Share fork_inferior et al with gdbserver
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (struct inferior_list_entry *entry, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417 free (lwp->arch_private);
418 free (lwp);
419 }
420
421 /* Add a process to the common process list, and set its private
422 data. */
423
424 static struct process_info *
425 linux_add_process (int pid, int attached)
426 {
427 struct process_info *proc;
428
429 proc = add_process (pid, attached);
430 proc->priv = XCNEW (struct process_info_private);
431
432 if (the_low_target.new_process != NULL)
433 proc->priv->arch_private = the_low_target.new_process ();
434
435 return proc;
436 }
437
438 static CORE_ADDR get_pc (struct lwp_info *lwp);
439
440 /* Call the target arch_setup function on the current thread. */
441
442 static void
443 linux_arch_setup (void)
444 {
445 the_low_target.arch_setup ();
446 }
447
448 /* Call the target arch_setup function on THREAD. */
449
450 static void
451 linux_arch_setup_thread (struct thread_info *thread)
452 {
453 struct thread_info *saved_thread;
454
455 saved_thread = current_thread;
456 current_thread = thread;
457
458 linux_arch_setup ();
459
460 current_thread = saved_thread;
461 }
462
463 /* Handle a GNU/Linux extended wait response. If we see a clone,
464 fork, or vfork event, we need to add the new LWP to our list
465 (and return 0 so as not to report the trap to higher layers).
466 If we see an exec event, we will modify ORIG_EVENT_LWP to point
467 to a new LWP representing the new program. */
468
469 static int
470 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
471 {
472 struct lwp_info *event_lwp = *orig_event_lwp;
473 int event = linux_ptrace_get_extended_event (wstat);
474 struct thread_info *event_thr = get_lwp_thread (event_lwp);
475 struct lwp_info *new_lwp;
476
477 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
478
479 /* All extended events we currently use are mid-syscall. Only
480 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
481 you have to be using PTRACE_SEIZE to get that. */
482 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
483
484 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
485 || (event == PTRACE_EVENT_CLONE))
486 {
487 ptid_t ptid;
488 unsigned long new_pid;
489 int ret, status;
490
491 /* Get the pid of the new lwp. */
492 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
493 &new_pid);
494
495 /* If we haven't already seen the new PID stop, wait for it now. */
496 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
497 {
498 /* The new child has a pending SIGSTOP. We can't affect it until it
499 hits the SIGSTOP, but we're already attached. */
500
501 ret = my_waitpid (new_pid, &status, __WALL);
502
503 if (ret == -1)
504 perror_with_name ("waiting for new child");
505 else if (ret != new_pid)
506 warning ("wait returned unexpected PID %d", ret);
507 else if (!WIFSTOPPED (status))
508 warning ("wait returned unexpected status 0x%x", status);
509 }
510
511 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
512 {
513 struct process_info *parent_proc;
514 struct process_info *child_proc;
515 struct lwp_info *child_lwp;
516 struct thread_info *child_thr;
517 struct target_desc *tdesc;
518
519 ptid = ptid_build (new_pid, new_pid, 0);
520
521 if (debug_threads)
522 {
523 debug_printf ("HEW: Got fork event from LWP %ld, "
524 "new child is %d\n",
525 ptid_get_lwp (ptid_of (event_thr)),
526 ptid_get_pid (ptid));
527 }
528
529 /* Add the new process to the tables and clone the breakpoint
530 lists of the parent. We need to do this even if the new process
531 will be detached, since we will need the process object and the
532 breakpoints to remove any breakpoints from memory when we
533 detach, and the client side will access registers. */
534 child_proc = linux_add_process (new_pid, 0);
535 gdb_assert (child_proc != NULL);
536 child_lwp = add_lwp (ptid);
537 gdb_assert (child_lwp != NULL);
538 child_lwp->stopped = 1;
539 child_lwp->must_set_ptrace_flags = 1;
540 child_lwp->status_pending_p = 0;
541 child_thr = get_lwp_thread (child_lwp);
542 child_thr->last_resume_kind = resume_stop;
543 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
544
545 /* If we're suspending all threads, leave this one suspended
546 too. If the fork/clone parent is stepping over a breakpoint,
547 all other threads have been suspended already. Leave the
548 child suspended too. */
549 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
550 || event_lwp->bp_reinsert != 0)
551 {
552 if (debug_threads)
553 debug_printf ("HEW: leaving child suspended\n");
554 child_lwp->suspended = 1;
555 }
556
557 parent_proc = get_thread_process (event_thr);
558 child_proc->attached = parent_proc->attached;
559
560 if (event_lwp->bp_reinsert != 0
561 && can_software_single_step ()
562 && event == PTRACE_EVENT_VFORK)
563 {
564 /* If we leave single-step breakpoints there, child will
565 hit it, so uninsert single-step breakpoints from parent
566 (and child). Once vfork child is done, reinsert
567 them back to parent. */
568 uninsert_single_step_breakpoints (event_thr);
569 }
570
571 clone_all_breakpoints (child_thr, event_thr);
572
573 tdesc = XNEW (struct target_desc);
574 copy_target_description (tdesc, parent_proc->tdesc);
575 child_proc->tdesc = tdesc;
576
577 /* Clone arch-specific process data. */
578 if (the_low_target.new_fork != NULL)
579 the_low_target.new_fork (parent_proc, child_proc);
580
581 /* Save fork info in the parent thread. */
582 if (event == PTRACE_EVENT_FORK)
583 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
584 else if (event == PTRACE_EVENT_VFORK)
585 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
586
587 event_lwp->waitstatus.value.related_pid = ptid;
588
589 /* The status_pending field contains bits denoting the
590 extended event, so when the pending event is handled,
591 the handler will look at lwp->waitstatus. */
592 event_lwp->status_pending_p = 1;
593 event_lwp->status_pending = wstat;
594
595 /* Link the threads until the parent event is passed on to
596 higher layers. */
597 event_lwp->fork_relative = child_lwp;
598 child_lwp->fork_relative = event_lwp;
599
600 /* If the parent thread is doing step-over with single-step
601 breakpoints, the list of single-step breakpoints are cloned
602 from the parent's. Remove them from the child process.
603 In case of vfork, we'll reinsert them back once vforked
604 child is done. */
605 if (event_lwp->bp_reinsert != 0
606 && can_software_single_step ())
607 {
608 /* The child process is forked and stopped, so it is safe
609 to access its memory without stopping all other threads
610 from other processes. */
611 delete_single_step_breakpoints (child_thr);
612
613 gdb_assert (has_single_step_breakpoints (event_thr));
614 gdb_assert (!has_single_step_breakpoints (child_thr));
615 }
616
617 /* Report the event. */
618 return 0;
619 }
620
621 if (debug_threads)
622 debug_printf ("HEW: Got clone event "
623 "from LWP %ld, new child is LWP %ld\n",
624 lwpid_of (event_thr), new_pid);
625
626 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
627 new_lwp = add_lwp (ptid);
628
629 /* Either we're going to immediately resume the new thread
630 or leave it stopped. linux_resume_one_lwp is a nop if it
631 thinks the thread is currently running, so set this first
632 before calling linux_resume_one_lwp. */
633 new_lwp->stopped = 1;
634
635 /* If we're suspending all threads, leave this one suspended
636 too. If the fork/clone parent is stepping over a breakpoint,
637 all other threads have been suspended already. Leave the
638 child suspended too. */
639 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
640 || event_lwp->bp_reinsert != 0)
641 new_lwp->suspended = 1;
642
643 /* Normally we will get the pending SIGSTOP. But in some cases
644 we might get another signal delivered to the group first.
645 If we do get another signal, be sure not to lose it. */
646 if (WSTOPSIG (status) != SIGSTOP)
647 {
648 new_lwp->stop_expected = 1;
649 new_lwp->status_pending_p = 1;
650 new_lwp->status_pending = status;
651 }
652 else if (report_thread_events)
653 {
654 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
655 new_lwp->status_pending_p = 1;
656 new_lwp->status_pending = status;
657 }
658
659 /* Don't report the event. */
660 return 1;
661 }
662 else if (event == PTRACE_EVENT_VFORK_DONE)
663 {
664 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
665
666 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
667 {
668 reinsert_single_step_breakpoints (event_thr);
669
670 gdb_assert (has_single_step_breakpoints (event_thr));
671 }
672
673 /* Report the event. */
674 return 0;
675 }
676 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
677 {
678 struct process_info *proc;
679 VEC (int) *syscalls_to_catch;
680 ptid_t event_ptid;
681 pid_t event_pid;
682
683 if (debug_threads)
684 {
685 debug_printf ("HEW: Got exec event from LWP %ld\n",
686 lwpid_of (event_thr));
687 }
688
689 /* Get the event ptid. */
690 event_ptid = ptid_of (event_thr);
691 event_pid = ptid_get_pid (event_ptid);
692
693 /* Save the syscall list from the execing process. */
694 proc = get_thread_process (event_thr);
695 syscalls_to_catch = proc->syscalls_to_catch;
696 proc->syscalls_to_catch = NULL;
697
698 /* Delete the execing process and all its threads. */
699 linux_mourn (proc);
700 current_thread = NULL;
701
702 /* Create a new process/lwp/thread. */
703 proc = linux_add_process (event_pid, 0);
704 event_lwp = add_lwp (event_ptid);
705 event_thr = get_lwp_thread (event_lwp);
706 gdb_assert (current_thread == event_thr);
707 linux_arch_setup_thread (event_thr);
708
709 /* Set the event status. */
710 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
711 event_lwp->waitstatus.value.execd_pathname
712 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
713
714 /* Mark the exec status as pending. */
715 event_lwp->stopped = 1;
716 event_lwp->status_pending_p = 1;
717 event_lwp->status_pending = wstat;
718 event_thr->last_resume_kind = resume_continue;
719 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
720
721 /* Update syscall state in the new lwp, effectively mid-syscall too. */
722 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
723
724 /* Restore the list to catch. Don't rely on the client, which is free
725 to avoid sending a new list when the architecture doesn't change.
726 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
727 proc->syscalls_to_catch = syscalls_to_catch;
728
729 /* Report the event. */
730 *orig_event_lwp = event_lwp;
731 return 0;
732 }
733
734 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
735 }
736
737 /* Return the PC as read from the regcache of LWP, without any
738 adjustment. */
739
740 static CORE_ADDR
741 get_pc (struct lwp_info *lwp)
742 {
743 struct thread_info *saved_thread;
744 struct regcache *regcache;
745 CORE_ADDR pc;
746
747 if (the_low_target.get_pc == NULL)
748 return 0;
749
750 saved_thread = current_thread;
751 current_thread = get_lwp_thread (lwp);
752
753 regcache = get_thread_regcache (current_thread, 1);
754 pc = (*the_low_target.get_pc) (regcache);
755
756 if (debug_threads)
757 debug_printf ("pc is 0x%lx\n", (long) pc);
758
759 current_thread = saved_thread;
760 return pc;
761 }
762
763 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
764 Fill *SYSNO with the syscall nr trapped. */
765
766 static void
767 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
768 {
769 struct thread_info *saved_thread;
770 struct regcache *regcache;
771
772 if (the_low_target.get_syscall_trapinfo == NULL)
773 {
774 /* If we cannot get the syscall trapinfo, report an unknown
775 system call number. */
776 *sysno = UNKNOWN_SYSCALL;
777 return;
778 }
779
780 saved_thread = current_thread;
781 current_thread = get_lwp_thread (lwp);
782
783 regcache = get_thread_regcache (current_thread, 1);
784 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
785
786 if (debug_threads)
787 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
788
789 current_thread = saved_thread;
790 }
791
792 static int check_stopped_by_watchpoint (struct lwp_info *child);
793
794 /* Called when the LWP stopped for a signal/trap. If it stopped for a
795 trap check what caused it (breakpoint, watchpoint, trace, etc.),
796 and save the result in the LWP's stop_reason field. If it stopped
797 for a breakpoint, decrement the PC if necessary on the lwp's
798 architecture. Returns true if we now have the LWP's stop PC. */
799
800 static int
801 save_stop_reason (struct lwp_info *lwp)
802 {
803 CORE_ADDR pc;
804 CORE_ADDR sw_breakpoint_pc;
805 struct thread_info *saved_thread;
806 #if USE_SIGTRAP_SIGINFO
807 siginfo_t siginfo;
808 #endif
809
810 if (the_low_target.get_pc == NULL)
811 return 0;
812
813 pc = get_pc (lwp);
814 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
815
816 /* breakpoint_at reads from the current thread. */
817 saved_thread = current_thread;
818 current_thread = get_lwp_thread (lwp);
819
820 #if USE_SIGTRAP_SIGINFO
821 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
822 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
823 {
824 if (siginfo.si_signo == SIGTRAP)
825 {
826 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
827 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
828 {
829 /* The si_code is ambiguous on this arch -- check debug
830 registers. */
831 if (!check_stopped_by_watchpoint (lwp))
832 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
833 }
834 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
835 {
836 /* If we determine the LWP stopped for a SW breakpoint,
837 trust it. Particularly don't check watchpoint
838 registers, because at least on s390, we'd find
839 stopped-by-watchpoint as long as there's a watchpoint
840 set. */
841 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
842 }
843 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
844 {
845 /* This can indicate either a hardware breakpoint or
846 hardware watchpoint. Check debug registers. */
847 if (!check_stopped_by_watchpoint (lwp))
848 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
849 }
850 else if (siginfo.si_code == TRAP_TRACE)
851 {
852 /* We may have single stepped an instruction that
853 triggered a watchpoint. In that case, on some
854 architectures (such as x86), instead of TRAP_HWBKPT,
855 si_code indicates TRAP_TRACE, and we need to check
856 the debug registers separately. */
857 if (!check_stopped_by_watchpoint (lwp))
858 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
859 }
860 }
861 }
862 #else
863 /* We may have just stepped a breakpoint instruction. E.g., in
864 non-stop mode, GDB first tells the thread A to step a range, and
865 then the user inserts a breakpoint inside the range. In that
866 case we need to report the breakpoint PC. */
867 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
868 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
869 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
870
871 if (hardware_breakpoint_inserted_here (pc))
872 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
873
874 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
875 check_stopped_by_watchpoint (lwp);
876 #endif
877
878 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
879 {
880 if (debug_threads)
881 {
882 struct thread_info *thr = get_lwp_thread (lwp);
883
884 debug_printf ("CSBB: %s stopped by software breakpoint\n",
885 target_pid_to_str (ptid_of (thr)));
886 }
887
888 /* Back up the PC if necessary. */
889 if (pc != sw_breakpoint_pc)
890 {
891 struct regcache *regcache
892 = get_thread_regcache (current_thread, 1);
893 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
894 }
895
896 /* Update this so we record the correct stop PC below. */
897 pc = sw_breakpoint_pc;
898 }
899 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
900 {
901 if (debug_threads)
902 {
903 struct thread_info *thr = get_lwp_thread (lwp);
904
905 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
906 target_pid_to_str (ptid_of (thr)));
907 }
908 }
909 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
910 {
911 if (debug_threads)
912 {
913 struct thread_info *thr = get_lwp_thread (lwp);
914
915 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
916 target_pid_to_str (ptid_of (thr)));
917 }
918 }
919 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
920 {
921 if (debug_threads)
922 {
923 struct thread_info *thr = get_lwp_thread (lwp);
924
925 debug_printf ("CSBB: %s stopped by trace\n",
926 target_pid_to_str (ptid_of (thr)));
927 }
928 }
929
930 lwp->stop_pc = pc;
931 current_thread = saved_thread;
932 return 1;
933 }
934
935 static struct lwp_info *
936 add_lwp (ptid_t ptid)
937 {
938 struct lwp_info *lwp;
939
940 lwp = XCNEW (struct lwp_info);
941
942 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
943
944 if (the_low_target.new_thread != NULL)
945 the_low_target.new_thread (lwp);
946
947 lwp->thread = add_thread (ptid, lwp);
948
949 return lwp;
950 }
951
952 /* Callback to be used when calling fork_inferior, responsible for
953 actually initiating the tracing of the inferior. */
954
955 static void
956 linux_ptrace_fun ()
957 {
958 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
959 (PTRACE_TYPE_ARG4) 0) < 0)
960 trace_start_error_with_name ("ptrace");
961
962 if (setpgid (0, 0) < 0)
963 trace_start_error_with_name ("setpgid");
964
965 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
966 stdout to stderr so that inferior i/o doesn't corrupt the connection.
967 Also, redirect stdin to /dev/null. */
968 if (remote_connection_is_stdio ())
969 {
970 if (close (0) < 0)
971 trace_start_error_with_name ("close");
972 if (open ("/dev/null", O_RDONLY) < 0)
973 trace_start_error_with_name ("open");
974 if (dup2 (2, 1) < 0)
975 trace_start_error_with_name ("dup2");
976 if (write (2, "stdin/stdout redirected\n",
977 sizeof ("stdin/stdout redirected\n") - 1) < 0)
978 {
979 /* Errors ignored. */;
980 }
981 }
982 }
983
984 /* Start an inferior process and returns its pid.
985 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
986 are its arguments. */
987
988 static int
989 linux_create_inferior (const char *program,
990 const std::vector<char *> &program_args)
991 {
992 struct lwp_info *new_lwp;
993 int pid;
994 ptid_t ptid;
995 struct cleanup *restore_personality
996 = maybe_disable_address_space_randomization (disable_randomization);
997 std::string str_program_args = stringify_argv (program_args);
998
999 pid = fork_inferior (program,
1000 str_program_args.c_str (),
1001 environ_vector (get_environ ()), linux_ptrace_fun,
1002 NULL, NULL, NULL, NULL);
1003
1004 do_cleanups (restore_personality);
1005
1006 linux_add_process (pid, 0);
1007
1008 ptid = ptid_build (pid, pid, 0);
1009 new_lwp = add_lwp (ptid);
1010 new_lwp->must_set_ptrace_flags = 1;
1011
1012 post_fork_inferior (pid, program);
1013
1014 return pid;
1015 }
1016
1017 /* Implement the post_create_inferior target_ops method. */
1018
1019 static void
1020 linux_post_create_inferior (void)
1021 {
1022 struct lwp_info *lwp = get_thread_lwp (current_thread);
1023
1024 linux_arch_setup ();
1025
1026 if (lwp->must_set_ptrace_flags)
1027 {
1028 struct process_info *proc = current_process ();
1029 int options = linux_low_ptrace_options (proc->attached);
1030
1031 linux_enable_event_reporting (lwpid_of (current_thread), options);
1032 lwp->must_set_ptrace_flags = 0;
1033 }
1034 }
1035
1036 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1037 error. */
1038
1039 int
1040 linux_attach_lwp (ptid_t ptid)
1041 {
1042 struct lwp_info *new_lwp;
1043 int lwpid = ptid_get_lwp (ptid);
1044
1045 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1046 != 0)
1047 return errno;
1048
1049 new_lwp = add_lwp (ptid);
1050
1051 /* We need to wait for SIGSTOP before being able to make the next
1052 ptrace call on this LWP. */
1053 new_lwp->must_set_ptrace_flags = 1;
1054
1055 if (linux_proc_pid_is_stopped (lwpid))
1056 {
1057 if (debug_threads)
1058 debug_printf ("Attached to a stopped process\n");
1059
1060 /* The process is definitely stopped. It is in a job control
1061 stop, unless the kernel predates the TASK_STOPPED /
1062 TASK_TRACED distinction, in which case it might be in a
1063 ptrace stop. Make sure it is in a ptrace stop; from there we
1064 can kill it, signal it, et cetera.
1065
1066 First make sure there is a pending SIGSTOP. Since we are
1067 already attached, the process can not transition from stopped
1068 to running without a PTRACE_CONT; so we know this signal will
1069 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1070 probably already in the queue (unless this kernel is old
1071 enough to use TASK_STOPPED for ptrace stops); but since
1072 SIGSTOP is not an RT signal, it can only be queued once. */
1073 kill_lwp (lwpid, SIGSTOP);
1074
1075 /* Finally, resume the stopped process. This will deliver the
1076 SIGSTOP (or a higher priority signal, just like normal
1077 PTRACE_ATTACH), which we'll catch later on. */
1078 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1079 }
1080
1081 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1082 brings it to a halt.
1083
1084 There are several cases to consider here:
1085
1086 1) gdbserver has already attached to the process and is being notified
1087 of a new thread that is being created.
1088 In this case we should ignore that SIGSTOP and resume the
1089 process. This is handled below by setting stop_expected = 1,
1090 and the fact that add_thread sets last_resume_kind ==
1091 resume_continue.
1092
1093 2) This is the first thread (the process thread), and we're attaching
1094 to it via attach_inferior.
1095 In this case we want the process thread to stop.
1096 This is handled by having linux_attach set last_resume_kind ==
1097 resume_stop after we return.
1098
1099 If the pid we are attaching to is also the tgid, we attach to and
1100 stop all the existing threads. Otherwise, we attach to pid and
1101 ignore any other threads in the same group as this pid.
1102
1103 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1104 existing threads.
1105 In this case we want the thread to stop.
1106 FIXME: This case is currently not properly handled.
1107 We should wait for the SIGSTOP but don't. Things work apparently
1108 because enough time passes between when we ptrace (ATTACH) and when
1109 gdb makes the next ptrace call on the thread.
1110
1111 On the other hand, if we are currently trying to stop all threads, we
1112 should treat the new thread as if we had sent it a SIGSTOP. This works
1113 because we are guaranteed that the add_lwp call above added us to the
1114 end of the list, and so the new thread has not yet reached
1115 wait_for_sigstop (but will). */
1116 new_lwp->stop_expected = 1;
1117
1118 return 0;
1119 }
1120
1121 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1122 already attached. Returns true if a new LWP is found, false
1123 otherwise. */
1124
1125 static int
1126 attach_proc_task_lwp_callback (ptid_t ptid)
1127 {
1128 /* Is this a new thread? */
1129 if (find_thread_ptid (ptid) == NULL)
1130 {
1131 int lwpid = ptid_get_lwp (ptid);
1132 int err;
1133
1134 if (debug_threads)
1135 debug_printf ("Found new lwp %d\n", lwpid);
1136
1137 err = linux_attach_lwp (ptid);
1138
1139 /* Be quiet if we simply raced with the thread exiting. EPERM
1140 is returned if the thread's task still exists, and is marked
1141 as exited or zombie, as well as other conditions, so in that
1142 case, confirm the status in /proc/PID/status. */
1143 if (err == ESRCH
1144 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1145 {
1146 if (debug_threads)
1147 {
1148 debug_printf ("Cannot attach to lwp %d: "
1149 "thread is gone (%d: %s)\n",
1150 lwpid, err, strerror (err));
1151 }
1152 }
1153 else if (err != 0)
1154 {
1155 warning (_("Cannot attach to lwp %d: %s"),
1156 lwpid,
1157 linux_ptrace_attach_fail_reason_string (ptid, err));
1158 }
1159
1160 return 1;
1161 }
1162 return 0;
1163 }
1164
1165 static void async_file_mark (void);
1166
1167 /* Attach to PID. If PID is the tgid, attach to it and all
1168 of its threads. */
1169
1170 static int
1171 linux_attach (unsigned long pid)
1172 {
1173 struct process_info *proc;
1174 struct thread_info *initial_thread;
1175 ptid_t ptid = ptid_build (pid, pid, 0);
1176 int err;
1177
1178 /* Attach to PID. We will check for other threads
1179 soon. */
1180 err = linux_attach_lwp (ptid);
1181 if (err != 0)
1182 error ("Cannot attach to process %ld: %s",
1183 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1184
1185 proc = linux_add_process (pid, 1);
1186
1187 /* Don't ignore the initial SIGSTOP if we just attached to this
1188 process. It will be collected by wait shortly. */
1189 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1190 initial_thread->last_resume_kind = resume_stop;
1191
1192 /* We must attach to every LWP. If /proc is mounted, use that to
1193 find them now. On the one hand, the inferior may be using raw
1194 clone instead of using pthreads. On the other hand, even if it
1195 is using pthreads, GDB may not be connected yet (thread_db needs
1196 to do symbol lookups, through qSymbol). Also, thread_db walks
1197 structures in the inferior's address space to find the list of
1198 threads/LWPs, and those structures may well be corrupted. Note
1199 that once thread_db is loaded, we'll still use it to list threads
1200 and associate pthread info with each LWP. */
1201 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1202
1203 /* GDB will shortly read the xml target description for this
1204 process, to figure out the process' architecture. But the target
1205 description is only filled in when the first process/thread in
1206 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1207 that now, otherwise, if GDB is fast enough, it could read the
1208 target description _before_ that initial stop. */
1209 if (non_stop)
1210 {
1211 struct lwp_info *lwp;
1212 int wstat, lwpid;
1213 ptid_t pid_ptid = pid_to_ptid (pid);
1214
1215 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1216 &wstat, __WALL);
1217 gdb_assert (lwpid > 0);
1218
1219 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1220
1221 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1222 {
1223 lwp->status_pending_p = 1;
1224 lwp->status_pending = wstat;
1225 }
1226
1227 initial_thread->last_resume_kind = resume_continue;
1228
1229 async_file_mark ();
1230
1231 gdb_assert (proc->tdesc != NULL);
1232 }
1233
1234 return 0;
1235 }
1236
1237 struct counter
1238 {
1239 int pid;
1240 int count;
1241 };
1242
1243 static int
1244 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1245 {
1246 struct counter *counter = (struct counter *) args;
1247
1248 if (ptid_get_pid (entry->id) == counter->pid)
1249 {
1250 if (++counter->count > 1)
1251 return 1;
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int
1258 last_thread_of_process_p (int pid)
1259 {
1260 struct counter counter = { pid , 0 };
1261
1262 return (find_inferior (&all_threads,
1263 second_thread_of_pid_p, &counter) == NULL);
1264 }
1265
1266 /* Kill LWP. */
1267
1268 static void
1269 linux_kill_one_lwp (struct lwp_info *lwp)
1270 {
1271 struct thread_info *thr = get_lwp_thread (lwp);
1272 int pid = lwpid_of (thr);
1273
1274 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1275 there is no signal context, and ptrace(PTRACE_KILL) (or
1276 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1277 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1278 alternative is to kill with SIGKILL. We only need one SIGKILL
1279 per process, not one for each thread. But since we still support
1280 support debugging programs using raw clone without CLONE_THREAD,
1281 we send one for each thread. For years, we used PTRACE_KILL
1282 only, so we're being a bit paranoid about some old kernels where
1283 PTRACE_KILL might work better (dubious if there are any such, but
1284 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1285 second, and so we're fine everywhere. */
1286
1287 errno = 0;
1288 kill_lwp (pid, SIGKILL);
1289 if (debug_threads)
1290 {
1291 int save_errno = errno;
1292
1293 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1294 target_pid_to_str (ptid_of (thr)),
1295 save_errno ? strerror (save_errno) : "OK");
1296 }
1297
1298 errno = 0;
1299 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1300 if (debug_threads)
1301 {
1302 int save_errno = errno;
1303
1304 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1305 target_pid_to_str (ptid_of (thr)),
1306 save_errno ? strerror (save_errno) : "OK");
1307 }
1308 }
1309
1310 /* Kill LWP and wait for it to die. */
1311
1312 static void
1313 kill_wait_lwp (struct lwp_info *lwp)
1314 {
1315 struct thread_info *thr = get_lwp_thread (lwp);
1316 int pid = ptid_get_pid (ptid_of (thr));
1317 int lwpid = ptid_get_lwp (ptid_of (thr));
1318 int wstat;
1319 int res;
1320
1321 if (debug_threads)
1322 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1323
1324 do
1325 {
1326 linux_kill_one_lwp (lwp);
1327
1328 /* Make sure it died. Notes:
1329
1330 - The loop is most likely unnecessary.
