GDBserver: Pass process_info pointer to target_detach and target_join
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #include "common/scoped_restore.h"
54 #ifndef ELFMAG0
55 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
56 then ELFMAG0 will have been defined. If it didn't get included by
57 gdb_proc_service.h then including it will likely introduce a duplicate
58 definition of elf_fpregset_t. */
59 #include <elf.h>
60 #endif
61 #include "nat/linux-namespaces.h"
62
63 #ifndef SPUFS_MAGIC
64 #define SPUFS_MAGIC 0x23c9b64e
65 #endif
66
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
71 # endif
72 #endif
73
74 #ifndef O_LARGEFILE
75 #define O_LARGEFILE 0
76 #endif
77
78 /* Some targets did not define these ptrace constants from the start,
79 so gdbserver defines them locally here. In the future, these may
80 be removed after they are added to asm/ptrace.h. */
81 #if !(defined(PT_TEXT_ADDR) \
82 || defined(PT_DATA_ADDR) \
83 || defined(PT_TEXT_END_ADDR))
84 #if defined(__mcoldfire__)
85 /* These are still undefined in 3.10 kernels. */
86 #define PT_TEXT_ADDR 49*4
87 #define PT_DATA_ADDR 50*4
88 #define PT_TEXT_END_ADDR 51*4
89 /* BFIN already defines these since at least 2.6.32 kernels. */
90 #elif defined(BFIN)
91 #define PT_TEXT_ADDR 220
92 #define PT_TEXT_END_ADDR 224
93 #define PT_DATA_ADDR 228
94 /* These are still undefined in 3.10 kernels. */
95 #elif defined(__TMS320C6X__)
96 #define PT_TEXT_ADDR (0x10000*4)
97 #define PT_DATA_ADDR (0x10004*4)
98 #define PT_TEXT_END_ADDR (0x10008*4)
99 #endif
100 #endif
101
102 #ifdef HAVE_LINUX_BTRACE
103 # include "nat/linux-btrace.h"
104 # include "btrace-common.h"
105 #endif
106
107 #ifndef HAVE_ELF32_AUXV_T
108 /* Copied from glibc's elf.h. */
109 typedef struct
110 {
111 uint32_t a_type; /* Entry type */
112 union
113 {
114 uint32_t a_val; /* Integer value */
115 /* We use to have pointer elements added here. We cannot do that,
116 though, since it does not work when using 32-bit definitions
117 on 64-bit platforms and vice versa. */
118 } a_un;
119 } Elf32_auxv_t;
120 #endif
121
122 #ifndef HAVE_ELF64_AUXV_T
123 /* Copied from glibc's elf.h. */
124 typedef struct
125 {
126 uint64_t a_type; /* Entry type */
127 union
128 {
129 uint64_t a_val; /* Integer value */
130 /* We use to have pointer elements added here. We cannot do that,
131 though, since it does not work when using 32-bit definitions
132 on 64-bit platforms and vice versa. */
133 } a_un;
134 } Elf64_auxv_t;
135 #endif
136
137 /* Does the current host support PTRACE_GETREGSET? */
138 int have_ptrace_getregset = -1;
139
140 /* LWP accessors. */
141
142 /* See nat/linux-nat.h. */
143
144 ptid_t
145 ptid_of_lwp (struct lwp_info *lwp)
146 {
147 return ptid_of (get_lwp_thread (lwp));
148 }
149
150 /* See nat/linux-nat.h. */
151
152 void
153 lwp_set_arch_private_info (struct lwp_info *lwp,
154 struct arch_lwp_info *info)
155 {
156 lwp->arch_private = info;
157 }
158
159 /* See nat/linux-nat.h. */
160
161 struct arch_lwp_info *
162 lwp_arch_private_info (struct lwp_info *lwp)
163 {
164 return lwp->arch_private;
165 }
166
167 /* See nat/linux-nat.h. */
168
169 int
170 lwp_is_stopped (struct lwp_info *lwp)
171 {
172 return lwp->stopped;
173 }
174
175 /* See nat/linux-nat.h. */
176
177 enum target_stop_reason
178 lwp_stop_reason (struct lwp_info *lwp)
179 {
180 return lwp->stop_reason;
181 }
182
183 /* See nat/linux-nat.h. */
184
185 int
186 lwp_is_stepping (struct lwp_info *lwp)
187 {
188 return lwp->stepping;
189 }
190
191 /* A list of all unknown processes which receive stop signals. Some
192 other process will presumably claim each of these as forked
193 children momentarily. */
194
195 struct simple_pid_list
196 {
197 /* The process ID. */
198 int pid;
