Remove usages of find_inferior in select_event_lwp
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001
1002 {
1003 maybe_disable_address_space_randomization restore_personality
1004 (disable_randomization);
1005 std::string str_program_args = stringify_argv (program_args);
1006
1007 pid = fork_inferior (program,
1008 str_program_args.c_str (),
1009 get_environ ()->envp (), linux_ptrace_fun,
1010 NULL, NULL, NULL, NULL);
1011 }
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022 }
1023
1024 /* Implement the post_create_inferior target_ops method. */
1025
1026 static void
1027 linux_post_create_inferior (void)
1028 {
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041 }
1042
1043 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046 int
1047 linux_attach_lwp (ptid_t ptid)
1048 {
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126 }
1127
1128 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132 static int
1133 attach_proc_task_lwp_callback (ptid_t ptid)
1134 {
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 static void async_file_mark (void);
1173
1174 /* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177 static int
1178 linux_attach (unsigned long pid)
1179 {
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int
1245 last_thread_of_process_p (int pid)
1246 {
1247 bool seen_one = false;
1248
1249 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1250 {
1251 if (!seen_one)
1252 {
1253 /* This is the first thread of this process we see. */
1254 seen_one = true;
1255 return false;
1256 }
1257 else
1258 {
1259 /* This is the second thread of this process we see. */
1260 return true;
1261 }
1262 });
1263
1264 return thread == NULL;
1265 }
1266
1267 /* Kill LWP. */
1268
1269 static void
1270 linux_kill_one_lwp (struct lwp_info *lwp)
1271 {
1272 struct thread_info *thr = get_lwp_thread (lwp);
1273 int pid = lwpid_of (thr);
1274
1275 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1276 there is no signal context, and ptrace(PTRACE_KILL) (or
1277 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1278 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1279 alternative is to kill with SIGKILL. We only need one SIGKILL
1280 per process, not one for each thread. But since we still support
1281 support debugging programs using raw clone without CLONE_THREAD,
1282 we send one for each thread. For years, we used PTRACE_KILL
1283 only, so we're being a bit paranoid about some old kernels where
1284 PTRACE_KILL might work better (dubious if there are any such, but
1285 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1286 second, and so we're fine everywhere. */
1287
1288 errno = 0;
1289 kill_lwp (pid, SIGKILL);
1290 if (debug_threads)
1291 {
1292 int save_errno = errno;
1293
1294 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1295 target_pid_to_str (ptid_of (thr)),
1296 save_errno ? strerror (save_errno) : "OK");
1297 }
1298
1299 errno = 0;
1300 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1301 if (debug_threads)
1302 {
1303 int save_errno = errno;
1304
1305 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1306 target_pid_to_str (ptid_of (thr)),
1307 save_errno ? strerror (save_errno) : "OK");
1308 }
1309 }
1310
1311 /* Kill LWP and wait for it to die. */
1312
1313 static void
1314 kill_wait_lwp (struct lwp_info *lwp)
1315 {
1316 struct thread_info *thr = get_lwp_thread (lwp);
1317 int pid = ptid_get_pid (ptid_of (thr));
1318 int lwpid = ptid_get_lwp (ptid_of (thr));
1319 int wstat;
1320 int res;
1321
1322 if (debug_threads)
1323 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1324
1325 do
1326 {
1327 linux_kill_one_lwp (lwp);
1328
1329 /* Make sure it died. Notes:
1330
1331 - The loop is most likely unnecessary.
1332
1333 - We don't use linux_wait_for_event as that could delete lwps
1334 while we're iterating over them. We're not interested in
1335 any pending status at this point, only in making sure all
1336 wait status on the kernel side are collected until the
1337 process is reaped.
1338
1339 - We don't use __WALL here as the __WALL emulation relies on
1340 SIGCHLD, and killing a stopped process doesn't generate
1341 one, nor an exit status.
1342 */
1343 res = my_waitpid (lwpid, &wstat, 0);
1344 if (res == -1 && errno == ECHILD)
1345 res = my_waitpid (lwpid, &wstat, __WCLONE);
1346 } while (res > 0 && WIFSTOPPED (wstat));
1347
1348 /* Even if it was stopped, the child may have already disappeared.
1349 E.g., if it was killed by SIGKILL. */
1350 if (res < 0 && errno != ECHILD)
1351 perror_with_name ("kill_wait_lwp");
1352 }
1353
1354 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1355 except the leader. */
1356
1357 static void
1358 kill_one_lwp_callback (thread_info *thread, int pid)
1359 {
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361
1362 /* We avoid killing the first thread here, because of a Linux kernel (at
1363 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1364 the children get a chance to be reaped, it will remain a zombie
1365 forever. */
1366
1367 if (lwpid_of (thread) == pid)
1368 {
1369 if (debug_threads)
1370 debug_printf ("lkop: is last of process %s\n",
1371 target_pid_to_str (thread->id));
1372 return;
1373 }
1374
1375 kill_wait_lwp (lwp);
1376 }
1377
1378 static int
1379 linux_kill (int pid)
1380 {
1381 struct process_info *process;
1382 struct lwp_info *lwp;
1383
1384 process = find_process_pid (pid);
1385 if (process == NULL)
1386 return -1;
1387
1388 /* If we're killing a running inferior, make sure it is stopped
1389 first, as PTRACE_KILL will not work otherwise. */
1390 stop_all_lwps (0, NULL);
1391
1392 for_each_thread (pid, [&] (thread_info *thread)
1393 {
1394 kill_one_lwp_callback (thread, pid);
1395 });
1396
1397 /* See the comment in linux_kill_one_lwp. We did not kill the first
1398 thread in the list, so do so now. */
1399 lwp = find_lwp_pid (pid_to_ptid (pid));
1400
1401 if (lwp == NULL)
1402 {
1403 if (debug_threads)
1404 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1405 pid);
1406 }
1407 else
1408 kill_wait_lwp (lwp);
1409
1410 the_target->mourn (process);
1411
1412 /* Since we presently can only stop all lwps of all processes, we
1413 need to unstop lwps of other processes. */
1414 unstop_all_lwps (0, NULL);
1415 return 0;
1416 }
1417
1418 /* Get pending signal of THREAD, for detaching purposes. This is the
1419 signal the thread last stopped for, which we need to deliver to the
1420 thread when detaching, otherwise, it'd be suppressed/lost. */
1421
1422 static int
1423 get_detach_signal (struct thread_info *thread)
1424 {
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1426 int status;
1427 struct lwp_info *lp = get_thread_lwp (thread);
1428
1429 if (lp->status_pending_p)
1430 status = lp->status_pending;
1431 else
1432 {
1433 /* If the thread had been suspended by gdbserver, and it stopped
1434 cleanly, then it'll have stopped with SIGSTOP. But we don't
1435 want to deliver that SIGSTOP. */
1436 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1437 || thread->last_status.value.sig == GDB_SIGNAL_0)
1438 return 0;
1439
1440 /* Otherwise, we may need to deliver the signal we
1441 intercepted. */
1442 status = lp->last_status;
1443 }
1444
1445 if (!WIFSTOPPED (status))
1446 {
1447 if (debug_threads)
1448 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1449 target_pid_to_str (ptid_of (thread)));
1450 return 0;
1451 }
1452
1453 /* Extended wait statuses aren't real SIGTRAPs. */
1454 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s had stopped with extended "
1458 "status: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 signo = gdb_signal_from_host (WSTOPSIG (status));
1464
1465 if (program_signals_p && !program_signals[signo])
1466 {
1467 if (debug_threads)
1468 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1469 target_pid_to_str (ptid_of (thread)),
1470 gdb_signal_to_string (signo));
1471 return 0;
1472 }
1473 else if (!program_signals_p
1474 /* If we have no way to know which signals GDB does not
1475 want to have passed to the program, assume
1476 SIGTRAP/SIGINT, which is GDB's default. */
1477 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1478 {
1479 if (debug_threads)
1480 debug_printf ("GPS: lwp %s had signal %s, "
1481 "but we don't know if we should pass it. "
1482 "Default to not.\n",
1483 target_pid_to_str (ptid_of (thread)),
1484 gdb_signal_to_string (signo));
1485 return 0;
1486 }
1487 else
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1491 target_pid_to_str (ptid_of (thread)),
1492 gdb_signal_to_string (signo));
1493
1494 return WSTOPSIG (status);
1495 }
1496 }
1497
1498 /* Detach from LWP. */
1499
1500 static void
1501 linux_detach_one_lwp (struct lwp_info *lwp)
1502 {
1503 struct thread_info *thread = get_lwp_thread (lwp);
1504 int sig;
1505 int lwpid;
1506
1507 /* If there is a pending SIGSTOP, get rid of it. */
1508 if (lwp->stop_expected)
1509 {
1510 if (debug_threads)
1511 debug_printf ("Sending SIGCONT to %s\n",
1512 target_pid_to_str (ptid_of (thread)));
1513
1514 kill_lwp (lwpid_of (thread), SIGCONT);
1515 lwp->stop_expected = 0;
1516 }
1517
1518 /* Pass on any pending signal for this thread. */
1519 sig = get_detach_signal (thread);
1520
1521 /* Preparing to resume may try to write registers, and fail if the
1522 lwp is zombie. If that happens, ignore the error. We'll handle
1523 it below, when detach fails with ESRCH. */
1524 TRY
1525 {
1526 /* Flush any pending changes to the process's registers. */
1527 regcache_invalidate_thread (thread);
1528
1529 /* Finally, let it resume. */
1530 if (the_low_target.prepare_to_resume != NULL)
1531 the_low_target.prepare_to_resume (lwp);
1532 }
1533 CATCH (ex, RETURN_MASK_ERROR)
1534 {
1535 if (!check_ptrace_stopped_lwp_gone (lwp))
1536 throw_exception (ex);
1537 }
1538 END_CATCH
1539
1540 lwpid = lwpid_of (thread);
1541 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1542 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1543 {
1544 int save_errno = errno;
1545
1546 /* We know the thread exists, so ESRCH must mean the lwp is
1547 zombie. This can happen if one of the already-detached
1548 threads exits the whole thread group. In that case we're
1549 still attached, and must reap the lwp. */
1550 if (save_errno == ESRCH)
1551 {
1552 int ret, status;
1553
1554 ret = my_waitpid (lwpid, &status, __WALL);
1555 if (ret == -1)
1556 {
1557 warning (_("Couldn't reap LWP %d while detaching: %s"),
1558 lwpid, strerror (errno));
1559 }
1560 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1561 {
1562 warning (_("Reaping LWP %d while detaching "
1563 "returned unexpected status 0x%x"),
1564 lwpid, status);
1565 }
1566 }
1567 else
1568 {
1569 error (_("Can't detach %s: %s"),
1570 target_pid_to_str (ptid_of (thread)),
1571 strerror (save_errno));
1572 }
1573 }
1574 else if (debug_threads)
1575 {
1576 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1577 target_pid_to_str (ptid_of (thread)),
1578 strsignal (sig));
1579 }
1580
1581 delete_lwp (lwp);
1582 }
1583
1584 /* Callback for for_each_thread. Detaches from non-leader threads of a
1585 given process. */
1586
1587 static void
1588 linux_detach_lwp_callback (thread_info *thread)
1589 {
1590 /* We don't actually detach from the thread group leader just yet.
1591 If the thread group exits, we must reap the zombie clone lwps
1592 before we're able to reap the leader. */
1593 if (thread->id.pid () == thread->id.lwp ())
1594 return;
1595
1596 lwp_info *lwp = get_thread_lwp (thread);
1597 linux_detach_one_lwp (lwp);
1598 }
1599
1600 static int
1601 linux_detach (int pid)
1602 {
1603 struct process_info *process;
1604 struct lwp_info *main_lwp;
1605
1606 process = find_process_pid (pid);
1607 if (process == NULL)
1608 return -1;
1609
1610 /* As there's a step over already in progress, let it finish first,
1611 otherwise nesting a stabilize_threads operation on top gets real
1612 messy. */
1613 complete_ongoing_step_over ();
1614
1615 /* Stop all threads before detaching. First, ptrace requires that
1616 the thread is stopped to sucessfully detach. Second, thread_db
1617 may need to uninstall thread event breakpoints from memory, which
1618 only works with a stopped process anyway. */
1619 stop_all_lwps (0, NULL);
1620
1621 #ifdef USE_THREAD_DB
1622 thread_db_detach (process);
1623 #endif
1624
1625 /* Stabilize threads (move out of jump pads). */
1626 stabilize_threads ();
1627
1628 /* Detach from the clone lwps first. If the thread group exits just
1629 while we're detaching, we must reap the clone lwps before we're
1630 able to reap the leader. */
1631 for_each_thread (pid, linux_detach_lwp_callback);
1632
1633 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1634 linux_detach_one_lwp (main_lwp);
1635
1636 the_target->mourn (process);
1637
1638 /* Since we presently can only stop all lwps of all processes, we
1639 need to unstop lwps of other processes. */
1640 unstop_all_lwps (0, NULL);
1641 return 0;
1642 }
1643
1644 /* Remove all LWPs that belong to process PROC from the lwp list. */
1645
1646 static void
1647 linux_mourn (struct process_info *process)
1648 {
1649 struct process_info_private *priv;
1650
1651 #ifdef USE_THREAD_DB
1652 thread_db_mourn (process);
1653 #endif
1654
1655 for_each_thread (process->pid, [] (thread_info *thread)
1656 {
1657 delete_lwp (get_thread_lwp (thread));
1658 });
1659
1660 /* Freeing all private data. */
1661 priv = process->priv;
1662 if (the_low_target.delete_process != NULL)
1663 the_low_target.delete_process (priv->arch_private);
1664 else
1665 gdb_assert (priv->arch_private == NULL);
1666 free (priv);
1667 process->priv = NULL;
1668
1669 remove_process (process);
1670 }
1671
1672 static void
1673 linux_join (int pid)
1674 {
1675 int status, ret;
1676
1677 do {
1678 ret = my_waitpid (pid, &status, 0);
1679 if (WIFEXITED (status) || WIFSIGNALED (status))
1680 break;
1681 } while (ret != -1 || errno != ECHILD);
1682 }
1683
1684 /* Return nonzero if the given thread is still alive. */
1685 static int
1686 linux_thread_alive (ptid_t ptid)
1687 {
1688 struct lwp_info *lwp = find_lwp_pid (ptid);
1689
1690 /* We assume we always know if a thread exits. If a whole process
1691 exited but we still haven't been able to report it to GDB, we'll
1692 hold on to the last lwp of the dead process. */
1693 if (lwp != NULL)
1694 return !lwp_is_marked_dead (lwp);
1695 else
1696 return 0;
1697 }
1698
1699 /* Return 1 if this lwp still has an interesting status pending. If
1700 not (e.g., it had stopped for a breakpoint that is gone), return
1701 false. */
1702
1703 static int
1704 thread_still_has_status_pending_p (struct thread_info *thread)
1705 {
1706 struct lwp_info *lp = get_thread_lwp (thread);
1707
1708 if (!lp->status_pending_p)
1709 return 0;
1710
1711 if (thread->last_resume_kind != resume_stop
1712 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1713 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1714 {
1715 struct thread_info *saved_thread;
1716 CORE_ADDR pc;
1717 int discard = 0;
1718
1719 gdb_assert (lp->last_status != 0);
1720
1721 pc = get_pc (lp);
1722
1723 saved_thread = current_thread;
1724 current_thread = thread;
1725
1726 if (pc != lp->stop_pc)
1727 {
1728 if (debug_threads)
1729 debug_printf ("PC of %ld changed\n",
1730 lwpid_of (thread));
1731 discard = 1;
1732 }
1733
1734 #if !USE_SIGTRAP_SIGINFO
1735 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1736 && !(*the_low_target.breakpoint_at) (pc))
1737 {
1738 if (debug_threads)
1739 debug_printf ("previous SW breakpoint of %ld gone\n",
1740 lwpid_of (thread));
1741 discard = 1;
1742 }
1743 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1744 && !hardware_breakpoint_inserted_here (pc))
1745 {
1746 if (debug_threads)
1747 debug_printf ("previous HW breakpoint of %ld gone\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751 #endif
1752
1753 current_thread = saved_thread;
1754
1755 if (discard)
1756 {
1757 if (debug_threads)
1758 debug_printf ("discarding pending breakpoint status\n");
1759 lp->status_pending_p = 0;
1760 return 0;
1761 }
1762 }
1763
1764 return 1;
1765 }
1766
1767 /* Returns true if LWP is resumed from the client's perspective. */
1768
1769 static int
1770 lwp_resumed (struct lwp_info *lwp)
1771 {
1772 struct thread_info *thread = get_lwp_thread (lwp);
1773
1774 if (thread->last_resume_kind != resume_stop)
1775 return 1;
1776
1777 /* Did gdb send us a `vCont;t', but we haven't reported the
1778 corresponding stop to gdb yet? If so, the thread is still
1779 resumed/running from gdb's perspective. */
1780 if (thread->last_resume_kind == resume_stop
1781 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1782 return 1;
1783
1784 return 0;
1785 }
1786
1787 /* Return true if this lwp has an interesting status pending. */
1788 static bool
1789 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1790 {
1791 struct lwp_info *lp = get_thread_lwp (thread);
1792
1793 /* Check if we're only interested in events from a specific process
1794 or a specific LWP. */
1795 if (!thread->id.matches (ptid))
1796 return 0;
1797
1798 if (!lwp_resumed (lp))
1799 return 0;
1800
1801 if (lp->status_pending_p
1802 && !thread_still_has_status_pending_p (thread))
1803 {
1804 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1805 return 0;
1806 }
1807
1808 return lp->status_pending_p;
1809 }
1810
1811 struct lwp_info *
1812 find_lwp_pid (ptid_t ptid)
1813 {
1814 thread_info *thread = find_thread ([&] (thread_info *thread)
1815 {
1816 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1817 return thread->id.lwp () == lwp;
1818 });
1819
1820 if (thread == NULL)
1821 return NULL;
1822
1823 return get_thread_lwp (thread);
1824 }
1825
1826 /* Return the number of known LWPs in the tgid given by PID. */
1827
1828 static int
1829 num_lwps (int pid)
1830 {
1831 int count = 0;
1832
1833 for_each_thread (pid, [&] (thread_info *thread)
1834 {
1835 count++;
1836 });
1837
1838 return count;
1839 }
1840
1841 /* See nat/linux-nat.h. */
1842
1843 struct lwp_info *
1844 iterate_over_lwps (ptid_t filter,
1845 iterate_over_lwps_ftype callback,
1846 void *data)
1847 {
1848 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1849 {
1850 lwp_info *lwp = get_thread_lwp (thread);
1851
1852 return callback (lwp, data);
1853 });
1854
1855 if (thread == NULL)
1856 return NULL;
1857
1858 return get_thread_lwp (thread);
1859 }
1860
1861 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1862 their exits until all other threads in the group have exited. */
1863
1864 static void
1865 check_zombie_leaders (void)
1866 {
1867 for_each_process ([] (process_info *proc) {
1868 pid_t leader_pid = pid_of (proc);
1869 struct lwp_info *leader_lp;
1870
1871 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1872
1873 if (debug_threads)
1874 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1875 "num_lwps=%d, zombie=%d\n",
1876 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1877 linux_proc_pid_is_zombie (leader_pid));
1878
1879 if (leader_lp != NULL && !leader_lp->stopped
1880 /* Check if there are other threads in the group, as we may
1881 have raced with the inferior simply exiting. */
1882 && !last_thread_of_process_p (leader_pid)
1883 && linux_proc_pid_is_zombie (leader_pid))
1884 {
1885 /* A leader zombie can mean one of two things:
1886
1887 - It exited, and there's an exit status pending
1888 available, or only the leader exited (not the whole
1889 program). In the latter case, we can't waitpid the
1890 leader's exit status until all other threads are gone.
1891
1892 - There are 3 or more threads in the group, and a thread
1893 other than the leader exec'd. On an exec, the Linux
1894 kernel destroys all other threads (except the execing
1895 one) in the thread group, and resets the execing thread's
1896 tid to the tgid. No exit notification is sent for the
1897 execing thread -- from the ptracer's perspective, it
1898 appears as though the execing thread just vanishes.
1899 Until we reap all other threads except the leader and the
1900 execing thread, the leader will be zombie, and the
1901 execing thread will be in `D (disc sleep)'. As soon as
1902 all other threads are reaped, the execing thread changes
1903 it's tid to the tgid, and the previous (zombie) leader
1904 vanishes, giving place to the "new" leader. We could try
1905 distinguishing the exit and exec cases, by waiting once
1906 more, and seeing if something comes out, but it doesn't
1907 sound useful. The previous leader _does_ go away, and
1908 we'll re-add the new one once we see the exec event
1909 (which is just the same as what would happen if the
1910 previous leader did exit voluntarily before some other
1911 thread execs). */
1912
1913 if (debug_threads)
1914 debug_printf ("CZL: Thread group leader %d zombie "
1915 "(it exited, or another thread execd).\n",
1916 leader_pid);
1917
1918 delete_lwp (leader_lp);
1919 }
1920 });
1921 }
1922
1923 /* Callback for `find_thread'. Returns the first LWP that is not
1924 stopped. */
1925
1926 static bool
1927 not_stopped_callback (thread_info *thread, ptid_t filter)
1928 {
1929 if (!thread->id.matches (filter))
1930 return false;
1931
1932 lwp_info *lwp = get_thread_lwp (thread);
1933
1934 return !lwp->stopped;
1935 }
1936
1937 /* Increment LWP's suspend count. */
1938
1939 static void
1940 lwp_suspended_inc (struct lwp_info *lwp)
1941 {
1942 lwp->suspended++;
1943
1944 if (debug_threads && lwp->suspended > 4)
1945 {
1946 struct thread_info *thread = get_lwp_thread (lwp);
1947
1948 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1949 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1950 }
1951 }
1952
1953 /* Decrement LWP's suspend count. */
1954
1955 static void
1956 lwp_suspended_decr (struct lwp_info *lwp)
1957 {
1958 lwp->suspended--;
1959
1960 if (lwp->suspended < 0)
1961 {
1962 struct thread_info *thread = get_lwp_thread (lwp);
1963
1964 internal_error (__FILE__, __LINE__,
1965 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1966 lwp->suspended);
1967 }
1968 }
1969
1970 /* This function should only be called if the LWP got a SIGTRAP.
1971
1972 Handle any tracepoint steps or hits. Return true if a tracepoint
1973 event was handled, 0 otherwise. */
1974
1975 static int
1976 handle_tracepoints (struct lwp_info *lwp)
1977 {
1978 struct thread_info *tinfo = get_lwp_thread (lwp);
1979 int tpoint_related_event = 0;
1980
1981 gdb_assert (lwp->suspended == 0);
1982
1983 /* If this tracepoint hit causes a tracing stop, we'll immediately
1984 uninsert tracepoints. To do this, we temporarily pause all
1985 threads, unpatch away, and then unpause threads. We need to make
1986 sure the unpausing doesn't resume LWP too. */
1987 lwp_suspended_inc (lwp);
1988
1989 /* And we need to be sure that any all-threads-stopping doesn't try
1990 to move threads out of the jump pads, as it could deadlock the
1991 inferior (LWP could be in the jump pad, maybe even holding the
1992 lock.) */
1993
1994 /* Do any necessary step collect actions. */
1995 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1996
1997 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1998
1999 /* See if we just hit a tracepoint and do its main collect
2000 actions. */
2001 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2002
2003 lwp_suspended_decr (lwp);
2004
2005 gdb_assert (lwp->suspended == 0);
2006 gdb_assert (!stabilizing_threads
2007 || (lwp->collecting_fast_tracepoint
2008 != fast_tpoint_collect_result::not_collecting));
2009
2010 if (tpoint_related_event)
2011 {
2012 if (debug_threads)
2013 debug_printf ("got a tracepoint event\n");
2014 return 1;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2021 collection status. */
2022
2023 static fast_tpoint_collect_result
2024 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2025 struct fast_tpoint_collect_status *status)
2026 {
2027 CORE_ADDR thread_area;
2028 struct thread_info *thread = get_lwp_thread (lwp);
2029
2030 if (the_low_target.get_thread_area == NULL)
2031 return fast_tpoint_collect_result::not_collecting;
2032
2033 /* Get the thread area address. This is used to recognize which
2034 thread is which when tracing with the in-process agent library.
