New gdbserver option --debug-format=timestamp.
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-aarch64-low.c
1 /* GNU/Linux/AArch64 specific low level interface, for the remote server for
2 GDB.
3
4 Copyright (C) 2009-2014 Free Software Foundation, Inc.
5 Contributed by ARM Ltd.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "server.h"
23 #include "linux-low.h"
24 #include "elf/common.h"
25
26 #include <signal.h>
27 #include <sys/user.h>
28 #include <sys/ptrace.h>
29 #include <sys/uio.h>
30
31 #include "gdb_proc_service.h"
32
33 /* Defined in auto-generated files. */
34 void init_registers_aarch64 (void);
35 extern const struct target_desc *tdesc_aarch64;
36
37 #ifdef HAVE_SYS_REG_H
38 #include <sys/reg.h>
39 #endif
40
41 #define AARCH64_X_REGS_NUM 31
42 #define AARCH64_V_REGS_NUM 32
43 #define AARCH64_X0_REGNO 0
44 #define AARCH64_SP_REGNO 31
45 #define AARCH64_PC_REGNO 32
46 #define AARCH64_CPSR_REGNO 33
47 #define AARCH64_V0_REGNO 34
48
49 #define AARCH64_NUM_REGS (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM)
50
51 static int
52 aarch64_regmap [] =
53 {
54 /* These offsets correspond to GET/SETREGSET */
55 /* x0... */
56 0*8, 1*8, 2*8, 3*8, 4*8, 5*8, 6*8, 7*8,
57 8*8, 9*8, 10*8, 11*8, 12*8, 13*8, 14*8, 15*8,
58 16*8, 17*8, 18*8, 19*8, 20*8, 21*8, 22*8, 23*8,
59 24*8, 25*8, 26*8, 27*8, 28*8,
60 29*8,
61 30*8, /* x30 lr */
62 31*8, /* x31 sp */
63 32*8, /* pc */
64 33*8, /* cpsr 4 bytes!*/
65
66 /* FP register offsets correspond to GET/SETFPREGSET */
67 0*16, 1*16, 2*16, 3*16, 4*16, 5*16, 6*16, 7*16,
68 8*16, 9*16, 10*16, 11*16, 12*16, 13*16, 14*16, 15*16,
69 16*16, 17*16, 18*16, 19*16, 20*16, 21*16, 22*16, 23*16,
70 24*16, 25*16, 26*16, 27*16, 28*16, 29*16, 30*16, 31*16
71 };
72
73 /* Here starts the macro definitions, data structures, and code for
74 the hardware breakpoint and hardware watchpoint support. The
75 following is the abbreviations that are used frequently in the code
76 and comment:
77
78 hw - hardware
79 bp - breakpoint
80 wp - watchpoint */
81
82 /* Maximum number of hardware breakpoint and watchpoint registers.
83 Neither of these values may exceed the width of dr_changed_t
84 measured in bits. */
85
86 #define AARCH64_HBP_MAX_NUM 16
87 #define AARCH64_HWP_MAX_NUM 16
88
89 /* Alignment requirement in bytes of hardware breakpoint and
90 watchpoint address. This is the requirement for the addresses that
91 can be written to the hardware breakpoint/watchpoint value
92 registers. The kernel currently does not do any alignment on
93 addresses when receiving a writing request (via ptrace call) to
94 these debug registers, and it will reject any address that is
95 unaligned.
96 Some limited support has been provided in this gdbserver port for
97 unaligned watchpoints, so that from a gdb user point of view, an
98 unaligned watchpoint can still be set. This is achieved by
99 minimally enlarging the watched area to meet the alignment
100 requirement, and if necessary, splitting the watchpoint over
101 several hardware watchpoint registers. */
102
103 #define AARCH64_HBP_ALIGNMENT 4
104 #define AARCH64_HWP_ALIGNMENT 8
105
106 /* The maximum length of a memory region that can be watched by one
107 hardware watchpoint register. */
108
109 #define AARCH64_HWP_MAX_LEN_PER_REG 8
110
111 /* Each bit of a variable of this type is used to indicate whether a
112 hardware breakpoint or watchpoint setting has been changed since
113 the last updating. Bit N corresponds to the Nth hardware
114 breakpoint or watchpoint setting which is managed in
115 aarch64_debug_reg_state. Where N is valid between 0 and the total
116 number of the hardware breakpoint or watchpoint debug registers
117 minus 1. When the bit N is 1, it indicates the corresponding
118 breakpoint or watchpoint setting is changed, and thus the
119 corresponding hardware debug register needs to be updated via the
120 ptrace interface.
121
122 In the per-thread arch-specific data area, we define two such
123 variables for per-thread hardware breakpoint and watchpoint
124 settings respectively.
125
126 This type is part of the mechanism which helps reduce the number of
127 ptrace calls to the kernel, i.e. avoid asking the kernel to write
128 to the debug registers with unchanged values. */
129
130 typedef unsigned long long dr_changed_t;
131
132 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
133
134 #define DR_MARK_ALL_CHANGED(x, m) \
135 do \
136 { \
137 gdb_assert (sizeof ((x)) * 8 >= (m)); \
138 (x) = (((dr_changed_t)1 << (m)) - 1); \
139 } while (0)
140
141 #define DR_MARK_N_CHANGED(x, n) \
142 do \
143 { \
144 (x) |= ((dr_changed_t)1 << (n)); \
145 } while (0)
146
147 #define DR_CLEAR_CHANGED(x) \
148 do \
149 { \
150 (x) = 0; \
151 } while (0)
152
153 #define DR_HAS_CHANGED(x) ((x) != 0)
154 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
155
156 /* Structure for managing the hardware breakpoint/watchpoint resources.
