New gdbarch methods breakpoint_kind_from_pc and sw_breakpoint_from_kind
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # Returns the floating-point format to be used for values of length LENGTH.
387 # NAME, if non-NULL, is the type name, which may be used to distinguish
388 # different target formats of the same length.
389 m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
390
391 # For most targets, a pointer on the target and its representation as an
392 # address in GDB have the same size and "look the same". For such a
393 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
394 # / addr_bit will be set from it.
395 #
396 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
397 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398 # gdbarch_address_to_pointer as well.
399 #
400 # ptr_bit is the size of a pointer on the target
401 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
402 # addr_bit is the size of a target address as represented in gdb
403 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
404 #
405 # dwarf2_addr_size is the target address size as used in the Dwarf debug
406 # info. For .debug_frame FDEs, this is supposed to be the target address
407 # size from the associated CU header, and which is equivalent to the
408 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409 # Unfortunately there is no good way to determine this value. Therefore
410 # dwarf2_addr_size simply defaults to the target pointer size.
411 #
412 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413 # defined using the target's pointer size so far.
414 #
415 # Note that dwarf2_addr_size only needs to be redefined by a target if the
416 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417 # and if Dwarf versions < 4 need to be supported.
418 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
419 #
420 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
421 v:int:char_signed:::1:-1:1
422 #
423 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
427 # serious shakedown.
428 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
429 #
430 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
431 # Read a register into a new struct value. If the register is wholly
432 # or partly unavailable, this should call mark_value_bytes_unavailable
433 # as appropriate. If this is defined, then pseudo_register_read will
434 # never be called.
435 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
436 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
437 #
438 v:int:num_regs:::0:-1
439 # This macro gives the number of pseudo-registers that live in the
440 # register namespace but do not get fetched or stored on the target.
441 # These pseudo-registers may be aliases for other registers,
442 # combinations of other registers, or they may be computed by GDB.
443 v:int:num_pseudo_regs:::0:0::0
444
445 # Assemble agent expression bytecode to collect pseudo-register REG.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
448
449 # Assemble agent expression bytecode to push the value of pseudo-register
450 # REG on the interpreter stack.
451 # Return -1 if something goes wrong, 0 otherwise.
452 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
453
454 # Some targets/architectures can do extra processing/display of
455 # segmentation faults. E.g., Intel MPX boundary faults.
456 # Call the architecture dependent function to handle the fault.
457 # UIOUT is the output stream where the handler will place information.
458 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
459
460 # GDB's standard (or well known) register numbers. These can map onto
461 # a real register or a pseudo (computed) register or not be defined at
462 # all (-1).
463 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
464 v:int:sp_regnum:::-1:-1::0
465 v:int:pc_regnum:::-1:-1::0
466 v:int:ps_regnum:::-1:-1::0
467 v:int:fp0_regnum:::0:-1::0
468 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
469 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
470 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
471 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
472 # Convert from an sdb register number to an internal gdb register number.
473 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
474 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
475 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
476 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
477 m:const char *:register_name:int regnr:regnr::0
478
479 # Return the type of a register specified by the architecture. Only
480 # the register cache should call this function directly; others should
481 # use "register_type".
482 M:struct type *:register_type:int reg_nr:reg_nr
483
484 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
486 # deprecated_fp_regnum.
487 v:int:deprecated_fp_regnum:::-1:-1::0
488
489 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490 v:int:call_dummy_location::::AT_ENTRY_POINT::0
491 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
492
493 # Return true if the code of FRAME is writable.
494 m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
495
496 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
497 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
498 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
499 # MAP a GDB RAW register number onto a simulator register number. See
500 # also include/...-sim.h.
501 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
502 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
504
505 # Determine the address where a longjmp will land and save this address
506 # in PC. Return nonzero on success.
507 #
508 # FRAME corresponds to the longjmp frame.
509 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
510
511 #
512 v:int:believe_pcc_promotion:::::::
513 #
514 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
515 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
516 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
517 # Construct a value representing the contents of register REGNUM in
518 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
519 # allocate and return a struct value with all value attributes
520 # (but not the value contents) filled in.
521 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
522 #
523 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
525 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
526
527 # Return the return-value convention that will be used by FUNCTION
528 # to return a value of type VALTYPE. FUNCTION may be NULL in which
529 # case the return convention is computed based only on VALTYPE.
530 #
531 # If READBUF is not NULL, extract the return value and save it in this buffer.
532 #
533 # If WRITEBUF is not NULL, it contains a return value which will be
534 # stored into the appropriate register. This can be used when we want
535 # to force the value returned by a function (see the "return" command
536 # for instance).
537 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
538
539 # Return true if the return value of function is stored in the first hidden
540 # parameter. In theory, this feature should be language-dependent, specified
541 # by language and its ABI, such as C++. Unfortunately, compiler may
542 # implement it to a target-dependent feature. So that we need such hook here
543 # to be aware of this in GDB.
544 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
545
546 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
547 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
548 # On some platforms, a single function may provide multiple entry points,
549 # e.g. one that is used for function-pointer calls and a different one
550 # that is used for direct function calls.
551 # In order to ensure that breakpoints set on the function will trigger
552 # no matter via which entry point the function is entered, a platform
553 # may provide the skip_entrypoint callback. It is called with IP set
554 # to the main entry point of a function (as determined by the symbol table),
555 # and should return the address of the innermost entry point, where the
556 # actual breakpoint needs to be set. Note that skip_entrypoint is used
557 # by GDB common code even when debugging optimized code, where skip_prologue
558 # is not used.
559 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
560
561 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
562 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
563
564 # Return the breakpoint kind for this target based on *PCPTR.
565 m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:
566
567 # Return the software breakpoint from KIND. KIND can have target
568 # specific meaning like the Z0 kind parameter.
569 # SIZE is set to the software breakpoint's length in memory.
570 m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0
571
572 # Return the adjusted address and kind to use for Z0/Z1 packets.
573 # KIND is usually the memory length of the breakpoint, but may have a
574 # different target-specific meaning.
575 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
576 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
577 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
578 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
579 v:CORE_ADDR:decr_pc_after_break:::0:::0
580
581 # A function can be addressed by either it's "pointer" (possibly a
582 # descriptor address) or "entry point" (first executable instruction).
583 # The method "convert_from_func_ptr_addr" converting the former to the
584 # latter. gdbarch_deprecated_function_start_offset is being used to implement
585 # a simplified subset of that functionality - the function's address
586 # corresponds to the "function pointer" and the function's start
587 # corresponds to the "function entry point" - and hence is redundant.
588
589 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
590
591 # Return the remote protocol register number associated with this
592 # register. Normally the identity mapping.
593 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
594
595 # Fetch the target specific address used to represent a load module.
596 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
597 #
598 v:CORE_ADDR:frame_args_skip:::0:::0
599 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
600 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
601 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602 # frame-base. Enable frame-base before frame-unwind.
603 F:int:frame_num_args:struct frame_info *frame:frame
604 #
605 M:CORE_ADDR:frame_align:CORE_ADDR address:address
606 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
607 v:int:frame_red_zone_size
608 #
609 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
610 # On some machines there are bits in addresses which are not really
611 # part of the address, but are used by the kernel, the hardware, etc.
612 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
613 # we get a "real" address such as one would find in a symbol table.
614 # This is used only for addresses of instructions, and even then I'm
615 # not sure it's used in all contexts. It exists to deal with there
616 # being a few stray bits in the PC which would mislead us, not as some
617 # sort of generic thing to handle alignment or segmentation (it's
618 # possible it should be in TARGET_READ_PC instead).
619 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
620
621 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
622 # indicates if the target needs software single step. An ISA method to
623 # implement it.
624 #
625 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
626 # target can single step. If not, then implement single step using breakpoints.
627 #
628 # A return value of 1 means that the software_single_step breakpoints
629 # were inserted; 0 means they were not. Multiple breakpoints may be
630 # inserted for some instructions such as conditional branch. However,
631 # each implementation must always evaluate the condition and only put
632 # the breakpoint at the branch destination if the condition is true, so
633 # that we ensure forward progress when stepping past a conditional
634 # branch to self.
635 F:int:software_single_step:struct frame_info *frame:frame
636
637 # Return non-zero if the processor is executing a delay slot and a
638 # further single-step is needed before the instruction finishes.
639 M:int:single_step_through_delay:struct frame_info *frame:frame
640 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
641 # disassembler. Perhaps objdump can handle it?