2035 We don't read anything from the address, and treat it as opaque;
2036 it's the address itself that we assume is unique per-thread. */
2037 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2038 return fast_tpoint_collect_result::not_collecting;
2039
2040 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2041 }
2042
2043 /* The reason we resume in the caller, is because we want to be able
2044 to pass lwp->status_pending as WSTAT, and we need to clear
2045 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2046 refuses to resume. */
2047
2048 static int
2049 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2050 {
2051 struct thread_info *saved_thread;
2052
2053 saved_thread = current_thread;
2054 current_thread = get_lwp_thread (lwp);
2055
2056 if ((wstat == NULL
2057 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2058 && supports_fast_tracepoints ()
2059 && agent_loaded_p ())
2060 {
2061 struct fast_tpoint_collect_status status;
2062
2063 if (debug_threads)
2064 debug_printf ("Checking whether LWP %ld needs to move out of the "
2065 "jump pad.\n",
2066 lwpid_of (current_thread));
2067
2068 fast_tpoint_collect_result r
2069 = linux_fast_tracepoint_collecting (lwp, &status);
2070
2071 if (wstat == NULL
2072 || (WSTOPSIG (*wstat) != SIGILL
2073 && WSTOPSIG (*wstat) != SIGFPE
2074 && WSTOPSIG (*wstat) != SIGSEGV
2075 && WSTOPSIG (*wstat) != SIGBUS))
2076 {
2077 lwp->collecting_fast_tracepoint = r;
2078
2079 if (r != fast_tpoint_collect_result::not_collecting)
2080 {
2081 if (r == fast_tpoint_collect_result::before_insn
2082 && lwp->exit_jump_pad_bkpt == NULL)
2083 {
2084 /* Haven't executed the original instruction yet.
2085 Set breakpoint there, and wait till it's hit,
2086 then single-step until exiting the jump pad. */
2087 lwp->exit_jump_pad_bkpt
2088 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2089 }
2090
2091 if (debug_threads)
2092 debug_printf ("Checking whether LWP %ld needs to move out of "
2093 "the jump pad...it does\n",
2094 lwpid_of (current_thread));
2095 current_thread = saved_thread;
2096
2097 return 1;
2098 }
2099 }
2100 else
2101 {
2102 /* If we get a synchronous signal while collecting, *and*
2103 while executing the (relocated) original instruction,
2104 reset the PC to point at the tpoint address, before
2105 reporting to GDB. Otherwise, it's an IPA lib bug: just
2106 report the signal to GDB, and pray for the best. */
2107
2108 lwp->collecting_fast_tracepoint
2109 = fast_tpoint_collect_result::not_collecting;
2110
2111 if (r != fast_tpoint_collect_result::not_collecting
2112 && (status.adjusted_insn_addr <= lwp->stop_pc
2113 && lwp->stop_pc < status.adjusted_insn_addr_end))
2114 {
2115 siginfo_t info;
2116 struct regcache *regcache;
2117
2118 /* The si_addr on a few signals references the address
2119 of the faulting instruction. Adjust that as
2120 well. */
2121 if ((WSTOPSIG (*wstat) == SIGILL
2122 || WSTOPSIG (*wstat) == SIGFPE
2123 || WSTOPSIG (*wstat) == SIGBUS
2124 || WSTOPSIG (*wstat) == SIGSEGV)
2125 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2126 (PTRACE_TYPE_ARG3) 0, &info) == 0
2127 /* Final check just to make sure we don't clobber
2128 the siginfo of non-kernel-sent signals. */
2129 && (uintptr_t) info.si_addr == lwp->stop_pc)
2130 {
2131 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2132 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2133 (PTRACE_TYPE_ARG3) 0, &info);
2134 }
2135
2136 regcache = get_thread_regcache (current_thread, 1);
2137 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2138 lwp->stop_pc = status.tpoint_addr;
2139
2140 /* Cancel any fast tracepoint lock this thread was
2141 holding. */
2142 force_unlock_trace_buffer ();
2143 }
2144
2145 if (lwp->exit_jump_pad_bkpt != NULL)
2146 {
2147 if (debug_threads)
2148 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2149 "stopping all threads momentarily.\n");
2150
2151 stop_all_lwps (1, lwp);
2152
2153 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2154 lwp->exit_jump_pad_bkpt = NULL;
2155
2156 unstop_all_lwps (1, lwp);
2157
2158 gdb_assert (lwp->suspended >= 0);
2159 }
2160 }
2161 }
2162
2163 if (debug_threads)
2164 debug_printf ("Checking whether LWP %ld needs to move out of the "
2165 "jump pad...no\n",
2166 lwpid_of (current_thread));
2167
2168 current_thread = saved_thread;
2169 return 0;
2170 }
2171
2172 /* Enqueue one signal in the "signals to report later when out of the
2173 jump pad" list. */
2174
2175 static void
2176 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2177 {
2178 struct pending_signals *p_sig;
2179 struct thread_info *thread = get_lwp_thread (lwp);
2180
2181 if (debug_threads)
2182 debug_printf ("Deferring signal %d for LWP %ld.\n",
2183 WSTOPSIG (*wstat), lwpid_of (thread));
2184
2185 if (debug_threads)
2186 {
2187 struct pending_signals *sig;
2188
2189 for (sig = lwp->pending_signals_to_report;
2190 sig != NULL;
2191 sig = sig->prev)
2192 debug_printf (" Already queued %d\n",
2193 sig->signal);
2194
2195 debug_printf (" (no more currently queued signals)\n");
2196 }
2197
2198 /* Don't enqueue non-RT signals if they are already in the deferred
2199 queue. (SIGSTOP being the easiest signal to see ending up here
2200 twice) */
2201 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2202 {
2203 struct pending_signals *sig;
2204
2205 for (sig = lwp->pending_signals_to_report;
2206 sig != NULL;
2207 sig = sig->prev)
2208 {
2209 if (sig->signal == WSTOPSIG (*wstat))
2210 {
2211 if (debug_threads)
2212 debug_printf ("Not requeuing already queued non-RT signal %d"
2213 " for LWP %ld\n",
2214 sig->signal,
2215 lwpid_of (thread));
2216 return;
2217 }
2218 }
2219 }
2220
2221 p_sig = XCNEW (struct pending_signals);
2222 p_sig->prev = lwp->pending_signals_to_report;
2223 p_sig->signal = WSTOPSIG (*wstat);
2224
2225 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2226 &p_sig->info);
2227
2228 lwp->pending_signals_to_report = p_sig;
2229 }
2230
2231 /* Dequeue one signal from the "signals to report later when out of
2232 the jump pad" list. */
2233
2234 static int
2235 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2236 {
2237 struct thread_info *thread = get_lwp_thread (lwp);
2238
2239 if (lwp->pending_signals_to_report != NULL)
2240 {
2241 struct pending_signals **p_sig;
2242
2243 p_sig = &lwp->pending_signals_to_report;
2244 while ((*p_sig)->prev != NULL)
2245 p_sig = &(*p_sig)->prev;
2246
2247 *wstat = W_STOPCODE ((*p_sig)->signal);
2248 if ((*p_sig)->info.si_signo != 0)
2249 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2250 &(*p_sig)->info);
2251 free (*p_sig);
2252 *p_sig = NULL;
2253
2254 if (debug_threads)
2255 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2256 WSTOPSIG (*wstat), lwpid_of (thread));
2257
2258 if (debug_threads)
2259 {
2260 struct pending_signals *sig;
2261
2262 for (sig = lwp->pending_signals_to_report;
2263 sig != NULL;
2264 sig = sig->prev)
2265 debug_printf (" Still queued %d\n",
2266 sig->signal);
2267
2268 debug_printf (" (no more queued signals)\n");
2269 }
2270
2271 return 1;
2272 }
2273
2274 return 0;
2275 }
2276
2277 /* Fetch the possibly triggered data watchpoint info and store it in
2278 CHILD.
2279
2280 On some archs, like x86, that use debug registers to set
2281 watchpoints, it's possible that the way to know which watched
2282 address trapped, is to check the register that is used to select
2283 which address to watch. Problem is, between setting the watchpoint
2284 and reading back which data address trapped, the user may change
2285 the set of watchpoints, and, as a consequence, GDB changes the
2286 debug registers in the inferior. To avoid reading back a stale
2287 stopped-data-address when that happens, we cache in LP the fact
2288 that a watchpoint trapped, and the corresponding data address, as
2289 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2290 registers meanwhile, we have the cached data we can rely on. */
2291
2292 static int
2293 check_stopped_by_watchpoint (struct lwp_info *child)
2294 {
2295 if (the_low_target.stopped_by_watchpoint != NULL)
2296 {
2297 struct thread_info *saved_thread;
2298
2299 saved_thread = current_thread;
2300 current_thread = get_lwp_thread (child);
2301
2302 if (the_low_target.stopped_by_watchpoint ())
2303 {
2304 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2305
2306 if (the_low_target.stopped_data_address != NULL)
2307 child->stopped_data_address
2308 = the_low_target.stopped_data_address ();
2309 else
2310 child->stopped_data_address = 0;
2311 }
2312
2313 current_thread = saved_thread;
2314 }
2315
2316 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2317 }
2318
2319 /* Return the ptrace options that we want to try to enable. */
2320
2321 static int
2322 linux_low_ptrace_options (int attached)
2323 {
2324 int options = 0;
2325
2326 if (!attached)
2327 options |= PTRACE_O_EXITKILL;
2328
2329 if (report_fork_events)
2330 options |= PTRACE_O_TRACEFORK;
2331
2332 if (report_vfork_events)
2333 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2334
2335 if (report_exec_events)
2336 options |= PTRACE_O_TRACEEXEC;
2337
2338 options |= PTRACE_O_TRACESYSGOOD;
2339
2340 return options;
2341 }
2342
2343 /* Do low-level handling of the event, and check if we should go on
2344 and pass it to caller code. Return the affected lwp if we are, or
2345 NULL otherwise. */
2346
2347 static struct lwp_info *
2348 linux_low_filter_event (int lwpid, int wstat)
2349 {
2350 struct lwp_info *child;
2351 struct thread_info *thread;
2352 int have_stop_pc = 0;
2353
2354 child = find_lwp_pid (pid_to_ptid (lwpid));
2355
2356 /* Check for stop events reported by a process we didn't already
2357 know about - anything not already in our LWP list.
2358
2359 If we're expecting to receive stopped processes after
2360 fork, vfork, and clone events, then we'll just add the
2361 new one to our list and go back to waiting for the event
2362 to be reported - the stopped process might be returned
2363 from waitpid before or after the event is.
2364
2365 But note the case of a non-leader thread exec'ing after the
2366 leader having exited, and gone from our lists (because
2367 check_zombie_leaders deleted it). The non-leader thread
2368 changes its tid to the tgid. */
2369
2370 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2371 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2372 {
2373 ptid_t child_ptid;
2374
2375 /* A multi-thread exec after we had seen the leader exiting. */
2376 if (debug_threads)
2377 {
2378 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2379 "after exec.\n", lwpid);
2380 }
2381
2382 child_ptid = ptid_build (lwpid, lwpid, 0);
2383 child = add_lwp (child_ptid);
2384 child->stopped = 1;
2385 current_thread = child->thread;
2386 }
2387
2388 /* If we didn't find a process, one of two things presumably happened:
2389 - A process we started and then detached from has exited. Ignore it.
2390 - A process we are controlling has forked and the new child's stop
2391 was reported to us by the kernel. Save its PID. */
2392 if (child == NULL && WIFSTOPPED (wstat))
2393 {
2394 add_to_pid_list (&stopped_pids, lwpid, wstat);
2395 return NULL;
2396 }
2397 else if (child == NULL)
2398 return NULL;
2399
2400 thread = get_lwp_thread (child);
2401
2402 child->stopped = 1;
2403
2404 child->last_status = wstat;
2405
2406 /* Check if the thread has exited. */
2407 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2408 {
2409 if (debug_threads)
2410 debug_printf ("LLFE: %d exited.\n", lwpid);
2411
2412 if (finish_step_over (child))
2413 {
2414 /* Unsuspend all other LWPs, and set them back running again. */
2415 unsuspend_all_lwps (child);
2416 }
2417
2418 /* If there is at least one more LWP, then the exit signal was
2419 not the end of the debugged application and should be
2420 ignored, unless GDB wants to hear about thread exits. */
2421 if (report_thread_events
2422 || last_thread_of_process_p (pid_of (thread)))
2423 {
2424 /* Since events are serialized to GDB core, and we can't
2425 report this one right now. Leave the status pending for
2426 the next time we're able to report it. */
2427 mark_lwp_dead (child, wstat);
2428 return child;
2429 }
2430 else
2431 {
2432 delete_lwp (child);
2433 return NULL;
2434 }
2435 }
2436
2437 gdb_assert (WIFSTOPPED (wstat));
2438
2439 if (WIFSTOPPED (wstat))
2440 {
2441 struct process_info *proc;
2442
2443 /* Architecture-specific setup after inferior is running. */
2444 proc = find_process_pid (pid_of (thread));
2445 if (proc->tdesc == NULL)
2446 {
2447 if (proc->attached)
2448 {
2449 /* This needs to happen after we have attached to the
2450 inferior and it is stopped for the first time, but
2451 before we access any inferior registers. */
2452 linux_arch_setup_thread (thread);
2453 }
2454 else
2455 {
2456 /* The process is started, but GDBserver will do
2457 architecture-specific setup after the program stops at
2458 the first instruction. */
2459 child->status_pending_p = 1;
2460 child->status_pending = wstat;
2461 return child;
2462 }
2463 }
2464 }
2465
2466 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2467 {
2468 struct process_info *proc = find_process_pid (pid_of (thread));
2469 int options = linux_low_ptrace_options (proc->attached);
2470
2471 linux_enable_event_reporting (lwpid, options);
2472 child->must_set_ptrace_flags = 0;
2473 }
2474
2475 /* Always update syscall_state, even if it will be filtered later. */
2476 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2477 {
2478 child->syscall_state
2479 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2480 ? TARGET_WAITKIND_SYSCALL_RETURN
2481 : TARGET_WAITKIND_SYSCALL_ENTRY);
2482 }
2483 else
2484 {
2485 /* Almost all other ptrace-stops are known to be outside of system
2486 calls, with further exceptions in handle_extended_wait. */
2487 child->syscall_state = TARGET_WAITKIND_IGNORE;
2488 }
2489
2490 /* Be careful to not overwrite stop_pc until save_stop_reason is
2491 called. */
2492 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2493 && linux_is_extended_waitstatus (wstat))
2494 {
2495 child->stop_pc = get_pc (child);
2496 if (handle_extended_wait (&child, wstat))
2497 {
2498 /* The event has been handled, so just return without
2499 reporting it. */
2500 return NULL;
2501 }
2502 }
2503
2504 if (linux_wstatus_maybe_breakpoint (wstat))
2505 {
2506 if (save_stop_reason (child))
2507 have_stop_pc = 1;
2508 }
2509
2510 if (!have_stop_pc)
2511 child->stop_pc = get_pc (child);
2512
2513 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2514 && child->stop_expected)
2515 {
2516 if (debug_threads)
2517 debug_printf ("Expected stop.\n");
2518 child->stop_expected = 0;
2519
2520 if (thread->last_resume_kind == resume_stop)
2521 {
2522 /* We want to report the stop to the core. Treat the
2523 SIGSTOP as a normal event. */
2524 if (debug_threads)
2525 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2526 target_pid_to_str (ptid_of (thread)));
2527 }
2528 else if (stopping_threads != NOT_STOPPING_THREADS)
2529 {
2530 /* Stopping threads. We don't want this SIGSTOP to end up
2531 pending. */
2532 if (debug_threads)
2533 debug_printf ("LLW: SIGSTOP caught for %s "
2534 "while stopping threads.\n",
2535 target_pid_to_str (ptid_of (thread)));
2536 return NULL;
2537 }
2538 else
2539 {
2540 /* This is a delayed SIGSTOP. Filter out the event. */
2541 if (debug_threads)
2542 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2543 child->stepping ? "step" : "continue",
2544 target_pid_to_str (ptid_of (thread)));
2545
2546 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2547 return NULL;
2548 }
2549 }
2550
2551 child->status_pending_p = 1;
2552 child->status_pending = wstat;
2553 return child;
2554 }
2555
2556 /* Return true if THREAD is doing hardware single step. */
2557
2558 static int
2559 maybe_hw_step (struct thread_info *thread)
2560 {
2561 if (can_hardware_single_step ())
2562 return 1;
2563 else
2564 {
2565 /* GDBserver must insert single-step breakpoint for software
2566 single step. */
2567 gdb_assert (has_single_step_breakpoints (thread));
2568 return 0;
2569 }
2570 }
2571
2572 /* Resume LWPs that are currently stopped without any pending status
2573 to report, but are resumed from the core's perspective. */
2574
2575 static void
2576 resume_stopped_resumed_lwps (thread_info *thread)
2577 {
2578 struct lwp_info *lp = get_thread_lwp (thread);
2579
2580 if (lp->stopped
2581 && !lp->suspended
2582 && !lp->status_pending_p
2583 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2584 {
2585 int step = 0;
2586
2587 if (thread->last_resume_kind == resume_step)
2588 step = maybe_hw_step (thread);
2589
2590 if (debug_threads)
2591 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2592 target_pid_to_str (ptid_of (thread)),
2593 paddress (lp->stop_pc),
2594 step);
2595
2596 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2597 }
2598 }
2599
2600 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2601 match FILTER_PTID (leaving others pending). The PTIDs can be:
2602 minus_one_ptid, to specify any child; a pid PTID, specifying all
2603 lwps of a thread group; or a PTID representing a single lwp. Store
2604 the stop status through the status pointer WSTAT. OPTIONS is
2605 passed to the waitpid call. Return 0 if no event was found and
2606 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2607 was found. Return the PID of the stopped child otherwise. */
2608
2609 static int
2610 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2611 int *wstatp, int options)
2612 {
2613 struct thread_info *event_thread;
2614 struct lwp_info *event_child, *requested_child;
2615 sigset_t block_mask, prev_mask;
2616
2617 retry:
2618 /* N.B. event_thread points to the thread_info struct that contains
2619 event_child. Keep them in sync. */
2620 event_thread = NULL;
2621 event_child = NULL;
2622 requested_child = NULL;
2623
2624 /* Check for a lwp with a pending status. */
2625
2626 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2627 {
2628 event_thread = find_thread_in_random ([&] (thread_info *thread)
2629 {
2630 return status_pending_p_callback (thread, filter_ptid);
2631 });
2632
2633 if (event_thread != NULL)
2634 event_child = get_thread_lwp (event_thread);
2635 if (debug_threads && event_thread)
2636 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2637 }
2638 else if (!ptid_equal (filter_ptid, null_ptid))
2639 {
2640 requested_child = find_lwp_pid (filter_ptid);
2641
2642 if (stopping_threads == NOT_STOPPING_THREADS
2643 && requested_child->status_pending_p
2644 && (requested_child->collecting_fast_tracepoint
2645 != fast_tpoint_collect_result::not_collecting))
2646 {
2647 enqueue_one_deferred_signal (requested_child,
2648 &requested_child->status_pending);
2649 requested_child->status_pending_p = 0;
2650 requested_child->status_pending = 0;
2651 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2652 }
2653
2654 if (requested_child->suspended
2655 && requested_child->status_pending_p)
2656 {
2657 internal_error (__FILE__, __LINE__,
2658 "requesting an event out of a"
2659 " suspended child?");
2660 }
2661
2662 if (requested_child->status_pending_p)
2663 {
2664 event_child = requested_child;
2665 event_thread = get_lwp_thread (event_child);
2666 }
2667 }
2668
2669 if (event_child != NULL)
2670 {
2671 if (debug_threads)
2672 debug_printf ("Got an event from pending child %ld (%04x)\n",
2673 lwpid_of (event_thread), event_child->status_pending);
2674 *wstatp = event_child->status_pending;
2675 event_child->status_pending_p = 0;
2676 event_child->status_pending = 0;
2677 current_thread = event_thread;
2678 return lwpid_of (event_thread);
2679 }
2680
2681 /* But if we don't find a pending event, we'll have to wait.
2682
2683 We only enter this loop if no process has a pending wait status.
2684 Thus any action taken in response to a wait status inside this
2685 loop is responding as soon as we detect the status, not after any
2686 pending events. */
2687
2688 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2689 all signals while here. */
2690 sigfillset (&block_mask);
2691 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2692
2693 /* Always pull all events out of the kernel. We'll randomly select
2694 an event LWP out of all that have events, to prevent
2695 starvation. */
2696 while (event_child == NULL)
2697 {
2698 pid_t ret = 0;
2699
2700 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2701 quirks:
2702
2703 - If the thread group leader exits while other threads in the
2704 thread group still exist, waitpid(TGID, ...) hangs. That
2705 waitpid won't return an exit status until the other threads
2706 in the group are reaped.
