gdbarch: Remove displaced_step_free_closure
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2017 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363 # Alignment of a long long or unsigned long long for the target
364 # machine.
365 v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
366
367 # The ABI default bit-size and format for "half", "float", "double", and
368 # "long double". These bit/format pairs should eventually be combined
369 # into a single object. For the moment, just initialize them as a pair.
370 # Each format describes both the big and little endian layouts (if
371 # useful).
372
373 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
381
382 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383 # starting with C++11.
384 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
385 # One if \`wchar_t' is signed, zero if unsigned.
386 v;int;wchar_signed;;;1;-1;1
387
388 # Returns the floating-point format to be used for values of length LENGTH.
389 # NAME, if non-NULL, is the type name, which may be used to distinguish
390 # different target formats of the same length.
391 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
392
393 # For most targets, a pointer on the target and its representation as an
394 # address in GDB have the same size and "look the same". For such a
395 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
396 # / addr_bit will be set from it.
397 #
398 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
399 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400 # gdbarch_address_to_pointer as well.
401 #
402 # ptr_bit is the size of a pointer on the target
403 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
404 # addr_bit is the size of a target address as represented in gdb
405 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
406 #
407 # dwarf2_addr_size is the target address size as used in the Dwarf debug
408 # info. For .debug_frame FDEs, this is supposed to be the target address
409 # size from the associated CU header, and which is equivalent to the
410 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411 # Unfortunately there is no good way to determine this value. Therefore
412 # dwarf2_addr_size simply defaults to the target pointer size.
413 #
414 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415 # defined using the target's pointer size so far.
416 #
417 # Note that dwarf2_addr_size only needs to be redefined by a target if the
418 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419 # and if Dwarf versions < 4 need to be supported.
420 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
421 #
422 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
423 v;int;char_signed;;;1;-1;1
424 #
425 F;CORE_ADDR;read_pc;struct regcache *regcache;regcache
426 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
427 # Function for getting target's idea of a frame pointer. FIXME: GDB's
428 # whole scheme for dealing with "frames" and "frame pointers" needs a
429 # serious shakedown.
430 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
431 #
432 M;enum register_status;pseudo_register_read;struct regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
433 # Read a register into a new struct value. If the register is wholly
434 # or partly unavailable, this should call mark_value_bytes_unavailable
435 # as appropriate. If this is defined, then pseudo_register_read will
436 # never be called.
437 M;struct value *;pseudo_register_read_value;struct regcache *regcache, int cookednum;regcache, cookednum
438 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
439 #
440 v;int;num_regs;;;0;-1
441 # This macro gives the number of pseudo-registers that live in the
442 # register namespace but do not get fetched or stored on the target.
443 # These pseudo-registers may be aliases for other registers,
444 # combinations of other registers, or they may be computed by GDB.
445 v;int;num_pseudo_regs;;;0;0;;0
446
447 # Assemble agent expression bytecode to collect pseudo-register REG.
448 # Return -1 if something goes wrong, 0 otherwise.
449 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
450
451 # Assemble agent expression bytecode to push the value of pseudo-register
452 # REG on the interpreter stack.
453 # Return -1 if something goes wrong, 0 otherwise.
454 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
455
456 # Some targets/architectures can do extra processing/display of
457 # segmentation faults. E.g., Intel MPX boundary faults.
458 # Call the architecture dependent function to handle the fault.
459 # UIOUT is the output stream where the handler will place information.
460 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
461
462 # GDB's standard (or well known) register numbers. These can map onto
463 # a real register or a pseudo (computed) register or not be defined at
464 # all (-1).
465 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
466 v;int;sp_regnum;;;-1;-1;;0
467 v;int;pc_regnum;;;-1;-1;;0
468 v;int;ps_regnum;;;-1;-1;;0
469 v;int;fp0_regnum;;;0;-1;;0
470 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
471 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
472 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
473 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
474 # Convert from an sdb register number to an internal gdb register number.
475 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
476 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
477 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
478 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479 m;const char *;register_name;int regnr;regnr;;0
480
481 # Return the type of a register specified by the architecture. Only
482 # the register cache should call this function directly; others should
483 # use "register_type".
484 M;struct type *;register_type;int reg_nr;reg_nr
485
486 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
487 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
488 # deprecated_fp_regnum.
489 v;int;deprecated_fp_regnum;;;-1;-1;;0
490
491 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
494
495 # Return true if the code of FRAME is writable.
496 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
497
498 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
501 # MAP a GDB RAW register number onto a simulator register number. See
502 # also include/...-sim.h.
503 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
506
507 # Determine the address where a longjmp will land and save this address
508 # in PC. Return nonzero on success.
509 #
510 # FRAME corresponds to the longjmp frame.
511 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
512
513 #
514 v;int;believe_pcc_promotion;;;;;;;
515 #
516 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
519 # Construct a value representing the contents of register REGNUM in
520 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
521 # allocate and return a struct value with all value attributes
522 # (but not the value contents) filled in.
523 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
524 #
525 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
528
529 # Return the return-value convention that will be used by FUNCTION
530 # to return a value of type VALTYPE. FUNCTION may be NULL in which
531 # case the return convention is computed based only on VALTYPE.
532 #
533 # If READBUF is not NULL, extract the return value and save it in this buffer.
534 #
535 # If WRITEBUF is not NULL, it contains a return value which will be
536 # stored into the appropriate register. This can be used when we want
537 # to force the value returned by a function (see the "return" command
538 # for instance).
539 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
540
541 # Return true if the return value of function is stored in the first hidden
542 # parameter. In theory, this feature should be language-dependent, specified
543 # by language and its ABI, such as C++. Unfortunately, compiler may
544 # implement it to a target-dependent feature. So that we need such hook here
545 # to be aware of this in GDB.
546 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
547
548 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
550 # On some platforms, a single function may provide multiple entry points,
551 # e.g. one that is used for function-pointer calls and a different one
552 # that is used for direct function calls.
553 # In order to ensure that breakpoints set on the function will trigger
554 # no matter via which entry point the function is entered, a platform
555 # may provide the skip_entrypoint callback. It is called with IP set
556 # to the main entry point of a function (as determined by the symbol table),
557 # and should return the address of the innermost entry point, where the
558 # actual breakpoint needs to be set. Note that skip_entrypoint is used
559 # by GDB common code even when debugging optimized code, where skip_prologue
560 # is not used.
561 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
562
563 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
565
566 # Return the breakpoint kind for this target based on *PCPTR.
567 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
568
569 # Return the software breakpoint from KIND. KIND can have target
570 # specific meaning like the Z0 kind parameter.
571 # SIZE is set to the software breakpoint's length in memory.
572 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
573
574 # Return the breakpoint kind for this target based on the current
575 # processor state (e.g. the current instruction mode on ARM) and the
576 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
577 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
578
579 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
583
584 # A function can be addressed by either it's "pointer" (possibly a
585 # descriptor address) or "entry point" (first executable instruction).
586 # The method "convert_from_func_ptr_addr" converting the former to the
587 # latter. gdbarch_deprecated_function_start_offset is being used to implement
588 # a simplified subset of that functionality - the function's address
589 # corresponds to the "function pointer" and the function's start
590 # corresponds to the "function entry point" - and hence is redundant.
591
592 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
593
594 # Return the remote protocol register number associated with this
595 # register. Normally the identity mapping.
596 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
597
598 # Fetch the target specific address used to represent a load module.
599 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
600 #
601 v;CORE_ADDR;frame_args_skip;;;0;;;0
602 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
604 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605 # frame-base. Enable frame-base before frame-unwind.
606 F;int;frame_num_args;struct frame_info *frame;frame
607 #
608 M;CORE_ADDR;frame_align;CORE_ADDR address;address
609 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610 v;int;frame_red_zone_size
611 #
612 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
613 # On some machines there are bits in addresses which are not really
614 # part of the address, but are used by the kernel, the hardware, etc.
615 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
616 # we get a "real" address such as one would find in a symbol table.
617 # This is used only for addresses of instructions, and even then I'm
618 # not sure it's used in all contexts. It exists to deal with there
619 # being a few stray bits in the PC which would mislead us, not as some
620 # sort of generic thing to handle alignment or segmentation (it's
621 # possible it should be in TARGET_READ_PC instead).
622 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
623
624 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
625 # indicates if the target needs software single step. An ISA method to
626 # implement it.
627 #
628 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
629 # target can single step. If not, then implement single step using breakpoints.
630 #
631 # Return a vector of addresses on which the software single step
632 # breakpoints should be inserted. NULL means software single step is
633 # not used.
