Split size in regset section iterators
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2018 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363
364 # The ABI default bit-size and format for "half", "float", "double", and
365 # "long double". These bit/format pairs should eventually be combined
366 # into a single object. For the moment, just initialize them as a pair.
367 # Each format describes both the big and little endian layouts (if
368 # useful).
369
370 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
378
379 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380 # starting with C++11.
381 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
382 # One if \`wchar_t' is signed, zero if unsigned.
383 v;int;wchar_signed;;;1;-1;1
384
385 # Returns the floating-point format to be used for values of length LENGTH.
386 # NAME, if non-NULL, is the type name, which may be used to distinguish
387 # different target formats of the same length.
388 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
389
390 # For most targets, a pointer on the target and its representation as an
391 # address in GDB have the same size and "look the same". For such a
392 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
393 # / addr_bit will be set from it.
394 #
395 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
396 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397 # gdbarch_address_to_pointer as well.
398 #
399 # ptr_bit is the size of a pointer on the target
400 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
401 # addr_bit is the size of a target address as represented in gdb
402 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
403 #
404 # dwarf2_addr_size is the target address size as used in the Dwarf debug
405 # info. For .debug_frame FDEs, this is supposed to be the target address
406 # size from the associated CU header, and which is equivalent to the
407 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408 # Unfortunately there is no good way to determine this value. Therefore
409 # dwarf2_addr_size simply defaults to the target pointer size.
410 #
411 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412 # defined using the target's pointer size so far.
413 #
414 # Note that dwarf2_addr_size only needs to be redefined by a target if the
415 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416 # and if Dwarf versions < 4 need to be supported.
417 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
418 #
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v;int;char_signed;;;1;-1;1
421 #
422 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
423 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
428 #
429 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
430 # Read a register into a new struct value. If the register is wholly
431 # or partly unavailable, this should call mark_value_bytes_unavailable
432 # as appropriate. If this is defined, then pseudo_register_read will
433 # never be called.
434 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
435 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
436 #
437 v;int;num_regs;;;0;-1
438 # This macro gives the number of pseudo-registers that live in the
439 # register namespace but do not get fetched or stored on the target.
440 # These pseudo-registers may be aliases for other registers,
441 # combinations of other registers, or they may be computed by GDB.
442 v;int;num_pseudo_regs;;;0;0;;0
443
444 # Assemble agent expression bytecode to collect pseudo-register REG.
445 # Return -1 if something goes wrong, 0 otherwise.
446 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
447
448 # Assemble agent expression bytecode to push the value of pseudo-register
449 # REG on the interpreter stack.
450 # Return -1 if something goes wrong, 0 otherwise.
451 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
452
453 # Some targets/architectures can do extra processing/display of
454 # segmentation faults. E.g., Intel MPX boundary faults.
455 # Call the architecture dependent function to handle the fault.
456 # UIOUT is the output stream where the handler will place information.
457 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
458
459 # GDB's standard (or well known) register numbers. These can map onto
460 # a real register or a pseudo (computed) register or not be defined at
461 # all (-1).
462 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
463 v;int;sp_regnum;;;-1;-1;;0
464 v;int;pc_regnum;;;-1;-1;;0
465 v;int;ps_regnum;;;-1;-1;;0
466 v;int;fp0_regnum;;;0;-1;;0
467 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
468 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
470 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
471 # Convert from an sdb register number to an internal gdb register number.
472 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
473 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
474 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
475 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476 m;const char *;register_name;int regnr;regnr;;0
477
478 # Return the type of a register specified by the architecture. Only
479 # the register cache should call this function directly; others should
480 # use "register_type".
481 M;struct type *;register_type;int reg_nr;reg_nr
482
483 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
484 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
485 # deprecated_fp_regnum.
486 v;int;deprecated_fp_regnum;;;-1;-1;;0
487
488 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
489 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
490 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
491
492 # Return true if the code of FRAME is writable.
493 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
494
495 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
496 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
497 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
498 # MAP a GDB RAW register number onto a simulator register number. See
499 # also include/...-sim.h.
500 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
501 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
502 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
503
504 # Determine the address where a longjmp will land and save this address
505 # in PC. Return nonzero on success.
506 #
507 # FRAME corresponds to the longjmp frame.
508 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
509
510 #
511 v;int;believe_pcc_promotion;;;;;;;
512 #
513 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
514 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
515 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
516 # Construct a value representing the contents of register REGNUM in
517 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
518 # allocate and return a struct value with all value attributes
519 # (but not the value contents) filled in.
520 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
521 #
522 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
523 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
524 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
525
526 # Return the return-value convention that will be used by FUNCTION
527 # to return a value of type VALTYPE. FUNCTION may be NULL in which
528 # case the return convention is computed based only on VALTYPE.
529 #
530 # If READBUF is not NULL, extract the return value and save it in this buffer.
531 #
532 # If WRITEBUF is not NULL, it contains a return value which will be
533 # stored into the appropriate register. This can be used when we want
534 # to force the value returned by a function (see the "return" command
535 # for instance).
536 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
537
538 # Return true if the return value of function is stored in the first hidden
539 # parameter. In theory, this feature should be language-dependent, specified
540 # by language and its ABI, such as C++. Unfortunately, compiler may
541 # implement it to a target-dependent feature. So that we need such hook here
542 # to be aware of this in GDB.
543 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
544
545 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
546 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
547 # On some platforms, a single function may provide multiple entry points,
548 # e.g. one that is used for function-pointer calls and a different one
549 # that is used for direct function calls.
550 # In order to ensure that breakpoints set on the function will trigger
551 # no matter via which entry point the function is entered, a platform
552 # may provide the skip_entrypoint callback. It is called with IP set
553 # to the main entry point of a function (as determined by the symbol table),
554 # and should return the address of the innermost entry point, where the
555 # actual breakpoint needs to be set. Note that skip_entrypoint is used
556 # by GDB common code even when debugging optimized code, where skip_prologue
557 # is not used.
558 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
559
560 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
561 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
562
563 # Return the breakpoint kind for this target based on *PCPTR.
564 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
565
566 # Return the software breakpoint from KIND. KIND can have target
567 # specific meaning like the Z0 kind parameter.
568 # SIZE is set to the software breakpoint's length in memory.
569 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
570
571 # Return the breakpoint kind for this target based on the current
572 # processor state (e.g. the current instruction mode on ARM) and the
573 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
574 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
575
576 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
577 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
578 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
579 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
580
581 # A function can be addressed by either it's "pointer" (possibly a
582 # descriptor address) or "entry point" (first executable instruction).
583 # The method "convert_from_func_ptr_addr" converting the former to the
584 # latter. gdbarch_deprecated_function_start_offset is being used to implement
585 # a simplified subset of that functionality - the function's address
586 # corresponds to the "function pointer" and the function's start
587 # corresponds to the "function entry point" - and hence is redundant.
588
589 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
590
591 # Return the remote protocol register number associated with this
592 # register. Normally the identity mapping.
593 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
594
595 # Fetch the target specific address used to represent a load module.
596 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
597 #
598 v;CORE_ADDR;frame_args_skip;;;0;;;0
599 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
600 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
601 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602 # frame-base. Enable frame-base before frame-unwind.
603 F;int;frame_num_args;struct frame_info *frame;frame
604 #
605 M;CORE_ADDR;frame_align;CORE_ADDR address;address
606 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
607 v;int;frame_red_zone_size
608 #
609 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
610 # On some machines there are bits in addresses which are not really
611 # part of the address, but are used by the kernel, the hardware, etc.
612 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
613 # we get a "real" address such as one would find in a symbol table.
614 # This is used only for addresses of instructions, and even then I'm
615 # not sure it's used in all contexts. It exists to deal with there
616 # being a few stray bits in the PC which would mislead us, not as some
617 # sort of generic thing to handle alignment or segmentation (it's
618 # possible it should be in TARGET_READ_PC instead).
619 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
620
621 # On some machines, not all bits of an address word are significant.
622 # For example, on AArch64, the top bits of an address known as the "tag"
623 # are ignored by the kernel, the hardware, etc. and can be regarded as
624 # additional data associated with the address.
625 v;int;significant_addr_bit;;;;;;0
626
627 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
628 # indicates if the target needs software single step. An ISA method to
629 # implement it.
630 #
631 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
632 # target can single step. If not, then implement single step using breakpoints.
633 #
634 # Return a vector of addresses on which the software single step
635 # breakpoints should be inserted. NULL means software single step is
636 # not used.
