Change return type of gdbarch_software_single_step to vector<CORE_ADDR>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2017 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v;TARGET_CHAR_BIT;int;char_bit;;;;8 * sizeof (char);8;;0;
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
360 # Number of bits in an int or unsigned int for the target machine.
361 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
362 # Number of bits in a long or unsigned long for the target machine.
363 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
378 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
379 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
380 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
381 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
382 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
383 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
384 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
385
386 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
387 # starting with C++11.
388 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
389 # One if \`wchar_t' is signed, zero if unsigned.
390 v;int;wchar_signed;;;1;-1;1
391
392 # Returns the floating-point format to be used for values of length LENGTH.
393 # NAME, if non-NULL, is the type name, which may be used to distinguish
394 # different target formats of the same length.
395 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
396
397 # For most targets, a pointer on the target and its representation as an
398 # address in GDB have the same size and "look the same". For such a
399 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
400 # / addr_bit will be set from it.
401 #
402 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
403 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
404 # gdbarch_address_to_pointer as well.
405 #
406 # ptr_bit is the size of a pointer on the target
407 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
408 # addr_bit is the size of a target address as represented in gdb
409 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
410 #
411 # dwarf2_addr_size is the target address size as used in the Dwarf debug
412 # info. For .debug_frame FDEs, this is supposed to be the target address
413 # size from the associated CU header, and which is equivalent to the
414 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
415 # Unfortunately there is no good way to determine this value. Therefore
416 # dwarf2_addr_size simply defaults to the target pointer size.
417 #
418 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
419 # defined using the target's pointer size so far.
420 #
421 # Note that dwarf2_addr_size only needs to be redefined by a target if the
422 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
423 # and if Dwarf versions < 4 need to be supported.
424 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v;int;char_signed;;;1;-1;1
428 #
429 F;CORE_ADDR;read_pc;struct regcache *regcache;regcache
430 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
431 # Function for getting target's idea of a frame pointer. FIXME: GDB's
432 # whole scheme for dealing with "frames" and "frame pointers" needs a
433 # serious shakedown.
434 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
435 #
436 M;enum register_status;pseudo_register_read;struct regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
437 # Read a register into a new struct value. If the register is wholly
438 # or partly unavailable, this should call mark_value_bytes_unavailable
439 # as appropriate. If this is defined, then pseudo_register_read will
440 # never be called.
441 M;struct value *;pseudo_register_read_value;struct regcache *regcache, int cookednum;regcache, cookednum
442 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
443 #
444 v;int;num_regs;;;0;-1
445 # This macro gives the number of pseudo-registers that live in the
446 # register namespace but do not get fetched or stored on the target.
447 # These pseudo-registers may be aliases for other registers,
448 # combinations of other registers, or they may be computed by GDB.
449 v;int;num_pseudo_regs;;;0;0;;0
450
451 # Assemble agent expression bytecode to collect pseudo-register REG.
452 # Return -1 if something goes wrong, 0 otherwise.
453 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
454
455 # Assemble agent expression bytecode to push the value of pseudo-register
456 # REG on the interpreter stack.
457 # Return -1 if something goes wrong, 0 otherwise.
458 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
459
460 # Some targets/architectures can do extra processing/display of
461 # segmentation faults. E.g., Intel MPX boundary faults.
462 # Call the architecture dependent function to handle the fault.
463 # UIOUT is the output stream where the handler will place information.
464 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
465
466 # GDB's standard (or well known) register numbers. These can map onto
467 # a real register or a pseudo (computed) register or not be defined at
468 # all (-1).
469 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
470 v;int;sp_regnum;;;-1;-1;;0
471 v;int;pc_regnum;;;-1;-1;;0
472 v;int;ps_regnum;;;-1;-1;;0
473 v;int;fp0_regnum;;;0;-1;;0
474 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
475 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
476 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
477 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
478 # Convert from an sdb register number to an internal gdb register number.
479 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
480 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
481 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
482 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
483 m;const char *;register_name;int regnr;regnr;;0
484
485 # Return the type of a register specified by the architecture. Only
486 # the register cache should call this function directly; others should
487 # use "register_type".
488 M;struct type *;register_type;int reg_nr;reg_nr
489
490 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
491 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
492 # deprecated_fp_regnum.
493 v;int;deprecated_fp_regnum;;;-1;-1;;0
494
495 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
496 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
497 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
498
499 # Return true if the code of FRAME is writable.
500 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
501
502 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
503 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
504 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
505 # MAP a GDB RAW register number onto a simulator register number. See
506 # also include/...-sim.h.
507 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
508 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
509 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
510
511 # Determine the address where a longjmp will land and save this address
512 # in PC. Return nonzero on success.
513 #
514 # FRAME corresponds to the longjmp frame.
515 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
516
517 #
518 v;int;believe_pcc_promotion;;;;;;;
519 #
520 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
521 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
522 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
523 # Construct a value representing the contents of register REGNUM in
524 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
525 # allocate and return a struct value with all value attributes
526 # (but not the value contents) filled in.
527 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
528 #
529 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
530 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
531 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
532
533 # Return the return-value convention that will be used by FUNCTION
534 # to return a value of type VALTYPE. FUNCTION may be NULL in which
535 # case the return convention is computed based only on VALTYPE.
536 #
537 # If READBUF is not NULL, extract the return value and save it in this buffer.
538 #
539 # If WRITEBUF is not NULL, it contains a return value which will be
540 # stored into the appropriate register. This can be used when we want
541 # to force the value returned by a function (see the "return" command
542 # for instance).
543 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
544
545 # Return true if the return value of function is stored in the first hidden
546 # parameter. In theory, this feature should be language-dependent, specified
547 # by language and its ABI, such as C++. Unfortunately, compiler may
548 # implement it to a target-dependent feature. So that we need such hook here
549 # to be aware of this in GDB.
550 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
551
552 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
553 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
554 # On some platforms, a single function may provide multiple entry points,
555 # e.g. one that is used for function-pointer calls and a different one
556 # that is used for direct function calls.
557 # In order to ensure that breakpoints set on the function will trigger
558 # no matter via which entry point the function is entered, a platform
559 # may provide the skip_entrypoint callback. It is called with IP set
560 # to the main entry point of a function (as determined by the symbol table),
561 # and should return the address of the innermost entry point, where the
562 # actual breakpoint needs to be set. Note that skip_entrypoint is used
563 # by GDB common code even when debugging optimized code, where skip_prologue
564 # is not used.
565 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
566
567 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
568 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
569
570 # Return the breakpoint kind for this target based on *PCPTR.
571 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
572
573 # Return the software breakpoint from KIND. KIND can have target
574 # specific meaning like the Z0 kind parameter.
575 # SIZE is set to the software breakpoint's length in memory.
576 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
577
578 # Return the breakpoint kind for this target based on the current
579 # processor state (e.g. the current instruction mode on ARM) and the
580 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
581 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
582
583 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
584 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
585 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
586 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
587
588 # A function can be addressed by either it's "pointer" (possibly a
589 # descriptor address) or "entry point" (first executable instruction).
590 # The method "convert_from_func_ptr_addr" converting the former to the
591 # latter. gdbarch_deprecated_function_start_offset is being used to implement
592 # a simplified subset of that functionality - the function's address
593 # corresponds to the "function pointer" and the function's start
594 # corresponds to the "function entry point" - and hence is redundant.
595
596 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
597
598 # Return the remote protocol register number associated with this
599 # register. Normally the identity mapping.
600 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
601
602 # Fetch the target specific address used to represent a load module.
603 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
604 #
605 v;CORE_ADDR;frame_args_skip;;;0;;;0
606 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
607 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
608 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
609 # frame-base. Enable frame-base before frame-unwind.
610 F;int;frame_num_args;struct frame_info *frame;frame
611 #
612 M;CORE_ADDR;frame_align;CORE_ADDR address;address
613 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
614 v;int;frame_red_zone_size
615 #
616 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
617 # On some machines there are bits in addresses which are not really
618 # part of the address, but are used by the kernel, the hardware, etc.
619 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
620 # we get a "real" address such as one would find in a symbol table.
621 # This is used only for addresses of instructions, and even then I'm
622 # not sure it's used in all contexts. It exists to deal with there
623 # being a few stray bits in the PC which would mislead us, not as some
624 # sort of generic thing to handle alignment or segmentation (it's
625 # possible it should be in TARGET_READ_PC instead).
626 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
627
628 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
629 # indicates if the target needs software single step. An ISA method to
630 # implement it.
631 #
632 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
633 # target can single step. If not, then implement single step using breakpoints.
