Adjust i386 registers on SystemTap probes' arguments (PR breakpoints/24541)
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2019 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363
364 # The ABI default bit-size and format for "half", "float", "double", and
365 # "long double". These bit/format pairs should eventually be combined
366 # into a single object. For the moment, just initialize them as a pair.
367 # Each format describes both the big and little endian layouts (if
368 # useful).
369
370 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
378
379 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380 # starting with C++11.
381 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
382 # One if \`wchar_t' is signed, zero if unsigned.
383 v;int;wchar_signed;;;1;-1;1
384
385 # Returns the floating-point format to be used for values of length LENGTH.
386 # NAME, if non-NULL, is the type name, which may be used to distinguish
387 # different target formats of the same length.
388 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
389
390 # For most targets, a pointer on the target and its representation as an
391 # address in GDB have the same size and "look the same". For such a
392 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
393 # / addr_bit will be set from it.
394 #
395 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
396 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397 # gdbarch_address_to_pointer as well.
398 #
399 # ptr_bit is the size of a pointer on the target
400 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
401 # addr_bit is the size of a target address as represented in gdb
402 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
403 #
404 # dwarf2_addr_size is the target address size as used in the Dwarf debug
405 # info. For .debug_frame FDEs, this is supposed to be the target address
406 # size from the associated CU header, and which is equivalent to the
407 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408 # Unfortunately there is no good way to determine this value. Therefore
409 # dwarf2_addr_size simply defaults to the target pointer size.
410 #
411 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412 # defined using the target's pointer size so far.
413 #
414 # Note that dwarf2_addr_size only needs to be redefined by a target if the
415 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416 # and if Dwarf versions < 4 need to be supported.
417 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
418 #
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v;int;char_signed;;;1;-1;1
421 #
422 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
423 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
428 #
429 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
430 # Read a register into a new struct value. If the register is wholly
431 # or partly unavailable, this should call mark_value_bytes_unavailable
432 # as appropriate. If this is defined, then pseudo_register_read will
433 # never be called.
434 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
435 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
436 #
437 v;int;num_regs;;;0;-1
438 # This macro gives the number of pseudo-registers that live in the
439 # register namespace but do not get fetched or stored on the target.
440 # These pseudo-registers may be aliases for other registers,
441 # combinations of other registers, or they may be computed by GDB.
442 v;int;num_pseudo_regs;;;0;0;;0
443
444 # Assemble agent expression bytecode to collect pseudo-register REG.
445 # Return -1 if something goes wrong, 0 otherwise.
446 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
447
448 # Assemble agent expression bytecode to push the value of pseudo-register
449 # REG on the interpreter stack.
450 # Return -1 if something goes wrong, 0 otherwise.
451 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
452
453 # Some targets/architectures can do extra processing/display of
454 # segmentation faults. E.g., Intel MPX boundary faults.
455 # Call the architecture dependent function to handle the fault.
456 # UIOUT is the output stream where the handler will place information.
457 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
458
459 # GDB's standard (or well known) register numbers. These can map onto
460 # a real register or a pseudo (computed) register or not be defined at
461 # all (-1).
462 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
463 v;int;sp_regnum;;;-1;-1;;0
464 v;int;pc_regnum;;;-1;-1;;0
465 v;int;ps_regnum;;;-1;-1;;0
466 v;int;fp0_regnum;;;0;-1;;0
467 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
468 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
470 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
471 # Convert from an sdb register number to an internal gdb register number.
472 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
473 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
474 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
475 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476 m;const char *;register_name;int regnr;regnr;;0
477
478 # Return the type of a register specified by the architecture. Only
479 # the register cache should call this function directly; others should
480 # use "register_type".
481 M;struct type *;register_type;int reg_nr;reg_nr
482
483 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
484 # a dummy frame. A dummy frame is created before an inferior call,
485 # the frame_id returned here must match the frame_id that was built
486 # for the inferior call. Usually this means the returned frame_id's
487 # stack address should match the address returned by
488 # gdbarch_push_dummy_call, and the returned frame_id's code address
489 # should match the address at which the breakpoint was set in the dummy
490 # frame.
491 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
492 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
493 # deprecated_fp_regnum.
494 v;int;deprecated_fp_regnum;;;-1;-1;;0
495
496 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
497 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
498 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
499
500 # Return true if the code of FRAME is writable.
501 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
502
503 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
504 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
505 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
506 # MAP a GDB RAW register number onto a simulator register number. See
507 # also include/...-sim.h.
508 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
509 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
510 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
511
512 # Determine the address where a longjmp will land and save this address
513 # in PC. Return nonzero on success.
514 #
515 # FRAME corresponds to the longjmp frame.
516 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
517
518 #
519 v;int;believe_pcc_promotion;;;;;;;
520 #
521 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
522 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
523 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
524 # Construct a value representing the contents of register REGNUM in
525 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
526 # allocate and return a struct value with all value attributes
527 # (but not the value contents) filled in.
528 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
529 #
530 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
531 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
532 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
533
534 # Return the return-value convention that will be used by FUNCTION
535 # to return a value of type VALTYPE. FUNCTION may be NULL in which
536 # case the return convention is computed based only on VALTYPE.
537 #
538 # If READBUF is not NULL, extract the return value and save it in this buffer.
539 #
540 # If WRITEBUF is not NULL, it contains a return value which will be
541 # stored into the appropriate register. This can be used when we want
542 # to force the value returned by a function (see the "return" command
543 # for instance).
544 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
545
546 # Return true if the return value of function is stored in the first hidden
547 # parameter. In theory, this feature should be language-dependent, specified
548 # by language and its ABI, such as C++. Unfortunately, compiler may
549 # implement it to a target-dependent feature. So that we need such hook here
550 # to be aware of this in GDB.
551 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
552
553 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
554 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
555 # On some platforms, a single function may provide multiple entry points,
556 # e.g. one that is used for function-pointer calls and a different one
557 # that is used for direct function calls.
558 # In order to ensure that breakpoints set on the function will trigger
559 # no matter via which entry point the function is entered, a platform
560 # may provide the skip_entrypoint callback. It is called with IP set
561 # to the main entry point of a function (as determined by the symbol table),
562 # and should return the address of the innermost entry point, where the
563 # actual breakpoint needs to be set. Note that skip_entrypoint is used
564 # by GDB common code even when debugging optimized code, where skip_prologue
565 # is not used.
566 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
567
568 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
569 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
570
571 # Return the breakpoint kind for this target based on *PCPTR.
572 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
573
574 # Return the software breakpoint from KIND. KIND can have target
575 # specific meaning like the Z0 kind parameter.
576 # SIZE is set to the software breakpoint's length in memory.
577 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
578
579 # Return the breakpoint kind for this target based on the current
580 # processor state (e.g. the current instruction mode on ARM) and the
581 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
582 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
583
584 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
585 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
586 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
587 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
588
589 # A function can be addressed by either it's "pointer" (possibly a
590 # descriptor address) or "entry point" (first executable instruction).
591 # The method "convert_from_func_ptr_addr" converting the former to the
592 # latter. gdbarch_deprecated_function_start_offset is being used to implement
593 # a simplified subset of that functionality - the function's address
594 # corresponds to the "function pointer" and the function's start
595 # corresponds to the "function entry point" - and hence is redundant.
596
597 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
598
599 # Return the remote protocol register number associated with this
600 # register. Normally the identity mapping.
601 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
602
603 # Fetch the target specific address used to represent a load module.
604 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
605
606 # Return the thread-local address at OFFSET in the thread-local
607 # storage for the thread PTID and the shared library or executable
608 # file given by LM_ADDR. If that block of thread-local storage hasn't
609 # been allocated yet, this function may throw an error. LM_ADDR may
610 # be zero for statically linked multithreaded inferiors.
611
612 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
613 #
614 v;CORE_ADDR;frame_args_skip;;;0;;;0
615 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
616 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
617 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
618 # frame-base. Enable frame-base before frame-unwind.
619 F;int;frame_num_args;struct frame_info *frame;frame
620 #
621 M;CORE_ADDR;frame_align;CORE_ADDR address;address
622 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
623 v;int;frame_red_zone_size
624 #
625 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
626 # On some machines there are bits in addresses which are not really
627 # part of the address, but are used by the kernel, the hardware, etc.
628 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
629 # we get a "real" address such as one would find in a symbol table.
630 # This is used only for addresses of instructions, and even then I'm
631 # not sure it's used in all contexts. It exists to deal with there
632 # being a few stray bits in the PC which would mislead us, not as some
633 # sort of generic thing to handle alignment or segmentation (it's
634 # possible it should be in TARGET_READ_PC instead).
635 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
636
637 # On some machines, not all bits of an address word are significant.
638 # For example, on AArch64, the top bits of an address known as the "tag"
639 # are ignored by the kernel, the hardware, etc. and can be regarded as
640 # additional data associated with the address.