634 # Multiple breakpoints may be inserted for some instructions such as
635 # conditional branch. However, each implementation must always evaluate
636 # the condition and only put the breakpoint at the branch destination if
637 # the condition is true, so that we ensure forward progress when stepping
638 # past a conditional branch to self.
639 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
640
641 # Return non-zero if the processor is executing a delay slot and a
642 # further single-step is needed before the instruction finishes.
643 M;int;single_step_through_delay;struct frame_info *frame;frame
644 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
645 # disassembler. Perhaps objdump can handle it?
646 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
647 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
648
649
650 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
651 # evaluates non-zero, this is the address where the debugger will place
652 # a step-resume breakpoint to get us past the dynamic linker.
653 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
654 # Some systems also have trampoline code for returning from shared libs.
655 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
656
657 # A target might have problems with watchpoints as soon as the stack
658 # frame of the current function has been destroyed. This mostly happens
659 # as the first action in a function's epilogue. stack_frame_destroyed_p()
660 # is defined to return a non-zero value if either the given addr is one
661 # instruction after the stack destroying instruction up to the trailing
662 # return instruction or if we can figure out that the stack frame has
663 # already been invalidated regardless of the value of addr. Targets
664 # which don't suffer from that problem could just let this functionality
665 # untouched.
666 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
667 # Process an ELF symbol in the minimal symbol table in a backend-specific
668 # way. Normally this hook is supposed to do nothing, however if required,
669 # then this hook can be used to apply tranformations to symbols that are
670 # considered special in some way. For example the MIPS backend uses it
671 # to interpret \`st_other' information to mark compressed code symbols so
672 # that they can be treated in the appropriate manner in the processing of
673 # the main symbol table and DWARF-2 records.
674 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
675 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
676 # Process a symbol in the main symbol table in a backend-specific way.
677 # Normally this hook is supposed to do nothing, however if required,
678 # then this hook can be used to apply tranformations to symbols that
679 # are considered special in some way. This is currently used by the
680 # MIPS backend to make sure compressed code symbols have the ISA bit
681 # set. This in turn is needed for symbol values seen in GDB to match
682 # the values used at the runtime by the program itself, for function
683 # and label references.
684 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
685 # Adjust the address retrieved from a DWARF-2 record other than a line
686 # entry in a backend-specific way. Normally this hook is supposed to
687 # return the address passed unchanged, however if that is incorrect for
688 # any reason, then this hook can be used to fix the address up in the
689 # required manner. This is currently used by the MIPS backend to make
690 # sure addresses in FDE, range records, etc. referring to compressed
691 # code have the ISA bit set, matching line information and the symbol
692 # table.
693 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
694 # Adjust the address updated by a line entry in a backend-specific way.
695 # Normally this hook is supposed to return the address passed unchanged,
696 # however in the case of inconsistencies in these records, this hook can
697 # be used to fix them up in the required manner. This is currently used
698 # by the MIPS backend to make sure all line addresses in compressed code
699 # are presented with the ISA bit set, which is not always the case. This
700 # in turn ensures breakpoint addresses are correctly matched against the
701 # stop PC.
702 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
703 v;int;cannot_step_breakpoint;;;0;0;;0
704 v;int;have_nonsteppable_watchpoint;;;0;0;;0
705 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
706 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
707 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
708 # FS are passed from the generic execute_cfa_program function.
709 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
710
711 # Return the appropriate type_flags for the supplied address class.
712 # This function should return 1 if the address class was recognized and
713 # type_flags was set, zero otherwise.
714 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
715 # Is a register in a group
716 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
717 # Fetch the pointer to the ith function argument.
718 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
719
720 # Iterate over all supported register notes in a core file. For each
721 # supported register note section, the iterator must call CB and pass
722 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
723 # the supported register note sections based on the current register
724 # values. Otherwise it should enumerate all supported register note
725 # sections.
726 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
727
728 # Create core file notes
729 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
730
731 # The elfcore writer hook to use to write Linux prpsinfo notes to core
732 # files. Most Linux architectures use the same prpsinfo32 or
733 # prpsinfo64 layouts, and so won't need to provide this hook, as we
734 # call the Linux generic routines in bfd to write prpsinfo notes by
735 # default.
736 F;char *;elfcore_write_linux_prpsinfo;bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info;obfd, note_data, note_size, info
737
738 # Find core file memory regions
739 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
740
741 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
742 # core file into buffer READBUF with length LEN. Return the number of bytes read
743 # (zero indicates failure).
744 # failed, otherwise, return the red length of READBUF.
745 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
746
747 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
748 # libraries list from core file into buffer READBUF with length LEN.
749 # Return the number of bytes read (zero indicates failure).
750 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
751
752 # How the core target converts a PTID from a core file to a string.
753 M;const char *;core_pid_to_str;ptid_t ptid;ptid
754
755 # How the core target extracts the name of a thread from a core file.
756 M;const char *;core_thread_name;struct thread_info *thr;thr
757
758 # BFD target to use when generating a core file.
759 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
760
761 # If the elements of C++ vtables are in-place function descriptors rather
762 # than normal function pointers (which may point to code or a descriptor),
763 # set this to one.
764 v;int;vtable_function_descriptors;;;0;0;;0
765
766 # Set if the least significant bit of the delta is used instead of the least
767 # significant bit of the pfn for pointers to virtual member functions.
768 v;int;vbit_in_delta;;;0;0;;0
769
770 # Advance PC to next instruction in order to skip a permanent breakpoint.
771 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
772
773 # The maximum length of an instruction on this architecture in bytes.
774 V;ULONGEST;max_insn_length;;;0;0
775
776 # Copy the instruction at FROM to TO, and make any adjustments
777 # necessary to single-step it at that address.
778 #
779 # REGS holds the state the thread's registers will have before
780 # executing the copied instruction; the PC in REGS will refer to FROM,
781 # not the copy at TO. The caller should update it to point at TO later.
782 #
783 # Return a pointer to data of the architecture's choice to be passed
784 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
785 # the instruction's effects have been completely simulated, with the
786 # resulting state written back to REGS.
787 #
788 # For a general explanation of displaced stepping and how GDB uses it,
789 # see the comments in infrun.c.
790 #
791 # The TO area is only guaranteed to have space for
792 # gdbarch_max_insn_length (arch) bytes, so this function must not
793 # write more bytes than that to that area.
794 #
795 # If you do not provide this function, GDB assumes that the
796 # architecture does not support displaced stepping.
797 #
798 # If your architecture doesn't need to adjust instructions before
799 # single-stepping them, consider using simple_displaced_step_copy_insn
800 # here.
801 #
802 # If the instruction cannot execute out of line, return NULL. The
803 # core falls back to stepping past the instruction in-line instead in
804 # that case.
805 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
806
807 # Return true if GDB should use hardware single-stepping to execute
808 # the displaced instruction identified by CLOSURE. If false,
809 # GDB will simply restart execution at the displaced instruction
810 # location, and it is up to the target to ensure GDB will receive
811 # control again (e.g. by placing a software breakpoint instruction
812 # into the displaced instruction buffer).
813 #
814 # The default implementation returns false on all targets that
815 # provide a gdbarch_software_single_step routine, and true otherwise.
816 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
817
818 # Fix up the state resulting from successfully single-stepping a
819 # displaced instruction, to give the result we would have gotten from
820 # stepping the instruction in its original location.
821 #
822 # REGS is the register state resulting from single-stepping the
823 # displaced instruction.
824 #
825 # CLOSURE is the result from the matching call to
826 # gdbarch_displaced_step_copy_insn.
827 #
828 # If you provide gdbarch_displaced_step_copy_insn.but not this
829 # function, then GDB assumes that no fixup is needed after
830 # single-stepping the instruction.
831 #
832 # For a general explanation of displaced stepping and how GDB uses it,
833 # see the comments in infrun.c.
834 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
835
836 # Return the address of an appropriate place to put displaced
837 # instructions while we step over them. There need only be one such
838 # place, since we're only stepping one thread over a breakpoint at a
839 # time.
840 #
841 # For a general explanation of displaced stepping and how GDB uses it,
842 # see the comments in infrun.c.
843 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
844
845 # Relocate an instruction to execute at a different address. OLDLOC
846 # is the address in the inferior memory where the instruction to
847 # relocate is currently at. On input, TO points to the destination
848 # where we want the instruction to be copied (and possibly adjusted)
849 # to. On output, it points to one past the end of the resulting
850 # instruction(s). The effect of executing the instruction at TO shall
851 # be the same as if executing it at FROM. For example, call
852 # instructions that implicitly push the return address on the stack
853 # should be adjusted to return to the instruction after OLDLOC;
854 # relative branches, and other PC-relative instructions need the
855 # offset adjusted; etc.