634 #
635 # Return a vector of addresses on which the software single step
636 # breakpoints should be inserted. NULL means software single step is
637 # not used.
638 # Multiple breakpoints may be inserted for some instructions such as
639 # conditional branch. However, each implementation must always evaluate
640 # the condition and only put the breakpoint at the branch destination if
641 # the condition is true, so that we ensure forward progress when stepping
642 # past a conditional branch to self.
643 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
644
645 # Return non-zero if the processor is executing a delay slot and a
646 # further single-step is needed before the instruction finishes.
647 M;int;single_step_through_delay;struct frame_info *frame;frame
648 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
649 # disassembler. Perhaps objdump can handle it?
650 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;0;
651 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
652
653
654 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
655 # evaluates non-zero, this is the address where the debugger will place
656 # a step-resume breakpoint to get us past the dynamic linker.
657 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
658 # Some systems also have trampoline code for returning from shared libs.
659 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
660
661 # A target might have problems with watchpoints as soon as the stack
662 # frame of the current function has been destroyed. This mostly happens
663 # as the first action in a function's epilogue. stack_frame_destroyed_p()
664 # is defined to return a non-zero value if either the given addr is one
665 # instruction after the stack destroying instruction up to the trailing
666 # return instruction or if we can figure out that the stack frame has
667 # already been invalidated regardless of the value of addr. Targets
668 # which don't suffer from that problem could just let this functionality
669 # untouched.
670 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
671 # Process an ELF symbol in the minimal symbol table in a backend-specific
672 # way. Normally this hook is supposed to do nothing, however if required,
673 # then this hook can be used to apply tranformations to symbols that are
674 # considered special in some way. For example the MIPS backend uses it
675 # to interpret \`st_other' information to mark compressed code symbols so
676 # that they can be treated in the appropriate manner in the processing of
677 # the main symbol table and DWARF-2 records.
678 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
679 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
680 # Process a symbol in the main symbol table in a backend-specific way.
681 # Normally this hook is supposed to do nothing, however if required,
682 # then this hook can be used to apply tranformations to symbols that
683 # are considered special in some way. This is currently used by the
684 # MIPS backend to make sure compressed code symbols have the ISA bit
685 # set. This in turn is needed for symbol values seen in GDB to match
686 # the values used at the runtime by the program itself, for function
687 # and label references.
688 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
689 # Adjust the address retrieved from a DWARF-2 record other than a line
690 # entry in a backend-specific way. Normally this hook is supposed to
691 # return the address passed unchanged, however if that is incorrect for
692 # any reason, then this hook can be used to fix the address up in the
693 # required manner. This is currently used by the MIPS backend to make
694 # sure addresses in FDE, range records, etc. referring to compressed
695 # code have the ISA bit set, matching line information and the symbol
696 # table.
697 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
698 # Adjust the address updated by a line entry in a backend-specific way.
699 # Normally this hook is supposed to return the address passed unchanged,
700 # however in the case of inconsistencies in these records, this hook can
701 # be used to fix them up in the required manner. This is currently used
702 # by the MIPS backend to make sure all line addresses in compressed code
703 # are presented with the ISA bit set, which is not always the case. This
704 # in turn ensures breakpoint addresses are correctly matched against the
705 # stop PC.
706 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
707 v;int;cannot_step_breakpoint;;;0;0;;0
708 v;int;have_nonsteppable_watchpoint;;;0;0;;0
709 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
710 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
711 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
712 # FS are passed from the generic execute_cfa_program function.
713 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
714
715 # Return the appropriate type_flags for the supplied address class.
716 # This function should return 1 if the address class was recognized and
717 # type_flags was set, zero otherwise.
718 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
719 # Is a register in a group
720 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
721 # Fetch the pointer to the ith function argument.
722 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
723
724 # Iterate over all supported register notes in a core file. For each
725 # supported register note section, the iterator must call CB and pass
726 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
727 # the supported register note sections based on the current register
728 # values. Otherwise it should enumerate all supported register note
729 # sections.
730 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
731
732 # Create core file notes
733 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
734
735 # The elfcore writer hook to use to write Linux prpsinfo notes to core
736 # files. Most Linux architectures use the same prpsinfo32 or
737 # prpsinfo64 layouts, and so won't need to provide this hook, as we
738 # call the Linux generic routines in bfd to write prpsinfo notes by
739 # default.
740 F;char *;elfcore_write_linux_prpsinfo;bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info;obfd, note_data, note_size, info
741
742 # Find core file memory regions
743 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
744
745 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
746 # core file into buffer READBUF with length LEN. Return the number of bytes read
747 # (zero indicates failure).
748 # failed, otherwise, return the red length of READBUF.
749 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
750
751 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
752 # libraries list from core file into buffer READBUF with length LEN.
753 # Return the number of bytes read (zero indicates failure).
754 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
755
756 # How the core target converts a PTID from a core file to a string.
757 M;const char *;core_pid_to_str;ptid_t ptid;ptid
758
759 # How the core target extracts the name of a thread from a core file.
760 M;const char *;core_thread_name;struct thread_info *thr;thr
761
762 # BFD target to use when generating a core file.
763 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
764
765 # If the elements of C++ vtables are in-place function descriptors rather
766 # than normal function pointers (which may point to code or a descriptor),
767 # set this to one.
768 v;int;vtable_function_descriptors;;;0;0;;0
769
770 # Set if the least significant bit of the delta is used instead of the least
771 # significant bit of the pfn for pointers to virtual member functions.
772 v;int;vbit_in_delta;;;0;0;;0
773
774 # Advance PC to next instruction in order to skip a permanent breakpoint.
775 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
776
777 # The maximum length of an instruction on this architecture in bytes.
778 V;ULONGEST;max_insn_length;;;0;0
779
780 # Copy the instruction at FROM to TO, and make any adjustments
781 # necessary to single-step it at that address.
782 #
783 # REGS holds the state the thread's registers will have before
784 # executing the copied instruction; the PC in REGS will refer to FROM,
785 # not the copy at TO. The caller should update it to point at TO later.
786 #
787 # Return a pointer to data of the architecture's choice to be passed
788 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
789 # the instruction's effects have been completely simulated, with the
790 # resulting state written back to REGS.
791 #
792 # For a general explanation of displaced stepping and how GDB uses it,
793 # see the comments in infrun.c.
794 #
795 # The TO area is only guaranteed to have space for
796 # gdbarch_max_insn_length (arch) bytes, so this function must not
797 # write more bytes than that to that area.
798 #
799 # If you do not provide this function, GDB assumes that the
800 # architecture does not support displaced stepping.
801 #
802 # If your architecture doesn't need to adjust instructions before
803 # single-stepping them, consider using simple_displaced_step_copy_insn
804 # here.
805 #
806 # If the instruction cannot execute out of line, return NULL. The
807 # core falls back to stepping past the instruction in-line instead in
808 # that case.
809 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
810
811 # Return true if GDB should use hardware single-stepping to execute
812 # the displaced instruction identified by CLOSURE. If false,
813 # GDB will simply restart execution at the displaced instruction
814 # location, and it is up to the target to ensure GDB will receive
815 # control again (e.g. by placing a software breakpoint instruction
816 # into the displaced instruction buffer).
817 #
818 # The default implementation returns false on all targets that
819 # provide a gdbarch_software_single_step routine, and true otherwise.
820 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
821
822 # Fix up the state resulting from successfully single-stepping a
823 # displaced instruction, to give the result we would have gotten from
824 # stepping the instruction in its original location.
825 #
826 # REGS is the register state resulting from single-stepping the
827 # displaced instruction.
828 #
829 # CLOSURE is the result from the matching call to
830 # gdbarch_displaced_step_copy_insn.
831 #
832 # If you provide gdbarch_displaced_step_copy_insn.but not this
833 # function, then GDB assumes that no fixup is needed after
834 # single-stepping the instruction.
835 #
836 # For a general explanation of displaced stepping and how GDB uses it,
837 # see the comments in infrun.c.
838 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
839
840 # Free a closure returned by gdbarch_displaced_step_copy_insn.
841 #
842 # If you provide gdbarch_displaced_step_copy_insn, you must provide
843 # this function as well.
844 #
845 # If your architecture uses closures that don't need to be freed, then
846 # you can use simple_displaced_step_free_closure here.
847 #
848 # For a general explanation of displaced stepping and how GDB uses it,
849 # see the comments in infrun.c.
850 m;void;displaced_step_free_closure;struct displaced_step_closure *closure;closure;;NULL;;(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
851
852 # Return the address of an appropriate place to put displaced
853 # instructions while we step over them. There need only be one such
854 # place, since we're only stepping one thread over a breakpoint at a
855 # time.