2707
2708 - When a non-leader thread execs, that thread just vanishes
2709 without reporting an exit (so we'd hang if we waited for it
2710 explicitly in that case). The exec event is reported to
2711 the TGID pid. */
2712 errno = 0;
2713 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2714
2715 if (debug_threads)
2716 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2717 ret, errno ? strerror (errno) : "ERRNO-OK");
2718
2719 if (ret > 0)
2720 {
2721 if (debug_threads)
2722 {
2723 debug_printf ("LLW: waitpid %ld received %s\n",
2724 (long) ret, status_to_str (*wstatp));
2725 }
2726
2727 /* Filter all events. IOW, leave all events pending. We'll
2728 randomly select an event LWP out of all that have events
2729 below. */
2730 linux_low_filter_event (ret, *wstatp);
2731 /* Retry until nothing comes out of waitpid. A single
2732 SIGCHLD can indicate more than one child stopped. */
2733 continue;
2734 }
2735
2736 /* Now that we've pulled all events out of the kernel, resume
2737 LWPs that don't have an interesting event to report. */
2738 if (stopping_threads == NOT_STOPPING_THREADS)
2739 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2740
2741 /* ... and find an LWP with a status to report to the core, if
2742 any. */
2743 event_thread = find_thread_in_random ([&] (thread_info *thread)
2744 {
2745 return status_pending_p_callback (thread, filter_ptid);
2746 });
2747
2748 if (event_thread != NULL)
2749 {
2750 event_child = get_thread_lwp (event_thread);
2751 *wstatp = event_child->status_pending;
2752 event_child->status_pending_p = 0;
2753 event_child->status_pending = 0;
2754 break;
2755 }
2756
2757 /* Check for zombie thread group leaders. Those can't be reaped
2758 until all other threads in the thread group are. */
2759 check_zombie_leaders ();
2760
2761 auto not_stopped = [&] (thread_info *thread)
2762 {
2763 return not_stopped_callback (thread, wait_ptid);
2764 };
2765
2766 /* If there are no resumed children left in the set of LWPs we
2767 want to wait for, bail. We can't just block in
2768 waitpid/sigsuspend, because lwps might have been left stopped
2769 in trace-stop state, and we'd be stuck forever waiting for
2770 their status to change (which would only happen if we resumed
2771 them). Even if WNOHANG is set, this return code is preferred
2772 over 0 (below), as it is more detailed. */
2773 if (find_thread (not_stopped) == NULL)
2774 {
2775 if (debug_threads)
2776 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2777 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2778 return -1;
2779 }
2780
2781 /* No interesting event to report to the caller. */
2782 if ((options & WNOHANG))
2783 {
2784 if (debug_threads)
2785 debug_printf ("WNOHANG set, no event found\n");
2786
2787 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2788 return 0;
2789 }
2790
2791 /* Block until we get an event reported with SIGCHLD. */
2792 if (debug_threads)
2793 debug_printf ("sigsuspend'ing\n");
2794
2795 sigsuspend (&prev_mask);
2796 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2797 goto retry;
2798 }
2799
2800 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2801
2802 current_thread = event_thread;
2803
2804 return lwpid_of (event_thread);
2805 }
2806
2807 /* Wait for an event from child(ren) PTID. PTIDs can be:
2808 minus_one_ptid, to specify any child; a pid PTID, specifying all
2809 lwps of a thread group; or a PTID representing a single lwp. Store
2810 the stop status through the status pointer WSTAT. OPTIONS is
2811 passed to the waitpid call. Return 0 if no event was found and
2812 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2813 was found. Return the PID of the stopped child otherwise. */
2814
2815 static int
2816 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2817 {
2818 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2819 }
2820
2821 /* Select one LWP out of those that have events pending. */
2822
2823 static void
2824 select_event_lwp (struct lwp_info **orig_lp)
2825 {
2826 int random_selector;
2827 struct thread_info *event_thread = NULL;
2828
2829 /* In all-stop, give preference to the LWP that is being
2830 single-stepped. There will be at most one, and it's the LWP that
2831 the core is most interested in. If we didn't do this, then we'd
2832 have to handle pending step SIGTRAPs somehow in case the core
2833 later continues the previously-stepped thread, otherwise we'd
2834 report the pending SIGTRAP, and the core, not having stepped the
2835 thread, wouldn't understand what the trap was for, and therefore
2836 would report it to the user as a random signal. */
2837 if (!non_stop)
2838 {
2839 event_thread = find_thread ([] (thread_info *thread)
2840 {
2841 lwp_info *lp = get_thread_lwp (thread);
2842
2843 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2844 && thread->last_resume_kind == resume_step
2845 && lp->status_pending_p);
2846 });
2847
2848 if (event_thread != NULL)
2849 {
2850 if (debug_threads)
2851 debug_printf ("SEL: Select single-step %s\n",
2852 target_pid_to_str (ptid_of (event_thread)));
2853 }
2854 }
2855 if (event_thread == NULL)
2856 {
2857 /* No single-stepping LWP. Select one at random, out of those
2858 which have had events. */
2859
2860 /* First see how many events we have. */
2861 int num_events = 0;
2862 for_each_thread ([&] (thread_info *thread)
2863 {
2864 lwp_info *lp = get_thread_lwp (thread);
2865
2866 /* Count only resumed LWPs that have an event pending. */
2867 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2868 && lp->status_pending_p)
2869 num_events++;
2870 });
2871 gdb_assert (num_events > 0);
2872
2873 /* Now randomly pick a LWP out of those that have had
2874 events. */
2875 random_selector = (int)
2876 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2877
2878 if (debug_threads && num_events > 1)
2879 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2880 num_events, random_selector);
2881
2882 event_thread = find_thread ([&] (thread_info *thread)
2883 {
2884 lwp_info *lp = get_thread_lwp (thread);
2885
2886 /* Select only resumed LWPs that have an event pending. */
2887 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2888 && lp->status_pending_p)
2889 if (random_selector-- == 0)
2890 return true;
2891
2892 return false;
2893 });
2894 }
2895
2896 if (event_thread != NULL)
2897 {
2898 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2899
2900 /* Switch the event LWP. */
2901 *orig_lp = event_lp;
2902 }
2903 }
2904
2905 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2906 NULL. */
2907
2908 static void
2909 unsuspend_all_lwps (struct lwp_info *except)
2910 {
2911 for_each_thread ([&] (thread_info *thread)
2912 {
2913 lwp_info *lwp = get_thread_lwp (thread);
2914
2915 if (lwp != except)
2916 lwp_suspended_decr (lwp);
2917 });
2918 }
2919
2920 static void move_out_of_jump_pad_callback (thread_info *thread);
2921 static bool stuck_in_jump_pad_callback (thread_info *thread);
2922 static int lwp_running (thread_info *thread, void *data);
2923 static ptid_t linux_wait_1 (ptid_t ptid,
2924 struct target_waitstatus *ourstatus,
2925 int target_options);
2926
2927 /* Stabilize threads (move out of jump pads).
2928
2929 If a thread is midway collecting a fast tracepoint, we need to
2930 finish the collection and move it out of the jump pad before
2931 reporting the signal.
2932
2933 This avoids recursion while collecting (when a signal arrives
2934 midway, and the signal handler itself collects), which would trash
2935 the trace buffer. In case the user set a breakpoint in a signal
2936 handler, this avoids the backtrace showing the jump pad, etc..
2937 Most importantly, there are certain things we can't do safely if
2938 threads are stopped in a jump pad (or in its callee's). For
2939 example:
2940
2941 - starting a new trace run. A thread still collecting the
2942 previous run, could trash the trace buffer when resumed. The trace
2943 buffer control structures would have been reset but the thread had
2944 no way to tell. The thread could even midway memcpy'ing to the
2945 buffer, which would mean that when resumed, it would clobber the
2946 trace buffer that had been set for a new run.
2947
2948 - we can't rewrite/reuse the jump pads for new tracepoints
2949 safely. Say you do tstart while a thread is stopped midway while
2950 collecting. When the thread is later resumed, it finishes the
2951 collection, and returns to the jump pad, to execute the original
2952 instruction that was under the tracepoint jump at the time the
2953 older run had been started. If the jump pad had been rewritten
2954 since for something else in the new run, the thread would now
2955 execute the wrong / random instructions. */
2956
2957 static void
2958 linux_stabilize_threads (void)
2959 {
2960 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2961
2962 if (thread_stuck != NULL)
2963 {
2964 if (debug_threads)
2965 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2966 lwpid_of (thread_stuck));
2967 return;
2968 }
2969
2970 thread_info *saved_thread = current_thread;
2971
2972 stabilizing_threads = 1;
2973
2974 /* Kick 'em all. */
2975 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2976
2977 /* Loop until all are stopped out of the jump pads. */
2978 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2979 {
2980 struct target_waitstatus ourstatus;
2981 struct lwp_info *lwp;
2982 int wstat;
2983
2984 /* Note that we go through the full wait even loop. While
2985 moving threads out of jump pad, we need to be able to step
2986 over internal breakpoints and such. */
2987 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2988
2989 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2990 {
2991 lwp = get_thread_lwp (current_thread);
2992
2993 /* Lock it. */
2994 lwp_suspended_inc (lwp);
2995
2996 if (ourstatus.value.sig != GDB_SIGNAL_0
2997 || current_thread->last_resume_kind == resume_stop)
2998 {
2999 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3000 enqueue_one_deferred_signal (lwp, &wstat);
3001 }
3002 }
3003 }
3004
3005 unsuspend_all_lwps (NULL);
3006
3007 stabilizing_threads = 0;
3008
3009 current_thread = saved_thread;
3010
3011 if (debug_threads)
3012 {
3013 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3014
3015 if (thread_stuck != NULL)
3016 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3017 lwpid_of (thread_stuck));
3018 }
3019 }
3020
3021 /* Convenience function that is called when the kernel reports an
3022 event that is not passed out to GDB. */
3023
3024 static ptid_t
3025 ignore_event (struct target_waitstatus *ourstatus)
3026 {
3027 /* If we got an event, there may still be others, as a single
3028 SIGCHLD can indicate more than one child stopped. This forces
3029 another target_wait call. */
3030 async_file_mark ();
3031
3032 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3033 return null_ptid;
3034 }
3035
3036 /* Convenience function that is called when the kernel reports an exit
3037 event. This decides whether to report the event to GDB as a
3038 process exit event, a thread exit event, or to suppress the
3039 event. */
3040
3041 static ptid_t
3042 filter_exit_event (struct lwp_info *event_child,
3043 struct target_waitstatus *ourstatus)
3044 {
3045 struct thread_info *thread = get_lwp_thread (event_child);
3046 ptid_t ptid = ptid_of (thread);
3047
3048 if (!last_thread_of_process_p (pid_of (thread)))
3049 {
3050 if (report_thread_events)
3051 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3052 else
3053 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3054
3055 delete_lwp (event_child);
3056 }
3057 return ptid;
3058 }
3059
3060 /* Returns 1 if GDB is interested in any event_child syscalls. */
3061
3062 static int
3063 gdb_catching_syscalls_p (struct lwp_info *event_child)
3064 {
3065 struct thread_info *thread = get_lwp_thread (event_child);
3066 struct process_info *proc = get_thread_process (thread);
3067
3068 return !proc->syscalls_to_catch.empty ();
3069 }
3070
3071 /* Returns 1 if GDB is interested in the event_child syscall.
3072 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3073
3074 static int
3075 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3076 {
3077 int sysno;
3078 struct thread_info *thread = get_lwp_thread (event_child);
3079 struct process_info *proc = get_thread_process (thread);
3080
3081 if (proc->syscalls_to_catch.empty ())
3082 return 0;
3083
3084 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3085 return 1;
3086
3087 get_syscall_trapinfo (event_child, &sysno);
3088
3089 for (int iter : proc->syscalls_to_catch)
3090 if (iter == sysno)
3091 return 1;
3092
3093 return 0;
3094 }
3095
3096 /* Wait for process, returns status. */
3097
3098 static ptid_t
3099 linux_wait_1 (ptid_t ptid,
3100 struct target_waitstatus *ourstatus, int target_options)
3101 {
3102 int w;
3103 struct lwp_info *event_child;
3104 int options;
3105 int pid;
3106 int step_over_finished;
3107 int bp_explains_trap;
3108 int maybe_internal_trap;
3109 int report_to_gdb;
3110 int trace_event;
3111 int in_step_range;
3112 int any_resumed;
3113
3114 if (debug_threads)
3115 {
3116 debug_enter ();
3117 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3118 }
3119
3120 /* Translate generic target options into linux options. */
3121 options = __WALL;
3122 if (target_options & TARGET_WNOHANG)
3123 options |= WNOHANG;
3124
3125 bp_explains_trap = 0;
3126 trace_event = 0;
3127 in_step_range = 0;
3128 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3129
3130 auto status_pending_p_any = [&] (thread_info *thread)
3131 {
3132 return status_pending_p_callback (thread, minus_one_ptid);
3133 };
3134
3135 auto not_stopped = [&] (thread_info *thread)
3136 {
3137 return not_stopped_callback (thread, minus_one_ptid);
3138 };
3139
3140 /* Find a resumed LWP, if any. */
3141 if (find_thread (status_pending_p_any) != NULL)
3142 any_resumed = 1;
3143 else if (find_thread (not_stopped) != NULL)
3144 any_resumed = 1;
3145 else
3146 any_resumed = 0;
3147
3148 if (ptid_equal (step_over_bkpt, null_ptid))
3149 pid = linux_wait_for_event (ptid, &w, options);
3150 else
3151 {
3152 if (debug_threads)
3153 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3154 target_pid_to_str (step_over_bkpt));
3155 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3156 }
3157
3158 if (pid == 0 || (pid == -1 && !any_resumed))
3159 {
3160 gdb_assert (target_options & TARGET_WNOHANG);
3161
3162 if (debug_threads)
3163 {
3164 debug_printf ("linux_wait_1 ret = null_ptid, "
3165 "TARGET_WAITKIND_IGNORE\n");
3166 debug_exit ();
3167 }
3168
3169 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3170 return null_ptid;
3171 }
3172 else if (pid == -1)
3173 {
3174 if (debug_threads)
3175 {
3176 debug_printf ("linux_wait_1 ret = null_ptid, "
3177 "TARGET_WAITKIND_NO_RESUMED\n");
3178 debug_exit ();
3179 }
3180
3181 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3182 return null_ptid;
3183 }
3184
3185 event_child = get_thread_lwp (current_thread);
3186
3187 /* linux_wait_for_event only returns an exit status for the last
3188 child of a process. Report it. */
3189 if (WIFEXITED (w) || WIFSIGNALED (w))
3190 {
3191 if (WIFEXITED (w))
3192 {
3193 ourstatus->kind = TARGET_WAITKIND_EXITED;
3194 ourstatus->value.integer = WEXITSTATUS (w);
3195
3196 if (debug_threads)
3197 {
3198 debug_printf ("linux_wait_1 ret = %s, exited with "
3199 "retcode %d\n",
3200 target_pid_to_str (ptid_of (current_thread)),
3201 WEXITSTATUS (w));
3202 debug_exit ();
3203 }
3204 }
3205 else
3206 {
3207 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3208 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3209
3210 if (debug_threads)
3211 {
3212 debug_printf ("linux_wait_1 ret = %s, terminated with "
3213 "signal %d\n",
3214 target_pid_to_str (ptid_of (current_thread)),
3215 WTERMSIG (w));
3216 debug_exit ();
3217 }
3218 }
3219
3220 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3221 return filter_exit_event (event_child, ourstatus);
3222
3223 return ptid_of (current_thread);
3224 }
3225
3226 /* If step-over executes a breakpoint instruction, in the case of a
3227 hardware single step it means a gdb/gdbserver breakpoint had been
3228 planted on top of a permanent breakpoint, in the case of a software
3229 single step it may just mean that gdbserver hit the reinsert breakpoint.
3230 The PC has been adjusted by save_stop_reason to point at
3231 the breakpoint address.
3232 So in the case of the hardware single step advance the PC manually
3233 past the breakpoint and in the case of software single step advance only
3234 if it's not the single_step_breakpoint we are hitting.
3235 This avoids that a program would keep trapping a permanent breakpoint
3236 forever. */
3237 if (!ptid_equal (step_over_bkpt, null_ptid)
3238 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3239 && (event_child->stepping
3240 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3241 {
3242 int increment_pc = 0;
3243 int breakpoint_kind = 0;
3244 CORE_ADDR stop_pc = event_child->stop_pc;
3245
3246 breakpoint_kind =
3247 the_target->breakpoint_kind_from_current_state (&stop_pc);
3248 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3249
3250 if (debug_threads)
3251 {
3252 debug_printf ("step-over for %s executed software breakpoint\n",
3253 target_pid_to_str (ptid_of (current_thread)));
3254 }
3255
3256 if (increment_pc != 0)
3257 {
3258 struct regcache *regcache
3259 = get_thread_regcache (current_thread, 1);
3260
3261 event_child->stop_pc += increment_pc;
3262 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3263
3264 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3265 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3266 }
3267 }
3268
3269 /* If this event was not handled before, and is not a SIGTRAP, we
3270 report it. SIGILL and SIGSEGV are also treated as traps in case
3271 a breakpoint is inserted at the current PC. If this target does
3272 not support internal breakpoints at all, we also report the
3273 SIGTRAP without further processing; it's of no concern to us. */
3274 maybe_internal_trap
3275 = (supports_breakpoints ()
3276 && (WSTOPSIG (w) == SIGTRAP
3277 || ((WSTOPSIG (w) == SIGILL
3278 || WSTOPSIG (w) == SIGSEGV)
3279 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3280
3281 if (maybe_internal_trap)
3282 {
3283 /* Handle anything that requires bookkeeping before deciding to
3284 report the event or continue waiting. */
3285
3286 /* First check if we can explain the SIGTRAP with an internal
3287 breakpoint, or if we should possibly report the event to GDB.
3288 Do this before anything that may remove or insert a
3289 breakpoint. */
3290 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3291
3292 /* We have a SIGTRAP, possibly a step-over dance has just
3293 finished. If so, tweak the state machine accordingly,
3294 reinsert breakpoints and delete any single-step
3295 breakpoints. */
3296 step_over_finished = finish_step_over (event_child);
3297
3298 /* Now invoke the callbacks of any internal breakpoints there. */
3299 check_breakpoints (event_child->stop_pc);
3300
3301 /* Handle tracepoint data collecting. This may overflow the
3302 trace buffer, and cause a tracing stop, removing
3303 breakpoints. */
3304 trace_event = handle_tracepoints (event_child);
3305
3306 if (bp_explains_trap)
3307 {
3308 if (debug_threads)
3309 debug_printf ("Hit a gdbserver breakpoint.\n");
3310 }
3311 }
3312 else
3313 {
3314 /* We have some other signal, possibly a step-over dance was in
3315 progress, and it should be cancelled too. */
3316 step_over_finished = finish_step_over (event_child);
3317 }
3318
3319 /* We have all the data we need. Either report the event to GDB, or
3320 resume threads and keep waiting for more. */
3321
3322 /* If we're collecting a fast tracepoint, finish the collection and
3323 move out of the jump pad before delivering a signal. See
3324 linux_stabilize_threads. */
3325
3326 if (WIFSTOPPED (w)
3327 && WSTOPSIG (w) != SIGTRAP
3328 && supports_fast_tracepoints ()
3329 && agent_loaded_p ())
3330 {
3331 if (debug_threads)
3332 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3333 "to defer or adjust it.\n",
3334 WSTOPSIG (w), lwpid_of (current_thread));
3335
3336 /* Allow debugging the jump pad itself. */
3337 if (current_thread->last_resume_kind != resume_step
3338 && maybe_move_out_of_jump_pad (event_child, &w))
3339 {
3340 enqueue_one_deferred_signal (event_child, &w);
3341
3342 if (debug_threads)
3343 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3344 WSTOPSIG (w), lwpid_of (current_thread));
3345
3346 linux_resume_one_lwp (event_child, 0, 0, NULL);
3347
3348 if (debug_threads)
3349 debug_exit ();
3350 return ignore_event (ourstatus);
3351 }
3352 }
3353
3354 if (event_child->collecting_fast_tracepoint
3355 != fast_tpoint_collect_result::not_collecting)
3356 {
3357 if (debug_threads)
3358 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3359 "Check if we're already there.\n",
3360 lwpid_of (current_thread),
3361 (int) event_child->collecting_fast_tracepoint);
3362
3363 trace_event = 1;
3364
3365 event_child->collecting_fast_tracepoint
3366 = linux_fast_tracepoint_collecting (event_child, NULL);
3367
3368 if (event_child->collecting_fast_tracepoint
3369 != fast_tpoint_collect_result::before_insn)
3370 {
3371 /* No longer need this breakpoint. */
3372 if (event_child->exit_jump_pad_bkpt != NULL)
3373 {
3374 if (debug_threads)
3375 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3376 "stopping all threads momentarily.\n");
3377
3378 /* Other running threads could hit this breakpoint.
3379 We don't handle moribund locations like GDB does,
3380 instead we always pause all threads when removing
3381 breakpoints, so that any step-over or
3382 decr_pc_after_break adjustment is always taken
3383 care of while the breakpoint is still
3384 inserted. */
3385 stop_all_lwps (1, event_child);
3386
3387 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3388 event_child->exit_jump_pad_bkpt = NULL;
3389
3390 unstop_all_lwps (1, event_child);
3391
3392 gdb_assert (event_child->suspended >= 0);
3393 }
3394 }
3395
3396 if (event_child->collecting_fast_tracepoint
3397 == fast_tpoint_collect_result::not_collecting)
3398 {
3399 if (debug_threads)
3400 debug_printf ("fast tracepoint finished "
3401 "collecting successfully.\n");
3402
3403 /* We may have a deferred signal to report. */
3404 if (dequeue_one_deferred_signal (event_child, &w))
3405 {
3406 if (debug_threads)
3407 debug_printf ("dequeued one signal.\n");
3408 }
3409 else
3410 {
3411 if (debug_threads)
3412 debug_printf ("no deferred signals.\n");
3413
3414 if (stabilizing_threads)
3415 {
3416 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3417 ourstatus->value.sig = GDB_SIGNAL_0;
3418
3419 if (debug_threads)
3420 {
3421 debug_printf ("linux_wait_1 ret = %s, stopped "
3422 "while stabilizing threads\n",
3423 target_pid_to_str (ptid_of (current_thread)));
3424 debug_exit ();
3425 }
3426
3427 return ptid_of (current_thread);
3428 }
3429 }
3430 }
3431 }
3432
3433 /* Check whether GDB would be interested in this event. */
3434
3435 /* Check if GDB is interested in this syscall. */
3436 if (WIFSTOPPED (w)
3437 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3438 && !gdb_catch_this_syscall_p (event_child))
3439 {
3440 if (debug_threads)
3441 {
3442 debug_printf ("Ignored syscall for LWP %ld.\n",
3443 lwpid_of (current_thread));
3444 }
3445
3446 linux_resume_one_lwp (event_child, event_child->stepping,
3447 0, NULL);
3448
3449 if (debug_threads)
3450 debug_exit ();
3451 return ignore_event (ourstatus);
3452 }
3453
3454 /* If GDB is not interested in this signal, don't stop other
3455 threads, and don't report it to GDB. Just resume the inferior
3456 right away. We do this for threading-related signals as well as
3457 any that GDB specifically requested we ignore. But never ignore
3458 SIGSTOP if we sent it ourselves, and do not ignore signals when
3459 stepping - they may require special handling to skip the signal
3460 handler. Also never ignore signals that could be caused by a
3461 breakpoint. */
3462 if (WIFSTOPPED (w)
3463 && current_thread->last_resume_kind != resume_step
3464 && (
3465 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3466 (current_process ()->priv->thread_db != NULL
3467 && (WSTOPSIG (w) == __SIGRTMIN
3468 || WSTOPSIG (w) == __SIGRTMIN + 1))
3469 ||
3470 #endif
3471 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3472 && !(WSTOPSIG (w) == SIGSTOP
3473 && current_thread->last_resume_kind == resume_stop)
3474 && !linux_wstatus_maybe_breakpoint (w))))
3475 {
3476 siginfo_t info, *info_p;
3477
3478 if (debug_threads)
3479 debug_printf ("Ignored signal %d for LWP %ld.\n",
3480 WSTOPSIG (w), lwpid_of (current_thread));
3481
3482 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3483 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3484 info_p = &info;
3485 else
3486 info_p = NULL;
3487
3488 if (step_over_finished)
3489 {
3490 /* We cancelled this thread's step-over above. We still
3491 need to unsuspend all other LWPs, and set them back
3492 running again while the signal handler runs. */
3493 unsuspend_all_lwps (event_child);
3494
3495 /* Enqueue the pending signal info so that proceed_all_lwps
3496 doesn't lose it. */
3497 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3498
3499 proceed_all_lwps ();
3500 }
3501 else
3502 {
3503 linux_resume_one_lwp (event_child, event_child->stepping,
3504 WSTOPSIG (w), info_p);
3505 }
3506
3507 if (debug_threads)
3508 debug_exit ();
3509
3510 return ignore_event (ourstatus);
3511 }
3512
3513 /* Note that all addresses are always "out of the step range" when
3514 there's no range to begin with. */
3515 in_step_range = lwp_in_step_range (event_child);
3516
3517 /* If GDB wanted this thread to single step, and the thread is out
3518 of the step range, we always want to report the SIGTRAP, and let
3519 GDB handle it. Watchpoints should always be reported. So should
3520 signals we can't explain. A SIGTRAP we can't explain could be a
3521 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3522 do, we're be able to handle GDB breakpoints on top of internal
3523 breakpoints, by handling the internal breakpoint and still
3524 reporting the event to GDB. If we don't, we're out of luck, GDB
3525 won't see the breakpoint hit. If we see a single-step event but
3526 the thread should be continuing, don't pass the trap to gdb.