642 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
643 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
644
645
646 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
647 # evaluates non-zero, this is the address where the debugger will place
648 # a step-resume breakpoint to get us past the dynamic linker.
649 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
650 # Some systems also have trampoline code for returning from shared libs.
651 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
652
653 # A target might have problems with watchpoints as soon as the stack
654 # frame of the current function has been destroyed. This mostly happens
655 # as the first action in a function's epilogue. stack_frame_destroyed_p()
656 # is defined to return a non-zero value if either the given addr is one
657 # instruction after the stack destroying instruction up to the trailing
658 # return instruction or if we can figure out that the stack frame has
659 # already been invalidated regardless of the value of addr. Targets
660 # which don't suffer from that problem could just let this functionality
661 # untouched.
662 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
663 # Process an ELF symbol in the minimal symbol table in a backend-specific
664 # way. Normally this hook is supposed to do nothing, however if required,
665 # then this hook can be used to apply tranformations to symbols that are
666 # considered special in some way. For example the MIPS backend uses it
667 # to interpret \`st_other' information to mark compressed code symbols so
668 # that they can be treated in the appropriate manner in the processing of
669 # the main symbol table and DWARF-2 records.
670 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
671 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
672 # Process a symbol in the main symbol table in a backend-specific way.
673 # Normally this hook is supposed to do nothing, however if required,
674 # then this hook can be used to apply tranformations to symbols that
675 # are considered special in some way. This is currently used by the
676 # MIPS backend to make sure compressed code symbols have the ISA bit
677 # set. This in turn is needed for symbol values seen in GDB to match
678 # the values used at the runtime by the program itself, for function
679 # and label references.
680 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
681 # Adjust the address retrieved from a DWARF-2 record other than a line
682 # entry in a backend-specific way. Normally this hook is supposed to
683 # return the address passed unchanged, however if that is incorrect for
684 # any reason, then this hook can be used to fix the address up in the
685 # required manner. This is currently used by the MIPS backend to make
686 # sure addresses in FDE, range records, etc. referring to compressed
687 # code have the ISA bit set, matching line information and the symbol
688 # table.
689 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
690 # Adjust the address updated by a line entry in a backend-specific way.
691 # Normally this hook is supposed to return the address passed unchanged,
692 # however in the case of inconsistencies in these records, this hook can
693 # be used to fix them up in the required manner. This is currently used
694 # by the MIPS backend to make sure all line addresses in compressed code
695 # are presented with the ISA bit set, which is not always the case. This
696 # in turn ensures breakpoint addresses are correctly matched against the
697 # stop PC.
698 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
699 v:int:cannot_step_breakpoint:::0:0::0
700 v:int:have_nonsteppable_watchpoint:::0:0::0
701 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
702 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
703
704 # Return the appropriate type_flags for the supplied address class.
705 # This function should return 1 if the address class was recognized and
706 # type_flags was set, zero otherwise.
707 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
708 # Is a register in a group
709 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
710 # Fetch the pointer to the ith function argument.
711 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
712
713 # Iterate over all supported register notes in a core file. For each
714 # supported register note section, the iterator must call CB and pass
715 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
716 # the supported register note sections based on the current register
717 # values. Otherwise it should enumerate all supported register note
718 # sections.
719 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
720
721 # Create core file notes
722 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
723
724 # The elfcore writer hook to use to write Linux prpsinfo notes to core
725 # files. Most Linux architectures use the same prpsinfo32 or
726 # prpsinfo64 layouts, and so won't need to provide this hook, as we
727 # call the Linux generic routines in bfd to write prpsinfo notes by
728 # default.
729 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
730
731 # Find core file memory regions
732 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
733
734 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
735 # core file into buffer READBUF with length LEN. Return the number of bytes read
736 # (zero indicates failure).
737 # failed, otherwise, return the red length of READBUF.
738 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
739
740 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
741 # libraries list from core file into buffer READBUF with length LEN.
742 # Return the number of bytes read (zero indicates failure).
743 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
744
745 # How the core target converts a PTID from a core file to a string.
746 M:char *:core_pid_to_str:ptid_t ptid:ptid
747
748 # How the core target extracts the name of a thread from a core file.
749 M:const char *:core_thread_name:struct thread_info *thr:thr
750
751 # BFD target to use when generating a core file.
752 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
753
754 # If the elements of C++ vtables are in-place function descriptors rather
755 # than normal function pointers (which may point to code or a descriptor),
756 # set this to one.
757 v:int:vtable_function_descriptors:::0:0::0
758
759 # Set if the least significant bit of the delta is used instead of the least
760 # significant bit of the pfn for pointers to virtual member functions.
761 v:int:vbit_in_delta:::0:0::0
762
763 # Advance PC to next instruction in order to skip a permanent breakpoint.
764 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
765
766 # The maximum length of an instruction on this architecture in bytes.
767 V:ULONGEST:max_insn_length:::0:0
768
769 # Copy the instruction at FROM to TO, and make any adjustments
770 # necessary to single-step it at that address.
771 #
772 # REGS holds the state the thread's registers will have before
773 # executing the copied instruction; the PC in REGS will refer to FROM,
774 # not the copy at TO. The caller should update it to point at TO later.
775 #
776 # Return a pointer to data of the architecture's choice to be passed
777 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
778 # the instruction's effects have been completely simulated, with the
779 # resulting state written back to REGS.
780 #
781 # For a general explanation of displaced stepping and how GDB uses it,
782 # see the comments in infrun.c.
783 #
784 # The TO area is only guaranteed to have space for
785 # gdbarch_max_insn_length (arch) bytes, so this function must not
786 # write more bytes than that to that area.
787 #
788 # If you do not provide this function, GDB assumes that the
789 # architecture does not support displaced stepping.
790 #
791 # If your architecture doesn't need to adjust instructions before
792 # single-stepping them, consider using simple_displaced_step_copy_insn
793 # here.
794 #
795 # If the instruction cannot execute out of line, return NULL. The
796 # core falls back to stepping past the instruction in-line instead in
797 # that case.
798 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
799
800 # Return true if GDB should use hardware single-stepping to execute
801 # the displaced instruction identified by CLOSURE. If false,
802 # GDB will simply restart execution at the displaced instruction
803 # location, and it is up to the target to ensure GDB will receive
804 # control again (e.g. by placing a software breakpoint instruction
805 # into the displaced instruction buffer).
806 #
807 # The default implementation returns false on all targets that
808 # provide a gdbarch_software_single_step routine, and true otherwise.
809 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
810
811 # Fix up the state resulting from successfully single-stepping a
812 # displaced instruction, to give the result we would have gotten from
813 # stepping the instruction in its original location.
814 #
815 # REGS is the register state resulting from single-stepping the
816 # displaced instruction.
817 #
818 # CLOSURE is the result from the matching call to
819 # gdbarch_displaced_step_copy_insn.
820 #
821 # If you provide gdbarch_displaced_step_copy_insn.but not this
822 # function, then GDB assumes that no fixup is needed after
823 # single-stepping the instruction.
824 #
825 # For a general explanation of displaced stepping and how GDB uses it,
826 # see the comments in infrun.c.
827 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
828
829 # Free a closure returned by gdbarch_displaced_step_copy_insn.
830 #
831 # If you provide gdbarch_displaced_step_copy_insn, you must provide
832 # this function as well.
833 #
834 # If your architecture uses closures that don't need to be freed, then
835 # you can use simple_displaced_step_free_closure here.
836 #
837 # For a general explanation of displaced stepping and how GDB uses it,
838 # see the comments in infrun.c.
839 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
840
841 # Return the address of an appropriate place to put displaced
842 # instructions while we step over them. There need only be one such
843 # place, since we're only stepping one thread over a breakpoint at a
844 # time.
845 #
846 # For a general explanation of displaced stepping and how GDB uses it,
847 # see the comments in infrun.c.
848 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
849
850 # Relocate an instruction to execute at a different address. OLDLOC
851 # is the address in the inferior memory where the instruction to
852 # relocate is currently at. On input, TO points to the destination
853 # where we want the instruction to be copied (and possibly adjusted)
854 # to. On output, it points to one past the end of the resulting
855 # instruction(s). The effect of executing the instruction at TO shall
856 # be the same as if executing it at FROM. For example, call
857 # instructions that implicitly push the return address on the stack
858 # should be adjusted to return to the instruction after OLDLOC;
859 # relative branches, and other PC-relative instructions need the
860 # offset adjusted; etc.