856 #
857 # For a general explanation of displaced stepping and how GDB uses it,
858 # see the comments in infrun.c.
859 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
860
861 # Relocate an instruction to execute at a different address. OLDLOC
862 # is the address in the inferior memory where the instruction to
863 # relocate is currently at. On input, TO points to the destination
864 # where we want the instruction to be copied (and possibly adjusted)
865 # to. On output, it points to one past the end of the resulting
866 # instruction(s). The effect of executing the instruction at TO shall
867 # be the same as if executing it at FROM. For example, call
868 # instructions that implicitly push the return address on the stack
869 # should be adjusted to return to the instruction after OLDLOC;
870 # relative branches, and other PC-relative instructions need the
871 # offset adjusted; etc.
872 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
873
874 # Refresh overlay mapped state for section OSECT.
875 F;void;overlay_update;struct obj_section *osect;osect
876
877 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
878
879 # Handle special encoding of static variables in stabs debug info.
880 F;const char *;static_transform_name;const char *name;name
881 # Set if the address in N_SO or N_FUN stabs may be zero.
882 v;int;sofun_address_maybe_missing;;;0;0;;0
883
884 # Parse the instruction at ADDR storing in the record execution log
885 # the registers REGCACHE and memory ranges that will be affected when
886 # the instruction executes, along with their current values.
887 # Return -1 if something goes wrong, 0 otherwise.
888 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
889
890 # Save process state after a signal.
891 # Return -1 if something goes wrong, 0 otherwise.
892 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
893
894 # Signal translation: translate inferior's signal (target's) number
895 # into GDB's representation. The implementation of this method must
896 # be host independent. IOW, don't rely on symbols of the NAT_FILE
897 # header (the nm-*.h files), the host <signal.h> header, or similar
898 # headers. This is mainly used when cross-debugging core files ---
899 # "Live" targets hide the translation behind the target interface
900 # (target_wait, target_resume, etc.).
901 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
902
903 # Signal translation: translate the GDB's internal signal number into
904 # the inferior's signal (target's) representation. The implementation
905 # of this method must be host independent. IOW, don't rely on symbols
906 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
907 # header, or similar headers.
908 # Return the target signal number if found, or -1 if the GDB internal
909 # signal number is invalid.
910 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
911
912 # Extra signal info inspection.
913 #
914 # Return a type suitable to inspect extra signal information.
915 M;struct type *;get_siginfo_type;void;
916
917 # Record architecture-specific information from the symbol table.
918 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
919
920 # Function for the 'catch syscall' feature.
921
922 # Get architecture-specific system calls information from registers.
923 M;LONGEST;get_syscall_number;ptid_t ptid;ptid
924
925 # The filename of the XML syscall for this architecture.
926 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
927
928 # Information about system calls from this architecture
929 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
930
931 # SystemTap related fields and functions.
932
933 # A NULL-terminated array of prefixes used to mark an integer constant
934 # on the architecture's assembly.
935 # For example, on x86 integer constants are written as:
936 #
937 # \$10 ;; integer constant 10
938 #
939 # in this case, this prefix would be the character \`\$\'.
940 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
941
942 # A NULL-terminated array of suffixes used to mark an integer constant
943 # on the architecture's assembly.
944 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
945
946 # A NULL-terminated array of prefixes used to mark a register name on
947 # the architecture's assembly.
948 # For example, on x86 the register name is written as:
949 #
950 # \%eax ;; register eax
951 #
952 # in this case, this prefix would be the character \`\%\'.
953 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
954
955 # A NULL-terminated array of suffixes used to mark a register name on
956 # the architecture's assembly.
957 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
958
959 # A NULL-terminated array of prefixes used to mark a register
960 # indirection on the architecture's assembly.
961 # For example, on x86 the register indirection is written as:
962 #
963 # \(\%eax\) ;; indirecting eax
964 #
965 # in this case, this prefix would be the charater \`\(\'.
966 #
967 # Please note that we use the indirection prefix also for register
968 # displacement, e.g., \`4\(\%eax\)\' on x86.
969 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
970
971 # A NULL-terminated array of suffixes used to mark a register
972 # indirection on the architecture's assembly.
973 # For example, on x86 the register indirection is written as:
974 #
975 # \(\%eax\) ;; indirecting eax
976 #
977 # in this case, this prefix would be the charater \`\)\'.
978 #
979 # Please note that we use the indirection suffix also for register
980 # displacement, e.g., \`4\(\%eax\)\' on x86.
981 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
982
983 # Prefix(es) used to name a register using GDB's nomenclature.
984 #
985 # For example, on PPC a register is represented by a number in the assembly
986 # language (e.g., \`10\' is the 10th general-purpose register). However,
987 # inside GDB this same register has an \`r\' appended to its name, so the 10th
988 # register would be represented as \`r10\' internally.
989 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
990
991 # Suffix used to name a register using GDB's nomenclature.
992 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
993
994 # Check if S is a single operand.
995 #
996 # Single operands can be:
997 # \- Literal integers, e.g. \`\$10\' on x86
998 # \- Register access, e.g. \`\%eax\' on x86
999 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
1000 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
1001 #
1002 # This function should check for these patterns on the string
1003 # and return 1 if some were found, or zero otherwise. Please try to match
1004 # as much info as you can from the string, i.e., if you have to match
1005 # something like \`\(\%\', do not match just the \`\(\'.
1006 M;int;stap_is_single_operand;const char *s;s
1007
1008 # Function used to handle a "special case" in the parser.
1009 #
1010 # A "special case" is considered to be an unknown token, i.e., a token
1011 # that the parser does not know how to parse. A good example of special
1012 # case would be ARM's register displacement syntax:
1013 #
1014 # [R0, #4] ;; displacing R0 by 4
1015 #
1016 # Since the parser assumes that a register displacement is of the form:
1017 #
1018 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1019 #
1020 # it means that it will not be able to recognize and parse this odd syntax.
1021 # Therefore, we should add a special case function that will handle this token.
1022 #
1023 # This function should generate the proper expression form of the expression
1024 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1025 # and so on). It should also return 1 if the parsing was successful, or zero
1026 # if the token was not recognized as a special token (in this case, returning
1027 # zero means that the special parser is deferring the parsing to the generic
1028 # parser), and should advance the buffer pointer (p->arg).
1029 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1030
1031 # DTrace related functions.
1032
1033 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1034 # NARG must be >= 0.
1035 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1036
1037 # True if the given ADDR does not contain the instruction sequence
1038 # corresponding to a disabled DTrace is-enabled probe.
1039 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1040
1041 # Enable a DTrace is-enabled probe at ADDR.
1042 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1043
1044 # Disable a DTrace is-enabled probe at ADDR.
1045 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1046
1047 # True if the list of shared libraries is one and only for all
1048 # processes, as opposed to a list of shared libraries per inferior.
1049 # This usually means that all processes, although may or may not share
1050 # an address space, will see the same set of symbols at the same
1051 # addresses.
1052 v;int;has_global_solist;;;0;0;;0
1053
1054 # On some targets, even though each inferior has its own private
1055 # address space, the debug interface takes care of making breakpoints
1056 # visible to all address spaces automatically. For such cases,
1057 # this property should be set to true.
1058 v;int;has_global_breakpoints;;;0;0;;0
1059
1060 # True if inferiors share an address space (e.g., uClinux).
1061 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1062
1063 # True if a fast tracepoint can be set at an address.
1064 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1065
1066 # Guess register state based on tracepoint location. Used for tracepoints
1067 # where no registers have been collected, but there's only one location,
1068 # allowing us to guess the PC value, and perhaps some other registers.
1069 # On entry, regcache has all registers marked as unavailable.
1070 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1071
1072 # Return the "auto" target charset.
1073 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1074 # Return the "auto" target wide charset.
1075 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1076
1077 # If non-empty, this is a file extension that will be opened in place
1078 # of the file extension reported by the shared library list.
1079 #
1080 # This is most useful for toolchains that use a post-linker tool,
1081 # where the names of the files run on the target differ in extension
1082 # compared to the names of the files GDB should load for debug info.
1083 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1084
1085 # If true, the target OS has DOS-based file system semantics. That
1086 # is, absolute paths include a drive name, and the backslash is
1087 # considered a directory separator.
1088 v;int;has_dos_based_file_system;;;0;0;;0
1089
1090 # Generate bytecodes to collect the return address in a frame.
1091 # Since the bytecodes run on the target, possibly with GDB not even
1092 # connected, the full unwinding machinery is not available, and
1093 # typically this function will issue bytecodes for one or more likely
1094 # places that the return address may be found.