3527 That indicates that we had previously finished a single-step but
3528 left the single-step pending -- see
3529 complete_ongoing_step_over. */
3530 report_to_gdb = (!maybe_internal_trap
3531 || (current_thread->last_resume_kind == resume_step
3532 && !in_step_range)
3533 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3534 || (!in_step_range
3535 && !bp_explains_trap
3536 && !trace_event
3537 && !step_over_finished
3538 && !(current_thread->last_resume_kind == resume_continue
3539 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3540 || (gdb_breakpoint_here (event_child->stop_pc)
3541 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3542 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3543 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3544
3545 run_breakpoint_commands (event_child->stop_pc);
3546
3547 /* We found no reason GDB would want us to stop. We either hit one
3548 of our own breakpoints, or finished an internal step GDB
3549 shouldn't know about. */
3550 if (!report_to_gdb)
3551 {
3552 if (debug_threads)
3553 {
3554 if (bp_explains_trap)
3555 debug_printf ("Hit a gdbserver breakpoint.\n");
3556 if (step_over_finished)
3557 debug_printf ("Step-over finished.\n");
3558 if (trace_event)
3559 debug_printf ("Tracepoint event.\n");
3560 if (lwp_in_step_range (event_child))
3561 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3562 paddress (event_child->stop_pc),
3563 paddress (event_child->step_range_start),
3564 paddress (event_child->step_range_end));
3565 }
3566
3567 /* We're not reporting this breakpoint to GDB, so apply the
3568 decr_pc_after_break adjustment to the inferior's regcache
3569 ourselves. */
3570
3571 if (the_low_target.set_pc != NULL)
3572 {
3573 struct regcache *regcache
3574 = get_thread_regcache (current_thread, 1);
3575 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3576 }
3577
3578 if (step_over_finished)
3579 {
3580 /* If we have finished stepping over a breakpoint, we've
3581 stopped and suspended all LWPs momentarily except the
3582 stepping one. This is where we resume them all again.
3583 We're going to keep waiting, so use proceed, which
3584 handles stepping over the next breakpoint. */
3585 unsuspend_all_lwps (event_child);
3586 }
3587 else
3588 {
3589 /* Remove the single-step breakpoints if any. Note that
3590 there isn't single-step breakpoint if we finished stepping
3591 over. */
3592 if (can_software_single_step ()
3593 && has_single_step_breakpoints (current_thread))
3594 {
3595 stop_all_lwps (0, event_child);
3596 delete_single_step_breakpoints (current_thread);
3597 unstop_all_lwps (0, event_child);
3598 }
3599 }
3600
3601 if (debug_threads)
3602 debug_printf ("proceeding all threads.\n");
3603 proceed_all_lwps ();
3604
3605 if (debug_threads)
3606 debug_exit ();
3607
3608 return ignore_event (ourstatus);
3609 }
3610
3611 if (debug_threads)
3612 {
3613 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3614 {
3615 std::string str
3616 = target_waitstatus_to_string (&event_child->waitstatus);
3617
3618 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3619 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3620 }
3621 if (current_thread->last_resume_kind == resume_step)
3622 {
3623 if (event_child->step_range_start == event_child->step_range_end)
3624 debug_printf ("GDB wanted to single-step, reporting event.\n");
3625 else if (!lwp_in_step_range (event_child))
3626 debug_printf ("Out of step range, reporting event.\n");
3627 }
3628 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3629 debug_printf ("Stopped by watchpoint.\n");
3630 else if (gdb_breakpoint_here (event_child->stop_pc))
3631 debug_printf ("Stopped by GDB breakpoint.\n");
3632 if (debug_threads)
3633 debug_printf ("Hit a non-gdbserver trap event.\n");
3634 }
3635
3636 /* Alright, we're going to report a stop. */
3637
3638 /* Remove single-step breakpoints. */
3639 if (can_software_single_step ())
3640 {
3641 /* Remove single-step breakpoints or not. It it is true, stop all
3642 lwps, so that other threads won't hit the breakpoint in the
3643 staled memory. */
3644 int remove_single_step_breakpoints_p = 0;
3645
3646 if (non_stop)
3647 {
3648 remove_single_step_breakpoints_p
3649 = has_single_step_breakpoints (current_thread);
3650 }
3651 else
3652 {
3653 /* In all-stop, a stop reply cancels all previous resume
3654 requests. Delete all single-step breakpoints. */
3655
3656 find_thread ([&] (thread_info *thread) {
3657 if (has_single_step_breakpoints (thread))
3658 {
3659 remove_single_step_breakpoints_p = 1;
3660 return true;
3661 }
3662
3663 return false;
3664 });
3665 }
3666
3667 if (remove_single_step_breakpoints_p)
3668 {
3669 /* If we remove single-step breakpoints from memory, stop all lwps,
3670 so that other threads won't hit the breakpoint in the staled
3671 memory. */
3672 stop_all_lwps (0, event_child);
3673
3674 if (non_stop)
3675 {
3676 gdb_assert (has_single_step_breakpoints (current_thread));
3677 delete_single_step_breakpoints (current_thread);
3678 }
3679 else
3680 {
3681 for_each_thread ([] (thread_info *thread){
3682 if (has_single_step_breakpoints (thread))
3683 delete_single_step_breakpoints (thread);
3684 });
3685 }
3686
3687 unstop_all_lwps (0, event_child);
3688 }
3689 }
3690
3691 if (!stabilizing_threads)
3692 {
3693 /* In all-stop, stop all threads. */
3694 if (!non_stop)
3695 stop_all_lwps (0, NULL);
3696
3697 if (step_over_finished)
3698 {
3699 if (!non_stop)
3700 {
3701 /* If we were doing a step-over, all other threads but
3702 the stepping one had been paused in start_step_over,
3703 with their suspend counts incremented. We don't want
3704 to do a full unstop/unpause, because we're in
3705 all-stop mode (so we want threads stopped), but we
3706 still need to unsuspend the other threads, to
3707 decrement their `suspended' count back. */
3708 unsuspend_all_lwps (event_child);
3709 }
3710 else
3711 {
3712 /* If we just finished a step-over, then all threads had
3713 been momentarily paused. In all-stop, that's fine,
3714 we want threads stopped by now anyway. In non-stop,
3715 we need to re-resume threads that GDB wanted to be
3716 running. */
3717 unstop_all_lwps (1, event_child);
3718 }
3719 }
3720
3721 /* If we're not waiting for a specific LWP, choose an event LWP
3722 from among those that have had events. Giving equal priority
3723 to all LWPs that have had events helps prevent
3724 starvation. */
3725 if (ptid_equal (ptid, minus_one_ptid))
3726 {
3727 event_child->status_pending_p = 1;
3728 event_child->status_pending = w;
3729
3730 select_event_lwp (&event_child);
3731
3732 /* current_thread and event_child must stay in sync. */
3733 current_thread = get_lwp_thread (event_child);
3734
3735 event_child->status_pending_p = 0;
3736 w = event_child->status_pending;
3737 }
3738
3739
3740 /* Stabilize threads (move out of jump pads). */
3741 if (!non_stop)
3742 stabilize_threads ();
3743 }
3744 else
3745 {
3746 /* If we just finished a step-over, then all threads had been
3747 momentarily paused. In all-stop, that's fine, we want
3748 threads stopped by now anyway. In non-stop, we need to
3749 re-resume threads that GDB wanted to be running. */
3750 if (step_over_finished)
3751 unstop_all_lwps (1, event_child);
3752 }
3753
3754 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3755 {
3756 /* If the reported event is an exit, fork, vfork or exec, let
3757 GDB know. */
3758
3759 /* Break the unreported fork relationship chain. */
3760 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3761 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3762 {
3763 event_child->fork_relative->fork_relative = NULL;
3764 event_child->fork_relative = NULL;
3765 }
3766
3767 *ourstatus = event_child->waitstatus;
3768 /* Clear the event lwp's waitstatus since we handled it already. */
3769 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3770 }
3771 else
3772 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3773
3774 /* Now that we've selected our final event LWP, un-adjust its PC if
3775 it was a software breakpoint, and the client doesn't know we can
3776 adjust the breakpoint ourselves. */
3777 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3778 && !swbreak_feature)
3779 {
3780 int decr_pc = the_low_target.decr_pc_after_break;
3781
3782 if (decr_pc != 0)
3783 {
3784 struct regcache *regcache
3785 = get_thread_regcache (current_thread, 1);
3786 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3787 }
3788 }
3789
3790 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3791 {
3792 get_syscall_trapinfo (event_child,
3793 &ourstatus->value.syscall_number);
3794 ourstatus->kind = event_child->syscall_state;
3795 }
3796 else if (current_thread->last_resume_kind == resume_stop
3797 && WSTOPSIG (w) == SIGSTOP)
3798 {
3799 /* A thread that has been requested to stop by GDB with vCont;t,
3800 and it stopped cleanly, so report as SIG0. The use of
3801 SIGSTOP is an implementation detail. */
3802 ourstatus->value.sig = GDB_SIGNAL_0;
3803 }
3804 else if (current_thread->last_resume_kind == resume_stop
3805 && WSTOPSIG (w) != SIGSTOP)
3806 {
3807 /* A thread that has been requested to stop by GDB with vCont;t,
3808 but, it stopped for other reasons. */
3809 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3810 }
3811 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3812 {
3813 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3814 }
3815
3816 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3817
3818 if (debug_threads)
3819 {
3820 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3821 target_pid_to_str (ptid_of (current_thread)),
3822 ourstatus->kind, ourstatus->value.sig);
3823 debug_exit ();
3824 }
3825
3826 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3827 return filter_exit_event (event_child, ourstatus);
3828
3829 return ptid_of (current_thread);
3830 }
3831
3832 /* Get rid of any pending event in the pipe. */
3833 static void
3834 async_file_flush (void)
3835 {
3836 int ret;
3837 char buf;
3838
3839 do
3840 ret = read (linux_event_pipe[0], &buf, 1);
3841 while (ret >= 0 || (ret == -1 && errno == EINTR));
3842 }
3843
3844 /* Put something in the pipe, so the event loop wakes up. */
3845 static void
3846 async_file_mark (void)
3847 {
3848 int ret;
3849
3850 async_file_flush ();
3851
3852 do
3853 ret = write (linux_event_pipe[1], "+", 1);
3854 while (ret == 0 || (ret == -1 && errno == EINTR));
3855
3856 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3857 be awakened anyway. */
3858 }
3859
3860 static ptid_t
3861 linux_wait (ptid_t ptid,
3862 struct target_waitstatus *ourstatus, int target_options)
3863 {
3864 ptid_t event_ptid;
3865
3866 /* Flush the async file first. */
3867 if (target_is_async_p ())
3868 async_file_flush ();
3869
3870 do
3871 {
3872 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3873 }
3874 while ((target_options & TARGET_WNOHANG) == 0
3875 && ptid_equal (event_ptid, null_ptid)
3876 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3877
3878 /* If at least one stop was reported, there may be more. A single
3879 SIGCHLD can signal more than one child stop. */
3880 if (target_is_async_p ()
3881 && (target_options & TARGET_WNOHANG) != 0
3882 && !ptid_equal (event_ptid, null_ptid))
3883 async_file_mark ();
3884
3885 return event_ptid;
3886 }
3887
3888 /* Send a signal to an LWP. */
3889
3890 static int
3891 kill_lwp (unsigned long lwpid, int signo)
3892 {
3893 int ret;
3894
3895 errno = 0;
3896 ret = syscall (__NR_tkill, lwpid, signo);
3897 if (errno == ENOSYS)
3898 {
3899 /* If tkill fails, then we are not using nptl threads, a
3900 configuration we no longer support. */
3901 perror_with_name (("tkill"));
3902 }
3903 return ret;
3904 }
3905
3906 void
3907 linux_stop_lwp (struct lwp_info *lwp)
3908 {
3909 send_sigstop (lwp);
3910 }
3911
3912 static void
3913 send_sigstop (struct lwp_info *lwp)
3914 {
3915 int pid;
3916
3917 pid = lwpid_of (get_lwp_thread (lwp));
3918
3919 /* If we already have a pending stop signal for this process, don't
3920 send another. */
3921 if (lwp->stop_expected)
3922 {
3923 if (debug_threads)
3924 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3925
3926 return;
3927 }
3928
3929 if (debug_threads)
3930 debug_printf ("Sending sigstop to lwp %d\n", pid);
3931
3932 lwp->stop_expected = 1;
3933 kill_lwp (pid, SIGSTOP);
3934 }
3935
3936 static int
3937 send_sigstop_callback (thread_info *thread, void *except)
3938 {
3939 struct lwp_info *lwp = get_thread_lwp (thread);
3940
3941 /* Ignore EXCEPT. */
3942 if (lwp == except)
3943 return 0;
3944
3945 if (lwp->stopped)
3946 return 0;
3947
3948 send_sigstop (lwp);
3949 return 0;
3950 }
3951
3952 /* Increment the suspend count of an LWP, and stop it, if not stopped
3953 yet. */
3954 static int
3955 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
3956 {
3957 struct lwp_info *lwp = get_thread_lwp (thread);
3958
3959 /* Ignore EXCEPT. */
3960 if (lwp == except)
3961 return 0;
3962
3963 lwp_suspended_inc (lwp);
3964
3965 return send_sigstop_callback (thread, except);
3966 }
3967
3968 static void
3969 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3970 {
3971 /* Store the exit status for later. */
3972 lwp->status_pending_p = 1;
3973 lwp->status_pending = wstat;
3974
3975 /* Store in waitstatus as well, as there's nothing else to process
3976 for this event. */
3977 if (WIFEXITED (wstat))
3978 {
3979 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3980 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3981 }
3982 else if (WIFSIGNALED (wstat))
3983 {
3984 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3985 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3986 }
3987
3988 /* Prevent trying to stop it. */
3989 lwp->stopped = 1;
3990
3991 /* No further stops are expected from a dead lwp. */
3992 lwp->stop_expected = 0;
3993 }
3994
3995 /* Return true if LWP has exited already, and has a pending exit event
3996 to report to GDB. */
3997
3998 static int
3999 lwp_is_marked_dead (struct lwp_info *lwp)
4000 {
4001 return (lwp->status_pending_p
4002 && (WIFEXITED (lwp->status_pending)
4003 || WIFSIGNALED (lwp->status_pending)));
4004 }
4005
4006 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4007
4008 static void
4009 wait_for_sigstop (void)
4010 {
4011 struct thread_info *saved_thread;
4012 ptid_t saved_tid;
4013 int wstat;
4014 int ret;
4015
4016 saved_thread = current_thread;
4017 if (saved_thread != NULL)
4018 saved_tid = saved_thread->id;
4019 else
4020 saved_tid = null_ptid; /* avoid bogus unused warning */
4021
4022 if (debug_threads)
4023 debug_printf ("wait_for_sigstop: pulling events\n");
4024
4025 /* Passing NULL_PTID as filter indicates we want all events to be
4026 left pending. Eventually this returns when there are no
4027 unwaited-for children left. */
4028 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4029 &wstat, __WALL);
4030 gdb_assert (ret == -1);
4031
4032 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4033 current_thread = saved_thread;
4034 else
4035 {
4036 if (debug_threads)
4037 debug_printf ("Previously current thread died.\n");
4038
4039 /* We can't change the current inferior behind GDB's back,
4040 otherwise, a subsequent command may apply to the wrong
4041 process. */
4042 current_thread = NULL;
4043 }
4044 }
4045
4046 /* Returns true if THREAD is stopped in a jump pad, and we can't
4047 move it out, because we need to report the stop event to GDB. For
4048 example, if the user puts a breakpoint in the jump pad, it's
4049 because she wants to debug it. */
4050
4051 static bool
4052 stuck_in_jump_pad_callback (thread_info *thread)
4053 {
4054 struct lwp_info *lwp = get_thread_lwp (thread);
4055
4056 if (lwp->suspended != 0)
4057 {
4058 internal_error (__FILE__, __LINE__,
4059 "LWP %ld is suspended, suspended=%d\n",
4060 lwpid_of (thread), lwp->suspended);
4061 }
4062 gdb_assert (lwp->stopped);
4063
4064 /* Allow debugging the jump pad, gdb_collect, etc.. */
4065 return (supports_fast_tracepoints ()
4066 && agent_loaded_p ()
4067 && (gdb_breakpoint_here (lwp->stop_pc)
4068 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4069 || thread->last_resume_kind == resume_step)
4070 && (linux_fast_tracepoint_collecting (lwp, NULL)
4071 != fast_tpoint_collect_result::not_collecting));
4072 }
4073
4074 static void
4075 move_out_of_jump_pad_callback (thread_info *thread)
4076 {
4077 struct thread_info *saved_thread;
4078 struct lwp_info *lwp = get_thread_lwp (thread);
4079 int *wstat;
4080
4081 if (lwp->suspended != 0)
4082 {
4083 internal_error (__FILE__, __LINE__,
4084 "LWP %ld is suspended, suspended=%d\n",
4085 lwpid_of (thread), lwp->suspended);
4086 }
4087 gdb_assert (lwp->stopped);
4088
4089 /* For gdb_breakpoint_here. */
4090 saved_thread = current_thread;
4091 current_thread = thread;
4092
4093 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4094
4095 /* Allow debugging the jump pad, gdb_collect, etc. */
4096 if (!gdb_breakpoint_here (lwp->stop_pc)
4097 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4098 && thread->last_resume_kind != resume_step
4099 && maybe_move_out_of_jump_pad (lwp, wstat))
4100 {
4101 if (debug_threads)
4102 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4103 lwpid_of (thread));
4104
4105 if (wstat)
4106 {
4107 lwp->status_pending_p = 0;
4108 enqueue_one_deferred_signal (lwp, wstat);
4109
4110 if (debug_threads)
4111 debug_printf ("Signal %d for LWP %ld deferred "
4112 "(in jump pad)\n",
4113 WSTOPSIG (*wstat), lwpid_of (thread));
4114 }
4115
4116 linux_resume_one_lwp (lwp, 0, 0, NULL);
4117 }
4118 else
4119 lwp_suspended_inc (lwp);
4120
4121 current_thread = saved_thread;
4122 }
4123
4124 static int
4125 lwp_running (thread_info *thread, void *data)
4126 {
4127 struct lwp_info *lwp = get_thread_lwp (thread);
4128
4129 if (lwp_is_marked_dead (lwp))
4130 return 0;
4131 if (lwp->stopped)
4132 return 0;
4133 return 1;
4134 }
4135
4136 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4137 If SUSPEND, then also increase the suspend count of every LWP,
4138 except EXCEPT. */
4139
4140 static void
4141 stop_all_lwps (int suspend, struct lwp_info *except)
4142 {
4143 /* Should not be called recursively. */
4144 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4145
4146 if (debug_threads)
4147 {
4148 debug_enter ();
4149 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4150 suspend ? "stop-and-suspend" : "stop",
4151 except != NULL
4152 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4153 : "none");
4154 }
4155
4156 stopping_threads = (suspend
4157 ? STOPPING_AND_SUSPENDING_THREADS
4158 : STOPPING_THREADS);
4159
4160 if (suspend)
4161 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4162 else
4163 find_inferior (&all_threads, send_sigstop_callback, except);
4164 wait_for_sigstop ();
4165 stopping_threads = NOT_STOPPING_THREADS;
4166
4167 if (debug_threads)
4168 {
4169 debug_printf ("stop_all_lwps done, setting stopping_threads "
4170 "back to !stopping\n");
4171 debug_exit ();
4172 }
4173 }
4174
4175 /* Enqueue one signal in the chain of signals which need to be
4176 delivered to this process on next resume. */
4177
4178 static void
4179 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4180 {
4181 struct pending_signals *p_sig = XNEW (struct pending_signals);
4182
4183 p_sig->prev = lwp->pending_signals;
4184 p_sig->signal = signal;
4185 if (info == NULL)
4186 memset (&p_sig->info, 0, sizeof (siginfo_t));
4187 else
4188 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4189 lwp->pending_signals = p_sig;
4190 }
4191
4192 /* Install breakpoints for software single stepping. */
4193
4194 static void
4195 install_software_single_step_breakpoints (struct lwp_info *lwp)
4196 {
4197 struct thread_info *thread = get_lwp_thread (lwp);
4198 struct regcache *regcache = get_thread_regcache (thread, 1);
4199 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4200
4201 current_thread = thread;
4202 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4203
4204 for (CORE_ADDR pc : next_pcs)
4205 set_single_step_breakpoint (pc, current_ptid);
4206
4207 do_cleanups (old_chain);
4208 }
4209
4210 /* Single step via hardware or software single step.
4211 Return 1 if hardware single stepping, 0 if software single stepping
4212 or can't single step. */
4213
4214 static int
4215 single_step (struct lwp_info* lwp)
4216 {
4217 int step = 0;
4218
4219 if (can_hardware_single_step ())
4220 {
4221 step = 1;
4222 }
4223 else if (can_software_single_step ())
4224 {
4225 install_software_single_step_breakpoints (lwp);
4226 step = 0;
4227 }
4228 else
4229 {
4230 if (debug_threads)
4231 debug_printf ("stepping is not implemented on this target");
4232 }
4233
4234 return step;
4235 }
4236
4237 /* The signal can be delivered to the inferior if we are not trying to
4238 finish a fast tracepoint collect. Since signal can be delivered in
4239 the step-over, the program may go to signal handler and trap again
4240 after return from the signal handler. We can live with the spurious
4241 double traps. */
4242
4243 static int
4244 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4245 {
4246 return (lwp->collecting_fast_tracepoint
4247 == fast_tpoint_collect_result::not_collecting);
4248 }
4249
4250 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4251 SIGNAL is nonzero, give it that signal. */
4252
4253 static void
4254 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4255 int step, int signal, siginfo_t *info)
4256 {
4257 struct thread_info *thread = get_lwp_thread (lwp);
4258 struct thread_info *saved_thread;
4259 int ptrace_request;
4260 struct process_info *proc = get_thread_process (thread);
4261
4262 /* Note that target description may not be initialised
4263 (proc->tdesc == NULL) at this point because the program hasn't
4264 stopped at the first instruction yet. It means GDBserver skips
4265 the extra traps from the wrapper program (see option --wrapper).
