architecture selected is determined by INFO, \`\`(gdb) set
1489 architecture'' et.al., the existing architecture and BFD's default
1490 architecture. INFO should be initialized to zero and then selected
1491 fields should be updated.
1492
1493 Returns non-zero if the update succeeds. */
1494
1495 extern int gdbarch_update_p (struct gdbarch_info info);
1496
1497
1498 /* Helper function. Find an architecture matching info.
1499
1500 INFO should be initialized using gdbarch_info_init, relevant fields
1501 set, and then finished using gdbarch_info_fill.
1502
1503 Returns the corresponding architecture, or NULL if no matching
1504 architecture was found. */
1505
1506 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1507
1508
1509 /* Helper function. Set the target gdbarch to "gdbarch". */
1510
1511 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1512
1513
1514 /* Register per-architecture data-pointer.
1515
1516 Reserve space for a per-architecture data-pointer. An identifier
1517 for the reserved data-pointer is returned. That identifer should
1518 be saved in a local static variable.
1519
1520 Memory for the per-architecture data shall be allocated using
1521 gdbarch_obstack_zalloc. That memory will be deleted when the
1522 corresponding architecture object is deleted.
1523
1524 When a previously created architecture is re-selected, the
1525 per-architecture data-pointer for that previous architecture is
1526 restored. INIT() is not re-called.
1527
1528 Multiple registrarants for any architecture are allowed (and
1529 strongly encouraged). */
1530
1531 struct gdbarch_data;
1532
1533 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1534 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1535 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1536 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1537 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1538 struct gdbarch_data *data,
1539 void *pointer);
1540
1541 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1542
1543
1544 /* Set the dynamic target-system-dependent parameters (architecture,
1545 byte-order, ...) using information found in the BFD. */
1546
1547 extern void set_gdbarch_from_file (bfd *);
1548
1549
1550 /* Initialize the current architecture to the "first" one we find on
1551 our list. */
1552
1553 extern void initialize_current_architecture (void);
1554
1555 /* gdbarch trace variable */
1556 extern unsigned int gdbarch_debug;
1557
1558 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1559
1560 #endif
1561 EOF
1562 exec 1>&2
1563 #../move-if-change new-gdbarch.h gdbarch.h
1564 compare_new gdbarch.h
1565
1566
1567 #
1568 # C file
1569 #
1570
1571 exec > new-gdbarch.c
1572 copyright
1573 cat <<EOF
1574
1575 #include "defs.h"
1576 #include "arch-utils.h"
1577
1578 #include "gdbcmd.h"
1579 #include "inferior.h"
1580 #include "symcat.h"
1581
1582 #include "floatformat.h"
1583 #include "reggroups.h"
1584 #include "osabi.h"
1585 #include "gdb_obstack.h"
1586 #include "observer.h"
1587 #include "regcache.h"
1588 #include "objfiles.h"
1589
1590 /* Static function declarations */
1591
1592 static void alloc_gdbarch_data (struct gdbarch *);
1593
1594 /* Non-zero if we want to trace architecture code. */
1595
1596 #ifndef GDBARCH_DEBUG
1597 #define GDBARCH_DEBUG 0
1598 #endif
1599 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1600 static void
1601 show_gdbarch_debug (struct ui_file *file, int from_tty,
1602 struct cmd_list_element *c, const char *value)
1603 {
1604 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1605 }
1606
1607 static const char *
1608 pformat (const struct floatformat **format)
1609 {
1610 if (format == NULL)
1611 return "(null)";
1612 else
1613 /* Just print out one of them - this is only for diagnostics. */
1614 return format[0]->name;
1615 }
1616
1617 static const char *
1618 pstring (const char *string)
1619 {
1620 if (string == NULL)
1621 return "(null)";
1622 return string;
1623 }
1624
1625 /* Helper function to print a list of strings, represented as "const
1626 char *const *". The list is printed comma-separated. */
1627
1628 static char *
1629 pstring_list (const char *const *list)
1630 {
1631 static char ret[100];
1632 const char *const *p;
1633 size_t offset = 0;
1634
1635 if (list == NULL)
1636 return "(null)";
1637
1638 ret[0] = '\0';
1639 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1640 {
1641 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1642 offset += 2 + s;
1643 }
1644
1645 if (offset > 0)
1646 {
1647 gdb_assert (offset - 2 < sizeof (ret));
1648 ret[offset - 2] = '\0';
1649 }
1650
1651 return ret;
1652 }
1653
1654 EOF
1655
1656 # gdbarch open the gdbarch object
1657 printf "\n"
1658 printf "/* Maintain the struct gdbarch object. */\n"
1659 printf "\n"
1660 printf "struct gdbarch\n"
1661 printf "{\n"
1662 printf " /* Has this architecture been fully initialized? */\n"
1663 printf " int initialized_p;\n"
1664 printf "\n"
1665 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1666 printf " struct obstack *obstack;\n"
1667 printf "\n"
1668 printf " /* basic architectural information. */\n"
1669 function_list | while do_read
1670 do
1671 if class_is_info_p
1672 then
1673 printf " ${returntype} ${function};\n"
1674 fi
1675 done
1676 printf "\n"
1677 printf " /* target specific vector. */\n"
1678 printf " struct gdbarch_tdep *tdep;\n"
1679 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1680 printf "\n"
1681 printf " /* per-architecture data-pointers. */\n"
1682 printf " unsigned nr_data;\n"
1683 printf " void **data;\n"
1684 printf "\n"
1685 cat <<EOF
1686 /* Multi-arch values.