157 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
158 content, and DR_REF_COUNT_* counts the numbers of references to the
159 corresponding bp/wp, by which way the limited hardware resources
160 are not wasted on duplicated bp/wp settings (though so far gdb has
161 done a good job by not sending duplicated bp/wp requests). */
162
163 struct aarch64_debug_reg_state
164 {
165 /* hardware breakpoint */
166 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
167 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
168 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
169
170 /* hardware watchpoint */
171 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
172 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
173 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
174 };
175
176 /* Per-process arch-specific data we want to keep. */
177
178 struct arch_process_info
179 {
180 /* Hardware breakpoint/watchpoint data.
181 The reason for them to be per-process rather than per-thread is
182 due to the lack of information in the gdbserver environment;
183 gdbserver is not told that whether a requested hardware
184 breakpoint/watchpoint is thread specific or not, so it has to set
185 each hw bp/wp for every thread in the current process. The
186 higher level bp/wp management in gdb will resume a thread if a hw
187 bp/wp trap is not expected for it. Since the hw bp/wp setting is
188 same for each thread, it is reasonable for the data to live here.
189 */
190 struct aarch64_debug_reg_state debug_reg_state;
191 };
192
193 /* Per-thread arch-specific data we want to keep. */
194
195 struct arch_lwp_info
196 {
197 /* When bit N is 1, it indicates the Nth hardware breakpoint or
198 watchpoint register pair needs to be updated when the thread is
199 resumed; see aarch64_linux_prepare_to_resume. */
200 dr_changed_t dr_changed_bp;
201 dr_changed_t dr_changed_wp;
202 };
203
204 /* Number of hardware breakpoints/watchpoints the target supports.
205 They are initialized with values obtained via the ptrace calls
206 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
207
208 static int aarch64_num_bp_regs;
209 static int aarch64_num_wp_regs;
210
211 /* Hardware breakpoint/watchpoint types.
212 The values map to their encodings in the bit 4 and bit 3 of the
213 hardware breakpoint/watchpoint control registers. */
214
215 enum target_point_type
216 {
217 hw_execute = 0, /* Execute HW breakpoint */
218 hw_read = 1, /* Read HW watchpoint */
219 hw_write = 2, /* Common HW watchpoint */
220 hw_access = 3, /* Access HW watchpoint */
221 point_type_unsupported
222 };
223
224 #define Z_PACKET_SW_BP '0'
225 #define Z_PACKET_HW_BP '1'
226 #define Z_PACKET_WRITE_WP '2'
227 #define Z_PACKET_READ_WP '3'
228 #define Z_PACKET_ACCESS_WP '4'
229
230 /* Map the protocol breakpoint/watchpoint type TYPE to
231 enum target_point_type. */
232
233 static enum target_point_type
234 Z_packet_to_point_type (char type)
235 {
236 switch (type)
237 {
238 case Z_PACKET_SW_BP:
239 /* Leave the handling of the sw breakpoint with the gdb client. */
240 return point_type_unsupported;
241 case Z_PACKET_HW_BP:
242 return hw_execute;
243 case Z_PACKET_WRITE_WP:
244 return hw_write;
245 case Z_PACKET_READ_WP:
246 return hw_read;
247 case Z_PACKET_ACCESS_WP:
248 return hw_access;
249 default:
250 return point_type_unsupported;
251 }
252 }
253
254 static int
255 aarch64_cannot_store_register (int regno)
256 {
257 return regno >= AARCH64_NUM_REGS;
258 }
259
260 static int
261 aarch64_cannot_fetch_register (int regno)
262 {
263 return regno >= AARCH64_NUM_REGS;
264 }
265
266 static void
267 aarch64_fill_gregset (struct regcache *regcache, void *buf)
268 {
269 struct user_pt_regs *regset = buf;
270 int i;
271
272 for (i = 0; i < AARCH64_X_REGS_NUM; i++)
273 collect_register (regcache, AARCH64_X0_REGNO + i, &regset->regs[i]);
274 collect_register (regcache, AARCH64_SP_REGNO, &regset->sp);
275 collect_register (regcache, AARCH64_PC_REGNO, &regset->pc);
276 collect_register (regcache, AARCH64_CPSR_REGNO, &regset->pstate);
277 }
278
279 static void
280 aarch64_store_gregset (struct regcache *regcache, const void *buf)
281 {
282 const struct user_pt_regs *regset = buf;
283 int i;
284
285 for (i = 0; i < AARCH64_X_REGS_NUM; i++)
286 supply_register (regcache, AARCH64_X0_REGNO + i, &regset->regs[i]);
287 supply_register (regcache, AARCH64_SP_REGNO, &regset->sp);
288 supply_register (regcache, AARCH64_PC_REGNO, &regset->pc);
289 supply_register (regcache, AARCH64_CPSR_REGNO, &regset->pstate);
290 }
291
292 static void
293 aarch64_fill_fpregset (struct regcache *regcache, void *buf)
294 {
295 struct user_fpsimd_state *regset = buf;
296 int i;
297
298 for (i = 0; i < AARCH64_V_REGS_NUM; i++)
299 collect_register (regcache, AARCH64_V0_REGNO + i, &regset->vregs[i]);
300 }
301
302 static void
303 aarch64_store_fpregset (struct regcache *regcache, const void *buf)
304 {
305 const struct user_fpsimd_state *regset = buf;
306 int i;
307
308 for (i = 0; i < AARCH64_V_REGS_NUM; i++)
309 supply_register (regcache, AARCH64_V0_REGNO + i, &regset->vregs[i]);
310 }
311
312 /* Debugging of hardware breakpoint/watchpoint support. */
313 extern int debug_hw_points;
314
315 /* Enable miscellaneous debugging output. The name is historical - it
316 was originally used to debug LinuxThreads support. */
317 extern int debug_threads;
318
319 static CORE_ADDR
320 aarch64_get_pc (struct regcache *regcache)
321 {
322 unsigned long pc;
323
324 collect_register_by_name (regcache, "pc", &pc);
325 if (debug_threads)
326 debug_printf ("stop pc is %08lx\n", pc);
327 return pc;
328 }
329
330 static void
331 aarch64_set_pc (struct regcache *regcache, CORE_ADDR pc)
332 {
333 unsigned long newpc = pc;
334 supply_register_by_name (regcache, "pc", &newpc);
335 }
336
337 /* Correct in either endianness. */
338
339 #define aarch64_breakpoint_len 4
340
341 static const unsigned long aarch64_breakpoint = 0x00800011;
342
343 static int
344 aarch64_breakpoint_at (CORE_ADDR where)
345 {
346 unsigned long insn;
347
348 (*the_target->read_memory) (where, (unsigned char *) &insn, 4);
349 if (insn == aarch64_breakpoint)
350 return 1;
351
352 return 0;
353 }
354
355 /* Print the values of the cached breakpoint/watchpoint registers.