4266 Code in this function that requires register access should be
4267 guarded by proc->tdesc == NULL or something else. */
4268
4269 if (lwp->stopped == 0)
4270 return;
4271
4272 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4273
4274 fast_tpoint_collect_result fast_tp_collecting
4275 = lwp->collecting_fast_tracepoint;
4276
4277 gdb_assert (!stabilizing_threads
4278 || (fast_tp_collecting
4279 != fast_tpoint_collect_result::not_collecting));
4280
4281 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4282 user used the "jump" command, or "set $pc = foo"). */
4283 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4284 {
4285 /* Collecting 'while-stepping' actions doesn't make sense
4286 anymore. */
4287 release_while_stepping_state_list (thread);
4288 }
4289
4290 /* If we have pending signals or status, and a new signal, enqueue the
4291 signal. Also enqueue the signal if it can't be delivered to the
4292 inferior right now. */
4293 if (signal != 0
4294 && (lwp->status_pending_p
4295 || lwp->pending_signals != NULL
4296 || !lwp_signal_can_be_delivered (lwp)))
4297 {
4298 enqueue_pending_signal (lwp, signal, info);
4299
4300 /* Postpone any pending signal. It was enqueued above. */
4301 signal = 0;
4302 }
4303
4304 if (lwp->status_pending_p)
4305 {
4306 if (debug_threads)
4307 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4308 " has pending status\n",
4309 lwpid_of (thread), step ? "step" : "continue",
4310 lwp->stop_expected ? "expected" : "not expected");
4311 return;
4312 }
4313
4314 saved_thread = current_thread;
4315 current_thread = thread;
4316
4317 /* This bit needs some thinking about. If we get a signal that
4318 we must report while a single-step reinsert is still pending,
4319 we often end up resuming the thread. It might be better to
4320 (ew) allow a stack of pending events; then we could be sure that
4321 the reinsert happened right away and not lose any signals.
4322
4323 Making this stack would also shrink the window in which breakpoints are
4324 uninserted (see comment in linux_wait_for_lwp) but not enough for
4325 complete correctness, so it won't solve that problem. It may be
4326 worthwhile just to solve this one, however. */
4327 if (lwp->bp_reinsert != 0)
4328 {
4329 if (debug_threads)
4330 debug_printf (" pending reinsert at 0x%s\n",
4331 paddress (lwp->bp_reinsert));
4332
4333 if (can_hardware_single_step ())
4334 {
4335 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4336 {
4337 if (step == 0)
4338 warning ("BAD - reinserting but not stepping.");
4339 if (lwp->suspended)
4340 warning ("BAD - reinserting and suspended(%d).",
4341 lwp->suspended);
4342 }
4343 }
4344
4345 step = maybe_hw_step (thread);
4346 }
4347
4348 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4349 {
4350 if (debug_threads)
4351 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4352 " (exit-jump-pad-bkpt)\n",
4353 lwpid_of (thread));
4354 }
4355 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4356 {
4357 if (debug_threads)
4358 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4359 " single-stepping\n",
4360 lwpid_of (thread));
4361
4362 if (can_hardware_single_step ())
4363 step = 1;
4364 else
4365 {
4366 internal_error (__FILE__, __LINE__,
4367 "moving out of jump pad single-stepping"
4368 " not implemented on this target");
4369 }
4370 }
4371
4372 /* If we have while-stepping actions in this thread set it stepping.
4373 If we have a signal to deliver, it may or may not be set to
4374 SIG_IGN, we don't know. Assume so, and allow collecting
4375 while-stepping into a signal handler. A possible smart thing to
4376 do would be to set an internal breakpoint at the signal return
4377 address, continue, and carry on catching this while-stepping
4378 action only when that breakpoint is hit. A future
4379 enhancement. */
4380 if (thread->while_stepping != NULL)
4381 {
4382 if (debug_threads)
4383 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4384 lwpid_of (thread));
4385
4386 step = single_step (lwp);
4387 }
4388
4389 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4390 {
4391 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4392
4393 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4394
4395 if (debug_threads)
4396 {
4397 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4398 (long) lwp->stop_pc);
4399 }
4400 }
4401
4402 /* If we have pending signals, consume one if it can be delivered to
4403 the inferior. */
4404 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4405 {
4406 struct pending_signals **p_sig;
4407
4408 p_sig = &lwp->pending_signals;
4409 while ((*p_sig)->prev != NULL)
4410 p_sig = &(*p_sig)->prev;
4411
4412 signal = (*p_sig)->signal;
4413 if ((*p_sig)->info.si_signo != 0)
4414 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4415 &(*p_sig)->info);
4416
4417 free (*p_sig);
4418 *p_sig = NULL;
4419 }
4420
4421 if (debug_threads)
4422 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4423 lwpid_of (thread), step ? "step" : "continue", signal,
4424 lwp->stop_expected ? "expected" : "not expected");
4425
4426 if (the_low_target.prepare_to_resume != NULL)
4427 the_low_target.prepare_to_resume (lwp);
4428
4429 regcache_invalidate_thread (thread);
4430 errno = 0;
4431 lwp->stepping = step;
4432 if (step)
4433 ptrace_request = PTRACE_SINGLESTEP;
4434 else if (gdb_catching_syscalls_p (lwp))
4435 ptrace_request = PTRACE_SYSCALL;
4436 else
4437 ptrace_request = PTRACE_CONT;
4438 ptrace (ptrace_request,
4439 lwpid_of (thread),
4440 (PTRACE_TYPE_ARG3) 0,
4441 /* Coerce to a uintptr_t first to avoid potential gcc warning
4442 of coercing an 8 byte integer to a 4 byte pointer. */
4443 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4444
4445 current_thread = saved_thread;
4446 if (errno)
4447 perror_with_name ("resuming thread");
4448
4449 /* Successfully resumed. Clear state that no longer makes sense,
4450 and mark the LWP as running. Must not do this before resuming
4451 otherwise if that fails other code will be confused. E.g., we'd
4452 later try to stop the LWP and hang forever waiting for a stop
4453 status. Note that we must not throw after this is cleared,
4454 otherwise handle_zombie_lwp_error would get confused. */
4455 lwp->stopped = 0;
4456 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4457 }
4458
4459 /* Called when we try to resume a stopped LWP and that errors out. If
4460 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4461 or about to become), discard the error, clear any pending status
4462 the LWP may have, and return true (we'll collect the exit status
4463 soon enough). Otherwise, return false. */
4464
4465 static int
4466 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4467 {
4468 struct thread_info *thread = get_lwp_thread (lp);
4469
4470 /* If we get an error after resuming the LWP successfully, we'd
4471 confuse !T state for the LWP being gone. */
4472 gdb_assert (lp->stopped);
4473
4474 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4475 because even if ptrace failed with ESRCH, the tracee may be "not
4476 yet fully dead", but already refusing ptrace requests. In that
4477 case the tracee has 'R (Running)' state for a little bit
4478 (observed in Linux 3.18). See also the note on ESRCH in the
4479 ptrace(2) man page. Instead, check whether the LWP has any state
4480 other than ptrace-stopped. */
4481
4482 /* Don't assume anything if /proc/PID/status can't be read. */
4483 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4484 {
4485 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4486 lp->status_pending_p = 0;
4487 return 1;
4488 }
4489 return 0;
4490 }
4491
4492 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4493 disappears while we try to resume it. */
4494
4495 static void
4496 linux_resume_one_lwp (struct lwp_info *lwp,
4497 int step, int signal, siginfo_t *info)
4498 {
4499 TRY
4500 {
4501 linux_resume_one_lwp_throw (lwp, step, signal, info);
4502 }
4503 CATCH (ex, RETURN_MASK_ERROR)
4504 {
4505 if (!check_ptrace_stopped_lwp_gone (lwp))
4506 throw_exception (ex);
4507 }
4508 END_CATCH
4509 }
4510
4511 /* This function is called once per thread via for_each_thread.
4512 We look up which resume request applies to THREAD and mark it with a
4513 pointer to the appropriate resume request.
4514
4515 This algorithm is O(threads * resume elements), but resume elements
4516 is small (and will remain small at least until GDB supports thread
4517 suspension). */
4518
4519 static void
4520 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4521 {
4522 struct lwp_info *lwp = get_thread_lwp (thread);
4523
4524 for (int ndx = 0; ndx < n; ndx++)
4525 {
4526 ptid_t ptid = resume[ndx].thread;
4527 if (ptid_equal (ptid, minus_one_ptid)
4528 || ptid == thread->id
4529 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4530 of PID'. */
4531 || (ptid_get_pid (ptid) == pid_of (thread)
4532 && (ptid_is_pid (ptid)
4533 || ptid_get_lwp (ptid) == -1)))
4534 {
4535 if (resume[ndx].kind == resume_stop
4536 && thread->last_resume_kind == resume_stop)
4537 {
4538 if (debug_threads)
4539 debug_printf ("already %s LWP %ld at GDB's request\n",
4540 (thread->last_status.kind
4541 == TARGET_WAITKIND_STOPPED)
4542 ? "stopped"
4543 : "stopping",
4544 lwpid_of (thread));
4545
4546 continue;
4547 }
4548
4549 /* Ignore (wildcard) resume requests for already-resumed
4550 threads. */
4551 if (resume[ndx].kind != resume_stop
4552 && thread->last_resume_kind != resume_stop)
4553 {
4554 if (debug_threads)
4555 debug_printf ("already %s LWP %ld at GDB's request\n",
4556 (thread->last_resume_kind
4557 == resume_step)
4558 ? "stepping"
4559 : "continuing",
4560 lwpid_of (thread));
4561 continue;
4562 }
4563
4564 /* Don't let wildcard resumes resume fork children that GDB
4565 does not yet know are new fork children. */
4566 if (lwp->fork_relative != NULL)
4567 {
4568 struct lwp_info *rel = lwp->fork_relative;
4569
4570 if (rel->status_pending_p
4571 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4572 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4573 {
4574 if (debug_threads)
4575 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4576 lwpid_of (thread));
4577 continue;
4578 }
4579 }
4580
4581 /* If the thread has a pending event that has already been
4582 reported to GDBserver core, but GDB has not pulled the
4583 event out of the vStopped queue yet, likewise, ignore the
4584 (wildcard) resume request. */
4585 if (in_queued_stop_replies (thread->id))
4586 {
4587 if (debug_threads)
4588 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4589 lwpid_of (thread));
4590 continue;
4591 }
4592
4593 lwp->resume = &resume[ndx];
4594 thread->last_resume_kind = lwp->resume->kind;
4595
4596 lwp->step_range_start = lwp->resume->step_range_start;
4597 lwp->step_range_end = lwp->resume->step_range_end;
4598
4599 /* If we had a deferred signal to report, dequeue one now.
4600 This can happen if LWP gets more than one signal while
4601 trying to get out of a jump pad. */
4602 if (lwp->stopped
4603 && !lwp->status_pending_p
4604 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4605 {
4606 lwp->status_pending_p = 1;
4607
4608 if (debug_threads)
4609 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4610 "leaving status pending.\n",
4611 WSTOPSIG (lwp->status_pending),
4612 lwpid_of (thread));
4613 }
4614
4615 return;
4616 }
4617 }
4618
4619 /* No resume action for this thread. */
4620 lwp->resume = NULL;
4621 }
4622
4623 /* find_inferior callback for linux_resume.
4624 Set *FLAG_P if this lwp has an interesting status pending. */
4625
4626 static bool
4627 resume_status_pending_p (thread_info *thread)
4628 {
4629 struct lwp_info *lwp = get_thread_lwp (thread);
4630
4631 /* LWPs which will not be resumed are not interesting, because
4632 we might not wait for them next time through linux_wait. */
4633 if (lwp->resume == NULL)
4634 return false;
4635
4636 return thread_still_has_status_pending_p (thread);
4637 }
4638
4639 /* Return 1 if this lwp that GDB wants running is stopped at an
4640 internal breakpoint that we need to step over. It assumes that any
4641 required STOP_PC adjustment has already been propagated to the
4642 inferior's regcache. */
4643
4644 static bool
4645 need_step_over_p (thread_info *thread)
4646 {
4647 struct lwp_info *lwp = get_thread_lwp (thread);
4648 struct thread_info *saved_thread;
4649 CORE_ADDR pc;
4650 struct process_info *proc = get_thread_process (thread);
4651
4652 /* GDBserver is skipping the extra traps from the wrapper program,
4653 don't have to do step over. */
4654 if (proc->tdesc == NULL)
4655 return false;
4656
4657 /* LWPs which will not be resumed are not interesting, because we
4658 might not wait for them next time through linux_wait. */
4659
4660 if (!lwp->stopped)
4661 {
4662 if (debug_threads)
4663 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4664 lwpid_of (thread));
4665 return false;
4666 }
4667
4668 if (thread->last_resume_kind == resume_stop)
4669 {
4670 if (debug_threads)
4671 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4672 " stopped\n",
4673 lwpid_of (thread));
4674 return false;
4675 }
4676
4677 gdb_assert (lwp->suspended >= 0);
4678
4679 if (lwp->suspended)
4680 {
4681 if (debug_threads)
4682 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4683 lwpid_of (thread));
4684 return false;
4685 }
4686
4687 if (lwp->status_pending_p)
4688 {
4689 if (debug_threads)
4690 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4691 " status.\n",
4692 lwpid_of (thread));
4693 return false;
4694 }
4695
4696 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4697 or we have. */
4698 pc = get_pc (lwp);
4699
4700 /* If the PC has changed since we stopped, then don't do anything,
4701 and let the breakpoint/tracepoint be hit. This happens if, for
4702 instance, GDB handled the decr_pc_after_break subtraction itself,
4703 GDB is OOL stepping this thread, or the user has issued a "jump"
4704 command, or poked thread's registers herself. */
4705 if (pc != lwp->stop_pc)
4706 {
4707 if (debug_threads)
4708 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4709 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4710 lwpid_of (thread),
4711 paddress (lwp->stop_pc), paddress (pc));
4712 return false;
4713 }
4714
4715 /* On software single step target, resume the inferior with signal
4716 rather than stepping over. */
4717 if (can_software_single_step ()
4718 && lwp->pending_signals != NULL
4719 && lwp_signal_can_be_delivered (lwp))
4720 {
4721 if (debug_threads)
4722 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4723 " signals.\n",
4724 lwpid_of (thread));
4725
4726 return false;
4727 }
4728
4729 saved_thread = current_thread;
4730 current_thread = thread;
4731
4732 /* We can only step over breakpoints we know about. */
4733 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4734 {
4735 /* Don't step over a breakpoint that GDB expects to hit
4736 though. If the condition is being evaluated on the target's side
4737 and it evaluate to false, step over this breakpoint as well. */
4738 if (gdb_breakpoint_here (pc)
4739 && gdb_condition_true_at_breakpoint (pc)
4740 && gdb_no_commands_at_breakpoint (pc))
4741 {
4742 if (debug_threads)
4743 debug_printf ("Need step over [LWP %ld]? yes, but found"
4744 " GDB breakpoint at 0x%s; skipping step over\n",
4745 lwpid_of (thread), paddress (pc));
4746
4747 current_thread = saved_thread;
4748 return false;
4749 }
4750 else
4751 {
4752 if (debug_threads)
4753 debug_printf ("Need step over [LWP %ld]? yes, "
4754 "found breakpoint at 0x%s\n",
4755 lwpid_of (thread), paddress (pc));
4756
4757 /* We've found an lwp that needs stepping over --- return 1 so
4758 that find_inferior stops looking. */
4759 current_thread = saved_thread;
4760
4761 return true;
4762 }
4763 }
4764
4765 current_thread = saved_thread;
4766
4767 if (debug_threads)
4768 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4769 " at 0x%s\n",
4770 lwpid_of (thread), paddress (pc));
4771
4772 return false;
4773 }
4774
4775 /* Start a step-over operation on LWP. When LWP stopped at a
4776 breakpoint, to make progress, we need to remove the breakpoint out
4777 of the way. If we let other threads run while we do that, they may
4778 pass by the breakpoint location and miss hitting it. To avoid
4779 that, a step-over momentarily stops all threads while LWP is
4780 single-stepped by either hardware or software while the breakpoint
4781 is temporarily uninserted from the inferior. When the single-step
4782 finishes, we reinsert the breakpoint, and let all threads that are
4783 supposed to be running, run again. */
4784
4785 static int
4786 start_step_over (struct lwp_info *lwp)
4787 {
4788 struct thread_info *thread = get_lwp_thread (lwp);
4789 struct thread_info *saved_thread;
4790 CORE_ADDR pc;
4791 int step;
4792
4793 if (debug_threads)
4794 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4795 lwpid_of (thread));
4796
4797 stop_all_lwps (1, lwp);
4798
4799 if (lwp->suspended != 0)
4800 {
4801 internal_error (__FILE__, __LINE__,
4802 "LWP %ld suspended=%d\n", lwpid_of (thread),
4803 lwp->suspended);
4804 }
4805
4806 if (debug_threads)
4807 debug_printf ("Done stopping all threads for step-over.\n");
4808
4809 /* Note, we should always reach here with an already adjusted PC,
4810 either by GDB (if we're resuming due to GDB's request), or by our
4811 caller, if we just finished handling an internal breakpoint GDB
4812 shouldn't care about. */
4813 pc = get_pc (lwp);
4814
4815 saved_thread = current_thread;
4816 current_thread = thread;
4817
4818 lwp->bp_reinsert = pc;
4819 uninsert_breakpoints_at (pc);
4820 uninsert_fast_tracepoint_jumps_at (pc);
4821
4822 step = single_step (lwp);
4823
4824 current_thread = saved_thread;
4825
4826 linux_resume_one_lwp (lwp, step, 0, NULL);
4827
4828 /* Require next event from this LWP. */
4829 step_over_bkpt = thread->id;
4830 return 1;
4831 }
4832
4833 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4834 start_step_over, if still there, and delete any single-step
4835 breakpoints we've set, on non hardware single-step targets. */
4836
4837 static int
4838 finish_step_over (struct lwp_info *lwp)
4839 {
4840 if (lwp->bp_reinsert != 0)
4841 {
4842 struct thread_info *saved_thread = current_thread;
4843
4844 if (debug_threads)
4845 debug_printf ("Finished step over.\n");
4846
4847 current_thread = get_lwp_thread (lwp);
4848
4849 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4850 may be no breakpoint to reinsert there by now. */
4851 reinsert_breakpoints_at (lwp->bp_reinsert);
4852 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4853
4854 lwp->bp_reinsert = 0;
4855
4856 /* Delete any single-step breakpoints. No longer needed. We
4857 don't have to worry about other threads hitting this trap,
4858 and later not being able to explain it, because we were
4859 stepping over a breakpoint, and we hold all threads but
4860 LWP stopped while doing that. */
4861 if (!can_hardware_single_step ())
4862 {
4863 gdb_assert (has_single_step_breakpoints (current_thread));
4864 delete_single_step_breakpoints (current_thread);
4865 }
4866
4867 step_over_bkpt = null_ptid;
4868 current_thread = saved_thread;
4869 return 1;
4870 }
4871 else
4872 return 0;
4873 }
4874
4875 /* If there's a step over in progress, wait until all threads stop
4876 (that is, until the stepping thread finishes its step), and
4877 unsuspend all lwps. The stepping thread ends with its status
4878 pending, which is processed later when we get back to processing
4879 events. */
4880
4881 static void
4882 complete_ongoing_step_over (void)
4883 {
4884 if (!ptid_equal (step_over_bkpt, null_ptid))
4885 {
4886 struct lwp_info *lwp;
4887 int wstat;
4888 int ret;
4889
4890 if (debug_threads)
4891 debug_printf ("detach: step over in progress, finish it first\n");
4892
4893 /* Passing NULL_PTID as filter indicates we want all events to
4894 be left pending. Eventually this returns when there are no
4895 unwaited-for children left. */
4896 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4897 &wstat, __WALL);
4898 gdb_assert (ret == -1);
4899
4900 lwp = find_lwp_pid (step_over_bkpt);
4901 if (lwp != NULL)
4902 finish_step_over (lwp);
4903 step_over_bkpt = null_ptid;
4904 unsuspend_all_lwps (lwp);
4905 }
4906 }
4907
4908 /* This function is called once per thread. We check the thread's resume
4909 request, which will tell us whether to resume, step, or leave the thread
4910 stopped; and what signal, if any, it should be sent.
4911
4912 For threads which we aren't explicitly told otherwise, we preserve
4913 the stepping flag; this is used for stepping over gdbserver-placed
4914 breakpoints.
4915
4916 If pending_flags was set in any thread, we queue any needed
4917 signals, since we won't actually resume. We already have a pending
4918 event to report, so we don't need to preserve any step requests;
4919 they should be re-issued if necessary. */
4920
4921 static int
4922 linux_resume_one_thread (thread_info *thread, void *arg)
4923 {
4924 struct lwp_info *lwp = get_thread_lwp (thread);
4925 int leave_all_stopped = * (int *) arg;
4926 int leave_pending;
4927
4928 if (lwp->resume == NULL)
4929 return 0;
4930
4931 if (lwp->resume->kind == resume_stop)
4932 {
4933 if (debug_threads)
4934 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4935
4936 if (!lwp->stopped)
4937 {
4938 if (debug_threads)
4939 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4940
4941 /* Stop the thread, and wait for the event asynchronously,
4942 through the event loop. */
4943 send_sigstop (lwp);
4944 }
4945 else
4946 {
4947 if (debug_threads)
4948 debug_printf ("already stopped LWP %ld\n",
4949 lwpid_of (thread));
4950
4951 /* The LWP may have been stopped in an internal event that
4952 was not meant to be notified back to GDB (e.g., gdbserver
4953 breakpoint), so we should be reporting a stop event in
4954 this case too. */
4955
4956 /* If the thread already has a pending SIGSTOP, this is a
4957 no-op. Otherwise, something later will presumably resume
4958 the thread and this will cause it to cancel any pending
4959 operation, due to last_resume_kind == resume_stop. If
4960 the thread already has a pending status to report, we
4961 will still report it the next time we wait - see
4962 status_pending_p_callback. */
4963
4964 /* If we already have a pending signal to report, then
4965 there's no need to queue a SIGSTOP, as this means we're
4966 midway through moving the LWP out of the jumppad, and we
4967 will report the pending signal as soon as that is
4968 finished. */
4969 if (lwp->pending_signals_to_report == NULL)
4970 send_sigstop (lwp);
4971 }
4972
4973 /* For stop requests, we're done. */
4974 lwp->resume = NULL;
4975 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4976 return 0;
4977 }
4978
4979 /* If this thread which is about to be resumed has a pending status,
4980 then don't resume it - we can just report the pending status.