637 # Multiple breakpoints may be inserted for some instructions such as
638 # conditional branch. However, each implementation must always evaluate
639 # the condition and only put the breakpoint at the branch destination if
640 # the condition is true, so that we ensure forward progress when stepping
641 # past a conditional branch to self.
642 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
643
644 # Return non-zero if the processor is executing a delay slot and a
645 # further single-step is needed before the instruction finishes.
646 M;int;single_step_through_delay;struct frame_info *frame;frame
647 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
648 # disassembler. Perhaps objdump can handle it?
649 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
650 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
651
652
653 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
654 # evaluates non-zero, this is the address where the debugger will place
655 # a step-resume breakpoint to get us past the dynamic linker.
656 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
657 # Some systems also have trampoline code for returning from shared libs.
658 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
659
660 # Return true if PC lies inside an indirect branch thunk.
661 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
662
663 # A target might have problems with watchpoints as soon as the stack
664 # frame of the current function has been destroyed. This mostly happens
665 # as the first action in a function's epilogue. stack_frame_destroyed_p()
666 # is defined to return a non-zero value if either the given addr is one
667 # instruction after the stack destroying instruction up to the trailing
668 # return instruction or if we can figure out that the stack frame has
669 # already been invalidated regardless of the value of addr. Targets
670 # which don't suffer from that problem could just let this functionality
671 # untouched.
672 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
673 # Process an ELF symbol in the minimal symbol table in a backend-specific
674 # way. Normally this hook is supposed to do nothing, however if required,
675 # then this hook can be used to apply tranformations to symbols that are
676 # considered special in some way. For example the MIPS backend uses it
677 # to interpret \`st_other' information to mark compressed code symbols so
678 # that they can be treated in the appropriate manner in the processing of
679 # the main symbol table and DWARF-2 records.
680 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
682 # Process a symbol in the main symbol table in a backend-specific way.
683 # Normally this hook is supposed to do nothing, however if required,
684 # then this hook can be used to apply tranformations to symbols that
685 # are considered special in some way. This is currently used by the
686 # MIPS backend to make sure compressed code symbols have the ISA bit
687 # set. This in turn is needed for symbol values seen in GDB to match
688 # the values used at the runtime by the program itself, for function
689 # and label references.
690 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
691 # Adjust the address retrieved from a DWARF-2 record other than a line
692 # entry in a backend-specific way. Normally this hook is supposed to
693 # return the address passed unchanged, however if that is incorrect for
694 # any reason, then this hook can be used to fix the address up in the
695 # required manner. This is currently used by the MIPS backend to make
696 # sure addresses in FDE, range records, etc. referring to compressed
697 # code have the ISA bit set, matching line information and the symbol
698 # table.
699 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
700 # Adjust the address updated by a line entry in a backend-specific way.
701 # Normally this hook is supposed to return the address passed unchanged,
702 # however in the case of inconsistencies in these records, this hook can
703 # be used to fix them up in the required manner. This is currently used
704 # by the MIPS backend to make sure all line addresses in compressed code
705 # are presented with the ISA bit set, which is not always the case. This
706 # in turn ensures breakpoint addresses are correctly matched against the
707 # stop PC.
708 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709 v;int;cannot_step_breakpoint;;;0;0;;0
710 v;int;have_nonsteppable_watchpoint;;;0;0;;0
711 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
712 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
713 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
714 # FS are passed from the generic execute_cfa_program function.
715 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
716
717 # Return the appropriate type_flags for the supplied address class.
718 # This function should return 1 if the address class was recognized and
719 # type_flags was set, zero otherwise.
720 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
721 # Is a register in a group
722 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
723 # Fetch the pointer to the ith function argument.
724 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
725
726 # Iterate over all supported register notes in a core file. For each
727 # supported register note section, the iterator must call CB and pass
728 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
729 # the supported register note sections based on the current register
730 # values. Otherwise it should enumerate all supported register note
731 # sections.
732 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
733
734 # Create core file notes
735 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
736
737 # Find core file memory regions
738 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
739
740 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
741 # core file into buffer READBUF with length LEN. Return the number of bytes read
742 # (zero indicates failure).
743 # failed, otherwise, return the red length of READBUF.
744 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
745
746 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
747 # libraries list from core file into buffer READBUF with length LEN.
748 # Return the number of bytes read (zero indicates failure).
749 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
750
751 # How the core target converts a PTID from a core file to a string.
752 M;const char *;core_pid_to_str;ptid_t ptid;ptid
753
754 # How the core target extracts the name of a thread from a core file.
755 M;const char *;core_thread_name;struct thread_info *thr;thr
756
757 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
758 # from core file into buffer READBUF with length LEN. Return the number
759 # of bytes read (zero indicates EOF, a negative value indicates failure).
760 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
761
762 # BFD target to use when generating a core file.
763 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
764
765 # If the elements of C++ vtables are in-place function descriptors rather
766 # than normal function pointers (which may point to code or a descriptor),
767 # set this to one.
768 v;int;vtable_function_descriptors;;;0;0;;0
769
770 # Set if the least significant bit of the delta is used instead of the least
771 # significant bit of the pfn for pointers to virtual member functions.
772 v;int;vbit_in_delta;;;0;0;;0
773
774 # Advance PC to next instruction in order to skip a permanent breakpoint.
775 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
776
777 # The maximum length of an instruction on this architecture in bytes.
778 V;ULONGEST;max_insn_length;;;0;0
779
780 # Copy the instruction at FROM to TO, and make any adjustments
781 # necessary to single-step it at that address.
782 #
783 # REGS holds the state the thread's registers will have before
784 # executing the copied instruction; the PC in REGS will refer to FROM,
785 # not the copy at TO. The caller should update it to point at TO later.
786 #
787 # Return a pointer to data of the architecture's choice to be passed
788 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
789 # the instruction's effects have been completely simulated, with the
790 # resulting state written back to REGS.
791 #
792 # For a general explanation of displaced stepping and how GDB uses it,
793 # see the comments in infrun.c.
794 #
795 # The TO area is only guaranteed to have space for
796 # gdbarch_max_insn_length (arch) bytes, so this function must not
797 # write more bytes than that to that area.
798 #
799 # If you do not provide this function, GDB assumes that the
800 # architecture does not support displaced stepping.
801 #
802 # If the instruction cannot execute out of line, return NULL. The
803 # core falls back to stepping past the instruction in-line instead in
804 # that case.
805 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
806
807 # Return true if GDB should use hardware single-stepping to execute
808 # the displaced instruction identified by CLOSURE. If false,
809 # GDB will simply restart execution at the displaced instruction
810 # location, and it is up to the target to ensure GDB will receive
811 # control again (e.g. by placing a software breakpoint instruction
812 # into the displaced instruction buffer).
813 #
814 # The default implementation returns false on all targets that
815 # provide a gdbarch_software_single_step routine, and true otherwise.
816 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
817
818 # Fix up the state resulting from successfully single-stepping a
819 # displaced instruction, to give the result we would have gotten from
820 # stepping the instruction in its original location.
821 #
822 # REGS is the register state resulting from single-stepping the
823 # displaced instruction.
824 #
825 # CLOSURE is the result from the matching call to
826 # gdbarch_displaced_step_copy_insn.
827 #
828 # If you provide gdbarch_displaced_step_copy_insn.but not this
829 # function, then GDB assumes that no fixup is needed after
830 # single-stepping the instruction.
831 #
832 # For a general explanation of displaced stepping and how GDB uses it,
833 # see the comments in infrun.c.
834 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
835
836 # Return the address of an appropriate place to put displaced
837 # instructions while we step over them. There need only be one such
838 # place, since we're only stepping one thread over a breakpoint at a
839 # time.
840 #
841 # For a general explanation of displaced stepping and how GDB uses it,
842 # see the comments in infrun.c.
843 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
844
845 # Relocate an instruction to execute at a different address. OLDLOC
846 # is the address in the inferior memory where the instruction to
847 # relocate is currently at. On input, TO points to the destination
848 # where we want the instruction to be copied (and possibly adjusted)
849 # to. On output, it points to one past the end of the resulting
850 # instruction(s). The effect of executing the instruction at TO shall
851 # be the same as if executing it at FROM. For example, call
852 # instructions that implicitly push the return address on the stack
853 # should be adjusted to return to the instruction after OLDLOC;
854 # relative branches, and other PC-relative instructions need the
855 # offset adjusted; etc.
856 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
857
858 # Refresh overlay mapped state for section OSECT.
859 F;void;overlay_update;struct obj_section *osect;osect
860
861 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
862
863 # Handle special encoding of static variables in stabs debug info.