1095 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1096
1097 # Implement the "info proc" command.
1098 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1099
1100 # Implement the "info proc" command for core files. Noe that there
1101 # are two "info_proc"-like methods on gdbarch -- one for core files,
1102 # one for live targets.
1103 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1104
1105 # Iterate over all objfiles in the order that makes the most sense
1106 # for the architecture to make global symbol searches.
1107 #
1108 # CB is a callback function where OBJFILE is the objfile to be searched,
1109 # and CB_DATA a pointer to user-defined data (the same data that is passed
1110 # when calling this gdbarch method). The iteration stops if this function
1111 # returns nonzero.
1112 #
1113 # CB_DATA is a pointer to some user-defined data to be passed to
1114 # the callback.
1115 #
1116 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1117 # inspected when the symbol search was requested.
1118 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1119
1120 # Ravenscar arch-dependent ops.
1121 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1122
1123 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1124 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1125
1126 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1127 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1128
1129 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1130 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1131
1132 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1133 # Return 0 if *READPTR is already at the end of the buffer.
1134 # Return -1 if there is insufficient buffer for a whole entry.
1135 # Return 1 if an entry was read into *TYPEP and *VALP.
1136 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1137
1138 # Print the description of a single auxv entry described by TYPE and VAL
1139 # to FILE.
1140 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1141
1142 # Find the address range of the current inferior's vsyscall/vDSO, and
1143 # write it to *RANGE. If the vsyscall's length can't be determined, a
1144 # range with zero length is returned. Returns true if the vsyscall is
1145 # found, false otherwise.
1146 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1147
1148 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1149 # PROT has GDB_MMAP_PROT_* bitmask format.
1150 # Throw an error if it is not possible. Returned address is always valid.
1151 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1152
1153 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1154 # Print a warning if it is not possible.
1155 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1156
1157 # Return string (caller has to use xfree for it) with options for GCC
1158 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1159 # These options are put before CU's DW_AT_producer compilation options so that
1160 # they can override it. Method may also return NULL.
1161 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1162
1163 # Return a regular expression that matches names used by this
1164 # architecture in GNU configury triplets. The result is statically
1165 # allocated and must not be freed. The default implementation simply
1166 # returns the BFD architecture name, which is correct in nearly every
1167 # case.
1168 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1169
1170 # Return the size in 8-bit bytes of an addressable memory unit on this
1171 # architecture. This corresponds to the number of 8-bit bytes associated to
1172 # each address in memory.
1173 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1174
1175 # Functions for allowing a target to modify its disassembler options.
1176 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1177 v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1178
1179 EOF
1180 }
1181
1182 #
1183 # The .log file
1184 #
1185 exec > new-gdbarch.log
1186 function_list | while do_read
1187 do
1188 cat <<EOF
1189 ${class} ${returntype} ${function} ($formal)
1190 EOF
1191 for r in ${read}
1192 do
1193 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1194 done
1195 if class_is_predicate_p && fallback_default_p
1196 then
1197 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1198 kill $$
1199 exit 1
1200 fi
1201 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1202 then
1203 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1204 kill $$
1205 exit 1
1206 fi
1207 if class_is_multiarch_p
1208 then
1209 if class_is_predicate_p ; then :
1210 elif test "x${predefault}" = "x"
1211 then
1212 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1213 kill $$
1214 exit 1
1215 fi
1216 fi
1217 echo ""
1218 done
1219
1220 exec 1>&2
1221 compare_new gdbarch.log
1222
1223
1224 copyright ()
1225 {
1226 cat <<EOF
1227 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1228 /* vi:set ro: */
1229
1230 /* Dynamic architecture support for GDB, the GNU debugger.
1231
1232 Copyright (C) 1998-2017 Free Software Foundation, Inc.
1233
1234 This file is part of GDB.
1235
1236 This program is free software; you can redistribute it and/or modify
1237 it under the terms of the GNU General Public License as published by
1238 the Free Software Foundation; either version 3 of the License, or
1239 (at your option) any later version.
1240
1241 This program is distributed in the hope that it will be useful,
1242 but WITHOUT ANY WARRANTY; without even the implied warranty of
1243 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1244 GNU General Public License for more details.
1245
1246 You should have received a copy of the GNU General Public License
1247 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1248
1249 /* This file was created with the aid of \`\`gdbarch.sh''.
1250
1251 The Bourne shell script \`\`gdbarch.sh'' creates the files
1252 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1253 against the existing \`\`gdbarch.[hc]''. Any differences found
1254 being reported.
1255
1256 If editing this file, please also run gdbarch.sh and merge any
1257 changes into that script. Conversely, when making sweeping changes
1258 to this file, modifying gdbarch.sh and using its output may prove
1259 easier. */
1260
1261 EOF
1262 }
1263
1264 #
1265 # The .h file
1266 #
1267
1268 exec > new-gdbarch.h
1269 copyright
1270 cat <<EOF
1271 #ifndef GDBARCH_H
1272 #define GDBARCH_H
1273
1274 #include <vector>
1275 #include "frame.h"
1276 #include "dis-asm.h"
1277
1278 struct floatformat;
1279 struct ui_file;
1280 struct value;
1281 struct objfile;
1282 struct obj_section;
1283 struct minimal_symbol;
1284 struct regcache;
1285 struct reggroup;
1286 struct regset;
1287 struct disassemble_info;
1288 struct target_ops;
1289 struct obstack;
1290 struct bp_target_info;
1291 struct target_desc;
1292 struct objfile;
1293 struct symbol;
1294 struct displaced_step_closure;
1295 struct syscall;
1296 struct agent_expr;
1297 struct axs_value;
1298 struct stap_parse_info;
1299 struct parser_state;
1300 struct ravenscar_arch_ops;
1301 struct elf_internal_linux_prpsinfo;
1302 struct mem_range;
1303 struct syscalls_info;
1304 struct thread_info;
1305 struct ui_out;
1306
1307 #include "regcache.h"
1308
1309 /* The architecture associated with the inferior through the
1310 connection to the target.
1311
1312 The architecture vector provides some information that is really a
1313 property of the inferior, accessed through a particular target:
1314 ptrace operations; the layout of certain RSP packets; the solib_ops
1315 vector; etc. To differentiate architecture accesses to
1316 per-inferior/target properties from
1317 per-thread/per-frame/per-objfile properties, accesses to
1318 per-inferior/target properties should be made through this
1319 gdbarch. */
1320
1321 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1322 extern struct gdbarch *target_gdbarch (void);
1323
1324 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1325 gdbarch method. */
1326
1327 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1328 (struct objfile *objfile, void *cb_data);
1329
1330 /* Callback type for regset section iterators. The callback usually
1331 invokes the REGSET's supply or collect method, to which it must
1332 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1333 section name, and HUMAN_NAME is used for diagnostic messages.
1334 CB_DATA should have been passed unchanged through the iterator. */
1335
1336 typedef void (iterate_over_regset_sections_cb)
1337 (const char *sect_name, int size, const struct regset *regset,
1338 const char *human_name, void *cb_data);
1339 EOF
1340
1341 # function typedef's
1342 printf "\n"
1343 printf "\n"
1344 printf "/* The following are pre-initialized by GDBARCH. */\n"
1345 function_list | while do_read
1346 do
1347 if class_is_info_p
1348 then
1349 printf "\n"
1350 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1351 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1352 fi
1353 done
1354
1355 # function typedef's
1356 printf "\n"
1357 printf "\n"
1358 printf "/* The following are initialized by the target dependent code. */\n"
1359 function_list | while do_read
1360 do
1361 if [ -n "${comment}" ]
1362 then
1363 echo "${comment}" | sed \
1364 -e '2 s,#,/*,' \
1365 -e '3,$ s,#, ,' \
1366 -e '$ s,$, */,'
1367 fi
1368
1369 if class_is_predicate_p
1370 then
1371 printf "\n"
1372 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1373 fi
1374 if class_is_variable_p
1375 then
1376 printf "\n"
1377 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1378 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1379 fi
1380 if class_is_function_p
1381 then
1382 printf "\n"
1383 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1384 then
1385 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1386 elif class_is_multiarch_p
1387 then
1388 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1389 else
1390 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1391 fi
1392 if [ "x${formal}" = "xvoid" ]
1393 then
1394 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1395 else
1396 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1397 fi
1398 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1399 fi
1400 done
1401
1402 # close it off
1403 cat <<EOF
1404
1405 /* Definition for an unknown syscall, used basically in error-cases. */
1406 #define UNKNOWN_SYSCALL (-1)
1407
1408 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1409
1410
1411 /* Mechanism for co-ordinating the selection of a specific
1412 architecture.