356 This is enabled via the "set debug-hw-points" monitor command. */
357
358 static void
359 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
360 const char *func, CORE_ADDR addr,
361 int len, enum target_point_type type)
362 {
363 int i;
364
365 fprintf (stderr, "%s", func);
366 if (addr || len)
367 fprintf (stderr, " (addr=0x%08lx, len=%d, type=%s)",
368 (unsigned long) addr, len,
369 type == hw_write ? "hw-write-watchpoint"
370 : (type == hw_read ? "hw-read-watchpoint"
371 : (type == hw_access ? "hw-access-watchpoint"
372 : (type == hw_execute ? "hw-breakpoint"
373 : "??unknown??"))));
374 fprintf (stderr, ":\n");
375
376 fprintf (stderr, "\tBREAKPOINTs:\n");
377 for (i = 0; i < aarch64_num_bp_regs; i++)
378 fprintf (stderr, "\tBP%d: addr=0x%s, ctrl=0x%08x, ref.count=%d\n",
379 i, paddress (state->dr_addr_bp[i]),
380 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
381
382 fprintf (stderr, "\tWATCHPOINTs:\n");
383 for (i = 0; i < aarch64_num_wp_regs; i++)
384 fprintf (stderr, "\tWP%d: addr=0x%s, ctrl=0x%08x, ref.count=%d\n",
385 i, paddress (state->dr_addr_wp[i]),
386 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
387 }
388
389 static void
390 aarch64_init_debug_reg_state (struct aarch64_debug_reg_state *state)
391 {
392 int i;
393
394 for (i = 0; i < AARCH64_HBP_MAX_NUM; ++i)
395 {
396 state->dr_addr_bp[i] = 0;
397 state->dr_ctrl_bp[i] = 0;
398 state->dr_ref_count_bp[i] = 0;
399 }
400
401 for (i = 0; i < AARCH64_HWP_MAX_NUM; ++i)
402 {
403 state->dr_addr_wp[i] = 0;
404 state->dr_ctrl_wp[i] = 0;
405 state->dr_ref_count_wp[i] = 0;
406 }
407 }
408
409 /* ptrace expects control registers to be formatted as follows:
410
411 31 13 5 3 1 0
412 +--------------------------------+----------+------+------+----+
413 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
414 +--------------------------------+----------+------+------+----+
415
416 The TYPE field is ignored for breakpoints. */
417
418 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
419 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
420
421 /* Utility function that returns the length in bytes of a watchpoint
422 according to the content of a hardware debug control register CTRL.
423 Note that the kernel currently only supports the following Byte
424 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
425 that for a hardware watchpoint, its valid length can only be 1
426 byte, 2 bytes, 4 bytes or 8 bytes. */
427
428 static inline unsigned int
429 aarch64_watchpoint_length (unsigned int ctrl)
430 {
431 switch (DR_CONTROL_LENGTH (ctrl))
432 {
433 case 0x01:
434 return 1;
435 case 0x03:
436 return 2;
437 case 0x0f:
438 return 4;
439 case 0xff:
440 return 8;
441 default:
442 return 0;
443 }
444 }
445
446 /* Given the hardware breakpoint or watchpoint type TYPE and its
447 length LEN, return the expected encoding for a hardware
448 breakpoint/watchpoint control register. */
449
450 static unsigned int
451 aarch64_point_encode_ctrl_reg (enum target_point_type type, int len)
452 {
453 unsigned int ctrl;
454
455 /* type */
456 ctrl = type << 3;
457 /* length bitmask */
458 ctrl |= ((1 << len) - 1) << 5;
459 /* enabled at el0 */
460 ctrl |= (2 << 1) | 1;
461
462 return ctrl;
463 }
464
465 /* Addresses to be written to the hardware breakpoint and watchpoint
466 value registers need to be aligned; the alignment is 4-byte and
467 8-type respectively. Linux kernel rejects any non-aligned address
468 it receives from the related ptrace call. Furthermore, the kernel
469 currently only supports the following Byte Address Select (BAS)
470 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
471 watchpoint to be accepted by the kernel (via ptrace call), its
472 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
473 Despite these limitations, the unaligned watchpoint is supported in
474 this gdbserver port.