864 F;const char *;static_transform_name;const char *name;name
865 # Set if the address in N_SO or N_FUN stabs may be zero.
866 v;int;sofun_address_maybe_missing;;;0;0;;0
867
868 # Parse the instruction at ADDR storing in the record execution log
869 # the registers REGCACHE and memory ranges that will be affected when
870 # the instruction executes, along with their current values.
871 # Return -1 if something goes wrong, 0 otherwise.
872 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
873
874 # Save process state after a signal.
875 # Return -1 if something goes wrong, 0 otherwise.
876 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
877
878 # Signal translation: translate inferior's signal (target's) number
879 # into GDB's representation. The implementation of this method must
880 # be host independent. IOW, don't rely on symbols of the NAT_FILE
881 # header (the nm-*.h files), the host <signal.h> header, or similar
882 # headers. This is mainly used when cross-debugging core files ---
883 # "Live" targets hide the translation behind the target interface
884 # (target_wait, target_resume, etc.).
885 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
886
887 # Signal translation: translate the GDB's internal signal number into
888 # the inferior's signal (target's) representation. The implementation
889 # of this method must be host independent. IOW, don't rely on symbols
890 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
891 # header, or similar headers.
892 # Return the target signal number if found, or -1 if the GDB internal
893 # signal number is invalid.
894 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
895
896 # Extra signal info inspection.
897 #
898 # Return a type suitable to inspect extra signal information.
899 M;struct type *;get_siginfo_type;void;
900
901 # Record architecture-specific information from the symbol table.
902 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
903
904 # Function for the 'catch syscall' feature.
905
906 # Get architecture-specific system calls information from registers.
907 M;LONGEST;get_syscall_number;thread_info *thread;thread
908
909 # The filename of the XML syscall for this architecture.
910 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
911
912 # Information about system calls from this architecture
913 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
914
915 # SystemTap related fields and functions.
916
917 # A NULL-terminated array of prefixes used to mark an integer constant
918 # on the architecture's assembly.
919 # For example, on x86 integer constants are written as:
920 #
921 # \$10 ;; integer constant 10
922 #
923 # in this case, this prefix would be the character \`\$\'.
924 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
925
926 # A NULL-terminated array of suffixes used to mark an integer constant
927 # on the architecture's assembly.
928 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
929
930 # A NULL-terminated array of prefixes used to mark a register name on
931 # the architecture's assembly.
932 # For example, on x86 the register name is written as:
933 #
934 # \%eax ;; register eax
935 #
936 # in this case, this prefix would be the character \`\%\'.
937 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
938
939 # A NULL-terminated array of suffixes used to mark a register name on
940 # the architecture's assembly.
941 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
942
943 # A NULL-terminated array of prefixes used to mark a register
944 # indirection on the architecture's assembly.
945 # For example, on x86 the register indirection is written as:
946 #
947 # \(\%eax\) ;; indirecting eax
948 #
949 # in this case, this prefix would be the charater \`\(\'.
950 #
951 # Please note that we use the indirection prefix also for register
952 # displacement, e.g., \`4\(\%eax\)\' on x86.
953 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
954
955 # A NULL-terminated array of suffixes used to mark a register
956 # indirection on the architecture's assembly.
957 # For example, on x86 the register indirection is written as:
958 #
959 # \(\%eax\) ;; indirecting eax
960 #
961 # in this case, this prefix would be the charater \`\)\'.
962 #
963 # Please note that we use the indirection suffix also for register
964 # displacement, e.g., \`4\(\%eax\)\' on x86.
965 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
966
967 # Prefix(es) used to name a register using GDB's nomenclature.
968 #
969 # For example, on PPC a register is represented by a number in the assembly
970 # language (e.g., \`10\' is the 10th general-purpose register). However,
971 # inside GDB this same register has an \`r\' appended to its name, so the 10th
972 # register would be represented as \`r10\' internally.
973 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
974
975 # Suffix used to name a register using GDB's nomenclature.
976 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
977
978 # Check if S is a single operand.
979 #
980 # Single operands can be:
981 # \- Literal integers, e.g. \`\$10\' on x86
982 # \- Register access, e.g. \`\%eax\' on x86
983 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
984 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
985 #
986 # This function should check for these patterns on the string
987 # and return 1 if some were found, or zero otherwise. Please try to match
988 # as much info as you can from the string, i.e., if you have to match
989 # something like \`\(\%\', do not match just the \`\(\'.
990 M;int;stap_is_single_operand;const char *s;s
991
992 # Function used to handle a "special case" in the parser.
993 #
994 # A "special case" is considered to be an unknown token, i.e., a token
995 # that the parser does not know how to parse. A good example of special
996 # case would be ARM's register displacement syntax:
997 #
998 # [R0, #4] ;; displacing R0 by 4
999 #
1000 # Since the parser assumes that a register displacement is of the form:
1001 #
1002 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1003 #
1004 # it means that it will not be able to recognize and parse this odd syntax.
1005 # Therefore, we should add a special case function that will handle this token.
1006 #
1007 # This function should generate the proper expression form of the expression
1008 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1009 # and so on). It should also return 1 if the parsing was successful, or zero
1010 # if the token was not recognized as a special token (in this case, returning
1011 # zero means that the special parser is deferring the parsing to the generic
1012 # parser), and should advance the buffer pointer (p->arg).
1013 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1014
1015 # DTrace related functions.
1016
1017 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1018 # NARG must be >= 0.
1019 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1020
1021 # True if the given ADDR does not contain the instruction sequence
1022 # corresponding to a disabled DTrace is-enabled probe.
1023 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1024
1025 # Enable a DTrace is-enabled probe at ADDR.
1026 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1027
1028 # Disable a DTrace is-enabled probe at ADDR.
1029 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1030
1031 # True if the list of shared libraries is one and only for all
1032 # processes, as opposed to a list of shared libraries per inferior.
1033 # This usually means that all processes, although may or may not share
1034 # an address space, will see the same set of symbols at the same
1035 # addresses.
1036 v;int;has_global_solist;;;0;0;;0
1037
1038 # On some targets, even though each inferior has its own private
1039 # address space, the debug interface takes care of making breakpoints
1040 # visible to all address spaces automatically. For such cases,
1041 # this property should be set to true.
1042 v;int;has_global_breakpoints;;;0;0;;0
1043
1044 # True if inferiors share an address space (e.g., uClinux).
1045 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1046
1047 # True if a fast tracepoint can be set at an address.
1048 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1049
1050 # Guess register state based on tracepoint location. Used for tracepoints
1051 # where no registers have been collected, but there's only one location,
1052 # allowing us to guess the PC value, and perhaps some other registers.
1053 # On entry, regcache has all registers marked as unavailable.
1054 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1055
1056 # Return the "auto" target charset.
1057 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1058 # Return the "auto" target wide charset.
1059 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1060
1061 # If non-empty, this is a file extension that will be opened in place
1062 # of the file extension reported by the shared library list.
1063 #
1064 # This is most useful for toolchains that use a post-linker tool,
1065 # where the names of the files run on the target differ in extension
1066 # compared to the names of the files GDB should load for debug info.
1067 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1068
1069 # If true, the target OS has DOS-based file system semantics. That
1070 # is, absolute paths include a drive name, and the backslash is
1071 # considered a directory separator.
1072 v;int;has_dos_based_file_system;;;0;0;;0
1073
1074 # Generate bytecodes to collect the return address in a frame.
1075 # Since the bytecodes run on the target, possibly with GDB not even
1076 # connected, the full unwinding machinery is not available, and
1077 # typically this function will issue bytecodes for one or more likely
1078 # places that the return address may be found.
1079 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1080
1081 # Implement the "info proc" command.
1082 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1083
1084 # Implement the "info proc" command for core files. Noe that there
1085 # are two "info_proc"-like methods on gdbarch -- one for core files,
1086 # one for live targets.
1087 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1088
1089 # Iterate over all objfiles in the order that makes the most sense
1090 # for the architecture to make global symbol searches.
1091 #
1092 # CB is a callback function where OBJFILE is the objfile to be searched,
1093 # and CB_DATA a pointer to user-defined data (the same data that is passed
1094 # when calling this gdbarch method). The iteration stops if this function
1095 # returns nonzero.
1096 #
1097 # CB_DATA is a pointer to some user-defined data to be passed to
1098 # the callback.
1099 #
1100 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1101 # inspected when the symbol search was requested.
1102 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1103
1104 # Ravenscar arch-dependent ops.