861 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
862
863 # Refresh overlay mapped state for section OSECT.
864 F:void:overlay_update:struct obj_section *osect:osect
865
866 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
867
868 # Handle special encoding of static variables in stabs debug info.
869 F:const char *:static_transform_name:const char *name:name
870 # Set if the address in N_SO or N_FUN stabs may be zero.
871 v:int:sofun_address_maybe_missing:::0:0::0
872
873 # Parse the instruction at ADDR storing in the record execution log
874 # the registers REGCACHE and memory ranges that will be affected when
875 # the instruction executes, along with their current values.
876 # Return -1 if something goes wrong, 0 otherwise.
877 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
878
879 # Save process state after a signal.
880 # Return -1 if something goes wrong, 0 otherwise.
881 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
882
883 # Signal translation: translate inferior's signal (target's) number
884 # into GDB's representation. The implementation of this method must
885 # be host independent. IOW, don't rely on symbols of the NAT_FILE
886 # header (the nm-*.h files), the host <signal.h> header, or similar
887 # headers. This is mainly used when cross-debugging core files ---
888 # "Live" targets hide the translation behind the target interface
889 # (target_wait, target_resume, etc.).
890 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
891
892 # Signal translation: translate the GDB's internal signal number into
893 # the inferior's signal (target's) representation. The implementation
894 # of this method must be host independent. IOW, don't rely on symbols
895 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
896 # header, or similar headers.
897 # Return the target signal number if found, or -1 if the GDB internal
898 # signal number is invalid.
899 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
900
901 # Extra signal info inspection.
902 #
903 # Return a type suitable to inspect extra signal information.
904 M:struct type *:get_siginfo_type:void:
905
906 # Record architecture-specific information from the symbol table.
907 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
908
909 # Function for the 'catch syscall' feature.
910
911 # Get architecture-specific system calls information from registers.
912 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
913
914 # The filename of the XML syscall for this architecture.
915 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
916
917 # Information about system calls from this architecture
918 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
919
920 # SystemTap related fields and functions.
921
922 # A NULL-terminated array of prefixes used to mark an integer constant
923 # on the architecture's assembly.
924 # For example, on x86 integer constants are written as:
925 #
926 # \$10 ;; integer constant 10
927 #
928 # in this case, this prefix would be the character \`\$\'.
929 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
930
931 # A NULL-terminated array of suffixes used to mark an integer constant
932 # on the architecture's assembly.
933 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
934
935 # A NULL-terminated array of prefixes used to mark a register name on
936 # the architecture's assembly.
937 # For example, on x86 the register name is written as:
938 #
939 # \%eax ;; register eax
940 #
941 # in this case, this prefix would be the character \`\%\'.
942 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
943
944 # A NULL-terminated array of suffixes used to mark a register name on
945 # the architecture's assembly.
946 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
947
948 # A NULL-terminated array of prefixes used to mark a register
949 # indirection on the architecture's assembly.
950 # For example, on x86 the register indirection is written as:
951 #
952 # \(\%eax\) ;; indirecting eax
953 #
954 # in this case, this prefix would be the charater \`\(\'.
955 #
956 # Please note that we use the indirection prefix also for register
957 # displacement, e.g., \`4\(\%eax\)\' on x86.
958 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
959
960 # A NULL-terminated array of suffixes used to mark a register
961 # indirection on the architecture's assembly.
962 # For example, on x86 the register indirection is written as:
963 #
964 # \(\%eax\) ;; indirecting eax
965 #
966 # in this case, this prefix would be the charater \`\)\'.
967 #
968 # Please note that we use the indirection suffix also for register
969 # displacement, e.g., \`4\(\%eax\)\' on x86.
970 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
971
972 # Prefix(es) used to name a register using GDB's nomenclature.
973 #
974 # For example, on PPC a register is represented by a number in the assembly
975 # language (e.g., \`10\' is the 10th general-purpose register). However,
976 # inside GDB this same register has an \`r\' appended to its name, so the 10th
977 # register would be represented as \`r10\' internally.
978 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
979
980 # Suffix used to name a register using GDB's nomenclature.
981 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
982
983 # Check if S is a single operand.
984 #
985 # Single operands can be:
986 # \- Literal integers, e.g. \`\$10\' on x86
987 # \- Register access, e.g. \`\%eax\' on x86
988 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
989 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
990 #
991 # This function should check for these patterns on the string
992 # and return 1 if some were found, or zero otherwise. Please try to match
993 # as much info as you can from the string, i.e., if you have to match
994 # something like \`\(\%\', do not match just the \`\(\'.
995 M:int:stap_is_single_operand:const char *s:s
996
997 # Function used to handle a "special case" in the parser.
998 #
999 # A "special case" is considered to be an unknown token, i.e., a token
1000 # that the parser does not know how to parse. A good example of special
1001 # case would be ARM's register displacement syntax:
1002 #
1003 # [R0, #4] ;; displacing R0 by 4
1004 #
1005 # Since the parser assumes that a register displacement is of the form:
1006 #
1007 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1008 #
1009 # it means that it will not be able to recognize and parse this odd syntax.
1010 # Therefore, we should add a special case function that will handle this token.
1011 #
1012 # This function should generate the proper expression form of the expression
1013 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1014 # and so on). It should also return 1 if the parsing was successful, or zero
1015 # if the token was not recognized as a special token (in this case, returning
1016 # zero means that the special parser is deferring the parsing to the generic
1017 # parser), and should advance the buffer pointer (p->arg).
1018 M:int:stap_parse_special_token:struct stap_parse_info *p:p
1019
1020 # DTrace related functions.
1021
1022 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1023 # NARG must be >= 0.
1024 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1025
1026 # True if the given ADDR does not contain the instruction sequence
1027 # corresponding to a disabled DTrace is-enabled probe.
1028 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1029
1030 # Enable a DTrace is-enabled probe at ADDR.
1031 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1032
1033 # Disable a DTrace is-enabled probe at ADDR.
1034 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1035
1036 # True if the list of shared libraries is one and only for all
1037 # processes, as opposed to a list of shared libraries per inferior.
1038 # This usually means that all processes, although may or may not share
1039 # an address space, will see the same set of symbols at the same
1040 # addresses.
1041 v:int:has_global_solist:::0:0::0
1042
1043 # On some targets, even though each inferior has its own private
1044 # address space, the debug interface takes care of making breakpoints
1045 # visible to all address spaces automatically. For such cases,
1046 # this property should be set to true.
1047 v:int:has_global_breakpoints:::0:0::0
1048
1049 # True if inferiors share an address space (e.g., uClinux).
1050 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1051
1052 # True if a fast tracepoint can be set at an address.
1053 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1054
1055 # Guess register state based on tracepoint location. Used for tracepoints
1056 # where no registers have been collected, but there's only one location,
1057 # allowing us to guess the PC value, and perhaps some other registers.
1058 # On entry, regcache has all registers marked as unavailable.
1059 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1060
1061 # Return the "auto" target charset.
1062 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1063 # Return the "auto" target wide charset.
1064 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1065
1066 # If non-empty, this is a file extension that will be opened in place
1067 # of the file extension reported by the shared library list.
1068 #
1069 # This is most useful for toolchains that use a post-linker tool,
1070 # where the names of the files run on the target differ in extension
1071 # compared to the names of the files GDB should load for debug info.
1072 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1073
1074 # If true, the target OS has DOS-based file system semantics. That
1075 # is, absolute paths include a drive name, and the backslash is
1076 # considered a directory separator.
1077 v:int:has_dos_based_file_system:::0:0::0
1078
1079 # Generate bytecodes to collect the return address in a frame.
1080 # Since the bytecodes run on the target, possibly with GDB not even
1081 # connected, the full unwinding machinery is not available, and
1082 # typically this function will issue bytecodes for one or more likely
1083 # places that the return address may be found.
1084 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1085
1086 # Implement the "info proc" command.
1087 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1088
1089 # Implement the "info proc" command for core files. Noe that there
1090 # are two "info_proc"-like methods on gdbarch -- one for core files,
1091 # one for live targets.
1092 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1093
1094 # Iterate over all objfiles in the order that makes the most sense
1095 # for the architecture to make global symbol searches.
1096 #
1097 # CB is a callback function where OBJFILE is the objfile to be searched,
1098 # and CB_DATA a pointer to user-defined data (the same data that is passed
1099 # when calling this gdbarch method). The iteration stops if this function
1100 # returns nonzero.