1687
1688 When extending this structure you must:
1689
1690 Add the field below.
1691
1692 Declare set/get functions and define the corresponding
1693 macro in gdbarch.h.
1694
1695 gdbarch_alloc(): If zero/NULL is not a suitable default,
1696 initialize the new field.
1697
1698 verify_gdbarch(): Confirm that the target updated the field
1699 correctly.
1700
1701 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1702 field is dumped out
1703
1704 get_gdbarch(): Implement the set/get functions (probably using
1705 the macro's as shortcuts).
1706
1707 */
1708
1709 EOF
1710 function_list | while do_read
1711 do
1712 if class_is_variable_p
1713 then
1714 printf " ${returntype} ${function};\n"
1715 elif class_is_function_p
1716 then
1717 printf " gdbarch_${function}_ftype *${function};\n"
1718 fi
1719 done
1720 printf "};\n"
1721
1722 # Create a new gdbarch struct
1723 cat <<EOF
1724
1725 /* Create a new \`\`struct gdbarch'' based on information provided by
1726 \`\`struct gdbarch_info''. */
1727 EOF
1728 printf "\n"
1729 cat <<EOF
1730 struct gdbarch *
1731 gdbarch_alloc (const struct gdbarch_info *info,
1732 struct gdbarch_tdep *tdep)
1733 {
1734 struct gdbarch *gdbarch;
1735
1736 /* Create an obstack for allocating all the per-architecture memory,
1737 then use that to allocate the architecture vector. */
1738 struct obstack *obstack = XNEW (struct obstack);
1739 obstack_init (obstack);
1740 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1741 memset (gdbarch, 0, sizeof (*gdbarch));
1742 gdbarch->obstack = obstack;
1743
1744 alloc_gdbarch_data (gdbarch);
1745
1746 gdbarch->tdep = tdep;
1747 EOF
1748 printf "\n"
1749 function_list | while do_read
1750 do
1751 if class_is_info_p
1752 then
1753 printf " gdbarch->${function} = info->${function};\n"
1754 fi
1755 done
1756 printf "\n"
1757 printf " /* Force the explicit initialization of these. */\n"
1758 function_list | while do_read
1759 do
1760 if class_is_function_p || class_is_variable_p
1761 then
1762 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1763 then
1764 printf " gdbarch->${function} = ${predefault};\n"
1765 fi
1766 fi
1767 done
1768 cat <<EOF
1769 /* gdbarch_alloc() */
1770
1771 return gdbarch;
1772 }
1773 EOF
1774
1775 # Free a gdbarch struct.
1776 printf "\n"
1777 printf "\n"
1778 cat <<EOF
1779 /* Allocate extra space using the per-architecture obstack. */
1780
1781 void *
1782 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1783 {
1784 void *data = obstack_alloc (arch->obstack, size);
1785
1786 memset (data, 0, size);
1787 return data;
1788 }
1789
1790
1791 /* Free a gdbarch struct. This should never happen in normal
1792 operation --- once you've created a gdbarch, you keep it around.