1331
1332 - We don't use linux_wait_for_event as that could delete lwps
1333 while we're iterating over them. We're not interested in
1334 any pending status at this point, only in making sure all
1335 wait status on the kernel side are collected until the
1336 process is reaped.
1337
1338 - We don't use __WALL here as the __WALL emulation relies on
1339 SIGCHLD, and killing a stopped process doesn't generate
1340 one, nor an exit status.
1341 */
1342 res = my_waitpid (lwpid, &wstat, 0);
1343 if (res == -1 && errno == ECHILD)
1344 res = my_waitpid (lwpid, &wstat, __WCLONE);
1345 } while (res > 0 && WIFSTOPPED (wstat));
1346
1347 /* Even if it was stopped, the child may have already disappeared.
1348 E.g., if it was killed by SIGKILL. */
1349 if (res < 0 && errno != ECHILD)
1350 perror_with_name ("kill_wait_lwp");
1351 }
1352
1353 /* Callback for `find_inferior'. Kills an lwp of a given process,
1354 except the leader. */
1355
1356 static int
1357 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1358 {
1359 struct thread_info *thread = (struct thread_info *) entry;
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361 int pid = * (int *) args;
1362
1363 if (ptid_get_pid (entry->id) != pid)
1364 return 0;
1365
1366 /* We avoid killing the first thread here, because of a Linux kernel (at
1367 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1368 the children get a chance to be reaped, it will remain a zombie
1369 forever. */
1370
1371 if (lwpid_of (thread) == pid)
1372 {
1373 if (debug_threads)
1374 debug_printf ("lkop: is last of process %s\n",
1375 target_pid_to_str (entry->id));
1376 return 0;
1377 }
1378
1379 kill_wait_lwp (lwp);
1380 return 0;
1381 }
1382
1383 static int
1384 linux_kill (int pid)
1385 {
1386 struct process_info *process;
1387 struct lwp_info *lwp;
1388
1389 process = find_process_pid (pid);
1390 if (process == NULL)
1391 return -1;
1392
1393 /* If we're killing a running inferior, make sure it is stopped
1394 first, as PTRACE_KILL will not work otherwise. */
1395 stop_all_lwps (0, NULL);
1396
1397 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1398
1399 /* See the comment in linux_kill_one_lwp. We did not kill the first
1400 thread in the list, so do so now. */
1401 lwp = find_lwp_pid (pid_to_ptid (pid));
1402
1403 if (lwp == NULL)
1404 {
1405 if (debug_threads)
1406 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1407 pid);
1408 }
1409 else
1410 kill_wait_lwp (lwp);
1411
1412 the_target->mourn (process);
1413
1414 /* Since we presently can only stop all lwps of all processes, we
1415 need to unstop lwps of other processes. */
1416 unstop_all_lwps (0, NULL);
1417 return 0;
1418 }
1419
1420 /* Get pending signal of THREAD, for detaching purposes. This is the
1421 signal the thread last stopped for, which we need to deliver to the
1422 thread when detaching, otherwise, it'd be suppressed/lost. */
1423
1424 static int
1425 get_detach_signal (struct thread_info *thread)
1426 {
1427 enum gdb_signal signo = GDB_SIGNAL_0;
1428 int status;
1429 struct lwp_info *lp = get_thread_lwp (thread);
1430
1431 if (lp->status_pending_p)
1432 status = lp->status_pending;
1433 else
1434 {
1435 /* If the thread had been suspended by gdbserver, and it stopped
1436 cleanly, then it'll have stopped with SIGSTOP. But we don't
1437 want to deliver that SIGSTOP. */
1438 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1439 || thread->last_status.value.sig == GDB_SIGNAL_0)
1440 return 0;
1441
1442 /* Otherwise, we may need to deliver the signal we
1443 intercepted. */
1444 status = lp->last_status;
1445 }
1446
1447 if (!WIFSTOPPED (status))
1448 {
1449 if (debug_threads)
1450 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1451 target_pid_to_str (ptid_of (thread)));
1452 return 0;
1453 }
1454
1455 /* Extended wait statuses aren't real SIGTRAPs. */
1456 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1457 {
1458 if (debug_threads)
1459 debug_printf ("GPS: lwp %s had stopped with extended "
1460 "status: no pending signal\n",
1461 target_pid_to_str (ptid_of (thread)));
1462 return 0;
1463 }
1464
1465 signo = gdb_signal_from_host (WSTOPSIG (status));
1466
1467 if (program_signals_p && !program_signals[signo])
1468 {
1469 if (debug_threads)
1470 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1471 target_pid_to_str (ptid_of (thread)),
1472 gdb_signal_to_string (signo));
1473 return 0;
1474 }
1475 else if (!program_signals_p
1476 /* If we have no way to know which signals GDB does not
1477 want to have passed to the program, assume
1478 SIGTRAP/SIGINT, which is GDB's default. */
1479 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1480 {
1481 if (debug_threads)
1482 debug_printf ("GPS: lwp %s had signal %s, "
1483 "but we don't know if we should pass it. "
1484 "Default to not.\n",
1485 target_pid_to_str (ptid_of (thread)),
1486 gdb_signal_to_string (signo));
1487 return 0;
1488 }
1489 else
1490 {
1491 if (debug_threads)
1492 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1493 target_pid_to_str (ptid_of (thread)),
1494 gdb_signal_to_string (signo));
1495
1496 return WSTOPSIG (status);
1497 }
1498 }
1499
1500 /* Detach from LWP. */
1501
1502 static void
1503 linux_detach_one_lwp (struct lwp_info *lwp)
1504 {
1505 struct thread_info *thread = get_lwp_thread (lwp);
1506 int sig;
1507 int lwpid;
1508
1509 /* If there is a pending SIGSTOP, get rid of it. */
1510 if (lwp->stop_expected)
1511 {
1512 if (debug_threads)
1513 debug_printf ("Sending SIGCONT to %s\n",
1514 target_pid_to_str (ptid_of (thread)));
1515
1516 kill_lwp (lwpid_of (thread), SIGCONT);
1517 lwp->stop_expected = 0;
1518 }
1519
1520 /* Pass on any pending signal for this thread. */
1521 sig = get_detach_signal (thread);
1522
1523 /* Preparing to resume may try to write registers, and fail if the
1524 lwp is zombie. If that happens, ignore the error. We'll handle
1525 it below, when detach fails with ESRCH. */
1526 TRY
1527 {
1528 /* Flush any pending changes to the process's registers. */
1529 regcache_invalidate_thread (thread);
1530
1531 /* Finally, let it resume. */
1532 if (the_low_target.prepare_to_resume != NULL)
1533 the_low_target.prepare_to_resume (lwp);
1534 }
1535 CATCH (ex, RETURN_MASK_ERROR)
1536 {
1537 if (!check_ptrace_stopped_lwp_gone (lwp))
1538 throw_exception (ex);
1539 }
1540 END_CATCH
1541
1542 lwpid = lwpid_of (thread);
1543 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1544 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1545 {
1546 int save_errno = errno;
1547
1548 /* We know the thread exists, so ESRCH must mean the lwp is
1549 zombie. This can happen if one of the already-detached
1550 threads exits the whole thread group. In that case we're
1551 still attached, and must reap the lwp. */
1552 if (save_errno == ESRCH)
1553 {
1554 int ret, status;
1555
1556 ret = my_waitpid (lwpid, &status, __WALL);
1557 if (ret == -1)
1558 {
1559 warning (_("Couldn't reap LWP %d while detaching: %s"),
1560 lwpid, strerror (errno));
1561 }
1562 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1563 {
1564 warning (_("Reaping LWP %d while detaching "
1565 "returned unexpected status 0x%x"),
1566 lwpid, status);
1567 }
1568 }
1569 else
1570 {
1571 error (_("Can't detach %s: %s"),
1572 target_pid_to_str (ptid_of (thread)),
1573 strerror (save_errno));
1574 }
1575 }
1576 else if (debug_threads)
1577 {
1578 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1579 target_pid_to_str (ptid_of (thread)),
1580 strsignal (sig));
1581 }
1582
1583 delete_lwp (lwp);
1584 }
1585
1586 /* Callback for find_inferior. Detaches from non-leader threads of a
1587 given process. */
1588
1589 static int
1590 linux_detach_lwp_callback (struct inferior_list_entry *entry, void *args)
1591 {
1592 struct thread_info *thread = (struct thread_info *) entry;
1593 struct lwp_info *lwp = get_thread_lwp (thread);
1594 int pid = *(int *) args;
1595 int lwpid = lwpid_of (thread);
1596
1597 /* Skip other processes. */
1598 if (ptid_get_pid (entry->id) != pid)
1599 return 0;
1600
1601 /* We don't actually detach from the thread group leader just yet.
1602 If the thread group exits, we must reap the zombie clone lwps
1603 before we're able to reap the leader. */
1604 if (ptid_get_pid (entry->id) == lwpid)
1605 return 0;
1606
1607 linux_detach_one_lwp (lwp);
1608 return 0;
1609 }
1610
1611 static int
1612 linux_detach (int pid)
1613 {
1614 struct process_info *process;
1615 struct lwp_info *main_lwp;
1616
1617 process = find_process_pid (pid);
1618 if (process == NULL)
1619 return -1;
1620
1621 /* As there's a step over already in progress, let it finish first,
1622 otherwise nesting a stabilize_threads operation on top gets real
1623 messy. */
1624 complete_ongoing_step_over ();
1625
1626 /* Stop all threads before detaching. First, ptrace requires that
1627 the thread is stopped to sucessfully detach. Second, thread_db
1628 may need to uninstall thread event breakpoints from memory, which
1629 only works with a stopped process anyway. */
1630 stop_all_lwps (0, NULL);
1631
1632 #ifdef USE_THREAD_DB
1633 thread_db_detach (process);
1634 #endif
1635
1636 /* Stabilize threads (move out of jump pads). */
1637 stabilize_threads ();
1638
1639 /* Detach from the clone lwps first. If the thread group exits just
1640 while we're detaching, we must reap the clone lwps before we're
1641 able to reap the leader. */
1642 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1643
1644 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1645 linux_detach_one_lwp (main_lwp);
1646
1647 the_target->mourn (process);
1648
1649 /* Since we presently can only stop all lwps of all processes, we
1650 need to unstop lwps of other processes. */
1651 unstop_all_lwps (0, NULL);
1652 return 0;
1653 }
1654
1655 /* Remove all LWPs that belong to process PROC from the lwp list. */
1656
1657 static int
1658 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1659 {
1660 struct thread_info *thread = (struct thread_info *) entry;
1661 struct lwp_info *lwp = get_thread_lwp (thread);
1662 struct process_info *process = (struct process_info *) proc;
1663
1664 if (pid_of (thread) == pid_of (process))
1665 delete_lwp (lwp);
1666
1667 return 0;
1668 }
1669
1670 static void
1671 linux_mourn (struct process_info *process)
1672 {
1673 struct process_info_private *priv;
1674
1675 #ifdef USE_THREAD_DB
1676 thread_db_mourn (process);
1677 #endif
1678
1679 find_inferior (&all_threads, delete_lwp_callback, process);
1680
1681 /* Freeing all private data. */
1682 priv = process->priv;
1683 free (priv->arch_private);
1684 free (priv);
1685 process->priv = NULL;
1686
1687 remove_process (process);
1688 }
1689
1690 static void
1691 linux_join (int pid)
1692 {
1693 int status, ret;
1694
1695 do {
1696 ret = my_waitpid (pid, &status, 0);
1697 if (WIFEXITED (status) || WIFSIGNALED (status))
1698 break;
1699 } while (ret != -1 || errno != ECHILD);
1700 }
1701
1702 /* Return nonzero if the given thread is still alive. */
1703 static int
1704 linux_thread_alive (ptid_t ptid)
1705 {
1706 struct lwp_info *lwp = find_lwp_pid (ptid);
1707
1708 /* We assume we always know if a thread exits. If a whole process
1709 exited but we still haven't been able to report it to GDB, we'll
1710 hold on to the last lwp of the dead process. */
1711 if (lwp != NULL)
1712 return !lwp_is_marked_dead (lwp);
1713 else
1714 return 0;
1715 }
1716
1717 /* Return 1 if this lwp still has an interesting status pending. If
1718 not (e.g., it had stopped for a breakpoint that is gone), return
1719 false. */
1720
1721 static int
1722 thread_still_has_status_pending_p (struct thread_info *thread)
1723 {
1724 struct lwp_info *lp = get_thread_lwp (thread);
1725
1726 if (!lp->status_pending_p)
1727 return 0;
1728
1729 if (thread->last_resume_kind != resume_stop
1730 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1731 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1732 {
1733 struct thread_info *saved_thread;
1734 CORE_ADDR pc;
1735 int discard = 0;
1736
1737 gdb_assert (lp->last_status != 0);
1738
1739 pc = get_pc (lp);
1740
1741 saved_thread = current_thread;
1742 current_thread = thread;
1743
1744 if (pc != lp->stop_pc)
1745 {
1746 if (debug_threads)
1747 debug_printf ("PC of %ld changed\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751
1752 #if !USE_SIGTRAP_SIGINFO
1753 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1754 && !(*the_low_target.breakpoint_at) (pc))
1755 {
1756 if (debug_threads)
1757 debug_printf ("previous SW breakpoint of %ld gone\n",
1758 lwpid_of (thread));
1759 discard = 1;
1760 }
1761 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1762 && !hardware_breakpoint_inserted_here (pc))
1763 {
1764 if (debug_threads)
1765 debug_printf ("previous HW breakpoint of %ld gone\n",
1766 lwpid_of (thread));
1767 discard = 1;
1768 }
1769 #endif
1770
1771 current_thread = saved_thread;
1772
1773 if (discard)
1774 {
1775 if (debug_threads)
1776 debug_printf ("discarding pending breakpoint status\n");
1777 lp->status_pending_p = 0;
1778 return 0;
1779 }
1780 }
1781
1782 return 1;
1783 }
1784
1785 /* Returns true if LWP is resumed from the client's perspective. */
1786
1787 static int
1788 lwp_resumed (struct lwp_info *lwp)
1789 {
1790 struct thread_info *thread = get_lwp_thread (lwp);
1791
1792 if (thread->last_resume_kind != resume_stop)
1793 return 1;
1794
1795 /* Did gdb send us a `vCont;t', but we haven't reported the
1796 corresponding stop to gdb yet? If so, the thread is still
1797 resumed/running from gdb's perspective. */
1798 if (thread->last_resume_kind == resume_stop
1799 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1800 return 1;
1801
1802 return 0;
1803 }
1804
1805 /* Return 1 if this lwp has an interesting status pending. */
1806 static int
1807 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1808 {
1809 struct thread_info *thread = (struct thread_info *) entry;
1810 struct lwp_info *lp = get_thread_lwp (thread);
1811 ptid_t ptid = * (ptid_t *) arg;
1812
1813 /* Check if we're only interested in events from a specific process
1814 or a specific LWP. */
1815 if (!ptid_match (ptid_of (thread), ptid))
1816 return 0;
1817
1818 if (!lwp_resumed (lp))
1819 return 0;
1820
1821 if (lp->status_pending_p
1822 && !thread_still_has_status_pending_p (thread))
1823 {
1824 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1825 return 0;
1826 }
1827
1828 return lp->status_pending_p;
1829 }
1830
1831 static int
1832 same_lwp (struct inferior_list_entry *entry, void *data)
1833 {
1834 ptid_t ptid = *(ptid_t *) data;
1835 int lwp;
1836
1837 if (ptid_get_lwp (ptid) != 0)
1838 lwp = ptid_get_lwp (ptid);
1839 else
1840 lwp = ptid_get_pid (ptid);
1841
1842 if (ptid_get_lwp (entry->id) == lwp)
1843 return 1;
1844
1845 return 0;
1846 }
1847
1848 struct lwp_info *
1849 find_lwp_pid (ptid_t ptid)
1850 {
1851 struct inferior_list_entry *thread
1852 = find_inferior (&all_threads, same_lwp, &ptid);
1853
1854 if (thread == NULL)
1855 return NULL;
1856
1857 return get_thread_lwp ((struct thread_info *) thread);
1858 }
1859
1860 /* Return the number of known LWPs in the tgid given by PID. */
1861
1862 static int
1863 num_lwps (int pid)
1864 {
1865 struct inferior_list_entry *inf, *tmp;
1866 int count = 0;
1867
1868 ALL_INFERIORS (&all_threads, inf, tmp)
1869 {
1870 if (ptid_get_pid (inf->id) == pid)
1871 count++;
1872 }
1873
1874 return count;
1875 }
1876
1877 /* The arguments passed to iterate_over_lwps. */
1878
1879 struct iterate_over_lwps_args
1880 {
1881 /* The FILTER argument passed to iterate_over_lwps. */
1882 ptid_t filter;
1883
1884 /* The CALLBACK argument passed to iterate_over_lwps. */
1885 iterate_over_lwps_ftype *callback;
1886
1887 /* The DATA argument passed to iterate_over_lwps. */
1888 void *data;
1889 };
1890
1891 /* Callback for find_inferior used by iterate_over_lwps to filter
1892 calls to the callback supplied to that function. Returning a
1893 nonzero value causes find_inferiors to stop iterating and return
1894 the current inferior_list_entry. Returning zero indicates that
1895 find_inferiors should continue iterating. */
1896
1897 static int
1898 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1899 {
1900 struct iterate_over_lwps_args *args
1901 = (struct iterate_over_lwps_args *) args_p;
1902
1903 if (ptid_match (entry->id, args->filter))
1904 {
1905 struct thread_info *thr = (struct thread_info *) entry;
1906 struct lwp_info *lwp = get_thread_lwp (thr);
1907
1908 return (*args->callback) (lwp, args->data);
1909 }
1910
1911 return 0;
1912 }
1913
1914 /* See nat/linux-nat.h. */
1915
1916 struct lwp_info *
1917 iterate_over_lwps (ptid_t filter,
1918 iterate_over_lwps_ftype callback,
1919 void *data)
1920 {
1921 struct iterate_over_lwps_args args = {filter, callback, data};
1922 struct inferior_list_entry *entry;
1923
1924 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1925 if (entry == NULL)
1926 return NULL;
1927
1928 return get_thread_lwp ((struct thread_info *) entry);
1929 }
1930
1931 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1932 their exits until all other threads in the group have exited. */
1933
1934 static void
1935 check_zombie_leaders (void)
1936 {
1937 struct process_info *proc, *tmp;
1938
1939 ALL_PROCESSES (proc, tmp)
1940 {
1941 pid_t leader_pid = pid_of (proc);
1942 struct lwp_info *leader_lp;
1943
1944 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1945
1946 if (debug_threads)
1947 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1948 "num_lwps=%d, zombie=%d\n",
1949 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1950 linux_proc_pid_is_zombie (leader_pid));
1951
1952 if (leader_lp != NULL && !leader_lp->stopped
1953 /* Check if there are other threads in the group, as we may
1954 have raced with the inferior simply exiting. */
1955 && !last_thread_of_process_p (leader_pid)
1956 && linux_proc_pid_is_zombie (leader_pid))
1957 {
1958 /* A leader zombie can mean one of two things:
1959
1960 - It exited, and there's an exit status pending
1961 available, or only the leader exited (not the whole
1962 program). In the latter case, we can't waitpid the
1963 leader's exit status until all other threads are gone.
1964
1965 - There are 3 or more threads in the group, and a thread
1966 other than the leader exec'd. On an exec, the Linux
1967 kernel destroys all other threads (except the execing
1968 one) in the thread group, and resets the execing thread's
1969 tid to the tgid. No exit notification is sent for the
1970 execing thread -- from the ptracer's perspective, it
1971 appears as though the execing thread just vanishes.
1972 Until we reap all other threads except the leader and the
1973 execing thread, the leader will be zombie, and the
1974 execing thread will be in `D (disc sleep)'. As soon as
1975 all other threads are reaped, the execing thread changes
1976 it's tid to the tgid, and the previous (zombie) leader
1977 vanishes, giving place to the "new" leader. We could try
1978 distinguishing the exit and exec cases, by waiting once
1979 more, and seeing if something comes out, but it doesn't
1980 sound useful. The previous leader _does_ go away, and
1981 we'll re-add the new one once we see the exec event
1982 (which is just the same as what would happen if the
1983 previous leader did exit voluntarily before some other
1984 thread execs). */
1985
1986 if (debug_threads)
1987 debug_printf ("CZL: Thread group leader %d zombie "
1988 "(it exited, or another thread execd).\n",
1989 leader_pid);
1990
1991 delete_lwp (leader_lp);
1992 }
1993 }
1994 }
1995
1996 /* Callback for `find_inferior'. Returns the first LWP that is not
1997 stopped. ARG is a PTID filter. */
1998
1999 static int
2000 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
2001 {
2002 struct thread_info *thr = (struct thread_info *) entry;
2003 struct lwp_info *lwp;
2004 ptid_t filter = *(ptid_t *) arg;
2005
2006 if (!ptid_match (ptid_of (thr), filter))
2007 return 0;
2008
2009 lwp = get_thread_lwp (thr);
2010 if (!lwp->stopped)
2011 return 1;
2012
2013 return 0;
2014 }
2015
2016 /* Increment LWP's suspend count. */
2017
2018 static void
2019 lwp_suspended_inc (struct lwp_info *lwp)
2020 {
2021 lwp->suspended++;
2022
2023 if (debug_threads && lwp->suspended > 4)
2024 {
2025 struct thread_info *thread = get_lwp_thread (lwp);
2026
2027 debug_printf ("LWP %ld has a suspiciously high suspend count,"
2028 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
2029 }
2030 }
2031
2032 /* Decrement LWP's suspend count. */
2033
2034 static void
2035 lwp_suspended_decr (struct lwp_info *lwp)
2036 {
2037 lwp->suspended--;
2038
2039 if (lwp->suspended < 0)
2040 {
2041 struct thread_info *thread = get_lwp_thread (lwp);
2042
2043 internal_error (__FILE__, __LINE__,
2044 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2045 lwp->suspended);
2046 }
2047 }
2048
2049 /* This function should only be called if the LWP got a SIGTRAP.
2050
2051 Handle any tracepoint steps or hits. Return true if a tracepoint
2052 event was handled, 0 otherwise. */
2053
2054 static int
2055 handle_tracepoints (struct lwp_info *lwp)
2056 {
2057 struct thread_info *tinfo = get_lwp_thread (lwp);
2058 int tpoint_related_event = 0;
2059
2060 gdb_assert (lwp->suspended == 0);
2061
2062 /* If this tracepoint hit causes a tracing stop, we'll immediately
2063 uninsert tracepoints. To do this, we temporarily pause all
2064 threads, unpatch away, and then unpause threads. We need to make
2065 sure the unpausing doesn't resume LWP too. */
2066 lwp_suspended_inc (lwp);
2067
2068 /* And we need to be sure that any all-threads-stopping doesn't try
2069 to move threads out of the jump pads, as it could deadlock the
2070 inferior (LWP could be in the jump pad, maybe even holding the
2071 lock.) */
2072
2073 /* Do any necessary step collect actions. */
2074 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2075
2076 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2077
2078 /* See if we just hit a tracepoint and do its main collect
2079 actions. */
2080 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2081
2082 lwp_suspended_decr (lwp);
2083
2084 gdb_assert (lwp->suspended == 0);
2085 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
2086
2087 if (tpoint_related_event)
2088 {
2089 if (debug_threads)
2090 debug_printf ("got a tracepoint event\n");
2091 return 1;
2092 }
2093
2094 return 0;
2095 }
2096
2097 /* Convenience wrapper. Returns true if LWP is presently collecting a
2098 fast tracepoint. */
2099
2100 static int
2101 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2102 struct fast_tpoint_collect_status *status)
2103 {
2104 CORE_ADDR thread_area;
2105 struct thread_info *thread = get_lwp_thread (lwp);
2106
2107 if (the_low_target.get_thread_area == NULL)
2108 return 0;
2109
2110 /* Get the thread area address. This is used to recognize which
2111 thread is which when tracing with the in-process agent library.
2112 We don't read anything from the address, and treat it as opaque;
2113 it's the address itself that we assume is unique per-thread. */
2114 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2115 return 0;
2116
2117 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2118 }
2119
2120 /* The reason we resume in the caller, is because we want to be able
2121 to pass lwp->status_pending as WSTAT, and we need to clear
2122 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2123 refuses to resume. */
2124
2125 static int
2126 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2127 {
2128 struct thread_info *saved_thread;
2129
2130 saved_thread = current_thread;
2131 current_thread = get_lwp_thread (lwp);
2132
2133 if ((wstat == NULL
2134 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2135 && supports_fast_tracepoints ()
2136 && agent_loaded_p ())
2137 {
2138 struct fast_tpoint_collect_status status;
2139 int r;
2140
2141 if (debug_threads)
2142 debug_printf ("Checking whether LWP %ld needs to move out of the "
2143 "jump pad.\n",
2144 lwpid_of (current_thread));
2145
2146 r = linux_fast_tracepoint_collecting (lwp, &status);
2147
2148 if (wstat == NULL
2149 || (WSTOPSIG (*wstat) != SIGILL
2150 && WSTOPSIG (*wstat) != SIGFPE
2151 && WSTOPSIG (*wstat) != SIGSEGV
2152 && WSTOPSIG (*wstat) != SIGBUS))
2153 {
2154 lwp->collecting_fast_tracepoint = r;
2155
2156 if (r != 0)
2157 {
2158 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
2159 {
2160 /* Haven't executed the original instruction yet.