856 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
857
858 # Refresh overlay mapped state for section OSECT.
859 F;void;overlay_update;struct obj_section *osect;osect
860
861 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
862
863 # Handle special encoding of static variables in stabs debug info.
864 F;const char *;static_transform_name;const char *name;name
865 # Set if the address in N_SO or N_FUN stabs may be zero.
866 v;int;sofun_address_maybe_missing;;;0;0;;0
867
868 # Parse the instruction at ADDR storing in the record execution log
869 # the registers REGCACHE and memory ranges that will be affected when
870 # the instruction executes, along with their current values.
871 # Return -1 if something goes wrong, 0 otherwise.
872 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
873
874 # Save process state after a signal.
875 # Return -1 if something goes wrong, 0 otherwise.
876 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
877
878 # Signal translation: translate inferior's signal (target's) number
879 # into GDB's representation. The implementation of this method must
880 # be host independent. IOW, don't rely on symbols of the NAT_FILE
881 # header (the nm-*.h files), the host <signal.h> header, or similar
882 # headers. This is mainly used when cross-debugging core files ---
883 # "Live" targets hide the translation behind the target interface
884 # (target_wait, target_resume, etc.).
885 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
886
887 # Signal translation: translate the GDB's internal signal number into
888 # the inferior's signal (target's) representation. The implementation
889 # of this method must be host independent. IOW, don't rely on symbols
890 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
891 # header, or similar headers.
892 # Return the target signal number if found, or -1 if the GDB internal
893 # signal number is invalid.
894 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
895
896 # Extra signal info inspection.
897 #
898 # Return a type suitable to inspect extra signal information.
899 M;struct type *;get_siginfo_type;void;
900
901 # Record architecture-specific information from the symbol table.
902 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
903
904 # Function for the 'catch syscall' feature.
905
906 # Get architecture-specific system calls information from registers.
907 M;LONGEST;get_syscall_number;ptid_t ptid;ptid
908
909 # The filename of the XML syscall for this architecture.
910 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
911
912 # Information about system calls from this architecture
913 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
914
915 # SystemTap related fields and functions.
916
917 # A NULL-terminated array of prefixes used to mark an integer constant
918 # on the architecture's assembly.
919 # For example, on x86 integer constants are written as:
920 #
921 # \$10 ;; integer constant 10
922 #
923 # in this case, this prefix would be the character \`\$\'.
924 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
925
926 # A NULL-terminated array of suffixes used to mark an integer constant
927 # on the architecture's assembly.
928 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
929
930 # A NULL-terminated array of prefixes used to mark a register name on
931 # the architecture's assembly.
932 # For example, on x86 the register name is written as:
933 #
934 # \%eax ;; register eax
935 #
936 # in this case, this prefix would be the character \`\%\'.
937 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
938
939 # A NULL-terminated array of suffixes used to mark a register name on
940 # the architecture's assembly.
941 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
942
943 # A NULL-terminated array of prefixes used to mark a register
944 # indirection on the architecture's assembly.
945 # For example, on x86 the register indirection is written as:
946 #
947 # \(\%eax\) ;; indirecting eax
948 #
949 # in this case, this prefix would be the charater \`\(\'.
950 #
951 # Please note that we use the indirection prefix also for register
952 # displacement, e.g., \`4\(\%eax\)\' on x86.
953 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
954
955 # A NULL-terminated array of suffixes used to mark a register
956 # indirection on the architecture's assembly.
957 # For example, on x86 the register indirection is written as:
958 #
959 # \(\%eax\) ;; indirecting eax
960 #
961 # in this case, this prefix would be the charater \`\)\'.
962 #
963 # Please note that we use the indirection suffix also for register
964 # displacement, e.g., \`4\(\%eax\)\' on x86.
965 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
966
967 # Prefix(es) used to name a register using GDB's nomenclature.
968 #
969 # For example, on PPC a register is represented by a number in the assembly
970 # language (e.g., \`10\' is the 10th general-purpose register). However,
971 # inside GDB this same register has an \`r\' appended to its name, so the 10th
972 # register would be represented as \`r10\' internally.
973 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
974
975 # Suffix used to name a register using GDB's nomenclature.
976 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
977
978 # Check if S is a single operand.
979 #
980 # Single operands can be:
981 # \- Literal integers, e.g. \`\$10\' on x86
982 # \- Register access, e.g. \`\%eax\' on x86
983 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
984 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
985 #
986 # This function should check for these patterns on the string
987 # and return 1 if some were found, or zero otherwise. Please try to match
988 # as much info as you can from the string, i.e., if you have to match
989 # something like \`\(\%\', do not match just the \`\(\'.
990 M;int;stap_is_single_operand;const char *s;s
991
992 # Function used to handle a "special case" in the parser.
993 #
994 # A "special case" is considered to be an unknown token, i.e., a token
995 # that the parser does not know how to parse. A good example of special
996 # case would be ARM's register displacement syntax:
997 #
998 # [R0, #4] ;; displacing R0 by 4
999 #
1000 # Since the parser assumes that a register displacement is of the form:
1001 #
1002 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1003 #
1004 # it means that it will not be able to recognize and parse this odd syntax.
1005 # Therefore, we should add a special case function that will handle this token.
1006 #
1007 # This function should generate the proper expression form of the expression
1008 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1009 # and so on). It should also return 1 if the parsing was successful, or zero
1010 # if the token was not recognized as a special token (in this case, returning
1011 # zero means that the special parser is deferring the parsing to the generic
1012 # parser), and should advance the buffer pointer (p->arg).
1013 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1014
1015 # DTrace related functions.
1016
1017 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1018 # NARG must be >= 0.
1019 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1020
1021 # True if the given ADDR does not contain the instruction sequence
1022 # corresponding to a disabled DTrace is-enabled probe.
1023 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1024
1025 # Enable a DTrace is-enabled probe at ADDR.
1026 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1027
1028 # Disable a DTrace is-enabled probe at ADDR.
1029 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1030
1031 # True if the list of shared libraries is one and only for all
1032 # processes, as opposed to a list of shared libraries per inferior.
1033 # This usually means that all processes, although may or may not share
1034 # an address space, will see the same set of symbols at the same
1035 # addresses.
1036 v;int;has_global_solist;;;0;0;;0
1037
1038 # On some targets, even though each inferior has its own private
1039 # address space, the debug interface takes care of making breakpoints
1040 # visible to all address spaces automatically. For such cases,
1041 # this property should be set to true.
1042 v;int;has_global_breakpoints;;;0;0;;0
1043
1044 # True if inferiors share an address space (e.g., uClinux).
1045 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1046
1047 # True if a fast tracepoint can be set at an address.
1048 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1049
1050 # Guess register state based on tracepoint location. Used for tracepoints
1051 # where no registers have been collected, but there's only one location,
1052 # allowing us to guess the PC value, and perhaps some other registers.
1053 # On entry, regcache has all registers marked as unavailable.
1054 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1055
1056 # Return the "auto" target charset.
1057 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1058 # Return the "auto" target wide charset.
1059 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1060
1061 # If non-empty, this is a file extension that will be opened in place
1062 # of the file extension reported by the shared library list.
1063 #
1064 # This is most useful for toolchains that use a post-linker tool,
1065 # where the names of the files run on the target differ in extension
1066 # compared to the names of the files GDB should load for debug info.
1067 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1068
1069 # If true, the target OS has DOS-based file system semantics. That
1070 # is, absolute paths include a drive name, and the backslash is
1071 # considered a directory separator.
1072 v;int;has_dos_based_file_system;;;0;0;;0
1073
1074 # Generate bytecodes to collect the return address in a frame.
1075 # Since the bytecodes run on the target, possibly with GDB not even
1076 # connected, the full unwinding machinery is not available, and
1077 # typically this function will issue bytecodes for one or more likely
1078 # places that the return address may be found.
1079 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1080
1081 # Implement the "info proc" command.
1082 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1083
1084 # Implement the "info proc" command for core files. Noe that there
1085 # are two "info_proc"-like methods on gdbarch -- one for core files,
1086 # one for live targets.
1087 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1088
1089 # Iterate over all objfiles in the order that makes the most sense
1090 # for the architecture to make global symbol searches.