1793 However, if an architecture's init function encounters an error
1794 building the structure, it may need to clean up a partially
1795 constructed gdbarch. */
1796
1797 void
1798 gdbarch_free (struct gdbarch *arch)
1799 {
1800 struct obstack *obstack;
1801
1802 gdb_assert (arch != NULL);
1803 gdb_assert (!arch->initialized_p);
1804 obstack = arch->obstack;
1805 obstack_free (obstack, 0); /* Includes the ARCH. */
1806 xfree (obstack);
1807 }
1808 EOF
1809
1810 # verify a new architecture
1811 cat <<EOF
1812
1813
1814 /* Ensure that all values in a GDBARCH are reasonable. */
1815
1816 static void
1817 verify_gdbarch (struct gdbarch *gdbarch)
1818 {
1819 struct ui_file *log;
1820 struct cleanup *cleanups;
1821 long length;
1822 char *buf;
1823
1824 log = mem_fileopen ();
1825 cleanups = make_cleanup_ui_file_delete (log);
1826 /* fundamental */
1827 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1828 fprintf_unfiltered (log, "\n\tbyte-order");
1829 if (gdbarch->bfd_arch_info == NULL)
1830 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1831 /* Check those that need to be defined for the given multi-arch level. */
1832 EOF
1833 function_list | while do_read
1834 do
1835 if class_is_function_p || class_is_variable_p
1836 then
1837 if [ "x${invalid_p}" = "x0" ]
1838 then
1839 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1840 elif class_is_predicate_p
1841 then
1842 printf " /* Skip verify of ${function}, has predicate. */\n"
1843 # FIXME: See do_read for potential simplification
1844 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1845 then
1846 printf " if (${invalid_p})\n"
1847 printf " gdbarch->${function} = ${postdefault};\n"
1848 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1849 then
1850 printf " if (gdbarch->${function} == ${predefault})\n"
1851 printf " gdbarch->${function} = ${postdefault};\n"
1852 elif [ -n "${postdefault}" ]
1853 then
1854 printf " if (gdbarch->${function} == 0)\n"
1855 printf " gdbarch->${function} = ${postdefault};\n"
1856 elif [ -n "${invalid_p}" ]
1857 then
1858 printf " if (${invalid_p})\n"
1859 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1860 elif [ -n "${predefault}" ]
1861 then
1862 printf " if (gdbarch->${function} == ${predefault})\n"
1863 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1864 fi
1865 fi
1866 done
1867 cat <<EOF
1868 buf = ui_file_xstrdup (log, &length);
1869 make_cleanup (xfree, buf);
1870 if (length > 0)
1871 internal_error (__FILE__, __LINE__,
1872 _("verify_gdbarch: the following are invalid ...%s"),
1873 buf);
1874 do_cleanups (cleanups);
1875 }
1876 EOF
1877
1878 # dump the structure
1879 printf "\n"
1880 printf "\n"
1881 cat <<EOF
1882 /* Print out the details of the current architecture. */
1883
1884 void
1885 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1886 {
1887 const char *gdb_nm_file = "<not-defined>";
1888
1889 #if defined (GDB_NM_FILE)
1890 gdb_nm_file = GDB_NM_FILE;
1891 #endif
1892 fprintf_unfiltered (file,
1893 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1894 gdb_nm_file);
1895 EOF
1896 function_list | sort -t: -k 3 | while do_read
1897 do
1898 # First the predicate
1899 if class_is_predicate_p
1900 then
1901 printf " fprintf_unfiltered (file,\n"
1902 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1903 printf " gdbarch_${function}_p (gdbarch));\n"
1904 fi
1905 # Print the corresponding value.