4981 Likewise if it is suspended, because e.g., another thread is
4982 stepping past a breakpoint. Make sure to queue any signals that
4983 would otherwise be sent. In all-stop mode, we do this decision
4984 based on if *any* thread has a pending status. If there's a
4985 thread that needs the step-over-breakpoint dance, then don't
4986 resume any other thread but that particular one. */
4987 leave_pending = (lwp->suspended
4988 || lwp->status_pending_p
4989 || leave_all_stopped);
4990
4991 /* If we have a new signal, enqueue the signal. */
4992 if (lwp->resume->sig != 0)
4993 {
4994 siginfo_t info, *info_p;
4995
4996 /* If this is the same signal we were previously stopped by,
4997 make sure to queue its siginfo. */
4998 if (WIFSTOPPED (lwp->last_status)
4999 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5000 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5001 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5002 info_p = &info;
5003 else
5004 info_p = NULL;
5005
5006 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5007 }
5008
5009 if (!leave_pending)
5010 {
5011 if (debug_threads)
5012 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5013
5014 proceed_one_lwp (thread, NULL);
5015 }
5016 else
5017 {
5018 if (debug_threads)
5019 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5020 }
5021
5022 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5023 lwp->resume = NULL;
5024 return 0;
5025 }
5026
5027 static void
5028 linux_resume (struct thread_resume *resume_info, size_t n)
5029 {
5030 struct thread_info *need_step_over = NULL;
5031 int leave_all_stopped;
5032
5033 if (debug_threads)
5034 {
5035 debug_enter ();
5036 debug_printf ("linux_resume:\n");
5037 }
5038
5039 for_each_thread ([&] (thread_info *thread)
5040 {
5041 linux_set_resume_request (thread, resume_info, n);
5042 });
5043
5044 /* If there is a thread which would otherwise be resumed, which has
5045 a pending status, then don't resume any threads - we can just
5046 report the pending status. Make sure to queue any signals that
5047 would otherwise be sent. In non-stop mode, we'll apply this
5048 logic to each thread individually. We consume all pending events
5049 before considering to start a step-over (in all-stop). */
5050 bool any_pending = false;
5051 if (!non_stop)
5052 any_pending = find_thread (resume_status_pending_p) != NULL;
5053
5054 /* If there is a thread which would otherwise be resumed, which is
5055 stopped at a breakpoint that needs stepping over, then don't
5056 resume any threads - have it step over the breakpoint with all
5057 other threads stopped, then resume all threads again. Make sure
5058 to queue any signals that would otherwise be delivered or
5059 queued. */
5060 if (!any_pending && supports_breakpoints ())
5061 need_step_over = find_thread (need_step_over_p);
5062
5063 leave_all_stopped = (need_step_over != NULL || any_pending);
5064
5065 if (debug_threads)
5066 {
5067 if (need_step_over != NULL)
5068 debug_printf ("Not resuming all, need step over\n");
5069 else if (any_pending)
5070 debug_printf ("Not resuming, all-stop and found "
5071 "an LWP with pending status\n");
5072 else
5073 debug_printf ("Resuming, no pending status or step over needed\n");
5074 }
5075
5076 /* Even if we're leaving threads stopped, queue all signals we'd
5077 otherwise deliver. */
5078 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5079
5080 if (need_step_over)
5081 start_step_over (get_thread_lwp (need_step_over));
5082
5083 if (debug_threads)
5084 {
5085 debug_printf ("linux_resume done\n");
5086 debug_exit ();
5087 }
5088
5089 /* We may have events that were pending that can/should be sent to
5090 the client now. Trigger a linux_wait call. */
5091 if (target_is_async_p ())
5092 async_file_mark ();
5093 }
5094
5095 /* This function is called once per thread. We check the thread's
5096 last resume request, which will tell us whether to resume, step, or
5097 leave the thread stopped. Any signal the client requested to be
5098 delivered has already been enqueued at this point.
5099
5100 If any thread that GDB wants running is stopped at an internal
5101 breakpoint that needs stepping over, we start a step-over operation
5102 on that particular thread, and leave all others stopped. */
5103
5104 static int
5105 proceed_one_lwp (thread_info *thread, void *except)
5106 {
5107 struct lwp_info *lwp = get_thread_lwp (thread);
5108 int step;
5109
5110 if (lwp == except)
5111 return 0;
5112
5113 if (debug_threads)
5114 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5115
5116 if (!lwp->stopped)
5117 {
5118 if (debug_threads)
5119 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5120 return 0;
5121 }
5122
5123 if (thread->last_resume_kind == resume_stop
5124 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5125 {
5126 if (debug_threads)
5127 debug_printf (" client wants LWP to remain %ld stopped\n",
5128 lwpid_of (thread));
5129 return 0;
5130 }
5131
5132 if (lwp->status_pending_p)
5133 {
5134 if (debug_threads)
5135 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5136 lwpid_of (thread));
5137 return 0;
5138 }
5139
5140 gdb_assert (lwp->suspended >= 0);
5141
5142 if (lwp->suspended)
5143 {
5144 if (debug_threads)
5145 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5146 return 0;
5147 }
5148
5149 if (thread->last_resume_kind == resume_stop
5150 && lwp->pending_signals_to_report == NULL
5151 && (lwp->collecting_fast_tracepoint
5152 == fast_tpoint_collect_result::not_collecting))
5153 {
5154 /* We haven't reported this LWP as stopped yet (otherwise, the
5155 last_status.kind check above would catch it, and we wouldn't
5156 reach here. This LWP may have been momentarily paused by a
5157 stop_all_lwps call while handling for example, another LWP's
5158 step-over. In that case, the pending expected SIGSTOP signal
5159 that was queued at vCont;t handling time will have already
5160 been consumed by wait_for_sigstop, and so we need to requeue
5161 another one here. Note that if the LWP already has a SIGSTOP
5162 pending, this is a no-op. */
5163
5164 if (debug_threads)
5165 debug_printf ("Client wants LWP %ld to stop. "
5166 "Making sure it has a SIGSTOP pending\n",
5167 lwpid_of (thread));
5168
5169 send_sigstop (lwp);
5170 }
5171
5172 if (thread->last_resume_kind == resume_step)
5173 {
5174 if (debug_threads)
5175 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5176 lwpid_of (thread));
5177
5178 /* If resume_step is requested by GDB, install single-step
5179 breakpoints when the thread is about to be actually resumed if
5180 the single-step breakpoints weren't removed. */
5181 if (can_software_single_step ()
5182 && !has_single_step_breakpoints (thread))
5183 install_software_single_step_breakpoints (lwp);
5184
5185 step = maybe_hw_step (thread);
5186 }
5187 else if (lwp->bp_reinsert != 0)
5188 {
5189 if (debug_threads)
5190 debug_printf (" stepping LWP %ld, reinsert set\n",
5191 lwpid_of (thread));
5192
5193 step = maybe_hw_step (thread);
5194 }
5195 else
5196 step = 0;
5197
5198 linux_resume_one_lwp (lwp, step, 0, NULL);
5199 return 0;
5200 }
5201
5202 static int
5203 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5204 {
5205 struct lwp_info *lwp = get_thread_lwp (thread);
5206
5207 if (lwp == except)
5208 return 0;
5209
5210 lwp_suspended_decr (lwp);
5211
5212 return proceed_one_lwp (thread, except);
5213 }
5214
5215 /* When we finish a step-over, set threads running again. If there's
5216 another thread that may need a step-over, now's the time to start
5217 it. Eventually, we'll move all threads past their breakpoints. */
5218
5219 static void
5220 proceed_all_lwps (void)
5221 {
5222 struct thread_info *need_step_over;
5223
5224 /* If there is a thread which would otherwise be resumed, which is
5225 stopped at a breakpoint that needs stepping over, then don't
5226 resume any threads - have it step over the breakpoint with all
5227 other threads stopped, then resume all threads again. */
5228
5229 if (supports_breakpoints ())
5230 {
5231 need_step_over = find_thread (need_step_over_p);
5232
5233 if (need_step_over != NULL)
5234 {
5235 if (debug_threads)
5236 debug_printf ("proceed_all_lwps: found "
5237 "thread %ld needing a step-over\n",
5238 lwpid_of (need_step_over));
5239
5240 start_step_over (get_thread_lwp (need_step_over));
5241 return;
5242 }
5243 }
5244
5245 if (debug_threads)
5246 debug_printf ("Proceeding, no step-over needed\n");
5247
5248 find_inferior (&all_threads, proceed_one_lwp, NULL);
5249 }
5250
5251 /* Stopped LWPs that the client wanted to be running, that don't have
5252 pending statuses, are set to run again, except for EXCEPT, if not
5253 NULL. This undoes a stop_all_lwps call. */
5254
5255 static void
5256 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5257 {
5258 if (debug_threads)
5259 {
5260 debug_enter ();
5261 if (except)
5262 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5263 lwpid_of (get_lwp_thread (except)));
5264 else
5265 debug_printf ("unstopping all lwps\n");
5266 }
5267
5268 if (unsuspend)
5269 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5270 else
5271 find_inferior (&all_threads, proceed_one_lwp, except);
5272
5273 if (debug_threads)
5274 {
5275 debug_printf ("unstop_all_lwps done\n");
5276 debug_exit ();
5277 }
5278 }
5279
5280
5281 #ifdef HAVE_LINUX_REGSETS
5282
5283 #define use_linux_regsets 1
5284
5285 /* Returns true if REGSET has been disabled. */
5286
5287 static int
5288 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5289 {
5290 return (info->disabled_regsets != NULL
5291 && info->disabled_regsets[regset - info->regsets]);
5292 }
5293
5294 /* Disable REGSET. */
5295
5296 static void
5297 disable_regset (struct regsets_info *info, struct regset_info *regset)
5298 {
5299 int dr_offset;
5300
5301 dr_offset = regset - info->regsets;
5302 if (info->disabled_regsets == NULL)
5303 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5304 info->disabled_regsets[dr_offset] = 1;
5305 }
5306
5307 static int
5308 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5309 struct regcache *regcache)
5310 {
5311 struct regset_info *regset;
5312 int saw_general_regs = 0;
5313 int pid;
5314 struct iovec iov;
5315
5316 pid = lwpid_of (current_thread);
5317 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5318 {
5319 void *buf, *data;
5320 int nt_type, res;
5321
5322 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5323 continue;
5324
5325 buf = xmalloc (regset->size);
5326
5327 nt_type = regset->nt_type;
5328 if (nt_type)
5329 {
5330 iov.iov_base = buf;
5331 iov.iov_len = regset->size;
5332 data = (void *) &iov;
5333 }
5334 else
5335 data = buf;
5336
5337 #ifndef __sparc__
5338 res = ptrace (regset->get_request, pid,
5339 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5340 #else
5341 res = ptrace (regset->get_request, pid, data, nt_type);
5342 #endif
5343 if (res < 0)
5344 {
5345 if (errno == EIO)
5346 {
5347 /* If we get EIO on a regset, do not try it again for
5348 this process mode. */
5349 disable_regset (regsets_info, regset);
5350 }
5351 else if (errno == ENODATA)
5352 {
5353 /* ENODATA may be returned if the regset is currently
5354 not "active". This can happen in normal operation,
5355 so suppress the warning in this case. */
5356 }
5357 else if (errno == ESRCH)
5358 {
5359 /* At this point, ESRCH should mean the process is
5360 already gone, in which case we simply ignore attempts
5361 to read its registers. */
5362 }
5363 else
5364 {
5365 char s[256];
5366 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5367 pid);
5368 perror (s);
5369 }
5370 }
5371 else
5372 {
5373 if (regset->type == GENERAL_REGS)
5374 saw_general_regs = 1;
5375 regset->store_function (regcache, buf);
5376 }
5377 free (buf);
5378 }
5379 if (saw_general_regs)
5380 return 0;
5381 else
5382 return 1;
5383 }
5384
5385 static int
5386 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5387 struct regcache *regcache)
5388 {
5389 struct regset_info *regset;
5390 int saw_general_regs = 0;
5391 int pid;
5392 struct iovec iov;
5393
5394 pid = lwpid_of (current_thread);
5395 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5396 {
5397 void *buf, *data;
5398 int nt_type, res;
5399
5400 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5401 || regset->fill_function == NULL)
5402 continue;
5403
5404 buf = xmalloc (regset->size);
5405
5406 /* First fill the buffer with the current register set contents,
5407 in case there are any items in the kernel's regset that are
5408 not in gdbserver's regcache. */
5409
5410 nt_type = regset->nt_type;
5411 if (nt_type)
5412 {
5413 iov.iov_base = buf;
5414 iov.iov_len = regset->size;
5415 data = (void *) &iov;
5416 }
5417 else
5418 data = buf;
5419
5420 #ifndef __sparc__
5421 res = ptrace (regset->get_request, pid,
5422 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5423 #else
5424 res = ptrace (regset->get_request, pid, data, nt_type);
5425 #endif
5426
5427 if (res == 0)
5428 {
5429 /* Then overlay our cached registers on that. */
5430 regset->fill_function (regcache, buf);
5431
5432 /* Only now do we write the register set. */
5433 #ifndef __sparc__
5434 res = ptrace (regset->set_request, pid,
5435 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5436 #else
5437 res = ptrace (regset->set_request, pid, data, nt_type);
5438 #endif
5439 }
5440
5441 if (res < 0)
5442 {
5443 if (errno == EIO)
5444 {
5445 /* If we get EIO on a regset, do not try it again for
5446 this process mode. */
5447 disable_regset (regsets_info, regset);
5448 }
5449 else if (errno == ESRCH)
5450 {
5451 /* At this point, ESRCH should mean the process is
5452 already gone, in which case we simply ignore attempts
5453 to change its registers. See also the related
5454 comment in linux_resume_one_lwp. */
5455 free (buf);
5456 return 0;
5457 }
5458 else
5459 {
5460 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5461 }
5462 }
5463 else if (regset->type == GENERAL_REGS)
5464 saw_general_regs = 1;
5465 free (buf);
5466 }
5467 if (saw_general_regs)
5468 return 0;
5469 else
5470 return 1;
5471 }
5472
5473 #else /* !HAVE_LINUX_REGSETS */
5474
5475 #define use_linux_regsets 0
5476 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5477 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5478
5479 #endif
5480
5481 /* Return 1 if register REGNO is supported by one of the regset ptrace
5482 calls or 0 if it has to be transferred individually. */
5483
5484 static int
5485 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5486 {
5487 unsigned char mask = 1 << (regno % 8);
5488 size_t index = regno / 8;
5489
5490 return (use_linux_regsets
5491 && (regs_info->regset_bitmap == NULL
5492 || (regs_info->regset_bitmap[index] & mask) != 0));
5493 }
5494
5495 #ifdef HAVE_LINUX_USRREGS
5496
5497 static int
5498 register_addr (const struct usrregs_info *usrregs, int regnum)
5499 {
5500 int addr;
5501
5502 if (regnum < 0 || regnum >= usrregs->num_regs)
5503 error ("Invalid register number %d.", regnum);
5504
5505 addr = usrregs->regmap[regnum];
5506
5507 return addr;
5508 }
5509
5510 /* Fetch one register. */
5511 static void
5512 fetch_register (const struct usrregs_info *usrregs,
5513 struct regcache *regcache, int regno)
5514 {
5515 CORE_ADDR regaddr;
5516 int i, size;
5517 char *buf;
5518 int pid;
5519
5520 if (regno >= usrregs->num_regs)
5521 return;
5522 if ((*the_low_target.cannot_fetch_register) (regno))
5523 return;
5524
5525 regaddr = register_addr (usrregs, regno);
5526 if (regaddr == -1)
5527 return;
5528
5529 size = ((register_size (regcache->tdesc, regno)
5530 + sizeof (PTRACE_XFER_TYPE) - 1)
5531 & -sizeof (PTRACE_XFER_TYPE));
5532 buf = (char *) alloca (size);
5533
5534 pid = lwpid_of (current_thread);
5535 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5536 {
5537 errno = 0;
5538 *(PTRACE_XFER_TYPE *) (buf + i) =
5539 ptrace (PTRACE_PEEKUSER, pid,
5540 /* Coerce to a uintptr_t first to avoid potential gcc warning
5541 of coercing an 8 byte integer to a 4 byte pointer. */
5542 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5543 regaddr += sizeof (PTRACE_XFER_TYPE);
5544 if (errno != 0)
5545 error ("reading register %d: %s", regno, strerror (errno));
5546 }
5547
5548 if (the_low_target.supply_ptrace_register)
5549 the_low_target.supply_ptrace_register (regcache, regno, buf);
5550 else
5551 supply_register (regcache, regno, buf);
5552 }
5553
5554 /* Store one register. */
5555 static void
5556 store_register (const struct usrregs_info *usrregs,
5557 struct regcache *regcache, int regno)
5558 {
5559 CORE_ADDR regaddr;
5560 int i, size;
5561 char *buf;
5562 int pid;
5563
5564 if (regno >= usrregs->num_regs)
5565 return;
5566 if ((*the_low_target.cannot_store_register) (regno))
5567 return;
5568
5569 regaddr = register_addr (usrregs, regno);
5570 if (regaddr == -1)
5571 return;
5572
5573 size = ((register_size (regcache->tdesc, regno)
5574 + sizeof (PTRACE_XFER_TYPE) - 1)
5575 & -sizeof (PTRACE_XFER_TYPE));
5576 buf = (char *) alloca (size);
5577 memset (buf, 0, size);
5578
5579 if (the_low_target.collect_ptrace_register)
5580 the_low_target.collect_ptrace_register (regcache, regno, buf);
5581 else
5582 collect_register (regcache, regno, buf);
5583
5584 pid = lwpid_of (current_thread);
5585 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5586 {
5587 errno = 0;
5588 ptrace (PTRACE_POKEUSER, pid,
5589 /* Coerce to a uintptr_t first to avoid potential gcc warning
5590 about coercing an 8 byte integer to a 4 byte pointer. */
5591 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5592 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5593 if (errno != 0)
5594 {
5595 /* At this point, ESRCH should mean the process is
5596 already gone, in which case we simply ignore attempts
5597 to change its registers. See also the related
5598 comment in linux_resume_one_lwp. */
5599 if (errno == ESRCH)
5600 return;
5601
5602 if ((*the_low_target.cannot_store_register) (regno) == 0)
5603 error ("writing register %d: %s", regno, strerror (errno));
5604 }
5605 regaddr += sizeof (PTRACE_XFER_TYPE);
5606 }
5607 }
5608
5609 /* Fetch all registers, or just one, from the child process.
5610 If REGNO is -1, do this for all registers, skipping any that are
5611 assumed to have been retrieved by regsets_fetch_inferior_registers,
5612 unless ALL is non-zero.
5613 Otherwise, REGNO specifies which register (so we can save time). */
5614 static void
5615 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5616 struct regcache *regcache, int regno, int all)
5617 {
5618 struct usrregs_info *usr = regs_info->usrregs;
5619
5620 if (regno == -1)
5621 {
5622 for (regno = 0; regno < usr->num_regs; regno++)
5623 if (all || !linux_register_in_regsets (regs_info, regno))
5624 fetch_register (usr, regcache, regno);
5625 }
5626 else
5627 fetch_register (usr, regcache, regno);
5628 }
5629
5630 /* Store our register values back into the inferior.
5631 If REGNO is -1, do this for all registers, skipping any that are
5632 assumed to have been saved by regsets_store_inferior_registers,
5633 unless ALL is non-zero.