199
200 /* The status as reported by waitpid. */
201 int status;
202
203 /* Next in chain. */
204 struct simple_pid_list *next;
205 };
206 struct simple_pid_list *stopped_pids;
207
208 /* Trivial list manipulation functions to keep track of a list of new
209 stopped processes. */
210
211 static void
212 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
213 {
214 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
215
216 new_pid->pid = pid;
217 new_pid->status = status;
218 new_pid->next = *listp;
219 *listp = new_pid;
220 }
221
222 static int
223 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
224 {
225 struct simple_pid_list **p;
226
227 for (p = listp; *p != NULL; p = &(*p)->next)
228 if ((*p)->pid == pid)
229 {
230 struct simple_pid_list *next = (*p)->next;
231
232 *statusp = (*p)->status;
233 xfree (*p);
234 *p = next;
235 return 1;
236 }
237 return 0;
238 }
239
240 enum stopping_threads_kind
241 {
242 /* Not stopping threads presently. */
243 NOT_STOPPING_THREADS,
244
245 /* Stopping threads. */
246 STOPPING_THREADS,
247
248 /* Stopping and suspending threads. */
249 STOPPING_AND_SUSPENDING_THREADS
250 };
251
252 /* This is set while stop_all_lwps is in effect. */
253 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
254
255 /* FIXME make into a target method? */
256 int using_threads = 1;
257
258 /* True if we're presently stabilizing threads (moving them out of
259 jump pads). */
260 static int stabilizing_threads;
261
262 static void linux_resume_one_lwp (struct lwp_info *lwp,
263 int step, int signal, siginfo_t *info);
264 static void linux_resume (struct thread_resume *resume_info, size_t n);
265 static void stop_all_lwps (int suspend, struct lwp_info *except);
266 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
267 static void unsuspend_all_lwps (struct lwp_info *except);
268 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
269 int *wstat, int options);
270 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
271 static struct lwp_info *add_lwp (ptid_t ptid);
272 static void linux_mourn (struct process_info *process);
273 static int linux_stopped_by_watchpoint (void);
274 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
275 static int lwp_is_marked_dead (struct lwp_info *lwp);
276 static void proceed_all_lwps (void);
277 static int finish_step_over (struct lwp_info *lwp);
278 static int kill_lwp (unsigned long lwpid, int signo);
279 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
280 static void complete_ongoing_step_over (void);
281 static int linux_low_ptrace_options (int attached);
282 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
283 static void proceed_one_lwp (thread_info *thread, lwp_info *except);
284
285 /* When the event-loop is doing a step-over, this points at the thread
286 being stepped. */
287 ptid_t step_over_bkpt;
288
289 /* True if the low target can hardware single-step. */
290
291 static int
292 can_hardware_single_step (void)
293 {
294 if (the_low_target.supports_hardware_single_step != NULL)
295 return the_low_target.supports_hardware_single_step ();
296 else
297 return 0;
298 }
299
300 /* True if the low target can software single-step. Such targets
301 implement the GET_NEXT_PCS callback. */
302
303 static int
304 can_software_single_step (void)
305 {
306 return (the_low_target.get_next_pcs != NULL);
307 }
308
309 /* True if the low target supports memory breakpoints. If so, we'll
310 have a GET_PC implementation. */
311
312 static int
313 supports_breakpoints (void)
314 {
315 return (the_low_target.get_pc != NULL);
316 }
317
318 /* Returns true if this target can support fast tracepoints. This
319 does not mean that the in-process agent has been loaded in the
320 inferior. */