1101 #
1102 # CB_DATA is a pointer to some user-defined data to be passed to
1103 # the callback.
1104 #
1105 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1106 # inspected when the symbol search was requested.
1107 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1108
1109 # Ravenscar arch-dependent ops.
1110 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1111
1112 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1113 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1114
1115 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1116 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1117
1118 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1119 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1120
1121 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1122 # Return 0 if *READPTR is already at the end of the buffer.
1123 # Return -1 if there is insufficient buffer for a whole entry.
1124 # Return 1 if an entry was read into *TYPEP and *VALP.
1125 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1126
1127 # Print the description of a single auxv entry described by TYPE and VAL
1128 # to FILE.
1129 m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1130
1131 # Find the address range of the current inferior's vsyscall/vDSO, and
1132 # write it to *RANGE. If the vsyscall's length can't be determined, a
1133 # range with zero length is returned. Returns true if the vsyscall is
1134 # found, false otherwise.
1135 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1136
1137 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1138 # PROT has GDB_MMAP_PROT_* bitmask format.
1139 # Throw an error if it is not possible. Returned address is always valid.
1140 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1141
1142 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1143 # Print a warning if it is not possible.
1144 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1145
1146 # Return string (caller has to use xfree for it) with options for GCC
1147 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1148 # These options are put before CU's DW_AT_producer compilation options so that
1149 # they can override it. Method may also return NULL.
1150 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1151
1152 # Return a regular expression that matches names used by this
1153 # architecture in GNU configury triplets. The result is statically
1154 # allocated and must not be freed. The default implementation simply
1155 # returns the BFD architecture name, which is correct in nearly every
1156 # case.
1157 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1158
1159 # Return the size in 8-bit bytes of an addressable memory unit on this
1160 # architecture. This corresponds to the number of 8-bit bytes associated to
1161 # each address in memory.
1162 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1163
1164 EOF
1165 }
1166
1167 #
1168 # The .log file
1169 #
1170 exec > new-gdbarch.log
1171 function_list | while do_read
1172 do
1173 cat <<EOF
1174 ${class} ${returntype} ${function} ($formal)
1175 EOF
1176 for r in ${read}
1177 do
1178 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1179 done
1180 if class_is_predicate_p && fallback_default_p
1181 then
1182 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1183 kill $$
1184 exit 1
1185 fi
1186 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1187 then
1188 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1189 kill $$
1190 exit 1
1191 fi
1192 if class_is_multiarch_p
1193 then
1194 if class_is_predicate_p ; then :
1195 elif test "x${predefault}" = "x"
1196 then
1197 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1198 kill $$
1199 exit 1
1200 fi
1201 fi
1202 echo ""
1203 done
1204
1205 exec 1>&2
1206 compare_new gdbarch.log
1207
1208
1209 copyright ()
1210 {
1211 cat <<EOF
1212 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1213 /* vi:set ro: */
1214
1215 /* Dynamic architecture support for GDB, the GNU debugger.
1216
1217 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1218
1219 This file is part of GDB.
1220
1221 This program is free software; you can redistribute it and/or modify
1222 it under the terms of the GNU General Public License as published by
1223 the Free Software Foundation; either version 3 of the License, or
1224 (at your option) any later version.
1225
1226 This program is distributed in the hope that it will be useful,
1227 but WITHOUT ANY WARRANTY; without even the implied warranty of
1228 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1229 GNU General Public License for more details.
1230
1231 You should have received a copy of the GNU General Public License
1232 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1233
1234 /* This file was created with the aid of \`\`gdbarch.sh''.
1235
1236 The Bourne shell script \`\`gdbarch.sh'' creates the files
1237 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1238 against the existing \`\`gdbarch.[hc]''. Any differences found
1239 being reported.
1240
1241 If editing this file, please also run gdbarch.sh and merge any
1242 changes into that script. Conversely, when making sweeping changes
1243 to this file, modifying gdbarch.sh and using its output may prove
1244 easier. */
1245
1246 EOF
1247 }
1248
1249 #
1250 # The .h file
1251 #
1252
1253 exec > new-gdbarch.h
1254 copyright
1255 cat <<EOF
1256 #ifndef GDBARCH_H
1257 #define GDBARCH_H
1258
1259 #include "frame.h"
1260
1261 struct floatformat;
1262 struct ui_file;
1263 struct value;
1264 struct objfile;
1265 struct obj_section;
1266 struct minimal_symbol;
1267 struct regcache;
1268 struct reggroup;
1269 struct regset;
1270 struct disassemble_info;
1271 struct target_ops;
1272 struct obstack;
1273 struct bp_target_info;
1274 struct target_desc;
1275 struct objfile;
1276 struct symbol;
1277 struct displaced_step_closure;
1278 struct syscall;
1279 struct agent_expr;
1280 struct axs_value;
1281 struct stap_parse_info;
1282 struct parser_state;
1283 struct ravenscar_arch_ops;
1284 struct elf_internal_linux_prpsinfo;
1285 struct mem_range;
1286 struct syscalls_info;
1287 struct thread_info;
1288 struct ui_out;
1289
1290 #include "regcache.h"
1291
1292 /* The architecture associated with the inferior through the
1293 connection to the target.
1294
1295 The architecture vector provides some information that is really a
1296 property of the inferior, accessed through a particular target:
1297 ptrace operations; the layout of certain RSP packets; the solib_ops
1298 vector; etc. To differentiate architecture accesses to
1299 per-inferior/target properties from
1300 per-thread/per-frame/per-objfile properties, accesses to
1301 per-inferior/target properties should be made through this
1302 gdbarch. */
1303
1304 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1305 extern struct gdbarch *target_gdbarch (void);
1306
1307 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1308 gdbarch method. */
1309
1310 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1311 (struct objfile *objfile, void *cb_data);
1312
1313 /* Callback type for regset section iterators. The callback usually
1314 invokes the REGSET's supply or collect method, to which it must
1315 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1316 section name, and HUMAN_NAME is used for diagnostic messages.
1317 CB_DATA should have been passed unchanged through the iterator. */
1318
1319 typedef void (iterate_over_regset_sections_cb)
1320 (const char *sect_name, int size, const struct regset *regset,
1321 const char *human_name, void *cb_data);
1322 EOF
1323
1324 # function typedef's
1325 printf "\n"
1326 printf "\n"
1327 printf "/* The following are pre-initialized by GDBARCH. */\n"
1328 function_list | while do_read
1329 do
1330 if class_is_info_p
1331 then
1332 printf "\n"
1333 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1334 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1335 fi
1336 done
1337
1338 # function typedef's
1339 printf "\n"
1340 printf "\n"
1341 printf "/* The following are initialized by the target dependent code. */\n"
1342 function_list | while do_read
1343 do
1344 if [ -n "${comment}" ]
1345 then
1346 echo "${comment}" | sed \
1347 -e '2 s,#,/*,' \
1348 -e '3,$ s,#, ,' \
1349 -e '$ s,$, */,'
1350 fi
1351
1352 if class_is_predicate_p
1353 then
1354 printf "\n"
1355 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1356 fi
1357 if class_is_variable_p
1358 then
1359 printf "\n"
1360 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1361 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1362 fi
1363 if class_is_function_p
1364 then
1365 printf "\n"
1366 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1367 then
1368 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1369 elif class_is_multiarch_p
1370 then
1371 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1372 else
1373 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1374 fi
1375 if [ "x${formal}" = "xvoid" ]
1376 then
1377 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1378 else
1379 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1380 fi
1381 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1382 fi
1383 done
1384
1385 # close it off
1386 cat <<EOF
1387
1388 /* Definition for an unknown syscall, used basically in error-cases. */
1389 #define UNKNOWN_SYSCALL (-1)
1390
1391 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1392
1393
1394 /* Mechanism for co-ordinating the selection of a specific
1395 architecture.
1396
1397 GDB targets (*-tdep.c) can register an interest in a specific
1398 architecture. Other GDB components can register a need to maintain
1399 per-architecture data.
1400
1401 The mechanisms below ensures that there is only a loose connection
1402 between the set-architecture command and the various GDB
1403 components. Each component can independently register their need
1404 to maintain architecture specific data with gdbarch.
1405
1406 Pragmatics:
1407
1408 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1409 didn't scale.
1410
1411 The more traditional mega-struct containing architecture specific
1412 data for all the various GDB components was also considered. Since
1413 GDB is built from a variable number of (fairly independent)
1414 components it was determined that the global aproach was not
1415 applicable. */
1416
1417
1418 /* Register a new architectural family with GDB.