641 v;int;significant_addr_bit;;;;;;0
642
643 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
644 # indicates if the target needs software single step. An ISA method to
645 # implement it.
646 #
647 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
648 # target can single step. If not, then implement single step using breakpoints.
649 #
650 # Return a vector of addresses on which the software single step
651 # breakpoints should be inserted. NULL means software single step is
652 # not used.
653 # Multiple breakpoints may be inserted for some instructions such as
654 # conditional branch. However, each implementation must always evaluate
655 # the condition and only put the breakpoint at the branch destination if
656 # the condition is true, so that we ensure forward progress when stepping
657 # past a conditional branch to self.
658 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
659
660 # Return non-zero if the processor is executing a delay slot and a
661 # further single-step is needed before the instruction finishes.
662 M;int;single_step_through_delay;struct frame_info *frame;frame
663 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
664 # disassembler. Perhaps objdump can handle it?
665 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
666 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
667
668
669 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
670 # evaluates non-zero, this is the address where the debugger will place
671 # a step-resume breakpoint to get us past the dynamic linker.
672 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
673 # Some systems also have trampoline code for returning from shared libs.
674 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
675
676 # Return true if PC lies inside an indirect branch thunk.
677 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
678
679 # A target might have problems with watchpoints as soon as the stack
680 # frame of the current function has been destroyed. This mostly happens
681 # as the first action in a function's epilogue. stack_frame_destroyed_p()
682 # is defined to return a non-zero value if either the given addr is one
683 # instruction after the stack destroying instruction up to the trailing
684 # return instruction or if we can figure out that the stack frame has
685 # already been invalidated regardless of the value of addr. Targets
686 # which don't suffer from that problem could just let this functionality
687 # untouched.
688 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
689 # Process an ELF symbol in the minimal symbol table in a backend-specific
690 # way. Normally this hook is supposed to do nothing, however if required,
691 # then this hook can be used to apply tranformations to symbols that are
692 # considered special in some way. For example the MIPS backend uses it
693 # to interpret \`st_other' information to mark compressed code symbols so
694 # that they can be treated in the appropriate manner in the processing of
695 # the main symbol table and DWARF-2 records.
696 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
697 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
698 # Process a symbol in the main symbol table in a backend-specific way.
699 # Normally this hook is supposed to do nothing, however if required,
700 # then this hook can be used to apply tranformations to symbols that
701 # are considered special in some way. This is currently used by the
702 # MIPS backend to make sure compressed code symbols have the ISA bit
703 # set. This in turn is needed for symbol values seen in GDB to match
704 # the values used at the runtime by the program itself, for function
705 # and label references.
706 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
707 # Adjust the address retrieved from a DWARF-2 record other than a line
708 # entry in a backend-specific way. Normally this hook is supposed to
709 # return the address passed unchanged, however if that is incorrect for
710 # any reason, then this hook can be used to fix the address up in the
711 # required manner. This is currently used by the MIPS backend to make
712 # sure addresses in FDE, range records, etc. referring to compressed
713 # code have the ISA bit set, matching line information and the symbol
714 # table.
715 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
716 # Adjust the address updated by a line entry in a backend-specific way.
717 # Normally this hook is supposed to return the address passed unchanged,
718 # however in the case of inconsistencies in these records, this hook can
719 # be used to fix them up in the required manner. This is currently used
720 # by the MIPS backend to make sure all line addresses in compressed code
721 # are presented with the ISA bit set, which is not always the case. This
722 # in turn ensures breakpoint addresses are correctly matched against the
723 # stop PC.
724 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
725 v;int;cannot_step_breakpoint;;;0;0;;0
726 # See comment in target.h about continuable, steppable and
727 # non-steppable watchpoints.
728 v;int;have_nonsteppable_watchpoint;;;0;0;;0
729 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
730 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
731 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
732 # FS are passed from the generic execute_cfa_program function.
733 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
734
735 # Return the appropriate type_flags for the supplied address class.
736 # This function should return 1 if the address class was recognized and
737 # type_flags was set, zero otherwise.
738 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
739 # Is a register in a group
740 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
741 # Fetch the pointer to the ith function argument.
742 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
743
744 # Iterate over all supported register notes in a core file. For each
745 # supported register note section, the iterator must call CB and pass
746 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
747 # the supported register note sections based on the current register
748 # values. Otherwise it should enumerate all supported register note
749 # sections.
750 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
751
752 # Create core file notes
753 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
754
755 # Find core file memory regions
756 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
757
758 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
759 # core file into buffer READBUF with length LEN. Return the number of bytes read
760 # (zero indicates failure).
761 # failed, otherwise, return the red length of READBUF.
762 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
763
764 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
765 # libraries list from core file into buffer READBUF with length LEN.
766 # Return the number of bytes read (zero indicates failure).
767 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
768
769 # How the core target converts a PTID from a core file to a string.
770 M;std::string;core_pid_to_str;ptid_t ptid;ptid
771
772 # How the core target extracts the name of a thread from a core file.
773 M;const char *;core_thread_name;struct thread_info *thr;thr
774
775 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
776 # from core file into buffer READBUF with length LEN. Return the number
777 # of bytes read (zero indicates EOF, a negative value indicates failure).
778 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
779
780 # BFD target to use when generating a core file.
781 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
782
783 # If the elements of C++ vtables are in-place function descriptors rather
784 # than normal function pointers (which may point to code or a descriptor),
785 # set this to one.
786 v;int;vtable_function_descriptors;;;0;0;;0
787
788 # Set if the least significant bit of the delta is used instead of the least
789 # significant bit of the pfn for pointers to virtual member functions.
790 v;int;vbit_in_delta;;;0;0;;0
791
792 # Advance PC to next instruction in order to skip a permanent breakpoint.
793 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
794
795 # The maximum length of an instruction on this architecture in bytes.
796 V;ULONGEST;max_insn_length;;;0;0
797
798 # Copy the instruction at FROM to TO, and make any adjustments
799 # necessary to single-step it at that address.
800 #
801 # REGS holds the state the thread's registers will have before
802 # executing the copied instruction; the PC in REGS will refer to FROM,
803 # not the copy at TO. The caller should update it to point at TO later.
804 #
805 # Return a pointer to data of the architecture's choice to be passed
806 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
807 # the instruction's effects have been completely simulated, with the
808 # resulting state written back to REGS.
809 #
810 # For a general explanation of displaced stepping and how GDB uses it,
811 # see the comments in infrun.c.
812 #
813 # The TO area is only guaranteed to have space for
814 # gdbarch_max_insn_length (arch) bytes, so this function must not
815 # write more bytes than that to that area.
816 #
817 # If you do not provide this function, GDB assumes that the
818 # architecture does not support displaced stepping.
819 #
820 # If the instruction cannot execute out of line, return NULL. The
821 # core falls back to stepping past the instruction in-line instead in
822 # that case.
823 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
824
825 # Return true if GDB should use hardware single-stepping to execute
826 # the displaced instruction identified by CLOSURE. If false,
827 # GDB will simply restart execution at the displaced instruction
828 # location, and it is up to the target to ensure GDB will receive
829 # control again (e.g. by placing a software breakpoint instruction
830 # into the displaced instruction buffer).
831 #
832 # The default implementation returns false on all targets that
833 # provide a gdbarch_software_single_step routine, and true otherwise.
834 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
835
836 # Fix up the state resulting from successfully single-stepping a
837 # displaced instruction, to give the result we would have gotten from
838 # stepping the instruction in its original location.
839 #
840 # REGS is the register state resulting from single-stepping the
841 # displaced instruction.
842 #
843 # CLOSURE is the result from the matching call to
844 # gdbarch_displaced_step_copy_insn.
845 #
846 # If you provide gdbarch_displaced_step_copy_insn.but not this
847 # function, then GDB assumes that no fixup is needed after
848 # single-stepping the instruction.
849 #
850 # For a general explanation of displaced stepping and how GDB uses it,
851 # see the comments in infrun.c.
852 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
853
854 # Return the address of an appropriate place to put displaced
855 # instructions while we step over them. There need only be one such
856 # place, since we're only stepping one thread over a breakpoint at a
857 # time.
858 #
859 # For a general explanation of displaced stepping and how GDB uses it,
860 # see the comments in infrun.c.
861 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
862
863 # Relocate an instruction to execute at a different address. OLDLOC
864 # is the address in the inferior memory where the instruction to
865 # relocate is currently at. On input, TO points to the destination
866 # where we want the instruction to be copied (and possibly adjusted)
867 # to. On output, it points to one past the end of the resulting
868 # instruction(s). The effect of executing the instruction at TO shall
869 # be the same as if executing it at FROM. For example, call
870 # instructions that implicitly push the return address on the stack
871 # should be adjusted to return to the instruction after OLDLOC;
872 # relative branches, and other PC-relative instructions need the
873 # offset adjusted; etc.
874 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
875
876 # Refresh overlay mapped state for section OSECT.