475
476 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
477
478 static int
479 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
480 {
481 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
482 : AARCH64_HBP_ALIGNMENT;
483
484 if (addr & (alignment - 1))
485 return 0;
486
487 if (len != 8 && len != 4 && len != 2 && len != 1)
488 return 0;
489
490 return 1;
491 }
492
493 /* Given the (potentially unaligned) watchpoint address in ADDR and
494 length in LEN, return the aligned address and aligned length in
495 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
496 aligned address and length will be valid to be written to the
497 hardware watchpoint value and control registers. See the comment
498 above aarch64_point_is_aligned for the information about the
499 alignment requirement. The given watchpoint may get truncated if
500 more than one hardware register is needed to cover the watched
501 region. *NEXT_ADDR_P and *NEXT_LEN_P, if non-NULL, will return the
502 address and length of the remaining part of the watchpoint (which
503 can be processed by calling this routine again to generate another
504 aligned address and length pair.
505
506 Essentially, unaligned watchpoint is achieved by minimally
507 enlarging the watched area to meet the alignment requirement, and
508 if necessary, splitting the watchpoint over several hardware
509 watchpoint registers. The trade-off is that there will be
510 false-positive hits for the read-type or the access-type hardware
511 watchpoints; for the write type, which is more commonly used, there
512 will be no such issues, as the higher-level breakpoint management
513 in gdb always examines the exact watched region for any content
514 change, and transparently resumes a thread from a watchpoint trap
515 if there is no change to the watched region.
516
517 Another limitation is that because the watched region is enlarged,
518 the watchpoint fault address returned by
519 aarch64_stopped_data_address may be outside of the original watched
520 region, especially when the triggering instruction is accessing a
521 larger region. When the fault address is not within any known
522 range, watchpoints_triggered in gdb will get confused, as the
523 higher-level watchpoint management is only aware of original
524 watched regions, and will think that some unknown watchpoint has
525 been triggered. In such a case, gdb may stop without displaying
526 any detailed information.
527
528 Once the kernel provides the full support for Byte Address Select
529 (BAS) in the hardware watchpoint control register, these
530 limitations can be largely relaxed with some further work. */
531
532 static void
533 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
534 int *aligned_len_p, CORE_ADDR *next_addr_p,
535 int *next_len_p)
536 {
537 int aligned_len;
538 unsigned int offset;
539 CORE_ADDR aligned_addr;
540 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
541 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
542
543 /* As assumed by the algorithm. */
544 gdb_assert (alignment == max_wp_len);
545
546 if (len <= 0)
547 return;
548
549 /* Address to be put into the hardware watchpoint value register
550 must be aligned. */
551 offset = addr & (alignment - 1);
552 aligned_addr = addr - offset;
553
554 gdb_assert (offset >= 0 && offset < alignment);
555 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
556 gdb_assert ((offset + len) > 0);
557
558 if (offset + len >= max_wp_len)
559 {
560 /* Need more than one watchpoint registers; truncate it at the
561 alignment boundary. */
562 aligned_len = max_wp_len;
563 len -= (max_wp_len - offset);
564 addr += (max_wp_len - offset);
565 gdb_assert ((addr & (alignment - 1)) == 0);
566 }
567 else
568 {
569 /* Find the smallest valid length that is large enough to
570 accommodate this watchpoint. */
571 static const unsigned char
572 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
573 { 1, 2, 4, 4, 8, 8, 8, 8 };
574
575 aligned_len = aligned_len_array[offset + len - 1];
576 addr += len;
577 len = 0;
578 }
579
580 if (aligned_addr_p != NULL)
581 *aligned_addr_p = aligned_addr;
582 if (aligned_len_p != NULL)
583 *aligned_len_p = aligned_len;
584 if (next_addr_p != NULL)
585 *next_addr_p = addr;
586 if (next_len_p != NULL)
587 *next_len_p = len;
588 }
589
590 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
591 registers with data from *STATE. */
592
593 static void
594 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
595 int tid, int watchpoint)
596 {
597 int i, count;
598 struct iovec iov;
599 struct user_hwdebug_state regs;
600 const CORE_ADDR *addr;
601 const unsigned int *ctrl;
602
603 memset (&regs, 0, sizeof (regs));
604 iov.iov_base = &regs;
605 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
606 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
607 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
608 if (count == 0)
609 return;
610 iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
611 + sizeof (regs.dbg_regs [count - 1]));
612
613 for (i = 0; i < count; i++)
614 {
615 regs.dbg_regs[i].addr = addr[i];
616 regs.dbg_regs[i].ctrl = ctrl[i];
617 }
618
619 if (ptrace (PTRACE_SETREGSET, tid,
620 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
621 (void *) &iov))
622 error (_("Unexpected error setting hardware debug registers"));
623 }
624
625 struct aarch64_dr_update_callback_param
626 {
627 int pid;
628 int is_watchpoint;
629 unsigned int idx;
630 };
631
632 /* Callback function which records the information about the change of
633 one hardware breakpoint/watchpoint setting for the thread ENTRY.