1419
1420 Register support for the specified ARCHITECTURE with GDB. When
1421 gdbarch determines that the specified architecture has been
1422 selected, the corresponding INIT function is called.
1423
1424 --
1425
1426 The INIT function takes two parameters: INFO which contains the
1427 information available to gdbarch about the (possibly new)
1428 architecture; ARCHES which is a list of the previously created
1429 \`\`struct gdbarch'' for this architecture.
1430
1431 The INFO parameter is, as far as possible, be pre-initialized with
1432 information obtained from INFO.ABFD or the global defaults.
1433
1434 The ARCHES parameter is a linked list (sorted most recently used)
1435 of all the previously created architures for this architecture
1436 family. The (possibly NULL) ARCHES->gdbarch can used to access
1437 values from the previously selected architecture for this
1438 architecture family.
1439
1440 The INIT function shall return any of: NULL - indicating that it
1441 doesn't recognize the selected architecture; an existing \`\`struct
1442 gdbarch'' from the ARCHES list - indicating that the new
1443 architecture is just a synonym for an earlier architecture (see
1444 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1445 - that describes the selected architecture (see gdbarch_alloc()).
1446
1447 The DUMP_TDEP function shall print out all target specific values.
1448 Care should be taken to ensure that the function works in both the
1449 multi-arch and non- multi-arch cases. */
1450
1451 struct gdbarch_list
1452 {
1453 struct gdbarch *gdbarch;
1454 struct gdbarch_list *next;
1455 };
1456
1457 struct gdbarch_info
1458 {
1459 /* Use default: NULL (ZERO). */
1460 const struct bfd_arch_info *bfd_arch_info;
1461
1462 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1463 enum bfd_endian byte_order;
1464
1465 enum bfd_endian byte_order_for_code;
1466
1467 /* Use default: NULL (ZERO). */
1468 bfd *abfd;
1469
1470 /* Use default: NULL (ZERO). */
1471 void *tdep_info;
1472
1473 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1474 enum gdb_osabi osabi;
1475
1476 /* Use default: NULL (ZERO). */
1477 const struct target_desc *target_desc;
1478 };
1479
1480 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1481 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1482
1483 /* DEPRECATED - use gdbarch_register() */
1484 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1485
1486 extern void gdbarch_register (enum bfd_architecture architecture,
1487 gdbarch_init_ftype *,
1488 gdbarch_dump_tdep_ftype *);
1489
1490
1491 /* Return a freshly allocated, NULL terminated, array of the valid
1492 architecture names. Since architectures are registered during the
1493 _initialize phase this function only returns useful information
1494 once initialization has been completed. */
1495
1496 extern const char **gdbarch_printable_names (void);
1497
1498
1499 /* Helper function. Search the list of ARCHES for a GDBARCH that
1500 matches the information provided by INFO. */
1501
1502 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1503
1504
1505 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1506 basic initialization using values obtained from the INFO and TDEP
1507 parameters. set_gdbarch_*() functions are called to complete the
1508 initialization of the object. */
1509
1510 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1511
1512
1513 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1514 It is assumed that the caller freeds the \`\`struct
1515 gdbarch_tdep''. */
1516
1517 extern void gdbarch_free (struct gdbarch *);
1518
1519
1520 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1521 obstack. The memory is freed when the corresponding architecture
1522 is also freed. */
1523
1524 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1525 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1526 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1527
1528 /* Duplicate STRING, returning an equivalent string that's allocated on the
1529 obstack associated with GDBARCH. The string is freed when the corresponding
1530 architecture is also freed. */
1531
1532 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1533
1534 /* Helper function. Force an update of the current architecture.
1535
1536 The actual architecture selected is determined by INFO, \`\`(gdb) set
1537 architecture'' et.al., the existing architecture and BFD's default
1538 architecture. INFO should be initialized to zero and then selected
1539 fields should be updated.
1540
1541 Returns non-zero if the update succeeds. */
1542
1543 extern int gdbarch_update_p (struct gdbarch_info info);
1544
1545
1546 /* Helper function. Find an architecture matching info.
1547
1548 INFO should be initialized using gdbarch_info_init, relevant fields
1549 set, and then finished using gdbarch_info_fill.
1550
1551 Returns the corresponding architecture, or NULL if no matching
1552 architecture was found. */
1553
1554 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1555
1556
1557 /* Helper function. Set the target gdbarch to "gdbarch". */
1558
1559 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1560
1561
1562 /* Register per-architecture data-pointer.
1563
1564 Reserve space for a per-architecture data-pointer. An identifier
1565 for the reserved data-pointer is returned. That identifer should
1566 be saved in a local static variable.
1567
1568 Memory for the per-architecture data shall be allocated using
1569 gdbarch_obstack_zalloc. That memory will be deleted when the
1570 corresponding architecture object is deleted.
1571
1572 When a previously created architecture is re-selected, the
1573 per-architecture data-pointer for that previous architecture is
1574 restored. INIT() is not re-called.
1575
1576 Multiple registrarants for any architecture are allowed (and
1577 strongly encouraged). */
1578
1579 struct gdbarch_data;
1580
1581 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1582 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1583 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1584 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1585 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1586 struct gdbarch_data *data,
1587 void *pointer);
1588
1589 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1590
1591
1592 /* Set the dynamic target-system-dependent parameters (architecture,
1593 byte-order, ...) using information found in the BFD. */
1594
1595 extern void set_gdbarch_from_file (bfd *);
1596
1597
1598 /* Initialize the current architecture to the "first" one we find on
1599 our list. */
1600
1601 extern void initialize_current_architecture (void);
1602
1603 /* gdbarch trace variable */
1604 extern unsigned int gdbarch_debug;
1605
1606 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1607
1608 #endif
1609 EOF
1610 exec 1>&2
1611 #../move-if-change new-gdbarch.h gdbarch.h
1612 compare_new gdbarch.h
1613
1614
1615 #
1616 # C file
1617 #
1618
1619 exec > new-gdbarch.c
1620 copyright
1621 cat <<EOF
1622
1623 #include "defs.h"
1624 #include "arch-utils.h"
1625
1626 #include "gdbcmd.h"
1627 #include "inferior.h"
1628 #include "symcat.h"
1629
1630 #include "floatformat.h"
1631 #include "reggroups.h"
1632 #include "osabi.h"
1633 #include "gdb_obstack.h"
1634 #include "observer.h"
1635 #include "regcache.h"
1636 #include "objfiles.h"
1637 #include "auxv.h"
1638
1639 /* Static function declarations */
1640
1641 static void alloc_gdbarch_data (struct gdbarch *);
1642
1643 /* Non-zero if we want to trace architecture code. */
1644
1645 #ifndef GDBARCH_DEBUG
1646 #define GDBARCH_DEBUG 0
1647 #endif
1648 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1649 static void
1650 show_gdbarch_debug (struct ui_file *file, int from_tty,
1651 struct cmd_list_element *c, const char *value)
1652 {
1653 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1654 }
1655
1656 static const char *
1657 pformat (const struct floatformat **format)
1658 {
1659 if (format == NULL)
1660 return "(null)";
1661 else
1662 /* Just print out one of them - this is only for diagnostics. */
1663 return format[0]->name;
1664 }
1665
1666 static const char *
1667 pstring (const char *string)
1668 {
1669 if (string == NULL)
1670 return "(null)";
1671 return string;
1672 }
1673
1674 /* Helper function to print a list of strings, represented as "const
1675 char *const *". The list is printed comma-separated. */
1676
1677 static char *
1678 pstring_list (const char *const *list)
1679 {
1680 static char ret[100];
1681 const char *const *p;
1682 size_t offset = 0;
1683
1684 if (list == NULL)
1685 return "(null)";
1686
1687 ret[0] = '\0';
1688 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1689 {
1690 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1691 offset += 2 + s;
1692 }
1693
1694 if (offset > 0)
1695 {
1696 gdb_assert (offset - 2 < sizeof (ret));
1697 ret[offset - 2] = '\0';
1698 }
1699
1700 return ret;
1701 }
1702
1703 EOF
1704
1705 # gdbarch open the gdbarch object
1706 printf "\n"
1707 printf "/* Maintain the struct gdbarch object. */\n"
1708 printf "\n"
1709 printf "struct gdbarch\n"
1710 printf "{\n"
1711 printf " /* Has this architecture been fully initialized? */\n"
1712 printf " int initialized_p;\n"
1713 printf "\n"
1714 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1715 printf " struct obstack *obstack;\n"
1716 printf "\n"
1717 printf " /* basic architectural information. */\n"
1718 function_list | while do_read
1719 do
1720 if class_is_info_p
1721 then
1722 printf " ${returntype} ${function};\n"
1723 fi
1724 done
1725 printf "\n"
1726 printf " /* target specific vector. */\n"
1727 printf " struct gdbarch_tdep *tdep;\n"
1728 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1729 printf "\n"
1730 printf " /* per-architecture data-pointers. */\n"
1731 printf " unsigned nr_data;\n"
1732 printf " void **data;\n"
1733 printf "\n"
1734 cat <<EOF
1735 /* Multi-arch values.