1091 #
1092 # CB is a callback function where OBJFILE is the objfile to be searched,
1093 # and CB_DATA a pointer to user-defined data (the same data that is passed
1094 # when calling this gdbarch method). The iteration stops if this function
1095 # returns nonzero.
1096 #
1097 # CB_DATA is a pointer to some user-defined data to be passed to
1098 # the callback.
1099 #
1100 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1101 # inspected when the symbol search was requested.
1102 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1103
1104 # Ravenscar arch-dependent ops.
1105 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1106
1107 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1108 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1109
1110 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1111 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1112
1113 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1114 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1115
1116 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1117 # Return 0 if *READPTR is already at the end of the buffer.
1118 # Return -1 if there is insufficient buffer for a whole entry.
1119 # Return 1 if an entry was read into *TYPEP and *VALP.
1120 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1121
1122 # Print the description of a single auxv entry described by TYPE and VAL
1123 # to FILE.
1124 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1125
1126 # Find the address range of the current inferior's vsyscall/vDSO, and
1127 # write it to *RANGE. If the vsyscall's length can't be determined, a
1128 # range with zero length is returned. Returns true if the vsyscall is
1129 # found, false otherwise.
1130 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1131
1132 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1133 # PROT has GDB_MMAP_PROT_* bitmask format.
1134 # Throw an error if it is not possible. Returned address is always valid.
1135 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1136
1137 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1138 # Print a warning if it is not possible.
1139 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1140
1141 # Return string (caller has to use xfree for it) with options for GCC
1142 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1143 # These options are put before CU's DW_AT_producer compilation options so that
1144 # they can override it. Method may also return NULL.
1145 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1146
1147 # Return a regular expression that matches names used by this
1148 # architecture in GNU configury triplets. The result is statically
1149 # allocated and must not be freed. The default implementation simply
1150 # returns the BFD architecture name, which is correct in nearly every
1151 # case.
1152 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1153
1154 # Return the size in 8-bit bytes of an addressable memory unit on this
1155 # architecture. This corresponds to the number of 8-bit bytes associated to
1156 # each address in memory.
1157 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1158
1159 # Functions for allowing a target to modify its disassembler options.
1160 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1161 v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1162
1163 EOF
1164 }
1165
1166 #
1167 # The .log file
1168 #
1169 exec > new-gdbarch.log
1170 function_list | while do_read
1171 do
1172 cat <<EOF
1173 ${class} ${returntype} ${function} ($formal)
1174 EOF
1175 for r in ${read}
1176 do
1177 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1178 done
1179 if class_is_predicate_p && fallback_default_p
1180 then
1181 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1182 kill $$
1183 exit 1
1184 fi
1185 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1186 then
1187 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1188 kill $$
1189 exit 1
1190 fi
1191 if class_is_multiarch_p
1192 then
1193 if class_is_predicate_p ; then :
1194 elif test "x${predefault}" = "x"
1195 then
1196 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1197 kill $$
1198 exit 1
1199 fi
1200 fi
1201 echo ""
1202 done
1203
1204 exec 1>&2
1205 compare_new gdbarch.log
1206
1207
1208 copyright ()
1209 {
1210 cat <<EOF
1211 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1212 /* vi:set ro: */
1213
1214 /* Dynamic architecture support for GDB, the GNU debugger.
1215
1216 Copyright (C) 1998-2017 Free Software Foundation, Inc.
1217
1218 This file is part of GDB.
1219
1220 This program is free software; you can redistribute it and/or modify
1221 it under the terms of the GNU General Public License as published by
1222 the Free Software Foundation; either version 3 of the License, or
1223 (at your option) any later version.
1224
1225 This program is distributed in the hope that it will be useful,
1226 but WITHOUT ANY WARRANTY; without even the implied warranty of
1227 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1228 GNU General Public License for more details.
1229
1230 You should have received a copy of the GNU General Public License
1231 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1232
1233 /* This file was created with the aid of \`\`gdbarch.sh''.
1234
1235 The Bourne shell script \`\`gdbarch.sh'' creates the files
1236 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1237 against the existing \`\`gdbarch.[hc]''. Any differences found
1238 being reported.
1239
1240 If editing this file, please also run gdbarch.sh and merge any
1241 changes into that script. Conversely, when making sweeping changes
1242 to this file, modifying gdbarch.sh and using its output may prove
1243 easier. */
1244
1245 EOF
1246 }
1247
1248 #
1249 # The .h file
1250 #
1251
1252 exec > new-gdbarch.h
1253 copyright
1254 cat <<EOF
1255 #ifndef GDBARCH_H
1256 #define GDBARCH_H
1257
1258 #include <vector>
1259 #include "frame.h"
1260 #include "dis-asm.h"
1261
1262 struct floatformat;
1263 struct ui_file;
1264 struct value;
1265 struct objfile;
1266 struct obj_section;
1267 struct minimal_symbol;
1268 struct regcache;
1269 struct reggroup;
1270 struct regset;
1271 struct disassemble_info;
1272 struct target_ops;
1273 struct obstack;
1274 struct bp_target_info;
1275 struct target_desc;
1276 struct objfile;
1277 struct symbol;
1278 struct displaced_step_closure;
1279 struct syscall;
1280 struct agent_expr;
1281 struct axs_value;
1282 struct stap_parse_info;
1283 struct parser_state;
1284 struct ravenscar_arch_ops;
1285 struct elf_internal_linux_prpsinfo;
1286 struct mem_range;
1287 struct syscalls_info;
1288 struct thread_info;
1289 struct ui_out;
1290
1291 #include "regcache.h"
1292
1293 /* The architecture associated with the inferior through the
1294 connection to the target.
1295
1296 The architecture vector provides some information that is really a
1297 property of the inferior, accessed through a particular target:
1298 ptrace operations; the layout of certain RSP packets; the solib_ops
1299 vector; etc. To differentiate architecture accesses to
1300 per-inferior/target properties from
1301 per-thread/per-frame/per-objfile properties, accesses to
1302 per-inferior/target properties should be made through this
1303 gdbarch. */
1304
1305 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1306 extern struct gdbarch *target_gdbarch (void);
1307
1308 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1309 gdbarch method. */
1310
1311 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1312 (struct objfile *objfile, void *cb_data);
1313
1314 /* Callback type for regset section iterators. The callback usually
1315 invokes the REGSET's supply or collect method, to which it must
1316 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1317 section name, and HUMAN_NAME is used for diagnostic messages.
1318 CB_DATA should have been passed unchanged through the iterator. */
1319
1320 typedef void (iterate_over_regset_sections_cb)
1321 (const char *sect_name, int size, const struct regset *regset,
1322 const char *human_name, void *cb_data);
1323 EOF
1324
1325 # function typedef's
1326 printf "\n"
1327 printf "\n"
1328 printf "/* The following are pre-initialized by GDBARCH. */\n"
1329 function_list | while do_read
1330 do
1331 if class_is_info_p
1332 then
1333 printf "\n"
1334 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1335 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1336 fi
1337 done
1338
1339 # function typedef's
1340 printf "\n"
1341 printf "\n"
1342 printf "/* The following are initialized by the target dependent code. */\n"
1343 function_list | while do_read
1344 do
1345 if [ -n "${comment}" ]
1346 then
1347 echo "${comment}" | sed \
1348 -e '2 s,#,/*,' \
1349 -e '3,$ s,#, ,' \
1350 -e '$ s,$, */,'
1351 fi
1352
1353 if class_is_predicate_p
1354 then
1355 printf "\n"
1356 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1357 fi
1358 if class_is_variable_p
1359 then
1360 printf "\n"
1361 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1362 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1363 fi
1364 if class_is_function_p
1365 then
1366 printf "\n"
1367 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1368 then
1369 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1370 elif class_is_multiarch_p
1371 then
1372 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1373 else
1374 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1375 fi
1376 if [ "x${formal}" = "xvoid" ]
1377 then
1378 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1379 else
1380 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1381 fi
1382 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1383 fi
1384 done
1385
1386 # close it off
1387 cat <<EOF
1388
1389 /* Definition for an unknown syscall, used basically in error-cases. */
1390 #define UNKNOWN_SYSCALL (-1)
1391
1392 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1393
1394
1395 /* Mechanism for co-ordinating the selection of a specific
1396 architecture.
1397
1398 GDB targets (*-tdep.c) can register an interest in a specific
1399 architecture. Other GDB components can register a need to maintain
1400 per-architecture data.