321
322 static int
323 supports_fast_tracepoints (void)
324 {
325 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
326 }
327
328 /* True if LWP is stopped in its stepping range. */
329
330 static int
331 lwp_in_step_range (struct lwp_info *lwp)
332 {
333 CORE_ADDR pc = lwp->stop_pc;
334
335 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
336 }
337
338 struct pending_signals
339 {
340 int signal;
341 siginfo_t info;
342 struct pending_signals *prev;
343 };
344
345 /* The read/write ends of the pipe registered as waitable file in the
346 event loop. */
347 static int linux_event_pipe[2] = { -1, -1 };
348
349 /* True if we're currently in async mode. */
350 #define target_is_async_p() (linux_event_pipe[0] != -1)
351
352 static void send_sigstop (struct lwp_info *lwp);
353 static void wait_for_sigstop (void);
354
355 /* Return non-zero if HEADER is a 64-bit ELF file. */
356
357 static int
358 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
359 {
360 if (header->e_ident[EI_MAG0] == ELFMAG0
361 && header->e_ident[EI_MAG1] == ELFMAG1
362 && header->e_ident[EI_MAG2] == ELFMAG2
363 && header->e_ident[EI_MAG3] == ELFMAG3)
364 {
365 *machine = header->e_machine;
366 return header->e_ident[EI_CLASS] == ELFCLASS64;
367
368 }
369 *machine = EM_NONE;
370 return -1;
371 }
372
373 /* Return non-zero if FILE is a 64-bit ELF file,
374 zero if the file is not a 64-bit ELF file,
375 and -1 if the file is not accessible or doesn't exist. */
376
377 static int
378 elf_64_file_p (const char *file, unsigned int *machine)
379 {
380 Elf64_Ehdr header;
381 int fd;
382
383 fd = open (file, O_RDONLY);
384 if (fd < 0)
385 return -1;
386
387 if (read (fd, &header, sizeof (header)) != sizeof (header))
388 {
389 close (fd);
390 return 0;
391 }
392 close (fd);
393
394 return elf_64_header_p (&header, machine);
395 }
396
397 /* Accepts an integer PID; Returns true if the executable PID is
398 running is a 64-bit ELF file.. */
399
400 int
401 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
402 {
403 char file[PATH_MAX];
404
405 sprintf (file, "/proc/%d/exe", pid);
406 return elf_64_file_p (file, machine);
407 }
408
409 static void
410 delete_lwp (struct lwp_info *lwp)
411 {
412 struct thread_info *thr = get_lwp_thread (lwp);
413
414 if (debug_threads)
415 debug_printf ("deleting %ld\n", lwpid_of (thr));
416
417 remove_thread (thr);
418
419 if (the_low_target.delete_thread != NULL)
420 the_low_target.delete_thread (lwp->arch_private);
421 else
422 gdb_assert (lwp->arch_private == NULL);
423
424 free (lwp);
425 }
426
427 /* Add a process to the common process list, and set its private
428 data. */
429
430 static struct process_info *
431 linux_add_process (int pid, int attached)
432 {
433 struct process_info *proc;
434
435 proc = add_process (pid, attached);
436 proc->priv = XCNEW (struct process_info_private);
437
438 if (the_low_target.new_process != NULL)
439 proc->priv->arch_private = the_low_target.new_process ();
440
441 return proc;
442 }
443
444 static CORE_ADDR get_pc (struct lwp_info *lwp);
445
446 /* Call the target arch_setup function on the current thread. */
447
448 static void
449 linux_arch_setup (void)
450 {
451 the_low_target.arch_setup ();
452 }
453
454 /* Call the target arch_setup function on THREAD. */
455
456 static void
457 linux_arch_setup_thread (struct thread_info *thread)
458 {
459 struct thread_info *saved_thread;
460
461 saved_thread = current_thread;
462 current_thread = thread;
463
464 linux_arch_setup ();
465
466 current_thread = saved_thread;
467 }
468
469 /* Handle a GNU/Linux extended wait response. If we see a clone,
470 fork, or vfork event, we need to add the new LWP to our list
471 (and return 0 so as not to report the trap to higher layers).