877 F;void;overlay_update;struct obj_section *osect;osect
878
879 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
880
881 # Handle special encoding of static variables in stabs debug info.
882 F;const char *;static_transform_name;const char *name;name
883 # Set if the address in N_SO or N_FUN stabs may be zero.
884 v;int;sofun_address_maybe_missing;;;0;0;;0
885
886 # Parse the instruction at ADDR storing in the record execution log
887 # the registers REGCACHE and memory ranges that will be affected when
888 # the instruction executes, along with their current values.
889 # Return -1 if something goes wrong, 0 otherwise.
890 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
891
892 # Save process state after a signal.
893 # Return -1 if something goes wrong, 0 otherwise.
894 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
895
896 # Signal translation: translate inferior's signal (target's) number
897 # into GDB's representation. The implementation of this method must
898 # be host independent. IOW, don't rely on symbols of the NAT_FILE
899 # header (the nm-*.h files), the host <signal.h> header, or similar
900 # headers. This is mainly used when cross-debugging core files ---
901 # "Live" targets hide the translation behind the target interface
902 # (target_wait, target_resume, etc.).
903 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
904
905 # Signal translation: translate the GDB's internal signal number into
906 # the inferior's signal (target's) representation. The implementation
907 # of this method must be host independent. IOW, don't rely on symbols
908 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
909 # header, or similar headers.
910 # Return the target signal number if found, or -1 if the GDB internal
911 # signal number is invalid.
912 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
913
914 # Extra signal info inspection.
915 #
916 # Return a type suitable to inspect extra signal information.
917 M;struct type *;get_siginfo_type;void;
918
919 # Record architecture-specific information from the symbol table.
920 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
921
922 # Function for the 'catch syscall' feature.
923
924 # Get architecture-specific system calls information from registers.
925 M;LONGEST;get_syscall_number;thread_info *thread;thread
926
927 # The filename of the XML syscall for this architecture.
928 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
929
930 # Information about system calls from this architecture
931 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
932
933 # SystemTap related fields and functions.
934
935 # A NULL-terminated array of prefixes used to mark an integer constant
936 # on the architecture's assembly.
937 # For example, on x86 integer constants are written as:
938 #
939 # \$10 ;; integer constant 10
940 #
941 # in this case, this prefix would be the character \`\$\'.
942 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
943
944 # A NULL-terminated array of suffixes used to mark an integer constant
945 # on the architecture's assembly.
946 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
947
948 # A NULL-terminated array of prefixes used to mark a register name on
949 # the architecture's assembly.
950 # For example, on x86 the register name is written as:
951 #
952 # \%eax ;; register eax
953 #
954 # in this case, this prefix would be the character \`\%\'.
955 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
956
957 # A NULL-terminated array of suffixes used to mark a register name on
958 # the architecture's assembly.
959 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
960
961 # A NULL-terminated array of prefixes used to mark a register
962 # indirection on the architecture's assembly.
963 # For example, on x86 the register indirection is written as:
964 #
965 # \(\%eax\) ;; indirecting eax
966 #
967 # in this case, this prefix would be the charater \`\(\'.
968 #
969 # Please note that we use the indirection prefix also for register
970 # displacement, e.g., \`4\(\%eax\)\' on x86.
971 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
972
973 # A NULL-terminated array of suffixes used to mark a register
974 # indirection on the architecture's assembly.
975 # For example, on x86 the register indirection is written as:
976 #
977 # \(\%eax\) ;; indirecting eax
978 #
979 # in this case, this prefix would be the charater \`\)\'.
980 #
981 # Please note that we use the indirection suffix also for register
982 # displacement, e.g., \`4\(\%eax\)\' on x86.
983 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
984
985 # Prefix(es) used to name a register using GDB's nomenclature.
986 #
987 # For example, on PPC a register is represented by a number in the assembly
988 # language (e.g., \`10\' is the 10th general-purpose register). However,
989 # inside GDB this same register has an \`r\' appended to its name, so the 10th
990 # register would be represented as \`r10\' internally.
991 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
992
993 # Suffix used to name a register using GDB's nomenclature.
994 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
995
996 # Check if S is a single operand.
997 #
998 # Single operands can be:
999 # \- Literal integers, e.g. \`\$10\' on x86
1000 # \- Register access, e.g. \`\%eax\' on x86
1001 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
1002 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
1003 #
1004 # This function should check for these patterns on the string
1005 # and return 1 if some were found, or zero otherwise. Please try to match
1006 # as much info as you can from the string, i.e., if you have to match
1007 # something like \`\(\%\', do not match just the \`\(\'.
1008 M;int;stap_is_single_operand;const char *s;s
1009
1010 # Function used to handle a "special case" in the parser.
1011 #
1012 # A "special case" is considered to be an unknown token, i.e., a token
1013 # that the parser does not know how to parse. A good example of special
1014 # case would be ARM's register displacement syntax:
1015 #
1016 # [R0, #4] ;; displacing R0 by 4
1017 #
1018 # Since the parser assumes that a register displacement is of the form:
1019 #
1020 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1021 #
1022 # it means that it will not be able to recognize and parse this odd syntax.
1023 # Therefore, we should add a special case function that will handle this token.
1024 #
1025 # This function should generate the proper expression form of the expression
1026 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1027 # and so on). It should also return 1 if the parsing was successful, or zero
1028 # if the token was not recognized as a special token (in this case, returning
1029 # zero means that the special parser is deferring the parsing to the generic
1030 # parser), and should advance the buffer pointer (p->arg).
1031 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1032
1033 # Perform arch-dependent adjustments to a register name.
1034 #
1035 # In very specific situations, it may be necessary for the register
1036 # name present in a SystemTap probe's argument to be handled in a
1037 # special way. For example, on i386, GCC may over-optimize the
1038 # register allocation and use smaller registers than necessary. In
1039 # such cases, the client that is reading and evaluating the SystemTap
1040 # probe (ourselves) will need to actually fetch values from the wider
1041 # version of the register in question.
1042 #
1043 # To illustrate the example, consider the following probe argument
1044 # (i386):
1045 #
1046 # 4@%ax
1047 #
1048 # This argument says that its value can be found at the %ax register,
1049 # which is a 16-bit register. However, the argument's prefix says
1050 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1051 # this case, GDB should actually fetch the probe's value from register
1052 # %eax, not %ax. In this scenario, this function would actually
1053 # replace the register name from %ax to %eax.
1054 #
1055 # The rationale for this can be found at PR breakpoints/24541.
1056 M;void;stap_adjust_register;struct stap_parse_info *p, std::string \&regname, int regnum;p, regname, regnum
1057
1058 # DTrace related functions.
1059
1060 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1061 # NARG must be >= 0.
1062 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1063
1064 # True if the given ADDR does not contain the instruction sequence
1065 # corresponding to a disabled DTrace is-enabled probe.
1066 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1067
1068 # Enable a DTrace is-enabled probe at ADDR.
1069 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1070
1071 # Disable a DTrace is-enabled probe at ADDR.
1072 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1073
1074 # True if the list of shared libraries is one and only for all
1075 # processes, as opposed to a list of shared libraries per inferior.
1076 # This usually means that all processes, although may or may not share
1077 # an address space, will see the same set of symbols at the same
1078 # addresses.
1079 v;int;has_global_solist;;;0;0;;0
1080
1081 # On some targets, even though each inferior has its own private
1082 # address space, the debug interface takes care of making breakpoints
1083 # visible to all address spaces automatically. For such cases,
1084 # this property should be set to true.
1085 v;int;has_global_breakpoints;;;0;0;;0
1086
1087 # True if inferiors share an address space (e.g., uClinux).
1088 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1089
1090 # True if a fast tracepoint can be set at an address.
1091 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1092
1093 # Guess register state based on tracepoint location. Used for tracepoints
1094 # where no registers have been collected, but there's only one location,
1095 # allowing us to guess the PC value, and perhaps some other registers.
1096 # On entry, regcache has all registers marked as unavailable.
1097 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1098
1099 # Return the "auto" target charset.
1100 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1101 # Return the "auto" target wide charset.
1102 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1103
1104 # If non-empty, this is a file extension that will be opened in place
1105 # of the file extension reported by the shared library list.
1106 #
1107 # This is most useful for toolchains that use a post-linker tool,
1108 # where the names of the files run on the target differ in extension
1109 # compared to the names of the files GDB should load for debug info.
1110 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1111
1112 # If true, the target OS has DOS-based file system semantics. That
1113 # is, absolute paths include a drive name, and the backslash is
1114 # considered a directory separator.
1115 v;int;has_dos_based_file_system;;;0;0;;0
1116
1117 # Generate bytecodes to collect the return address in a frame.
1118 # Since the bytecodes run on the target, possibly with GDB not even
1119 # connected, the full unwinding machinery is not available, and
1120 # typically this function will issue bytecodes for one or more likely
1121 # places that the return address may be found.
1122 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1123
1124 # Implement the "info proc" command.