1105 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1106
1107 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1108 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1109
1110 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1111 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1112
1113 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1114 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1115
1116 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1117 # Return 0 if *READPTR is already at the end of the buffer.
1118 # Return -1 if there is insufficient buffer for a whole entry.
1119 # Return 1 if an entry was read into *TYPEP and *VALP.
1120 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1121
1122 # Print the description of a single auxv entry described by TYPE and VAL
1123 # to FILE.
1124 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1125
1126 # Find the address range of the current inferior's vsyscall/vDSO, and
1127 # write it to *RANGE. If the vsyscall's length can't be determined, a
1128 # range with zero length is returned. Returns true if the vsyscall is
1129 # found, false otherwise.
1130 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1131
1132 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1133 # PROT has GDB_MMAP_PROT_* bitmask format.
1134 # Throw an error if it is not possible. Returned address is always valid.
1135 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1136
1137 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1138 # Print a warning if it is not possible.
1139 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1140
1141 # Return string (caller has to use xfree for it) with options for GCC
1142 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1143 # These options are put before CU's DW_AT_producer compilation options so that
1144 # they can override it. Method may also return NULL.
1145 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1146
1147 # Return a regular expression that matches names used by this
1148 # architecture in GNU configury triplets. The result is statically
1149 # allocated and must not be freed. The default implementation simply
1150 # returns the BFD architecture name, which is correct in nearly every
1151 # case.
1152 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1153
1154 # Return the size in 8-bit bytes of an addressable memory unit on this
1155 # architecture. This corresponds to the number of 8-bit bytes associated to
1156 # each address in memory.
1157 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1158
1159 # Functions for allowing a target to modify its disassembler options.
1160 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1161 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1162 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1163
1164 # Type alignment.
1165 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1166
1167 EOF
1168 }
1169
1170 #
1171 # The .log file
1172 #
1173 exec > new-gdbarch.log
1174 function_list | while do_read
1175 do
1176 cat <<EOF
1177 ${class} ${returntype} ${function} ($formal)
1178 EOF
1179 for r in ${read}
1180 do
1181 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1182 done
1183 if class_is_predicate_p && fallback_default_p
1184 then
1185 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1186 kill $$
1187 exit 1
1188 fi
1189 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1190 then
1191 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1192 kill $$
1193 exit 1
1194 fi
1195 if class_is_multiarch_p
1196 then
1197 if class_is_predicate_p ; then :
1198 elif test "x${predefault}" = "x"
1199 then
1200 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1201 kill $$
1202 exit 1
1203 fi
1204 fi
1205 echo ""
1206 done
1207
1208 exec 1>&2
1209 compare_new gdbarch.log
1210
1211
1212 copyright ()
1213 {
1214 cat <<EOF
1215 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1216 /* vi:set ro: */
1217
1218 /* Dynamic architecture support for GDB, the GNU debugger.
1219
1220 Copyright (C) 1998-2018 Free Software Foundation, Inc.
1221
1222 This file is part of GDB.
1223
1224 This program is free software; you can redistribute it and/or modify
1225 it under the terms of the GNU General Public License as published by
1226 the Free Software Foundation; either version 3 of the License, or
1227 (at your option) any later version.
1228
1229 This program is distributed in the hope that it will be useful,
1230 but WITHOUT ANY WARRANTY; without even the implied warranty of
1231 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1232 GNU General Public License for more details.
1233
1234 You should have received a copy of the GNU General Public License
1235 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1236
1237 /* This file was created with the aid of \`\`gdbarch.sh''.
1238
1239 The Bourne shell script \`\`gdbarch.sh'' creates the files
1240 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1241 against the existing \`\`gdbarch.[hc]''. Any differences found
1242 being reported.
1243
1244 If editing this file, please also run gdbarch.sh and merge any
1245 changes into that script. Conversely, when making sweeping changes
1246 to this file, modifying gdbarch.sh and using its output may prove
1247 easier. */
1248
1249 EOF
1250 }
1251
1252 #
1253 # The .h file
1254 #
1255
1256 exec > new-gdbarch.h
1257 copyright
1258 cat <<EOF
1259 #ifndef GDBARCH_H
1260 #define GDBARCH_H
1261
1262 #include <vector>
1263 #include "frame.h"
1264 #include "dis-asm.h"
1265 #include "gdb_obstack.h"
1266
1267 struct floatformat;
1268 struct ui_file;
1269 struct value;
1270 struct objfile;
1271 struct obj_section;
1272 struct minimal_symbol;
1273 struct regcache;
1274 struct reggroup;
1275 struct regset;
1276 struct disassemble_info;
1277 struct target_ops;
1278 struct obstack;
1279 struct bp_target_info;
1280 struct target_desc;
1281 struct symbol;
1282 struct displaced_step_closure;
1283 struct syscall;
1284 struct agent_expr;
1285 struct axs_value;
1286 struct stap_parse_info;
1287 struct parser_state;
1288 struct ravenscar_arch_ops;
1289 struct mem_range;
1290 struct syscalls_info;
1291 struct thread_info;
1292 struct ui_out;
1293
1294 #include "regcache.h"
1295
1296 /* The architecture associated with the inferior through the
1297 connection to the target.
1298
1299 The architecture vector provides some information that is really a
1300 property of the inferior, accessed through a particular target:
1301 ptrace operations; the layout of certain RSP packets; the solib_ops
1302 vector; etc. To differentiate architecture accesses to
1303 per-inferior/target properties from
1304 per-thread/per-frame/per-objfile properties, accesses to
1305 per-inferior/target properties should be made through this
1306 gdbarch. */
1307
1308 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1309 extern struct gdbarch *target_gdbarch (void);
1310
1311 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1312 gdbarch method. */
1313
1314 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1315 (struct objfile *objfile, void *cb_data);
1316
1317 /* Callback type for regset section iterators. The callback usually
1318 invokes the REGSET's supply or collect method, to which it must
1319 pass a buffer - for collects this buffer will need to be created using
1320 COLLECT_SIZE, for supply the existing buffer being read from should
1321 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1322 is used for diagnostic messages. CB_DATA should have been passed
1323 unchanged through the iterator. */
1324
1325 typedef void (iterate_over_regset_sections_cb)
1326 (const char *sect_name, int supply_size, int collect_size,
1327 const struct regset *regset, const char *human_name, void *cb_data);
1328 EOF
1329
1330 # function typedef's
1331 printf "\n"
1332 printf "\n"
1333 printf "/* The following are pre-initialized by GDBARCH. */\n"
1334 function_list | while do_read
1335 do
1336 if class_is_info_p
1337 then
1338 printf "\n"
1339 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1340 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1341 fi
1342 done
1343
1344 # function typedef's
1345 printf "\n"
1346 printf "\n"
1347 printf "/* The following are initialized by the target dependent code. */\n"
1348 function_list | while do_read
1349 do
1350 if [ -n "${comment}" ]
1351 then
1352 echo "${comment}" | sed \
1353 -e '2 s,#,/*,' \
1354 -e '3,$ s,#, ,' \
1355 -e '$ s,$, */,'
1356 fi
1357
1358 if class_is_predicate_p
1359 then
1360 printf "\n"
1361 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1362 fi
1363 if class_is_variable_p
1364 then
1365 printf "\n"
1366 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1367 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1368 fi
1369 if class_is_function_p
1370 then
1371 printf "\n"
1372 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1373 then
1374 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1375 elif class_is_multiarch_p
1376 then
1377 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1378 else
1379 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1380 fi
1381 if [ "x${formal}" = "xvoid" ]
1382 then
1383 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1384 else
1385 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1386 fi
1387 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1388 fi
1389 done
1390
1391 # close it off
1392 cat <<EOF
1393
1394 /* Definition for an unknown syscall, used basically in error-cases. */
1395 #define UNKNOWN_SYSCALL (-1)
1396
1397 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1398
1399
1400 /* Mechanism for co-ordinating the selection of a specific
1401 architecture.
1402
1403 GDB targets (*-tdep.c) can register an interest in a specific
1404 architecture. Other GDB components can register a need to maintain
1405 per-architecture data.
1406
1407 The mechanisms below ensures that there is only a loose connection
1408 between the set-architecture command and the various GDB
1409 components. Each component can independently register their need
1410 to maintain architecture specific data with gdbarch.
1411
1412 Pragmatics:
1413
1414 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1415 didn't scale.
1416
1417 The more traditional mega-struct containing architecture specific
1418 data for all the various GDB components was also considered. Since
1419 GDB is built from a variable number of (fairly independent)
1420 components it was determined that the global aproach was not
1421 applicable. */
1422
1423
1424 /* Register a new architectural family with GDB.