1736
1737 When extending this structure you must:
1738
1739 Add the field below.
1740
1741 Declare set/get functions and define the corresponding
1742 macro in gdbarch.h.
1743
1744 gdbarch_alloc(): If zero/NULL is not a suitable default,
1745 initialize the new field.
1746
1747 verify_gdbarch(): Confirm that the target updated the field
1748 correctly.
1749
1750 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1751 field is dumped out
1752
1753 get_gdbarch(): Implement the set/get functions (probably using
1754 the macro's as shortcuts).
1755
1756 */
1757
1758 EOF
1759 function_list | while do_read
1760 do
1761 if class_is_variable_p
1762 then
1763 printf " ${returntype} ${function};\n"
1764 elif class_is_function_p
1765 then
1766 printf " gdbarch_${function}_ftype *${function};\n"
1767 fi
1768 done
1769 printf "};\n"
1770
1771 # Create a new gdbarch struct
1772 cat <<EOF
1773
1774 /* Create a new \`\`struct gdbarch'' based on information provided by
1775 \`\`struct gdbarch_info''. */
1776 EOF
1777 printf "\n"
1778 cat <<EOF
1779 struct gdbarch *
1780 gdbarch_alloc (const struct gdbarch_info *info,
1781 struct gdbarch_tdep *tdep)
1782 {
1783 struct gdbarch *gdbarch;
1784
1785 /* Create an obstack for allocating all the per-architecture memory,
1786 then use that to allocate the architecture vector. */
1787 struct obstack *obstack = XNEW (struct obstack);
1788 obstack_init (obstack);
1789 gdbarch = XOBNEW (obstack, struct gdbarch);
1790 memset (gdbarch, 0, sizeof (*gdbarch));
1791 gdbarch->obstack = obstack;
1792
1793 alloc_gdbarch_data (gdbarch);
1794
1795 gdbarch->tdep = tdep;
1796 EOF
1797 printf "\n"
1798 function_list | while do_read
1799 do
1800 if class_is_info_p
1801 then
1802 printf " gdbarch->${function} = info->${function};\n"
1803 fi
1804 done
1805 printf "\n"
1806 printf " /* Force the explicit initialization of these. */\n"
1807 function_list | while do_read
1808 do
1809 if class_is_function_p || class_is_variable_p
1810 then
1811 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1812 then
1813 printf " gdbarch->${function} = ${predefault};\n"
1814 fi
1815 fi
1816 done
1817 cat <<EOF
1818 /* gdbarch_alloc() */
1819
1820 return gdbarch;
1821 }
1822 EOF
1823
1824 # Free a gdbarch struct.
1825 printf "\n"
1826 printf "\n"
1827 cat <<EOF
1828 /* Allocate extra space using the per-architecture obstack. */
1829
1830 void *
1831 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1832 {
1833 void *data = obstack_alloc (arch->obstack, size);
1834
1835 memset (data, 0, size);
1836 return data;
1837 }
1838
1839 /* See gdbarch.h. */
1840
1841 char *
1842 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1843 {
1844 return obstack_strdup (arch->obstack, string);
1845 }
1846
1847
1848 /* Free a gdbarch struct. This should never happen in normal
1849 operation --- once you've created a gdbarch, you keep it around.
1850 However, if an architecture's init function encounters an error
1851 building the structure, it may need to clean up a partially
1852 constructed gdbarch. */
1853
1854 void
1855 gdbarch_free (struct gdbarch *arch)
1856 {
1857 struct obstack *obstack;
1858
1859 gdb_assert (arch != NULL);
1860 gdb_assert (!arch->initialized_p);
1861 obstack = arch->obstack;
1862 obstack_free (obstack, 0); /* Includes the ARCH. */
1863 xfree (obstack);
1864 }
1865 EOF
1866
1867 # verify a new architecture
1868 cat <<EOF
1869
1870
1871 /* Ensure that all values in a GDBARCH are reasonable. */
1872
1873 static void
1874 verify_gdbarch (struct gdbarch *gdbarch)
1875 {
1876 struct ui_file *log;
1877 struct cleanup *cleanups;
1878 long length;
1879 char *buf;
1880
1881 log = mem_fileopen ();
1882 cleanups = make_cleanup_ui_file_delete (log);
1883 /* fundamental */
1884 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1885 fprintf_unfiltered (log, "\n\tbyte-order");
1886 if (gdbarch->bfd_arch_info == NULL)
1887 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1888 /* Check those that need to be defined for the given multi-arch level. */
1889 EOF
1890 function_list | while do_read
1891 do
1892 if class_is_function_p || class_is_variable_p
1893 then
1894 if [ "x${invalid_p}" = "x0" ]
1895 then
1896 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1897 elif class_is_predicate_p
1898 then
1899 printf " /* Skip verify of ${function}, has predicate. */\n"
1900 # FIXME: See do_read for potential simplification
1901 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1902 then
1903 printf " if (${invalid_p})\n"
1904 printf " gdbarch->${function} = ${postdefault};\n"
1905 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1906 then
1907 printf " if (gdbarch->${function} == ${predefault})\n"
1908 printf " gdbarch->${function} = ${postdefault};\n"
1909 elif [ -n "${postdefault}" ]
1910 then
1911 printf " if (gdbarch->${function} == 0)\n"
1912 printf " gdbarch->${function} = ${postdefault};\n"
1913 elif [ -n "${invalid_p}" ]
1914 then
1915 printf " if (${invalid_p})\n"
1916 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1917 elif [ -n "${predefault}" ]
1918 then
1919 printf " if (gdbarch->${function} == ${predefault})\n"
1920 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1921 fi
1922 fi
1923 done
1924 cat <<EOF
1925 buf = ui_file_xstrdup (log, &length);
1926 make_cleanup (xfree, buf);
1927 if (length > 0)
1928 internal_error (__FILE__, __LINE__,
1929 _("verify_gdbarch: the following are invalid ...%s"),
1930 buf);
1931 do_cleanups (cleanups);
1932 }
1933 EOF
1934
1935 # dump the structure
1936 printf "\n"
1937 printf "\n"
1938 cat <<EOF
1939 /* Print out the details of the current architecture. */
1940
1941 void
1942 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1943 {
1944 const char *gdb_nm_file = "<not-defined>";
1945
1946 #if defined (GDB_NM_FILE)
1947 gdb_nm_file = GDB_NM_FILE;
1948 #endif
1949 fprintf_unfiltered (file,
1950 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1951 gdb_nm_file);
1952 EOF
1953 function_list | sort -t: -k 3 | while do_read
1954 do
1955 # First the predicate
1956 if class_is_predicate_p
1957 then
1958 printf " fprintf_unfiltered (file,\n"
1959 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1960 printf " gdbarch_${function}_p (gdbarch));\n"
1961 fi
1962 # Print the corresponding value.