634 The information is passed in via PTR.
635 N.B. The actual updating of hardware debug registers is not
636 carried out until the moment the thread is resumed. */
637
638 static int
639 debug_reg_change_callback (struct inferior_list_entry *entry, void *ptr)
640 {
641 struct lwp_info *lwp = (struct lwp_info *) entry;
642 struct aarch64_dr_update_callback_param *param_p
643 = (struct aarch64_dr_update_callback_param *) ptr;
644 int pid = param_p->pid;
645 int idx = param_p->idx;
646 int is_watchpoint = param_p->is_watchpoint;
647 struct arch_lwp_info *info = lwp->arch_private;
648 dr_changed_t *dr_changed_ptr;
649 dr_changed_t dr_changed;
650
651 if (debug_hw_points)
652 {
653 fprintf (stderr, "debug_reg_change_callback: \n\tOn entry:\n");
654 fprintf (stderr, "\tpid%d, tid: %ld, dr_changed_bp=0x%llx, "
655 "dr_changed_wp=0x%llx\n",
656 pid, lwpid_of (lwp), info->dr_changed_bp,
657 info->dr_changed_wp);
658 }
659
660 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
661 : &info->dr_changed_bp;
662 dr_changed = *dr_changed_ptr;
663
664 /* Only update the threads of this process. */
665 if (pid_of (lwp) == pid)
666 {
667 gdb_assert (idx >= 0
668 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
669 : aarch64_num_bp_regs)));
670
671 /* The following assertion is not right, as there can be changes
672 that have not been made to the hardware debug registers
673 before new changes overwrite the old ones. This can happen,
674 for instance, when the breakpoint/watchpoint hit one of the
675 threads and the user enters continue; then what happens is:
676 1) all breakpoints/watchpoints are removed for all threads;
677 2) a single step is carried out for the thread that was hit;
678 3) all of the points are inserted again for all threads;
679 4) all threads are resumed.
680 The 2nd step will only affect the one thread in which the
681 bp/wp was hit, which means only that one thread is resumed;
682 remember that the actual updating only happen in
683 aarch64_linux_prepare_to_resume, so other threads remain
684 stopped during the removal and insertion of bp/wp. Therefore
685 for those threads, the change of insertion of the bp/wp
686 overwrites that of the earlier removals. (The situation may
687 be different when bp/wp is steppable, or in the non-stop
688 mode.) */
689 /* gdb_assert (DR_N_HAS_CHANGED (dr_changed, idx) == 0); */
690
691 /* The actual update is done later just before resuming the lwp,
692 we just mark that one register pair needs updating. */
693 DR_MARK_N_CHANGED (dr_changed, idx);
694 *dr_changed_ptr = dr_changed;
695
696 /* If the lwp isn't stopped, force it to momentarily pause, so
697 we can update its debug registers. */
698 if (!lwp->stopped)
699 linux_stop_lwp (lwp);
700 }
701
702 if (debug_hw_points)
703 {
704 fprintf (stderr, "\tOn exit:\n\tpid%d, tid: %ld, dr_changed_bp=0x%llx, "
705 "dr_changed_wp=0x%llx\n",
706 pid, lwpid_of (lwp), info->dr_changed_bp, info->dr_changed_wp);
707 }
708
709 return 0;
710 }
711
712 /* Notify each thread that their IDXth breakpoint/watchpoint register
713 pair needs to be updated. The message will be recorded in each
714 thread's arch-specific data area, the actual updating will be done
715 when the thread is resumed. */
716
717 void
718 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
719 int is_watchpoint, unsigned int idx)
720 {
721 struct aarch64_dr_update_callback_param param;
722
723 /* Only update the threads of this process. */
724 param.pid = pid_of (get_thread_lwp (current_inferior));
725
726 param.is_watchpoint = is_watchpoint;
727 param.idx = idx;
728
729 find_inferior (&all_lwps, debug_reg_change_callback, (void *) &param);
730 }
731
732
733 /* Return the pointer to the debug register state structure in the
734 current process' arch-specific data area. */
735
736 static struct aarch64_debug_reg_state *
737 aarch64_get_debug_reg_state ()
738 {
739 struct process_info *proc;
740
741 proc = current_process ();
742 return &proc->private->arch_private->debug_reg_state;
743 }
744
745 /* Record the insertion of one breakpoint/watchpoint, as represented
746 by ADDR and CTRL, in the process' arch-specific data area *STATE. */
747
748 static int
749 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
750 enum target_point_type type,
751 CORE_ADDR addr, int len)
752 {
753 int i, idx, num_regs, is_watchpoint;
754 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
755 CORE_ADDR *dr_addr_p;
756
757 /* Set up state pointers. */
758 is_watchpoint = (type != hw_execute);
759 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
760 if (is_watchpoint)
761 {
762 num_regs = aarch64_num_wp_regs;
763 dr_addr_p = state->dr_addr_wp;
764 dr_ctrl_p = state->dr_ctrl_wp;
765 dr_ref_count = state->dr_ref_count_wp;
766 }
767 else
768 {
769 num_regs = aarch64_num_bp_regs;
770 dr_addr_p = state->dr_addr_bp;
771 dr_ctrl_p = state->dr_ctrl_bp;
772 dr_ref_count = state->dr_ref_count_bp;
773 }
774
775 ctrl = aarch64_point_encode_ctrl_reg (type, len);
776
777 /* Find an existing or free register in our cache. */
778 idx = -1;
779 for (i = 0; i < num_regs; ++i)
780 {