2161 Set breakpoint there, and wait till it's hit,
2162 then single-step until exiting the jump pad. */
2163 lwp->exit_jump_pad_bkpt
2164 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2165 }
2166
2167 if (debug_threads)
2168 debug_printf ("Checking whether LWP %ld needs to move out of "
2169 "the jump pad...it does\n",
2170 lwpid_of (current_thread));
2171 current_thread = saved_thread;
2172
2173 return 1;
2174 }
2175 }
2176 else
2177 {
2178 /* If we get a synchronous signal while collecting, *and*
2179 while executing the (relocated) original instruction,
2180 reset the PC to point at the tpoint address, before
2181 reporting to GDB. Otherwise, it's an IPA lib bug: just
2182 report the signal to GDB, and pray for the best. */
2183
2184 lwp->collecting_fast_tracepoint = 0;
2185
2186 if (r != 0
2187 && (status.adjusted_insn_addr <= lwp->stop_pc
2188 && lwp->stop_pc < status.adjusted_insn_addr_end))
2189 {
2190 siginfo_t info;
2191 struct regcache *regcache;
2192
2193 /* The si_addr on a few signals references the address
2194 of the faulting instruction. Adjust that as
2195 well. */
2196 if ((WSTOPSIG (*wstat) == SIGILL
2197 || WSTOPSIG (*wstat) == SIGFPE
2198 || WSTOPSIG (*wstat) == SIGBUS
2199 || WSTOPSIG (*wstat) == SIGSEGV)
2200 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2201 (PTRACE_TYPE_ARG3) 0, &info) == 0
2202 /* Final check just to make sure we don't clobber
2203 the siginfo of non-kernel-sent signals. */
2204 && (uintptr_t) info.si_addr == lwp->stop_pc)
2205 {
2206 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2207 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2208 (PTRACE_TYPE_ARG3) 0, &info);
2209 }
2210
2211 regcache = get_thread_regcache (current_thread, 1);
2212 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2213 lwp->stop_pc = status.tpoint_addr;
2214
2215 /* Cancel any fast tracepoint lock this thread was
2216 holding. */
2217 force_unlock_trace_buffer ();
2218 }
2219
2220 if (lwp->exit_jump_pad_bkpt != NULL)
2221 {
2222 if (debug_threads)
2223 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2224 "stopping all threads momentarily.\n");
2225
2226 stop_all_lwps (1, lwp);
2227
2228 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2229 lwp->exit_jump_pad_bkpt = NULL;
2230
2231 unstop_all_lwps (1, lwp);
2232
2233 gdb_assert (lwp->suspended >= 0);
2234 }
2235 }
2236 }
2237
2238 if (debug_threads)
2239 debug_printf ("Checking whether LWP %ld needs to move out of the "
2240 "jump pad...no\n",
2241 lwpid_of (current_thread));
2242
2243 current_thread = saved_thread;
2244 return 0;
2245 }
2246
2247 /* Enqueue one signal in the "signals to report later when out of the
2248 jump pad" list. */
2249
2250 static void
2251 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2252 {
2253 struct pending_signals *p_sig;
2254 struct thread_info *thread = get_lwp_thread (lwp);
2255
2256 if (debug_threads)
2257 debug_printf ("Deferring signal %d for LWP %ld.\n",
2258 WSTOPSIG (*wstat), lwpid_of (thread));
2259
2260 if (debug_threads)
2261 {
2262 struct pending_signals *sig;
2263
2264 for (sig = lwp->pending_signals_to_report;
2265 sig != NULL;
2266 sig = sig->prev)
2267 debug_printf (" Already queued %d\n",
2268 sig->signal);
2269
2270 debug_printf (" (no more currently queued signals)\n");
2271 }
2272
2273 /* Don't enqueue non-RT signals if they are already in the deferred
2274 queue. (SIGSTOP being the easiest signal to see ending up here
2275 twice) */
2276 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2277 {
2278 struct pending_signals *sig;
2279
2280 for (sig = lwp->pending_signals_to_report;
2281 sig != NULL;
2282 sig = sig->prev)
2283 {
2284 if (sig->signal == WSTOPSIG (*wstat))
2285 {
2286 if (debug_threads)
2287 debug_printf ("Not requeuing already queued non-RT signal %d"
2288 " for LWP %ld\n",
2289 sig->signal,
2290 lwpid_of (thread));
2291 return;
2292 }
2293 }
2294 }
2295
2296 p_sig = XCNEW (struct pending_signals);
2297 p_sig->prev = lwp->pending_signals_to_report;
2298 p_sig->signal = WSTOPSIG (*wstat);
2299
2300 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2301 &p_sig->info);
2302
2303 lwp->pending_signals_to_report = p_sig;
2304 }
2305
2306 /* Dequeue one signal from the "signals to report later when out of
2307 the jump pad" list. */
2308
2309 static int
2310 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2311 {
2312 struct thread_info *thread = get_lwp_thread (lwp);
2313
2314 if (lwp->pending_signals_to_report != NULL)
2315 {
2316 struct pending_signals **p_sig;
2317
2318 p_sig = &lwp->pending_signals_to_report;
2319 while ((*p_sig)->prev != NULL)
2320 p_sig = &(*p_sig)->prev;
2321
2322 *wstat = W_STOPCODE ((*p_sig)->signal);
2323 if ((*p_sig)->info.si_signo != 0)
2324 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2325 &(*p_sig)->info);
2326 free (*p_sig);
2327 *p_sig = NULL;
2328
2329 if (debug_threads)
2330 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2331 WSTOPSIG (*wstat), lwpid_of (thread));
2332
2333 if (debug_threads)
2334 {
2335 struct pending_signals *sig;
2336
2337 for (sig = lwp->pending_signals_to_report;
2338 sig != NULL;
2339 sig = sig->prev)
2340 debug_printf (" Still queued %d\n",
2341 sig->signal);
2342
2343 debug_printf (" (no more queued signals)\n");
2344 }
2345
2346 return 1;
2347 }
2348
2349 return 0;
2350 }
2351
2352 /* Fetch the possibly triggered data watchpoint info and store it in
2353 CHILD.
2354
2355 On some archs, like x86, that use debug registers to set
2356 watchpoints, it's possible that the way to know which watched
2357 address trapped, is to check the register that is used to select
2358 which address to watch. Problem is, between setting the watchpoint
2359 and reading back which data address trapped, the user may change
2360 the set of watchpoints, and, as a consequence, GDB changes the
2361 debug registers in the inferior. To avoid reading back a stale
2362 stopped-data-address when that happens, we cache in LP the fact
2363 that a watchpoint trapped, and the corresponding data address, as
2364 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2365 registers meanwhile, we have the cached data we can rely on. */
2366
2367 static int
2368 check_stopped_by_watchpoint (struct lwp_info *child)
2369 {
2370 if (the_low_target.stopped_by_watchpoint != NULL)
2371 {
2372 struct thread_info *saved_thread;
2373
2374 saved_thread = current_thread;
2375 current_thread = get_lwp_thread (child);
2376
2377 if (the_low_target.stopped_by_watchpoint ())
2378 {
2379 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2380
2381 if (the_low_target.stopped_data_address != NULL)
2382 child->stopped_data_address
2383 = the_low_target.stopped_data_address ();
2384 else
2385 child->stopped_data_address = 0;
2386 }
2387
2388 current_thread = saved_thread;
2389 }
2390
2391 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2392 }
2393
2394 /* Return the ptrace options that we want to try to enable. */
2395
2396 static int
2397 linux_low_ptrace_options (int attached)
2398 {
2399 int options = 0;
2400
2401 if (!attached)
2402 options |= PTRACE_O_EXITKILL;
2403
2404 if (report_fork_events)
2405 options |= PTRACE_O_TRACEFORK;
2406
2407 if (report_vfork_events)
2408 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2409
2410 if (report_exec_events)
2411 options |= PTRACE_O_TRACEEXEC;
2412
2413 options |= PTRACE_O_TRACESYSGOOD;
2414
2415 return options;
2416 }
2417
2418 /* Do low-level handling of the event, and check if we should go on
2419 and pass it to caller code. Return the affected lwp if we are, or
2420 NULL otherwise. */
2421
2422 static struct lwp_info *
2423 linux_low_filter_event (int lwpid, int wstat)
2424 {
2425 struct lwp_info *child;
2426 struct thread_info *thread;
2427 int have_stop_pc = 0;
2428
2429 child = find_lwp_pid (pid_to_ptid (lwpid));
2430
2431 /* Check for stop events reported by a process we didn't already
2432 know about - anything not already in our LWP list.
2433
2434 If we're expecting to receive stopped processes after
2435 fork, vfork, and clone events, then we'll just add the
2436 new one to our list and go back to waiting for the event
2437 to be reported - the stopped process might be returned
2438 from waitpid before or after the event is.
2439
2440 But note the case of a non-leader thread exec'ing after the
2441 leader having exited, and gone from our lists (because
2442 check_zombie_leaders deleted it). The non-leader thread
2443 changes its tid to the tgid. */
2444
2445 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2446 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2447 {
2448 ptid_t child_ptid;
2449
2450 /* A multi-thread exec after we had seen the leader exiting. */
2451 if (debug_threads)
2452 {
2453 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2454 "after exec.\n", lwpid);
2455 }
2456
2457 child_ptid = ptid_build (lwpid, lwpid, 0);
2458 child = add_lwp (child_ptid);
2459 child->stopped = 1;
2460 current_thread = child->thread;
2461 }
2462
2463 /* If we didn't find a process, one of two things presumably happened:
2464 - A process we started and then detached from has exited. Ignore it.
2465 - A process we are controlling has forked and the new child's stop
2466 was reported to us by the kernel. Save its PID. */
2467 if (child == NULL && WIFSTOPPED (wstat))
2468 {
2469 add_to_pid_list (&stopped_pids, lwpid, wstat);
2470 return NULL;
2471 }
2472 else if (child == NULL)
2473 return NULL;
2474
2475 thread = get_lwp_thread (child);
2476
2477 child->stopped = 1;
2478
2479 child->last_status = wstat;
2480
2481 /* Check if the thread has exited. */
2482 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2483 {
2484 if (debug_threads)
2485 debug_printf ("LLFE: %d exited.\n", lwpid);
2486
2487 if (finish_step_over (child))
2488 {
2489 /* Unsuspend all other LWPs, and set them back running again. */
2490 unsuspend_all_lwps (child);
2491 }
2492
2493 /* If there is at least one more LWP, then the exit signal was
2494 not the end of the debugged application and should be
2495 ignored, unless GDB wants to hear about thread exits. */
2496 if (report_thread_events
2497 || last_thread_of_process_p (pid_of (thread)))
2498 {
2499 /* Since events are serialized to GDB core, and we can't
2500 report this one right now. Leave the status pending for
2501 the next time we're able to report it. */
2502 mark_lwp_dead (child, wstat);
2503 return child;
2504 }
2505 else
2506 {
2507 delete_lwp (child);
2508 return NULL;
2509 }
2510 }
2511
2512 gdb_assert (WIFSTOPPED (wstat));
2513
2514 if (WIFSTOPPED (wstat))
2515 {
2516 struct process_info *proc;
2517
2518 /* Architecture-specific setup after inferior is running. */
2519 proc = find_process_pid (pid_of (thread));
2520 if (proc->tdesc == NULL)
2521 {
2522 if (proc->attached)
2523 {
2524 /* This needs to happen after we have attached to the
2525 inferior and it is stopped for the first time, but
2526 before we access any inferior registers. */
2527 linux_arch_setup_thread (thread);
2528 }
2529 else
2530 {
2531 /* The process is started, but GDBserver will do
2532 architecture-specific setup after the program stops at
2533 the first instruction. */
2534 child->status_pending_p = 1;
2535 child->status_pending = wstat;
2536 return child;
2537 }
2538 }
2539 }
2540
2541 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2542 {
2543 struct process_info *proc = find_process_pid (pid_of (thread));
2544 int options = linux_low_ptrace_options (proc->attached);
2545
2546 linux_enable_event_reporting (lwpid, options);
2547 child->must_set_ptrace_flags = 0;
2548 }
2549
2550 /* Always update syscall_state, even if it will be filtered later. */
2551 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2552 {
2553 child->syscall_state
2554 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2555 ? TARGET_WAITKIND_SYSCALL_RETURN
2556 : TARGET_WAITKIND_SYSCALL_ENTRY);
2557 }
2558 else
2559 {
2560 /* Almost all other ptrace-stops are known to be outside of system
2561 calls, with further exceptions in handle_extended_wait. */
2562 child->syscall_state = TARGET_WAITKIND_IGNORE;
2563 }
2564
2565 /* Be careful to not overwrite stop_pc until save_stop_reason is
2566 called. */
2567 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2568 && linux_is_extended_waitstatus (wstat))
2569 {
2570 child->stop_pc = get_pc (child);
2571 if (handle_extended_wait (&child, wstat))
2572 {
2573 /* The event has been handled, so just return without
2574 reporting it. */
2575 return NULL;
2576 }
2577 }
2578
2579 if (linux_wstatus_maybe_breakpoint (wstat))
2580 {
2581 if (save_stop_reason (child))
2582 have_stop_pc = 1;
2583 }
2584
2585 if (!have_stop_pc)
2586 child->stop_pc = get_pc (child);
2587
2588 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2589 && child->stop_expected)
2590 {
2591 if (debug_threads)
2592 debug_printf ("Expected stop.\n");
2593 child->stop_expected = 0;
2594
2595 if (thread->last_resume_kind == resume_stop)
2596 {
2597 /* We want to report the stop to the core. Treat the
2598 SIGSTOP as a normal event. */
2599 if (debug_threads)
2600 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2601 target_pid_to_str (ptid_of (thread)));
2602 }
2603 else if (stopping_threads != NOT_STOPPING_THREADS)
2604 {
2605 /* Stopping threads. We don't want this SIGSTOP to end up
2606 pending. */
2607 if (debug_threads)
2608 debug_printf ("LLW: SIGSTOP caught for %s "
2609 "while stopping threads.\n",
2610 target_pid_to_str (ptid_of (thread)));
2611 return NULL;
2612 }
2613 else
2614 {
2615 /* This is a delayed SIGSTOP. Filter out the event. */
2616 if (debug_threads)
2617 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2618 child->stepping ? "step" : "continue",
2619 target_pid_to_str (ptid_of (thread)));
2620
2621 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2622 return NULL;
2623 }
2624 }
2625
2626 child->status_pending_p = 1;
2627 child->status_pending = wstat;
2628 return child;
2629 }
2630
2631 /* Return true if THREAD is doing hardware single step. */
2632
2633 static int
2634 maybe_hw_step (struct thread_info *thread)
2635 {
2636 if (can_hardware_single_step ())
2637 return 1;
2638 else
2639 {
2640 /* GDBserver must insert single-step breakpoint for software
2641 single step. */
2642 gdb_assert (has_single_step_breakpoints (thread));
2643 return 0;
2644 }
2645 }
2646
2647 /* Resume LWPs that are currently stopped without any pending status
2648 to report, but are resumed from the core's perspective. */
2649
2650 static void
2651 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2652 {
2653 struct thread_info *thread = (struct thread_info *) entry;
2654 struct lwp_info *lp = get_thread_lwp (thread);
2655
2656 if (lp->stopped
2657 && !lp->suspended
2658 && !lp->status_pending_p
2659 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2660 {
2661 int step = 0;
2662
2663 if (thread->last_resume_kind == resume_step)
2664 step = maybe_hw_step (thread);
2665
2666 if (debug_threads)
2667 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2668 target_pid_to_str (ptid_of (thread)),
2669 paddress (lp->stop_pc),
2670 step);
2671
2672 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2673 }
2674 }
2675
2676 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2677 match FILTER_PTID (leaving others pending). The PTIDs can be:
2678 minus_one_ptid, to specify any child; a pid PTID, specifying all
2679 lwps of a thread group; or a PTID representing a single lwp. Store
2680 the stop status through the status pointer WSTAT. OPTIONS is
2681 passed to the waitpid call. Return 0 if no event was found and
2682 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2683 was found. Return the PID of the stopped child otherwise. */
2684
2685 static int
2686 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2687 int *wstatp, int options)
2688 {
2689 struct thread_info *event_thread;
2690 struct lwp_info *event_child, *requested_child;
2691 sigset_t block_mask, prev_mask;
2692
2693 retry:
2694 /* N.B. event_thread points to the thread_info struct that contains
2695 event_child. Keep them in sync. */
2696 event_thread = NULL;
2697 event_child = NULL;
2698 requested_child = NULL;
2699
2700 /* Check for a lwp with a pending status. */
2701
2702 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2703 {
2704 event_thread = (struct thread_info *)
2705 find_inferior_in_random (&all_threads, status_pending_p_callback,
2706 &filter_ptid);
2707 if (event_thread != NULL)
2708 event_child = get_thread_lwp (event_thread);
2709 if (debug_threads && event_thread)
2710 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2711 }
2712 else if (!ptid_equal (filter_ptid, null_ptid))
2713 {
2714 requested_child = find_lwp_pid (filter_ptid);
2715
2716 if (stopping_threads == NOT_STOPPING_THREADS
2717 && requested_child->status_pending_p
2718 && requested_child->collecting_fast_tracepoint)
2719 {
2720 enqueue_one_deferred_signal (requested_child,
2721 &requested_child->status_pending);
2722 requested_child->status_pending_p = 0;
2723 requested_child->status_pending = 0;
2724 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2725 }
2726
2727 if (requested_child->suspended
2728 && requested_child->status_pending_p)
2729 {
2730 internal_error (__FILE__, __LINE__,
2731 "requesting an event out of a"
2732 " suspended child?");
2733 }
2734
2735 if (requested_child->status_pending_p)
2736 {
2737 event_child = requested_child;
2738 event_thread = get_lwp_thread (event_child);
2739 }
2740 }
2741
2742 if (event_child != NULL)
2743 {
2744 if (debug_threads)
2745 debug_printf ("Got an event from pending child %ld (%04x)\n",
2746 lwpid_of (event_thread), event_child->status_pending);
2747 *wstatp = event_child->status_pending;
2748 event_child->status_pending_p = 0;
2749 event_child->status_pending = 0;
2750 current_thread = event_thread;
2751 return lwpid_of (event_thread);
2752 }
2753
2754 /* But if we don't find a pending event, we'll have to wait.
2755
2756 We only enter this loop if no process has a pending wait status.
2757 Thus any action taken in response to a wait status inside this
2758 loop is responding as soon as we detect the status, not after any
2759 pending events. */
2760
2761 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2762 all signals while here. */
2763 sigfillset (&block_mask);
2764 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2765
2766 /* Always pull all events out of the kernel. We'll randomly select
2767 an event LWP out of all that have events, to prevent
2768 starvation. */
2769 while (event_child == NULL)
2770 {
2771 pid_t ret = 0;
2772
2773 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2774 quirks:
2775
2776 - If the thread group leader exits while other threads in the
2777 thread group still exist, waitpid(TGID, ...) hangs. That
2778 waitpid won't return an exit status until the other threads
2779 in the group are reaped.
2780
2781 - When a non-leader thread execs, that thread just vanishes
2782 without reporting an exit (so we'd hang if we waited for it
2783 explicitly in that case). The exec event is reported to
2784 the TGID pid. */
2785 errno = 0;
2786 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2787
2788 if (debug_threads)
2789 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2790 ret, errno ? strerror (errno) : "ERRNO-OK");
2791
2792 if (ret > 0)
2793 {
2794 if (debug_threads)
2795 {
2796 debug_printf ("LLW: waitpid %ld received %s\n",
2797 (long) ret, status_to_str (*wstatp));
2798 }
2799
2800 /* Filter all events. IOW, leave all events pending. We'll
2801 randomly select an event LWP out of all that have events
2802 below. */
2803 linux_low_filter_event (ret, *wstatp);
2804 /* Retry until nothing comes out of waitpid. A single
2805 SIGCHLD can indicate more than one child stopped. */
2806 continue;
2807 }
2808
2809 /* Now that we've pulled all events out of the kernel, resume
2810 LWPs that don't have an interesting event to report. */
2811 if (stopping_threads == NOT_STOPPING_THREADS)
2812 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2813
2814 /* ... and find an LWP with a status to report to the core, if
2815 any. */
2816 event_thread = (struct thread_info *)
2817 find_inferior_in_random (&all_threads, status_pending_p_callback,
2818 &filter_ptid);
2819 if (event_thread != NULL)
2820 {
2821 event_child = get_thread_lwp (event_thread);
2822 *wstatp = event_child->status_pending;
2823 event_child->status_pending_p = 0;
2824 event_child->status_pending = 0;
2825 break;
2826 }
2827
2828 /* Check for zombie thread group leaders. Those can't be reaped
2829 until all other threads in the thread group are. */
2830 check_zombie_leaders ();
2831
2832 /* If there are no resumed children left in the set of LWPs we
2833 want to wait for, bail. We can't just block in
2834 waitpid/sigsuspend, because lwps might have been left stopped
2835 in trace-stop state, and we'd be stuck forever waiting for
2836 their status to change (which would only happen if we resumed
2837 them). Even if WNOHANG is set, this return code is preferred
2838 over 0 (below), as it is more detailed. */
2839 if ((find_inferior (&all_threads,
2840 not_stopped_callback,
2841 &wait_ptid) == NULL))
2842 {
2843 if (debug_threads)
2844 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2845 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2846 return -1;
2847 }
2848
2849 /* No interesting event to report to the caller. */
2850 if ((options & WNOHANG))
2851 {
2852 if (debug_threads)
2853 debug_printf ("WNOHANG set, no event found\n");
2854
2855 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2856 return 0;
2857 }
2858
2859 /* Block until we get an event reported with SIGCHLD. */
2860 if (debug_threads)
2861 debug_printf ("sigsuspend'ing\n");
2862
2863 sigsuspend (&prev_mask);
2864 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2865 goto retry;
2866 }
2867
2868 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2869
2870 current_thread = event_thread;
2871
2872 return lwpid_of (event_thread);
2873 }
2874
2875 /* Wait for an event from child(ren) PTID. PTIDs can be:
2876 minus_one_ptid, to specify any child; a pid PTID, specifying all
2877 lwps of a thread group; or a PTID representing a single lwp. Store
2878 the stop status through the status pointer WSTAT. OPTIONS is
2879 passed to the waitpid call. Return 0 if no event was found and
2880 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2881 was found. Return the PID of the stopped child otherwise. */
2882
2883 static int
2884 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2885 {
2886 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2887 }
2888
2889 /* Count the LWP's that have had events. */
2890
2891 static int
2892 count_events_callback (struct inferior_list_entry *entry, void *data)
2893 {
2894 struct thread_info *thread = (struct thread_info *) entry;
2895 struct lwp_info *lp = get_thread_lwp (thread);
2896 int *count = (int *) data;
2897
2898 gdb_assert (count != NULL);
2899
2900 /* Count only resumed LWPs that have an event pending. */
2901 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2902 && lp->status_pending_p)
2903 (*count)++;
2904
2905 return 0;
2906 }
2907
2908 /* Select the LWP (if any) that is currently being single-stepped. */
2909
2910 static int
2911 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2912 {
2913 struct thread_info *thread = (struct thread_info *) entry;
2914 struct lwp_info *lp = get_thread_lwp (thread);
2915
2916 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2917 && thread->last_resume_kind == resume_step
2918 && lp->status_pending_p)
2919 return 1;
2920 else
2921 return 0;
2922 }
2923
2924 /* Select the Nth LWP that has had an event. */
2925
2926 static int
2927 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2928 {
2929 struct thread_info *thread = (struct thread_info *) entry;
2930 struct lwp_info *lp = get_thread_lwp (thread);
2931 int *selector = (int *) data;
2932
2933 gdb_assert (selector != NULL);
2934
2935 /* Select only resumed LWPs that have an event pending. */
2936 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2937 && lp->status_pending_p)
2938 if ((*selector)-- == 0)
2939 return 1;
2940
2941 return 0;
2942 }
2943
2944 /* Select one LWP out of those that have events pending. */
2945
2946 static void
2947 select_event_lwp (struct lwp_info **orig_lp)
2948 {
2949 int num_events = 0;
2950 int random_selector;
2951 struct thread_info *event_thread = NULL;
2952
2953 /* In all-stop, give preference to the LWP that is being
2954 single-stepped. There will be at most one, and it's the LWP that
2955 the core is most interested in. If we didn't do this, then we'd
2956 have to handle pending step SIGTRAPs somehow in case the core
2957 later continues the previously-stepped thread, otherwise we'd
2958 report the pending SIGTRAP, and the core, not having stepped the
2959 thread, wouldn't understand what the trap was for, and therefore
2960 would report it to the user as a random signal. */
2961 if (!non_stop)
2962 {
2963 event_thread
2964 = (struct thread_info *) find_inferior (&all_threads,
2965 select_singlestep_lwp_callback,
2966 NULL);
2967 if (event_thread != NULL)
2968 {
2969 if (debug_threads)
2970 debug_printf ("SEL: Select single-step %s\n",
2971 target_pid_to_str (ptid_of (event_thread)));
2972 }
2973 }
2974 if (event_thread == NULL)
2975 {
2976 /* No single-stepping LWP. Select one at random, out of those
2977 which have had events. */
2978
2979 /* First see how many events we have. */
2980 find_inferior (&all_threads, count_events_callback, &num_events);
2981 gdb_assert (num_events > 0);
2982
2983 /* Now randomly pick a LWP out of those that have had
2984 events. */
2985 random_selector = (int)
2986 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2987
2988 if (debug_threads && num_events > 1)
2989 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2990 num_events, random_selector);
2991
2992 event_thread
2993 = (struct thread_info *) find_inferior (&all_threads,
2994 select_event_lwp_callback,
2995 &random_selector);
2996 }
2997
2998 if (event_thread != NULL)
2999 {
3000 struct lwp_info *event_lp = get_thread_lwp (event_thread);
3001
3002 /* Switch the event LWP. */
3003 *orig_lp = event_lp;
3004 }
3005 }
3006
3007 /* Decrement the suspend count of an LWP. */
3008
3009 static int
3010 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
3011 {
3012 struct thread_info *thread = (struct thread_info *) entry;
3013 struct lwp_info *lwp = get_thread_lwp (thread);
3014
3015 /* Ignore EXCEPT. */
3016 if (lwp == except)
3017 return 0;
3018
3019 lwp_suspended_decr (lwp);
3020 return 0;
3021 }
3022
3023 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
3024 NULL. */
3025
3026 static void
3027 unsuspend_all_lwps (struct lwp_info *except)
3028 {
3029 find_inferior (&all_threads, unsuspend_one_lwp, except);
3030 }
3031
3032 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
3033 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
3034 void *data);
3035 static int lwp_running (struct inferior_list_entry *entry, void *data);
3036 static ptid_t linux_wait_1 (ptid_t ptid,
3037 struct target_waitstatus *ourstatus,
3038 int target_options);
3039
3040 /* Stabilize threads (move out of jump pads).
3041
3042 If a thread is midway collecting a fast tracepoint, we need to
3043 finish the collection and move it out of the jump pad before
3044 reporting the signal.
3045
3046 This avoids recursion while collecting (when a signal arrives
3047 midway, and the signal handler itself collects), which would trash
3048 the trace buffer. In case the user set a breakpoint in a signal
3049 handler, this avoids the backtrace showing the jump pad, etc..
3050 Most importantly, there are certain things we can't do safely if
3051 threads are stopped in a jump pad (or in its callee's). For
3052 example:
3053
3054 - starting a new trace run. A thread still collecting the
3055 previous run, could trash the trace buffer when resumed. The trace
3056 buffer control structures would have been reset but the thread had
3057 no way to tell. The thread could even midway memcpy'ing to the
3058 buffer, which would mean that when resumed, it would clobber the
3059 trace buffer that had been set for a new run.