5634 Otherwise, REGNO specifies which register (so we can save time). */
5635 static void
5636 usr_store_inferior_registers (const struct regs_info *regs_info,
5637 struct regcache *regcache, int regno, int all)
5638 {
5639 struct usrregs_info *usr = regs_info->usrregs;
5640
5641 if (regno == -1)
5642 {
5643 for (regno = 0; regno < usr->num_regs; regno++)
5644 if (all || !linux_register_in_regsets (regs_info, regno))
5645 store_register (usr, regcache, regno);
5646 }
5647 else
5648 store_register (usr, regcache, regno);
5649 }
5650
5651 #else /* !HAVE_LINUX_USRREGS */
5652
5653 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5654 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5655
5656 #endif
5657
5658
5659 static void
5660 linux_fetch_registers (struct regcache *regcache, int regno)
5661 {
5662 int use_regsets;
5663 int all = 0;
5664 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5665
5666 if (regno == -1)
5667 {
5668 if (the_low_target.fetch_register != NULL
5669 && regs_info->usrregs != NULL)
5670 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5671 (*the_low_target.fetch_register) (regcache, regno);
5672
5673 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5674 if (regs_info->usrregs != NULL)
5675 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5676 }
5677 else
5678 {
5679 if (the_low_target.fetch_register != NULL
5680 && (*the_low_target.fetch_register) (regcache, regno))
5681 return;
5682
5683 use_regsets = linux_register_in_regsets (regs_info, regno);
5684 if (use_regsets)
5685 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5686 regcache);
5687 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5688 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5689 }
5690 }
5691
5692 static void
5693 linux_store_registers (struct regcache *regcache, int regno)
5694 {
5695 int use_regsets;
5696 int all = 0;
5697 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5698
5699 if (regno == -1)
5700 {
5701 all = regsets_store_inferior_registers (regs_info->regsets_info,
5702 regcache);
5703 if (regs_info->usrregs != NULL)
5704 usr_store_inferior_registers (regs_info, regcache, regno, all);
5705 }
5706 else
5707 {
5708 use_regsets = linux_register_in_regsets (regs_info, regno);
5709 if (use_regsets)
5710 all = regsets_store_inferior_registers (regs_info->regsets_info,
5711 regcache);
5712 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5713 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5714 }
5715 }
5716
5717
5718 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5719 to debugger memory starting at MYADDR. */
5720
5721 static int
5722 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5723 {
5724 int pid = lwpid_of (current_thread);
5725 PTRACE_XFER_TYPE *buffer;
5726 CORE_ADDR addr;
5727 int count;
5728 char filename[64];
5729 int i;
5730 int ret;
5731 int fd;
5732
5733 /* Try using /proc. Don't bother for one word. */
5734 if (len >= 3 * sizeof (long))
5735 {
5736 int bytes;
5737
5738 /* We could keep this file open and cache it - possibly one per
5739 thread. That requires some juggling, but is even faster. */
5740 sprintf (filename, "/proc/%d/mem", pid);
5741 fd = open (filename, O_RDONLY | O_LARGEFILE);
5742 if (fd == -1)
5743 goto no_proc;
5744
5745 /* If pread64 is available, use it. It's faster if the kernel
5746 supports it (only one syscall), and it's 64-bit safe even on
5747 32-bit platforms (for instance, SPARC debugging a SPARC64
5748 application). */
5749 #ifdef HAVE_PREAD64
5750 bytes = pread64 (fd, myaddr, len, memaddr);
5751 #else
5752 bytes = -1;
5753 if (lseek (fd, memaddr, SEEK_SET) != -1)
5754 bytes = read (fd, myaddr, len);
5755 #endif
5756
5757 close (fd);
5758 if (bytes == len)
5759 return 0;
5760
5761 /* Some data was read, we'll try to get the rest with ptrace. */
5762 if (bytes > 0)
5763 {
5764 memaddr += bytes;
5765 myaddr += bytes;
5766 len -= bytes;
5767 }
5768 }
5769
5770 no_proc:
5771 /* Round starting address down to longword boundary. */
5772 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5773 /* Round ending address up; get number of longwords that makes. */
5774 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5775 / sizeof (PTRACE_XFER_TYPE));
5776 /* Allocate buffer of that many longwords. */
5777 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5778
5779 /* Read all the longwords */
5780 errno = 0;
5781 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5782 {
5783 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5784 about coercing an 8 byte integer to a 4 byte pointer. */
5785 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5786 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5787 (PTRACE_TYPE_ARG4) 0);
5788 if (errno)
5789 break;
5790 }
5791 ret = errno;
5792
5793 /* Copy appropriate bytes out of the buffer. */
5794 if (i > 0)
5795 {
5796 i *= sizeof (PTRACE_XFER_TYPE);
5797 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5798 memcpy (myaddr,
5799 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5800 i < len ? i : len);
5801 }
5802
5803 return ret;
5804 }
5805
5806 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5807 memory at MEMADDR. On failure (cannot write to the inferior)
5808 returns the value of errno. Always succeeds if LEN is zero. */
5809
5810 static int
5811 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5812 {
5813 int i;
5814 /* Round starting address down to longword boundary. */
5815 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5816 /* Round ending address up; get number of longwords that makes. */
5817 int count
5818 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5819 / sizeof (PTRACE_XFER_TYPE);
5820
5821 /* Allocate buffer of that many longwords. */
5822 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5823
5824 int pid = lwpid_of (current_thread);
5825
5826 if (len == 0)
5827 {
5828 /* Zero length write always succeeds. */
5829 return 0;
5830 }
5831
5832 if (debug_threads)
5833 {
5834 /* Dump up to four bytes. */
5835 char str[4 * 2 + 1];
5836 char *p = str;
5837 int dump = len < 4 ? len : 4;
5838
5839 for (i = 0; i < dump; i++)
5840 {
5841 sprintf (p, "%02x", myaddr[i]);
5842 p += 2;
5843 }
5844 *p = '\0';
5845
5846 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5847 str, (long) memaddr, pid);
5848 }
5849
5850 /* Fill start and end extra bytes of buffer with existing memory data. */
5851
5852 errno = 0;
5853 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5854 about coercing an 8 byte integer to a 4 byte pointer. */
5855 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5856 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5857 (PTRACE_TYPE_ARG4) 0);
5858 if (errno)
5859 return errno;
5860
5861 if (count > 1)
5862 {
5863 errno = 0;
5864 buffer[count - 1]
5865 = ptrace (PTRACE_PEEKTEXT, pid,
5866 /* Coerce to a uintptr_t first to avoid potential gcc warning
5867 about coercing an 8 byte integer to a 4 byte pointer. */
5868 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5869 * sizeof (PTRACE_XFER_TYPE)),
5870 (PTRACE_TYPE_ARG4) 0);
5871 if (errno)
5872 return errno;
5873 }
5874
5875 /* Copy data to be written over corresponding part of buffer. */
5876
5877 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5878 myaddr, len);
5879
5880 /* Write the entire buffer. */
5881
5882 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5883 {
5884 errno = 0;
5885 ptrace (PTRACE_POKETEXT, pid,
5886 /* Coerce to a uintptr_t first to avoid potential gcc warning
5887 about coercing an 8 byte integer to a 4 byte pointer. */
5888 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5889 (PTRACE_TYPE_ARG4) buffer[i]);
5890 if (errno)
5891 return errno;
5892 }
5893
5894 return 0;
5895 }
5896
5897 static void
5898 linux_look_up_symbols (void)
5899 {
5900 #ifdef USE_THREAD_DB
5901 struct process_info *proc = current_process ();
5902
5903 if (proc->priv->thread_db != NULL)
5904 return;
5905
5906 thread_db_init ();
5907 #endif
5908 }
5909
5910 static void
5911 linux_request_interrupt (void)
5912 {
5913 /* Send a SIGINT to the process group. This acts just like the user
5914 typed a ^C on the controlling terminal. */
5915 kill (-signal_pid, SIGINT);
5916 }
5917
5918 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5919 to debugger memory starting at MYADDR. */
5920
5921 static int
5922 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5923 {
5924 char filename[PATH_MAX];
5925 int fd, n;
5926 int pid = lwpid_of (current_thread);
5927
5928 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5929
5930 fd = open (filename, O_RDONLY);
5931 if (fd < 0)
5932 return -1;
5933
5934 if (offset != (CORE_ADDR) 0
5935 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5936 n = -1;
5937 else
5938 n = read (fd, myaddr, len);
5939
5940 close (fd);
5941
5942 return n;
5943 }
5944
5945 /* These breakpoint and watchpoint related wrapper functions simply
5946 pass on the function call if the target has registered a
5947 corresponding function. */
5948
5949 static int
5950 linux_supports_z_point_type (char z_type)
5951 {
5952 return (the_low_target.supports_z_point_type != NULL
5953 && the_low_target.supports_z_point_type (z_type));
5954 }
5955
5956 static int
5957 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5958 int size, struct raw_breakpoint *bp)
5959 {
5960 if (type == raw_bkpt_type_sw)
5961 return insert_memory_breakpoint (bp);
5962 else if (the_low_target.insert_point != NULL)
5963 return the_low_target.insert_point (type, addr, size, bp);
5964 else
5965 /* Unsupported (see target.h). */
5966 return 1;
5967 }
5968
5969 static int
5970 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5971 int size, struct raw_breakpoint *bp)
5972 {
5973 if (type == raw_bkpt_type_sw)
5974 return remove_memory_breakpoint (bp);
5975 else if (the_low_target.remove_point != NULL)
5976 return the_low_target.remove_point (type, addr, size, bp);
5977 else
5978 /* Unsupported (see target.h). */
5979 return 1;
5980 }
5981
5982 /* Implement the to_stopped_by_sw_breakpoint target_ops
5983 method. */
5984
5985 static int
5986 linux_stopped_by_sw_breakpoint (void)
5987 {
5988 struct lwp_info *lwp = get_thread_lwp (current_thread);
5989
5990 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5991 }
5992
5993 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5994 method. */
5995
5996 static int
5997 linux_supports_stopped_by_sw_breakpoint (void)
5998 {
5999 return USE_SIGTRAP_SIGINFO;
6000 }
6001
6002 /* Implement the to_stopped_by_hw_breakpoint target_ops
6003 method. */
6004
6005 static int
6006 linux_stopped_by_hw_breakpoint (void)
6007 {
6008 struct lwp_info *lwp = get_thread_lwp (current_thread);
6009
6010 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6011 }
6012
6013 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6014 method. */
6015
6016 static int
6017 linux_supports_stopped_by_hw_breakpoint (void)
6018 {
6019 return USE_SIGTRAP_SIGINFO;
6020 }
6021
6022 /* Implement the supports_hardware_single_step target_ops method. */
6023
6024 static int
6025 linux_supports_hardware_single_step (void)
6026 {
6027 return can_hardware_single_step ();
6028 }
6029
6030 static int
6031 linux_supports_software_single_step (void)
6032 {
6033 return can_software_single_step ();
6034 }
6035
6036 static int
6037 linux_stopped_by_watchpoint (void)
6038 {
6039 struct lwp_info *lwp = get_thread_lwp (current_thread);
6040
6041 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6042 }
6043
6044 static CORE_ADDR
6045 linux_stopped_data_address (void)
6046 {
6047 struct lwp_info *lwp = get_thread_lwp (current_thread);
6048
6049 return lwp->stopped_data_address;
6050 }
6051
6052 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6053 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6054 && defined(PT_TEXT_END_ADDR)
6055
6056 /* This is only used for targets that define PT_TEXT_ADDR,
6057 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6058 the target has different ways of acquiring this information, like
6059 loadmaps. */
6060
6061 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6062 to tell gdb about. */
6063
6064 static int
6065 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6066 {
6067 unsigned long text, text_end, data;
6068 int pid = lwpid_of (current_thread);
6069
6070 errno = 0;
6071
6072 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6073 (PTRACE_TYPE_ARG4) 0);
6074 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6075 (PTRACE_TYPE_ARG4) 0);
6076 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6077 (PTRACE_TYPE_ARG4) 0);
6078
6079 if (errno == 0)
6080 {
6081 /* Both text and data offsets produced at compile-time (and so
6082 used by gdb) are relative to the beginning of the program,
6083 with the data segment immediately following the text segment.
6084 However, the actual runtime layout in memory may put the data
6085 somewhere else, so when we send gdb a data base-address, we
6086 use the real data base address and subtract the compile-time
6087 data base-address from it (which is just the length of the
6088 text segment). BSS immediately follows data in both
6089 cases. */
6090 *text_p = text;
6091 *data_p = data - (text_end - text);
6092
6093 return 1;
6094 }
6095 return 0;
6096 }
6097 #endif
6098
6099 static int
6100 linux_qxfer_osdata (const char *annex,
6101 unsigned char *readbuf, unsigned const char *writebuf,
6102 CORE_ADDR offset, int len)
6103 {
6104 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6105 }
6106
6107 /* Convert a native/host siginfo object, into/from the siginfo in the
6108 layout of the inferiors' architecture. */
6109
6110 static void
6111 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6112 {
6113 int done = 0;
6114
6115 if (the_low_target.siginfo_fixup != NULL)
6116 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6117
6118 /* If there was no callback, or the callback didn't do anything,
6119 then just do a straight memcpy. */
6120 if (!done)
6121 {
6122 if (direction == 1)
6123 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6124 else
6125 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6126 }
6127 }
6128
6129 static int
6130 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6131 unsigned const char *writebuf, CORE_ADDR offset, int len)
6132 {
6133 int pid;
6134 siginfo_t siginfo;
6135 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6136
6137 if (current_thread == NULL)
6138 return -1;
6139
6140 pid = lwpid_of (current_thread);
6141
6142 if (debug_threads)
6143 debug_printf ("%s siginfo for lwp %d.\n",
6144 readbuf != NULL ? "Reading" : "Writing",
6145 pid);
6146
6147 if (offset >= sizeof (siginfo))
6148 return -1;
6149
6150 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6151 return -1;
6152
6153 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6154 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6155 inferior with a 64-bit GDBSERVER should look the same as debugging it
6156 with a 32-bit GDBSERVER, we need to convert it. */
6157 siginfo_fixup (&siginfo, inf_siginfo, 0);
6158
6159 if (offset + len > sizeof (siginfo))
6160 len = sizeof (siginfo) - offset;
6161
6162 if (readbuf != NULL)
6163 memcpy (readbuf, inf_siginfo + offset, len);
6164 else
6165 {
6166 memcpy (inf_siginfo + offset, writebuf, len);
6167
6168 /* Convert back to ptrace layout before flushing it out. */
6169 siginfo_fixup (&siginfo, inf_siginfo, 1);
6170
6171 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6172 return -1;
6173 }
6174
6175 return len;
6176 }
6177
6178 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6179 so we notice when children change state; as the handler for the
6180 sigsuspend in my_waitpid. */
6181
6182 static void
6183 sigchld_handler (int signo)
6184 {
6185 int old_errno = errno;
6186
6187 if (debug_threads)
6188 {
6189 do
6190 {
6191 /* fprintf is not async-signal-safe, so call write
6192 directly. */
6193 if (write (2, "sigchld_handler\n",
6194 sizeof ("sigchld_handler\n") - 1) < 0)
6195 break; /* just ignore */
6196 } while (0);
6197 }
6198
6199 if (target_is_async_p ())
6200 async_file_mark (); /* trigger a linux_wait */
6201
6202 errno = old_errno;
6203 }
6204
6205 static int
6206 linux_supports_non_stop (void)
6207 {
6208 return 1;
6209 }
6210
6211 static int
6212 linux_async (int enable)
6213 {
6214 int previous = target_is_async_p ();
6215
6216 if (debug_threads)
6217 debug_printf ("linux_async (%d), previous=%d\n",
6218 enable, previous);
6219
6220 if (previous != enable)
6221 {
6222 sigset_t mask;
6223 sigemptyset (&mask);
6224 sigaddset (&mask, SIGCHLD);
6225
6226 sigprocmask (SIG_BLOCK, &mask, NULL);
6227
6228 if (enable)
6229 {
6230 if (pipe (linux_event_pipe) == -1)
6231 {
6232 linux_event_pipe[0] = -1;
6233 linux_event_pipe[1] = -1;
6234 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6235
6236 warning ("creating event pipe failed.");
6237 return previous;
6238 }
6239
6240 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6241 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6242
6243 /* Register the event loop handler. */
6244 add_file_handler (linux_event_pipe[0],
6245 handle_target_event, NULL);
6246
6247 /* Always trigger a linux_wait. */
6248 async_file_mark ();
6249 }
6250 else
6251 {
6252 delete_file_handler (linux_event_pipe[0]);
6253
6254 close (linux_event_pipe[0]);
6255 close (linux_event_pipe[1]);
6256 linux_event_pipe[0] = -1;
6257 linux_event_pipe[1] = -1;
6258 }
6259
6260 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6261 }
6262
6263 return previous;
6264 }
6265
6266 static int
6267 linux_start_non_stop (int nonstop)
6268 {
6269 /* Register or unregister from event-loop accordingly. */
6270 linux_async (nonstop);
6271
6272 if (target_is_async_p () != (nonstop != 0))
6273 return -1;
6274
6275 return 0;
6276 }
6277
6278 static int
6279 linux_supports_multi_process (void)
6280 {
6281 return 1;
6282 }
6283
6284 /* Check if fork events are supported. */
6285
6286 static int
6287 linux_supports_fork_events (void)
6288 {
6289 return linux_supports_tracefork ();
6290 }
6291
6292 /* Check if vfork events are supported. */
6293
6294 static int
6295 linux_supports_vfork_events (void)
6296 {
6297 return linux_supports_tracefork ();
6298 }
6299
6300 /* Check if exec events are supported. */
6301
6302 static int
6303 linux_supports_exec_events (void)
6304 {
6305 return linux_supports_traceexec ();
6306 }
6307
6308 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6309 ptrace flags for all inferiors. This is in case the new GDB connection
6310 doesn't support the same set of events that the previous one did. */
6311
6312 static void
6313 linux_handle_new_gdb_connection (void)
6314 {
6315 /* Request that all the lwps reset their ptrace options. */
6316 for_each_thread ([] (thread_info *thread)
6317 {
6318 struct lwp_info *lwp = get_thread_lwp (thread);
6319
6320 if (!lwp->stopped)
6321 {
6322 /* Stop the lwp so we can modify its ptrace options. */
6323 lwp->must_set_ptrace_flags = 1;
6324 linux_stop_lwp (lwp);
6325 }
6326 else
6327 {
6328 /* Already stopped; go ahead and set the ptrace options. */
6329 struct process_info *proc = find_process_pid (pid_of (thread));
6330 int options = linux_low_ptrace_options (proc->attached);
6331
6332 linux_enable_event_reporting (lwpid_of (thread), options);
6333 lwp->must_set_ptrace_flags = 0;
6334 }
6335 });
6336 }
6337
6338 static int
6339 linux_supports_disable_randomization (void)
6340 {
6341 #ifdef HAVE_PERSONALITY
6342 return 1;
6343 #else
6344 return 0;
6345 #endif
6346 }
6347
6348 static int
6349 linux_supports_agent (void)
6350 {
6351 return 1;
6352 }
6353
6354 static int
6355 linux_supports_range_stepping (void)
6356 {
6357 if (can_software_single_step ())
6358 return 1;
6359 if (*the_low_target.supports_range_stepping == NULL)
6360 return 0;
6361
6362 return (*the_low_target.supports_range_stepping) ();
6363 }
6364
6365 /* Enumerate spufs IDs for process PID. */
6366 static int
6367 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6368 {
6369 int pos = 0;
6370 int written = 0;
6371 char path[128];
6372 DIR *dir;
6373 struct dirent *entry;
6374
6375 sprintf (path, "/proc/%ld/fd", pid);
6376 dir = opendir (path);
6377 if (!dir)
6378 return -1;
6379
6380 rewinddir (dir);
6381 while ((entry = readdir (dir)) != NULL)
6382 {
6383 struct stat st;
6384 struct statfs stfs;
6385 int fd;
6386
6387 fd = atoi (entry->d_name);
6388 if (!fd)
6389 continue;
6390
6391 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6392 if (stat (path, &st) != 0)
6393 continue;
6394 if (!S_ISDIR (st.st_mode))
6395 continue;
6396
6397 if (statfs (path, &stfs) != 0)
6398 continue;
6399 if (stfs.f_type != SPUFS_MAGIC)
6400 continue;
6401
6402 if (pos >= offset && pos + 4 <= offset + len)
6403 {
6404 *(unsigned int *)(buf + pos - offset) = fd;
6405 written += 4;
6406 }
6407 pos += 4;
6408 }
6409
6410 closedir (dir);
6411 return written;
6412 }
6413
6414 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6415 object type, using the /proc file system. */
6416 static int
6417 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6418 unsigned const char *writebuf,
6419 CORE_ADDR offset, int len)
6420 {
6421 long pid = lwpid_of (current_thread);
6422 char buf[128];
6423 int fd = 0;
6424 int ret = 0;
6425
6426 if (!writebuf && !readbuf)
6427 return -1;
6428
6429 if (!*annex)
6430 {
6431 if (!readbuf)
6432 return -1;
6433 else
6434 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6435 }
6436
6437 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6438 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6439 if (fd <= 0)
6440 return -1;
6441
6442 if (offset != 0
6443 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6444 {
6445 close (fd);
6446 return 0;
6447 }
6448
6449 if (writebuf)
6450 ret = write (fd, writebuf, (size_t) len);
6451 else
6452 ret = read (fd, readbuf, (size_t) len);
6453
6454 close (fd);
6455 return ret;
6456 }
6457
6458 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6459 struct target_loadseg
6460 {
6461 /* Core address to which the segment is mapped. */
6462 Elf32_Addr addr;
6463 /* VMA recorded in the program header. */
6464 Elf32_Addr p_vaddr;
6465 /* Size of this segment in memory. */
6466 Elf32_Word p_memsz;
6467 };
6468
6469 # if defined PT_GETDSBT
6470 struct target_loadmap
6471 {
6472 /* Protocol version number, must be zero. */
6473 Elf32_Word version;
6474 /* Pointer to the DSBT table, its size, and the DSBT index. */
6475 unsigned *dsbt_table;
6476 unsigned dsbt_size, dsbt_index;
6477 /* Number of segments in this map. */
6478 Elf32_Word nsegs;
6479 /* The actual memory map. */
6480 struct target_loadseg segs[/*nsegs*/];
6481 };
6482 # define LINUX_LOADMAP PT_GETDSBT
6483 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6484 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6485 # else
6486 struct target_loadmap
6487 {
6488 /* Protocol version number, must be zero. */
6489 Elf32_Half version;
6490 /* Number of segments in this map. */
6491 Elf32_Half nsegs;
6492 /* The actual memory map. */
6493 struct target_loadseg segs[/*nsegs*/];
6494 };
6495 # define LINUX_LOADMAP PTRACE_GETFDPIC
6496 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6497 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6498 # endif
6499
6500 static int
6501 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6502 unsigned char *myaddr, unsigned int len)
6503 {
6504 int pid = lwpid_of (current_thread);
6505 int addr = -1;
6506 struct target_loadmap *data = NULL;
6507 unsigned int actual_length, copy_length;
6508
6509 if (strcmp (annex, "exec") == 0)
6510 addr = (int) LINUX_LOADMAP_EXEC;
6511 else if (strcmp (annex, "interp") == 0)
6512 addr = (int) LINUX_LOADMAP_INTERP;
6513 else
6514 return -1;
6515
6516 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6517 return -1;
6518
6519 if (data == NULL)
6520 return -1;
6521
6522 actual_length = sizeof (struct target_loadmap)
6523 + sizeof (struct target_loadseg) * data->nsegs;
6524
6525 if (offset < 0 || offset > actual_length)
6526 return -1;
6527
6528 copy_length = actual_length - offset < len ? actual_length - offset : len;
6529 memcpy (myaddr, (char *) data + offset, copy_length);
6530 return copy_length;
6531 }
6532 #else
6533 # define linux_read_loadmap NULL
6534 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6535
6536 static void
6537 linux_process_qsupported (char **features, int count)
6538 {
6539 if (the_low_target.process_qsupported != NULL)
6540 the_low_target.process_qsupported (features, count);
6541 }
6542
6543 static int
6544 linux_supports_catch_syscall (void)
6545 {
6546 return (the_low_target.get_syscall_trapinfo != NULL
6547 && linux_supports_tracesysgood ());
6548 }
6549
6550 static int
6551 linux_get_ipa_tdesc_idx (void)
6552 {
6553 if (the_low_target.get_ipa_tdesc_idx == NULL)
6554 return 0;
6555
6556 return (*the_low_target.get_ipa_tdesc_idx) ();
6557 }
6558
6559 static int
6560 linux_supports_tracepoints (void)
6561 {
6562 if (*the_low_target.supports_tracepoints == NULL)
6563 return 0;
6564
6565 return (*the_low_target.supports_tracepoints) ();
6566 }
6567
6568 static CORE_ADDR
6569 linux_read_pc (struct regcache *regcache)
6570 {
6571 if (the_low_target.get_pc == NULL)
6572 return 0;
6573
6574 return (*the_low_target.get_pc) (regcache);
6575 }
6576
6577 static void
6578 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6579 {
6580 gdb_assert (the_low_target.set_pc != NULL);
6581
6582 (*the_low_target.set_pc) (regcache, pc);
6583 }
6584
6585 static int
6586 linux_thread_stopped (struct thread_info *thread)
6587 {
6588 return get_thread_lwp (thread)->stopped;
6589 }
6590
6591 /* This exposes stop-all-threads functionality to other modules. */
6592
6593 static void
6594 linux_pause_all (int freeze)
6595 {
6596 stop_all_lwps (freeze, NULL);
6597 }
6598
6599 /* This exposes unstop-all-threads functionality to other gdbserver
6600 modules. */
6601
6602 static void
6603 linux_unpause_all (int unfreeze)
6604 {
6605 unstop_all_lwps (unfreeze, NULL);
6606 }
6607
6608 static int
6609 linux_prepare_to_access_memory (void)
6610 {
6611 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6612 running LWP. */
6613 if (non_stop)
6614 linux_pause_all (1);
6615 return 0;
6616 }
6617
6618 static void
6619 linux_done_accessing_memory (void)
6620 {
6621 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6622 running LWP. */
6623 if (non_stop)
6624 linux_unpause_all (1);
6625 }
6626
6627 static int
6628 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6629 CORE_ADDR collector,
6630 CORE_ADDR lockaddr,
6631 ULONGEST orig_size,
6632 CORE_ADDR *jump_entry,
6633 CORE_ADDR *trampoline,
6634 ULONGEST *trampoline_size,
6635 unsigned char *jjump_pad_insn,
6636 ULONGEST *jjump_pad_insn_size,
6637 CORE_ADDR *adjusted_insn_addr,
6638 CORE_ADDR *adjusted_insn_addr_end,
6639 char *err)
6640 {
6641 return (*the_low_target.install_fast_tracepoint_jump_pad)
6642 (tpoint, tpaddr, collector, lockaddr, orig_size,
6643 jump_entry, trampoline, trampoline_size,
6644 jjump_pad_insn, jjump_pad_insn_size,
6645 adjusted_insn_addr, adjusted_insn_addr_end,
6646 err);
6647 }
6648
6649 static struct emit_ops *
6650 linux_emit_ops (void)
6651 {
6652 if (the_low_target.emit_ops != NULL)
6653 return (*the_low_target.emit_ops) ();
6654 else
6655 return NULL;
6656 }
6657
6658 static int
6659 linux_get_min_fast_tracepoint_insn_len (void)
6660 {
6661 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6662 }
6663
6664 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6665
6666 static int
6667 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6668 CORE_ADDR *phdr_memaddr, int *num_phdr)
6669 {
6670 char filename[PATH_MAX];
6671 int fd;
6672 const int auxv_size = is_elf64
6673 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6674 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6675
6676 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6677
6678 fd = open (filename, O_RDONLY);
6679 if (fd < 0)
6680 return 1;
6681
6682 *phdr_memaddr = 0;
6683 *num_phdr = 0;
6684 while (read (fd, buf, auxv_size) == auxv_size
6685 && (*phdr_memaddr == 0 || *num_phdr == 0))
6686 {
6687 if (is_elf64)
6688 {
6689 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6690
6691 switch (aux->a_type)
6692 {
6693 case AT_PHDR:
6694 *phdr_memaddr = aux->a_un.a_val;
6695 break;
6696 case AT_PHNUM:
6697 *num_phdr = aux->a_un.a_val;
6698 break;
6699 }
6700 }
6701 else
6702 {
6703 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6704
6705 switch (aux->a_type)
6706 {
6707 case AT_PHDR:
6708 *phdr_memaddr = aux->a_un.a_val;
6709 break;
6710 case AT_PHNUM:
6711 *num_phdr = aux->a_un.a_val;
6712 break;
6713 }
6714 }
6715 }
6716
6717 close (fd);
6718
6719 if (*phdr_memaddr == 0 || *num_phdr == 0)
6720 {
6721 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6722 "phdr_memaddr = %ld, phdr_num = %d",
6723 (long) *phdr_memaddr, *num_phdr);
6724 return 2;
6725 }
6726
6727 return 0;
6728 }
6729
6730 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6731
6732 static CORE_ADDR
6733 get_dynamic (const int pid, const int is_elf64)
6734 {
6735 CORE_ADDR phdr_memaddr, relocation;
6736 int num_phdr, i;
6737 unsigned char *phdr_buf;
6738 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6739
6740 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6741 return 0;
6742
6743 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6744 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6745
6746 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6747 return 0;
6748
6749 /* Compute relocation: it is expected to be 0 for "regular" executables,
6750 non-zero for PIE ones. */
6751 relocation = -1;
6752 for (i = 0; relocation == -1 && i < num_phdr; i++)
6753 if (is_elf64)
6754 {
6755 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6756
6757 if (p->p_type == PT_PHDR)
6758 relocation = phdr_memaddr - p->p_vaddr;
6759 }
6760 else
6761 {
6762 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6763
6764 if (p->p_type == PT_PHDR)
6765 relocation = phdr_memaddr - p->p_vaddr;
6766 }
6767
6768 if (relocation == -1)
6769 {
6770 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6771 any real world executables, including PIE executables, have always
6772 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6773 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6774 or present DT_DEBUG anyway (fpc binaries are statically linked).