1413
1414 GDB targets (*-tdep.c) can register an interest in a specific
1415 architecture. Other GDB components can register a need to maintain
1416 per-architecture data.
1417
1418 The mechanisms below ensures that there is only a loose connection
1419 between the set-architecture command and the various GDB
1420 components. Each component can independently register their need
1421 to maintain architecture specific data with gdbarch.
1422
1423 Pragmatics:
1424
1425 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1426 didn't scale.
1427
1428 The more traditional mega-struct containing architecture specific
1429 data for all the various GDB components was also considered. Since
1430 GDB is built from a variable number of (fairly independent)
1431 components it was determined that the global aproach was not
1432 applicable. */
1433
1434
1435 /* Register a new architectural family with GDB.
1436
1437 Register support for the specified ARCHITECTURE with GDB. When
1438 gdbarch determines that the specified architecture has been
1439 selected, the corresponding INIT function is called.
1440
1441 --
1442
1443 The INIT function takes two parameters: INFO which contains the
1444 information available to gdbarch about the (possibly new)
1445 architecture; ARCHES which is a list of the previously created
1446 \`\`struct gdbarch'' for this architecture.
1447
1448 The INFO parameter is, as far as possible, be pre-initialized with
1449 information obtained from INFO.ABFD or the global defaults.
1450
1451 The ARCHES parameter is a linked list (sorted most recently used)
1452 of all the previously created architures for this architecture
1453 family. The (possibly NULL) ARCHES->gdbarch can used to access
1454 values from the previously selected architecture for this
1455 architecture family.
1456
1457 The INIT function shall return any of: NULL - indicating that it
1458 doesn't recognize the selected architecture; an existing \`\`struct
1459 gdbarch'' from the ARCHES list - indicating that the new
1460 architecture is just a synonym for an earlier architecture (see
1461 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1462 - that describes the selected architecture (see gdbarch_alloc()).
1463
1464 The DUMP_TDEP function shall print out all target specific values.
1465 Care should be taken to ensure that the function works in both the
1466 multi-arch and non- multi-arch cases. */
1467
1468 struct gdbarch_list
1469 {
1470 struct gdbarch *gdbarch;
1471 struct gdbarch_list *next;
1472 };
1473
1474 struct gdbarch_info
1475 {
1476 /* Use default: NULL (ZERO). */
1477 const struct bfd_arch_info *bfd_arch_info;
1478
1479 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1480 enum bfd_endian byte_order;
1481
1482 enum bfd_endian byte_order_for_code;
1483
1484 /* Use default: NULL (ZERO). */
1485 bfd *abfd;
1486
1487 /* Use default: NULL (ZERO). */
1488 void *tdep_info;
1489
1490 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1491 enum gdb_osabi osabi;
1492
1493 /* Use default: NULL (ZERO). */
1494 const struct target_desc *target_desc;
1495 };
1496
1497 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1498 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1499
1500 /* DEPRECATED - use gdbarch_register() */
1501 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1502
1503 extern void gdbarch_register (enum bfd_architecture architecture,
1504 gdbarch_init_ftype *,
1505 gdbarch_dump_tdep_ftype *);
1506
1507
1508 /* Return a freshly allocated, NULL terminated, array of the valid
1509 architecture names. Since architectures are registered during the
1510 _initialize phase this function only returns useful information
1511 once initialization has been completed. */
1512
1513 extern const char **gdbarch_printable_names (void);
1514
1515
1516 /* Helper function. Search the list of ARCHES for a GDBARCH that
1517 matches the information provided by INFO. */
1518
1519 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1520
1521
1522 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1523 basic initialization using values obtained from the INFO and TDEP
1524 parameters. set_gdbarch_*() functions are called to complete the
1525 initialization of the object. */
1526
1527 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1528
1529
1530 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1531 It is assumed that the caller freeds the \`\`struct
1532 gdbarch_tdep''. */
1533
1534 extern void gdbarch_free (struct gdbarch *);
1535
1536
1537 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1538 obstack. The memory is freed when the corresponding architecture
1539 is also freed. */
1540
1541 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1542 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1543 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1544
1545 /* Duplicate STRING, returning an equivalent string that's allocated on the
1546 obstack associated with GDBARCH. The string is freed when the corresponding
1547 architecture is also freed. */
1548
1549 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1550
1551 /* Helper function. Force an update of the current architecture.
1552
1553 The actual architecture selected is determined by INFO, \`\`(gdb) set
1554 architecture'' et.al., the existing architecture and BFD's default
1555 architecture. INFO should be initialized to zero and then selected
1556 fields should be updated.
1557
1558 Returns non-zero if the update succeeds. */
1559
1560 extern int gdbarch_update_p (struct gdbarch_info info);
1561
1562
1563 /* Helper function. Find an architecture matching info.
1564
1565 INFO should be initialized using gdbarch_info_init, relevant fields
1566 set, and then finished using gdbarch_info_fill.
1567
1568 Returns the corresponding architecture, or NULL if no matching
1569 architecture was found. */
1570
1571 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1572
1573
1574 /* Helper function. Set the target gdbarch to "gdbarch". */
1575
1576 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1577
1578
1579 /* Register per-architecture data-pointer.
1580
1581 Reserve space for a per-architecture data-pointer. An identifier
1582 for the reserved data-pointer is returned. That identifer should
1583 be saved in a local static variable.
1584
1585 Memory for the per-architecture data shall be allocated using
1586 gdbarch_obstack_zalloc. That memory will be deleted when the
1587 corresponding architecture object is deleted.
1588
1589 When a previously created architecture is re-selected, the
1590 per-architecture data-pointer for that previous architecture is
1591 restored. INIT() is not re-called.
1592
1593 Multiple registrarants for any architecture are allowed (and
1594 strongly encouraged). */
1595
1596 struct gdbarch_data;
1597
1598 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1599 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1600 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1601 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1602 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1603 struct gdbarch_data *data,
1604 void *pointer);
1605
1606 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1607
1608
1609 /* Set the dynamic target-system-dependent parameters (architecture,
1610 byte-order, ...) using information found in the BFD. */
1611
1612 extern void set_gdbarch_from_file (bfd *);
1613
1614
1615 /* Initialize the current architecture to the "first" one we find on
1616 our list. */
1617
1618 extern void initialize_current_architecture (void);
1619
1620 /* gdbarch trace variable */
1621 extern unsigned int gdbarch_debug;
1622
1623 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1624
1625 #endif
1626 EOF
1627 exec 1>&2
1628 #../move-if-change new-gdbarch.h gdbarch.h
1629 compare_new gdbarch.h
1630
1631
1632 #
1633 # C file
1634 #
1635
1636 exec > new-gdbarch.c
1637 copyright
1638 cat <<EOF
1639
1640 #include "defs.h"
1641 #include "arch-utils.h"
1642
1643 #include "gdbcmd.h"
1644 #include "inferior.h"
1645 #include "symcat.h"
1646
1647 #include "floatformat.h"
1648 #include "reggroups.h"
1649 #include "osabi.h"
1650 #include "gdb_obstack.h"
1651 #include "observer.h"
1652 #include "regcache.h"
1653 #include "objfiles.h"
1654 #include "auxv.h"
1655
1656 /* Static function declarations */
1657
1658 static void alloc_gdbarch_data (struct gdbarch *);
1659
1660 /* Non-zero if we want to trace architecture code. */
1661
1662 #ifndef GDBARCH_DEBUG
1663 #define GDBARCH_DEBUG 0
1664 #endif
1665 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1666 static void
1667 show_gdbarch_debug (struct ui_file *file, int from_tty,
1668 struct cmd_list_element *c, const char *value)
1669 {
1670 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1671 }
1672
1673 static const char *
1674 pformat (const struct floatformat **format)
1675 {
1676 if (format == NULL)
1677 return "(null)";
1678 else
1679 /* Just print out one of them - this is only for diagnostics. */
1680 return format[0]->name;
1681 }
1682
1683 static const char *
1684 pstring (const char *string)
1685 {
1686 if (string == NULL)
1687 return "(null)";
1688 return string;
1689 }
1690
1691 static const char *
1692 pstring_ptr (char **string)
1693 {
1694 if (string == NULL || *string == NULL)
1695 return "(null)";
1696 return *string;
1697 }
1698
1699 /* Helper function to print a list of strings, represented as "const
1700 char *const *". The list is printed comma-separated. */
1701
1702 static const char *
1703 pstring_list (const char *const *list)
1704 {
1705 static char ret[100];
1706 const char *const *p;
1707 size_t offset = 0;
1708
1709 if (list == NULL)
1710 return "(null)";
1711
1712 ret[0] = '\0';
1713 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1714 {
1715 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1716 offset += 2 + s;
1717 }
1718
1719 if (offset > 0)
1720 {
1721 gdb_assert (offset - 2 < sizeof (ret));
1722 ret[offset - 2] = '\0';
1723 }
1724
1725 return ret;
1726 }
1727
1728 EOF
1729
1730 # gdbarch open the gdbarch object
1731 printf "\n"
1732 printf "/* Maintain the struct gdbarch object. */\n"
1733 printf "\n"
1734 printf "struct gdbarch\n"
1735 printf "{\n"
1736 printf " /* Has this architecture been fully initialized? */\n"
1737 printf " int initialized_p;\n"
1738 printf "\n"
1739 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1740 printf " struct obstack *obstack;\n"
1741 printf "\n"
1742 printf " /* basic architectural information. */\n"
1743 function_list | while do_read
1744 do
1745 if class_is_info_p
1746 then
1747 printf " ${returntype} ${function};\n"
1748 fi
1749 done
1750 printf "\n"
1751 printf " /* target specific vector. */\n"
1752 printf " struct gdbarch_tdep *tdep;\n"
1753 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1754 printf "\n"
1755 printf " /* per-architecture data-pointers. */\n"
1756 printf " unsigned nr_data;\n"
1757 printf " void **data;\n"
1758 printf "\n"
1759 cat <<EOF
1760 /* Multi-arch values.