3060
3061 - we can't rewrite/reuse the jump pads for new tracepoints
3062 safely. Say you do tstart while a thread is stopped midway while
3063 collecting. When the thread is later resumed, it finishes the
3064 collection, and returns to the jump pad, to execute the original
3065 instruction that was under the tracepoint jump at the time the
3066 older run had been started. If the jump pad had been rewritten
3067 since for something else in the new run, the thread would now
3068 execute the wrong / random instructions. */
3069
3070 static void
3071 linux_stabilize_threads (void)
3072 {
3073 struct thread_info *saved_thread;
3074 struct thread_info *thread_stuck;
3075
3076 thread_stuck
3077 = (struct thread_info *) find_inferior (&all_threads,
3078 stuck_in_jump_pad_callback,
3079 NULL);
3080 if (thread_stuck != NULL)
3081 {
3082 if (debug_threads)
3083 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3084 lwpid_of (thread_stuck));
3085 return;
3086 }
3087
3088 saved_thread = current_thread;
3089
3090 stabilizing_threads = 1;
3091
3092 /* Kick 'em all. */
3093 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3094
3095 /* Loop until all are stopped out of the jump pads. */
3096 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3097 {
3098 struct target_waitstatus ourstatus;
3099 struct lwp_info *lwp;
3100 int wstat;
3101
3102 /* Note that we go through the full wait even loop. While
3103 moving threads out of jump pad, we need to be able to step
3104 over internal breakpoints and such. */
3105 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3106
3107 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3108 {
3109 lwp = get_thread_lwp (current_thread);
3110
3111 /* Lock it. */
3112 lwp_suspended_inc (lwp);
3113
3114 if (ourstatus.value.sig != GDB_SIGNAL_0
3115 || current_thread->last_resume_kind == resume_stop)
3116 {
3117 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3118 enqueue_one_deferred_signal (lwp, &wstat);
3119 }
3120 }
3121 }
3122
3123 unsuspend_all_lwps (NULL);
3124
3125 stabilizing_threads = 0;
3126
3127 current_thread = saved_thread;
3128
3129 if (debug_threads)
3130 {
3131 thread_stuck
3132 = (struct thread_info *) find_inferior (&all_threads,
3133 stuck_in_jump_pad_callback,
3134 NULL);
3135 if (thread_stuck != NULL)
3136 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3137 lwpid_of (thread_stuck));
3138 }
3139 }
3140
3141 /* Convenience function that is called when the kernel reports an
3142 event that is not passed out to GDB. */
3143
3144 static ptid_t
3145 ignore_event (struct target_waitstatus *ourstatus)
3146 {
3147 /* If we got an event, there may still be others, as a single
3148 SIGCHLD can indicate more than one child stopped. This forces
3149 another target_wait call. */
3150 async_file_mark ();
3151
3152 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3153 return null_ptid;
3154 }
3155
3156 /* Convenience function that is called when the kernel reports an exit
3157 event. This decides whether to report the event to GDB as a
3158 process exit event, a thread exit event, or to suppress the
3159 event. */
3160
3161 static ptid_t
3162 filter_exit_event (struct lwp_info *event_child,
3163 struct target_waitstatus *ourstatus)
3164 {
3165 struct thread_info *thread = get_lwp_thread (event_child);
3166 ptid_t ptid = ptid_of (thread);
3167
3168 if (!last_thread_of_process_p (pid_of (thread)))
3169 {
3170 if (report_thread_events)
3171 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3172 else
3173 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3174
3175 delete_lwp (event_child);
3176 }
3177 return ptid;
3178 }
3179
3180 /* Returns 1 if GDB is interested in any event_child syscalls. */
3181
3182 static int
3183 gdb_catching_syscalls_p (struct lwp_info *event_child)
3184 {
3185 struct thread_info *thread = get_lwp_thread (event_child);
3186 struct process_info *proc = get_thread_process (thread);
3187
3188 return !VEC_empty (int, proc->syscalls_to_catch);
3189 }
3190
3191 /* Returns 1 if GDB is interested in the event_child syscall.
3192 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3193
3194 static int
3195 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3196 {
3197 int i, iter;
3198 int sysno;
3199 struct thread_info *thread = get_lwp_thread (event_child);
3200 struct process_info *proc = get_thread_process (thread);
3201
3202 if (VEC_empty (int, proc->syscalls_to_catch))
3203 return 0;
3204
3205 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3206 return 1;
3207
3208 get_syscall_trapinfo (event_child, &sysno);
3209 for (i = 0;
3210 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3211 i++)
3212 if (iter == sysno)
3213 return 1;
3214
3215 return 0;
3216 }
3217
3218 /* Wait for process, returns status. */
3219
3220 static ptid_t
3221 linux_wait_1 (ptid_t ptid,
3222 struct target_waitstatus *ourstatus, int target_options)
3223 {
3224 int w;
3225 struct lwp_info *event_child;
3226 int options;
3227 int pid;
3228 int step_over_finished;
3229 int bp_explains_trap;
3230 int maybe_internal_trap;
3231 int report_to_gdb;
3232 int trace_event;
3233 int in_step_range;
3234 int any_resumed;
3235
3236 if (debug_threads)
3237 {
3238 debug_enter ();
3239 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3240 }
3241
3242 /* Translate generic target options into linux options. */
3243 options = __WALL;
3244 if (target_options & TARGET_WNOHANG)
3245 options |= WNOHANG;
3246
3247 bp_explains_trap = 0;
3248 trace_event = 0;
3249 in_step_range = 0;
3250 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3251
3252 /* Find a resumed LWP, if any. */
3253 if (find_inferior (&all_threads,
3254 status_pending_p_callback,
3255 &minus_one_ptid) != NULL)
3256 any_resumed = 1;
3257 else if ((find_inferior (&all_threads,
3258 not_stopped_callback,
3259 &minus_one_ptid) != NULL))
3260 any_resumed = 1;
3261 else
3262 any_resumed = 0;
3263
3264 if (ptid_equal (step_over_bkpt, null_ptid))
3265 pid = linux_wait_for_event (ptid, &w, options);
3266 else
3267 {
3268 if (debug_threads)
3269 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3270 target_pid_to_str (step_over_bkpt));
3271 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3272 }
3273
3274 if (pid == 0 || (pid == -1 && !any_resumed))
3275 {
3276 gdb_assert (target_options & TARGET_WNOHANG);
3277
3278 if (debug_threads)
3279 {
3280 debug_printf ("linux_wait_1 ret = null_ptid, "
3281 "TARGET_WAITKIND_IGNORE\n");
3282 debug_exit ();
3283 }
3284
3285 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3286 return null_ptid;
3287 }
3288 else if (pid == -1)
3289 {
3290 if (debug_threads)
3291 {
3292 debug_printf ("linux_wait_1 ret = null_ptid, "
3293 "TARGET_WAITKIND_NO_RESUMED\n");
3294 debug_exit ();
3295 }
3296
3297 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3298 return null_ptid;
3299 }
3300
3301 event_child = get_thread_lwp (current_thread);
3302
3303 /* linux_wait_for_event only returns an exit status for the last
3304 child of a process. Report it. */
3305 if (WIFEXITED (w) || WIFSIGNALED (w))
3306 {
3307 if (WIFEXITED (w))
3308 {
3309 ourstatus->kind = TARGET_WAITKIND_EXITED;
3310 ourstatus->value.integer = WEXITSTATUS (w);
3311
3312 if (debug_threads)
3313 {
3314 debug_printf ("linux_wait_1 ret = %s, exited with "
3315 "retcode %d\n",
3316 target_pid_to_str (ptid_of (current_thread)),
3317 WEXITSTATUS (w));
3318 debug_exit ();
3319 }
3320 }
3321 else
3322 {
3323 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3324 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3325
3326 if (debug_threads)
3327 {
3328 debug_printf ("linux_wait_1 ret = %s, terminated with "
3329 "signal %d\n",
3330 target_pid_to_str (ptid_of (current_thread)),
3331 WTERMSIG (w));
3332 debug_exit ();
3333 }
3334 }
3335
3336 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3337 return filter_exit_event (event_child, ourstatus);
3338
3339 return ptid_of (current_thread);
3340 }
3341
3342 /* If step-over executes a breakpoint instruction, in the case of a
3343 hardware single step it means a gdb/gdbserver breakpoint had been
3344 planted on top of a permanent breakpoint, in the case of a software
3345 single step it may just mean that gdbserver hit the reinsert breakpoint.
3346 The PC has been adjusted by save_stop_reason to point at
3347 the breakpoint address.
3348 So in the case of the hardware single step advance the PC manually
3349 past the breakpoint and in the case of software single step advance only
3350 if it's not the single_step_breakpoint we are hitting.
3351 This avoids that a program would keep trapping a permanent breakpoint
3352 forever. */
3353 if (!ptid_equal (step_over_bkpt, null_ptid)
3354 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3355 && (event_child->stepping
3356 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3357 {
3358 int increment_pc = 0;
3359 int breakpoint_kind = 0;
3360 CORE_ADDR stop_pc = event_child->stop_pc;
3361
3362 breakpoint_kind =
3363 the_target->breakpoint_kind_from_current_state (&stop_pc);
3364 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3365
3366 if (debug_threads)
3367 {
3368 debug_printf ("step-over for %s executed software breakpoint\n",
3369 target_pid_to_str (ptid_of (current_thread)));
3370 }
3371
3372 if (increment_pc != 0)
3373 {
3374 struct regcache *regcache
3375 = get_thread_regcache (current_thread, 1);
3376
3377 event_child->stop_pc += increment_pc;
3378 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3379
3380 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3381 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3382 }
3383 }
3384
3385 /* If this event was not handled before, and is not a SIGTRAP, we
3386 report it. SIGILL and SIGSEGV are also treated as traps in case
3387 a breakpoint is inserted at the current PC. If this target does
3388 not support internal breakpoints at all, we also report the
3389 SIGTRAP without further processing; it's of no concern to us. */
3390 maybe_internal_trap
3391 = (supports_breakpoints ()
3392 && (WSTOPSIG (w) == SIGTRAP
3393 || ((WSTOPSIG (w) == SIGILL
3394 || WSTOPSIG (w) == SIGSEGV)
3395 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3396
3397 if (maybe_internal_trap)
3398 {
3399 /* Handle anything that requires bookkeeping before deciding to
3400 report the event or continue waiting. */
3401
3402 /* First check if we can explain the SIGTRAP with an internal
3403 breakpoint, or if we should possibly report the event to GDB.
3404 Do this before anything that may remove or insert a
3405 breakpoint. */
3406 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3407
3408 /* We have a SIGTRAP, possibly a step-over dance has just
3409 finished. If so, tweak the state machine accordingly,
3410 reinsert breakpoints and delete any single-step
3411 breakpoints. */
3412 step_over_finished = finish_step_over (event_child);
3413
3414 /* Now invoke the callbacks of any internal breakpoints there. */
3415 check_breakpoints (event_child->stop_pc);
3416
3417 /* Handle tracepoint data collecting. This may overflow the
3418 trace buffer, and cause a tracing stop, removing
3419 breakpoints. */
3420 trace_event = handle_tracepoints (event_child);
3421
3422 if (bp_explains_trap)
3423 {
3424 if (debug_threads)
3425 debug_printf ("Hit a gdbserver breakpoint.\n");
3426 }
3427 }
3428 else
3429 {
3430 /* We have some other signal, possibly a step-over dance was in
3431 progress, and it should be cancelled too. */
3432 step_over_finished = finish_step_over (event_child);
3433 }
3434
3435 /* We have all the data we need. Either report the event to GDB, or
3436 resume threads and keep waiting for more. */
3437
3438 /* If we're collecting a fast tracepoint, finish the collection and
3439 move out of the jump pad before delivering a signal. See
3440 linux_stabilize_threads. */
3441
3442 if (WIFSTOPPED (w)
3443 && WSTOPSIG (w) != SIGTRAP
3444 && supports_fast_tracepoints ()
3445 && agent_loaded_p ())
3446 {
3447 if (debug_threads)
3448 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3449 "to defer or adjust it.\n",
3450 WSTOPSIG (w), lwpid_of (current_thread));
3451
3452 /* Allow debugging the jump pad itself. */
3453 if (current_thread->last_resume_kind != resume_step
3454 && maybe_move_out_of_jump_pad (event_child, &w))
3455 {
3456 enqueue_one_deferred_signal (event_child, &w);
3457
3458 if (debug_threads)
3459 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3460 WSTOPSIG (w), lwpid_of (current_thread));
3461
3462 linux_resume_one_lwp (event_child, 0, 0, NULL);
3463
3464 if (debug_threads)
3465 debug_exit ();
3466 return ignore_event (ourstatus);
3467 }
3468 }
3469
3470 if (event_child->collecting_fast_tracepoint)
3471 {
3472 if (debug_threads)
3473 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3474 "Check if we're already there.\n",
3475 lwpid_of (current_thread),
3476 event_child->collecting_fast_tracepoint);
3477
3478 trace_event = 1;
3479
3480 event_child->collecting_fast_tracepoint
3481 = linux_fast_tracepoint_collecting (event_child, NULL);
3482
3483 if (event_child->collecting_fast_tracepoint != 1)
3484 {
3485 /* No longer need this breakpoint. */
3486 if (event_child->exit_jump_pad_bkpt != NULL)
3487 {
3488 if (debug_threads)
3489 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3490 "stopping all threads momentarily.\n");
3491
3492 /* Other running threads could hit this breakpoint.
3493 We don't handle moribund locations like GDB does,
3494 instead we always pause all threads when removing
3495 breakpoints, so that any step-over or
3496 decr_pc_after_break adjustment is always taken
3497 care of while the breakpoint is still
3498 inserted. */
3499 stop_all_lwps (1, event_child);
3500
3501 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3502 event_child->exit_jump_pad_bkpt = NULL;
3503
3504 unstop_all_lwps (1, event_child);
3505
3506 gdb_assert (event_child->suspended >= 0);
3507 }
3508 }
3509
3510 if (event_child->collecting_fast_tracepoint == 0)
3511 {
3512 if (debug_threads)
3513 debug_printf ("fast tracepoint finished "
3514 "collecting successfully.\n");
3515
3516 /* We may have a deferred signal to report. */
3517 if (dequeue_one_deferred_signal (event_child, &w))
3518 {
3519 if (debug_threads)
3520 debug_printf ("dequeued one signal.\n");
3521 }
3522 else
3523 {
3524 if (debug_threads)
3525 debug_printf ("no deferred signals.\n");
3526
3527 if (stabilizing_threads)
3528 {
3529 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3530 ourstatus->value.sig = GDB_SIGNAL_0;
3531
3532 if (debug_threads)
3533 {
3534 debug_printf ("linux_wait_1 ret = %s, stopped "
3535 "while stabilizing threads\n",
3536 target_pid_to_str (ptid_of (current_thread)));
3537 debug_exit ();
3538 }
3539
3540 return ptid_of (current_thread);
3541 }
3542 }
3543 }
3544 }
3545
3546 /* Check whether GDB would be interested in this event. */
3547
3548 /* Check if GDB is interested in this syscall. */
3549 if (WIFSTOPPED (w)
3550 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3551 && !gdb_catch_this_syscall_p (event_child))
3552 {
3553 if (debug_threads)
3554 {
3555 debug_printf ("Ignored syscall for LWP %ld.\n",
3556 lwpid_of (current_thread));
3557 }
3558
3559 linux_resume_one_lwp (event_child, event_child->stepping,
3560 0, NULL);
3561
3562 if (debug_threads)
3563 debug_exit ();
3564 return ignore_event (ourstatus);
3565 }
3566
3567 /* If GDB is not interested in this signal, don't stop other
3568 threads, and don't report it to GDB. Just resume the inferior
3569 right away. We do this for threading-related signals as well as
3570 any that GDB specifically requested we ignore. But never ignore
3571 SIGSTOP if we sent it ourselves, and do not ignore signals when
3572 stepping - they may require special handling to skip the signal
3573 handler. Also never ignore signals that could be caused by a
3574 breakpoint. */
3575 if (WIFSTOPPED (w)
3576 && current_thread->last_resume_kind != resume_step
3577 && (
3578 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3579 (current_process ()->priv->thread_db != NULL
3580 && (WSTOPSIG (w) == __SIGRTMIN
3581 || WSTOPSIG (w) == __SIGRTMIN + 1))
3582 ||
3583 #endif
3584 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3585 && !(WSTOPSIG (w) == SIGSTOP
3586 && current_thread->last_resume_kind == resume_stop)
3587 && !linux_wstatus_maybe_breakpoint (w))))
3588 {
3589 siginfo_t info, *info_p;
3590
3591 if (debug_threads)
3592 debug_printf ("Ignored signal %d for LWP %ld.\n",
3593 WSTOPSIG (w), lwpid_of (current_thread));
3594
3595 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3596 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3597 info_p = &info;
3598 else
3599 info_p = NULL;
3600
3601 if (step_over_finished)
3602 {
3603 /* We cancelled this thread's step-over above. We still
3604 need to unsuspend all other LWPs, and set them back
3605 running again while the signal handler runs. */
3606 unsuspend_all_lwps (event_child);
3607
3608 /* Enqueue the pending signal info so that proceed_all_lwps
3609 doesn't lose it. */
3610 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3611
3612 proceed_all_lwps ();
3613 }
3614 else
3615 {
3616 linux_resume_one_lwp (event_child, event_child->stepping,
3617 WSTOPSIG (w), info_p);
3618 }
3619
3620 if (debug_threads)
3621 debug_exit ();
3622
3623 return ignore_event (ourstatus);
3624 }
3625
3626 /* Note that all addresses are always "out of the step range" when
3627 there's no range to begin with. */
3628 in_step_range = lwp_in_step_range (event_child);
3629
3630 /* If GDB wanted this thread to single step, and the thread is out
3631 of the step range, we always want to report the SIGTRAP, and let
3632 GDB handle it. Watchpoints should always be reported. So should
3633 signals we can't explain. A SIGTRAP we can't explain could be a
3634 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3635 do, we're be able to handle GDB breakpoints on top of internal
3636 breakpoints, by handling the internal breakpoint and still
3637 reporting the event to GDB. If we don't, we're out of luck, GDB
3638 won't see the breakpoint hit. If we see a single-step event but
3639 the thread should be continuing, don't pass the trap to gdb.
3640 That indicates that we had previously finished a single-step but
3641 left the single-step pending -- see
3642 complete_ongoing_step_over. */
3643 report_to_gdb = (!maybe_internal_trap
3644 || (current_thread->last_resume_kind == resume_step
3645 && !in_step_range)
3646 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3647 || (!in_step_range
3648 && !bp_explains_trap
3649 && !trace_event
3650 && !step_over_finished
3651 && !(current_thread->last_resume_kind == resume_continue
3652 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3653 || (gdb_breakpoint_here (event_child->stop_pc)
3654 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3655 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3656 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3657
3658 run_breakpoint_commands (event_child->stop_pc);
3659
3660 /* We found no reason GDB would want us to stop. We either hit one
3661 of our own breakpoints, or finished an internal step GDB
3662 shouldn't know about. */
3663 if (!report_to_gdb)
3664 {
3665 if (debug_threads)
3666 {
3667 if (bp_explains_trap)
3668 debug_printf ("Hit a gdbserver breakpoint.\n");
3669 if (step_over_finished)
3670 debug_printf ("Step-over finished.\n");
3671 if (trace_event)
3672 debug_printf ("Tracepoint event.\n");
3673 if (lwp_in_step_range (event_child))
3674 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3675 paddress (event_child->stop_pc),
3676 paddress (event_child->step_range_start),
3677 paddress (event_child->step_range_end));
3678 }
3679
3680 /* We're not reporting this breakpoint to GDB, so apply the
3681 decr_pc_after_break adjustment to the inferior's regcache
3682 ourselves. */
3683
3684 if (the_low_target.set_pc != NULL)
3685 {
3686 struct regcache *regcache
3687 = get_thread_regcache (current_thread, 1);
3688 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3689 }
3690
3691 if (step_over_finished)
3692 {
3693 /* If we have finished stepping over a breakpoint, we've
3694 stopped and suspended all LWPs momentarily except the
3695 stepping one. This is where we resume them all again.