472 If we see an exec event, we will modify ORIG_EVENT_LWP to point
473 to a new LWP representing the new program. */
474
475 static int
476 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
477 {
478 client_state &cs = get_client_state ();
479 struct lwp_info *event_lwp = *orig_event_lwp;
480 int event = linux_ptrace_get_extended_event (wstat);
481 struct thread_info *event_thr = get_lwp_thread (event_lwp);
482 struct lwp_info *new_lwp;
483
484 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
485
486 /* All extended events we currently use are mid-syscall. Only
487 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
488 you have to be using PTRACE_SEIZE to get that. */
489 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
490
491 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
492 || (event == PTRACE_EVENT_CLONE))
493 {
494 ptid_t ptid;
495 unsigned long new_pid;
496 int ret, status;
497
498 /* Get the pid of the new lwp. */
499 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
500 &new_pid);
501
502 /* If we haven't already seen the new PID stop, wait for it now. */
503 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
504 {
505 /* The new child has a pending SIGSTOP. We can't affect it until it
506 hits the SIGSTOP, but we're already attached. */
507
508 ret = my_waitpid (new_pid, &status, __WALL);
509
510 if (ret == -1)
511 perror_with_name ("waiting for new child");
512 else if (ret != new_pid)
513 warning ("wait returned unexpected PID %d", ret);
514 else if (!WIFSTOPPED (status))
515 warning ("wait returned unexpected status 0x%x", status);
516 }
517
518 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
519 {
520 struct process_info *parent_proc;
521 struct process_info *child_proc;
522 struct lwp_info *child_lwp;
523 struct thread_info *child_thr;
524 struct target_desc *tdesc;
525
526 ptid = ptid_t (new_pid, new_pid, 0);
527
528 if (debug_threads)
529 {
530 debug_printf ("HEW: Got fork event from LWP %ld, "
531 "new child is %d\n",
532 ptid_of (event_thr).lwp (),
533 ptid.pid ());
534 }
535
536 /* Add the new process to the tables and clone the breakpoint
537 lists of the parent. We need to do this even if the new process
538 will be detached, since we will need the process object and the
539 breakpoints to remove any breakpoints from memory when we
540 detach, and the client side will access registers. */
541 child_proc = linux_add_process (new_pid, 0);
542 gdb_assert (child_proc != NULL);
543 child_lwp = add_lwp (ptid);
544 gdb_assert (child_lwp != NULL);
545 child_lwp->stopped = 1;
546 child_lwp->must_set_ptrace_flags = 1;
547 child_lwp->status_pending_p = 0;
548 child_thr = get_lwp_thread (child_lwp);
549 child_thr->last_resume_kind = resume_stop;
550 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
551
552 /* If we're suspending all threads, leave this one suspended
553 too. If the fork/clone parent is stepping over a breakpoint,
554 all other threads have been suspended already. Leave the
555 child suspended too. */
556 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
557 || event_lwp->bp_reinsert != 0)
558 {
559 if (debug_threads)
560 debug_printf ("HEW: leaving child suspended\n");
561 child_lwp->suspended = 1;
562 }
563
564 parent_proc = get_thread_process (event_thr);
565 child_proc->attached = parent_proc->attached;
566
567 if (event_lwp->bp_reinsert != 0
568 && can_software_single_step ()
569 && event == PTRACE_EVENT_VFORK)
570 {
571 /* If we leave single-step breakpoints there, child will
572 hit it, so uninsert single-step breakpoints from parent
573 (and child). Once vfork child is done, reinsert
574 them back to parent. */
575 uninsert_single_step_breakpoints (event_thr);
576 }
577
578 clone_all_breakpoints (child_thr, event_thr);
579
580 tdesc = allocate_target_description ();
581 copy_target_description (tdesc, parent_proc->tdesc);
582 child_proc->tdesc = tdesc;
583
584 /* Clone arch-specific process data. */
585 if (the_low_target.new_fork != NULL)
586 the_low_target.new_fork (parent_proc, child_proc);
587
588 /* Save fork info in the parent thread. */
589 if (event == PTRACE_EVENT_FORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
591 else if (event == PTRACE_EVENT_VFORK)
592 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
593
594 event_lwp->waitstatus.value.related_pid = ptid;
595
596 /* The status_pending field contains bits denoting the
597 extended event, so when the pending event is handled,
598 the handler will look at lwp->waitstatus. */
599 event_lwp->status_pending_p = 1;
600 event_lwp->status_pending = wstat;
601
602 /* Link the threads until the parent event is passed on to
603 higher layers. */
604 event_lwp->fork_relative = child_lwp;
605 child_lwp->fork_relative = event_lwp;
606
607 /* If the parent thread is doing step-over with single-step
608 breakpoints, the list of single-step breakpoints are cloned
609 from the parent's. Remove them from the child process.