1401
1402 The mechanisms below ensures that there is only a loose connection
1403 between the set-architecture command and the various GDB
1404 components. Each component can independently register their need
1405 to maintain architecture specific data with gdbarch.
1406
1407 Pragmatics:
1408
1409 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1410 didn't scale.
1411
1412 The more traditional mega-struct containing architecture specific
1413 data for all the various GDB components was also considered. Since
1414 GDB is built from a variable number of (fairly independent)
1415 components it was determined that the global aproach was not
1416 applicable. */
1417
1418
1419 /* Register a new architectural family with GDB.
1420
1421 Register support for the specified ARCHITECTURE with GDB. When
1422 gdbarch determines that the specified architecture has been
1423 selected, the corresponding INIT function is called.
1424
1425 --
1426
1427 The INIT function takes two parameters: INFO which contains the
1428 information available to gdbarch about the (possibly new)
1429 architecture; ARCHES which is a list of the previously created
1430 \`\`struct gdbarch'' for this architecture.
1431
1432 The INFO parameter is, as far as possible, be pre-initialized with
1433 information obtained from INFO.ABFD or the global defaults.
1434
1435 The ARCHES parameter is a linked list (sorted most recently used)
1436 of all the previously created architures for this architecture
1437 family. The (possibly NULL) ARCHES->gdbarch can used to access
1438 values from the previously selected architecture for this
1439 architecture family.
1440
1441 The INIT function shall return any of: NULL - indicating that it
1442 doesn't recognize the selected architecture; an existing \`\`struct
1443 gdbarch'' from the ARCHES list - indicating that the new
1444 architecture is just a synonym for an earlier architecture (see
1445 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1446 - that describes the selected architecture (see gdbarch_alloc()).
1447
1448 The DUMP_TDEP function shall print out all target specific values.
1449 Care should be taken to ensure that the function works in both the
1450 multi-arch and non- multi-arch cases. */
1451
1452 struct gdbarch_list
1453 {
1454 struct gdbarch *gdbarch;
1455 struct gdbarch_list *next;
1456 };
1457
1458 struct gdbarch_info
1459 {
1460 /* Use default: NULL (ZERO). */
1461 const struct bfd_arch_info *bfd_arch_info;
1462
1463 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1464 enum bfd_endian byte_order;
1465
1466 enum bfd_endian byte_order_for_code;
1467
1468 /* Use default: NULL (ZERO). */
1469 bfd *abfd;
1470
1471 /* Use default: NULL (ZERO). */
1472 void *tdep_info;
1473
1474 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1475 enum gdb_osabi osabi;
1476
1477 /* Use default: NULL (ZERO). */
1478 const struct target_desc *target_desc;
1479 };
1480
1481 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1482 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1483
1484 /* DEPRECATED - use gdbarch_register() */
1485 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1486
1487 extern void gdbarch_register (enum bfd_architecture architecture,
1488 gdbarch_init_ftype *,
1489 gdbarch_dump_tdep_ftype *);
1490
1491
1492 /* Return a freshly allocated, NULL terminated, array of the valid
1493 architecture names. Since architectures are registered during the
1494 _initialize phase this function only returns useful information
1495 once initialization has been completed. */
1496
1497 extern const char **gdbarch_printable_names (void);
1498
1499
1500 /* Helper function. Search the list of ARCHES for a GDBARCH that
1501 matches the information provided by INFO. */
1502
1503 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1504
1505
1506 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1507 basic initialization using values obtained from the INFO and TDEP
1508 parameters. set_gdbarch_*() functions are called to complete the
1509 initialization of the object. */
1510
1511 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1512
1513
1514 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1515 It is assumed that the caller freeds the \`\`struct
1516 gdbarch_tdep''. */
1517
1518 extern void gdbarch_free (struct gdbarch *);
1519
1520
1521 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1522 obstack. The memory is freed when the corresponding architecture
1523 is also freed. */
1524
1525 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1526 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1527 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1528
1529 /* Duplicate STRING, returning an equivalent string that's allocated on the
1530 obstack associated with GDBARCH. The string is freed when the corresponding
1531 architecture is also freed. */
1532
1533 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1534
1535 /* Helper function. Force an update of the current architecture.
1536
1537 The actual architecture selected is determined by INFO, \`\`(gdb) set
1538 architecture'' et.al., the existing architecture and BFD's default
1539 architecture. INFO should be initialized to zero and then selected
1540 fields should be updated.
1541
1542 Returns non-zero if the update succeeds. */
1543
1544 extern int gdbarch_update_p (struct gdbarch_info info);
1545
1546
1547 /* Helper function. Find an architecture matching info.
1548
1549 INFO should be initialized using gdbarch_info_init, relevant fields
1550 set, and then finished using gdbarch_info_fill.
1551
1552 Returns the corresponding architecture, or NULL if no matching
1553 architecture was found. */
1554
1555 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1556
1557
1558 /* Helper function. Set the target gdbarch to "gdbarch". */
1559
1560 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1561
1562
1563 /* Register per-architecture data-pointer.
1564
1565 Reserve space for a per-architecture data-pointer. An identifier
1566 for the reserved data-pointer is returned. That identifer should
1567 be saved in a local static variable.
1568
1569 Memory for the per-architecture data shall be allocated using
1570 gdbarch_obstack_zalloc. That memory will be deleted when the
1571 corresponding architecture object is deleted.
1572
1573 When a previously created architecture is re-selected, the
1574 per-architecture data-pointer for that previous architecture is
1575 restored. INIT() is not re-called.
1576
1577 Multiple registrarants for any architecture are allowed (and
1578 strongly encouraged). */
1579
1580 struct gdbarch_data;
1581
1582 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1583 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1584 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1585 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1586 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1587 struct gdbarch_data *data,
1588 void *pointer);
1589
1590 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1591
1592
1593 /* Set the dynamic target-system-dependent parameters (architecture,
1594 byte-order, ...) using information found in the BFD. */
1595
1596 extern void set_gdbarch_from_file (bfd *);
1597
1598
1599 /* Initialize the current architecture to the "first" one we find on
1600 our list. */
1601
1602 extern void initialize_current_architecture (void);
1603
1604 /* gdbarch trace variable */
1605 extern unsigned int gdbarch_debug;
1606
1607 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1608
1609 #endif
1610 EOF
1611 exec 1>&2
1612 #../move-if-change new-gdbarch.h gdbarch.h
1613 compare_new gdbarch.h
1614
1615
1616 #
1617 # C file
1618 #
1619
1620 exec > new-gdbarch.c
1621 copyright
1622 cat <<EOF
1623
1624 #include "defs.h"
1625 #include "arch-utils.h"
1626
1627 #include "gdbcmd.h"
1628 #include "inferior.h"
1629 #include "symcat.h"
1630
1631 #include "floatformat.h"
1632 #include "reggroups.h"
1633 #include "osabi.h"
1634 #include "gdb_obstack.h"
1635 #include "observer.h"
1636 #include "regcache.h"
1637 #include "objfiles.h"
1638 #include "auxv.h"
1639
1640 /* Static function declarations */
1641
1642 static void alloc_gdbarch_data (struct gdbarch *);
1643
1644 /* Non-zero if we want to trace architecture code. */
1645
1646 #ifndef GDBARCH_DEBUG
1647 #define GDBARCH_DEBUG 0
1648 #endif
1649 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1650 static void
1651 show_gdbarch_debug (struct ui_file *file, int from_tty,
1652 struct cmd_list_element *c, const char *value)
1653 {
1654 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1655 }
1656
1657 static const char *
1658 pformat (const struct floatformat **format)
1659 {
1660 if (format == NULL)
1661 return "(null)";
1662 else
1663 /* Just print out one of them - this is only for diagnostics. */
1664 return format[0]->name;
1665 }
1666
1667 static const char *
1668 pstring (const char *string)
1669 {
1670 if (string == NULL)
1671 return "(null)";
1672 return string;
1673 }
1674
1675 static const char *
1676 pstring_ptr (char **string)
1677 {
1678 if (string == NULL || *string == NULL)
1679 return "(null)";
1680 return *string;
1681 }
1682
1683 /* Helper function to print a list of strings, represented as "const
1684 char *const *". The list is printed comma-separated. */
1685
1686 static const char *
1687 pstring_list (const char *const *list)
1688 {
1689 static char ret[100];
1690 const char *const *p;
1691 size_t offset = 0;
1692
1693 if (list == NULL)
1694 return "(null)";
1695
1696 ret[0] = '\0';
1697 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1698 {
1699 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1700 offset += 2 + s;
1701 }
1702
1703 if (offset > 0)
1704 {
1705 gdb_assert (offset - 2 < sizeof (ret));
1706 ret[offset - 2] = '\0';
1707 }
1708
1709 return ret;
1710 }
1711
1712 EOF
1713
1714 # gdbarch open the gdbarch object
1715 printf "\n"
1716 printf "/* Maintain the struct gdbarch object. */\n"
1717 printf "\n"
1718 printf "struct gdbarch\n"
1719 printf "{\n"
1720 printf " /* Has this architecture been fully initialized? */\n"
1721 printf " int initialized_p;\n"
1722 printf "\n"
1723 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1724 printf " struct obstack *obstack;\n"
1725 printf "\n"
1726 printf " /* basic architectural information. */\n"
1727 function_list | while do_read
1728 do
1729 if class_is_info_p
1730 then
1731 printf " ${returntype} ${function};\n"
1732 fi
1733 done
1734 printf "\n"
1735 printf " /* target specific vector. */\n"
1736 printf " struct gdbarch_tdep *tdep;\n"
1737 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1738 printf "\n"
1739 printf " /* per-architecture data-pointers. */\n"
1740 printf " unsigned nr_data;\n"
1741 printf " void **data;\n"
1742 printf "\n"
1743 cat <<EOF
1744 /* Multi-arch values.