1963 if class_is_function_p
1964 then
1965 printf " fprintf_unfiltered (file,\n"
1966 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1967 printf " host_address_to_string (gdbarch->${function}));\n"
1968 else
1969 # It is a variable
1970 case "${print}:${returntype}" in
1971 :CORE_ADDR )
1972 fmt="%s"
1973 print="core_addr_to_string_nz (gdbarch->${function})"
1974 ;;
1975 :* )
1976 fmt="%s"
1977 print="plongest (gdbarch->${function})"
1978 ;;
1979 * )
1980 fmt="%s"
1981 ;;
1982 esac
1983 printf " fprintf_unfiltered (file,\n"
1984 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1985 printf " ${print});\n"
1986 fi
1987 done
1988 cat <<EOF
1989 if (gdbarch->dump_tdep != NULL)
1990 gdbarch->dump_tdep (gdbarch, file);
1991 }
1992 EOF
1993
1994
1995 # GET/SET
1996 printf "\n"
1997 cat <<EOF
1998 struct gdbarch_tdep *
1999 gdbarch_tdep (struct gdbarch *gdbarch)
2000 {
2001 if (gdbarch_debug >= 2)
2002 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2003 return gdbarch->tdep;
2004 }
2005 EOF
2006 printf "\n"
2007 function_list | while do_read
2008 do
2009 if class_is_predicate_p
2010 then
2011 printf "\n"
2012 printf "int\n"
2013 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2014 printf "{\n"
2015 printf " gdb_assert (gdbarch != NULL);\n"
2016 printf " return ${predicate};\n"
2017 printf "}\n"
2018 fi
2019 if class_is_function_p
2020 then
2021 printf "\n"
2022 printf "${returntype}\n"
2023 if [ "x${formal}" = "xvoid" ]
2024 then
2025 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2026 else
2027 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2028 fi
2029 printf "{\n"
2030 printf " gdb_assert (gdbarch != NULL);\n"
2031 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2032 if class_is_predicate_p && test -n "${predefault}"
2033 then
2034 # Allow a call to a function with a predicate.
2035 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2036 fi
2037 printf " if (gdbarch_debug >= 2)\n"
2038 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2039 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2040 then
2041 if class_is_multiarch_p
2042 then
2043 params="gdbarch"
2044 else
2045 params=""
2046 fi
2047 else
2048 if class_is_multiarch_p
2049 then
2050 params="gdbarch, ${actual}"
2051 else
2052 params="${actual}"
2053 fi
2054 fi
2055 if [ "x${returntype}" = "xvoid" ]
2056 then
2057 printf " gdbarch->${function} (${params});\n"
2058 else
2059 printf " return gdbarch->${function} (${params});\n"
2060 fi
2061 printf "}\n"
2062 printf "\n"
2063 printf "void\n"
2064 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2065 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2066 printf "{\n"
2067 printf " gdbarch->${function} = ${function};\n"
2068 printf "}\n"
2069 elif class_is_variable_p
2070 then
2071 printf "\n"
2072 printf "${returntype}\n"
2073 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2074 printf "{\n"
2075 printf " gdb_assert (gdbarch != NULL);\n"
2076 if [ "x${invalid_p}" = "x0" ]
2077 then
2078 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2079 elif [ -n "${invalid_p}" ]
2080 then
2081 printf " /* Check variable is valid. */\n"
2082 printf " gdb_assert (!(${invalid_p}));\n"
2083 elif [ -n "${predefault}" ]
2084 then
2085 printf " /* Check variable changed from pre-default. */\n"
2086 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2087 fi
2088 printf " if (gdbarch_debug >= 2)\n"
2089 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2090 printf " return gdbarch->${function};\n"
2091 printf "}\n"
2092 printf "\n"
2093 printf "void\n"
2094 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2095 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2096 printf "{\n"
2097 printf " gdbarch->${function} = ${function};\n"
2098 printf "}\n"
2099 elif class_is_info_p
2100 then
2101 printf "\n"
2102 printf "${returntype}\n"
2103 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2104 printf "{\n"
2105 printf " gdb_assert (gdbarch != NULL);\n"
2106 printf " if (gdbarch_debug >= 2)\n"
2107 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2108 printf " return gdbarch->${function};\n"
2109 printf "}\n"
2110 fi
2111 done
2112
2113 # All the trailing guff
2114 cat <<EOF
2115
2116
2117 /* Keep a registry of per-architecture data-pointers required by GDB
2118 modules. */
2119
2120 struct gdbarch_data
2121 {
2122 unsigned index;
2123 int init_p;
2124 gdbarch_data_pre_init_ftype *pre_init;
2125 gdbarch_data_post_init_ftype *post_init;
2126 };
2127
2128 struct gdbarch_data_registration
2129 {
2130 struct gdbarch_data *data;
2131 struct gdbarch_data_registration *next;
2132 };
2133
2134 struct gdbarch_data_registry
2135 {
2136 unsigned nr;
2137 struct gdbarch_data_registration *registrations;
2138 };
2139
2140 struct gdbarch_data_registry gdbarch_data_registry =
2141 {
2142 0, NULL,
2143 };
2144
2145 static struct gdbarch_data *
2146 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2147 gdbarch_data_post_init_ftype *post_init)
2148 {
2149 struct gdbarch_data_registration **curr;
2150
2151 /* Append the new registration. */
2152 for (curr = &gdbarch_data_registry.registrations;
2153 (*curr) != NULL;
2154 curr = &(*curr)->next);
2155 (*curr) = XNEW (struct gdbarch_data_registration);
2156 (*curr)->next = NULL;
2157 (*curr)->data = XNEW (struct gdbarch_data);
2158 (*curr)->data->index = gdbarch_data_registry.nr++;
2159 (*curr)->data->pre_init = pre_init;
2160 (*curr)->data->post_init = post_init;
2161 (*curr)->data->init_p = 1;
2162 return (*curr)->data;
2163 }
2164
2165 struct gdbarch_data *
2166 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2167 {
2168 return gdbarch_data_register (pre_init, NULL);
2169 }
2170
2171 struct gdbarch_data *
2172 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2173 {
2174 return gdbarch_data_register (NULL, post_init);
2175 }
2176
2177 /* Create/delete the gdbarch data vector. */
2178
2179 static void
2180 alloc_gdbarch_data (struct gdbarch *gdbarch)
2181 {
2182 gdb_assert (gdbarch->data == NULL);
2183 gdbarch->nr_data = gdbarch_data_registry.nr;
2184 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2185 }
2186
2187 /* Initialize the current value of the specified per-architecture
2188 data-pointer. */
2189
2190 void
2191 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2192 struct gdbarch_data *data,
2193 void *pointer)
2194 {
2195 gdb_assert (data->index < gdbarch->nr_data);
2196 gdb_assert (gdbarch->data[data->index] == NULL);
2197 gdb_assert (data->pre_init == NULL);
2198 gdbarch->data[data->index] = pointer;
2199 }
2200
2201 /* Return the current value of the specified per-architecture
2202 data-pointer. */
2203
2204 void *
2205 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2206 {
2207 gdb_assert (data->index < gdbarch->nr_data);
2208 if (gdbarch->data[data->index] == NULL)
2209 {
2210 /* The data-pointer isn't initialized, call init() to get a
2211 value. */
2212 if (data->pre_init != NULL)
2213 /* Mid architecture creation: pass just the obstack, and not
2214 the entire architecture, as that way it isn't possible for
2215 pre-init code to refer to undefined architecture
2216 fields. */
2217 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2218 else if (gdbarch->initialized_p
2219 && data->post_init != NULL)
2220 /* Post architecture creation: pass the entire architecture
2221 (as all fields are valid), but be careful to also detect
2222 recursive references. */
2223 {
2224 gdb_assert (data->init_p);
2225 data->init_p = 0;
2226 gdbarch->data[data->index] = data->post_init (gdbarch);
2227 data->init_p = 1;
2228 }
2229 else
2230 /* The architecture initialization hasn't completed - punt -
2231 hope that the caller knows what they are doing. Once
2232 deprecated_set_gdbarch_data has been initialized, this can be
2233 changed to an internal error. */
2234 return NULL;
2235 gdb_assert (gdbarch->data[data->index] != NULL);
2236 }
2237 return gdbarch->data[data->index];
2238 }
2239
2240
2241 /* Keep a registry of the architectures known by GDB. */
2242
2243 struct gdbarch_registration
2244 {
2245 enum bfd_architecture bfd_architecture;
2246 gdbarch_init_ftype *init;
2247 gdbarch_dump_tdep_ftype *dump_tdep;
2248 struct gdbarch_list *arches;
2249 struct gdbarch_registration *next;
2250 };
2251
2252 static struct gdbarch_registration *gdbarch_registry = NULL;
2253
2254 static void