1425
1426 Register support for the specified ARCHITECTURE with GDB. When
1427 gdbarch determines that the specified architecture has been
1428 selected, the corresponding INIT function is called.
1429
1430 --
1431
1432 The INIT function takes two parameters: INFO which contains the
1433 information available to gdbarch about the (possibly new)
1434 architecture; ARCHES which is a list of the previously created
1435 \`\`struct gdbarch'' for this architecture.
1436
1437 The INFO parameter is, as far as possible, be pre-initialized with
1438 information obtained from INFO.ABFD or the global defaults.
1439
1440 The ARCHES parameter is a linked list (sorted most recently used)
1441 of all the previously created architures for this architecture
1442 family. The (possibly NULL) ARCHES->gdbarch can used to access
1443 values from the previously selected architecture for this
1444 architecture family.
1445
1446 The INIT function shall return any of: NULL - indicating that it
1447 doesn't recognize the selected architecture; an existing \`\`struct
1448 gdbarch'' from the ARCHES list - indicating that the new
1449 architecture is just a synonym for an earlier architecture (see
1450 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1451 - that describes the selected architecture (see gdbarch_alloc()).
1452
1453 The DUMP_TDEP function shall print out all target specific values.
1454 Care should be taken to ensure that the function works in both the
1455 multi-arch and non- multi-arch cases. */
1456
1457 struct gdbarch_list
1458 {
1459 struct gdbarch *gdbarch;
1460 struct gdbarch_list *next;
1461 };
1462
1463 struct gdbarch_info
1464 {
1465 /* Use default: NULL (ZERO). */
1466 const struct bfd_arch_info *bfd_arch_info;
1467
1468 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1469 enum bfd_endian byte_order;
1470
1471 enum bfd_endian byte_order_for_code;
1472
1473 /* Use default: NULL (ZERO). */
1474 bfd *abfd;
1475
1476 /* Use default: NULL (ZERO). */
1477 union
1478 {
1479 /* Architecture-specific information. The generic form for targets
1480 that have extra requirements. */
1481 struct gdbarch_tdep_info *tdep_info;
1482
1483 /* Architecture-specific target description data. Numerous targets
1484 need only this, so give them an easy way to hold it. */
1485 struct tdesc_arch_data *tdesc_data;
1486
1487 /* SPU file system ID. This is a single integer, so using the
1488 generic form would only complicate code. Other targets may
1489 reuse this member if suitable. */
1490 int *id;
1491 };
1492
1493 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1494 enum gdb_osabi osabi;
1495
1496 /* Use default: NULL (ZERO). */
1497 const struct target_desc *target_desc;
1498 };
1499
1500 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1501 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1502
1503 /* DEPRECATED - use gdbarch_register() */
1504 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1505
1506 extern void gdbarch_register (enum bfd_architecture architecture,
1507 gdbarch_init_ftype *,
1508 gdbarch_dump_tdep_ftype *);
1509
1510
1511 /* Return a freshly allocated, NULL terminated, array of the valid
1512 architecture names. Since architectures are registered during the
1513 _initialize phase this function only returns useful information
1514 once initialization has been completed. */
1515
1516 extern const char **gdbarch_printable_names (void);
1517
1518
1519 /* Helper function. Search the list of ARCHES for a GDBARCH that
1520 matches the information provided by INFO. */
1521
1522 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1523
1524
1525 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1526 basic initialization using values obtained from the INFO and TDEP
1527 parameters. set_gdbarch_*() functions are called to complete the
1528 initialization of the object. */
1529
1530 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1531
1532
1533 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1534 It is assumed that the caller freeds the \`\`struct
1535 gdbarch_tdep''. */
1536
1537 extern void gdbarch_free (struct gdbarch *);
1538
1539 /* Get the obstack owned by ARCH. */
1540
1541 extern obstack *gdbarch_obstack (gdbarch *arch);
1542
1543 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1544 obstack. The memory is freed when the corresponding architecture
1545 is also freed. */
1546
1547 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1548 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1549
1550 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1551 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1552
1553 /* Duplicate STRING, returning an equivalent string that's allocated on the
1554 obstack associated with GDBARCH. The string is freed when the corresponding
1555 architecture is also freed. */
1556
1557 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1558
1559 /* Helper function. Force an update of the current architecture.
1560
1561 The actual architecture selected is determined by INFO, \`\`(gdb) set
1562 architecture'' et.al., the existing architecture and BFD's default
1563 architecture. INFO should be initialized to zero and then selected
1564 fields should be updated.
1565
1566 Returns non-zero if the update succeeds. */
1567
1568 extern int gdbarch_update_p (struct gdbarch_info info);
1569
1570
1571 /* Helper function. Find an architecture matching info.
1572
1573 INFO should be initialized using gdbarch_info_init, relevant fields
1574 set, and then finished using gdbarch_info_fill.
1575
1576 Returns the corresponding architecture, or NULL if no matching
1577 architecture was found. */
1578
1579 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1580
1581
1582 /* Helper function. Set the target gdbarch to "gdbarch". */
1583
1584 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1585
1586
1587 /* Register per-architecture data-pointer.
1588
1589 Reserve space for a per-architecture data-pointer. An identifier
1590 for the reserved data-pointer is returned. That identifer should
1591 be saved in a local static variable.
1592
1593 Memory for the per-architecture data shall be allocated using
1594 gdbarch_obstack_zalloc. That memory will be deleted when the
1595 corresponding architecture object is deleted.
1596
1597 When a previously created architecture is re-selected, the
1598 per-architecture data-pointer for that previous architecture is
1599 restored. INIT() is not re-called.
1600
1601 Multiple registrarants for any architecture are allowed (and
1602 strongly encouraged). */
1603
1604 struct gdbarch_data;
1605
1606 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1607 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1608 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1609 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1610 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1611 struct gdbarch_data *data,
1612 void *pointer);
1613
1614 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1615
1616
1617 /* Set the dynamic target-system-dependent parameters (architecture,
1618 byte-order, ...) using information found in the BFD. */
1619
1620 extern void set_gdbarch_from_file (bfd *);
1621
1622
1623 /* Initialize the current architecture to the "first" one we find on
1624 our list. */
1625
1626 extern void initialize_current_architecture (void);
1627
1628 /* gdbarch trace variable */
1629 extern unsigned int gdbarch_debug;
1630
1631 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1632
1633 #endif
1634 EOF
1635 exec 1>&2
1636 #../move-if-change new-gdbarch.h gdbarch.h
1637 compare_new gdbarch.h
1638
1639
1640 #
1641 # C file
1642 #
1643
1644 exec > new-gdbarch.c
1645 copyright
1646 cat <<EOF
1647
1648 #include "defs.h"
1649 #include "arch-utils.h"
1650
1651 #include "gdbcmd.h"
1652 #include "inferior.h"
1653 #include "symcat.h"
1654
1655 #include "floatformat.h"
1656 #include "reggroups.h"
1657 #include "osabi.h"
1658 #include "gdb_obstack.h"
1659 #include "observable.h"
1660 #include "regcache.h"
1661 #include "objfiles.h"
1662 #include "auxv.h"
1663
1664 /* Static function declarations */
1665
1666 static void alloc_gdbarch_data (struct gdbarch *);
1667
1668 /* Non-zero if we want to trace architecture code. */
1669
1670 #ifndef GDBARCH_DEBUG
1671 #define GDBARCH_DEBUG 0
1672 #endif
1673 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1674 static void
1675 show_gdbarch_debug (struct ui_file *file, int from_tty,
1676 struct cmd_list_element *c, const char *value)
1677 {
1678 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1679 }
1680
1681 static const char *
1682 pformat (const struct floatformat **format)
1683 {
1684 if (format == NULL)
1685 return "(null)";
1686 else
1687 /* Just print out one of them - this is only for diagnostics. */
1688 return format[0]->name;
1689 }
1690
1691 static const char *
1692 pstring (const char *string)
1693 {
1694 if (string == NULL)
1695 return "(null)";
1696 return string;
1697 }
1698
1699 static const char *
1700 pstring_ptr (char **string)
1701 {
1702 if (string == NULL || *string == NULL)
1703 return "(null)";
1704 return *string;
1705 }
1706
1707 /* Helper function to print a list of strings, represented as "const
1708 char *const *". The list is printed comma-separated. */
1709
1710 static const char *
1711 pstring_list (const char *const *list)
1712 {
1713 static char ret[100];
1714 const char *const *p;
1715 size_t offset = 0;
1716
1717 if (list == NULL)
1718 return "(null)";
1719
1720 ret[0] = '\0';
1721 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1722 {
1723 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1724 offset += 2 + s;
1725 }
1726
1727 if (offset > 0)
1728 {
1729 gdb_assert (offset - 2 < sizeof (ret));
1730 ret[offset - 2] = '\0';
1731 }
1732
1733 return ret;
1734 }
1735
1736 EOF
1737
1738 # gdbarch open the gdbarch object
1739 printf "\n"
1740 printf "/* Maintain the struct gdbarch object. */\n"
1741 printf "\n"
1742 printf "struct gdbarch\n"
1743 printf "{\n"
1744 printf " /* Has this architecture been fully initialized? */\n"
1745 printf " int initialized_p;\n"
1746 printf "\n"
1747 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1748 printf " struct obstack *obstack;\n"
1749 printf "\n"
1750 printf " /* basic architectural information. */\n"
1751 function_list | while do_read
1752 do
1753 if class_is_info_p
1754 then
1755 printf " ${returntype} ${function};\n"
1756 fi
1757 done
1758 printf "\n"
1759 printf " /* target specific vector. */\n"
1760 printf " struct gdbarch_tdep *tdep;\n"
1761 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1762 printf "\n"
1763 printf " /* per-architecture data-pointers. */\n"
1764 printf " unsigned nr_data;\n"
1765 printf " void **data;\n"
1766 printf "\n"
1767 cat <<EOF
1768 /* Multi-arch values.