1125 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1126
1127 # Implement the "info proc" command for core files. Noe that there
1128 # are two "info_proc"-like methods on gdbarch -- one for core files,
1129 # one for live targets.
1130 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1131
1132 # Iterate over all objfiles in the order that makes the most sense
1133 # for the architecture to make global symbol searches.
1134 #
1135 # CB is a callback function where OBJFILE is the objfile to be searched,
1136 # and CB_DATA a pointer to user-defined data (the same data that is passed
1137 # when calling this gdbarch method). The iteration stops if this function
1138 # returns nonzero.
1139 #
1140 # CB_DATA is a pointer to some user-defined data to be passed to
1141 # the callback.
1142 #
1143 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1144 # inspected when the symbol search was requested.
1145 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1146
1147 # Ravenscar arch-dependent ops.
1148 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1149
1150 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1151 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1152
1153 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1154 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1155
1156 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1157 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1158
1159 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1160 # Return 0 if *READPTR is already at the end of the buffer.
1161 # Return -1 if there is insufficient buffer for a whole entry.
1162 # Return 1 if an entry was read into *TYPEP and *VALP.
1163 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1164
1165 # Print the description of a single auxv entry described by TYPE and VAL
1166 # to FILE.
1167 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1168
1169 # Find the address range of the current inferior's vsyscall/vDSO, and
1170 # write it to *RANGE. If the vsyscall's length can't be determined, a
1171 # range with zero length is returned. Returns true if the vsyscall is
1172 # found, false otherwise.
1173 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1174
1175 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1176 # PROT has GDB_MMAP_PROT_* bitmask format.
1177 # Throw an error if it is not possible. Returned address is always valid.
1178 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1179
1180 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1181 # Print a warning if it is not possible.
1182 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1183
1184 # Return string (caller has to use xfree for it) with options for GCC
1185 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1186 # These options are put before CU's DW_AT_producer compilation options so that
1187 # they can override it. Method may also return NULL.
1188 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1189
1190 # Return a regular expression that matches names used by this
1191 # architecture in GNU configury triplets. The result is statically
1192 # allocated and must not be freed. The default implementation simply
1193 # returns the BFD architecture name, which is correct in nearly every
1194 # case.
1195 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1196
1197 # Return the size in 8-bit bytes of an addressable memory unit on this
1198 # architecture. This corresponds to the number of 8-bit bytes associated to
1199 # each address in memory.
1200 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1201
1202 # Functions for allowing a target to modify its disassembler options.
1203 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1204 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1205 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1206
1207 # Type alignment override method. Return the architecture specific
1208 # alignment required for TYPE. If there is no special handling
1209 # required for TYPE then return the value 0, GDB will then apply the
1210 # default rules as laid out in gdbtypes.c:type_align.
1211 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1212
1213 EOF
1214 }
1215
1216 #
1217 # The .log file
1218 #
1219 exec > new-gdbarch.log
1220 function_list | while do_read
1221 do
1222 cat <<EOF
1223 ${class} ${returntype} ${function} ($formal)
1224 EOF
1225 for r in ${read}
1226 do
1227 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1228 done
1229 if class_is_predicate_p && fallback_default_p
1230 then
1231 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1232 kill $$
1233 exit 1
1234 fi
1235 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1236 then
1237 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1238 kill $$
1239 exit 1
1240 fi
1241 if class_is_multiarch_p
1242 then
1243 if class_is_predicate_p ; then :
1244 elif test "x${predefault}" = "x"
1245 then
1246 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1247 kill $$
1248 exit 1
1249 fi
1250 fi
1251 echo ""
1252 done
1253
1254 exec 1>&2
1255 compare_new gdbarch.log
1256
1257
1258 copyright ()
1259 {
1260 cat <<EOF
1261 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1262 /* vi:set ro: */
1263
1264 /* Dynamic architecture support for GDB, the GNU debugger.
1265
1266 Copyright (C) 1998-2019 Free Software Foundation, Inc.
1267
1268 This file is part of GDB.
1269
1270 This program is free software; you can redistribute it and/or modify
1271 it under the terms of the GNU General Public License as published by
1272 the Free Software Foundation; either version 3 of the License, or
1273 (at your option) any later version.
1274
1275 This program is distributed in the hope that it will be useful,
1276 but WITHOUT ANY WARRANTY; without even the implied warranty of
1277 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1278 GNU General Public License for more details.
1279
1280 You should have received a copy of the GNU General Public License
1281 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1282
1283 /* This file was created with the aid of \`\`gdbarch.sh''.
1284
1285 The Bourne shell script \`\`gdbarch.sh'' creates the files
1286 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1287 against the existing \`\`gdbarch.[hc]''. Any differences found
1288 being reported.
1289
1290 If editing this file, please also run gdbarch.sh and merge any
1291 changes into that script. Conversely, when making sweeping changes
1292 to this file, modifying gdbarch.sh and using its output may prove
1293 easier. */
1294
1295 EOF
1296 }
1297
1298 #
1299 # The .h file
1300 #
1301
1302 exec > new-gdbarch.h
1303 copyright
1304 cat <<EOF
1305 #ifndef GDBARCH_H
1306 #define GDBARCH_H
1307
1308 #include <vector>
1309 #include "frame.h"
1310 #include "dis-asm.h"
1311 #include "gdb_obstack.h"
1312
1313 struct floatformat;
1314 struct ui_file;
1315 struct value;
1316 struct objfile;
1317 struct obj_section;
1318 struct minimal_symbol;
1319 struct regcache;
1320 struct reggroup;
1321 struct regset;
1322 struct disassemble_info;
1323 struct target_ops;
1324 struct obstack;
1325 struct bp_target_info;
1326 struct target_desc;
1327 struct symbol;
1328 struct displaced_step_closure;
1329 struct syscall;
1330 struct agent_expr;
1331 struct axs_value;
1332 struct stap_parse_info;
1333 struct expr_builder;
1334 struct ravenscar_arch_ops;
1335 struct mem_range;
1336 struct syscalls_info;
1337 struct thread_info;
1338 struct ui_out;
1339
1340 #include "regcache.h"
1341
1342 /* The architecture associated with the inferior through the
1343 connection to the target.
1344
1345 The architecture vector provides some information that is really a
1346 property of the inferior, accessed through a particular target:
1347 ptrace operations; the layout of certain RSP packets; the solib_ops
1348 vector; etc. To differentiate architecture accesses to
1349 per-inferior/target properties from
1350 per-thread/per-frame/per-objfile properties, accesses to
1351 per-inferior/target properties should be made through this
1352 gdbarch. */
1353
1354 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1355 extern struct gdbarch *target_gdbarch (void);
1356
1357 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1358 gdbarch method. */
1359
1360 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1361 (struct objfile *objfile, void *cb_data);
1362
1363 /* Callback type for regset section iterators. The callback usually
1364 invokes the REGSET's supply or collect method, to which it must
1365 pass a buffer - for collects this buffer will need to be created using
1366 COLLECT_SIZE, for supply the existing buffer being read from should
1367 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1368 is used for diagnostic messages. CB_DATA should have been passed
1369 unchanged through the iterator. */
1370
1371 typedef void (iterate_over_regset_sections_cb)
1372 (const char *sect_name, int supply_size, int collect_size,
1373 const struct regset *regset, const char *human_name, void *cb_data);
1374
1375 /* For a function call, does the function return a value using a
1376 normal value return or a structure return - passing a hidden
1377 argument pointing to storage. For the latter, there are two
1378 cases: language-mandated structure return and target ABI
1379 structure return. */
1380
1381 enum function_call_return_method
1382 {
1383 /* Standard value return. */
1384 return_method_normal = 0,
1385
1386 /* Language ABI structure return. This is handled
1387 by passing the return location as the first parameter to
1388 the function, even preceding "this". */
1389 return_method_hidden_param,
1390
1391 /* Target ABI struct return. This is target-specific; for instance,
1392 on ia64 the first argument is passed in out0 but the hidden
1393 structure return pointer would normally be passed in r8. */
1394 return_method_struct,
1395 };
1396
1397 EOF
1398
1399 # function typedef's
1400 printf "\n"
1401 printf "\n"
1402 printf "/* The following are pre-initialized by GDBARCH. */\n"
1403 function_list | while do_read
1404 do
1405 if class_is_info_p
1406 then
1407 printf "\n"
1408 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1409 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1410 fi
1411 done
1412
1413 # function typedef's
1414 printf "\n"
1415 printf "\n"
1416 printf "/* The following are initialized by the target dependent code. */\n"
1417 function_list | while do_read
1418 do
1419 if [ -n "${comment}" ]
1420 then
1421 echo "${comment}" | sed \
1422 -e '2 s,#,/*,' \
1423 -e '3,$ s,#, ,' \
1424 -e '$ s,$, */,'
1425 fi
1426
1427 if class_is_predicate_p
1428 then
1429 printf "\n"
1430 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1431 fi
1432 if class_is_variable_p
1433 then
1434 printf "\n"
1435 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1436 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1437 fi
1438 if class_is_function_p
1439 then
1440 printf "\n"
1441 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1442 then
1443 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1444 elif class_is_multiarch_p
1445 then
1446 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1447 else
1448 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1449 fi
1450 if [ "x${formal}" = "xvoid" ]
1451 then
1452 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1453 else
1454 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1455 fi
1456 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1457 fi
1458 done
1459
1460 # close it off
1461 cat <<EOF
1462
1463 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1464
1465
1466 /* Mechanism for co-ordinating the selection of a specific
1467 architecture.