3696 We're going to keep waiting, so use proceed, which
3697 handles stepping over the next breakpoint. */
3698 unsuspend_all_lwps (event_child);
3699 }
3700 else
3701 {
3702 /* Remove the single-step breakpoints if any. Note that
3703 there isn't single-step breakpoint if we finished stepping
3704 over. */
3705 if (can_software_single_step ()
3706 && has_single_step_breakpoints (current_thread))
3707 {
3708 stop_all_lwps (0, event_child);
3709 delete_single_step_breakpoints (current_thread);
3710 unstop_all_lwps (0, event_child);
3711 }
3712 }
3713
3714 if (debug_threads)
3715 debug_printf ("proceeding all threads.\n");
3716 proceed_all_lwps ();
3717
3718 if (debug_threads)
3719 debug_exit ();
3720
3721 return ignore_event (ourstatus);
3722 }
3723
3724 if (debug_threads)
3725 {
3726 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3727 {
3728 char *str;
3729
3730 str = target_waitstatus_to_string (&event_child->waitstatus);
3731 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3732 lwpid_of (get_lwp_thread (event_child)), str);
3733 xfree (str);
3734 }
3735 if (current_thread->last_resume_kind == resume_step)
3736 {
3737 if (event_child->step_range_start == event_child->step_range_end)
3738 debug_printf ("GDB wanted to single-step, reporting event.\n");
3739 else if (!lwp_in_step_range (event_child))
3740 debug_printf ("Out of step range, reporting event.\n");
3741 }
3742 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3743 debug_printf ("Stopped by watchpoint.\n");
3744 else if (gdb_breakpoint_here (event_child->stop_pc))
3745 debug_printf ("Stopped by GDB breakpoint.\n");
3746 if (debug_threads)
3747 debug_printf ("Hit a non-gdbserver trap event.\n");
3748 }
3749
3750 /* Alright, we're going to report a stop. */
3751
3752 /* Remove single-step breakpoints. */
3753 if (can_software_single_step ())
3754 {
3755 /* Remove single-step breakpoints or not. It it is true, stop all
3756 lwps, so that other threads won't hit the breakpoint in the
3757 staled memory. */
3758 int remove_single_step_breakpoints_p = 0;
3759
3760 if (non_stop)
3761 {
3762 remove_single_step_breakpoints_p
3763 = has_single_step_breakpoints (current_thread);
3764 }
3765 else
3766 {
3767 /* In all-stop, a stop reply cancels all previous resume
3768 requests. Delete all single-step breakpoints. */
3769 struct inferior_list_entry *inf, *tmp;
3770
3771 ALL_INFERIORS (&all_threads, inf, tmp)
3772 {
3773 struct thread_info *thread = (struct thread_info *) inf;
3774
3775 if (has_single_step_breakpoints (thread))
3776 {
3777 remove_single_step_breakpoints_p = 1;
3778 break;
3779 }
3780 }
3781 }
3782
3783 if (remove_single_step_breakpoints_p)
3784 {
3785 /* If we remove single-step breakpoints from memory, stop all lwps,
3786 so that other threads won't hit the breakpoint in the staled
3787 memory. */
3788 stop_all_lwps (0, event_child);
3789
3790 if (non_stop)
3791 {
3792 gdb_assert (has_single_step_breakpoints (current_thread));
3793 delete_single_step_breakpoints (current_thread);
3794 }
3795 else
3796 {
3797 struct inferior_list_entry *inf, *tmp;
3798
3799 ALL_INFERIORS (&all_threads, inf, tmp)
3800 {
3801 struct thread_info *thread = (struct thread_info *) inf;
3802
3803 if (has_single_step_breakpoints (thread))
3804 delete_single_step_breakpoints (thread);
3805 }
3806 }
3807
3808 unstop_all_lwps (0, event_child);
3809 }
3810 }
3811
3812 if (!stabilizing_threads)
3813 {
3814 /* In all-stop, stop all threads. */
3815 if (!non_stop)
3816 stop_all_lwps (0, NULL);
3817
3818 if (step_over_finished)
3819 {
3820 if (!non_stop)
3821 {
3822 /* If we were doing a step-over, all other threads but
3823 the stepping one had been paused in start_step_over,
3824 with their suspend counts incremented. We don't want
3825 to do a full unstop/unpause, because we're in
3826 all-stop mode (so we want threads stopped), but we
3827 still need to unsuspend the other threads, to
3828 decrement their `suspended' count back. */
3829 unsuspend_all_lwps (event_child);
3830 }
3831 else
3832 {
3833 /* If we just finished a step-over, then all threads had
3834 been momentarily paused. In all-stop, that's fine,
3835 we want threads stopped by now anyway. In non-stop,
3836 we need to re-resume threads that GDB wanted to be
3837 running. */
3838 unstop_all_lwps (1, event_child);
3839 }
3840 }
3841
3842 /* If we're not waiting for a specific LWP, choose an event LWP
3843 from among those that have had events. Giving equal priority
3844 to all LWPs that have had events helps prevent
3845 starvation. */
3846 if (ptid_equal (ptid, minus_one_ptid))
3847 {
3848 event_child->status_pending_p = 1;
3849 event_child->status_pending = w;
3850
3851 select_event_lwp (&event_child);
3852
3853 /* current_thread and event_child must stay in sync. */
3854 current_thread = get_lwp_thread (event_child);
3855
3856 event_child->status_pending_p = 0;
3857 w = event_child->status_pending;
3858 }
3859
3860
3861 /* Stabilize threads (move out of jump pads). */
3862 if (!non_stop)
3863 stabilize_threads ();
3864 }
3865 else
3866 {
3867 /* If we just finished a step-over, then all threads had been
3868 momentarily paused. In all-stop, that's fine, we want
3869 threads stopped by now anyway. In non-stop, we need to
3870 re-resume threads that GDB wanted to be running. */
3871 if (step_over_finished)
3872 unstop_all_lwps (1, event_child);
3873 }
3874
3875 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3876 {
3877 /* If the reported event is an exit, fork, vfork or exec, let
3878 GDB know. */
3879
3880 /* Break the unreported fork relationship chain. */
3881 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3882 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3883 {
3884 event_child->fork_relative->fork_relative = NULL;
3885 event_child->fork_relative = NULL;
3886 }
3887
3888 *ourstatus = event_child->waitstatus;
3889 /* Clear the event lwp's waitstatus since we handled it already. */
3890 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3891 }
3892 else
3893 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3894
3895 /* Now that we've selected our final event LWP, un-adjust its PC if
3896 it was a software breakpoint, and the client doesn't know we can
3897 adjust the breakpoint ourselves. */
3898 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3899 && !swbreak_feature)
3900 {
3901 int decr_pc = the_low_target.decr_pc_after_break;
3902
3903 if (decr_pc != 0)
3904 {
3905 struct regcache *regcache
3906 = get_thread_regcache (current_thread, 1);
3907 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3908 }
3909 }
3910
3911 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3912 {
3913 get_syscall_trapinfo (event_child,
3914 &ourstatus->value.syscall_number);
3915 ourstatus->kind = event_child->syscall_state;
3916 }
3917 else if (current_thread->last_resume_kind == resume_stop
3918 && WSTOPSIG (w) == SIGSTOP)
3919 {
3920 /* A thread that has been requested to stop by GDB with vCont;t,
3921 and it stopped cleanly, so report as SIG0. The use of
3922 SIGSTOP is an implementation detail. */
3923 ourstatus->value.sig = GDB_SIGNAL_0;
3924 }
3925 else if (current_thread->last_resume_kind == resume_stop
3926 && WSTOPSIG (w) != SIGSTOP)
3927 {
3928 /* A thread that has been requested to stop by GDB with vCont;t,
3929 but, it stopped for other reasons. */
3930 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3931 }
3932 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3933 {
3934 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3935 }
3936
3937 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3938
3939 if (debug_threads)
3940 {
3941 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3942 target_pid_to_str (ptid_of (current_thread)),
3943 ourstatus->kind, ourstatus->value.sig);
3944 debug_exit ();
3945 }
3946
3947 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3948 return filter_exit_event (event_child, ourstatus);
3949
3950 return ptid_of (current_thread);
3951 }
3952
3953 /* Get rid of any pending event in the pipe. */
3954 static void
3955 async_file_flush (void)
3956 {
3957 int ret;
3958 char buf;
3959
3960 do
3961 ret = read (linux_event_pipe[0], &buf, 1);
3962 while (ret >= 0 || (ret == -1 && errno == EINTR));
3963 }
3964
3965 /* Put something in the pipe, so the event loop wakes up. */
3966 static void
3967 async_file_mark (void)
3968 {
3969 int ret;
3970
3971 async_file_flush ();
3972
3973 do
3974 ret = write (linux_event_pipe[1], "+", 1);
3975 while (ret == 0 || (ret == -1 && errno == EINTR));
3976
3977 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3978 be awakened anyway. */
3979 }
3980
3981 static ptid_t
3982 linux_wait (ptid_t ptid,
3983 struct target_waitstatus *ourstatus, int target_options)
3984 {
3985 ptid_t event_ptid;
3986
3987 /* Flush the async file first. */
3988 if (target_is_async_p ())
3989 async_file_flush ();
3990
3991 do
3992 {
3993 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3994 }
3995 while ((target_options & TARGET_WNOHANG) == 0
3996 && ptid_equal (event_ptid, null_ptid)
3997 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3998
3999 /* If at least one stop was reported, there may be more. A single
4000 SIGCHLD can signal more than one child stop. */
4001 if (target_is_async_p ()
4002 && (target_options & TARGET_WNOHANG) != 0
4003 && !ptid_equal (event_ptid, null_ptid))
4004 async_file_mark ();
4005
4006 return event_ptid;
4007 }
4008
4009 /* Send a signal to an LWP. */
4010
4011 static int
4012 kill_lwp (unsigned long lwpid, int signo)
4013 {
4014 int ret;
4015
4016 errno = 0;
4017 ret = syscall (__NR_tkill, lwpid, signo);
4018 if (errno == ENOSYS)
4019 {
4020 /* If tkill fails, then we are not using nptl threads, a
4021 configuration we no longer support. */
4022 perror_with_name (("tkill"));
4023 }
4024 return ret;
4025 }
4026
4027 void
4028 linux_stop_lwp (struct lwp_info *lwp)
4029 {
4030 send_sigstop (lwp);
4031 }
4032
4033 static void
4034 send_sigstop (struct lwp_info *lwp)
4035 {
4036 int pid;
4037
4038 pid = lwpid_of (get_lwp_thread (lwp));
4039
4040 /* If we already have a pending stop signal for this process, don't
4041 send another. */
4042 if (lwp->stop_expected)
4043 {
4044 if (debug_threads)
4045 debug_printf ("Have pending sigstop for lwp %d\n", pid);
4046
4047 return;
4048 }
4049
4050 if (debug_threads)
4051 debug_printf ("Sending sigstop to lwp %d\n", pid);
4052
4053 lwp->stop_expected = 1;
4054 kill_lwp (pid, SIGSTOP);
4055 }
4056
4057 static int
4058 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
4059 {
4060 struct thread_info *thread = (struct thread_info *) entry;
4061 struct lwp_info *lwp = get_thread_lwp (thread);
4062
4063 /* Ignore EXCEPT. */
4064 if (lwp == except)
4065 return 0;
4066
4067 if (lwp->stopped)
4068 return 0;
4069
4070 send_sigstop (lwp);
4071 return 0;
4072 }
4073
4074 /* Increment the suspend count of an LWP, and stop it, if not stopped
4075 yet. */
4076 static int
4077 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
4078 void *except)
4079 {
4080 struct thread_info *thread = (struct thread_info *) entry;
4081 struct lwp_info *lwp = get_thread_lwp (thread);
4082
4083 /* Ignore EXCEPT. */
4084 if (lwp == except)
4085 return 0;
4086
4087 lwp_suspended_inc (lwp);
4088
4089 return send_sigstop_callback (entry, except);
4090 }
4091
4092 static void
4093 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4094 {
4095 /* Store the exit status for later. */
4096 lwp->status_pending_p = 1;
4097 lwp->status_pending = wstat;
4098
4099 /* Store in waitstatus as well, as there's nothing else to process
4100 for this event. */
4101 if (WIFEXITED (wstat))
4102 {
4103 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4104 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4105 }
4106 else if (WIFSIGNALED (wstat))
4107 {
4108 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4109 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4110 }
4111
4112 /* Prevent trying to stop it. */
4113 lwp->stopped = 1;
4114
4115 /* No further stops are expected from a dead lwp. */
4116 lwp->stop_expected = 0;
4117 }
4118
4119 /* Return true if LWP has exited already, and has a pending exit event
4120 to report to GDB. */
4121
4122 static int
4123 lwp_is_marked_dead (struct lwp_info *lwp)
4124 {
4125 return (lwp->status_pending_p
4126 && (WIFEXITED (lwp->status_pending)
4127 || WIFSIGNALED (lwp->status_pending)));
4128 }
4129
4130 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4131
4132 static void
4133 wait_for_sigstop (void)
4134 {
4135 struct thread_info *saved_thread;
4136 ptid_t saved_tid;
4137 int wstat;
4138 int ret;
4139
4140 saved_thread = current_thread;
4141 if (saved_thread != NULL)
4142 saved_tid = saved_thread->entry.id;
4143 else
4144 saved_tid = null_ptid; /* avoid bogus unused warning */
4145
4146 if (debug_threads)
4147 debug_printf ("wait_for_sigstop: pulling events\n");
4148
4149 /* Passing NULL_PTID as filter indicates we want all events to be
4150 left pending. Eventually this returns when there are no
4151 unwaited-for children left. */
4152 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4153 &wstat, __WALL);
4154 gdb_assert (ret == -1);
4155
4156 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4157 current_thread = saved_thread;
4158 else
4159 {
4160 if (debug_threads)
4161 debug_printf ("Previously current thread died.\n");
4162
4163 /* We can't change the current inferior behind GDB's back,
4164 otherwise, a subsequent command may apply to the wrong
4165 process. */
4166 current_thread = NULL;
4167 }
4168 }
4169
4170 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
4171 move it out, because we need to report the stop event to GDB. For
4172 example, if the user puts a breakpoint in the jump pad, it's
4173 because she wants to debug it. */
4174
4175 static int
4176 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
4177 {
4178 struct thread_info *thread = (struct thread_info *) entry;
4179 struct lwp_info *lwp = get_thread_lwp (thread);
4180
4181 if (lwp->suspended != 0)
4182 {
4183 internal_error (__FILE__, __LINE__,
4184 "LWP %ld is suspended, suspended=%d\n",
4185 lwpid_of (thread), lwp->suspended);
4186 }
4187 gdb_assert (lwp->stopped);
4188
4189 /* Allow debugging the jump pad, gdb_collect, etc.. */
4190 return (supports_fast_tracepoints ()
4191 && agent_loaded_p ()
4192 && (gdb_breakpoint_here (lwp->stop_pc)
4193 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4194 || thread->last_resume_kind == resume_step)
4195 && linux_fast_tracepoint_collecting (lwp, NULL));
4196 }
4197
4198 static void
4199 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
4200 {
4201 struct thread_info *thread = (struct thread_info *) entry;
4202 struct thread_info *saved_thread;
4203 struct lwp_info *lwp = get_thread_lwp (thread);
4204 int *wstat;
4205
4206 if (lwp->suspended != 0)
4207 {
4208 internal_error (__FILE__, __LINE__,
4209 "LWP %ld is suspended, suspended=%d\n",
4210 lwpid_of (thread), lwp->suspended);
4211 }
4212 gdb_assert (lwp->stopped);
4213
4214 /* For gdb_breakpoint_here. */
4215 saved_thread = current_thread;
4216 current_thread = thread;
4217
4218 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4219
4220 /* Allow debugging the jump pad, gdb_collect, etc. */
4221 if (!gdb_breakpoint_here (lwp->stop_pc)
4222 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4223 && thread->last_resume_kind != resume_step
4224 && maybe_move_out_of_jump_pad (lwp, wstat))
4225 {
4226 if (debug_threads)
4227 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4228 lwpid_of (thread));
4229
4230 if (wstat)
4231 {
4232 lwp->status_pending_p = 0;
4233 enqueue_one_deferred_signal (lwp, wstat);
4234
4235 if (debug_threads)
4236 debug_printf ("Signal %d for LWP %ld deferred "
4237 "(in jump pad)\n",
4238 WSTOPSIG (*wstat), lwpid_of (thread));
4239 }
4240
4241 linux_resume_one_lwp (lwp, 0, 0, NULL);
4242 }
4243 else
4244 lwp_suspended_inc (lwp);
4245
4246 current_thread = saved_thread;
4247 }
4248
4249 static int
4250 lwp_running (struct inferior_list_entry *entry, void *data)
4251 {
4252 struct thread_info *thread = (struct thread_info *) entry;
4253 struct lwp_info *lwp = get_thread_lwp (thread);
4254
4255 if (lwp_is_marked_dead (lwp))
4256 return 0;
4257 if (lwp->stopped)
4258 return 0;
4259 return 1;
4260 }
4261
4262 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4263 If SUSPEND, then also increase the suspend count of every LWP,
4264 except EXCEPT. */
4265
4266 static void
4267 stop_all_lwps (int suspend, struct lwp_info *except)
4268 {
4269 /* Should not be called recursively. */
4270 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4271
4272 if (debug_threads)
4273 {
4274 debug_enter ();
4275 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4276 suspend ? "stop-and-suspend" : "stop",
4277 except != NULL
4278 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4279 : "none");
4280 }
4281
4282 stopping_threads = (suspend
4283 ? STOPPING_AND_SUSPENDING_THREADS
4284 : STOPPING_THREADS);
4285
4286 if (suspend)
4287 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4288 else
4289 find_inferior (&all_threads, send_sigstop_callback, except);
4290 wait_for_sigstop ();
4291 stopping_threads = NOT_STOPPING_THREADS;
4292
4293 if (debug_threads)
4294 {
4295 debug_printf ("stop_all_lwps done, setting stopping_threads "
4296 "back to !stopping\n");
4297 debug_exit ();
4298 }
4299 }
4300
4301 /* Enqueue one signal in the chain of signals which need to be
4302 delivered to this process on next resume. */
4303
4304 static void
4305 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4306 {
4307 struct pending_signals *p_sig = XNEW (struct pending_signals);
4308
4309 p_sig->prev = lwp->pending_signals;
4310 p_sig->signal = signal;
4311 if (info == NULL)
4312 memset (&p_sig->info, 0, sizeof (siginfo_t));
4313 else
4314 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4315 lwp->pending_signals = p_sig;
4316 }
4317
4318 /* Install breakpoints for software single stepping. */
4319
4320 static void
4321 install_software_single_step_breakpoints (struct lwp_info *lwp)
4322 {
4323 struct thread_info *thread = get_lwp_thread (lwp);
4324 struct regcache *regcache = get_thread_regcache (thread, 1);
4325 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4326
4327 current_thread = thread;
4328 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4329
4330 for (CORE_ADDR pc : next_pcs)
4331 set_single_step_breakpoint (pc, current_ptid);
4332
4333 do_cleanups (old_chain);
4334 }
4335
4336 /* Single step via hardware or software single step.
4337 Return 1 if hardware single stepping, 0 if software single stepping
4338 or can't single step. */
4339
4340 static int
4341 single_step (struct lwp_info* lwp)
4342 {
4343 int step = 0;
4344
4345 if (can_hardware_single_step ())
4346 {
4347 step = 1;
4348 }
4349 else if (can_software_single_step ())
4350 {
4351 install_software_single_step_breakpoints (lwp);
4352 step = 0;
4353 }
4354 else
4355 {
4356 if (debug_threads)
4357 debug_printf ("stepping is not implemented on this target");
4358 }
4359
4360 return step;
4361 }
4362
4363 /* The signal can be delivered to the inferior if we are not trying to
4364 finish a fast tracepoint collect. Since signal can be delivered in
4365 the step-over, the program may go to signal handler and trap again
4366 after return from the signal handler. We can live with the spurious
4367 double traps. */
4368
4369 static int
4370 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4371 {
4372 return !lwp->collecting_fast_tracepoint;
4373 }
4374
4375 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4376 SIGNAL is nonzero, give it that signal. */
4377
4378 static void
4379 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4380 int step, int signal, siginfo_t *info)
4381 {
4382 struct thread_info *thread = get_lwp_thread (lwp);
4383 struct thread_info *saved_thread;
4384 int fast_tp_collecting;
4385 int ptrace_request;
4386 struct process_info *proc = get_thread_process (thread);
4387
4388 /* Note that target description may not be initialised
4389 (proc->tdesc == NULL) at this point because the program hasn't
4390 stopped at the first instruction yet. It means GDBserver skips
4391 the extra traps from the wrapper program (see option --wrapper).
4392 Code in this function that requires register access should be
4393 guarded by proc->tdesc == NULL or something else. */
4394
4395 if (lwp->stopped == 0)
4396 return;
4397
4398 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4399
4400 fast_tp_collecting = lwp->collecting_fast_tracepoint;
4401
4402 gdb_assert (!stabilizing_threads || fast_tp_collecting);
4403
4404 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4405 user used the "jump" command, or "set $pc = foo"). */
4406 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4407 {
4408 /* Collecting 'while-stepping' actions doesn't make sense
4409 anymore. */
4410 release_while_stepping_state_list (thread);
4411 }
4412
4413 /* If we have pending signals or status, and a new signal, enqueue the
4414 signal. Also enqueue the signal if it can't be delivered to the
4415 inferior right now. */
4416 if (signal != 0
4417 && (lwp->status_pending_p
4418 || lwp->pending_signals != NULL
4419 || !lwp_signal_can_be_delivered (lwp)))
4420 {
4421 enqueue_pending_signal (lwp, signal, info);
4422
4423 /* Postpone any pending signal. It was enqueued above. */
4424 signal = 0;
4425 }
4426
4427 if (lwp->status_pending_p)
4428 {
4429 if (debug_threads)
4430 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4431 " has pending status\n",
4432 lwpid_of (thread), step ? "step" : "continue",
4433 lwp->stop_expected ? "expected" : "not expected");
4434 return;
4435 }
4436
4437 saved_thread = current_thread;
4438 current_thread = thread;
4439
4440 /* This bit needs some thinking about. If we get a signal that
4441 we must report while a single-step reinsert is still pending,
4442 we often end up resuming the thread. It might be better to
4443 (ew) allow a stack of pending events; then we could be sure that
4444 the reinsert happened right away and not lose any signals.
4445
4446 Making this stack would also shrink the window in which breakpoints are
4447 uninserted (see comment in linux_wait_for_lwp) but not enough for
4448 complete correctness, so it won't solve that problem. It may be
4449 worthwhile just to solve this one, however. */
4450 if (lwp->bp_reinsert != 0)
4451 {
4452 if (debug_threads)
4453 debug_printf (" pending reinsert at 0x%s\n",
4454 paddress (lwp->bp_reinsert));
4455
4456 if (can_hardware_single_step ())
4457 {
4458 if (fast_tp_collecting == 0)
4459 {
4460 if (step == 0)
4461 warning ("BAD - reinserting but not stepping.");
4462 if (lwp->suspended)
4463 warning ("BAD - reinserting and suspended(%d).",
4464 lwp->suspended);
4465 }
4466 }
4467
4468 step = maybe_hw_step (thread);
4469 }
4470
4471 if (fast_tp_collecting == 1)
4472 {
4473 if (debug_threads)
4474 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4475 " (exit-jump-pad-bkpt)\n",
4476 lwpid_of (thread));
4477 }
4478 else if (fast_tp_collecting == 2)
4479 {
4480 if (debug_threads)
4481 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4482 " single-stepping\n",
4483 lwpid_of (thread));
4484
4485 if (can_hardware_single_step ())
4486 step = 1;
4487 else
4488 {
4489 internal_error (__FILE__, __LINE__,
4490 "moving out of jump pad single-stepping"
4491 " not implemented on this target");
4492 }
4493 }
4494
4495 /* If we have while-stepping actions in this thread set it stepping.
4496 If we have a signal to deliver, it may or may not be set to
4497 SIG_IGN, we don't know. Assume so, and allow collecting
4498 while-stepping into a signal handler. A possible smart thing to
4499 do would be to set an internal breakpoint at the signal return
4500 address, continue, and carry on catching this while-stepping
4501 action only when that breakpoint is hit. A future
4502 enhancement. */
4503 if (thread->while_stepping != NULL)
4504 {
4505 if (debug_threads)
4506 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4507 lwpid_of (thread));
4508
4509 step = single_step (lwp);
4510 }
4511
4512 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4513 {
4514 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4515
4516 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4517
4518 if (debug_threads)
4519 {
4520 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4521 (long) lwp->stop_pc);
4522 }
4523 }
4524
4525 /* If we have pending signals, consume one if it can be delivered to
4526 the inferior. */
4527 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4528 {
4529 struct pending_signals **p_sig;
4530
4531 p_sig = &lwp->pending_signals;
4532 while ((*p_sig)->prev != NULL)
4533 p_sig = &(*p_sig)->prev;
4534
4535 signal = (*p_sig)->signal;
4536 if ((*p_sig)->info.si_signo != 0)
4537 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4538 &(*p_sig)->info);
4539
4540 free (*p_sig);
4541 *p_sig = NULL;
4542 }
4543
4544 if (debug_threads)
4545 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4546 lwpid_of (thread), step ? "step" : "continue", signal,
4547 lwp->stop_expected ? "expected" : "not expected");
4548
4549 if (the_low_target.prepare_to_resume != NULL)
4550 the_low_target.prepare_to_resume (lwp);
4551
4552 regcache_invalidate_thread (thread);
4553 errno = 0;
4554 lwp->stepping = step;
4555 if (step)
4556 ptrace_request = PTRACE_SINGLESTEP;
4557 else if (gdb_catching_syscalls_p (lwp))
4558 ptrace_request = PTRACE_SYSCALL;
4559 else
4560 ptrace_request = PTRACE_CONT;
4561 ptrace (ptrace_request,
4562 lwpid_of (thread),
4563 (PTRACE_TYPE_ARG3) 0,
4564 /* Coerce to a uintptr_t first to avoid potential gcc warning
4565 of coercing an 8 byte integer to a 4 byte pointer. */
4566 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4567
4568 current_thread = saved_thread;
4569 if (errno)
4570 perror_with_name ("resuming thread");
4571
4572 /* Successfully resumed. Clear state that no longer makes sense,
4573 and mark the LWP as running. Must not do this before resuming
4574 otherwise if that fails other code will be confused. E.g., we'd
4575 later try to stop the LWP and hang forever waiting for a stop
4576 status. Note that we must not throw after this is cleared,
4577 otherwise handle_zombie_lwp_error would get confused. */
4578 lwp->stopped = 0;
4579 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4580 }
4581
4582 /* Called when we try to resume a stopped LWP and that errors out. If
4583 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4584 or about to become), discard the error, clear any pending status
4585 the LWP may have, and return true (we'll collect the exit status
4586 soon enough). Otherwise, return false. */
4587
4588 static int
4589 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4590 {
4591 struct thread_info *thread = get_lwp_thread (lp);
4592
4593 /* If we get an error after resuming the LWP successfully, we'd
4594 confuse !T state for the LWP being gone. */
4595 gdb_assert (lp->stopped);
4596
4597 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4598 because even if ptrace failed with ESRCH, the tracee may be "not
4599 yet fully dead", but already refusing ptrace requests. In that
4600 case the tracee has 'R (Running)' state for a little bit
4601 (observed in Linux 3.18). See also the note on ESRCH in the
4602 ptrace(2) man page. Instead, check whether the LWP has any state
4603 other than ptrace-stopped. */
4604
4605 /* Don't assume anything if /proc/PID/status can't be read. */
4606 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4607 {
4608 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4609 lp->status_pending_p = 0;
4610 return 1;
4611 }
4612 return 0;
4613 }
4614
4615 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4616 disappears while we try to resume it. */
4617
4618 static void
4619 linux_resume_one_lwp (struct lwp_info *lwp,
4620 int step, int signal, siginfo_t *info)
4621 {
4622 TRY
4623 {
4624 linux_resume_one_lwp_throw (lwp, step, signal, info);
4625 }
4626 CATCH (ex, RETURN_MASK_ERROR)
4627 {
4628 if (!check_ptrace_stopped_lwp_gone (lwp))
4629 throw_exception (ex);
4630 }
4631 END_CATCH
4632 }
4633
4634 struct thread_resume_array
4635 {
4636 struct thread_resume *resume;
4637 size_t n;
4638 };
4639
4640 /* This function is called once per thread via find_inferior.
4641 ARG is a pointer to a thread_resume_array struct.
4642 We look up the thread specified by ENTRY in ARG, and mark the thread
4643 with a pointer to the appropriate resume request.
4644
4645 This algorithm is O(threads * resume elements), but resume elements
4646 is small (and will remain small at least until GDB supports thread
4647 suspension). */
4648
4649 static int
4650 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4651 {
4652 struct thread_info *thread = (struct thread_info *) entry;
4653 struct lwp_info *lwp = get_thread_lwp (thread);
4654 int ndx;
4655 struct thread_resume_array *r;
4656
4657 r = (struct thread_resume_array *) arg;
4658
4659 for (ndx = 0; ndx < r->n; ndx++)
4660 {
4661 ptid_t ptid = r->resume[ndx].thread;
4662 if (ptid_equal (ptid, minus_one_ptid)
4663 || ptid_equal (ptid, entry->id)
4664 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4665 of PID'. */
4666 || (ptid_get_pid (ptid) == pid_of (thread)
4667 && (ptid_is_pid (ptid)
4668 || ptid_get_lwp (ptid) == -1)))
4669 {
4670 if (r->resume[ndx].kind == resume_stop
4671 && thread->last_resume_kind == resume_stop)
4672 {
4673 if (debug_threads)
4674 debug_printf ("already %s LWP %ld at GDB's request\n",
4675 (thread->last_status.kind
4676 == TARGET_WAITKIND_STOPPED)
4677 ? "stopped"
4678 : "stopping",
4679 lwpid_of (thread));
4680
4681 continue;
4682 }
4683
4684 /* Ignore (wildcard) resume requests for already-resumed
4685 threads. */
4686 if (r->resume[ndx].kind != resume_stop
4687 && thread->last_resume_kind != resume_stop)
4688 {
4689 if (debug_threads)
4690 debug_printf ("already %s LWP %ld at GDB's request\n",
4691 (thread->last_resume_kind
4692 == resume_step)
4693 ? "stepping"
4694 : "continuing",
4695 lwpid_of (thread));
4696 continue;
4697 }
4698
4699 /* Don't let wildcard resumes resume fork children that GDB
4700 does not yet know are new fork children. */
4701 if (lwp->fork_relative != NULL)
4702 {
4703 struct inferior_list_entry *inf, *tmp;
4704 struct lwp_info *rel = lwp->fork_relative;
4705
4706 if (rel->status_pending_p
4707 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4708 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4709 {
4710 if (debug_threads)
4711 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4712 lwpid_of (thread));
4713 continue;
4714 }
4715 }
4716
4717 /* If the thread has a pending event that has already been
4718 reported to GDBserver core, but GDB has not pulled the
4719 event out of the vStopped queue yet, likewise, ignore the
4720 (wildcard) resume request. */
4721 if (in_queued_stop_replies (entry->id))
4722 {
4723 if (debug_threads)
4724 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4725 lwpid_of (thread));
4726 continue;
4727 }
4728
4729 lwp->resume = &r->resume[ndx];
4730 thread->last_resume_kind = lwp->resume->kind;
4731
4732 lwp->step_range_start = lwp->resume->step_range_start;
4733 lwp->step_range_end = lwp->resume->step_range_end;
4734
4735 /* If we had a deferred signal to report, dequeue one now.
4736 This can happen if LWP gets more than one signal while
4737 trying to get out of a jump pad. */
4738 if (lwp->stopped
4739 && !lwp->status_pending_p
4740 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4741 {
4742 lwp->status_pending_p = 1;
4743
4744 if (debug_threads)
4745 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4746 "leaving status pending.\n",
4747 WSTOPSIG (lwp->status_pending),
4748 lwpid_of (thread));
4749 }
4750
4751 return 0;
4752 }
4753 }
4754
4755 /* No resume action for this thread. */
4756 lwp->resume = NULL;
4757
4758 return 0;
4759 }
4760
4761 /* find_inferior callback for linux_resume.