1769
1770 When extending this structure you must:
1771
1772 Add the field below.
1773
1774 Declare set/get functions and define the corresponding
1775 macro in gdbarch.h.
1776
1777 gdbarch_alloc(): If zero/NULL is not a suitable default,
1778 initialize the new field.
1779
1780 verify_gdbarch(): Confirm that the target updated the field
1781 correctly.
1782
1783 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1784 field is dumped out
1785
1786 get_gdbarch(): Implement the set/get functions (probably using
1787 the macro's as shortcuts).
1788
1789 */
1790
1791 EOF
1792 function_list | while do_read
1793 do
1794 if class_is_variable_p
1795 then
1796 printf " ${returntype} ${function};\n"
1797 elif class_is_function_p
1798 then
1799 printf " gdbarch_${function}_ftype *${function};\n"
1800 fi
1801 done
1802 printf "};\n"
1803
1804 # Create a new gdbarch struct
1805 cat <<EOF
1806
1807 /* Create a new \`\`struct gdbarch'' based on information provided by
1808 \`\`struct gdbarch_info''. */
1809 EOF
1810 printf "\n"
1811 cat <<EOF
1812 struct gdbarch *
1813 gdbarch_alloc (const struct gdbarch_info *info,
1814 struct gdbarch_tdep *tdep)
1815 {
1816 struct gdbarch *gdbarch;
1817
1818 /* Create an obstack for allocating all the per-architecture memory,
1819 then use that to allocate the architecture vector. */
1820 struct obstack *obstack = XNEW (struct obstack);
1821 obstack_init (obstack);
1822 gdbarch = XOBNEW (obstack, struct gdbarch);
1823 memset (gdbarch, 0, sizeof (*gdbarch));
1824 gdbarch->obstack = obstack;
1825
1826 alloc_gdbarch_data (gdbarch);
1827
1828 gdbarch->tdep = tdep;
1829 EOF
1830 printf "\n"
1831 function_list | while do_read
1832 do
1833 if class_is_info_p
1834 then
1835 printf " gdbarch->${function} = info->${function};\n"
1836 fi
1837 done
1838 printf "\n"
1839 printf " /* Force the explicit initialization of these. */\n"
1840 function_list | while do_read
1841 do
1842 if class_is_function_p || class_is_variable_p
1843 then
1844 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1845 then
1846 printf " gdbarch->${function} = ${predefault};\n"
1847 fi
1848 fi
1849 done
1850 cat <<EOF
1851 /* gdbarch_alloc() */
1852
1853 return gdbarch;
1854 }
1855 EOF
1856
1857 # Free a gdbarch struct.
1858 printf "\n"
1859 printf "\n"
1860 cat <<EOF
1861
1862 obstack *gdbarch_obstack (gdbarch *arch)
1863 {
1864 return arch->obstack;
1865 }
1866
1867 /* See gdbarch.h. */
1868
1869 char *
1870 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1871 {
1872 return obstack_strdup (arch->obstack, string);
1873 }
1874
1875
1876 /* Free a gdbarch struct. This should never happen in normal
1877 operation --- once you've created a gdbarch, you keep it around.
1878 However, if an architecture's init function encounters an error
1879 building the structure, it may need to clean up a partially
1880 constructed gdbarch. */
1881
1882 void
1883 gdbarch_free (struct gdbarch *arch)
1884 {
1885 struct obstack *obstack;
1886
1887 gdb_assert (arch != NULL);
1888 gdb_assert (!arch->initialized_p);
1889 obstack = arch->obstack;
1890 obstack_free (obstack, 0); /* Includes the ARCH. */
1891 xfree (obstack);
1892 }
1893 EOF
1894
1895 # verify a new architecture
1896 cat <<EOF
1897
1898
1899 /* Ensure that all values in a GDBARCH are reasonable. */
1900
1901 static void
1902 verify_gdbarch (struct gdbarch *gdbarch)
1903 {
1904 string_file log;
1905
1906 /* fundamental */
1907 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1908 log.puts ("\n\tbyte-order");
1909 if (gdbarch->bfd_arch_info == NULL)
1910 log.puts ("\n\tbfd_arch_info");
1911 /* Check those that need to be defined for the given multi-arch level. */
1912 EOF
1913 function_list | while do_read
1914 do
1915 if class_is_function_p || class_is_variable_p
1916 then
1917 if [ "x${invalid_p}" = "x0" ]
1918 then
1919 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1920 elif class_is_predicate_p
1921 then
1922 printf " /* Skip verify of ${function}, has predicate. */\n"
1923 # FIXME: See do_read for potential simplification
1924 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1925 then
1926 printf " if (${invalid_p})\n"
1927 printf " gdbarch->${function} = ${postdefault};\n"
1928 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1929 then
1930 printf " if (gdbarch->${function} == ${predefault})\n"
1931 printf " gdbarch->${function} = ${postdefault};\n"
1932 elif [ -n "${postdefault}" ]
1933 then
1934 printf " if (gdbarch->${function} == 0)\n"
1935 printf " gdbarch->${function} = ${postdefault};\n"
1936 elif [ -n "${invalid_p}" ]
1937 then
1938 printf " if (${invalid_p})\n"
1939 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1940 elif [ -n "${predefault}" ]
1941 then
1942 printf " if (gdbarch->${function} == ${predefault})\n"
1943 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1944 fi
1945 fi
1946 done
1947 cat <<EOF
1948 if (!log.empty ())
1949 internal_error (__FILE__, __LINE__,
1950 _("verify_gdbarch: the following are invalid ...%s"),
1951 log.c_str ());
1952 }
1953 EOF
1954
1955 # dump the structure
1956 printf "\n"
1957 printf "\n"
1958 cat <<EOF
1959 /* Print out the details of the current architecture. */
1960
1961 void
1962 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1963 {
1964 const char *gdb_nm_file = "<not-defined>";
1965
1966 #if defined (GDB_NM_FILE)
1967 gdb_nm_file = GDB_NM_FILE;
1968 #endif
1969 fprintf_unfiltered (file,
1970 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1971 gdb_nm_file);
1972 EOF
1973 function_list | sort '-t;' -k 3 | while do_read
1974 do
1975 # First the predicate
1976 if class_is_predicate_p
1977 then
1978 printf " fprintf_unfiltered (file,\n"
1979 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1980 printf " gdbarch_${function}_p (gdbarch));\n"
1981 fi
1982 # Print the corresponding value.