781 if ((dr_ctrl_p[i] & 1) == 0)
782 {
783 gdb_assert (dr_ref_count[i] == 0);
784 idx = i;
785 /* no break; continue hunting for an exising one. */
786 }
787 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
788 {
789 gdb_assert (dr_ref_count[i] != 0);
790 idx = i;
791 break;
792 }
793 }
794
795 /* No space. */
796 if (idx == -1)
797 return -1;
798
799 /* Update our cache. */
800 if ((dr_ctrl_p[idx] & 1) == 0)
801 {
802 /* new entry */
803 dr_addr_p[idx] = addr;
804 dr_ctrl_p[idx] = ctrl;
805 dr_ref_count[idx] = 1;
806 /* Notify the change. */
807 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
808 }
809 else
810 {
811 /* existing entry */
812 dr_ref_count[idx]++;
813 }
814
815 return 0;
816 }
817
818 /* Record the removal of one breakpoint/watchpoint, as represented by
819 ADDR and CTRL, in the process' arch-specific data area *STATE. */
820
821 static int
822 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
823 enum target_point_type type,
824 CORE_ADDR addr, int len)
825 {
826 int i, num_regs, is_watchpoint;
827 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
828 CORE_ADDR *dr_addr_p;
829
830 /* Set up state pointers. */
831 is_watchpoint = (type != hw_execute);
832 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
833 if (is_watchpoint)
834 {
835 num_regs = aarch64_num_wp_regs;
836 dr_addr_p = state->dr_addr_wp;
837 dr_ctrl_p = state->dr_ctrl_wp;
838 dr_ref_count = state->dr_ref_count_wp;
839 }
840 else
841 {
842 num_regs = aarch64_num_bp_regs;
843 dr_addr_p = state->dr_addr_bp;
844 dr_ctrl_p = state->dr_ctrl_bp;
845 dr_ref_count = state->dr_ref_count_bp;
846 }
847
848 ctrl = aarch64_point_encode_ctrl_reg (type, len);
849
850 /* Find the entry that matches the ADDR and CTRL. */
851 for (i = 0; i < num_regs; ++i)
852 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
853 {
854 gdb_assert (dr_ref_count[i] != 0);
855 break;
856 }
857
858 /* Not found. */
859 if (i == num_regs)
860 return -1;
861
862 /* Clear our cache. */
863 if (--dr_ref_count[i] == 0)
864 {
865 /* Clear the enable bit. */
866 ctrl &= ~1;
867 dr_addr_p[i] = 0;
868 dr_ctrl_p[i] = ctrl;
869 /* Notify the change. */
870 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
871 }
872
873 return 0;
874 }
875
876 static int
877 aarch64_handle_breakpoint (enum target_point_type type, CORE_ADDR addr,
878 int len, int is_insert)
879 {
880 struct aarch64_debug_reg_state *state;
881
882 /* The hardware breakpoint on AArch64 should always be 4-byte
883 aligned. */
884 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
885 return -1;
886
887 state = aarch64_get_debug_reg_state ();
888
889 if (is_insert)
890 return aarch64_dr_state_insert_one_point (state, type, addr, len);
891 else
892 return aarch64_dr_state_remove_one_point (state, type, addr, len);
893 }
894
895 /* This is essentially the same as aarch64_handle_breakpoint, apart
896 from that it is an aligned watchpoint to be handled. */
897
898 static int
899 aarch64_handle_aligned_watchpoint (enum target_point_type type,
900 CORE_ADDR addr, int len, int is_insert)
901 {
902 struct aarch64_debug_reg_state *state;
903
904 state = aarch64_get_debug_reg_state ();
905
906 if (is_insert)
907 return aarch64_dr_state_insert_one_point (state, type, addr, len);
908 else
909 return aarch64_dr_state_remove_one_point (state, type, addr, len);
910 }
911
912 /* Insert/remove unaligned watchpoint by calling
913 aarch64_align_watchpoint repeatedly until the whole watched region,
914 as represented by ADDR and LEN, has been properly aligned and ready
915 to be written to one or more hardware watchpoint registers.
916 IS_INSERT indicates whether this is an insertion or a deletion.
917 Return 0 if succeed. */
918
919 static int
920 aarch64_handle_unaligned_watchpoint (enum target_point_type type,
921 CORE_ADDR addr, int len, int is_insert)
922 {
923 struct aarch64_debug_reg_state *state
924 = aarch64_get_debug_reg_state ();
925
926 while (len > 0)
927 {
928 CORE_ADDR aligned_addr;
929 int aligned_len, ret;
930
931 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
932 &addr, &len);
933
934 if (is_insert)
935 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
936 aligned_len);
937 else
938 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
939 aligned_len);
940
941 if (debug_hw_points)
942 fprintf (stderr,
943 "handle_unaligned_watchpoint: is_insert: %d\n"
944 " aligned_addr: 0x%s, aligned_len: %d\n"
945 " next_addr: 0x%s, next_len: %d\n",
946 is_insert, paddress (aligned_addr), aligned_len,
947 paddress (addr), len);
948
949 if (ret != 0)
950 return ret;
951 }
952
953 return 0;
954 }
955
956 static int
957 aarch64_handle_watchpoint (enum target_point_type type, CORE_ADDR addr,
958 int len, int is_insert)
959 {
960 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
961 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
962 else
963 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
964 }
965
966 /* Insert a hardware breakpoint/watchpoint.
967 It actually only records the info of the to-be-inserted bp/wp;
968 the actual insertion will happen when threads are resumed.