4762 Set *FLAG_P if this lwp has an interesting status pending. */
4763
4764 static int
4765 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4766 {
4767 struct thread_info *thread = (struct thread_info *) entry;
4768 struct lwp_info *lwp = get_thread_lwp (thread);
4769
4770 /* LWPs which will not be resumed are not interesting, because
4771 we might not wait for them next time through linux_wait. */
4772 if (lwp->resume == NULL)
4773 return 0;
4774
4775 if (thread_still_has_status_pending_p (thread))
4776 * (int *) flag_p = 1;
4777
4778 return 0;
4779 }
4780
4781 /* Return 1 if this lwp that GDB wants running is stopped at an
4782 internal breakpoint that we need to step over. It assumes that any
4783 required STOP_PC adjustment has already been propagated to the
4784 inferior's regcache. */
4785
4786 static int
4787 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4788 {
4789 struct thread_info *thread = (struct thread_info *) entry;
4790 struct lwp_info *lwp = get_thread_lwp (thread);
4791 struct thread_info *saved_thread;
4792 CORE_ADDR pc;
4793 struct process_info *proc = get_thread_process (thread);
4794
4795 /* GDBserver is skipping the extra traps from the wrapper program,
4796 don't have to do step over. */
4797 if (proc->tdesc == NULL)
4798 return 0;
4799
4800 /* LWPs which will not be resumed are not interesting, because we
4801 might not wait for them next time through linux_wait. */
4802
4803 if (!lwp->stopped)
4804 {
4805 if (debug_threads)
4806 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4807 lwpid_of (thread));
4808 return 0;
4809 }
4810
4811 if (thread->last_resume_kind == resume_stop)
4812 {
4813 if (debug_threads)
4814 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4815 " stopped\n",
4816 lwpid_of (thread));
4817 return 0;
4818 }
4819
4820 gdb_assert (lwp->suspended >= 0);
4821
4822 if (lwp->suspended)
4823 {
4824 if (debug_threads)
4825 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4826 lwpid_of (thread));
4827 return 0;
4828 }
4829
4830 if (lwp->status_pending_p)
4831 {
4832 if (debug_threads)
4833 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4834 " status.\n",
4835 lwpid_of (thread));
4836 return 0;
4837 }
4838
4839 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4840 or we have. */
4841 pc = get_pc (lwp);
4842
4843 /* If the PC has changed since we stopped, then don't do anything,
4844 and let the breakpoint/tracepoint be hit. This happens if, for
4845 instance, GDB handled the decr_pc_after_break subtraction itself,
4846 GDB is OOL stepping this thread, or the user has issued a "jump"
4847 command, or poked thread's registers herself. */
4848 if (pc != lwp->stop_pc)
4849 {
4850 if (debug_threads)
4851 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4852 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4853 lwpid_of (thread),
4854 paddress (lwp->stop_pc), paddress (pc));
4855 return 0;
4856 }
4857
4858 /* On software single step target, resume the inferior with signal
4859 rather than stepping over. */
4860 if (can_software_single_step ()
4861 && lwp->pending_signals != NULL
4862 && lwp_signal_can_be_delivered (lwp))
4863 {
4864 if (debug_threads)
4865 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4866 " signals.\n",
4867 lwpid_of (thread));
4868
4869 return 0;
4870 }
4871
4872 saved_thread = current_thread;
4873 current_thread = thread;
4874
4875 /* We can only step over breakpoints we know about. */
4876 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4877 {
4878 /* Don't step over a breakpoint that GDB expects to hit
4879 though. If the condition is being evaluated on the target's side
4880 and it evaluate to false, step over this breakpoint as well. */
4881 if (gdb_breakpoint_here (pc)
4882 && gdb_condition_true_at_breakpoint (pc)
4883 && gdb_no_commands_at_breakpoint (pc))
4884 {
4885 if (debug_threads)
4886 debug_printf ("Need step over [LWP %ld]? yes, but found"
4887 " GDB breakpoint at 0x%s; skipping step over\n",
4888 lwpid_of (thread), paddress (pc));
4889
4890 current_thread = saved_thread;
4891 return 0;
4892 }
4893 else
4894 {
4895 if (debug_threads)
4896 debug_printf ("Need step over [LWP %ld]? yes, "
4897 "found breakpoint at 0x%s\n",
4898 lwpid_of (thread), paddress (pc));
4899
4900 /* We've found an lwp that needs stepping over --- return 1 so
4901 that find_inferior stops looking. */
4902 current_thread = saved_thread;
4903
4904 return 1;
4905 }
4906 }
4907
4908 current_thread = saved_thread;
4909
4910 if (debug_threads)
4911 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4912 " at 0x%s\n",
4913 lwpid_of (thread), paddress (pc));
4914
4915 return 0;
4916 }
4917
4918 /* Start a step-over operation on LWP. When LWP stopped at a
4919 breakpoint, to make progress, we need to remove the breakpoint out
4920 of the way. If we let other threads run while we do that, they may
4921 pass by the breakpoint location and miss hitting it. To avoid
4922 that, a step-over momentarily stops all threads while LWP is
4923 single-stepped by either hardware or software while the breakpoint
4924 is temporarily uninserted from the inferior. When the single-step
4925 finishes, we reinsert the breakpoint, and let all threads that are
4926 supposed to be running, run again. */
4927
4928 static int
4929 start_step_over (struct lwp_info *lwp)
4930 {
4931 struct thread_info *thread = get_lwp_thread (lwp);
4932 struct thread_info *saved_thread;
4933 CORE_ADDR pc;
4934 int step;
4935
4936 if (debug_threads)
4937 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4938 lwpid_of (thread));
4939
4940 stop_all_lwps (1, lwp);
4941
4942 if (lwp->suspended != 0)
4943 {
4944 internal_error (__FILE__, __LINE__,
4945 "LWP %ld suspended=%d\n", lwpid_of (thread),
4946 lwp->suspended);
4947 }
4948
4949 if (debug_threads)
4950 debug_printf ("Done stopping all threads for step-over.\n");
4951
4952 /* Note, we should always reach here with an already adjusted PC,
4953 either by GDB (if we're resuming due to GDB's request), or by our
4954 caller, if we just finished handling an internal breakpoint GDB
4955 shouldn't care about. */
4956 pc = get_pc (lwp);
4957
4958 saved_thread = current_thread;
4959 current_thread = thread;
4960
4961 lwp->bp_reinsert = pc;
4962 uninsert_breakpoints_at (pc);
4963 uninsert_fast_tracepoint_jumps_at (pc);
4964
4965 step = single_step (lwp);
4966
4967 current_thread = saved_thread;
4968
4969 linux_resume_one_lwp (lwp, step, 0, NULL);
4970
4971 /* Require next event from this LWP. */
4972 step_over_bkpt = thread->entry.id;
4973 return 1;
4974 }
4975
4976 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4977 start_step_over, if still there, and delete any single-step
4978 breakpoints we've set, on non hardware single-step targets. */
4979
4980 static int
4981 finish_step_over (struct lwp_info *lwp)
4982 {
4983 if (lwp->bp_reinsert != 0)
4984 {
4985 struct thread_info *saved_thread = current_thread;
4986
4987 if (debug_threads)
4988 debug_printf ("Finished step over.\n");
4989
4990 current_thread = get_lwp_thread (lwp);
4991
4992 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4993 may be no breakpoint to reinsert there by now. */
4994 reinsert_breakpoints_at (lwp->bp_reinsert);
4995 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4996
4997 lwp->bp_reinsert = 0;
4998
4999 /* Delete any single-step breakpoints. No longer needed. We
5000 don't have to worry about other threads hitting this trap,
5001 and later not being able to explain it, because we were
5002 stepping over a breakpoint, and we hold all threads but
5003 LWP stopped while doing that. */
5004 if (!can_hardware_single_step ())
5005 {
5006 gdb_assert (has_single_step_breakpoints (current_thread));
5007 delete_single_step_breakpoints (current_thread);
5008 }
5009
5010 step_over_bkpt = null_ptid;
5011 current_thread = saved_thread;
5012 return 1;
5013 }
5014 else
5015 return 0;
5016 }
5017
5018 /* If there's a step over in progress, wait until all threads stop
5019 (that is, until the stepping thread finishes its step), and
5020 unsuspend all lwps. The stepping thread ends with its status
5021 pending, which is processed later when we get back to processing
5022 events. */
5023
5024 static void
5025 complete_ongoing_step_over (void)
5026 {
5027 if (!ptid_equal (step_over_bkpt, null_ptid))
5028 {
5029 struct lwp_info *lwp;
5030 int wstat;
5031 int ret;
5032
5033 if (debug_threads)
5034 debug_printf ("detach: step over in progress, finish it first\n");
5035
5036 /* Passing NULL_PTID as filter indicates we want all events to
5037 be left pending. Eventually this returns when there are no
5038 unwaited-for children left. */
5039 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
5040 &wstat, __WALL);
5041 gdb_assert (ret == -1);
5042
5043 lwp = find_lwp_pid (step_over_bkpt);
5044 if (lwp != NULL)
5045 finish_step_over (lwp);
5046 step_over_bkpt = null_ptid;
5047 unsuspend_all_lwps (lwp);
5048 }
5049 }
5050
5051 /* This function is called once per thread. We check the thread's resume
5052 request, which will tell us whether to resume, step, or leave the thread
5053 stopped; and what signal, if any, it should be sent.
5054
5055 For threads which we aren't explicitly told otherwise, we preserve
5056 the stepping flag; this is used for stepping over gdbserver-placed
5057 breakpoints.
5058
5059 If pending_flags was set in any thread, we queue any needed
5060 signals, since we won't actually resume. We already have a pending
5061 event to report, so we don't need to preserve any step requests;
5062 they should be re-issued if necessary. */
5063
5064 static int
5065 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
5066 {
5067 struct thread_info *thread = (struct thread_info *) entry;
5068 struct lwp_info *lwp = get_thread_lwp (thread);
5069 int leave_all_stopped = * (int *) arg;
5070 int leave_pending;
5071
5072 if (lwp->resume == NULL)
5073 return 0;
5074
5075 if (lwp->resume->kind == resume_stop)
5076 {
5077 if (debug_threads)
5078 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
5079
5080 if (!lwp->stopped)
5081 {
5082 if (debug_threads)
5083 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5084
5085 /* Stop the thread, and wait for the event asynchronously,
5086 through the event loop. */
5087 send_sigstop (lwp);
5088 }
5089 else
5090 {
5091 if (debug_threads)
5092 debug_printf ("already stopped LWP %ld\n",
5093 lwpid_of (thread));
5094
5095 /* The LWP may have been stopped in an internal event that
5096 was not meant to be notified back to GDB (e.g., gdbserver
5097 breakpoint), so we should be reporting a stop event in
5098 this case too. */
5099
5100 /* If the thread already has a pending SIGSTOP, this is a
5101 no-op. Otherwise, something later will presumably resume
5102 the thread and this will cause it to cancel any pending
5103 operation, due to last_resume_kind == resume_stop. If
5104 the thread already has a pending status to report, we
5105 will still report it the next time we wait - see
5106 status_pending_p_callback. */
5107
5108 /* If we already have a pending signal to report, then
5109 there's no need to queue a SIGSTOP, as this means we're
5110 midway through moving the LWP out of the jumppad, and we
5111 will report the pending signal as soon as that is
5112 finished. */
5113 if (lwp->pending_signals_to_report == NULL)
5114 send_sigstop (lwp);
5115 }
5116
5117 /* For stop requests, we're done. */
5118 lwp->resume = NULL;
5119 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5120 return 0;
5121 }
5122
5123 /* If this thread which is about to be resumed has a pending status,
5124 then don't resume it - we can just report the pending status.
5125 Likewise if it is suspended, because e.g., another thread is
5126 stepping past a breakpoint. Make sure to queue any signals that
5127 would otherwise be sent. In all-stop mode, we do this decision
5128 based on if *any* thread has a pending status. If there's a
5129 thread that needs the step-over-breakpoint dance, then don't
5130 resume any other thread but that particular one. */
5131 leave_pending = (lwp->suspended
5132 || lwp->status_pending_p
5133 || leave_all_stopped);
5134
5135 /* If we have a new signal, enqueue the signal. */
5136 if (lwp->resume->sig != 0)
5137 {
5138 siginfo_t info, *info_p;
5139
5140 /* If this is the same signal we were previously stopped by,
5141 make sure to queue its siginfo. */
5142 if (WIFSTOPPED (lwp->last_status)
5143 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5144 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5145 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5146 info_p = &info;
5147 else
5148 info_p = NULL;
5149
5150 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5151 }
5152
5153 if (!leave_pending)
5154 {
5155 if (debug_threads)
5156 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5157
5158 proceed_one_lwp (entry, NULL);
5159 }
5160 else
5161 {
5162 if (debug_threads)
5163 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5164 }
5165
5166 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5167 lwp->resume = NULL;
5168 return 0;
5169 }
5170
5171 static void
5172 linux_resume (struct thread_resume *resume_info, size_t n)
5173 {
5174 struct thread_resume_array array = { resume_info, n };
5175 struct thread_info *need_step_over = NULL;
5176 int any_pending;
5177 int leave_all_stopped;
5178
5179 if (debug_threads)
5180 {
5181 debug_enter ();
5182 debug_printf ("linux_resume:\n");
5183 }
5184
5185 find_inferior (&all_threads, linux_set_resume_request, &array);
5186
5187 /* If there is a thread which would otherwise be resumed, which has
5188 a pending status, then don't resume any threads - we can just
5189 report the pending status. Make sure to queue any signals that
5190 would otherwise be sent. In non-stop mode, we'll apply this
5191 logic to each thread individually. We consume all pending events
5192 before considering to start a step-over (in all-stop). */
5193 any_pending = 0;
5194 if (!non_stop)
5195 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
5196
5197 /* If there is a thread which would otherwise be resumed, which is
5198 stopped at a breakpoint that needs stepping over, then don't
5199 resume any threads - have it step over the breakpoint with all
5200 other threads stopped, then resume all threads again. Make sure
5201 to queue any signals that would otherwise be delivered or
5202 queued. */
5203 if (!any_pending && supports_breakpoints ())
5204 need_step_over
5205 = (struct thread_info *) find_inferior (&all_threads,
5206 need_step_over_p, NULL);
5207
5208 leave_all_stopped = (need_step_over != NULL || any_pending);
5209
5210 if (debug_threads)
5211 {
5212 if (need_step_over != NULL)
5213 debug_printf ("Not resuming all, need step over\n");
5214 else if (any_pending)
5215 debug_printf ("Not resuming, all-stop and found "
5216 "an LWP with pending status\n");
5217 else
5218 debug_printf ("Resuming, no pending status or step over needed\n");
5219 }
5220
5221 /* Even if we're leaving threads stopped, queue all signals we'd
5222 otherwise deliver. */
5223 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5224
5225 if (need_step_over)
5226 start_step_over (get_thread_lwp (need_step_over));
5227
5228 if (debug_threads)
5229 {
5230 debug_printf ("linux_resume done\n");
5231 debug_exit ();
5232 }
5233
5234 /* We may have events that were pending that can/should be sent to
5235 the client now. Trigger a linux_wait call. */
5236 if (target_is_async_p ())
5237 async_file_mark ();
5238 }
5239
5240 /* This function is called once per thread. We check the thread's
5241 last resume request, which will tell us whether to resume, step, or
5242 leave the thread stopped. Any signal the client requested to be
5243 delivered has already been enqueued at this point.
5244
5245 If any thread that GDB wants running is stopped at an internal
5246 breakpoint that needs stepping over, we start a step-over operation
5247 on that particular thread, and leave all others stopped. */
5248
5249 static int
5250 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5251 {
5252 struct thread_info *thread = (struct thread_info *) entry;
5253 struct lwp_info *lwp = get_thread_lwp (thread);
5254 int step;
5255
5256 if (lwp == except)
5257 return 0;
5258
5259 if (debug_threads)
5260 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5261
5262 if (!lwp->stopped)
5263 {
5264 if (debug_threads)
5265 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5266 return 0;
5267 }
5268
5269 if (thread->last_resume_kind == resume_stop
5270 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5271 {
5272 if (debug_threads)
5273 debug_printf (" client wants LWP to remain %ld stopped\n",
5274 lwpid_of (thread));
5275 return 0;
5276 }
5277
5278 if (lwp->status_pending_p)
5279 {
5280 if (debug_threads)
5281 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5282 lwpid_of (thread));
5283 return 0;
5284 }
5285
5286 gdb_assert (lwp->suspended >= 0);
5287
5288 if (lwp->suspended)
5289 {
5290 if (debug_threads)
5291 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5292 return 0;
5293 }
5294
5295 if (thread->last_resume_kind == resume_stop
5296 && lwp->pending_signals_to_report == NULL
5297 && lwp->collecting_fast_tracepoint == 0)
5298 {
5299 /* We haven't reported this LWP as stopped yet (otherwise, the
5300 last_status.kind check above would catch it, and we wouldn't
5301 reach here. This LWP may have been momentarily paused by a
5302 stop_all_lwps call while handling for example, another LWP's
5303 step-over. In that case, the pending expected SIGSTOP signal
5304 that was queued at vCont;t handling time will have already
5305 been consumed by wait_for_sigstop, and so we need to requeue
5306 another one here. Note that if the LWP already has a SIGSTOP
5307 pending, this is a no-op. */
5308
5309 if (debug_threads)
5310 debug_printf ("Client wants LWP %ld to stop. "
5311 "Making sure it has a SIGSTOP pending\n",
5312 lwpid_of (thread));
5313
5314 send_sigstop (lwp);
5315 }
5316
5317 if (thread->last_resume_kind == resume_step)
5318 {
5319 if (debug_threads)
5320 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5321 lwpid_of (thread));
5322
5323 /* If resume_step is requested by GDB, install single-step
5324 breakpoints when the thread is about to be actually resumed if
5325 the single-step breakpoints weren't removed. */
5326 if (can_software_single_step ()
5327 && !has_single_step_breakpoints (thread))
5328 install_software_single_step_breakpoints (lwp);
5329
5330 step = maybe_hw_step (thread);
5331 }
5332 else if (lwp->bp_reinsert != 0)
5333 {
5334 if (debug_threads)
5335 debug_printf (" stepping LWP %ld, reinsert set\n",
5336 lwpid_of (thread));
5337
5338 step = maybe_hw_step (thread);
5339 }
5340 else
5341 step = 0;
5342
5343 linux_resume_one_lwp (lwp, step, 0, NULL);
5344 return 0;
5345 }
5346
5347 static int
5348 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5349 {
5350 struct thread_info *thread = (struct thread_info *) entry;
5351 struct lwp_info *lwp = get_thread_lwp (thread);
5352
5353 if (lwp == except)
5354 return 0;
5355
5356 lwp_suspended_decr (lwp);
5357
5358 return proceed_one_lwp (entry, except);
5359 }
5360
5361 /* When we finish a step-over, set threads running again. If there's
5362 another thread that may need a step-over, now's the time to start
5363 it. Eventually, we'll move all threads past their breakpoints. */
5364
5365 static void
5366 proceed_all_lwps (void)
5367 {
5368 struct thread_info *need_step_over;
5369
5370 /* If there is a thread which would otherwise be resumed, which is
5371 stopped at a breakpoint that needs stepping over, then don't
5372 resume any threads - have it step over the breakpoint with all
5373 other threads stopped, then resume all threads again. */
5374
5375 if (supports_breakpoints ())
5376 {
5377 need_step_over
5378 = (struct thread_info *) find_inferior (&all_threads,
5379 need_step_over_p, NULL);
5380
5381 if (need_step_over != NULL)
5382 {
5383 if (debug_threads)
5384 debug_printf ("proceed_all_lwps: found "
5385 "thread %ld needing a step-over\n",
5386 lwpid_of (need_step_over));
5387
5388 start_step_over (get_thread_lwp (need_step_over));
5389 return;
5390 }
5391 }
5392
5393 if (debug_threads)
5394 debug_printf ("Proceeding, no step-over needed\n");
5395
5396 find_inferior (&all_threads, proceed_one_lwp, NULL);
5397 }
5398
5399 /* Stopped LWPs that the client wanted to be running, that don't have
5400 pending statuses, are set to run again, except for EXCEPT, if not
5401 NULL. This undoes a stop_all_lwps call. */
5402
5403 static void
5404 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5405 {
5406 if (debug_threads)
5407 {
5408 debug_enter ();
5409 if (except)
5410 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5411 lwpid_of (get_lwp_thread (except)));
5412 else
5413 debug_printf ("unstopping all lwps\n");
5414 }
5415
5416 if (unsuspend)
5417 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5418 else
5419 find_inferior (&all_threads, proceed_one_lwp, except);
5420
5421 if (debug_threads)
5422 {
5423 debug_printf ("unstop_all_lwps done\n");
5424 debug_exit ();
5425 }
5426 }
5427
5428
5429 #ifdef HAVE_LINUX_REGSETS
5430
5431 #define use_linux_regsets 1
5432
5433 /* Returns true if REGSET has been disabled. */
5434
5435 static int
5436 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5437 {
5438 return (info->disabled_regsets != NULL
5439 && info->disabled_regsets[regset - info->regsets]);
5440 }
5441
5442 /* Disable REGSET. */
5443
5444 static void
5445 disable_regset (struct regsets_info *info, struct regset_info *regset)
5446 {
5447 int dr_offset;
5448
5449 dr_offset = regset - info->regsets;
5450 if (info->disabled_regsets == NULL)
5451 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5452 info->disabled_regsets[dr_offset] = 1;
5453 }
5454
5455 static int
5456 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5457 struct regcache *regcache)
5458 {
5459 struct regset_info *regset;
5460 int saw_general_regs = 0;
5461 int pid;
5462 struct iovec iov;
5463
5464 pid = lwpid_of (current_thread);
5465 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5466 {
5467 void *buf, *data;
5468 int nt_type, res;
5469
5470 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5471 continue;
5472
5473 buf = xmalloc (regset->size);
5474
5475 nt_type = regset->nt_type;
5476 if (nt_type)
5477 {
5478 iov.iov_base = buf;
5479 iov.iov_len = regset->size;
5480 data = (void *) &iov;
5481 }
5482 else
5483 data = buf;
5484
5485 #ifndef __sparc__
5486 res = ptrace (regset->get_request, pid,
5487 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5488 #else
5489 res = ptrace (regset->get_request, pid, data, nt_type);
5490 #endif
5491 if (res < 0)
5492 {
5493 if (errno == EIO)
5494 {
5495 /* If we get EIO on a regset, do not try it again for
5496 this process mode. */
5497 disable_regset (regsets_info, regset);
5498 }
5499 else if (errno == ENODATA)
5500 {
5501 /* ENODATA may be returned if the regset is currently
5502 not "active". This can happen in normal operation,
5503 so suppress the warning in this case. */
5504 }
5505 else if (errno == ESRCH)
5506 {
5507 /* At this point, ESRCH should mean the process is
5508 already gone, in which case we simply ignore attempts
5509 to read its registers. */
5510 }
5511 else
5512 {
5513 char s[256];
5514 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5515 pid);
5516 perror (s);
5517 }
5518 }
5519 else
5520 {
5521 if (regset->type == GENERAL_REGS)
5522 saw_general_regs = 1;
5523 regset->store_function (regcache, buf);
5524 }
5525 free (buf);
5526 }
5527 if (saw_general_regs)
5528 return 0;
5529 else
5530 return 1;
5531 }
5532
5533 static int
5534 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5535 struct regcache *regcache)
5536 {
5537 struct regset_info *regset;
5538 int saw_general_regs = 0;
5539 int pid;
5540 struct iovec iov;
5541
5542 pid = lwpid_of (current_thread);
5543 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5544 {
5545 void *buf, *data;
5546 int nt_type, res;
5547
5548 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5549 || regset->fill_function == NULL)
5550 continue;
5551
5552 buf = xmalloc (regset->size);
5553
5554 /* First fill the buffer with the current register set contents,
5555 in case there are any items in the kernel's regset that are
5556 not in gdbserver's regcache. */
5557
5558 nt_type = regset->nt_type;
5559 if (nt_type)
5560 {
5561 iov.iov_base = buf;
5562 iov.iov_len = regset->size;
5563 data = (void *) &iov;
5564 }
5565 else
5566 data = buf;
5567
5568 #ifndef __sparc__
5569 res = ptrace (regset->get_request, pid,
5570 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5571 #else
5572 res = ptrace (regset->get_request, pid, data, nt_type);
5573 #endif
5574
5575 if (res == 0)
5576 {
5577 /* Then overlay our cached registers on that. */
5578 regset->fill_function (regcache, buf);
5579
5580 /* Only now do we write the register set. */
5581 #ifndef __sparc__
5582 res = ptrace (regset->set_request, pid,
5583 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5584 #else
5585 res = ptrace (regset->set_request, pid, data, nt_type);
5586 #endif
5587 }
5588
5589 if (res < 0)
5590 {
5591 if (errno == EIO)
5592 {
5593 /* If we get EIO on a regset, do not try it again for
5594 this process mode. */
5595 disable_regset (regsets_info, regset);
5596 }
5597 else if (errno == ESRCH)
5598 {
5599 /* At this point, ESRCH should mean the process is
5600 already gone, in which case we simply ignore attempts
5601 to change its registers. See also the related
5602 comment in linux_resume_one_lwp. */
5603 free (buf);
5604 return 0;
5605 }
5606 else
5607 {
5608 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5609 }
5610 }
5611 else if (regset->type == GENERAL_REGS)
5612 saw_general_regs = 1;
5613 free (buf);
5614 }
5615 if (saw_general_regs)
5616 return 0;
5617 else
5618 return 1;
5619 }
5620
5621 #else /* !HAVE_LINUX_REGSETS */
5622
5623 #define use_linux_regsets 0
5624 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5625 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5626
5627 #endif
5628
5629 /* Return 1 if register REGNO is supported by one of the regset ptrace
5630 calls or 0 if it has to be transferred individually. */
5631
5632 static int
5633 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5634 {
5635 unsigned char mask = 1 << (regno % 8);
5636 size_t index = regno / 8;
5637
5638 return (use_linux_regsets
5639 && (regs_info->regset_bitmap == NULL
5640 || (regs_info->regset_bitmap[index] & mask) != 0));
5641 }
5642
5643 #ifdef HAVE_LINUX_USRREGS
5644
5645 static int
5646 register_addr (const struct usrregs_info *usrregs, int regnum)
5647 {
5648 int addr;
5649
5650 if (regnum < 0 || regnum >= usrregs->num_regs)
5651 error ("Invalid register number %d.", regnum);
5652
5653 addr = usrregs->regmap[regnum];
5654
5655 return addr;
5656 }
5657
5658 /* Fetch one register. */
5659 static void
5660 fetch_register (const struct usrregs_info *usrregs,
5661 struct regcache *regcache, int regno)
5662 {
5663 CORE_ADDR regaddr;
5664 int i, size;
5665 char *buf;
5666 int pid;
5667
5668 if (regno >= usrregs->num_regs)
5669 return;
5670 if ((*the_low_target.cannot_fetch_register) (regno))
5671 return;
5672
5673 regaddr = register_addr (usrregs, regno);
5674 if (regaddr == -1)
5675 return;
5676
5677 size = ((register_size (regcache->tdesc, regno)
5678 + sizeof (PTRACE_XFER_TYPE) - 1)
5679 & -sizeof (PTRACE_XFER_TYPE));
5680 buf = (char *) alloca (size);
5681
5682 pid = lwpid_of (current_thread);
5683 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5684 {
5685 errno = 0;
5686 *(PTRACE_XFER_TYPE *) (buf + i) =
5687 ptrace (PTRACE_PEEKUSER, pid,
5688 /* Coerce to a uintptr_t first to avoid potential gcc warning
5689 of coercing an 8 byte integer to a 4 byte pointer. */
5690 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5691 regaddr += sizeof (PTRACE_XFER_TYPE);
5692 if (errno != 0)
5693 error ("reading register %d: %s", regno, strerror (errno));
5694 }
5695
5696 if (the_low_target.supply_ptrace_register)
5697 the_low_target.supply_ptrace_register (regcache, regno, buf);
5698 else
5699 supply_register (regcache, regno, buf);
5700 }
5701
5702 /* Store one register. */
5703 static void
5704 store_register (const struct usrregs_info *usrregs,
5705 struct regcache *regcache, int regno)
5706 {
5707 CORE_ADDR regaddr;
5708 int i, size;
5709 char *buf;
5710 int pid;
5711
5712 if (regno >= usrregs->num_regs)
5713 return;
5714 if ((*the_low_target.cannot_store_register) (regno))
5715 return;
5716
5717 regaddr = register_addr (usrregs, regno);
5718 if (regaddr == -1)
5719 return;
5720
5721 size = ((register_size (regcache->tdesc, regno)
5722 + sizeof (PTRACE_XFER_TYPE) - 1)
5723 & -sizeof (PTRACE_XFER_TYPE));
5724 buf = (char *) alloca (size);
5725 memset (buf, 0, size);
5726
5727 if (the_low_target.collect_ptrace_register)
5728 the_low_target.collect_ptrace_register (regcache, regno, buf);
5729 else
5730 collect_register (regcache, regno, buf);
5731
5732 pid = lwpid_of (current_thread);
5733 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5734 {
5735 errno = 0;
5736 ptrace (PTRACE_POKEUSER, pid,
5737 /* Coerce to a uintptr_t first to avoid potential gcc warning
5738 about coercing an 8 byte integer to a 4 byte pointer. */
5739 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5740 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5741 if (errno != 0)
5742 {
5743 /* At this point, ESRCH should mean the process is
5744 already gone, in which case we simply ignore attempts
5745 to change its registers. See also the related
5746 comment in linux_resume_one_lwp. */
5747 if (errno == ESRCH)
5748 return;
5749
5750 if ((*the_low_target.cannot_store_register) (regno) == 0)
5751 error ("writing register %d: %s", regno, strerror (errno));
5752 }
5753 regaddr += sizeof (PTRACE_XFER_TYPE);
5754 }
5755 }
5756
5757 /* Fetch all registers, or just one, from the child process.