1983 if class_is_function_p
1984 then
1985 printf " fprintf_unfiltered (file,\n"
1986 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1987 printf " host_address_to_string (gdbarch->${function}));\n"
1988 else
1989 # It is a variable
1990 case "${print}:${returntype}" in
1991 :CORE_ADDR )
1992 fmt="%s"
1993 print="core_addr_to_string_nz (gdbarch->${function})"
1994 ;;
1995 :* )
1996 fmt="%s"
1997 print="plongest (gdbarch->${function})"
1998 ;;
1999 * )
2000 fmt="%s"
2001 ;;
2002 esac
2003 printf " fprintf_unfiltered (file,\n"
2004 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2005 printf " ${print});\n"
2006 fi
2007 done
2008 cat <<EOF
2009 if (gdbarch->dump_tdep != NULL)
2010 gdbarch->dump_tdep (gdbarch, file);
2011 }
2012 EOF
2013
2014
2015 # GET/SET
2016 printf "\n"
2017 cat <<EOF
2018 struct gdbarch_tdep *
2019 gdbarch_tdep (struct gdbarch *gdbarch)
2020 {
2021 if (gdbarch_debug >= 2)
2022 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2023 return gdbarch->tdep;
2024 }
2025 EOF
2026 printf "\n"
2027 function_list | while do_read
2028 do
2029 if class_is_predicate_p
2030 then
2031 printf "\n"
2032 printf "int\n"
2033 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2034 printf "{\n"
2035 printf " gdb_assert (gdbarch != NULL);\n"
2036 printf " return ${predicate};\n"
2037 printf "}\n"
2038 fi
2039 if class_is_function_p
2040 then
2041 printf "\n"
2042 printf "${returntype}\n"
2043 if [ "x${formal}" = "xvoid" ]
2044 then
2045 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2046 else
2047 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2048 fi
2049 printf "{\n"
2050 printf " gdb_assert (gdbarch != NULL);\n"
2051 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2052 if class_is_predicate_p && test -n "${predefault}"
2053 then
2054 # Allow a call to a function with a predicate.
2055 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2056 fi
2057 printf " if (gdbarch_debug >= 2)\n"
2058 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2059 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2060 then
2061 if class_is_multiarch_p
2062 then
2063 params="gdbarch"
2064 else
2065 params=""
2066 fi
2067 else
2068 if class_is_multiarch_p
2069 then
2070 params="gdbarch, ${actual}"
2071 else
2072 params="${actual}"
2073 fi
2074 fi
2075 if [ "x${returntype}" = "xvoid" ]
2076 then
2077 printf " gdbarch->${function} (${params});\n"
2078 else
2079 printf " return gdbarch->${function} (${params});\n"
2080 fi
2081 printf "}\n"
2082 printf "\n"
2083 printf "void\n"
2084 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2085 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2086 printf "{\n"
2087 printf " gdbarch->${function} = ${function};\n"
2088 printf "}\n"
2089 elif class_is_variable_p
2090 then
2091 printf "\n"
2092 printf "${returntype}\n"
2093 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2094 printf "{\n"
2095 printf " gdb_assert (gdbarch != NULL);\n"
2096 if [ "x${invalid_p}" = "x0" ]
2097 then
2098 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2099 elif [ -n "${invalid_p}" ]
2100 then
2101 printf " /* Check variable is valid. */\n"
2102 printf " gdb_assert (!(${invalid_p}));\n"
2103 elif [ -n "${predefault}" ]
2104 then
2105 printf " /* Check variable changed from pre-default. */\n"
2106 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2107 fi
2108 printf " if (gdbarch_debug >= 2)\n"
2109 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2110 printf " return gdbarch->${function};\n"
2111 printf "}\n"
2112 printf "\n"
2113 printf "void\n"
2114 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2115 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2116 printf "{\n"
2117 printf " gdbarch->${function} = ${function};\n"
2118 printf "}\n"
2119 elif class_is_info_p
2120 then
2121 printf "\n"
2122 printf "${returntype}\n"
2123 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2124 printf "{\n"
2125 printf " gdb_assert (gdbarch != NULL);\n"
2126 printf " if (gdbarch_debug >= 2)\n"
2127 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2128 printf " return gdbarch->${function};\n"
2129 printf "}\n"
2130 fi
2131 done
2132
2133 # All the trailing guff
2134 cat <<EOF
2135
2136
2137 /* Keep a registry of per-architecture data-pointers required by GDB
2138 modules. */
2139
2140 struct gdbarch_data
2141 {
2142 unsigned index;
2143 int init_p;
2144 gdbarch_data_pre_init_ftype *pre_init;
2145 gdbarch_data_post_init_ftype *post_init;
2146 };
2147
2148 struct gdbarch_data_registration
2149 {
2150 struct gdbarch_data *data;
2151 struct gdbarch_data_registration *next;
2152 };
2153
2154 struct gdbarch_data_registry
2155 {
2156 unsigned nr;
2157 struct gdbarch_data_registration *registrations;
2158 };
2159
2160 struct gdbarch_data_registry gdbarch_data_registry =
2161 {
2162 0, NULL,
2163 };
2164
2165 static struct gdbarch_data *
2166 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2167 gdbarch_data_post_init_ftype *post_init)
2168 {
2169 struct gdbarch_data_registration **curr;
2170
2171 /* Append the new registration. */
2172 for (curr = &gdbarch_data_registry.registrations;
2173 (*curr) != NULL;
2174 curr = &(*curr)->next);
2175 (*curr) = XNEW (struct gdbarch_data_registration);
2176 (*curr)->next = NULL;
2177 (*curr)->data = XNEW (struct gdbarch_data);
2178 (*curr)->data->index = gdbarch_data_registry.nr++;
2179 (*curr)->data->pre_init = pre_init;
2180 (*curr)->data->post_init = post_init;
2181 (*curr)->data->init_p = 1;
2182 return (*curr)->data;
2183 }
2184
2185 struct gdbarch_data *
2186 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2187 {
2188 return gdbarch_data_register (pre_init, NULL);
2189 }
2190
2191 struct gdbarch_data *
2192 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2193 {
2194 return gdbarch_data_register (NULL, post_init);
2195 }
2196
2197 /* Create/delete the gdbarch data vector. */
2198
2199 static void
2200 alloc_gdbarch_data (struct gdbarch *gdbarch)
2201 {
2202 gdb_assert (gdbarch->data == NULL);
2203 gdbarch->nr_data = gdbarch_data_registry.nr;
2204 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2205 }
2206
2207 /* Initialize the current value of the specified per-architecture
2208 data-pointer. */
2209
2210 void
2211 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2212 struct gdbarch_data *data,
2213 void *pointer)
2214 {
2215 gdb_assert (data->index < gdbarch->nr_data);
2216 gdb_assert (gdbarch->data[data->index] == NULL);
2217 gdb_assert (data->pre_init == NULL);
2218 gdbarch->data[data->index] = pointer;
2219 }
2220
2221 /* Return the current value of the specified per-architecture
2222 data-pointer. */
2223
2224 void *
2225 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2226 {
2227 gdb_assert (data->index < gdbarch->nr_data);
2228 if (gdbarch->data[data->index] == NULL)
2229 {
2230 /* The data-pointer isn't initialized, call init() to get a
2231 value. */
2232 if (data->pre_init != NULL)
2233 /* Mid architecture creation: pass just the obstack, and not
2234 the entire architecture, as that way it isn't possible for
2235 pre-init code to refer to undefined architecture
2236 fields. */
2237 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2238 else if (gdbarch->initialized_p
2239 && data->post_init != NULL)
2240 /* Post architecture creation: pass the entire architecture
2241 (as all fields are valid), but be careful to also detect
2242 recursive references. */
2243 {
2244 gdb_assert (data->init_p);
2245 data->init_p = 0;
2246 gdbarch->data[data->index] = data->post_init (gdbarch);
2247 data->init_p = 1;
2248 }
2249 else
2250 /* The architecture initialization hasn't completed - punt -
2251 hope that the caller knows what they are doing. Once
2252 deprecated_set_gdbarch_data has been initialized, this can be
2253 changed to an internal error. */
2254 return NULL;
2255 gdb_assert (gdbarch->data[data->index] != NULL);
2256 }
2257 return gdbarch->data[data->index];
2258 }
2259
2260
2261 /* Keep a registry of the architectures known by GDB. */
2262
2263 struct gdbarch_registration
2264 {
2265 enum bfd_architecture bfd_architecture;
2266 gdbarch_init_ftype *init;
2267 gdbarch_dump_tdep_ftype *dump_tdep;
2268 struct gdbarch_list *arches;
2269 struct gdbarch_registration *next;
2270 };
2271
2272 static struct gdbarch_registration *gdbarch_registry = NULL;
2273