969
970 Return 0 if succeed;
971 Return 1 if TYPE is unsupported type;
972 Return -1 if an error occurs. */
973
974 static int
975 aarch64_insert_point (char type, CORE_ADDR addr, int len)
976 {
977 int ret;
978 enum target_point_type targ_type;
979
980 if (debug_hw_points)
981 fprintf (stderr, "insert_point on entry (addr=0x%08lx, len=%d)\n",
982 (unsigned long) addr, len);
983
984 /* Determine the type from the packet. */
985 targ_type = Z_packet_to_point_type (type);
986 if (targ_type == point_type_unsupported)
987 return 1;
988
989 if (targ_type != hw_execute)
990 ret =
991 aarch64_handle_watchpoint (targ_type, addr, len, 1 /* is_insert */);
992 else
993 ret =
994 aarch64_handle_breakpoint (targ_type, addr, len, 1 /* is_insert */);
995
996 if (debug_hw_points > 1)
997 aarch64_show_debug_reg_state (aarch64_get_debug_reg_state (),
998 "insert_point", addr, len, targ_type);
999
1000 return ret;
1001 }
1002
1003 /* Remove a hardware breakpoint/watchpoint.
1004 It actually only records the info of the to-be-removed bp/wp,
1005 the actual removal will be done when threads are resumed.
1006
1007 Return 0 if succeed;
1008 Return 1 if TYPE is an unsupported type;
1009 Return -1 if an error occurs. */
1010
1011 static int
1012 aarch64_remove_point (char type, CORE_ADDR addr, int len)
1013 {
1014 int ret;
1015 enum target_point_type targ_type;
1016
1017 if (debug_hw_points)
1018 fprintf (stderr, "remove_point on entry (addr=0x%08lx, len=%d)\n",
1019 (unsigned long) addr, len);
1020
1021 /* Determine the type from the packet. */
1022 targ_type = Z_packet_to_point_type (type);
1023 if (targ_type == point_type_unsupported)
1024 return 1;
1025
1026 /* Set up state pointers. */
1027 if (targ_type != hw_execute)
1028 ret =
1029 aarch64_handle_watchpoint (targ_type, addr, len, 0 /* is_insert */);
1030 else
1031 ret =
1032 aarch64_handle_breakpoint (targ_type, addr, len, 0 /* is_insert */);
1033
1034 if (debug_hw_points > 1)
1035 aarch64_show_debug_reg_state (aarch64_get_debug_reg_state (),
1036 "remove_point", addr, len, targ_type);
1037
1038 return ret;
1039 }
1040
1041 /* Returns the address associated with the watchpoint that hit, if
1042 any; returns 0 otherwise. */
1043
1044 static CORE_ADDR
1045 aarch64_stopped_data_address (void)
1046 {
1047 siginfo_t siginfo;
1048 int pid, i;
1049 struct aarch64_debug_reg_state *state;
1050
1051 pid = lwpid_of (get_thread_lwp (current_inferior));
1052
1053 /* Get the siginfo. */
1054 if (ptrace (PTRACE_GETSIGINFO, pid, NULL, &siginfo) != 0)
1055 return (CORE_ADDR) 0;
1056
1057 /* Need to be a hardware breakpoint/watchpoint trap. */
1058 if (siginfo.si_signo != SIGTRAP
1059 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1060 return (CORE_ADDR) 0;
1061
1062 /* Check if the address matches any watched address. */
1063 state = aarch64_get_debug_reg_state ();
1064 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1065 {
1066 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1067 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1068 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1069 if (state->dr_ref_count_wp[i]
1070 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1071 && addr_trap >= addr_watch
1072 && addr_trap < addr_watch + len)
1073 return addr_trap;
1074 }
1075
1076 return (CORE_ADDR) 0;
1077 }
1078
1079 /* Returns 1 if target was stopped due to a watchpoint hit, 0
1080 otherwise. */
1081
1082 static int
1083 aarch64_stopped_by_watchpoint (void)
1084 {
1085 if (aarch64_stopped_data_address () != 0)
1086 return 1;
1087 else
1088 return 0;
1089 }
1090
1091 /* Fetch the thread-local storage pointer for libthread_db. */
1092
1093 ps_err_e
1094 ps_get_thread_area (const struct ps_prochandle *ph,
1095 lwpid_t lwpid, int idx, void **base)
1096 {
1097 struct iovec iovec;
1098 uint64_t reg;
1099
1100 iovec.iov_base = &reg;
1101 iovec.iov_len = sizeof (reg);
1102
1103 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
1104 return PS_ERR;
1105
1106 /* IDX is the bias from the thread pointer to the beginning of the
1107 thread descriptor. It has to be subtracted due to implementation
1108 quirks in libthread_db. */
1109 *base = (void *) (reg - idx);
1110
1111 return PS_OK;
1112 }
1113
1114 /* Called when a new process is created. */
1115
1116 static struct arch_process_info *
1117 aarch64_linux_new_process (void)
1118 {
1119 struct arch_process_info *info = xcalloc (1, sizeof (*info));
1120
1121 aarch64_init_debug_reg_state (&info->debug_reg_state);
1122
1123 return info;
1124 }
1125
1126 /* Called when a new thread is detected. */
1127
1128 static struct arch_lwp_info *
1129 aarch64_linux_new_thread (void)
1130 {
1131 struct arch_lwp_info *info = xcalloc (1, sizeof (*info));
1132
1133 /* Mark that all the hardware breakpoint/watchpoint register pairs
1134 for this thread need to be initialized (with data from
1135 aarch_process_info.debug_reg_state). */
1136 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
1137 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
1138
1139 return info;
1140 }
1141
1142 /* Called when resuming a thread.