1906 if class_is_function_p
1907 then
1908 printf " fprintf_unfiltered (file,\n"
1909 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1910 printf " host_address_to_string (gdbarch->${function}));\n"
1911 else
1912 # It is a variable
1913 case "${print}:${returntype}" in
1914 :CORE_ADDR )
1915 fmt="%s"
1916 print="core_addr_to_string_nz (gdbarch->${function})"
1917 ;;
1918 :* )
1919 fmt="%s"
1920 print="plongest (gdbarch->${function})"
1921 ;;
1922 * )
1923 fmt="%s"
1924 ;;
1925 esac
1926 printf " fprintf_unfiltered (file,\n"
1927 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1928 printf " ${print});\n"
1929 fi
1930 done
1931 cat <<EOF
1932 if (gdbarch->dump_tdep != NULL)
1933 gdbarch->dump_tdep (gdbarch, file);
1934 }
1935 EOF
1936
1937
1938 # GET/SET
1939 printf "\n"
1940 cat <<EOF
1941 struct gdbarch_tdep *
1942 gdbarch_tdep (struct gdbarch *gdbarch)
1943 {
1944 if (gdbarch_debug >= 2)
1945 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1946 return gdbarch->tdep;
1947 }
1948 EOF
1949 printf "\n"
1950 function_list | while do_read
1951 do
1952 if class_is_predicate_p
1953 then
1954 printf "\n"
1955 printf "int\n"
1956 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1957 printf "{\n"
1958 printf " gdb_assert (gdbarch != NULL);\n"
1959 printf " return ${predicate};\n"
1960 printf "}\n"
1961 fi
1962 if class_is_function_p
1963 then
1964 printf "\n"
1965 printf "${returntype}\n"
1966 if [ "x${formal}" = "xvoid" ]
1967 then
1968 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1969 else
1970 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1971 fi
1972 printf "{\n"
1973 printf " gdb_assert (gdbarch != NULL);\n"
1974 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1975 if class_is_predicate_p && test -n "${predefault}"
1976 then
1977 # Allow a call to a function with a predicate.
1978 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1979 fi
1980 printf " if (gdbarch_debug >= 2)\n"
1981 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1982 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1983 then
1984 if class_is_multiarch_p
1985 then
1986 params="gdbarch"
1987 else
1988 params=""
1989 fi
1990 else
1991 if class_is_multiarch_p
1992 then
1993 params="gdbarch, ${actual}"
1994 else
1995 params="${actual}"
1996 fi
1997 fi
1998 if [ "x${returntype}" = "xvoid" ]
1999 then
2000 printf " gdbarch->${function} (${params});\n"
2001 else
2002 printf " return gdbarch->${function} (${params});\n"
2003 fi
2004 printf "}\n"
2005 printf "\n"
2006 printf "void\n"
2007 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2008 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2009 printf "{\n"
2010 printf " gdbarch->${function} = ${function};\n"
2011 printf "}\n"
2012 elif class_is_variable_p
2013 then
2014 printf "\n"
2015 printf "${returntype}\n"
2016 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2017 printf "{\n"
2018 printf " gdb_assert (gdbarch != NULL);\n"
2019 if [ "x${invalid_p}" = "x0" ]
2020 then
2021 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2022 elif [ -n "${invalid_p}" ]
2023 then
2024 printf " /* Check variable is valid. */\n"
2025 printf " gdb_assert (!(${invalid_p}));\n"
2026 elif [ -n "${predefault}" ]
2027 then
2028 printf " /* Check variable changed from pre-default. */\n"
2029 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2030 fi
2031 printf " if (gdbarch_debug >= 2)\n"
2032 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2033 printf " return gdbarch->${function};\n"
2034 printf "}\n"
2035 printf "\n"
2036 printf "void\n"
2037 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2038 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2039 printf "{\n"
2040 printf " gdbarch->${function} = ${function};\n"
2041 printf "}\n"
2042 elif class_is_info_p
2043 then
2044 printf "\n"
2045 printf "${returntype}\n"
2046 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2047 printf "{\n"
2048 printf " gdb_assert (gdbarch != NULL);\n"
2049 printf " if (gdbarch_debug >= 2)\n"
2050 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2051 printf " return gdbarch->${function};\n"
2052 printf "}\n"
2053 fi
2054 done
2055
2056 # All the trailing guff