1745
1746 When extending this structure you must:
1747
1748 Add the field below.
1749
1750 Declare set/get functions and define the corresponding
1751 macro in gdbarch.h.
1752
1753 gdbarch_alloc(): If zero/NULL is not a suitable default,
1754 initialize the new field.
1755
1756 verify_gdbarch(): Confirm that the target updated the field
1757 correctly.
1758
1759 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1760 field is dumped out
1761
1762 get_gdbarch(): Implement the set/get functions (probably using
1763 the macro's as shortcuts).
1764
1765 */
1766
1767 EOF
1768 function_list | while do_read
1769 do
1770 if class_is_variable_p
1771 then
1772 printf " ${returntype} ${function};\n"
1773 elif class_is_function_p
1774 then
1775 printf " gdbarch_${function}_ftype *${function};\n"
1776 fi
1777 done
1778 printf "};\n"
1779
1780 # Create a new gdbarch struct
1781 cat <<EOF
1782
1783 /* Create a new \`\`struct gdbarch'' based on information provided by
1784 \`\`struct gdbarch_info''. */
1785 EOF
1786 printf "\n"
1787 cat <<EOF
1788 struct gdbarch *
1789 gdbarch_alloc (const struct gdbarch_info *info,
1790 struct gdbarch_tdep *tdep)
1791 {
1792 struct gdbarch *gdbarch;
1793
1794 /* Create an obstack for allocating all the per-architecture memory,
1795 then use that to allocate the architecture vector. */
1796 struct obstack *obstack = XNEW (struct obstack);
1797 obstack_init (obstack);
1798 gdbarch = XOBNEW (obstack, struct gdbarch);
1799 memset (gdbarch, 0, sizeof (*gdbarch));
1800 gdbarch->obstack = obstack;
1801
1802 alloc_gdbarch_data (gdbarch);
1803
1804 gdbarch->tdep = tdep;
1805 EOF
1806 printf "\n"
1807 function_list | while do_read
1808 do
1809 if class_is_info_p
1810 then
1811 printf " gdbarch->${function} = info->${function};\n"
1812 fi
1813 done
1814 printf "\n"
1815 printf " /* Force the explicit initialization of these. */\n"
1816 function_list | while do_read
1817 do
1818 if class_is_function_p || class_is_variable_p
1819 then
1820 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1821 then
1822 printf " gdbarch->${function} = ${predefault};\n"
1823 fi
1824 fi
1825 done
1826 cat <<EOF
1827 /* gdbarch_alloc() */
1828
1829 return gdbarch;
1830 }
1831 EOF
1832
1833 # Free a gdbarch struct.
1834 printf "\n"
1835 printf "\n"
1836 cat <<EOF
1837 /* Allocate extra space using the per-architecture obstack. */
1838
1839 void *
1840 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1841 {
1842 void *data = obstack_alloc (arch->obstack, size);
1843
1844 memset (data, 0, size);
1845 return data;
1846 }
1847
1848 /* See gdbarch.h. */
1849
1850 char *
1851 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1852 {
1853 return obstack_strdup (arch->obstack, string);
1854 }
1855
1856
1857 /* Free a gdbarch struct. This should never happen in normal
1858 operation --- once you've created a gdbarch, you keep it around.
1859 However, if an architecture's init function encounters an error
1860 building the structure, it may need to clean up a partially
1861 constructed gdbarch. */
1862
1863 void
1864 gdbarch_free (struct gdbarch *arch)
1865 {
1866 struct obstack *obstack;
1867
1868 gdb_assert (arch != NULL);
1869 gdb_assert (!arch->initialized_p);
1870 obstack = arch->obstack;
1871 obstack_free (obstack, 0); /* Includes the ARCH. */
1872 xfree (obstack);
1873 }
1874 EOF
1875
1876 # verify a new architecture
1877 cat <<EOF
1878
1879
1880 /* Ensure that all values in a GDBARCH are reasonable. */
1881
1882 static void
1883 verify_gdbarch (struct gdbarch *gdbarch)
1884 {
1885 string_file log;
1886
1887 /* fundamental */
1888 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1889 log.puts ("\n\tbyte-order");
1890 if (gdbarch->bfd_arch_info == NULL)
1891 log.puts ("\n\tbfd_arch_info");
1892 /* Check those that need to be defined for the given multi-arch level. */
1893 EOF
1894 function_list | while do_read
1895 do
1896 if class_is_function_p || class_is_variable_p
1897 then
1898 if [ "x${invalid_p}" = "x0" ]
1899 then
1900 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1901 elif class_is_predicate_p
1902 then
1903 printf " /* Skip verify of ${function}, has predicate. */\n"
1904 # FIXME: See do_read for potential simplification
1905 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1906 then
1907 printf " if (${invalid_p})\n"
1908 printf " gdbarch->${function} = ${postdefault};\n"
1909 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1910 then
1911 printf " if (gdbarch->${function} == ${predefault})\n"
1912 printf " gdbarch->${function} = ${postdefault};\n"
1913 elif [ -n "${postdefault}" ]
1914 then
1915 printf " if (gdbarch->${function} == 0)\n"
1916 printf " gdbarch->${function} = ${postdefault};\n"
1917 elif [ -n "${invalid_p}" ]
1918 then
1919 printf " if (${invalid_p})\n"
1920 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1921 elif [ -n "${predefault}" ]
1922 then
1923 printf " if (gdbarch->${function} == ${predefault})\n"
1924 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1925 fi
1926 fi
1927 done
1928 cat <<EOF
1929 if (!log.empty ())
1930 internal_error (__FILE__, __LINE__,
1931 _("verify_gdbarch: the following are invalid ...%s"),
1932 log.c_str ());
1933 }
1934 EOF
1935
1936 # dump the structure
1937 printf "\n"
1938 printf "\n"
1939 cat <<EOF
1940 /* Print out the details of the current architecture. */
1941
1942 void
1943 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1944 {
1945 const char *gdb_nm_file = "<not-defined>";
1946
1947 #if defined (GDB_NM_FILE)
1948 gdb_nm_file = GDB_NM_FILE;
1949 #endif
1950 fprintf_unfiltered (file,
1951 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1952 gdb_nm_file);
1953 EOF
1954 function_list | sort '-t;' -k 3 | while do_read
1955 do
1956 # First the predicate
1957 if class_is_predicate_p
1958 then
1959 printf " fprintf_unfiltered (file,\n"
1960 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1961 printf " gdbarch_${function}_p (gdbarch));\n"
1962 fi
1963 # Print the corresponding value.