5758 If REGNO is -1, do this for all registers, skipping any that are
5759 assumed to have been retrieved by regsets_fetch_inferior_registers,
5760 unless ALL is non-zero.
5761 Otherwise, REGNO specifies which register (so we can save time). */
5762 static void
5763 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5764 struct regcache *regcache, int regno, int all)
5765 {
5766 struct usrregs_info *usr = regs_info->usrregs;
5767
5768 if (regno == -1)
5769 {
5770 for (regno = 0; regno < usr->num_regs; regno++)
5771 if (all || !linux_register_in_regsets (regs_info, regno))
5772 fetch_register (usr, regcache, regno);
5773 }
5774 else
5775 fetch_register (usr, regcache, regno);
5776 }
5777
5778 /* Store our register values back into the inferior.
5779 If REGNO is -1, do this for all registers, skipping any that are
5780 assumed to have been saved by regsets_store_inferior_registers,
5781 unless ALL is non-zero.
5782 Otherwise, REGNO specifies which register (so we can save time). */
5783 static void
5784 usr_store_inferior_registers (const struct regs_info *regs_info,
5785 struct regcache *regcache, int regno, int all)
5786 {
5787 struct usrregs_info *usr = regs_info->usrregs;
5788
5789 if (regno == -1)
5790 {
5791 for (regno = 0; regno < usr->num_regs; regno++)
5792 if (all || !linux_register_in_regsets (regs_info, regno))
5793 store_register (usr, regcache, regno);
5794 }
5795 else
5796 store_register (usr, regcache, regno);
5797 }
5798
5799 #else /* !HAVE_LINUX_USRREGS */
5800
5801 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5802 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5803
5804 #endif
5805
5806
5807 static void
5808 linux_fetch_registers (struct regcache *regcache, int regno)
5809 {
5810 int use_regsets;
5811 int all = 0;
5812 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5813
5814 if (regno == -1)
5815 {
5816 if (the_low_target.fetch_register != NULL
5817 && regs_info->usrregs != NULL)
5818 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5819 (*the_low_target.fetch_register) (regcache, regno);
5820
5821 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5822 if (regs_info->usrregs != NULL)
5823 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5824 }
5825 else
5826 {
5827 if (the_low_target.fetch_register != NULL
5828 && (*the_low_target.fetch_register) (regcache, regno))
5829 return;
5830
5831 use_regsets = linux_register_in_regsets (regs_info, regno);
5832 if (use_regsets)
5833 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5834 regcache);
5835 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5836 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5837 }
5838 }
5839
5840 static void
5841 linux_store_registers (struct regcache *regcache, int regno)
5842 {
5843 int use_regsets;
5844 int all = 0;
5845 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5846
5847 if (regno == -1)
5848 {
5849 all = regsets_store_inferior_registers (regs_info->regsets_info,
5850 regcache);
5851 if (regs_info->usrregs != NULL)
5852 usr_store_inferior_registers (regs_info, regcache, regno, all);
5853 }
5854 else
5855 {
5856 use_regsets = linux_register_in_regsets (regs_info, regno);
5857 if (use_regsets)
5858 all = regsets_store_inferior_registers (regs_info->regsets_info,
5859 regcache);
5860 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5861 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5862 }
5863 }
5864
5865
5866 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5867 to debugger memory starting at MYADDR. */
5868
5869 static int
5870 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5871 {
5872 int pid = lwpid_of (current_thread);
5873 register PTRACE_XFER_TYPE *buffer;
5874 register CORE_ADDR addr;
5875 register int count;
5876 char filename[64];
5877 register int i;
5878 int ret;
5879 int fd;
5880
5881 /* Try using /proc. Don't bother for one word. */
5882 if (len >= 3 * sizeof (long))
5883 {
5884 int bytes;
5885
5886 /* We could keep this file open and cache it - possibly one per
5887 thread. That requires some juggling, but is even faster. */
5888 sprintf (filename, "/proc/%d/mem", pid);
5889 fd = open (filename, O_RDONLY | O_LARGEFILE);
5890 if (fd == -1)
5891 goto no_proc;
5892
5893 /* If pread64 is available, use it. It's faster if the kernel
5894 supports it (only one syscall), and it's 64-bit safe even on
5895 32-bit platforms (for instance, SPARC debugging a SPARC64
5896 application). */
5897 #ifdef HAVE_PREAD64
5898 bytes = pread64 (fd, myaddr, len, memaddr);
5899 #else
5900 bytes = -1;
5901 if (lseek (fd, memaddr, SEEK_SET) != -1)
5902 bytes = read (fd, myaddr, len);
5903 #endif
5904
5905 close (fd);
5906 if (bytes == len)
5907 return 0;
5908
5909 /* Some data was read, we'll try to get the rest with ptrace. */
5910 if (bytes > 0)
5911 {
5912 memaddr += bytes;
5913 myaddr += bytes;
5914 len -= bytes;
5915 }
5916 }
5917
5918 no_proc:
5919 /* Round starting address down to longword boundary. */
5920 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5921 /* Round ending address up; get number of longwords that makes. */
5922 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5923 / sizeof (PTRACE_XFER_TYPE));
5924 /* Allocate buffer of that many longwords. */
5925 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5926
5927 /* Read all the longwords */
5928 errno = 0;
5929 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5930 {
5931 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5932 about coercing an 8 byte integer to a 4 byte pointer. */
5933 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5934 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5935 (PTRACE_TYPE_ARG4) 0);
5936 if (errno)
5937 break;
5938 }
5939 ret = errno;
5940
5941 /* Copy appropriate bytes out of the buffer. */
5942 if (i > 0)
5943 {
5944 i *= sizeof (PTRACE_XFER_TYPE);
5945 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5946 memcpy (myaddr,
5947 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5948 i < len ? i : len);
5949 }
5950
5951 return ret;
5952 }
5953
5954 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5955 memory at MEMADDR. On failure (cannot write to the inferior)
5956 returns the value of errno. Always succeeds if LEN is zero. */
5957
5958 static int
5959 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5960 {
5961 register int i;
5962 /* Round starting address down to longword boundary. */
5963 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5964 /* Round ending address up; get number of longwords that makes. */
5965 register int count
5966 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5967 / sizeof (PTRACE_XFER_TYPE);
5968
5969 /* Allocate buffer of that many longwords. */
5970 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5971
5972 int pid = lwpid_of (current_thread);
5973
5974 if (len == 0)
5975 {
5976 /* Zero length write always succeeds. */
5977 return 0;
5978 }
5979
5980 if (debug_threads)
5981 {
5982 /* Dump up to four bytes. */
5983 char str[4 * 2 + 1];
5984 char *p = str;
5985 int dump = len < 4 ? len : 4;
5986
5987 for (i = 0; i < dump; i++)
5988 {
5989 sprintf (p, "%02x", myaddr[i]);
5990 p += 2;
5991 }
5992 *p = '\0';
5993
5994 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5995 str, (long) memaddr, pid);
5996 }
5997
5998 /* Fill start and end extra bytes of buffer with existing memory data. */
5999
6000 errno = 0;
6001 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
6002 about coercing an 8 byte integer to a 4 byte pointer. */
6003 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
6004 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6005 (PTRACE_TYPE_ARG4) 0);
6006 if (errno)
6007 return errno;
6008
6009 if (count > 1)
6010 {
6011 errno = 0;
6012 buffer[count - 1]
6013 = ptrace (PTRACE_PEEKTEXT, pid,
6014 /* Coerce to a uintptr_t first to avoid potential gcc warning
6015 about coercing an 8 byte integer to a 4 byte pointer. */
6016 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
6017 * sizeof (PTRACE_XFER_TYPE)),
6018 (PTRACE_TYPE_ARG4) 0);
6019 if (errno)
6020 return errno;
6021 }
6022
6023 /* Copy data to be written over corresponding part of buffer. */
6024
6025 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
6026 myaddr, len);
6027
6028 /* Write the entire buffer. */
6029
6030 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
6031 {
6032 errno = 0;
6033 ptrace (PTRACE_POKETEXT, pid,
6034 /* Coerce to a uintptr_t first to avoid potential gcc warning
6035 about coercing an 8 byte integer to a 4 byte pointer. */
6036 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6037 (PTRACE_TYPE_ARG4) buffer[i]);
6038 if (errno)
6039 return errno;
6040 }
6041
6042 return 0;
6043 }
6044
6045 static void
6046 linux_look_up_symbols (void)
6047 {
6048 #ifdef USE_THREAD_DB
6049 struct process_info *proc = current_process ();
6050
6051 if (proc->priv->thread_db != NULL)
6052 return;
6053
6054 thread_db_init ();
6055 #endif
6056 }
6057
6058 static void
6059 linux_request_interrupt (void)
6060 {
6061 /* Send a SIGINT to the process group. This acts just like the user
6062 typed a ^C on the controlling terminal. */
6063 kill (-signal_pid, SIGINT);
6064 }
6065
6066 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
6067 to debugger memory starting at MYADDR. */
6068
6069 static int
6070 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
6071 {
6072 char filename[PATH_MAX];
6073 int fd, n;
6074 int pid = lwpid_of (current_thread);
6075
6076 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6077
6078 fd = open (filename, O_RDONLY);
6079 if (fd < 0)
6080 return -1;
6081
6082 if (offset != (CORE_ADDR) 0
6083 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6084 n = -1;
6085 else
6086 n = read (fd, myaddr, len);
6087
6088 close (fd);
6089
6090 return n;
6091 }
6092
6093 /* These breakpoint and watchpoint related wrapper functions simply
6094 pass on the function call if the target has registered a
6095 corresponding function. */
6096
6097 static int
6098 linux_supports_z_point_type (char z_type)
6099 {
6100 return (the_low_target.supports_z_point_type != NULL
6101 && the_low_target.supports_z_point_type (z_type));
6102 }
6103
6104 static int
6105 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6106 int size, struct raw_breakpoint *bp)
6107 {
6108 if (type == raw_bkpt_type_sw)
6109 return insert_memory_breakpoint (bp);
6110 else if (the_low_target.insert_point != NULL)
6111 return the_low_target.insert_point (type, addr, size, bp);
6112 else
6113 /* Unsupported (see target.h). */
6114 return 1;
6115 }
6116
6117 static int
6118 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6119 int size, struct raw_breakpoint *bp)
6120 {
6121 if (type == raw_bkpt_type_sw)
6122 return remove_memory_breakpoint (bp);
6123 else if (the_low_target.remove_point != NULL)
6124 return the_low_target.remove_point (type, addr, size, bp);
6125 else
6126 /* Unsupported (see target.h). */
6127 return 1;
6128 }
6129
6130 /* Implement the to_stopped_by_sw_breakpoint target_ops
6131 method. */
6132
6133 static int
6134 linux_stopped_by_sw_breakpoint (void)
6135 {
6136 struct lwp_info *lwp = get_thread_lwp (current_thread);
6137
6138 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6139 }
6140
6141 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6142 method. */
6143
6144 static int
6145 linux_supports_stopped_by_sw_breakpoint (void)
6146 {
6147 return USE_SIGTRAP_SIGINFO;
6148 }
6149
6150 /* Implement the to_stopped_by_hw_breakpoint target_ops
6151 method. */
6152
6153 static int
6154 linux_stopped_by_hw_breakpoint (void)
6155 {
6156 struct lwp_info *lwp = get_thread_lwp (current_thread);
6157
6158 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6159 }
6160
6161 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6162 method. */
6163
6164 static int
6165 linux_supports_stopped_by_hw_breakpoint (void)
6166 {
6167 return USE_SIGTRAP_SIGINFO;
6168 }
6169
6170 /* Implement the supports_hardware_single_step target_ops method. */
6171
6172 static int
6173 linux_supports_hardware_single_step (void)
6174 {
6175 return can_hardware_single_step ();
6176 }
6177
6178 static int
6179 linux_supports_software_single_step (void)
6180 {
6181 return can_software_single_step ();
6182 }
6183
6184 static int
6185 linux_stopped_by_watchpoint (void)
6186 {
6187 struct lwp_info *lwp = get_thread_lwp (current_thread);
6188
6189 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6190 }
6191
6192 static CORE_ADDR
6193 linux_stopped_data_address (void)
6194 {
6195 struct lwp_info *lwp = get_thread_lwp (current_thread);
6196
6197 return lwp->stopped_data_address;
6198 }
6199
6200 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6201 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6202 && defined(PT_TEXT_END_ADDR)
6203
6204 /* This is only used for targets that define PT_TEXT_ADDR,
6205 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6206 the target has different ways of acquiring this information, like
6207 loadmaps. */
6208
6209 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6210 to tell gdb about. */
6211
6212 static int
6213 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6214 {
6215 unsigned long text, text_end, data;
6216 int pid = lwpid_of (current_thread);
6217
6218 errno = 0;
6219
6220 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6221 (PTRACE_TYPE_ARG4) 0);
6222 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6223 (PTRACE_TYPE_ARG4) 0);
6224 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6225 (PTRACE_TYPE_ARG4) 0);
6226
6227 if (errno == 0)
6228 {
6229 /* Both text and data offsets produced at compile-time (and so
6230 used by gdb) are relative to the beginning of the program,
6231 with the data segment immediately following the text segment.
6232 However, the actual runtime layout in memory may put the data
6233 somewhere else, so when we send gdb a data base-address, we
6234 use the real data base address and subtract the compile-time
6235 data base-address from it (which is just the length of the
6236 text segment). BSS immediately follows data in both
6237 cases. */
6238 *text_p = text;
6239 *data_p = data - (text_end - text);
6240
6241 return 1;
6242 }
6243 return 0;
6244 }
6245 #endif
6246
6247 static int
6248 linux_qxfer_osdata (const char *annex,
6249 unsigned char *readbuf, unsigned const char *writebuf,
6250 CORE_ADDR offset, int len)
6251 {
6252 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6253 }
6254
6255 /* Convert a native/host siginfo object, into/from the siginfo in the
6256 layout of the inferiors' architecture. */
6257
6258 static void
6259 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6260 {
6261 int done = 0;
6262
6263 if (the_low_target.siginfo_fixup != NULL)
6264 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6265
6266 /* If there was no callback, or the callback didn't do anything,
6267 then just do a straight memcpy. */
6268 if (!done)
6269 {
6270 if (direction == 1)
6271 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6272 else
6273 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6274 }
6275 }
6276
6277 static int
6278 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6279 unsigned const char *writebuf, CORE_ADDR offset, int len)
6280 {
6281 int pid;
6282 siginfo_t siginfo;
6283 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6284
6285 if (current_thread == NULL)
6286 return -1;
6287
6288 pid = lwpid_of (current_thread);
6289
6290 if (debug_threads)
6291 debug_printf ("%s siginfo for lwp %d.\n",
6292 readbuf != NULL ? "Reading" : "Writing",
6293 pid);
6294
6295 if (offset >= sizeof (siginfo))
6296 return -1;
6297
6298 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6299 return -1;
6300
6301 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6302 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6303 inferior with a 64-bit GDBSERVER should look the same as debugging it
6304 with a 32-bit GDBSERVER, we need to convert it. */
6305 siginfo_fixup (&siginfo, inf_siginfo, 0);
6306
6307 if (offset + len > sizeof (siginfo))
6308 len = sizeof (siginfo) - offset;
6309
6310 if (readbuf != NULL)
6311 memcpy (readbuf, inf_siginfo + offset, len);
6312 else
6313 {
6314 memcpy (inf_siginfo + offset, writebuf, len);
6315
6316 /* Convert back to ptrace layout before flushing it out. */
6317 siginfo_fixup (&siginfo, inf_siginfo, 1);
6318
6319 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6320 return -1;
6321 }
6322
6323 return len;
6324 }
6325
6326 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6327 so we notice when children change state; as the handler for the
6328 sigsuspend in my_waitpid. */
6329
6330 static void
6331 sigchld_handler (int signo)
6332 {
6333 int old_errno = errno;
6334
6335 if (debug_threads)
6336 {
6337 do
6338 {
6339 /* fprintf is not async-signal-safe, so call write
6340 directly. */
6341 if (write (2, "sigchld_handler\n",
6342 sizeof ("sigchld_handler\n") - 1) < 0)
6343 break; /* just ignore */
6344 } while (0);
6345 }
6346
6347 if (target_is_async_p ())
6348 async_file_mark (); /* trigger a linux_wait */
6349
6350 errno = old_errno;
6351 }
6352
6353 static int
6354 linux_supports_non_stop (void)
6355 {
6356 return 1;
6357 }
6358
6359 static int
6360 linux_async (int enable)
6361 {
6362 int previous = target_is_async_p ();
6363
6364 if (debug_threads)
6365 debug_printf ("linux_async (%d), previous=%d\n",
6366 enable, previous);
6367
6368 if (previous != enable)
6369 {
6370 sigset_t mask;
6371 sigemptyset (&mask);
6372 sigaddset (&mask, SIGCHLD);
6373
6374 sigprocmask (SIG_BLOCK, &mask, NULL);
6375
6376 if (enable)
6377 {
6378 if (pipe (linux_event_pipe) == -1)
6379 {
6380 linux_event_pipe[0] = -1;
6381 linux_event_pipe[1] = -1;
6382 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6383
6384 warning ("creating event pipe failed.");
6385 return previous;
6386 }
6387
6388 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6389 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6390
6391 /* Register the event loop handler. */
6392 add_file_handler (linux_event_pipe[0],
6393 handle_target_event, NULL);
6394
6395 /* Always trigger a linux_wait. */
6396 async_file_mark ();
6397 }
6398 else
6399 {
6400 delete_file_handler (linux_event_pipe[0]);
6401
6402 close (linux_event_pipe[0]);
6403 close (linux_event_pipe[1]);
6404 linux_event_pipe[0] = -1;
6405 linux_event_pipe[1] = -1;
6406 }
6407
6408 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6409 }
6410
6411 return previous;
6412 }
6413
6414 static int
6415 linux_start_non_stop (int nonstop)
6416 {
6417 /* Register or unregister from event-loop accordingly. */
6418 linux_async (nonstop);
6419
6420 if (target_is_async_p () != (nonstop != 0))
6421 return -1;
6422
6423 return 0;
6424 }
6425
6426 static int
6427 linux_supports_multi_process (void)
6428 {
6429 return 1;
6430 }
6431
6432 /* Check if fork events are supported. */
6433
6434 static int
6435 linux_supports_fork_events (void)
6436 {
6437 return linux_supports_tracefork ();
6438 }
6439
6440 /* Check if vfork events are supported. */
6441
6442 static int
6443 linux_supports_vfork_events (void)
6444 {
6445 return linux_supports_tracefork ();
6446 }
6447
6448 /* Check if exec events are supported. */
6449
6450 static int
6451 linux_supports_exec_events (void)
6452 {
6453 return linux_supports_traceexec ();
6454 }
6455
6456 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6457 options for the specified lwp. */
6458
6459 static int
6460 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6461 void *args)
6462 {
6463 struct thread_info *thread = (struct thread_info *) entry;
6464 struct lwp_info *lwp = get_thread_lwp (thread);
6465
6466 if (!lwp->stopped)
6467 {
6468 /* Stop the lwp so we can modify its ptrace options. */
6469 lwp->must_set_ptrace_flags = 1;
6470 linux_stop_lwp (lwp);
6471 }
6472 else
6473 {
6474 /* Already stopped; go ahead and set the ptrace options. */
6475 struct process_info *proc = find_process_pid (pid_of (thread));
6476 int options = linux_low_ptrace_options (proc->attached);
6477
6478 linux_enable_event_reporting (lwpid_of (thread), options);
6479 lwp->must_set_ptrace_flags = 0;
6480 }
6481
6482 return 0;
6483 }
6484
6485 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6486 ptrace flags for all inferiors. This is in case the new GDB connection
6487 doesn't support the same set of events that the previous one did. */
6488
6489 static void
6490 linux_handle_new_gdb_connection (void)
6491 {
6492 pid_t pid;
6493
6494 /* Request that all the lwps reset their ptrace options. */
6495 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6496 }
6497
6498 static int
6499 linux_supports_disable_randomization (void)
6500 {
6501 #ifdef HAVE_PERSONALITY
6502 return 1;
6503 #else
6504 return 0;
6505 #endif
6506 }
6507
6508 static int
6509 linux_supports_agent (void)
6510 {
6511 return 1;
6512 }
6513
6514 static int
6515 linux_supports_range_stepping (void)
6516 {
6517 if (can_software_single_step ())
6518 return 1;
6519 if (*the_low_target.supports_range_stepping == NULL)
6520 return 0;
6521
6522 return (*the_low_target.supports_range_stepping) ();
6523 }
6524
6525 /* Enumerate spufs IDs for process PID. */
6526 static int
6527 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6528 {
6529 int pos = 0;
6530 int written = 0;
6531 char path[128];
6532 DIR *dir;
6533 struct dirent *entry;
6534
6535 sprintf (path, "/proc/%ld/fd", pid);
6536 dir = opendir (path);
6537 if (!dir)
6538 return -1;
6539
6540 rewinddir (dir);
6541 while ((entry = readdir (dir)) != NULL)
6542 {
6543 struct stat st;
6544 struct statfs stfs;
6545 int fd;
6546
6547 fd = atoi (entry->d_name);
6548 if (!fd)
6549 continue;
6550
6551 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6552 if (stat (path, &st) != 0)
6553 continue;
6554 if (!S_ISDIR (st.st_mode))
6555 continue;
6556
6557 if (statfs (path, &stfs) != 0)
6558 continue;
6559 if (stfs.f_type != SPUFS_MAGIC)
6560 continue;
6561
6562 if (pos >= offset && pos + 4 <= offset + len)
6563 {
6564 *(unsigned int *)(buf + pos - offset) = fd;
6565 written += 4;
6566 }
6567 pos += 4;
6568 }
6569
6570 closedir (dir);
6571 return written;
6572 }
6573
6574 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6575 object type, using the /proc file system. */
6576 static int
6577 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6578 unsigned const char *writebuf,
6579 CORE_ADDR offset, int len)
6580 {
6581 long pid = lwpid_of (current_thread);
6582 char buf[128];
6583 int fd = 0;
6584 int ret = 0;
6585
6586 if (!writebuf && !readbuf)
6587 return -1;
6588
6589 if (!*annex)
6590 {
6591 if (!readbuf)
6592 return -1;
6593 else
6594 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6595 }
6596
6597 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6598 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6599 if (fd <= 0)
6600 return -1;
6601
6602 if (offset != 0
6603 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6604 {
6605 close (fd);
6606 return 0;
6607 }
6608
6609 if (writebuf)
6610 ret = write (fd, writebuf, (size_t) len);
6611 else
6612 ret = read (fd, readbuf, (size_t) len);
6613
6614 close (fd);
6615 return ret;
6616 }
6617
6618 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6619 struct target_loadseg
6620 {
6621 /* Core address to which the segment is mapped. */
6622 Elf32_Addr addr;
6623 /* VMA recorded in the program header. */
6624 Elf32_Addr p_vaddr;
6625 /* Size of this segment in memory. */
6626 Elf32_Word p_memsz;
6627 };
6628
6629 # if defined PT_GETDSBT
6630 struct target_loadmap
6631 {
6632 /* Protocol version number, must be zero. */
6633 Elf32_Word version;
6634 /* Pointer to the DSBT table, its size, and the DSBT index. */
6635 unsigned *dsbt_table;
6636 unsigned dsbt_size, dsbt_index;
6637 /* Number of segments in this map. */
6638 Elf32_Word nsegs;
6639 /* The actual memory map. */
6640 struct target_loadseg segs[/*nsegs*/];
6641 };
6642 # define LINUX_LOADMAP PT_GETDSBT
6643 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6644 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6645 # else
6646 struct target_loadmap
6647 {
6648 /* Protocol version number, must be zero. */
6649 Elf32_Half version;
6650 /* Number of segments in this map. */
6651 Elf32_Half nsegs;
6652 /* The actual memory map. */
6653 struct target_loadseg segs[/*nsegs*/];
6654 };
6655 # define LINUX_LOADMAP PTRACE_GETFDPIC
6656 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6657 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6658 # endif
6659
6660 static int
6661 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6662 unsigned char *myaddr, unsigned int len)
6663 {
6664 int pid = lwpid_of (current_thread);
6665 int addr = -1;
6666 struct target_loadmap *data = NULL;
6667 unsigned int actual_length, copy_length;
6668
6669 if (strcmp (annex, "exec") == 0)
6670 addr = (int) LINUX_LOADMAP_EXEC;
6671 else if (strcmp (annex, "interp") == 0)
6672 addr = (int) LINUX_LOADMAP_INTERP;
6673 else
6674 return -1;
6675
6676 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6677 return -1;
6678
6679 if (data == NULL)
6680 return -1;
6681
6682 actual_length = sizeof (struct target_loadmap)
6683 + sizeof (struct target_loadseg) * data->nsegs;
6684
6685 if (offset < 0 || offset > actual_length)
6686 return -1;
6687
6688 copy_length = actual_length - offset < len ? actual_length - offset : len;
6689 memcpy (myaddr, (char *) data + offset, copy_length);
6690 return copy_length;
6691 }
6692 #else
6693 # define linux_read_loadmap NULL
6694 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6695
6696 static void
6697 linux_process_qsupported (char **features, int count)
6698 {
6699 if (the_low_target.process_qsupported != NULL)
6700 the_low_target.process_qsupported (features, count);
6701 }
6702
6703 static int
6704 linux_supports_catch_syscall (void)
6705 {
6706 return (the_low_target.get_syscall_trapinfo != NULL
6707 && linux_supports_tracesysgood ());
6708 }
6709
6710 static int
6711 linux_get_ipa_tdesc_idx (void)
6712 {
6713 if (the_low_target.get_ipa_tdesc_idx == NULL)
6714 return 0;
6715
6716 return (*the_low_target.get_ipa_tdesc_idx) ();
6717 }
6718
6719 static int
6720 linux_supports_tracepoints (void)
6721 {
6722 if (*the_low_target.supports_tracepoints == NULL)
6723 return 0;
6724
6725 return (*the_low_target.supports_tracepoints) ();
6726 }
6727
6728 static CORE_ADDR
6729 linux_read_pc (struct regcache *regcache)
6730 {
6731 if (the_low_target.get_pc == NULL)
6732 return 0;
6733
6734 return (*the_low_target.get_pc) (regcache);
6735 }
6736
6737 static void
6738 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6739 {
6740 gdb_assert (the_low_target.set_pc != NULL);
6741
6742 (*the_low_target.set_pc) (regcache, pc);
6743 }
6744
6745 static int
6746 linux_thread_stopped (struct thread_info *thread)
6747 {
6748 return get_thread_lwp (thread)->stopped;
6749 }
6750
6751 /* This exposes stop-all-threads functionality to other modules. */
6752
6753 static void
6754 linux_pause_all (int freeze)
6755 {
6756 stop_all_lwps (freeze, NULL);
6757 }
6758
6759 /* This exposes unstop-all-threads functionality to other gdbserver
6760 modules. */
6761
6762 static void
6763 linux_unpause_all (int unfreeze)
6764 {
6765 unstop_all_lwps (unfreeze, NULL);
6766 }
6767
6768 static int
6769 linux_prepare_to_access_memory (void)
6770 {
6771 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6772 running LWP. */
6773 if (non_stop)
6774 linux_pause_all (1);
6775 return 0;
6776 }
6777
6778 static void
6779 linux_done_accessing_memory (void)
6780 {
6781 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6782 running LWP. */
6783 if (non_stop)
6784 linux_unpause_all (1);
6785 }
6786
6787 static int
6788 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6789 CORE_ADDR collector,
6790 CORE_ADDR lockaddr,
6791 ULONGEST orig_size,
6792 CORE_ADDR *jump_entry,
6793 CORE_ADDR *trampoline,
6794 ULONGEST *trampoline_size,
6795 unsigned char *jjump_pad_insn,
6796 ULONGEST *jjump_pad_insn_size,
6797 CORE_ADDR *adjusted_insn_addr,
6798 CORE_ADDR *adjusted_insn_addr_end,
6799 char *err)
6800 {
6801 return (*the_low_target.install_fast_tracepoint_jump_pad)
6802 (tpoint, tpaddr, collector, lockaddr, orig_size,
6803 jump_entry, trampoline, trampoline_size,
6804 jjump_pad_insn, jjump_pad_insn_size,
6805 adjusted_insn_addr, adjusted_insn_addr_end,
6806 err);
6807 }
6808
6809 static struct emit_ops *
6810 linux_emit_ops (void)
6811 {
6812 if (the_low_target.emit_ops != NULL)
6813 return (*the_low_target.emit_ops) ();
6814 else
6815 return NULL;
6816 }
6817
6818 static int
6819 linux_get_min_fast_tracepoint_insn_len (void)
6820 {
6821 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6822 }
6823
6824 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6825
6826 static int
6827 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6828 CORE_ADDR *phdr_memaddr, int *num_phdr)
6829 {
6830 char filename[PATH_MAX];
6831 int fd;
6832 const int auxv_size = is_elf64
6833 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6834 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6835
6836 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6837
6838 fd = open (filename, O_RDONLY);
6839 if (fd < 0)
6840 return 1;
6841
6842 *phdr_memaddr = 0;
6843 *num_phdr = 0;
6844 while (read (fd, buf, auxv_size) == auxv_size
6845 && (*phdr_memaddr == 0 || *num_phdr == 0))
6846 {
6847 if (is_elf64)
6848 {
6849 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6850
6851 switch (aux->a_type)
6852 {
6853 case AT_PHDR:
6854 *phdr_memaddr = aux->a_un.a_val;
6855 break;
6856 case AT_PHNUM:
6857 *num_phdr = aux->a_un.a_val;
6858 break;
6859 }
6860 }
6861 else
6862 {
6863 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6864
6865 switch (aux->a_type)
6866 {
6867 case AT_PHDR:
6868 *phdr_memaddr = aux->a_un.a_val;
6869 break;
6870 case AT_PHNUM:
6871 *num_phdr = aux->a_un.a_val;
6872 break;
6873 }
6874 }
6875 }
6876
6877 close (fd);
6878
6879 if (*phdr_memaddr == 0 || *num_phdr == 0)
6880 {
6881 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6882 "phdr_memaddr = %ld, phdr_num = %d",
6883 (long) *phdr_memaddr, *num_phdr);
6884 return 2;
6885 }
6886
6887 return 0;
6888 }
6889
6890 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6891
6892 static CORE_ADDR
6893 get_dynamic (const int pid, const int is_elf64)
6894 {
6895 CORE_ADDR phdr_memaddr, relocation;
6896 int num_phdr, i;
6897 unsigned char *phdr_buf;
6898 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6899
6900 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6901 return 0;
6902
6903 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6904 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6905
6906 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6907 return 0;
6908
6909 /* Compute relocation: it is expected to be 0 for "regular" executables,
6910 non-zero for PIE ones. */
6911 relocation = -1;
6912 for (i = 0; relocation == -1 && i < num_phdr; i++)
6913 if (is_elf64)
6914 {
6915 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6916
6917 if (p->p_type == PT_PHDR)
6918 relocation = phdr_memaddr - p->p_vaddr;
6919 }
6920 else
6921 {
6922 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6923
6924 if (p->p_type == PT_PHDR)
6925 relocation = phdr_memaddr - p->p_vaddr;
6926 }
6927
6928 if (relocation == -1)
6929 {
6930 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6931 any real world executables, including PIE executables, have always
6932 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6933 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6934 or present DT_DEBUG anyway (fpc binaries are statically linked).