2057 cat <<EOF
2058
2059
2060 /* Keep a registry of per-architecture data-pointers required by GDB
2061 modules. */
2062
2063 struct gdbarch_data
2064 {
2065 unsigned index;
2066 int init_p;
2067 gdbarch_data_pre_init_ftype *pre_init;
2068 gdbarch_data_post_init_ftype *post_init;
2069 };
2070
2071 struct gdbarch_data_registration
2072 {
2073 struct gdbarch_data *data;
2074 struct gdbarch_data_registration *next;
2075 };
2076
2077 struct gdbarch_data_registry
2078 {
2079 unsigned nr;
2080 struct gdbarch_data_registration *registrations;
2081 };
2082
2083 struct gdbarch_data_registry gdbarch_data_registry =
2084 {
2085 0, NULL,
2086 };
2087
2088 static struct gdbarch_data *
2089 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2090 gdbarch_data_post_init_ftype *post_init)
2091 {
2092 struct gdbarch_data_registration **curr;
2093
2094 /* Append the new registration. */
2095 for (curr = &gdbarch_data_registry.registrations;
2096 (*curr) != NULL;
2097 curr = &(*curr)->next);
2098 (*curr) = XNEW (struct gdbarch_data_registration);
2099 (*curr)->next = NULL;
2100 (*curr)->data = XNEW (struct gdbarch_data);
2101 (*curr)->data->index = gdbarch_data_registry.nr++;
2102 (*curr)->data->pre_init = pre_init;
2103 (*curr)->data->post_init = post_init;
2104 (*curr)->data->init_p = 1;
2105 return (*curr)->data;
2106 }
2107
2108 struct gdbarch_data *
2109 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2110 {
2111 return gdbarch_data_register (pre_init, NULL);
2112 }
2113
2114 struct gdbarch_data *
2115 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2116 {
2117 return gdbarch_data_register (NULL, post_init);
2118 }
2119
2120 /* Create/delete the gdbarch data vector. */
2121
2122 static void
2123 alloc_gdbarch_data (struct gdbarch *gdbarch)
2124 {
2125 gdb_assert (gdbarch->data == NULL);
2126 gdbarch->nr_data = gdbarch_data_registry.nr;
2127 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2128 }
2129
2130 /* Initialize the current value of the specified per-architecture
2131 data-pointer. */
2132
2133 void
2134 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2135 struct gdbarch_data *data,
2136 void *pointer)
2137 {
2138 gdb_assert (data->index < gdbarch->nr_data);
2139 gdb_assert (gdbarch->data[data->index] == NULL);
2140 gdb_assert (data->pre_init == NULL);
2141 gdbarch->data[data->index] = pointer;
2142 }
2143
2144 /* Return the current value of the specified per-architecture
2145 data-pointer. */
2146
2147 void *
2148 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2149 {
2150 gdb_assert (data->index < gdbarch->nr_data);
2151 if (gdbarch->data[data->index] == NULL)
2152 {
2153 /* The data-pointer isn't initialized, call init() to get a
2154 value. */
2155 if (data->pre_init != NULL)
2156 /* Mid architecture creation: pass just the obstack, and not
2157 the entire architecture, as that way it isn't possible for
2158 pre-init code to refer to undefined architecture
2159 fields. */
2160 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2161 else if (gdbarch->initialized_p
2162 && data->post_init != NULL)
2163 /* Post architecture creation: pass the entire architecture
2164 (as all fields are valid), but be careful to also detect
2165 recursive references. */
2166 {
2167 gdb_assert (data->init_p);
2168 data->init_p = 0;
2169 gdbarch->data[data->index] = data->post_init (gdbarch);
2170 data->init_p = 1;
2171 }
2172 else
2173 /* The architecture initialization hasn't completed - punt -
2174 hope that the caller knows what they are doing. Once
2175 deprecated_set_gdbarch_data has been initialized, this can be
2176 changed to an internal error. */
2177 return NULL;
2178 gdb_assert (gdbarch->data[data->index] != NULL);
2179 }
2180 return gdbarch->data[data->index];
2181 }
2182
2183
2184 /* Keep a registry of the architectures known by GDB. */
2185
2186 struct gdbarch_registration
2187 {
2188 enum bfd_architecture bfd_architecture;
2189 gdbarch_init_ftype *init;
2190 gdbarch_dump_tdep_ftype *dump_tdep;
2191 struct gdbarch_list *arches;
2192 struct gdbarch_registration *next;
2193 };
2194
2195 static struct gdbarch_registration *gdbarch_registry = NULL;
2196
2197 static void