1761
1762 When extending this structure you must:
1763
1764 Add the field below.
1765
1766 Declare set/get functions and define the corresponding
1767 macro in gdbarch.h.
1768
1769 gdbarch_alloc(): If zero/NULL is not a suitable default,
1770 initialize the new field.
1771
1772 verify_gdbarch(): Confirm that the target updated the field
1773 correctly.
1774
1775 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1776 field is dumped out
1777
1778 get_gdbarch(): Implement the set/get functions (probably using
1779 the macro's as shortcuts).
1780
1781 */
1782
1783 EOF
1784 function_list | while do_read
1785 do
1786 if class_is_variable_p
1787 then
1788 printf " ${returntype} ${function};\n"
1789 elif class_is_function_p
1790 then
1791 printf " gdbarch_${function}_ftype *${function};\n"
1792 fi
1793 done
1794 printf "};\n"
1795
1796 # Create a new gdbarch struct
1797 cat <<EOF
1798
1799 /* Create a new \`\`struct gdbarch'' based on information provided by
1800 \`\`struct gdbarch_info''. */
1801 EOF
1802 printf "\n"
1803 cat <<EOF
1804 struct gdbarch *
1805 gdbarch_alloc (const struct gdbarch_info *info,
1806 struct gdbarch_tdep *tdep)
1807 {
1808 struct gdbarch *gdbarch;
1809
1810 /* Create an obstack for allocating all the per-architecture memory,
1811 then use that to allocate the architecture vector. */
1812 struct obstack *obstack = XNEW (struct obstack);
1813 obstack_init (obstack);
1814 gdbarch = XOBNEW (obstack, struct gdbarch);
1815 memset (gdbarch, 0, sizeof (*gdbarch));
1816 gdbarch->obstack = obstack;
1817
1818 alloc_gdbarch_data (gdbarch);
1819
1820 gdbarch->tdep = tdep;
1821 EOF
1822 printf "\n"
1823 function_list | while do_read
1824 do
1825 if class_is_info_p
1826 then
1827 printf " gdbarch->${function} = info->${function};\n"
1828 fi
1829 done
1830 printf "\n"
1831 printf " /* Force the explicit initialization of these. */\n"
1832 function_list | while do_read
1833 do
1834 if class_is_function_p || class_is_variable_p
1835 then
1836 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1837 then
1838 printf " gdbarch->${function} = ${predefault};\n"
1839 fi
1840 fi
1841 done
1842 cat <<EOF
1843 /* gdbarch_alloc() */
1844
1845 return gdbarch;
1846 }
1847 EOF
1848
1849 # Free a gdbarch struct.
1850 printf "\n"
1851 printf "\n"
1852 cat <<EOF
1853 /* Allocate extra space using the per-architecture obstack. */
1854
1855 void *
1856 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1857 {
1858 void *data = obstack_alloc (arch->obstack, size);
1859
1860 memset (data, 0, size);
1861 return data;
1862 }
1863
1864 /* See gdbarch.h. */
1865
1866 char *
1867 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1868 {
1869 return obstack_strdup (arch->obstack, string);
1870 }
1871
1872
1873 /* Free a gdbarch struct. This should never happen in normal
1874 operation --- once you've created a gdbarch, you keep it around.
1875 However, if an architecture's init function encounters an error
1876 building the structure, it may need to clean up a partially
1877 constructed gdbarch. */
1878
1879 void
1880 gdbarch_free (struct gdbarch *arch)
1881 {
1882 struct obstack *obstack;
1883
1884 gdb_assert (arch != NULL);
1885 gdb_assert (!arch->initialized_p);
1886 obstack = arch->obstack;
1887 obstack_free (obstack, 0); /* Includes the ARCH. */
1888 xfree (obstack);
1889 }
1890 EOF
1891
1892 # verify a new architecture
1893 cat <<EOF
1894
1895
1896 /* Ensure that all values in a GDBARCH are reasonable. */
1897
1898 static void
1899 verify_gdbarch (struct gdbarch *gdbarch)
1900 {
1901 string_file log;
1902
1903 /* fundamental */
1904 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1905 log.puts ("\n\tbyte-order");
1906 if (gdbarch->bfd_arch_info == NULL)
1907 log.puts ("\n\tbfd_arch_info");
1908 /* Check those that need to be defined for the given multi-arch level. */
1909 EOF
1910 function_list | while do_read
1911 do
1912 if class_is_function_p || class_is_variable_p
1913 then
1914 if [ "x${invalid_p}" = "x0" ]
1915 then
1916 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1917 elif class_is_predicate_p
1918 then
1919 printf " /* Skip verify of ${function}, has predicate. */\n"
1920 # FIXME: See do_read for potential simplification
1921 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1922 then
1923 printf " if (${invalid_p})\n"
1924 printf " gdbarch->${function} = ${postdefault};\n"
1925 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1926 then
1927 printf " if (gdbarch->${function} == ${predefault})\n"
1928 printf " gdbarch->${function} = ${postdefault};\n"
1929 elif [ -n "${postdefault}" ]
1930 then
1931 printf " if (gdbarch->${function} == 0)\n"
1932 printf " gdbarch->${function} = ${postdefault};\n"
1933 elif [ -n "${invalid_p}" ]
1934 then
1935 printf " if (${invalid_p})\n"
1936 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1937 elif [ -n "${predefault}" ]
1938 then
1939 printf " if (gdbarch->${function} == ${predefault})\n"
1940 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1941 fi
1942 fi
1943 done
1944 cat <<EOF
1945 if (!log.empty ())
1946 internal_error (__FILE__, __LINE__,
1947 _("verify_gdbarch: the following are invalid ...%s"),
1948 log.c_str ());
1949 }
1950 EOF
1951
1952 # dump the structure
1953 printf "\n"
1954 printf "\n"
1955 cat <<EOF
1956 /* Print out the details of the current architecture. */
1957
1958 void
1959 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1960 {
1961 const char *gdb_nm_file = "<not-defined>";
1962
1963 #if defined (GDB_NM_FILE)
1964 gdb_nm_file = GDB_NM_FILE;
1965 #endif
1966 fprintf_unfiltered (file,
1967 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1968 gdb_nm_file);
1969 EOF
1970 function_list | sort '-t;' -k 3 | while do_read
1971 do
1972 # First the predicate
1973 if class_is_predicate_p
1974 then
1975 printf " fprintf_unfiltered (file,\n"
1976 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1977 printf " gdbarch_${function}_p (gdbarch));\n"
1978 fi
1979 # Print the corresponding value.