6775
6776 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6777
6778 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6779
6780 return 0;
6781 }
6782
6783 for (i = 0; i < num_phdr; i++)
6784 {
6785 if (is_elf64)
6786 {
6787 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6788
6789 if (p->p_type == PT_DYNAMIC)
6790 return p->p_vaddr + relocation;
6791 }
6792 else
6793 {
6794 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6795
6796 if (p->p_type == PT_DYNAMIC)
6797 return p->p_vaddr + relocation;
6798 }
6799 }
6800
6801 return 0;
6802 }
6803
6804 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6805 can be 0 if the inferior does not yet have the library list initialized.
6806 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6807 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6808
6809 static CORE_ADDR
6810 get_r_debug (const int pid, const int is_elf64)
6811 {
6812 CORE_ADDR dynamic_memaddr;
6813 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6814 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6815 CORE_ADDR map = -1;
6816
6817 dynamic_memaddr = get_dynamic (pid, is_elf64);
6818 if (dynamic_memaddr == 0)
6819 return map;
6820
6821 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6822 {
6823 if (is_elf64)
6824 {
6825 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6826 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6827 union
6828 {
6829 Elf64_Xword map;
6830 unsigned char buf[sizeof (Elf64_Xword)];
6831 }
6832 rld_map;
6833 #endif
6834 #ifdef DT_MIPS_RLD_MAP
6835 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6836 {
6837 if (linux_read_memory (dyn->d_un.d_val,
6838 rld_map.buf, sizeof (rld_map.buf)) == 0)
6839 return rld_map.map;
6840 else
6841 break;
6842 }
6843 #endif /* DT_MIPS_RLD_MAP */
6844 #ifdef DT_MIPS_RLD_MAP_REL
6845 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6846 {
6847 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6848 rld_map.buf, sizeof (rld_map.buf)) == 0)
6849 return rld_map.map;
6850 else
6851 break;
6852 }
6853 #endif /* DT_MIPS_RLD_MAP_REL */
6854
6855 if (dyn->d_tag == DT_DEBUG && map == -1)
6856 map = dyn->d_un.d_val;
6857
6858 if (dyn->d_tag == DT_NULL)
6859 break;
6860 }
6861 else
6862 {
6863 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6864 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6865 union
6866 {
6867 Elf32_Word map;
6868 unsigned char buf[sizeof (Elf32_Word)];
6869 }
6870 rld_map;
6871 #endif
6872 #ifdef DT_MIPS_RLD_MAP
6873 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6874 {
6875 if (linux_read_memory (dyn->d_un.d_val,
6876 rld_map.buf, sizeof (rld_map.buf)) == 0)
6877 return rld_map.map;
6878 else
6879 break;
6880 }
6881 #endif /* DT_MIPS_RLD_MAP */
6882 #ifdef DT_MIPS_RLD_MAP_REL
6883 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6884 {
6885 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6886 rld_map.buf, sizeof (rld_map.buf)) == 0)
6887 return rld_map.map;
6888 else
6889 break;
6890 }
6891 #endif /* DT_MIPS_RLD_MAP_REL */
6892
6893 if (dyn->d_tag == DT_DEBUG && map == -1)
6894 map = dyn->d_un.d_val;
6895
6896 if (dyn->d_tag == DT_NULL)
6897 break;
6898 }
6899
6900 dynamic_memaddr += dyn_size;
6901 }
6902
6903 return map;
6904 }
6905
6906 /* Read one pointer from MEMADDR in the inferior. */
6907
6908 static int
6909 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6910 {
6911 int ret;
6912
6913 /* Go through a union so this works on either big or little endian
6914 hosts, when the inferior's pointer size is smaller than the size
6915 of CORE_ADDR. It is assumed the inferior's endianness is the
6916 same of the superior's. */
6917 union
6918 {
6919 CORE_ADDR core_addr;
6920 unsigned int ui;
6921 unsigned char uc;
6922 } addr;
6923
6924 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6925 if (ret == 0)
6926 {
6927 if (ptr_size == sizeof (CORE_ADDR))
6928 *ptr = addr.core_addr;
6929 else if (ptr_size == sizeof (unsigned int))
6930 *ptr = addr.ui;
6931 else
6932 gdb_assert_not_reached ("unhandled pointer size");
6933 }
6934 return ret;
6935 }
6936
6937 struct link_map_offsets
6938 {
6939 /* Offset and size of r_debug.r_version. */
6940 int r_version_offset;
6941
6942 /* Offset and size of r_debug.r_map. */
6943 int r_map_offset;
6944
6945 /* Offset to l_addr field in struct link_map. */
6946 int l_addr_offset;
6947
6948 /* Offset to l_name field in struct link_map. */
6949 int l_name_offset;
6950
6951 /* Offset to l_ld field in struct link_map. */
6952 int l_ld_offset;
6953
6954 /* Offset to l_next field in struct link_map. */
6955 int l_next_offset;
6956
6957 /* Offset to l_prev field in struct link_map. */
6958 int l_prev_offset;
6959 };
6960
6961 /* Construct qXfer:libraries-svr4:read reply. */
6962
6963 static int
6964 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6965 unsigned const char *writebuf,
6966 CORE_ADDR offset, int len)
6967 {
6968 char *document;
6969 unsigned document_len;
6970 struct process_info_private *const priv = current_process ()->priv;
6971 char filename[PATH_MAX];
6972 int pid, is_elf64;
6973
6974 static const struct link_map_offsets lmo_32bit_offsets =
6975 {
6976 0, /* r_version offset. */
6977 4, /* r_debug.r_map offset. */
6978 0, /* l_addr offset in link_map. */
6979 4, /* l_name offset in link_map. */
6980 8, /* l_ld offset in link_map. */
6981 12, /* l_next offset in link_map. */
6982 16 /* l_prev offset in link_map. */
6983 };
6984
6985 static const struct link_map_offsets lmo_64bit_offsets =
6986 {
6987 0, /* r_version offset. */
6988 8, /* r_debug.r_map offset. */
6989 0, /* l_addr offset in link_map. */
6990 8, /* l_name offset in link_map. */
6991 16, /* l_ld offset in link_map. */
6992 24, /* l_next offset in link_map. */
6993 32 /* l_prev offset in link_map. */
6994 };
6995 const struct link_map_offsets *lmo;
6996 unsigned int machine;
6997 int ptr_size;
6998 CORE_ADDR lm_addr = 0, lm_prev = 0;
6999 int allocated = 1024;
7000 char *p;
7001 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7002 int header_done = 0;
7003
7004 if (writebuf != NULL)
7005 return -2;
7006 if (readbuf == NULL)
7007 return -1;
7008
7009 pid = lwpid_of (current_thread);
7010 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7011 is_elf64 = elf_64_file_p (filename, &machine);
7012 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7013 ptr_size = is_elf64 ? 8 : 4;
7014
7015 while (annex[0] != '\0')
7016 {
7017 const char *sep;
7018 CORE_ADDR *addrp;
7019 int len;
7020
7021 sep = strchr (annex, '=');
7022 if (sep == NULL)
7023 break;
7024
7025 len = sep - annex;
7026 if (len == 5 && startswith (annex, "start"))
7027 addrp = &lm_addr;
7028 else if (len == 4 && startswith (annex, "prev"))
7029 addrp = &lm_prev;
7030 else
7031 {
7032 annex = strchr (sep, ';');
7033 if (annex == NULL)
7034 break;
7035 annex++;
7036 continue;
7037 }
7038
7039 annex = decode_address_to_semicolon (addrp, sep + 1);
7040 }
7041
7042 if (lm_addr == 0)
7043 {
7044 int r_version = 0;
7045
7046 if (priv->r_debug == 0)
7047 priv->r_debug = get_r_debug (pid, is_elf64);
7048
7049 /* We failed to find DT_DEBUG. Such situation will not change
7050 for this inferior - do not retry it. Report it to GDB as
7051 E01, see for the reasons at the GDB solib-svr4.c side. */
7052 if (priv->r_debug == (CORE_ADDR) -1)
7053 return -1;
7054
7055 if (priv->r_debug != 0)
7056 {
7057 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7058 (unsigned char *) &r_version,
7059 sizeof (r_version)) != 0
7060 || r_version != 1)
7061 {
7062 warning ("unexpected r_debug version %d", r_version);
7063 }
7064 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7065 &lm_addr, ptr_size) != 0)
7066 {
7067 warning ("unable to read r_map from 0x%lx",
7068 (long) priv->r_debug + lmo->r_map_offset);
7069 }
7070 }
7071 }
7072
7073 document = (char *) xmalloc (allocated);
7074 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7075 p = document + strlen (document);
7076
7077 while (lm_addr
7078 && read_one_ptr (lm_addr + lmo->l_name_offset,
7079 &l_name, ptr_size) == 0
7080 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7081 &l_addr, ptr_size) == 0
7082 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7083 &l_ld, ptr_size) == 0
7084 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7085 &l_prev, ptr_size) == 0
7086 && read_one_ptr (lm_addr + lmo->l_next_offset,
7087 &l_next, ptr_size) == 0)
7088 {
7089 unsigned char libname[PATH_MAX];
7090
7091 if (lm_prev != l_prev)
7092 {
7093 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7094 (long) lm_prev, (long) l_prev);
7095 break;
7096 }
7097
7098 /* Ignore the first entry even if it has valid name as the first entry
7099 corresponds to the main executable. The first entry should not be
7100 skipped if the dynamic loader was loaded late by a static executable
7101 (see solib-svr4.c parameter ignore_first). But in such case the main
7102 executable does not have PT_DYNAMIC present and this function already
7103 exited above due to failed get_r_debug. */
7104 if (lm_prev == 0)
7105 {
7106 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7107 p = p + strlen (p);
7108 }
7109 else
7110 {
7111 /* Not checking for error because reading may stop before
7112 we've got PATH_MAX worth of characters. */
7113 libname[0] = '\0';
7114 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7115 libname[sizeof (libname) - 1] = '\0';
7116 if (libname[0] != '\0')
7117 {
7118 /* 6x the size for xml_escape_text below. */
7119 size_t len = 6 * strlen ((char *) libname);
7120
7121 if (!header_done)
7122 {
7123 /* Terminate `<library-list-svr4'. */
7124 *p++ = '>';
7125 header_done = 1;
7126 }
7127
7128 while (allocated < p - document + len + 200)
7129 {
7130 /* Expand to guarantee sufficient storage. */
7131 uintptr_t document_len = p - document;
7132
7133 document = (char *) xrealloc (document, 2 * allocated);
7134 allocated *= 2;
7135 p = document + document_len;
7136 }
7137
7138 std::string name = xml_escape_text ((char *) libname);
7139 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7140 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7141 name.c_str (), (unsigned long) lm_addr,
7142 (unsigned long) l_addr, (unsigned long) l_ld);
7143 }
7144 }
7145
7146 lm_prev = lm_addr;
7147 lm_addr = l_next;
7148 }
7149
7150 if (!header_done)
7151 {
7152 /* Empty list; terminate `<library-list-svr4'. */
7153 strcpy (p, "/>");
7154 }
7155 else
7156 strcpy (p, "</library-list-svr4>");
7157
7158 document_len = strlen (document);
7159 if (offset < document_len)
7160 document_len -= offset;
7161 else
7162 document_len = 0;
7163 if (len > document_len)
7164 len = document_len;
7165
7166 memcpy (readbuf, document + offset, len);
7167 xfree (document);
7168
7169 return len;
7170 }
7171
7172 #ifdef HAVE_LINUX_BTRACE
7173
7174 /* See to_disable_btrace target method. */
7175
7176 static int
7177 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7178 {
7179 enum btrace_error err;
7180
7181 err = linux_disable_btrace (tinfo);
7182 return (err == BTRACE_ERR_NONE ? 0 : -1);
7183 }
7184
7185 /* Encode an Intel Processor Trace configuration. */
7186
7187 static void
7188 linux_low_encode_pt_config (struct buffer *buffer,
7189 const struct btrace_data_pt_config *config)
7190 {
7191 buffer_grow_str (buffer, "<pt-config>\n");
7192
7193 switch (config->cpu.vendor)
7194 {
7195 case CV_INTEL:
7196 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7197 "model=\"%u\" stepping=\"%u\"/>\n",
7198 config->cpu.family, config->cpu.model,
7199 config->cpu.stepping);
7200 break;
7201
7202 default:
7203 break;
7204 }
7205
7206 buffer_grow_str (buffer, "</pt-config>\n");
7207 }
7208
7209 /* Encode a raw buffer. */
7210
7211 static void
7212 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7213 unsigned int size)
7214 {
7215 if (size == 0)
7216 return;
7217
7218 /* We use hex encoding - see common/rsp-low.h. */
7219 buffer_grow_str (buffer, "<raw>\n");
7220
7221 while (size-- > 0)
7222 {
7223 char elem[2];
7224
7225 elem[0] = tohex ((*data >> 4) & 0xf);
7226 elem[1] = tohex (*data++ & 0xf);
7227
7228 buffer_grow (buffer, elem, 2);
7229 }
7230
7231 buffer_grow_str (buffer, "</raw>\n");
7232 }
7233
7234 /* See to_read_btrace target method. */
7235
7236 static int
7237 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7238 enum btrace_read_type type)
7239 {
7240 struct btrace_data btrace;
7241 struct btrace_block *block;
7242 enum btrace_error err;
7243 int i;
7244
7245 btrace_data_init (&btrace);
7246
7247 err = linux_read_btrace (&btrace, tinfo, type);
7248 if (err != BTRACE_ERR_NONE)
7249 {
7250 if (err == BTRACE_ERR_OVERFLOW)
7251 buffer_grow_str0 (buffer, "E.Overflow.");
7252 else
7253 buffer_grow_str0 (buffer, "E.Generic Error.");
7254
7255 goto err;
7256 }
7257
7258 switch (btrace.format)
7259 {
7260 case BTRACE_FORMAT_NONE:
7261 buffer_grow_str0 (buffer, "E.No Trace.");
7262 goto err;
7263
7264 case BTRACE_FORMAT_BTS:
7265 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7266 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7267
7268 for (i = 0;
7269 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7270 i++)
7271 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7272 paddress (block->begin), paddress (block->end));
7273
7274 buffer_grow_str0 (buffer, "</btrace>\n");
7275 break;
7276
7277 case BTRACE_FORMAT_PT:
7278 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7279 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7280 buffer_grow_str (buffer, "<pt>\n");
7281
7282 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7283
7284 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7285 btrace.variant.pt.size);
7286
7287 buffer_grow_str (buffer, "</pt>\n");
7288 buffer_grow_str0 (buffer, "</btrace>\n");
7289 break;
7290
7291 default:
7292 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7293 goto err;
7294 }
7295
7296 btrace_data_fini (&btrace);
7297 return 0;
7298
7299 err:
7300 btrace_data_fini (&btrace);
7301 return -1;
7302 }
7303
7304 /* See to_btrace_conf target method. */
7305
7306 static int
7307 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7308 struct buffer *buffer)
7309 {
7310 const struct btrace_config *conf;
7311
7312 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7313 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7314
7315 conf = linux_btrace_conf (tinfo);
7316 if (conf != NULL)
7317 {
7318 switch (conf->format)
7319 {
7320 case BTRACE_FORMAT_NONE:
7321 break;
7322
7323 case BTRACE_FORMAT_BTS:
7324 buffer_xml_printf (buffer, "<bts");
7325 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7326 buffer_xml_printf (buffer, " />\n");
7327 break;
7328
7329 case BTRACE_FORMAT_PT:
7330 buffer_xml_printf (buffer, "<pt");
7331 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7332 buffer_xml_printf (buffer, "/>\n");
7333 break;
7334 }
7335 }
7336
7337 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7338 return 0;
7339 }
7340 #endif /* HAVE_LINUX_BTRACE */
7341
7342 /* See nat/linux-nat.h. */
7343
7344 ptid_t
7345 current_lwp_ptid (void)
7346 {
7347 return ptid_of (current_thread);
7348 }
7349
7350 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7351
7352 static int
7353 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7354 {
7355 if (the_low_target.breakpoint_kind_from_pc != NULL)
7356 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7357 else
7358 return default_breakpoint_kind_from_pc (pcptr);
7359 }
7360
7361 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7362
7363 static const gdb_byte *
7364 linux_sw_breakpoint_from_kind (int kind, int *size)
7365 {
7366 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7367
7368 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7369 }
7370
7371 /* Implementation of the target_ops method
7372 "breakpoint_kind_from_current_state". */
7373
7374 static int
7375 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7376 {
7377 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7378 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7379 else
7380 return linux_breakpoint_kind_from_pc (pcptr);
7381 }
7382
7383 /* Default implementation of linux_target_ops method "set_pc" for
7384 32-bit pc register which is literally named "pc". */
7385
7386 void
7387 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7388 {
7389 uint32_t newpc = pc;
7390
7391 supply_register_by_name (regcache, "pc", &newpc);
7392 }
7393
7394 /* Default implementation of linux_target_ops method "get_pc" for
7395 32-bit pc register which is literally named "pc". */
7396
7397 CORE_ADDR
7398 linux_get_pc_32bit (struct regcache *regcache)
7399 {
7400 uint32_t pc;
7401
7402 collect_register_by_name (regcache, "pc", &pc);
7403 if (debug_threads)
7404 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7405 return pc;
7406 }
7407
7408 /* Default implementation of linux_target_ops method "set_pc" for
7409 64-bit pc register which is literally named "pc". */
7410
7411 void
7412 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7413 {
7414 uint64_t newpc = pc;
7415
7416 supply_register_by_name (regcache, "pc", &newpc);
7417 }
7418
7419 /* Default implementation of linux_target_ops method "get_pc" for
7420 64-bit pc register which is literally named "pc". */
7421
7422 CORE_ADDR
7423 linux_get_pc_64bit (struct regcache *regcache)
7424 {
7425 uint64_t pc;
7426
7427 collect_register_by_name (regcache, "pc", &pc);
7428 if (debug_threads)
7429 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7430 return pc;
7431 }
7432
7433
7434 static struct target_ops linux_target_ops = {
7435 linux_create_inferior,
7436 linux_post_create_inferior,
7437 linux_attach,
7438 linux_kill,
7439 linux_detach,
7440 linux_mourn,
7441 linux_join,
7442 linux_thread_alive,
7443 linux_resume,
7444 linux_wait,
7445 linux_fetch_registers,
7446 linux_store_registers,
7447 linux_prepare_to_access_memory,
7448 linux_done_accessing_memory,
7449 linux_read_memory,
7450 linux_write_memory,
7451 linux_look_up_symbols,
7452 linux_request_interrupt,
7453 linux_read_auxv,
7454 linux_supports_z_point_type,
7455 linux_insert_point,
7456 linux_remove_point,
7457 linux_stopped_by_sw_breakpoint,
7458 linux_supports_stopped_by_sw_breakpoint,
7459 linux_stopped_by_hw_breakpoint,
7460 linux_supports_stopped_by_hw_breakpoint,
7461 linux_supports_hardware_single_step,
7462 linux_stopped_by_watchpoint,
7463 linux_stopped_data_address,
7464 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7465 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7466 && defined(PT_TEXT_END_ADDR)
7467 linux_read_offsets,
7468 #else
7469 NULL,
7470 #endif
7471 #ifdef USE_THREAD_DB
7472 thread_db_get_tls_address,
7473 #else
7474 NULL,
7475 #endif
7476 linux_qxfer_spu,
7477 hostio_last_error_from_errno,
7478 linux_qxfer_osdata,
7479 linux_xfer_siginfo,
7480 linux_supports_non_stop,
7481 linux_async,
7482 linux_start_non_stop,
7483 linux_supports_multi_process,
7484 linux_supports_fork_events,
7485 linux_supports_vfork_events,
7486 linux_supports_exec_events,
7487 linux_handle_new_gdb_connection,
7488 #ifdef USE_THREAD_DB
7489 thread_db_handle_monitor_command,
7490 #else
7491 NULL,
7492 #endif
7493 linux_common_core_of_thread,
7494 linux_read_loadmap,
7495 linux_process_qsupported,
7496 linux_supports_tracepoints,
7497 linux_read_pc,
7498 linux_write_pc,
7499 linux_thread_stopped,
7500 NULL,
7501 linux_pause_all,
7502 linux_unpause_all,
7503 linux_stabilize_threads,
7504 linux_install_fast_tracepoint_jump_pad,
7505 linux_emit_ops,
7506 linux_supports_disable_randomization,
7507 linux_get_min_fast_tracepoint_insn_len,
7508 linux_qxfer_libraries_svr4,
7509 linux_supports_agent,
7510 #ifdef HAVE_LINUX_BTRACE
7511 linux_supports_btrace,
7512 linux_enable_btrace,
7513 linux_low_disable_btrace,
7514 linux_low_read_btrace,
7515 linux_low_btrace_conf,
7516 #else
7517 NULL,
7518 NULL,
7519 NULL,
7520 NULL,
7521 NULL,
7522 #endif
7523 linux_supports_range_stepping,
7524 linux_proc_pid_to_exec_file,
7525 linux_mntns_open_cloexec,
7526 linux_mntns_unlink,
7527 linux_mntns_readlink,
7528 linux_breakpoint_kind_from_pc,
7529 linux_sw_breakpoint_from_kind,
7530 linux_proc_tid_get_name,
7531 linux_breakpoint_kind_from_current_state,
7532 linux_supports_software_single_step,
7533 linux_supports_catch_syscall,
7534 linux_get_ipa_tdesc_idx,
7535 #if USE_THREAD_DB
7536 thread_db_thread_handle,
7537 #else
7538 NULL,
7539 #endif
7540 };
7541
7542 #ifdef HAVE_LINUX_REGSETS
7543 void
7544 initialize_regsets_info (struct regsets_info *info)
7545 {
7546 for (info->num_regsets = 0;
7547 info->regsets[info->num_regsets].size >= 0;
7548 info->num_regsets++)
7549 ;
7550 }
7551 #endif
7552
7553 void
7554 initialize_low (void)
7555 {
7556 struct sigaction sigchld_action;
7557
7558 memset (&sigchld_action, 0, sizeof (sigchld_action));
7559 set_target_ops (&linux_target_ops);
7560
7561 linux_ptrace_init_warnings ();
7562
7563 sigchld_action.sa_handler = sigchld_handler;
7564 sigemptyset (&sigchld_action.sa_mask);
7565 sigchld_action.sa_flags = SA_RESTART;
7566 sigaction (SIGCHLD, &sigchld_action, NULL);
7567
7568 initialize_low_arch ();
7569
7570 linux_check_ptrace_features ();
7571 }
This page took 0.237893 seconds and 4 git commands to generate.