1468
1469 GDB targets (*-tdep.c) can register an interest in a specific
1470 architecture. Other GDB components can register a need to maintain
1471 per-architecture data.
1472
1473 The mechanisms below ensures that there is only a loose connection
1474 between the set-architecture command and the various GDB
1475 components. Each component can independently register their need
1476 to maintain architecture specific data with gdbarch.
1477
1478 Pragmatics:
1479
1480 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1481 didn't scale.
1482
1483 The more traditional mega-struct containing architecture specific
1484 data for all the various GDB components was also considered. Since
1485 GDB is built from a variable number of (fairly independent)
1486 components it was determined that the global aproach was not
1487 applicable. */
1488
1489
1490 /* Register a new architectural family with GDB.
1491
1492 Register support for the specified ARCHITECTURE with GDB. When
1493 gdbarch determines that the specified architecture has been
1494 selected, the corresponding INIT function is called.
1495
1496 --
1497
1498 The INIT function takes two parameters: INFO which contains the
1499 information available to gdbarch about the (possibly new)
1500 architecture; ARCHES which is a list of the previously created
1501 \`\`struct gdbarch'' for this architecture.
1502
1503 The INFO parameter is, as far as possible, be pre-initialized with
1504 information obtained from INFO.ABFD or the global defaults.
1505
1506 The ARCHES parameter is a linked list (sorted most recently used)
1507 of all the previously created architures for this architecture
1508 family. The (possibly NULL) ARCHES->gdbarch can used to access
1509 values from the previously selected architecture for this
1510 architecture family.
1511
1512 The INIT function shall return any of: NULL - indicating that it
1513 doesn't recognize the selected architecture; an existing \`\`struct
1514 gdbarch'' from the ARCHES list - indicating that the new
1515 architecture is just a synonym for an earlier architecture (see
1516 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1517 - that describes the selected architecture (see gdbarch_alloc()).
1518
1519 The DUMP_TDEP function shall print out all target specific values.
1520 Care should be taken to ensure that the function works in both the
1521 multi-arch and non- multi-arch cases. */
1522
1523 struct gdbarch_list
1524 {
1525 struct gdbarch *gdbarch;
1526 struct gdbarch_list *next;
1527 };
1528
1529 struct gdbarch_info
1530 {
1531 /* Use default: NULL (ZERO). */
1532 const struct bfd_arch_info *bfd_arch_info;
1533
1534 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1535 enum bfd_endian byte_order;
1536
1537 enum bfd_endian byte_order_for_code;
1538
1539 /* Use default: NULL (ZERO). */
1540 bfd *abfd;
1541
1542 /* Use default: NULL (ZERO). */
1543 union
1544 {
1545 /* Architecture-specific information. The generic form for targets
1546 that have extra requirements. */
1547 struct gdbarch_tdep_info *tdep_info;
1548
1549 /* Architecture-specific target description data. Numerous targets
1550 need only this, so give them an easy way to hold it. */
1551 struct tdesc_arch_data *tdesc_data;
1552
1553 /* SPU file system ID. This is a single integer, so using the
1554 generic form would only complicate code. Other targets may
1555 reuse this member if suitable. */
1556 int *id;
1557 };
1558
1559 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1560 enum gdb_osabi osabi;
1561
1562 /* Use default: NULL (ZERO). */
1563 const struct target_desc *target_desc;
1564 };
1565
1566 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1567 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1568
1569 /* DEPRECATED - use gdbarch_register() */
1570 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1571
1572 extern void gdbarch_register (enum bfd_architecture architecture,
1573 gdbarch_init_ftype *,
1574 gdbarch_dump_tdep_ftype *);
1575
1576
1577 /* Return a freshly allocated, NULL terminated, array of the valid
1578 architecture names. Since architectures are registered during the
1579 _initialize phase this function only returns useful information
1580 once initialization has been completed. */
1581
1582 extern const char **gdbarch_printable_names (void);
1583
1584
1585 /* Helper function. Search the list of ARCHES for a GDBARCH that
1586 matches the information provided by INFO. */
1587
1588 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1589
1590
1591 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1592 basic initialization using values obtained from the INFO and TDEP
1593 parameters. set_gdbarch_*() functions are called to complete the
1594 initialization of the object. */
1595
1596 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1597
1598
1599 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1600 It is assumed that the caller freeds the \`\`struct
1601 gdbarch_tdep''. */
1602
1603 extern void gdbarch_free (struct gdbarch *);
1604
1605 /* Get the obstack owned by ARCH. */
1606
1607 extern obstack *gdbarch_obstack (gdbarch *arch);
1608
1609 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1610 obstack. The memory is freed when the corresponding architecture
1611 is also freed. */
1612
1613 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1614 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1615
1616 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1617 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1618
1619 /* Duplicate STRING, returning an equivalent string that's allocated on the
1620 obstack associated with GDBARCH. The string is freed when the corresponding
1621 architecture is also freed. */
1622
1623 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1624
1625 /* Helper function. Force an update of the current architecture.
1626
1627 The actual architecture selected is determined by INFO, \`\`(gdb) set
1628 architecture'' et.al., the existing architecture and BFD's default
1629 architecture. INFO should be initialized to zero and then selected
1630 fields should be updated.
1631
1632 Returns non-zero if the update succeeds. */
1633
1634 extern int gdbarch_update_p (struct gdbarch_info info);
1635
1636
1637 /* Helper function. Find an architecture matching info.
1638
1639 INFO should be initialized using gdbarch_info_init, relevant fields
1640 set, and then finished using gdbarch_info_fill.
1641
1642 Returns the corresponding architecture, or NULL if no matching
1643 architecture was found. */
1644
1645 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1646
1647
1648 /* Helper function. Set the target gdbarch to "gdbarch". */
1649
1650 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1651
1652
1653 /* Register per-architecture data-pointer.
1654
1655 Reserve space for a per-architecture data-pointer. An identifier
1656 for the reserved data-pointer is returned. That identifer should
1657 be saved in a local static variable.
1658
1659 Memory for the per-architecture data shall be allocated using
1660 gdbarch_obstack_zalloc. That memory will be deleted when the
1661 corresponding architecture object is deleted.
1662
1663 When a previously created architecture is re-selected, the
1664 per-architecture data-pointer for that previous architecture is
1665 restored. INIT() is not re-called.