2274 static void
2275 append_name (const char ***buf, int *nr, const char *name)
2276 {
2277 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2278 (*buf)[*nr] = name;
2279 *nr += 1;
2280 }
2281
2282 const char **
2283 gdbarch_printable_names (void)
2284 {
2285 /* Accumulate a list of names based on the registed list of
2286 architectures. */
2287 int nr_arches = 0;
2288 const char **arches = NULL;
2289 struct gdbarch_registration *rego;
2290
2291 for (rego = gdbarch_registry;
2292 rego != NULL;
2293 rego = rego->next)
2294 {
2295 const struct bfd_arch_info *ap;
2296 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2297 if (ap == NULL)
2298 internal_error (__FILE__, __LINE__,
2299 _("gdbarch_architecture_names: multi-arch unknown"));
2300 do
2301 {
2302 append_name (&arches, &nr_arches, ap->printable_name);
2303 ap = ap->next;
2304 }
2305 while (ap != NULL);
2306 }
2307 append_name (&arches, &nr_arches, NULL);
2308 return arches;
2309 }
2310
2311
2312 void
2313 gdbarch_register (enum bfd_architecture bfd_architecture,
2314 gdbarch_init_ftype *init,
2315 gdbarch_dump_tdep_ftype *dump_tdep)
2316 {
2317 struct gdbarch_registration **curr;
2318 const struct bfd_arch_info *bfd_arch_info;
2319
2320 /* Check that BFD recognizes this architecture */
2321 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2322 if (bfd_arch_info == NULL)
2323 {
2324 internal_error (__FILE__, __LINE__,
2325 _("gdbarch: Attempt to register "
2326 "unknown architecture (%d)"),
2327 bfd_architecture);
2328 }
2329 /* Check that we haven't seen this architecture before. */
2330 for (curr = &gdbarch_registry;
2331 (*curr) != NULL;
2332 curr = &(*curr)->next)
2333 {
2334 if (bfd_architecture == (*curr)->bfd_architecture)
2335 internal_error (__FILE__, __LINE__,
2336 _("gdbarch: Duplicate registration "
2337 "of architecture (%s)"),
2338 bfd_arch_info->printable_name);
2339 }
2340 /* log it */
2341 if (gdbarch_debug)
2342 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2343 bfd_arch_info->printable_name,
2344 host_address_to_string (init));
2345 /* Append it */
2346 (*curr) = XNEW (struct gdbarch_registration);
2347 (*curr)->bfd_architecture = bfd_architecture;
2348 (*curr)->init = init;
2349 (*curr)->dump_tdep = dump_tdep;
2350 (*curr)->arches = NULL;
2351 (*curr)->next = NULL;
2352 }
2353
2354 void
2355 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2356 gdbarch_init_ftype *init)
2357 {
2358 gdbarch_register (bfd_architecture, init, NULL);
2359 }
2360
2361
2362 /* Look for an architecture using gdbarch_info. */
2363
2364 struct gdbarch_list *
2365 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2366 const struct gdbarch_info *info)
2367 {
2368 for (; arches != NULL; arches = arches->next)
2369 {
2370 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2371 continue;
2372 if (info->byte_order != arches->gdbarch->byte_order)
2373 continue;
2374 if (info->osabi != arches->gdbarch->osabi)
2375 continue;
2376 if (info->target_desc != arches->gdbarch->target_desc)
2377 continue;
2378 return arches;
2379 }
2380 return NULL;
2381 }
2382
2383
2384 /* Find an architecture that matches the specified INFO. Create a new
2385 architecture if needed. Return that new architecture. */
2386
2387 struct gdbarch *
2388 gdbarch_find_by_info (struct gdbarch_info info)
2389 {
2390 struct gdbarch *new_gdbarch;
2391 struct gdbarch_registration *rego;
2392
2393 /* Fill in missing parts of the INFO struct using a number of
2394 sources: "set ..."; INFOabfd supplied; and the global
2395 defaults. */
2396 gdbarch_info_fill (&info);
2397
2398 /* Must have found some sort of architecture. */
2399 gdb_assert (info.bfd_arch_info != NULL);
2400
2401 if (gdbarch_debug)
2402 {
2403 fprintf_unfiltered (gdb_stdlog,
2404 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2405 (info.bfd_arch_info != NULL
2406 ? info.bfd_arch_info->printable_name
2407 : "(null)"));
2408 fprintf_unfiltered (gdb_stdlog,
2409 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2410 info.byte_order,
2411 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2412 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2413 : "default"));
2414 fprintf_unfiltered (gdb_stdlog,
2415 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2416 info.osabi, gdbarch_osabi_name (info.osabi));
2417 fprintf_unfiltered (gdb_stdlog,
2418 "gdbarch_find_by_info: info.abfd %s\n",
2419 host_address_to_string (info.abfd));
2420 fprintf_unfiltered (gdb_stdlog,
2421 "gdbarch_find_by_info: info.tdep_info %s\n",
2422 host_address_to_string (info.tdep_info));
2423 }
2424
2425 /* Find the tdep code that knows about this architecture. */
2426 for (rego = gdbarch_registry;
2427 rego != NULL;
2428 rego = rego->next)
2429 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2430 break;
2431 if (rego == NULL)
2432 {
2433 if (gdbarch_debug)
2434 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2435 "No matching architecture\n");
2436 return 0;
2437 }
2438
2439 /* Ask the tdep code for an architecture that matches "info". */
2440 new_gdbarch = rego->init (info, rego->arches);
2441
2442 /* Did the tdep code like it? No. Reject the change and revert to
2443 the old architecture. */
2444 if (new_gdbarch == NULL)
2445 {
2446 if (gdbarch_debug)
2447 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2448 "Target rejected architecture\n");
2449 return NULL;
2450 }
2451
2452 /* Is this a pre-existing architecture (as determined by already
2453 being initialized)? Move it to the front of the architecture
2454 list (keeping the list sorted Most Recently Used). */
2455 if (new_gdbarch->initialized_p)
2456 {
2457 struct gdbarch_list **list;
2458 struct gdbarch_list *self;
2459 if (gdbarch_debug)
2460 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2461 "Previous architecture %s (%s) selected\n",
2462 host_address_to_string (new_gdbarch),
2463 new_gdbarch->bfd_arch_info->printable_name);
2464 /* Find the existing arch in the list. */
2465 for (list = &rego->arches;
2466 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2467 list = &(*list)->next);
2468 /* It had better be in the list of architectures. */
2469 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2470 /* Unlink SELF. */
2471 self = (*list);
2472 (*list) = self->next;
2473 /* Insert SELF at the front. */
2474 self->next = rego->arches;
2475 rego->arches = self;
2476 /* Return it. */
2477 return new_gdbarch;
2478 }
2479
2480 /* It's a new architecture. */
2481 if (gdbarch_debug)
2482 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2483 "New architecture %s (%s) selected\n",
2484 host_address_to_string (new_gdbarch),
2485 new_gdbarch->bfd_arch_info->printable_name);
2486
2487 /* Insert the new architecture into the front of the architecture
2488 list (keep the list sorted Most Recently Used). */
2489 {
2490 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2491 self->next = rego->arches;
2492 self->gdbarch = new_gdbarch;
2493 rego->arches = self;
2494 }
2495
2496 /* Check that the newly installed architecture is valid. Plug in
2497 any post init values. */
2498 new_gdbarch->dump_tdep = rego->dump_tdep;
2499 verify_gdbarch (new_gdbarch);
2500 new_gdbarch->initialized_p = 1;
2501
2502 if (gdbarch_debug)
2503 gdbarch_dump (new_gdbarch, gdb_stdlog);
2504
2505 return new_gdbarch;
2506 }
2507
2508 /* Make the specified architecture current. */
2509
2510 void
2511 set_target_gdbarch (struct gdbarch *new_gdbarch)
2512 {
2513 gdb_assert (new_gdbarch != NULL);
2514 gdb_assert (new_gdbarch->initialized_p);
2515 current_inferior ()->gdbarch = new_gdbarch;
2516 gdb::observers::architecture_changed.notify (new_gdbarch);
2517 registers_changed ();
2518 }
2519
2520 /* Return the current inferior's arch. */
2521
2522 struct gdbarch *
2523 target_gdbarch (void)
2524 {
2525 return current_inferior ()->gdbarch;
2526 }
2527
2528 void
2529 _initialize_gdbarch (void)
2530 {
2531 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2532 Set architecture debugging."), _("\\
2533 Show architecture debugging."), _("\\
2534 When non-zero, architecture debugging is enabled."),
2535 NULL,
2536 show_gdbarch_debug,
2537 &setdebuglist, &showdebuglist);
2538 }
2539 EOF
2540
2541 # close things off
2542 exec 1>&2
2543 #../move-if-change new-gdbarch.c gdbarch.c
2544 compare_new gdbarch.c
This page took 0.119257 seconds and 5 git commands to generate.