2198 append_name (const char ***buf, int *nr, const char *name)
2199 {
2200 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2201 (*buf)[*nr] = name;
2202 *nr += 1;
2203 }
2204
2205 const char **
2206 gdbarch_printable_names (void)
2207 {
2208 /* Accumulate a list of names based on the registed list of
2209 architectures. */
2210 int nr_arches = 0;
2211 const char **arches = NULL;
2212 struct gdbarch_registration *rego;
2213
2214 for (rego = gdbarch_registry;
2215 rego != NULL;
2216 rego = rego->next)
2217 {
2218 const struct bfd_arch_info *ap;
2219 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2220 if (ap == NULL)
2221 internal_error (__FILE__, __LINE__,
2222 _("gdbarch_architecture_names: multi-arch unknown"));
2223 do
2224 {
2225 append_name (&arches, &nr_arches, ap->printable_name);
2226 ap = ap->next;
2227 }
2228 while (ap != NULL);
2229 }
2230 append_name (&arches, &nr_arches, NULL);
2231 return arches;
2232 }
2233
2234
2235 void
2236 gdbarch_register (enum bfd_architecture bfd_architecture,
2237 gdbarch_init_ftype *init,
2238 gdbarch_dump_tdep_ftype *dump_tdep)
2239 {
2240 struct gdbarch_registration **curr;
2241 const struct bfd_arch_info *bfd_arch_info;
2242
2243 /* Check that BFD recognizes this architecture */
2244 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2245 if (bfd_arch_info == NULL)
2246 {
2247 internal_error (__FILE__, __LINE__,
2248 _("gdbarch: Attempt to register "
2249 "unknown architecture (%d)"),
2250 bfd_architecture);
2251 }
2252 /* Check that we haven't seen this architecture before. */
2253 for (curr = &gdbarch_registry;
2254 (*curr) != NULL;
2255 curr = &(*curr)->next)
2256 {
2257 if (bfd_architecture == (*curr)->bfd_architecture)
2258 internal_error (__FILE__, __LINE__,
2259 _("gdbarch: Duplicate registration "
2260 "of architecture (%s)"),
2261 bfd_arch_info->printable_name);
2262 }
2263 /* log it */
2264 if (gdbarch_debug)
2265 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2266 bfd_arch_info->printable_name,
2267 host_address_to_string (init));
2268 /* Append it */
2269 (*curr) = XNEW (struct gdbarch_registration);
2270 (*curr)->bfd_architecture = bfd_architecture;
2271 (*curr)->init = init;
2272 (*curr)->dump_tdep = dump_tdep;
2273 (*curr)->arches = NULL;
2274 (*curr)->next = NULL;
2275 }
2276
2277 void
2278 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2279 gdbarch_init_ftype *init)
2280 {
2281 gdbarch_register (bfd_architecture, init, NULL);
2282 }
2283
2284
2285 /* Look for an architecture using gdbarch_info. */
2286
2287 struct gdbarch_list *
2288 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2289 const struct gdbarch_info *info)
2290 {
2291 for (; arches != NULL; arches = arches->next)
2292 {
2293 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2294 continue;
2295 if (info->byte_order != arches->gdbarch->byte_order)
2296 continue;
2297 if (info->osabi != arches->gdbarch->osabi)
2298 continue;
2299 if (info->target_desc != arches->gdbarch->target_desc)
2300 continue;
2301 return arches;
2302 }
2303 return NULL;
2304 }
2305
2306
2307 /* Find an architecture that matches the specified INFO. Create a new
2308 architecture if needed. Return that new architecture. */
2309
2310 struct gdbarch *
2311 gdbarch_find_by_info (struct gdbarch_info info)
2312 {
2313 struct gdbarch *new_gdbarch;
2314 struct gdbarch_registration *rego;
2315
2316 /* Fill in missing parts of the INFO struct using a number of
2317 sources: "set ..."; INFOabfd supplied; and the global
2318 defaults. */
2319 gdbarch_info_fill (&info);
2320
2321 /* Must have found some sort of architecture. */
2322 gdb_assert (info.bfd_arch_info != NULL);
2323
2324 if (gdbarch_debug)
2325 {
2326 fprintf_unfiltered (gdb_stdlog,
2327 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2328 (info.bfd_arch_info != NULL
2329 ? info.bfd_arch_info->printable_name
2330 : "(null)"));
2331 fprintf_unfiltered (gdb_stdlog,
2332 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2333 info.byte_order,
2334 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2335 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2336 : "default"));
2337 fprintf_unfiltered (gdb_stdlog,