1666
1667 Multiple registrarants for any architecture are allowed (and
1668 strongly encouraged). */
1669
1670 struct gdbarch_data;
1671
1672 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1673 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1674 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1675 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1676 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1677 struct gdbarch_data *data,
1678 void *pointer);
1679
1680 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1681
1682
1683 /* Set the dynamic target-system-dependent parameters (architecture,
1684 byte-order, ...) using information found in the BFD. */
1685
1686 extern void set_gdbarch_from_file (bfd *);
1687
1688
1689 /* Initialize the current architecture to the "first" one we find on
1690 our list. */
1691
1692 extern void initialize_current_architecture (void);
1693
1694 /* gdbarch trace variable */
1695 extern unsigned int gdbarch_debug;
1696
1697 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1698
1699 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1700
1701 static inline int
1702 gdbarch_num_cooked_regs (gdbarch *arch)
1703 {
1704 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1705 }
1706
1707 #endif
1708 EOF
1709 exec 1>&2
1710 #../move-if-change new-gdbarch.h gdbarch.h
1711 compare_new gdbarch.h
1712
1713
1714 #
1715 # C file
1716 #
1717
1718 exec > new-gdbarch.c
1719 copyright
1720 cat <<EOF
1721
1722 #include "defs.h"
1723 #include "arch-utils.h"
1724
1725 #include "gdbcmd.h"
1726 #include "inferior.h"
1727 #include "symcat.h"
1728
1729 #include "floatformat.h"
1730 #include "reggroups.h"
1731 #include "osabi.h"
1732 #include "gdb_obstack.h"
1733 #include "observable.h"
1734 #include "regcache.h"
1735 #include "objfiles.h"
1736 #include "auxv.h"
1737 #include "frame-unwind.h"
1738 #include "dummy-frame.h"
1739
1740 /* Static function declarations */
1741
1742 static void alloc_gdbarch_data (struct gdbarch *);
1743
1744 /* Non-zero if we want to trace architecture code. */
1745
1746 #ifndef GDBARCH_DEBUG
1747 #define GDBARCH_DEBUG 0
1748 #endif
1749 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1750 static void
1751 show_gdbarch_debug (struct ui_file *file, int from_tty,
1752 struct cmd_list_element *c, const char *value)
1753 {
1754 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1755 }
1756
1757 static const char *
1758 pformat (const struct floatformat **format)
1759 {
1760 if (format == NULL)
1761 return "(null)";
1762 else
1763 /* Just print out one of them - this is only for diagnostics. */
1764 return format[0]->name;
1765 }
1766
1767 static const char *
1768 pstring (const char *string)
1769 {
1770 if (string == NULL)
1771 return "(null)";
1772 return string;
1773 }
1774
1775 static const char *
1776 pstring_ptr (char **string)
1777 {
1778 if (string == NULL || *string == NULL)
1779 return "(null)";
1780 return *string;
1781 }
1782
1783 /* Helper function to print a list of strings, represented as "const
1784 char *const *". The list is printed comma-separated. */
1785
1786 static const char *
1787 pstring_list (const char *const *list)
1788 {
1789 static char ret[100];
1790 const char *const *p;
1791 size_t offset = 0;
1792
1793 if (list == NULL)
1794 return "(null)";
1795
1796 ret[0] = '\0';
1797 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1798 {
1799 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1800 offset += 2 + s;
1801 }
1802
1803 if (offset > 0)
1804 {
1805 gdb_assert (offset - 2 < sizeof (ret));
1806 ret[offset - 2] = '\0';
1807 }
1808
1809 return ret;
1810 }
1811
1812 EOF
1813
1814 # gdbarch open the gdbarch object
1815 printf "\n"
1816 printf "/* Maintain the struct gdbarch object. */\n"
1817 printf "\n"
1818 printf "struct gdbarch\n"
1819 printf "{\n"
1820 printf " /* Has this architecture been fully initialized? */\n"
1821 printf " int initialized_p;\n"
1822 printf "\n"
1823 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1824 printf " struct obstack *obstack;\n"
1825 printf "\n"
1826 printf " /* basic architectural information. */\n"
1827 function_list | while do_read
1828 do
1829 if class_is_info_p
1830 then
1831 printf " ${returntype} ${function};\n"
1832 fi
1833 done
1834 printf "\n"
1835 printf " /* target specific vector. */\n"
1836 printf " struct gdbarch_tdep *tdep;\n"
1837 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1838 printf "\n"
1839 printf " /* per-architecture data-pointers. */\n"
1840 printf " unsigned nr_data;\n"
1841 printf " void **data;\n"
1842 printf "\n"
1843 cat <<EOF
1844 /* Multi-arch values.
1845
1846 When extending this structure you must:
1847
1848 Add the field below.
1849
1850 Declare set/get functions and define the corresponding
1851 macro in gdbarch.h.
1852
1853 gdbarch_alloc(): If zero/NULL is not a suitable default,
1854 initialize the new field.
1855
1856 verify_gdbarch(): Confirm that the target updated the field
1857 correctly.
1858
1859 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1860 field is dumped out
1861
1862 get_gdbarch(): Implement the set/get functions (probably using
1863 the macro's as shortcuts).
1864
1865 */
1866
1867 EOF
1868 function_list | while do_read
1869 do
1870 if class_is_variable_p
1871 then
1872 printf " ${returntype} ${function};\n"
1873 elif class_is_function_p
1874 then
1875 printf " gdbarch_${function}_ftype *${function};\n"
1876 fi
1877 done
1878 printf "};\n"
1879
1880 # Create a new gdbarch struct
1881 cat <<EOF
1882
1883 /* Create a new \`\`struct gdbarch'' based on information provided by
1884 \`\`struct gdbarch_info''. */
1885 EOF
1886 printf "\n"
1887 cat <<EOF
1888 struct gdbarch *
1889 gdbarch_alloc (const struct gdbarch_info *info,
1890 struct gdbarch_tdep *tdep)
1891 {
1892 struct gdbarch *gdbarch;
1893
1894 /* Create an obstack for allocating all the per-architecture memory,
1895 then use that to allocate the architecture vector. */
1896 struct obstack *obstack = XNEW (struct obstack);
1897 obstack_init (obstack);
1898 gdbarch = XOBNEW (obstack, struct gdbarch);
1899 memset (gdbarch, 0, sizeof (*gdbarch));
1900 gdbarch->obstack = obstack;
1901
1902 alloc_gdbarch_data (gdbarch);
1903
1904 gdbarch->tdep = tdep;
1905 EOF
1906 printf "\n"
1907 function_list | while do_read
1908 do
1909 if class_is_info_p
1910 then
1911 printf " gdbarch->${function} = info->${function};\n"
1912 fi
1913 done
1914 printf "\n"
1915 printf " /* Force the explicit initialization of these. */\n"
1916 function_list | while do_read
1917 do
1918 if class_is_function_p || class_is_variable_p
1919 then
1920 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1921 then
1922 printf " gdbarch->${function} = ${predefault};\n"
1923 fi
1924 fi
1925 done
1926 cat <<EOF
1927 /* gdbarch_alloc() */
1928
1929 return gdbarch;
1930 }
1931 EOF
1932
1933 # Free a gdbarch struct.
1934 printf "\n"
1935 printf "\n"
1936 cat <<EOF
1937
1938 obstack *gdbarch_obstack (gdbarch *arch)
1939 {
1940 return arch->obstack;
1941 }
1942
1943 /* See gdbarch.h. */
1944
1945 char *
1946 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1947 {
1948 return obstack_strdup (arch->obstack, string);
1949 }
1950
1951
1952 /* Free a gdbarch struct. This should never happen in normal
1953 operation --- once you've created a gdbarch, you keep it around.
1954 However, if an architecture's init function encounters an error
1955 building the structure, it may need to clean up a partially
1956 constructed gdbarch. */
1957
1958 void
1959 gdbarch_free (struct gdbarch *arch)
1960 {
1961 struct obstack *obstack;
1962
1963 gdb_assert (arch != NULL);
1964 gdb_assert (!arch->initialized_p);
1965 obstack = arch->obstack;
1966 obstack_free (obstack, 0); /* Includes the ARCH. */
1967 xfree (obstack);
1968 }
1969 EOF
1970
1971 # verify a new architecture
1972 cat <<EOF
1973
1974
1975 /* Ensure that all values in a GDBARCH are reasonable. */
1976
1977 static void
1978 verify_gdbarch (struct gdbarch *gdbarch)
1979 {
1980 string_file log;
1981
1982 /* fundamental */
1983 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1984 log.puts ("\n\tbyte-order");
1985 if (gdbarch->bfd_arch_info == NULL)
1986 log.puts ("\n\tbfd_arch_info");
1987 /* Check those that need to be defined for the given multi-arch level. */
1988 EOF
1989 function_list | while do_read
1990 do
1991 if class_is_function_p || class_is_variable_p
1992 then
1993 if [ "x${invalid_p}" = "x0" ]
1994 then
1995 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1996 elif class_is_predicate_p
1997 then
1998 printf " /* Skip verify of ${function}, has predicate. */\n"
1999 # FIXME: See do_read for potential simplification
2000 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
2001 then
2002 printf " if (${invalid_p})\n"
2003 printf " gdbarch->${function} = ${postdefault};\n"
2004 elif [ -n "${predefault}" -a -n "${postdefault}" ]
2005 then
2006 printf " if (gdbarch->${function} == ${predefault})\n"
2007 printf " gdbarch->${function} = ${postdefault};\n"
2008 elif [ -n "${postdefault}" ]
2009 then
2010 printf " if (gdbarch->${function} == 0)\n"
2011 printf " gdbarch->${function} = ${postdefault};\n"
2012 elif [ -n "${invalid_p}" ]
2013 then
2014 printf " if (${invalid_p})\n"
2015 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
2016 elif [ -n "${predefault}" ]
2017 then
2018 printf " if (gdbarch->${function} == ${predefault})\n"
2019 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
2020 fi
2021 fi
2022 done
2023 cat <<EOF
2024 if (!log.empty ())
2025 internal_error (__FILE__, __LINE__,
2026 _("verify_gdbarch: the following are invalid ...%s"),
2027 log.c_str ());
2028 }
2029 EOF
2030
2031 # dump the structure
2032 printf "\n"
2033 printf "\n"
2034 cat <<EOF
2035 /* Print out the details of the current architecture. */
2036
2037 void
2038 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2039 {
2040 const char *gdb_nm_file = "<not-defined>";
2041
2042 #if defined (GDB_NM_FILE)
2043 gdb_nm_file = GDB_NM_FILE;
2044 #endif
2045 fprintf_unfiltered (file,
2046 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2047 gdb_nm_file);
2048 EOF
2049 function_list | sort '-t;' -k 3 | while do_read
2050 do
2051 # First the predicate
2052 if class_is_predicate_p
2053 then
2054 printf " fprintf_unfiltered (file,\n"
2055 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
2056 printf " gdbarch_${function}_p (gdbarch));\n"
2057 fi
2058 # Print the corresponding value.