1143 If the debug regs have changed, update the thread's copies. */
1144
1145 static void
1146 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
1147 {
1148 ptid_t ptid = ptid_of (lwp);
1149 struct arch_lwp_info *info = lwp->arch_private;
1150
1151 if (DR_HAS_CHANGED (info->dr_changed_bp)
1152 || DR_HAS_CHANGED (info->dr_changed_wp))
1153 {
1154 int tid = ptid_get_lwp (ptid);
1155 struct process_info *proc = find_process_pid (ptid_get_pid (ptid));
1156 struct aarch64_debug_reg_state *state
1157 = &proc->private->arch_private->debug_reg_state;
1158
1159 if (debug_hw_points)
1160 fprintf (stderr, "prepare_to_resume thread %ld\n", lwpid_of (lwp));
1161
1162 /* Watchpoints. */
1163 if (DR_HAS_CHANGED (info->dr_changed_wp))
1164 {
1165 aarch64_linux_set_debug_regs (state, tid, 1);
1166 DR_CLEAR_CHANGED (info->dr_changed_wp);
1167 }
1168
1169 /* Breakpoints. */
1170 if (DR_HAS_CHANGED (info->dr_changed_bp))
1171 {
1172 aarch64_linux_set_debug_regs (state, tid, 0);
1173 DR_CLEAR_CHANGED (info->dr_changed_bp);
1174 }
1175 }
1176 }
1177
1178 /* ptrace hardware breakpoint resource info is formatted as follows:
1179
1180 31 24 16 8 0
1181 +---------------+--------------+---------------+---------------+
1182 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
1183 +---------------+--------------+---------------+---------------+ */
1184
1185 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
1186 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
1187 #define AARCH64_DEBUG_ARCH_V8 0x6
1188
1189 static void
1190 aarch64_arch_setup (void)
1191 {
1192 int pid;
1193 struct iovec iov;
1194 struct user_hwdebug_state dreg_state;
1195
1196 current_process ()->tdesc = tdesc_aarch64;
1197
1198 pid = lwpid_of (get_thread_lwp (current_inferior));
1199 iov.iov_base = &dreg_state;
1200 iov.iov_len = sizeof (dreg_state);
1201
1202 /* Get hardware watchpoint register info. */
1203 if (ptrace (PTRACE_GETREGSET, pid, NT_ARM_HW_WATCH, &iov) == 0
1204 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
1205 {
1206 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
1207 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
1208 {
1209 warning ("Unexpected number of hardware watchpoint registers reported"
1210 " by ptrace, got %d, expected %d.",
1211 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
1212 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
1213 }
1214 }
1215 else
1216 {
1217 warning ("Unable to determine the number of hardware watchpoints"
1218 " available.");
1219 aarch64_num_wp_regs = 0;
1220 }
1221
1222 /* Get hardware breakpoint register info. */
1223 if (ptrace (PTRACE_GETREGSET, pid, NT_ARM_HW_BREAK, &iov) == 0
1224 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
1225 {
1226 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
1227 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
1228 {
1229 warning ("Unexpected number of hardware breakpoint registers reported"
1230 " by ptrace, got %d, expected %d.",
1231 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
1232 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
1233 }
1234 }
1235 else
1236 {
1237 warning ("Unable to determine the number of hardware breakpoints"
1238 " available.");
1239 aarch64_num_bp_regs = 0;
1240 }
1241 }
1242
1243 static struct regset_info aarch64_regsets[] =
1244 {
1245 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PRSTATUS,
1246 sizeof (struct user_pt_regs), GENERAL_REGS,
1247 aarch64_fill_gregset, aarch64_store_gregset },
1248 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_FPREGSET,
1249 sizeof (struct user_fpsimd_state), FP_REGS,
1250 aarch64_fill_fpregset, aarch64_store_fpregset
1251 },
1252 { 0, 0, 0, -1, -1, NULL, NULL }
1253 };
1254
1255 static struct regsets_info aarch64_regsets_info =
1256 {
1257 aarch64_regsets, /* regsets */
1258 0, /* num_regsets */
1259 NULL, /* disabled_regsets */
1260 };
1261
1262 static struct usrregs_info aarch64_usrregs_info =
1263 {
1264 AARCH64_NUM_REGS,
1265 aarch64_regmap,
1266 };
1267
1268 static struct regs_info regs_info =
1269 {
1270 NULL, /* regset_bitmap */
1271 &aarch64_usrregs_info,
1272 &aarch64_regsets_info,
1273 };
1274
1275 static const struct regs_info *
1276 aarch64_regs_info (void)
1277 {
1278 return &regs_info;
1279 }
1280
1281 struct linux_target_ops the_low_target =
1282 {
1283 aarch64_arch_setup,
1284 aarch64_regs_info,
1285 aarch64_cannot_fetch_register,
1286 aarch64_cannot_store_register,
1287 NULL,
1288 aarch64_get_pc,
1289 aarch64_set_pc,
1290 (const unsigned char *) &aarch64_breakpoint,
1291 aarch64_breakpoint_len,
1292 NULL,
1293 0,
1294 aarch64_breakpoint_at,
1295 aarch64_insert_point,
1296 aarch64_remove_point,
1297 aarch64_stopped_by_watchpoint,
1298 aarch64_stopped_data_address,
1299 NULL,
1300 NULL,
1301 NULL,
1302 aarch64_linux_new_process,
1303 aarch64_linux_new_thread,
1304 aarch64_linux_prepare_to_resume,
1305 };
1306
1307 void
1308 initialize_low_arch (void)
1309 {
1310 init_registers_aarch64 ();
1311
1312 initialize_regsets_info (&aarch64_regsets_info);
1313 }
This page took 0.07848 seconds and 4 git commands to generate.