2338 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2339 info.osabi, gdbarch_osabi_name (info.osabi));
2340 fprintf_unfiltered (gdb_stdlog,
2341 "gdbarch_find_by_info: info.abfd %s\n",
2342 host_address_to_string (info.abfd));
2343 fprintf_unfiltered (gdb_stdlog,
2344 "gdbarch_find_by_info: info.tdep_info %s\n",
2345 host_address_to_string (info.tdep_info));
2346 }
2347
2348 /* Find the tdep code that knows about this architecture. */
2349 for (rego = gdbarch_registry;
2350 rego != NULL;
2351 rego = rego->next)
2352 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2353 break;
2354 if (rego == NULL)
2355 {
2356 if (gdbarch_debug)
2357 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2358 "No matching architecture\n");
2359 return 0;
2360 }
2361
2362 /* Ask the tdep code for an architecture that matches "info". */
2363 new_gdbarch = rego->init (info, rego->arches);
2364
2365 /* Did the tdep code like it? No. Reject the change and revert to
2366 the old architecture. */
2367 if (new_gdbarch == NULL)
2368 {
2369 if (gdbarch_debug)
2370 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2371 "Target rejected architecture\n");
2372 return NULL;
2373 }
2374
2375 /* Is this a pre-existing architecture (as determined by already
2376 being initialized)? Move it to the front of the architecture
2377 list (keeping the list sorted Most Recently Used). */
2378 if (new_gdbarch->initialized_p)
2379 {
2380 struct gdbarch_list **list;
2381 struct gdbarch_list *self;
2382 if (gdbarch_debug)
2383 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2384 "Previous architecture %s (%s) selected\n",
2385 host_address_to_string (new_gdbarch),
2386 new_gdbarch->bfd_arch_info->printable_name);
2387 /* Find the existing arch in the list. */
2388 for (list = &rego->arches;
2389 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2390 list = &(*list)->next);
2391 /* It had better be in the list of architectures. */
2392 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2393 /* Unlink SELF. */
2394 self = (*list);
2395 (*list) = self->next;
2396 /* Insert SELF at the front. */
2397 self->next = rego->arches;
2398 rego->arches = self;
2399 /* Return it. */
2400 return new_gdbarch;
2401 }
2402
2403 /* It's a new architecture. */
2404 if (gdbarch_debug)
2405 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2406 "New architecture %s (%s) selected\n",
2407 host_address_to_string (new_gdbarch),
2408 new_gdbarch->bfd_arch_info->printable_name);
2409
2410 /* Insert the new architecture into the front of the architecture
2411 list (keep the list sorted Most Recently Used). */
2412 {
2413 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2414 self->next = rego->arches;
2415 self->gdbarch = new_gdbarch;
2416 rego->arches = self;
2417 }
2418
2419 /* Check that the newly installed architecture is valid. Plug in
2420 any post init values. */
2421 new_gdbarch->dump_tdep = rego->dump_tdep;
2422 verify_gdbarch (new_gdbarch);
2423 new_gdbarch->initialized_p = 1;
2424
2425 if (gdbarch_debug)
2426 gdbarch_dump (new_gdbarch, gdb_stdlog);
2427
2428 return new_gdbarch;
2429 }
2430
2431 /* Make the specified architecture current. */
2432
2433 void
2434 set_target_gdbarch (struct gdbarch *new_gdbarch)
2435 {
2436 gdb_assert (new_gdbarch != NULL);
2437 gdb_assert (new_gdbarch->initialized_p);
2438 current_inferior ()->gdbarch = new_gdbarch;
2439 observer_notify_architecture_changed (new_gdbarch);
2440 registers_changed ();
2441 }
2442
2443 /* Return the current inferior's arch. */
2444
2445 struct gdbarch *
2446 target_gdbarch (void)
2447 {
2448 return current_inferior ()->gdbarch;
2449 }
2450
2451 extern void _initialize_gdbarch (void);
2452
2453 void
2454 _initialize_gdbarch (void)
2455 {
2456 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2457 Set architecture debugging."), _("\\
2458 Show architecture debugging."), _("\\
2459 When non-zero, architecture debugging is enabled."),
2460 NULL,
2461 show_gdbarch_debug,
2462 &setdebuglist, &showdebuglist);
2463 }
2464 EOF
2465
2466 # close things off
2467 exec 1>&2
2468 #../move-if-change new-gdbarch.c gdbarch.c
2469 compare_new gdbarch.c
This page took 0.104316 seconds and 5 git commands to generate.