2059 if class_is_function_p
2060 then
2061 printf " fprintf_unfiltered (file,\n"
2062 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2063 printf " host_address_to_string (gdbarch->${function}));\n"
2064 else
2065 # It is a variable
2066 case "${print}:${returntype}" in
2067 :CORE_ADDR )
2068 fmt="%s"
2069 print="core_addr_to_string_nz (gdbarch->${function})"
2070 ;;
2071 :* )
2072 fmt="%s"
2073 print="plongest (gdbarch->${function})"
2074 ;;
2075 * )
2076 fmt="%s"
2077 ;;
2078 esac
2079 printf " fprintf_unfiltered (file,\n"
2080 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2081 printf " ${print});\n"
2082 fi
2083 done
2084 cat <<EOF
2085 if (gdbarch->dump_tdep != NULL)
2086 gdbarch->dump_tdep (gdbarch, file);
2087 }
2088 EOF
2089
2090
2091 # GET/SET
2092 printf "\n"
2093 cat <<EOF
2094 struct gdbarch_tdep *
2095 gdbarch_tdep (struct gdbarch *gdbarch)
2096 {
2097 if (gdbarch_debug >= 2)
2098 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2099 return gdbarch->tdep;
2100 }
2101 EOF
2102 printf "\n"
2103 function_list | while do_read
2104 do
2105 if class_is_predicate_p
2106 then
2107 printf "\n"
2108 printf "int\n"
2109 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2110 printf "{\n"
2111 printf " gdb_assert (gdbarch != NULL);\n"
2112 printf " return ${predicate};\n"
2113 printf "}\n"
2114 fi
2115 if class_is_function_p
2116 then
2117 printf "\n"
2118 printf "${returntype}\n"
2119 if [ "x${formal}" = "xvoid" ]
2120 then
2121 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2122 else
2123 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2124 fi
2125 printf "{\n"
2126 printf " gdb_assert (gdbarch != NULL);\n"
2127 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2128 if class_is_predicate_p && test -n "${predefault}"
2129 then
2130 # Allow a call to a function with a predicate.
2131 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2132 fi
2133 printf " if (gdbarch_debug >= 2)\n"
2134 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2135 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2136 then
2137 if class_is_multiarch_p
2138 then
2139 params="gdbarch"
2140 else
2141 params=""
2142 fi
2143 else
2144 if class_is_multiarch_p
2145 then
2146 params="gdbarch, ${actual}"
2147 else
2148 params="${actual}"
2149 fi
2150 fi
2151 if [ "x${returntype}" = "xvoid" ]
2152 then
2153 printf " gdbarch->${function} (${params});\n"
2154 else
2155 printf " return gdbarch->${function} (${params});\n"
2156 fi
2157 printf "}\n"
2158 printf "\n"
2159 printf "void\n"
2160 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2161 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2162 printf "{\n"
2163 printf " gdbarch->${function} = ${function};\n"
2164 printf "}\n"
2165 elif class_is_variable_p
2166 then
2167 printf "\n"
2168 printf "${returntype}\n"
2169 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2170 printf "{\n"
2171 printf " gdb_assert (gdbarch != NULL);\n"
2172 if [ "x${invalid_p}" = "x0" ]
2173 then
2174 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2175 elif [ -n "${invalid_p}" ]
2176 then
2177 printf " /* Check variable is valid. */\n"
2178 printf " gdb_assert (!(${invalid_p}));\n"
2179 elif [ -n "${predefault}" ]
2180 then
2181 printf " /* Check variable changed from pre-default. */\n"
2182 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2183 fi
2184 printf " if (gdbarch_debug >= 2)\n"
2185 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2186 printf " return gdbarch->${function};\n"
2187 printf "}\n"
2188 printf "\n"
2189 printf "void\n"
2190 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2191 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2192 printf "{\n"
2193 printf " gdbarch->${function} = ${function};\n"
2194 printf "}\n"
2195 elif class_is_info_p
2196 then
2197 printf "\n"
2198 printf "${returntype}\n"
2199 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2200 printf "{\n"
2201 printf " gdb_assert (gdbarch != NULL);\n"
2202 printf " if (gdbarch_debug >= 2)\n"
2203 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2204 printf " return gdbarch->${function};\n"
2205 printf "}\n"
2206 fi
2207 done
2208
2209 # All the trailing guff
2210 cat <<EOF
2211
2212
2213 /* Keep a registry of per-architecture data-pointers required by GDB
2214 modules. */
2215
2216 struct gdbarch_data
2217 {
2218 unsigned index;
2219 int init_p;
2220 gdbarch_data_pre_init_ftype *pre_init;
2221 gdbarch_data_post_init_ftype *post_init;
2222 };
2223
2224 struct gdbarch_data_registration
2225 {
2226 struct gdbarch_data *data;
2227 struct gdbarch_data_registration *next;
2228 };
2229
2230 struct gdbarch_data_registry
2231 {
2232 unsigned nr;
2233 struct gdbarch_data_registration *registrations;
2234 };
2235
2236 struct gdbarch_data_registry gdbarch_data_registry =
2237 {
2238 0, NULL,
2239 };
2240
2241 static struct gdbarch_data *
2242 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2243 gdbarch_data_post_init_ftype *post_init)
2244 {
2245 struct gdbarch_data_registration **curr;
2246
2247 /* Append the new registration. */
2248 for (curr = &gdbarch_data_registry.registrations;
2249 (*curr) != NULL;
2250 curr = &(*curr)->next);
2251 (*curr) = XNEW (struct gdbarch_data_registration);
2252 (*curr)->next = NULL;
2253 (*curr)->data = XNEW (struct gdbarch_data);
2254 (*curr)->data->index = gdbarch_data_registry.nr++;
2255 (*curr)->data->pre_init = pre_init;
2256 (*curr)->data->post_init = post_init;
2257 (*curr)->data->init_p = 1;
2258 return (*curr)->data;
2259 }
2260
2261 struct gdbarch_data *
2262 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2263 {
2264 return gdbarch_data_register (pre_init, NULL);
2265 }
2266
2267 struct gdbarch_data *
2268 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2269 {
2270 return gdbarch_data_register (NULL, post_init);
2271 }
2272
2273 /* Create/delete the gdbarch data vector. */
2274
2275 static void
2276 alloc_gdbarch_data (struct gdbarch *gdbarch)
2277 {
2278 gdb_assert (gdbarch->data == NULL);
2279 gdbarch->nr_data = gdbarch_data_registry.nr;
2280 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2281 }
2282
2283 /* Initialize the current value of the specified per-architecture
2284 data-pointer. */
2285
2286 void
2287 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2288 struct gdbarch_data *data,
2289 void *pointer)
2290 {
2291 gdb_assert (data->index < gdbarch->nr_data);
2292 gdb_assert (gdbarch->data[data->index] == NULL);
2293 gdb_assert (data->pre_init == NULL);
2294 gdbarch->data[data->index] = pointer;
2295 }
2296
2297 /* Return the current value of the specified per-architecture
2298 data-pointer. */
2299
2300 void *
2301 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2302 {
2303 gdb_assert (data->index < gdbarch->nr_data);
2304 if (gdbarch->data[data->index] == NULL)
2305 {
2306 /* The data-pointer isn't initialized, call init() to get a
2307 value. */
2308 if (data->pre_init != NULL)
2309 /* Mid architecture creation: pass just the obstack, and not
2310 the entire architecture, as that way it isn't possible for
2311 pre-init code to refer to undefined architecture
2312 fields. */
2313 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2314 else if (gdbarch->initialized_p
2315 && data->post_init != NULL)
2316 /* Post architecture creation: pass the entire architecture
2317 (as all fields are valid), but be careful to also detect
2318 recursive references. */
2319 {
2320 gdb_assert (data->init_p);
2321 data->init_p = 0;
2322 gdbarch->data[data->index] = data->post_init (gdbarch);
2323 data->init_p = 1;
2324 }
2325 else
2326 /* The architecture initialization hasn't completed - punt -
2327 hope that the caller knows what they are doing. Once
2328 deprecated_set_gdbarch_data has been initialized, this can be
2329 changed to an internal error. */
2330 return NULL;
2331 gdb_assert (gdbarch->data[data->index] != NULL);
2332 }
2333 return gdbarch->data[data->index];
2334 }
2335
2336
2337 /* Keep a registry of the architectures known by GDB. */
2338
2339 struct gdbarch_registration
2340 {
2341 enum bfd_architecture bfd_architecture;
2342 gdbarch_init_ftype *init;
2343 gdbarch_dump_tdep_ftype *dump_tdep;
2344 struct gdbarch_list *arches;
2345 struct gdbarch_registration *next;
2346 };
2347
2348 static struct gdbarch_registration *gdbarch_registry = NULL;
2349