1964 if class_is_function_p
1965 then
1966 printf " fprintf_unfiltered (file,\n"
1967 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1968 printf " host_address_to_string (gdbarch->${function}));\n"
1969 else
1970 # It is a variable
1971 case "${print}:${returntype}" in
1972 :CORE_ADDR )
1973 fmt="%s"
1974 print="core_addr_to_string_nz (gdbarch->${function})"
1975 ;;
1976 :* )
1977 fmt="%s"
1978 print="plongest (gdbarch->${function})"
1979 ;;
1980 * )
1981 fmt="%s"
1982 ;;
1983 esac
1984 printf " fprintf_unfiltered (file,\n"
1985 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1986 printf " ${print});\n"
1987 fi
1988 done
1989 cat <<EOF
1990 if (gdbarch->dump_tdep != NULL)
1991 gdbarch->dump_tdep (gdbarch, file);
1992 }
1993 EOF
1994
1995
1996 # GET/SET
1997 printf "\n"
1998 cat <<EOF
1999 struct gdbarch_tdep *
2000 gdbarch_tdep (struct gdbarch *gdbarch)
2001 {
2002 if (gdbarch_debug >= 2)
2003 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2004 return gdbarch->tdep;
2005 }
2006 EOF
2007 printf "\n"
2008 function_list | while do_read
2009 do
2010 if class_is_predicate_p
2011 then
2012 printf "\n"
2013 printf "int\n"
2014 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2015 printf "{\n"
2016 printf " gdb_assert (gdbarch != NULL);\n"
2017 printf " return ${predicate};\n"
2018 printf "}\n"
2019 fi
2020 if class_is_function_p
2021 then
2022 printf "\n"
2023 printf "${returntype}\n"
2024 if [ "x${formal}" = "xvoid" ]
2025 then
2026 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2027 else
2028 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2029 fi
2030 printf "{\n"
2031 printf " gdb_assert (gdbarch != NULL);\n"
2032 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2033 if class_is_predicate_p && test -n "${predefault}"
2034 then
2035 # Allow a call to a function with a predicate.
2036 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2037 fi
2038 printf " if (gdbarch_debug >= 2)\n"
2039 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2040 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2041 then
2042 if class_is_multiarch_p
2043 then
2044 params="gdbarch"
2045 else
2046 params=""
2047 fi
2048 else
2049 if class_is_multiarch_p
2050 then
2051 params="gdbarch, ${actual}"
2052 else
2053 params="${actual}"
2054 fi
2055 fi
2056 if [ "x${returntype}" = "xvoid" ]
2057 then
2058 printf " gdbarch->${function} (${params});\n"
2059 else
2060 printf " return gdbarch->${function} (${params});\n"
2061 fi
2062 printf "}\n"
2063 printf "\n"
2064 printf "void\n"
2065 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2066 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2067 printf "{\n"
2068 printf " gdbarch->${function} = ${function};\n"
2069 printf "}\n"
2070 elif class_is_variable_p
2071 then
2072 printf "\n"
2073 printf "${returntype}\n"
2074 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2075 printf "{\n"
2076 printf " gdb_assert (gdbarch != NULL);\n"
2077 if [ "x${invalid_p}" = "x0" ]
2078 then
2079 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2080 elif [ -n "${invalid_p}" ]
2081 then
2082 printf " /* Check variable is valid. */\n"
2083 printf " gdb_assert (!(${invalid_p}));\n"
2084 elif [ -n "${predefault}" ]
2085 then
2086 printf " /* Check variable changed from pre-default. */\n"
2087 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2088 fi
2089 printf " if (gdbarch_debug >= 2)\n"
2090 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2091 printf " return gdbarch->${function};\n"
2092 printf "}\n"
2093 printf "\n"
2094 printf "void\n"
2095 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2096 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2097 printf "{\n"
2098 printf " gdbarch->${function} = ${function};\n"
2099 printf "}\n"
2100 elif class_is_info_p
2101 then
2102 printf "\n"
2103 printf "${returntype}\n"
2104 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2105 printf "{\n"
2106 printf " gdb_assert (gdbarch != NULL);\n"
2107 printf " if (gdbarch_debug >= 2)\n"
2108 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2109 printf " return gdbarch->${function};\n"
2110 printf "}\n"
2111 fi
2112 done
2113
2114 # All the trailing guff
2115 cat <<EOF
2116
2117
2118 /* Keep a registry of per-architecture data-pointers required by GDB
2119 modules. */
2120
2121 struct gdbarch_data
2122 {
2123 unsigned index;
2124 int init_p;
2125 gdbarch_data_pre_init_ftype *pre_init;
2126 gdbarch_data_post_init_ftype *post_init;
2127 };
2128
2129 struct gdbarch_data_registration
2130 {
2131 struct gdbarch_data *data;
2132 struct gdbarch_data_registration *next;
2133 };
2134
2135 struct gdbarch_data_registry
2136 {
2137 unsigned nr;
2138 struct gdbarch_data_registration *registrations;
2139 };
2140
2141 struct gdbarch_data_registry gdbarch_data_registry =
2142 {
2143 0, NULL,
2144 };
2145
2146 static struct gdbarch_data *
2147 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2148 gdbarch_data_post_init_ftype *post_init)
2149 {
2150 struct gdbarch_data_registration **curr;
2151
2152 /* Append the new registration. */
2153 for (curr = &gdbarch_data_registry.registrations;
2154 (*curr) != NULL;
2155 curr = &(*curr)->next);
2156 (*curr) = XNEW (struct gdbarch_data_registration);
2157 (*curr)->next = NULL;
2158 (*curr)->data = XNEW (struct gdbarch_data);
2159 (*curr)->data->index = gdbarch_data_registry.nr++;
2160 (*curr)->data->pre_init = pre_init;
2161 (*curr)->data->post_init = post_init;
2162 (*curr)->data->init_p = 1;
2163 return (*curr)->data;
2164 }
2165
2166 struct gdbarch_data *
2167 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2168 {
2169 return gdbarch_data_register (pre_init, NULL);
2170 }
2171
2172 struct gdbarch_data *
2173 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2174 {
2175 return gdbarch_data_register (NULL, post_init);
2176 }
2177
2178 /* Create/delete the gdbarch data vector. */
2179
2180 static void
2181 alloc_gdbarch_data (struct gdbarch *gdbarch)
2182 {
2183 gdb_assert (gdbarch->data == NULL);
2184 gdbarch->nr_data = gdbarch_data_registry.nr;
2185 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2186 }
2187
2188 /* Initialize the current value of the specified per-architecture
2189 data-pointer. */
2190
2191 void
2192 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2193 struct gdbarch_data *data,
2194 void *pointer)
2195 {
2196 gdb_assert (data->index < gdbarch->nr_data);
2197 gdb_assert (gdbarch->data[data->index] == NULL);
2198 gdb_assert (data->pre_init == NULL);
2199 gdbarch->data[data->index] = pointer;
2200 }
2201
2202 /* Return the current value of the specified per-architecture
2203 data-pointer. */
2204
2205 void *
2206 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2207 {
2208 gdb_assert (data->index < gdbarch->nr_data);
2209 if (gdbarch->data[data->index] == NULL)
2210 {
2211 /* The data-pointer isn't initialized, call init() to get a
2212 value. */
2213 if (data->pre_init != NULL)
2214 /* Mid architecture creation: pass just the obstack, and not
2215 the entire architecture, as that way it isn't possible for
2216 pre-init code to refer to undefined architecture
2217 fields. */
2218 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2219 else if (gdbarch->initialized_p
2220 && data->post_init != NULL)
2221 /* Post architecture creation: pass the entire architecture
2222 (as all fields are valid), but be careful to also detect
2223 recursive references. */
2224 {
2225 gdb_assert (data->init_p);
2226 data->init_p = 0;
2227 gdbarch->data[data->index] = data->post_init (gdbarch);
2228 data->init_p = 1;
2229 }
2230 else
2231 /* The architecture initialization hasn't completed - punt -
2232 hope that the caller knows what they are doing. Once
2233 deprecated_set_gdbarch_data has been initialized, this can be
2234 changed to an internal error. */
2235 return NULL;
2236 gdb_assert (gdbarch->data[data->index] != NULL);
2237 }
2238 return gdbarch->data[data->index];
2239 }
2240
2241
2242 /* Keep a registry of the architectures known by GDB. */
2243
2244 struct gdbarch_registration
2245 {
2246 enum bfd_architecture bfd_architecture;
2247 gdbarch_init_ftype *init;
2248 gdbarch_dump_tdep_ftype *dump_tdep;
2249 struct gdbarch_list *arches;
2250 struct gdbarch_registration *next;
2251 };
2252
2253 static struct gdbarch_registration *gdbarch_registry = NULL;
2254
2255 static void