1980 if class_is_function_p
1981 then
1982 printf " fprintf_unfiltered (file,\n"
1983 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1984 printf " host_address_to_string (gdbarch->${function}));\n"
1985 else
1986 # It is a variable
1987 case "${print}:${returntype}" in
1988 :CORE_ADDR )
1989 fmt="%s"
1990 print="core_addr_to_string_nz (gdbarch->${function})"
1991 ;;
1992 :* )
1993 fmt="%s"
1994 print="plongest (gdbarch->${function})"
1995 ;;
1996 * )
1997 fmt="%s"
1998 ;;
1999 esac
2000 printf " fprintf_unfiltered (file,\n"
2001 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2002 printf " ${print});\n"
2003 fi
2004 done
2005 cat <<EOF
2006 if (gdbarch->dump_tdep != NULL)
2007 gdbarch->dump_tdep (gdbarch, file);
2008 }
2009 EOF
2010
2011
2012 # GET/SET
2013 printf "\n"
2014 cat <<EOF
2015 struct gdbarch_tdep *
2016 gdbarch_tdep (struct gdbarch *gdbarch)
2017 {
2018 if (gdbarch_debug >= 2)
2019 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2020 return gdbarch->tdep;
2021 }
2022 EOF
2023 printf "\n"
2024 function_list | while do_read
2025 do
2026 if class_is_predicate_p
2027 then
2028 printf "\n"
2029 printf "int\n"
2030 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2031 printf "{\n"
2032 printf " gdb_assert (gdbarch != NULL);\n"
2033 printf " return ${predicate};\n"
2034 printf "}\n"
2035 fi
2036 if class_is_function_p
2037 then
2038 printf "\n"
2039 printf "${returntype}\n"
2040 if [ "x${formal}" = "xvoid" ]
2041 then
2042 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2043 else
2044 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2045 fi
2046 printf "{\n"
2047 printf " gdb_assert (gdbarch != NULL);\n"
2048 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2049 if class_is_predicate_p && test -n "${predefault}"
2050 then
2051 # Allow a call to a function with a predicate.
2052 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2053 fi
2054 printf " if (gdbarch_debug >= 2)\n"
2055 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2056 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2057 then
2058 if class_is_multiarch_p
2059 then
2060 params="gdbarch"
2061 else
2062 params=""
2063 fi
2064 else
2065 if class_is_multiarch_p
2066 then
2067 params="gdbarch, ${actual}"
2068 else
2069 params="${actual}"
2070 fi
2071 fi
2072 if [ "x${returntype}" = "xvoid" ]
2073 then
2074 printf " gdbarch->${function} (${params});\n"
2075 else
2076 printf " return gdbarch->${function} (${params});\n"
2077 fi
2078 printf "}\n"
2079 printf "\n"
2080 printf "void\n"
2081 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2082 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2083 printf "{\n"
2084 printf " gdbarch->${function} = ${function};\n"
2085 printf "}\n"
2086 elif class_is_variable_p
2087 then
2088 printf "\n"
2089 printf "${returntype}\n"
2090 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2091 printf "{\n"
2092 printf " gdb_assert (gdbarch != NULL);\n"
2093 if [ "x${invalid_p}" = "x0" ]
2094 then
2095 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2096 elif [ -n "${invalid_p}" ]
2097 then
2098 printf " /* Check variable is valid. */\n"
2099 printf " gdb_assert (!(${invalid_p}));\n"
2100 elif [ -n "${predefault}" ]
2101 then
2102 printf " /* Check variable changed from pre-default. */\n"
2103 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2104 fi
2105 printf " if (gdbarch_debug >= 2)\n"
2106 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2107 printf " return gdbarch->${function};\n"
2108 printf "}\n"
2109 printf "\n"
2110 printf "void\n"
2111 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2112 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2113 printf "{\n"
2114 printf " gdbarch->${function} = ${function};\n"
2115 printf "}\n"
2116 elif class_is_info_p
2117 then
2118 printf "\n"
2119 printf "${returntype}\n"
2120 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2121 printf "{\n"
2122 printf " gdb_assert (gdbarch != NULL);\n"
2123 printf " if (gdbarch_debug >= 2)\n"
2124 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2125 printf " return gdbarch->${function};\n"
2126 printf "}\n"
2127 fi
2128 done
2129
2130 # All the trailing guff
2131 cat <<EOF
2132
2133
2134 /* Keep a registry of per-architecture data-pointers required by GDB
2135 modules. */
2136
2137 struct gdbarch_data
2138 {
2139 unsigned index;
2140 int init_p;
2141 gdbarch_data_pre_init_ftype *pre_init;
2142 gdbarch_data_post_init_ftype *post_init;
2143 };
2144
2145 struct gdbarch_data_registration
2146 {
2147 struct gdbarch_data *data;
2148 struct gdbarch_data_registration *next;
2149 };
2150
2151 struct gdbarch_data_registry
2152 {
2153 unsigned nr;
2154 struct gdbarch_data_registration *registrations;
2155 };
2156
2157 struct gdbarch_data_registry gdbarch_data_registry =
2158 {
2159 0, NULL,
2160 };
2161
2162 static struct gdbarch_data *
2163 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2164 gdbarch_data_post_init_ftype *post_init)
2165 {
2166 struct gdbarch_data_registration **curr;
2167
2168 /* Append the new registration. */
2169 for (curr = &gdbarch_data_registry.registrations;
2170 (*curr) != NULL;
2171 curr = &(*curr)->next);
2172 (*curr) = XNEW (struct gdbarch_data_registration);
2173 (*curr)->next = NULL;
2174 (*curr)->data = XNEW (struct gdbarch_data);
2175 (*curr)->data->index = gdbarch_data_registry.nr++;
2176 (*curr)->data->pre_init = pre_init;
2177 (*curr)->data->post_init = post_init;
2178 (*curr)->data->init_p = 1;
2179 return (*curr)->data;
2180 }
2181
2182 struct gdbarch_data *
2183 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2184 {
2185 return gdbarch_data_register (pre_init, NULL);
2186 }
2187
2188 struct gdbarch_data *
2189 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2190 {
2191 return gdbarch_data_register (NULL, post_init);
2192 }
2193
2194 /* Create/delete the gdbarch data vector. */
2195
2196 static void
2197 alloc_gdbarch_data (struct gdbarch *gdbarch)
2198 {
2199 gdb_assert (gdbarch->data == NULL);
2200 gdbarch->nr_data = gdbarch_data_registry.nr;
2201 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2202 }
2203
2204 /* Initialize the current value of the specified per-architecture
2205 data-pointer. */
2206
2207 void
2208 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2209 struct gdbarch_data *data,
2210 void *pointer)
2211 {
2212 gdb_assert (data->index < gdbarch->nr_data);
2213 gdb_assert (gdbarch->data[data->index] == NULL);
2214 gdb_assert (data->pre_init == NULL);
2215 gdbarch->data[data->index] = pointer;
2216 }
2217
2218 /* Return the current value of the specified per-architecture
2219 data-pointer. */
2220
2221 void *
2222 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2223 {
2224 gdb_assert (data->index < gdbarch->nr_data);
2225 if (gdbarch->data[data->index] == NULL)
2226 {
2227 /* The data-pointer isn't initialized, call init() to get a
2228 value. */
2229 if (data->pre_init != NULL)
2230 /* Mid architecture creation: pass just the obstack, and not
2231 the entire architecture, as that way it isn't possible for
2232 pre-init code to refer to undefined architecture
2233 fields. */
2234 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2235 else if (gdbarch->initialized_p
2236 && data->post_init != NULL)
2237 /* Post architecture creation: pass the entire architecture
2238 (as all fields are valid), but be careful to also detect
2239 recursive references. */
2240 {
2241 gdb_assert (data->init_p);
2242 data->init_p = 0;
2243 gdbarch->data[data->index] = data->post_init (gdbarch);
2244 data->init_p = 1;
2245 }
2246 else
2247 /* The architecture initialization hasn't completed - punt -
2248 hope that the caller knows what they are doing. Once
2249 deprecated_set_gdbarch_data has been initialized, this can be
2250 changed to an internal error. */
2251 return NULL;
2252 gdb_assert (gdbarch->data[data->index] != NULL);
2253 }
2254 return gdbarch->data[data->index];
2255 }
2256
2257
2258 /* Keep a registry of the architectures known by GDB. */
2259
2260 struct gdbarch_registration
2261 {
2262 enum bfd_architecture bfd_architecture;
2263 gdbarch_init_ftype *init;
2264 gdbarch_dump_tdep_ftype *dump_tdep;
2265 struct gdbarch_list *arches;
2266 struct gdbarch_registration *next;
2267 };
2268
2269 static struct gdbarch_registration *gdbarch_registry = NULL;
2270
2271 static void