2350 static void
2351 append_name (const char ***buf, int *nr, const char *name)
2352 {
2353 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2354 (*buf)[*nr] = name;
2355 *nr += 1;
2356 }
2357
2358 const char **
2359 gdbarch_printable_names (void)
2360 {
2361 /* Accumulate a list of names based on the registed list of
2362 architectures. */
2363 int nr_arches = 0;
2364 const char **arches = NULL;
2365 struct gdbarch_registration *rego;
2366
2367 for (rego = gdbarch_registry;
2368 rego != NULL;
2369 rego = rego->next)
2370 {
2371 const struct bfd_arch_info *ap;
2372 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2373 if (ap == NULL)
2374 internal_error (__FILE__, __LINE__,
2375 _("gdbarch_architecture_names: multi-arch unknown"));
2376 do
2377 {
2378 append_name (&arches, &nr_arches, ap->printable_name);
2379 ap = ap->next;
2380 }
2381 while (ap != NULL);
2382 }
2383 append_name (&arches, &nr_arches, NULL);
2384 return arches;
2385 }
2386
2387
2388 void
2389 gdbarch_register (enum bfd_architecture bfd_architecture,
2390 gdbarch_init_ftype *init,
2391 gdbarch_dump_tdep_ftype *dump_tdep)
2392 {
2393 struct gdbarch_registration **curr;
2394 const struct bfd_arch_info *bfd_arch_info;
2395
2396 /* Check that BFD recognizes this architecture */
2397 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2398 if (bfd_arch_info == NULL)
2399 {
2400 internal_error (__FILE__, __LINE__,
2401 _("gdbarch: Attempt to register "
2402 "unknown architecture (%d)"),
2403 bfd_architecture);
2404 }
2405 /* Check that we haven't seen this architecture before. */
2406 for (curr = &gdbarch_registry;
2407 (*curr) != NULL;
2408 curr = &(*curr)->next)
2409 {
2410 if (bfd_architecture == (*curr)->bfd_architecture)
2411 internal_error (__FILE__, __LINE__,
2412 _("gdbarch: Duplicate registration "
2413 "of architecture (%s)"),
2414 bfd_arch_info->printable_name);
2415 }
2416 /* log it */
2417 if (gdbarch_debug)
2418 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2419 bfd_arch_info->printable_name,
2420 host_address_to_string (init));
2421 /* Append it */
2422 (*curr) = XNEW (struct gdbarch_registration);
2423 (*curr)->bfd_architecture = bfd_architecture;
2424 (*curr)->init = init;
2425 (*curr)->dump_tdep = dump_tdep;
2426 (*curr)->arches = NULL;
2427 (*curr)->next = NULL;
2428 }
2429
2430 void
2431 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2432 gdbarch_init_ftype *init)
2433 {
2434 gdbarch_register (bfd_architecture, init, NULL);
2435 }
2436
2437
2438 /* Look for an architecture using gdbarch_info. */
2439
2440 struct gdbarch_list *
2441 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2442 const struct gdbarch_info *info)
2443 {
2444 for (; arches != NULL; arches = arches->next)
2445 {
2446 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2447 continue;
2448 if (info->byte_order != arches->gdbarch->byte_order)
2449 continue;
2450 if (info->osabi != arches->gdbarch->osabi)
2451 continue;
2452 if (info->target_desc != arches->gdbarch->target_desc)
2453 continue;
2454 return arches;
2455 }
2456 return NULL;
2457 }
2458
2459
2460 /* Find an architecture that matches the specified INFO. Create a new
2461 architecture if needed. Return that new architecture. */
2462
2463 struct gdbarch *
2464 gdbarch_find_by_info (struct gdbarch_info info)
2465 {
2466 struct gdbarch *new_gdbarch;
2467 struct gdbarch_registration *rego;
2468
2469 /* Fill in missing parts of the INFO struct using a number of
2470 sources: "set ..."; INFOabfd supplied; and the global
2471 defaults. */
2472 gdbarch_info_fill (&info);
2473
2474 /* Must have found some sort of architecture. */
2475 gdb_assert (info.bfd_arch_info != NULL);
2476
2477 if (gdbarch_debug)
2478 {
2479 fprintf_unfiltered (gdb_stdlog,
2480 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2481 (info.bfd_arch_info != NULL
2482 ? info.bfd_arch_info->printable_name
2483 : "(null)"));
2484 fprintf_unfiltered (gdb_stdlog,
2485 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2486 info.byte_order,
2487 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2488 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2489 : "default"));
2490 fprintf_unfiltered (gdb_stdlog,
2491 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2492 info.osabi, gdbarch_osabi_name (info.osabi));
2493 fprintf_unfiltered (gdb_stdlog,
2494 "gdbarch_find_by_info: info.abfd %s\n",
2495 host_address_to_string (info.abfd));
2496 fprintf_unfiltered (gdb_stdlog,
2497 "gdbarch_find_by_info: info.tdep_info %s\n",
2498 host_address_to_string (info.tdep_info));
2499 }
2500
2501 /* Find the tdep code that knows about this architecture. */
2502 for (rego = gdbarch_registry;
2503 rego != NULL;
2504 rego = rego->next)
2505 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2506 break;
2507 if (rego == NULL)
2508 {
2509 if (gdbarch_debug)
2510 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2511 "No matching architecture\n");
2512 return 0;
2513 }
2514
2515 /* Ask the tdep code for an architecture that matches "info". */
2516 new_gdbarch = rego->init (info, rego->arches);
2517
2518 /* Did the tdep code like it? No. Reject the change and revert to
2519 the old architecture. */
2520 if (new_gdbarch == NULL)
2521 {
2522 if (gdbarch_debug)
2523 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2524 "Target rejected architecture\n");
2525 return NULL;
2526 }
2527
2528 /* Is this a pre-existing architecture (as determined by already
2529 being initialized)? Move it to the front of the architecture
2530 list (keeping the list sorted Most Recently Used). */
2531 if (new_gdbarch->initialized_p)
2532 {
2533 struct gdbarch_list **list;
2534 struct gdbarch_list *self;
2535 if (gdbarch_debug)
2536 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2537 "Previous architecture %s (%s) selected\n",
2538 host_address_to_string (new_gdbarch),
2539 new_gdbarch->bfd_arch_info->printable_name);
2540 /* Find the existing arch in the list. */
2541 for (list = &rego->arches;
2542 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2543 list = &(*list)->next);
2544 /* It had better be in the list of architectures. */
2545 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2546 /* Unlink SELF. */
2547 self = (*list);
2548 (*list) = self->next;
2549 /* Insert SELF at the front. */
2550 self->next = rego->arches;
2551 rego->arches = self;
2552 /* Return it. */
2553 return new_gdbarch;
2554 }
2555
2556 /* It's a new architecture. */
2557 if (gdbarch_debug)
2558 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2559 "New architecture %s (%s) selected\n",
2560 host_address_to_string (new_gdbarch),
2561 new_gdbarch->bfd_arch_info->printable_name);
2562
2563 /* Insert the new architecture into the front of the architecture
2564 list (keep the list sorted Most Recently Used). */
2565 {
2566 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2567 self->next = rego->arches;
2568 self->gdbarch = new_gdbarch;
2569 rego->arches = self;
2570 }
2571
2572 /* Check that the newly installed architecture is valid. Plug in
2573 any post init values. */
2574 new_gdbarch->dump_tdep = rego->dump_tdep;
2575 verify_gdbarch (new_gdbarch);
2576 new_gdbarch->initialized_p = 1;
2577
2578 if (gdbarch_debug)
2579 gdbarch_dump (new_gdbarch, gdb_stdlog);
2580
2581 return new_gdbarch;
2582 }
2583
2584 /* Make the specified architecture current. */
2585
2586 void
2587 set_target_gdbarch (struct gdbarch *new_gdbarch)
2588 {
2589 gdb_assert (new_gdbarch != NULL);
2590 gdb_assert (new_gdbarch->initialized_p);
2591 current_inferior ()->gdbarch = new_gdbarch;
2592 gdb::observers::architecture_changed.notify (new_gdbarch);
2593 registers_changed ();
2594 }
2595
2596 /* Return the current inferior's arch. */
2597
2598 struct gdbarch *
2599 target_gdbarch (void)
2600 {
2601 return current_inferior ()->gdbarch;
2602 }
2603
2604 void
2605 _initialize_gdbarch (void)
2606 {
2607 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2608 Set architecture debugging."), _("\\
2609 Show architecture debugging."), _("\\
2610 When non-zero, architecture debugging is enabled."),
2611 NULL,
2612 show_gdbarch_debug,
2613 &setdebuglist, &showdebuglist);
2614 }
2615 EOF
2616
2617 # close things off
2618 exec 1>&2
2619 #../move-if-change new-gdbarch.c gdbarch.c
2620 compare_new gdbarch.c
This page took 0.142988 seconds and 5 git commands to generate.