2256 append_name (const char ***buf, int *nr, const char *name)
2257 {
2258 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2259 (*buf)[*nr] = name;
2260 *nr += 1;
2261 }
2262
2263 const char **
2264 gdbarch_printable_names (void)
2265 {
2266 /* Accumulate a list of names based on the registed list of
2267 architectures. */
2268 int nr_arches = 0;
2269 const char **arches = NULL;
2270 struct gdbarch_registration *rego;
2271
2272 for (rego = gdbarch_registry;
2273 rego != NULL;
2274 rego = rego->next)
2275 {
2276 const struct bfd_arch_info *ap;
2277 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2278 if (ap == NULL)
2279 internal_error (__FILE__, __LINE__,
2280 _("gdbarch_architecture_names: multi-arch unknown"));
2281 do
2282 {
2283 append_name (&arches, &nr_arches, ap->printable_name);
2284 ap = ap->next;
2285 }
2286 while (ap != NULL);
2287 }
2288 append_name (&arches, &nr_arches, NULL);
2289 return arches;
2290 }
2291
2292
2293 void
2294 gdbarch_register (enum bfd_architecture bfd_architecture,
2295 gdbarch_init_ftype *init,
2296 gdbarch_dump_tdep_ftype *dump_tdep)
2297 {
2298 struct gdbarch_registration **curr;
2299 const struct bfd_arch_info *bfd_arch_info;
2300
2301 /* Check that BFD recognizes this architecture */
2302 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2303 if (bfd_arch_info == NULL)
2304 {
2305 internal_error (__FILE__, __LINE__,
2306 _("gdbarch: Attempt to register "
2307 "unknown architecture (%d)"),
2308 bfd_architecture);
2309 }
2310 /* Check that we haven't seen this architecture before. */
2311 for (curr = &gdbarch_registry;
2312 (*curr) != NULL;
2313 curr = &(*curr)->next)
2314 {
2315 if (bfd_architecture == (*curr)->bfd_architecture)
2316 internal_error (__FILE__, __LINE__,
2317 _("gdbarch: Duplicate registration "
2318 "of architecture (%s)"),
2319 bfd_arch_info->printable_name);
2320 }
2321 /* log it */
2322 if (gdbarch_debug)
2323 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2324 bfd_arch_info->printable_name,
2325 host_address_to_string (init));
2326 /* Append it */
2327 (*curr) = XNEW (struct gdbarch_registration);
2328 (*curr)->bfd_architecture = bfd_architecture;
2329 (*curr)->init = init;
2330 (*curr)->dump_tdep = dump_tdep;
2331 (*curr)->arches = NULL;
2332 (*curr)->next = NULL;
2333 }
2334
2335 void
2336 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2337 gdbarch_init_ftype *init)
2338 {
2339 gdbarch_register (bfd_architecture, init, NULL);
2340 }
2341
2342
2343 /* Look for an architecture using gdbarch_info. */
2344
2345 struct gdbarch_list *
2346 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2347 const struct gdbarch_info *info)
2348 {
2349 for (; arches != NULL; arches = arches->next)
2350 {
2351 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2352 continue;
2353 if (info->byte_order != arches->gdbarch->byte_order)
2354 continue;
2355 if (info->osabi != arches->gdbarch->osabi)
2356 continue;
2357 if (info->target_desc != arches->gdbarch->target_desc)
2358 continue;
2359 return arches;
2360 }
2361 return NULL;
2362 }
2363
2364
2365 /* Find an architecture that matches the specified INFO. Create a new
2366 architecture if needed. Return that new architecture. */
2367
2368 struct gdbarch *
2369 gdbarch_find_by_info (struct gdbarch_info info)
2370 {
2371 struct gdbarch *new_gdbarch;
2372 struct gdbarch_registration *rego;
2373
2374 /* Fill in missing parts of the INFO struct using a number of
2375 sources: "set ..."; INFOabfd supplied; and the global
2376 defaults. */
2377 gdbarch_info_fill (&info);
2378
2379 /* Must have found some sort of architecture. */
2380 gdb_assert (info.bfd_arch_info != NULL);
2381
2382 if (gdbarch_debug)
2383 {
2384 fprintf_unfiltered (gdb_stdlog,
2385 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2386 (info.bfd_arch_info != NULL
2387 ? info.bfd_arch_info->printable_name
2388 : "(null)"));
2389 fprintf_unfiltered (gdb_stdlog,
2390 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2391 info.byte_order,
2392 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2393 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2394 : "default"));
2395 fprintf_unfiltered (gdb_stdlog,
2396 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2397 info.osabi, gdbarch_osabi_name (info.osabi));
2398 fprintf_unfiltered (gdb_stdlog,
2399 "gdbarch_find_by_info: info.abfd %s\n",
2400 host_address_to_string (info.abfd));
2401 fprintf_unfiltered (gdb_stdlog,
2402 "gdbarch_find_by_info: info.tdep_info %s\n",
2403 host_address_to_string (info.tdep_info));
2404 }
2405
2406 /* Find the tdep code that knows about this architecture. */
2407 for (rego = gdbarch_registry;
2408 rego != NULL;
2409 rego = rego->next)
2410 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2411 break;
2412 if (rego == NULL)
2413 {
2414 if (gdbarch_debug)
2415 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2416 "No matching architecture\n");
2417 return 0;
2418 }
2419
2420 /* Ask the tdep code for an architecture that matches "info". */
2421 new_gdbarch = rego->init (info, rego->arches);
2422
2423 /* Did the tdep code like it? No. Reject the change and revert to
2424 the old architecture. */
2425 if (new_gdbarch == NULL)
2426 {
2427 if (gdbarch_debug)
2428 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2429 "Target rejected architecture\n");
2430 return NULL;
2431 }
2432
2433 /* Is this a pre-existing architecture (as determined by already
2434 being initialized)? Move it to the front of the architecture
2435 list (keeping the list sorted Most Recently Used). */
2436 if (new_gdbarch->initialized_p)
2437 {
2438 struct gdbarch_list **list;
2439 struct gdbarch_list *self;
2440 if (gdbarch_debug)
2441 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2442 "Previous architecture %s (%s) selected\n",
2443 host_address_to_string (new_gdbarch),
2444 new_gdbarch->bfd_arch_info->printable_name);
2445 /* Find the existing arch in the list. */
2446 for (list = &rego->arches;
2447 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2448 list = &(*list)->next);
2449 /* It had better be in the list of architectures. */
2450 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2451 /* Unlink SELF. */
2452 self = (*list);
2453 (*list) = self->next;
2454 /* Insert SELF at the front. */
2455 self->next = rego->arches;
2456 rego->arches = self;
2457 /* Return it. */
2458 return new_gdbarch;
2459 }
2460
2461 /* It's a new architecture. */
2462 if (gdbarch_debug)
2463 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2464 "New architecture %s (%s) selected\n",
2465 host_address_to_string (new_gdbarch),
2466 new_gdbarch->bfd_arch_info->printable_name);
2467
2468 /* Insert the new architecture into the front of the architecture
2469 list (keep the list sorted Most Recently Used). */
2470 {
2471 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2472 self->next = rego->arches;
2473 self->gdbarch = new_gdbarch;
2474 rego->arches = self;
2475 }
2476
2477 /* Check that the newly installed architecture is valid. Plug in
2478 any post init values. */
2479 new_gdbarch->dump_tdep = rego->dump_tdep;
2480 verify_gdbarch (new_gdbarch);
2481 new_gdbarch->initialized_p = 1;
2482
2483 if (gdbarch_debug)
2484 gdbarch_dump (new_gdbarch, gdb_stdlog);
2485
2486 return new_gdbarch;
2487 }
2488
2489 /* Make the specified architecture current. */
2490
2491 void
2492 set_target_gdbarch (struct gdbarch *new_gdbarch)
2493 {
2494 gdb_assert (new_gdbarch != NULL);
2495 gdb_assert (new_gdbarch->initialized_p);
2496 current_inferior ()->gdbarch = new_gdbarch;
2497 observer_notify_architecture_changed (new_gdbarch);
2498 registers_changed ();
2499 }
2500
2501 /* Return the current inferior's arch. */
2502
2503 struct gdbarch *
2504 target_gdbarch (void)
2505 {
2506 return current_inferior ()->gdbarch;
2507 }
2508
2509 extern void _initialize_gdbarch (void);
2510
2511 void
2512 _initialize_gdbarch (void)
2513 {
2514 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2515 Set architecture debugging."), _("\\
2516 Show architecture debugging."), _("\\
2517 When non-zero, architecture debugging is enabled."),
2518 NULL,
2519 show_gdbarch_debug,
2520 &setdebuglist, &showdebuglist);
2521 }
2522 EOF
2523
2524 # close things off
2525 exec 1>&2
2526 #../move-if-change new-gdbarch.c gdbarch.c
2527 compare_new gdbarch.c
This page took 0.207104 seconds and 5 git commands to generate.