6935
6936 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6937
6938 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6939
6940 return 0;
6941 }
6942
6943 for (i = 0; i < num_phdr; i++)
6944 {
6945 if (is_elf64)
6946 {
6947 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6948
6949 if (p->p_type == PT_DYNAMIC)
6950 return p->p_vaddr + relocation;
6951 }
6952 else
6953 {
6954 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6955
6956 if (p->p_type == PT_DYNAMIC)
6957 return p->p_vaddr + relocation;
6958 }
6959 }
6960
6961 return 0;
6962 }
6963
6964 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6965 can be 0 if the inferior does not yet have the library list initialized.
6966 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6967 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6968
6969 static CORE_ADDR
6970 get_r_debug (const int pid, const int is_elf64)
6971 {
6972 CORE_ADDR dynamic_memaddr;
6973 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6974 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6975 CORE_ADDR map = -1;
6976
6977 dynamic_memaddr = get_dynamic (pid, is_elf64);
6978 if (dynamic_memaddr == 0)
6979 return map;
6980
6981 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6982 {
6983 if (is_elf64)
6984 {
6985 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6986 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6987 union
6988 {
6989 Elf64_Xword map;
6990 unsigned char buf[sizeof (Elf64_Xword)];
6991 }
6992 rld_map;
6993 #endif
6994 #ifdef DT_MIPS_RLD_MAP
6995 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6996 {
6997 if (linux_read_memory (dyn->d_un.d_val,
6998 rld_map.buf, sizeof (rld_map.buf)) == 0)
6999 return rld_map.map;
7000 else
7001 break;
7002 }
7003 #endif /* DT_MIPS_RLD_MAP */
7004 #ifdef DT_MIPS_RLD_MAP_REL
7005 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7006 {
7007 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7008 rld_map.buf, sizeof (rld_map.buf)) == 0)
7009 return rld_map.map;
7010 else
7011 break;
7012 }
7013 #endif /* DT_MIPS_RLD_MAP_REL */
7014
7015 if (dyn->d_tag == DT_DEBUG && map == -1)
7016 map = dyn->d_un.d_val;
7017
7018 if (dyn->d_tag == DT_NULL)
7019 break;
7020 }
7021 else
7022 {
7023 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
7024 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7025 union
7026 {
7027 Elf32_Word map;
7028 unsigned char buf[sizeof (Elf32_Word)];
7029 }
7030 rld_map;
7031 #endif
7032 #ifdef DT_MIPS_RLD_MAP
7033 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7034 {
7035 if (linux_read_memory (dyn->d_un.d_val,
7036 rld_map.buf, sizeof (rld_map.buf)) == 0)
7037 return rld_map.map;
7038 else
7039 break;
7040 }
7041 #endif /* DT_MIPS_RLD_MAP */
7042 #ifdef DT_MIPS_RLD_MAP_REL
7043 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7044 {
7045 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7046 rld_map.buf, sizeof (rld_map.buf)) == 0)
7047 return rld_map.map;
7048 else
7049 break;
7050 }
7051 #endif /* DT_MIPS_RLD_MAP_REL */
7052
7053 if (dyn->d_tag == DT_DEBUG && map == -1)
7054 map = dyn->d_un.d_val;
7055
7056 if (dyn->d_tag == DT_NULL)
7057 break;
7058 }
7059
7060 dynamic_memaddr += dyn_size;
7061 }
7062
7063 return map;
7064 }
7065
7066 /* Read one pointer from MEMADDR in the inferior. */
7067
7068 static int
7069 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
7070 {
7071 int ret;
7072
7073 /* Go through a union so this works on either big or little endian
7074 hosts, when the inferior's pointer size is smaller than the size
7075 of CORE_ADDR. It is assumed the inferior's endianness is the
7076 same of the superior's. */
7077 union
7078 {
7079 CORE_ADDR core_addr;
7080 unsigned int ui;
7081 unsigned char uc;
7082 } addr;
7083
7084 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
7085 if (ret == 0)
7086 {
7087 if (ptr_size == sizeof (CORE_ADDR))
7088 *ptr = addr.core_addr;
7089 else if (ptr_size == sizeof (unsigned int))
7090 *ptr = addr.ui;
7091 else
7092 gdb_assert_not_reached ("unhandled pointer size");
7093 }
7094 return ret;
7095 }
7096
7097 struct link_map_offsets
7098 {
7099 /* Offset and size of r_debug.r_version. */
7100 int r_version_offset;
7101
7102 /* Offset and size of r_debug.r_map. */
7103 int r_map_offset;
7104
7105 /* Offset to l_addr field in struct link_map. */
7106 int l_addr_offset;
7107
7108 /* Offset to l_name field in struct link_map. */
7109 int l_name_offset;
7110
7111 /* Offset to l_ld field in struct link_map. */
7112 int l_ld_offset;
7113
7114 /* Offset to l_next field in struct link_map. */
7115 int l_next_offset;
7116
7117 /* Offset to l_prev field in struct link_map. */
7118 int l_prev_offset;
7119 };
7120
7121 /* Construct qXfer:libraries-svr4:read reply. */
7122
7123 static int
7124 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7125 unsigned const char *writebuf,
7126 CORE_ADDR offset, int len)
7127 {
7128 char *document;
7129 unsigned document_len;
7130 struct process_info_private *const priv = current_process ()->priv;
7131 char filename[PATH_MAX];
7132 int pid, is_elf64;
7133
7134 static const struct link_map_offsets lmo_32bit_offsets =
7135 {
7136 0, /* r_version offset. */
7137 4, /* r_debug.r_map offset. */
7138 0, /* l_addr offset in link_map. */
7139 4, /* l_name offset in link_map. */
7140 8, /* l_ld offset in link_map. */
7141 12, /* l_next offset in link_map. */
7142 16 /* l_prev offset in link_map. */
7143 };
7144
7145 static const struct link_map_offsets lmo_64bit_offsets =
7146 {
7147 0, /* r_version offset. */
7148 8, /* r_debug.r_map offset. */
7149 0, /* l_addr offset in link_map. */
7150 8, /* l_name offset in link_map. */
7151 16, /* l_ld offset in link_map. */
7152 24, /* l_next offset in link_map. */
7153 32 /* l_prev offset in link_map. */
7154 };
7155 const struct link_map_offsets *lmo;
7156 unsigned int machine;
7157 int ptr_size;
7158 CORE_ADDR lm_addr = 0, lm_prev = 0;
7159 int allocated = 1024;
7160 char *p;
7161 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7162 int header_done = 0;
7163
7164 if (writebuf != NULL)
7165 return -2;
7166 if (readbuf == NULL)
7167 return -1;
7168
7169 pid = lwpid_of (current_thread);
7170 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7171 is_elf64 = elf_64_file_p (filename, &machine);
7172 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7173 ptr_size = is_elf64 ? 8 : 4;
7174
7175 while (annex[0] != '\0')
7176 {
7177 const char *sep;
7178 CORE_ADDR *addrp;
7179 int len;
7180
7181 sep = strchr (annex, '=');
7182 if (sep == NULL)
7183 break;
7184
7185 len = sep - annex;
7186 if (len == 5 && startswith (annex, "start"))
7187 addrp = &lm_addr;
7188 else if (len == 4 && startswith (annex, "prev"))
7189 addrp = &lm_prev;
7190 else
7191 {
7192 annex = strchr (sep, ';');
7193 if (annex == NULL)
7194 break;
7195 annex++;
7196 continue;
7197 }
7198
7199 annex = decode_address_to_semicolon (addrp, sep + 1);
7200 }
7201
7202 if (lm_addr == 0)
7203 {
7204 int r_version = 0;
7205
7206 if (priv->r_debug == 0)
7207 priv->r_debug = get_r_debug (pid, is_elf64);
7208
7209 /* We failed to find DT_DEBUG. Such situation will not change
7210 for this inferior - do not retry it. Report it to GDB as
7211 E01, see for the reasons at the GDB solib-svr4.c side. */
7212 if (priv->r_debug == (CORE_ADDR) -1)
7213 return -1;
7214
7215 if (priv->r_debug != 0)
7216 {
7217 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7218 (unsigned char *) &r_version,
7219 sizeof (r_version)) != 0
7220 || r_version != 1)
7221 {
7222 warning ("unexpected r_debug version %d", r_version);
7223 }
7224 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7225 &lm_addr, ptr_size) != 0)
7226 {
7227 warning ("unable to read r_map from 0x%lx",
7228 (long) priv->r_debug + lmo->r_map_offset);
7229 }
7230 }
7231 }
7232
7233 document = (char *) xmalloc (allocated);
7234 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7235 p = document + strlen (document);
7236
7237 while (lm_addr
7238 && read_one_ptr (lm_addr + lmo->l_name_offset,
7239 &l_name, ptr_size) == 0
7240 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7241 &l_addr, ptr_size) == 0
7242 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7243 &l_ld, ptr_size) == 0
7244 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7245 &l_prev, ptr_size) == 0
7246 && read_one_ptr (lm_addr + lmo->l_next_offset,
7247 &l_next, ptr_size) == 0)
7248 {
7249 unsigned char libname[PATH_MAX];
7250
7251 if (lm_prev != l_prev)
7252 {
7253 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7254 (long) lm_prev, (long) l_prev);
7255 break;
7256 }
7257
7258 /* Ignore the first entry even if it has valid name as the first entry
7259 corresponds to the main executable. The first entry should not be
7260 skipped if the dynamic loader was loaded late by a static executable
7261 (see solib-svr4.c parameter ignore_first). But in such case the main
7262 executable does not have PT_DYNAMIC present and this function already
7263 exited above due to failed get_r_debug. */
7264 if (lm_prev == 0)
7265 {
7266 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7267 p = p + strlen (p);
7268 }
7269 else
7270 {
7271 /* Not checking for error because reading may stop before
7272 we've got PATH_MAX worth of characters. */
7273 libname[0] = '\0';
7274 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7275 libname[sizeof (libname) - 1] = '\0';
7276 if (libname[0] != '\0')
7277 {
7278 /* 6x the size for xml_escape_text below. */
7279 size_t len = 6 * strlen ((char *) libname);
7280 char *name;
7281
7282 if (!header_done)
7283 {
7284 /* Terminate `<library-list-svr4'. */
7285 *p++ = '>';
7286 header_done = 1;
7287 }
7288
7289 while (allocated < p - document + len + 200)
7290 {
7291 /* Expand to guarantee sufficient storage. */
7292 uintptr_t document_len = p - document;
7293
7294 document = (char *) xrealloc (document, 2 * allocated);
7295 allocated *= 2;
7296 p = document + document_len;
7297 }
7298
7299 name = xml_escape_text ((char *) libname);
7300 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7301 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7302 name, (unsigned long) lm_addr,
7303 (unsigned long) l_addr, (unsigned long) l_ld);
7304 free (name);
7305 }
7306 }
7307
7308 lm_prev = lm_addr;
7309 lm_addr = l_next;
7310 }
7311
7312 if (!header_done)
7313 {
7314 /* Empty list; terminate `<library-list-svr4'. */
7315 strcpy (p, "/>");
7316 }
7317 else
7318 strcpy (p, "</library-list-svr4>");
7319
7320 document_len = strlen (document);
7321 if (offset < document_len)
7322 document_len -= offset;
7323 else
7324 document_len = 0;
7325 if (len > document_len)
7326 len = document_len;
7327
7328 memcpy (readbuf, document + offset, len);
7329 xfree (document);
7330
7331 return len;
7332 }
7333
7334 #ifdef HAVE_LINUX_BTRACE
7335
7336 /* See to_disable_btrace target method. */
7337
7338 static int
7339 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7340 {
7341 enum btrace_error err;
7342
7343 err = linux_disable_btrace (tinfo);
7344 return (err == BTRACE_ERR_NONE ? 0 : -1);
7345 }
7346
7347 /* Encode an Intel Processor Trace configuration. */
7348
7349 static void
7350 linux_low_encode_pt_config (struct buffer *buffer,
7351 const struct btrace_data_pt_config *config)
7352 {
7353 buffer_grow_str (buffer, "<pt-config>\n");
7354
7355 switch (config->cpu.vendor)
7356 {
7357 case CV_INTEL:
7358 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7359 "model=\"%u\" stepping=\"%u\"/>\n",
7360 config->cpu.family, config->cpu.model,
7361 config->cpu.stepping);
7362 break;
7363
7364 default:
7365 break;
7366 }
7367
7368 buffer_grow_str (buffer, "</pt-config>\n");
7369 }
7370
7371 /* Encode a raw buffer. */
7372
7373 static void
7374 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7375 unsigned int size)
7376 {
7377 if (size == 0)
7378 return;
7379
7380 /* We use hex encoding - see common/rsp-low.h. */
7381 buffer_grow_str (buffer, "<raw>\n");
7382
7383 while (size-- > 0)
7384 {
7385 char elem[2];
7386
7387 elem[0] = tohex ((*data >> 4) & 0xf);
7388 elem[1] = tohex (*data++ & 0xf);
7389
7390 buffer_grow (buffer, elem, 2);
7391 }
7392
7393 buffer_grow_str (buffer, "</raw>\n");
7394 }
7395
7396 /* See to_read_btrace target method. */
7397
7398 static int
7399 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7400 enum btrace_read_type type)
7401 {
7402 struct btrace_data btrace;
7403 struct btrace_block *block;
7404 enum btrace_error err;
7405 int i;
7406
7407 btrace_data_init (&btrace);
7408
7409 err = linux_read_btrace (&btrace, tinfo, type);
7410 if (err != BTRACE_ERR_NONE)
7411 {
7412 if (err == BTRACE_ERR_OVERFLOW)
7413 buffer_grow_str0 (buffer, "E.Overflow.");
7414 else
7415 buffer_grow_str0 (buffer, "E.Generic Error.");
7416
7417 goto err;
7418 }
7419
7420 switch (btrace.format)
7421 {
7422 case BTRACE_FORMAT_NONE:
7423 buffer_grow_str0 (buffer, "E.No Trace.");
7424 goto err;
7425
7426 case BTRACE_FORMAT_BTS:
7427 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7428 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7429
7430 for (i = 0;
7431 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7432 i++)
7433 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7434 paddress (block->begin), paddress (block->end));
7435
7436 buffer_grow_str0 (buffer, "</btrace>\n");
7437 break;
7438
7439 case BTRACE_FORMAT_PT:
7440 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7441 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7442 buffer_grow_str (buffer, "<pt>\n");
7443
7444 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7445
7446 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7447 btrace.variant.pt.size);
7448
7449 buffer_grow_str (buffer, "</pt>\n");
7450 buffer_grow_str0 (buffer, "</btrace>\n");
7451 break;
7452
7453 default:
7454 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7455 goto err;
7456 }
7457
7458 btrace_data_fini (&btrace);
7459 return 0;
7460
7461 err:
7462 btrace_data_fini (&btrace);
7463 return -1;
7464 }
7465
7466 /* See to_btrace_conf target method. */
7467
7468 static int
7469 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7470 struct buffer *buffer)
7471 {
7472 const struct btrace_config *conf;
7473
7474 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7475 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7476
7477 conf = linux_btrace_conf (tinfo);
7478 if (conf != NULL)
7479 {
7480 switch (conf->format)
7481 {
7482 case BTRACE_FORMAT_NONE:
7483 break;
7484
7485 case BTRACE_FORMAT_BTS:
7486 buffer_xml_printf (buffer, "<bts");
7487 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7488 buffer_xml_printf (buffer, " />\n");
7489 break;
7490
7491 case BTRACE_FORMAT_PT:
7492 buffer_xml_printf (buffer, "<pt");
7493 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7494 buffer_xml_printf (buffer, "/>\n");
7495 break;
7496 }
7497 }
7498
7499 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7500 return 0;
7501 }
7502 #endif /* HAVE_LINUX_BTRACE */
7503
7504 /* See nat/linux-nat.h. */
7505
7506 ptid_t
7507 current_lwp_ptid (void)
7508 {
7509 return ptid_of (current_thread);
7510 }
7511
7512 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7513
7514 static int
7515 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7516 {
7517 if (the_low_target.breakpoint_kind_from_pc != NULL)
7518 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7519 else
7520 return default_breakpoint_kind_from_pc (pcptr);
7521 }
7522
7523 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7524
7525 static const gdb_byte *
7526 linux_sw_breakpoint_from_kind (int kind, int *size)
7527 {
7528 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7529
7530 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7531 }
7532
7533 /* Implementation of the target_ops method
7534 "breakpoint_kind_from_current_state". */
7535
7536 static int
7537 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7538 {
7539 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7540 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7541 else
7542 return linux_breakpoint_kind_from_pc (pcptr);
7543 }
7544
7545 /* Default implementation of linux_target_ops method "set_pc" for
7546 32-bit pc register which is literally named "pc". */
7547
7548 void
7549 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7550 {
7551 uint32_t newpc = pc;
7552
7553 supply_register_by_name (regcache, "pc", &newpc);
7554 }
7555
7556 /* Default implementation of linux_target_ops method "get_pc" for
7557 32-bit pc register which is literally named "pc". */
7558
7559 CORE_ADDR
7560 linux_get_pc_32bit (struct regcache *regcache)
7561 {
7562 uint32_t pc;
7563
7564 collect_register_by_name (regcache, "pc", &pc);
7565 if (debug_threads)
7566 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7567 return pc;
7568 }
7569
7570 /* Default implementation of linux_target_ops method "set_pc" for
7571 64-bit pc register which is literally named "pc". */
7572
7573 void
7574 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7575 {
7576 uint64_t newpc = pc;
7577
7578 supply_register_by_name (regcache, "pc", &newpc);
7579 }
7580
7581 /* Default implementation of linux_target_ops method "get_pc" for
7582 64-bit pc register which is literally named "pc". */
7583
7584 CORE_ADDR
7585 linux_get_pc_64bit (struct regcache *regcache)
7586 {
7587 uint64_t pc;
7588
7589 collect_register_by_name (regcache, "pc", &pc);
7590 if (debug_threads)
7591 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7592 return pc;
7593 }
7594
7595
7596 static struct target_ops linux_target_ops = {
7597 linux_create_inferior,
7598 linux_post_create_inferior,
7599 linux_attach,
7600 linux_kill,
7601 linux_detach,
7602 linux_mourn,
7603 linux_join,
7604 linux_thread_alive,
7605 linux_resume,
7606 linux_wait,
7607 linux_fetch_registers,
7608 linux_store_registers,
7609 linux_prepare_to_access_memory,
7610 linux_done_accessing_memory,
7611 linux_read_memory,
7612 linux_write_memory,
7613 linux_look_up_symbols,
7614 linux_request_interrupt,
7615 linux_read_auxv,
7616 linux_supports_z_point_type,
7617 linux_insert_point,
7618 linux_remove_point,
7619 linux_stopped_by_sw_breakpoint,
7620 linux_supports_stopped_by_sw_breakpoint,
7621 linux_stopped_by_hw_breakpoint,
7622 linux_supports_stopped_by_hw_breakpoint,
7623 linux_supports_hardware_single_step,
7624 linux_stopped_by_watchpoint,
7625 linux_stopped_data_address,
7626 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7627 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7628 && defined(PT_TEXT_END_ADDR)
7629 linux_read_offsets,
7630 #else
7631 NULL,
7632 #endif
7633 #ifdef USE_THREAD_DB
7634 thread_db_get_tls_address,
7635 #else
7636 NULL,
7637 #endif
7638 linux_qxfer_spu,
7639 hostio_last_error_from_errno,
7640 linux_qxfer_osdata,
7641 linux_xfer_siginfo,
7642 linux_supports_non_stop,
7643 linux_async,
7644 linux_start_non_stop,
7645 linux_supports_multi_process,
7646 linux_supports_fork_events,
7647 linux_supports_vfork_events,
7648 linux_supports_exec_events,
7649 linux_handle_new_gdb_connection,
7650 #ifdef USE_THREAD_DB
7651 thread_db_handle_monitor_command,
7652 #else
7653 NULL,
7654 #endif
7655 linux_common_core_of_thread,
7656 linux_read_loadmap,
7657 linux_process_qsupported,
7658 linux_supports_tracepoints,
7659 linux_read_pc,
7660 linux_write_pc,
7661 linux_thread_stopped,
7662 NULL,
7663 linux_pause_all,
7664 linux_unpause_all,
7665 linux_stabilize_threads,
7666 linux_install_fast_tracepoint_jump_pad,
7667 linux_emit_ops,
7668 linux_supports_disable_randomization,
7669 linux_get_min_fast_tracepoint_insn_len,
7670 linux_qxfer_libraries_svr4,
7671 linux_supports_agent,
7672 #ifdef HAVE_LINUX_BTRACE
7673 linux_supports_btrace,
7674 linux_enable_btrace,
7675 linux_low_disable_btrace,
7676 linux_low_read_btrace,
7677 linux_low_btrace_conf,
7678 #else
7679 NULL,
7680 NULL,
7681 NULL,
7682 NULL,
7683 NULL,
7684 #endif
7685 linux_supports_range_stepping,
7686 linux_proc_pid_to_exec_file,
7687 linux_mntns_open_cloexec,
7688 linux_mntns_unlink,
7689 linux_mntns_readlink,
7690 linux_breakpoint_kind_from_pc,
7691 linux_sw_breakpoint_from_kind,
7692 linux_proc_tid_get_name,
7693 linux_breakpoint_kind_from_current_state,
7694 linux_supports_software_single_step,
7695 linux_supports_catch_syscall,
7696 linux_get_ipa_tdesc_idx,
7697 };
7698
7699 #ifdef HAVE_LINUX_REGSETS
7700 void
7701 initialize_regsets_info (struct regsets_info *info)
7702 {
7703 for (info->num_regsets = 0;
7704 info->regsets[info->num_regsets].size >= 0;
7705 info->num_regsets++)
7706 ;
7707 }
7708 #endif
7709
7710 void
7711 initialize_low (void)
7712 {
7713 struct sigaction sigchld_action;
7714
7715 memset (&sigchld_action, 0, sizeof (sigchld_action));
7716 set_target_ops (&linux_target_ops);
7717
7718 linux_ptrace_init_warnings ();
7719
7720 sigchld_action.sa_handler = sigchld_handler;
7721 sigemptyset (&sigchld_action.sa_mask);
7722 sigchld_action.sa_flags = SA_RESTART;
7723 sigaction (SIGCHLD, &sigchld_action, NULL);
7724
7725 initialize_low_arch ();
7726
7727 linux_check_ptrace_features ();
7728 }
This page took 0.212655 seconds and 5 git commands to generate.