2255 append_name (const char ***buf, int *nr, const char *name)
2256 {
2257 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2258 (*buf)[*nr] = name;
2259 *nr += 1;
2260 }
2261
2262 const char **
2263 gdbarch_printable_names (void)
2264 {
2265 /* Accumulate a list of names based on the registed list of
2266 architectures. */
2267 int nr_arches = 0;
2268 const char **arches = NULL;
2269 struct gdbarch_registration *rego;
2270
2271 for (rego = gdbarch_registry;
2272 rego != NULL;
2273 rego = rego->next)
2274 {
2275 const struct bfd_arch_info *ap;
2276 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2277 if (ap == NULL)
2278 internal_error (__FILE__, __LINE__,
2279 _("gdbarch_architecture_names: multi-arch unknown"));
2280 do
2281 {
2282 append_name (&arches, &nr_arches, ap->printable_name);
2283 ap = ap->next;
2284 }
2285 while (ap != NULL);
2286 }
2287 append_name (&arches, &nr_arches, NULL);
2288 return arches;
2289 }
2290
2291
2292 void
2293 gdbarch_register (enum bfd_architecture bfd_architecture,
2294 gdbarch_init_ftype *init,
2295 gdbarch_dump_tdep_ftype *dump_tdep)
2296 {
2297 struct gdbarch_registration **curr;
2298 const struct bfd_arch_info *bfd_arch_info;
2299
2300 /* Check that BFD recognizes this architecture */
2301 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2302 if (bfd_arch_info == NULL)
2303 {
2304 internal_error (__FILE__, __LINE__,
2305 _("gdbarch: Attempt to register "
2306 "unknown architecture (%d)"),
2307 bfd_architecture);
2308 }
2309 /* Check that we haven't seen this architecture before. */
2310 for (curr = &gdbarch_registry;
2311 (*curr) != NULL;
2312 curr = &(*curr)->next)
2313 {
2314 if (bfd_architecture == (*curr)->bfd_architecture)
2315 internal_error (__FILE__, __LINE__,
2316 _("gdbarch: Duplicate registration "
2317 "of architecture (%s)"),
2318 bfd_arch_info->printable_name);
2319 }
2320 /* log it */
2321 if (gdbarch_debug)
2322 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2323 bfd_arch_info->printable_name,
2324 host_address_to_string (init));
2325 /* Append it */
2326 (*curr) = XNEW (struct gdbarch_registration);
2327 (*curr)->bfd_architecture = bfd_architecture;
2328 (*curr)->init = init;
2329 (*curr)->dump_tdep = dump_tdep;
2330 (*curr)->arches = NULL;
2331 (*curr)->next = NULL;
2332 }
2333
2334 void
2335 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2336 gdbarch_init_ftype *init)
2337 {
2338 gdbarch_register (bfd_architecture, init, NULL);
2339 }
2340
2341
2342 /* Look for an architecture using gdbarch_info. */
2343
2344 struct gdbarch_list *
2345 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2346 const struct gdbarch_info *info)
2347 {
2348 for (; arches != NULL; arches = arches->next)
2349 {
2350 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2351 continue;
2352 if (info->byte_order != arches->gdbarch->byte_order)
2353 continue;
2354 if (info->osabi != arches->gdbarch->osabi)
2355 continue;
2356 if (info->target_desc != arches->gdbarch->target_desc)
2357 continue;
2358 return arches;
2359 }
2360 return NULL;
2361 }
2362
2363
2364 /* Find an architecture that matches the specified INFO. Create a new
2365 architecture if needed. Return that new architecture. */
2366
2367 struct gdbarch *
2368 gdbarch_find_by_info (struct gdbarch_info info)
2369 {
2370 struct gdbarch *new_gdbarch;
2371 struct gdbarch_registration *rego;
2372
2373 /* Fill in missing parts of the INFO struct using a number of
2374 sources: "set ..."; INFOabfd supplied; and the global
2375 defaults. */
2376 gdbarch_info_fill (&info);
2377
2378 /* Must have found some sort of architecture. */
2379 gdb_assert (info.bfd_arch_info != NULL);
2380
2381 if (gdbarch_debug)
2382 {
2383 fprintf_unfiltered (gdb_stdlog,
2384 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2385 (info.bfd_arch_info != NULL
2386 ? info.bfd_arch_info->printable_name
2387 : "(null)"));
2388 fprintf_unfiltered (gdb_stdlog,
2389 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2390 info.byte_order,
2391 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2392 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2393 : "default"));
2394 fprintf_unfiltered (gdb_stdlog,
2395 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2396 info.osabi, gdbarch_osabi_name (info.osabi));
2397 fprintf_unfiltered (gdb_stdlog,
2398 "gdbarch_find_by_info: info.abfd %s\n",
2399 host_address_to_string (info.abfd));
2400 fprintf_unfiltered (gdb_stdlog,
2401 "gdbarch_find_by_info: info.tdep_info %s\n",
2402 host_address_to_string (info.tdep_info));
2403 }
2404
2405 /* Find the tdep code that knows about this architecture. */
2406 for (rego = gdbarch_registry;
2407 rego != NULL;
2408 rego = rego->next)
2409 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2410 break;
2411 if (rego == NULL)
2412 {
2413 if (gdbarch_debug)
2414 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2415 "No matching architecture\n");
2416 return 0;
2417 }
2418
2419 /* Ask the tdep code for an architecture that matches "info". */
2420 new_gdbarch = rego->init (info, rego->arches);
2421
2422 /* Did the tdep code like it? No. Reject the change and revert to
2423 the old architecture. */
2424 if (new_gdbarch == NULL)
2425 {
2426 if (gdbarch_debug)
2427 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2428 "Target rejected architecture\n");
2429 return NULL;
2430 }
2431
2432 /* Is this a pre-existing architecture (as determined by already
2433 being initialized)? Move it to the front of the architecture
2434 list (keeping the list sorted Most Recently Used). */
2435 if (new_gdbarch->initialized_p)
2436 {
2437 struct gdbarch_list **list;
2438 struct gdbarch_list *self;
2439 if (gdbarch_debug)
2440 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2441 "Previous architecture %s (%s) selected\n",
2442 host_address_to_string (new_gdbarch),
2443 new_gdbarch->bfd_arch_info->printable_name);
2444 /* Find the existing arch in the list. */
2445 for (list = &rego->arches;
2446 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2447 list = &(*list)->next);
2448 /* It had better be in the list of architectures. */
2449 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2450 /* Unlink SELF. */
2451 self = (*list);
2452 (*list) = self->next;
2453 /* Insert SELF at the front. */
2454 self->next = rego->arches;
2455 rego->arches = self;
2456 /* Return it. */
2457 return new_gdbarch;
2458 }
2459
2460 /* It's a new architecture. */
2461 if (gdbarch_debug)
2462 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2463 "New architecture %s (%s) selected\n",
2464 host_address_to_string (new_gdbarch),
2465 new_gdbarch->bfd_arch_info->printable_name);
2466
2467 /* Insert the new architecture into the front of the architecture
2468 list (keep the list sorted Most Recently Used). */
2469 {
2470 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2471 self->next = rego->arches;
2472 self->gdbarch = new_gdbarch;
2473 rego->arches = self;
2474 }
2475
2476 /* Check that the newly installed architecture is valid. Plug in
2477 any post init values. */
2478 new_gdbarch->dump_tdep = rego->dump_tdep;
2479 verify_gdbarch (new_gdbarch);
2480 new_gdbarch->initialized_p = 1;
2481
2482 if (gdbarch_debug)
2483 gdbarch_dump (new_gdbarch, gdb_stdlog);
2484
2485 return new_gdbarch;
2486 }
2487
2488 /* Make the specified architecture current. */
2489
2490 void
2491 set_target_gdbarch (struct gdbarch *new_gdbarch)
2492 {
2493 gdb_assert (new_gdbarch != NULL);
2494 gdb_assert (new_gdbarch->initialized_p);
2495 current_inferior ()->gdbarch = new_gdbarch;
2496 observer_notify_architecture_changed (new_gdbarch);
2497 registers_changed ();
2498 }
2499
2500 /* Return the current inferior's arch. */
2501
2502 struct gdbarch *
2503 target_gdbarch (void)
2504 {
2505 return current_inferior ()->gdbarch;
2506 }
2507
2508 extern void _initialize_gdbarch (void);
2509
2510 void
2511 _initialize_gdbarch (void)
2512 {
2513 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2514 Set architecture debugging."), _("\\
2515 Show architecture debugging."), _("\\
2516 When non-zero, architecture debugging is enabled."),
2517 NULL,
2518 show_gdbarch_debug,
2519 &setdebuglist, &showdebuglist);
2520 }
2521 EOF
2522
2523 # close things off
2524 exec 1>&2
2525 #../move-if-change new-gdbarch.c gdbarch.c
2526 compare_new gdbarch.c
This page took 0.110459 seconds and 5 git commands to generate.