2272 append_name (const char ***buf, int *nr, const char *name)
2273 {
2274 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2275 (*buf)[*nr] = name;
2276 *nr += 1;
2277 }
2278
2279 const char **
2280 gdbarch_printable_names (void)
2281 {
2282 /* Accumulate a list of names based on the registed list of
2283 architectures. */
2284 int nr_arches = 0;
2285 const char **arches = NULL;
2286 struct gdbarch_registration *rego;
2287
2288 for (rego = gdbarch_registry;
2289 rego != NULL;
2290 rego = rego->next)
2291 {
2292 const struct bfd_arch_info *ap;
2293 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2294 if (ap == NULL)
2295 internal_error (__FILE__, __LINE__,
2296 _("gdbarch_architecture_names: multi-arch unknown"));
2297 do
2298 {
2299 append_name (&arches, &nr_arches, ap->printable_name);
2300 ap = ap->next;
2301 }
2302 while (ap != NULL);
2303 }
2304 append_name (&arches, &nr_arches, NULL);
2305 return arches;
2306 }
2307
2308
2309 void
2310 gdbarch_register (enum bfd_architecture bfd_architecture,
2311 gdbarch_init_ftype *init,
2312 gdbarch_dump_tdep_ftype *dump_tdep)
2313 {
2314 struct gdbarch_registration **curr;
2315 const struct bfd_arch_info *bfd_arch_info;
2316
2317 /* Check that BFD recognizes this architecture */
2318 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2319 if (bfd_arch_info == NULL)
2320 {
2321 internal_error (__FILE__, __LINE__,
2322 _("gdbarch: Attempt to register "
2323 "unknown architecture (%d)"),
2324 bfd_architecture);
2325 }
2326 /* Check that we haven't seen this architecture before. */
2327 for (curr = &gdbarch_registry;
2328 (*curr) != NULL;
2329 curr = &(*curr)->next)
2330 {
2331 if (bfd_architecture == (*curr)->bfd_architecture)
2332 internal_error (__FILE__, __LINE__,
2333 _("gdbarch: Duplicate registration "
2334 "of architecture (%s)"),
2335 bfd_arch_info->printable_name);
2336 }
2337 /* log it */
2338 if (gdbarch_debug)
2339 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2340 bfd_arch_info->printable_name,
2341 host_address_to_string (init));
2342 /* Append it */
2343 (*curr) = XNEW (struct gdbarch_registration);
2344 (*curr)->bfd_architecture = bfd_architecture;
2345 (*curr)->init = init;
2346 (*curr)->dump_tdep = dump_tdep;
2347 (*curr)->arches = NULL;
2348 (*curr)->next = NULL;
2349 }
2350
2351 void
2352 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2353 gdbarch_init_ftype *init)
2354 {
2355 gdbarch_register (bfd_architecture, init, NULL);
2356 }
2357
2358
2359 /* Look for an architecture using gdbarch_info. */
2360
2361 struct gdbarch_list *
2362 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2363 const struct gdbarch_info *info)
2364 {
2365 for (; arches != NULL; arches = arches->next)
2366 {
2367 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2368 continue;
2369 if (info->byte_order != arches->gdbarch->byte_order)
2370 continue;
2371 if (info->osabi != arches->gdbarch->osabi)
2372 continue;
2373 if (info->target_desc != arches->gdbarch->target_desc)
2374 continue;
2375 return arches;
2376 }
2377 return NULL;
2378 }
2379
2380
2381 /* Find an architecture that matches the specified INFO. Create a new
2382 architecture if needed. Return that new architecture. */
2383
2384 struct gdbarch *
2385 gdbarch_find_by_info (struct gdbarch_info info)
2386 {
2387 struct gdbarch *new_gdbarch;
2388 struct gdbarch_registration *rego;
2389
2390 /* Fill in missing parts of the INFO struct using a number of
2391 sources: "set ..."; INFOabfd supplied; and the global
2392 defaults. */
2393 gdbarch_info_fill (&info);
2394
2395 /* Must have found some sort of architecture. */
2396 gdb_assert (info.bfd_arch_info != NULL);
2397
2398 if (gdbarch_debug)
2399 {
2400 fprintf_unfiltered (gdb_stdlog,
2401 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2402 (info.bfd_arch_info != NULL
2403 ? info.bfd_arch_info->printable_name
2404 : "(null)"));
2405 fprintf_unfiltered (gdb_stdlog,
2406 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2407 info.byte_order,
2408 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2409 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2410 : "default"));
2411 fprintf_unfiltered (gdb_stdlog,
2412 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2413 info.osabi, gdbarch_osabi_name (info.osabi));
2414 fprintf_unfiltered (gdb_stdlog,
2415 "gdbarch_find_by_info: info.abfd %s\n",
2416 host_address_to_string (info.abfd));
2417 fprintf_unfiltered (gdb_stdlog,
2418 "gdbarch_find_by_info: info.tdep_info %s\n",
2419 host_address_to_string (info.tdep_info));
2420 }
2421
2422 /* Find the tdep code that knows about this architecture. */
2423 for (rego = gdbarch_registry;
2424 rego != NULL;
2425 rego = rego->next)
2426 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2427 break;
2428 if (rego == NULL)
2429 {
2430 if (gdbarch_debug)
2431 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2432 "No matching architecture\n");
2433 return 0;
2434 }
2435
2436 /* Ask the tdep code for an architecture that matches "info". */
2437 new_gdbarch = rego->init (info, rego->arches);
2438
2439 /* Did the tdep code like it? No. Reject the change and revert to
2440 the old architecture. */
2441 if (new_gdbarch == NULL)
2442 {
2443 if (gdbarch_debug)
2444 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2445 "Target rejected architecture\n");
2446 return NULL;
2447 }
2448
2449 /* Is this a pre-existing architecture (as determined by already
2450 being initialized)? Move it to the front of the architecture
2451 list (keeping the list sorted Most Recently Used). */
2452 if (new_gdbarch->initialized_p)
2453 {
2454 struct gdbarch_list **list;
2455 struct gdbarch_list *self;
2456 if (gdbarch_debug)
2457 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2458 "Previous architecture %s (%s) selected\n",
2459 host_address_to_string (new_gdbarch),
2460 new_gdbarch->bfd_arch_info->printable_name);
2461 /* Find the existing arch in the list. */
2462 for (list = &rego->arches;
2463 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2464 list = &(*list)->next);
2465 /* It had better be in the list of architectures. */
2466 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2467 /* Unlink SELF. */
2468 self = (*list);
2469 (*list) = self->next;
2470 /* Insert SELF at the front. */
2471 self->next = rego->arches;
2472 rego->arches = self;
2473 /* Return it. */
2474 return new_gdbarch;
2475 }
2476
2477 /* It's a new architecture. */
2478 if (gdbarch_debug)
2479 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2480 "New architecture %s (%s) selected\n",
2481 host_address_to_string (new_gdbarch),
2482 new_gdbarch->bfd_arch_info->printable_name);
2483
2484 /* Insert the new architecture into the front of the architecture
2485 list (keep the list sorted Most Recently Used). */
2486 {
2487 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2488 self->next = rego->arches;
2489 self->gdbarch = new_gdbarch;
2490 rego->arches = self;
2491 }
2492
2493 /* Check that the newly installed architecture is valid. Plug in
2494 any post init values. */
2495 new_gdbarch->dump_tdep = rego->dump_tdep;
2496 verify_gdbarch (new_gdbarch);
2497 new_gdbarch->initialized_p = 1;
2498
2499 if (gdbarch_debug)
2500 gdbarch_dump (new_gdbarch, gdb_stdlog);
2501
2502 return new_gdbarch;
2503 }
2504
2505 /* Make the specified architecture current. */
2506
2507 void
2508 set_target_gdbarch (struct gdbarch *new_gdbarch)
2509 {
2510 gdb_assert (new_gdbarch != NULL);
2511 gdb_assert (new_gdbarch->initialized_p);
2512 current_inferior ()->gdbarch = new_gdbarch;
2513 observer_notify_architecture_changed (new_gdbarch);
2514 registers_changed ();
2515 }
2516
2517 /* Return the current inferior's arch. */
2518
2519 struct gdbarch *
2520 target_gdbarch (void)
2521 {
2522 return current_inferior ()->gdbarch;
2523 }
2524
2525 extern void _initialize_gdbarch (void);
2526
2527 void
2528 _initialize_gdbarch (void)
2529 {
2530 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2531 Set architecture debugging."), _("\\
2532 Show architecture debugging."), _("\\
2533 When non-zero, architecture debugging is enabled."),
2534 NULL,
2535 show_gdbarch_debug,
2536 &setdebuglist, &showdebuglist);
2537 }
2538 EOF
2539
2540 # close things off
2541 exec 1>&2
2542 #../move-if-change new-gdbarch.c gdbarch.c
2543 compare_new gdbarch.c
This page took 0.118664 seconds and 5 git commands to generate.