610 In case of vfork, we'll reinsert them back once vforked
611 child is done. */
612 if (event_lwp->bp_reinsert != 0
613 && can_software_single_step ())
614 {
615 /* The child process is forked and stopped, so it is safe
616 to access its memory without stopping all other threads
617 from other processes. */
618 delete_single_step_breakpoints (child_thr);
619
620 gdb_assert (has_single_step_breakpoints (event_thr));
621 gdb_assert (!has_single_step_breakpoints (child_thr));
622 }
623
624 /* Report the event. */
625 return 0;
626 }
627
628 if (debug_threads)
629 debug_printf ("HEW: Got clone event "
630 "from LWP %ld, new child is LWP %ld\n",
631 lwpid_of (event_thr), new_pid);
632
633 ptid = ptid_t (pid_of (event_thr), new_pid, 0);
634 new_lwp = add_lwp (ptid);
635
636 /* Either we're going to immediately resume the new thread
637 or leave it stopped. linux_resume_one_lwp is a nop if it
638 thinks the thread is currently running, so set this first
639 before calling linux_resume_one_lwp. */
640 new_lwp->stopped = 1;
641
642 /* If we're suspending all threads, leave this one suspended
643 too. If the fork/clone parent is stepping over a breakpoint,
644 all other threads have been suspended already. Leave the
645 child suspended too. */
646 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
647 || event_lwp->bp_reinsert != 0)
648 new_lwp->suspended = 1;
649
650 /* Normally we will get the pending SIGSTOP. But in some cases
651 we might get another signal delivered to the group first.
652 If we do get another signal, be sure not to lose it. */
653 if (WSTOPSIG (status) != SIGSTOP)
654 {
655 new_lwp->stop_expected = 1;
656 new_lwp->status_pending_p = 1;
657 new_lwp->status_pending = status;
658 }
659 else if (cs.report_thread_events)
660 {
661 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
662 new_lwp->status_pending_p = 1;
663 new_lwp->status_pending = status;
664 }
665
666 #ifdef USE_THREAD_DB
667 thread_db_notice_clone (event_thr, ptid);
668 #endif
669
670 /* Don't report the event. */
671 return 1;
672 }
673 else if (event == PTRACE_EVENT_VFORK_DONE)
674 {
675 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
676
677 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
678 {
679 reinsert_single_step_breakpoints (event_thr);
680
681 gdb_assert (has_single_step_breakpoints (event_thr));
682 }
683
684 /* Report the event. */
685 return 0;
686 }
687 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
688 {
689 struct process_info *proc;
690 std::vector<int> syscalls_to_catch;
691 ptid_t event_ptid;
692 pid_t event_pid;
693
694 if (debug_threads)
695 {
696 debug_printf ("HEW: Got exec event from LWP %ld\n",
697 lwpid_of (event_thr));
698 }
699
700 /* Get the event ptid. */
701 event_ptid = ptid_of (event_thr);
702 event_pid = event_ptid.pid ();
703
704 /* Save the syscall list from the execing process. */
705 proc = get_thread_process (event_thr);
706 syscalls_to_catch = std::move (proc->syscalls_to_catch);
707
708 /* Delete the execing process and all its threads. */
709 linux_mourn (proc);
710 current_thread = NULL;
711
712 /* Create a new process/lwp/thread. */
713 proc = linux_add_process (event_pid, 0);
714 event_lwp = add_lwp (event_ptid);
715 event_thr = get_lwp_thread (event_lwp);
716 gdb_assert (current_thread == event_thr);
717 linux_arch_setup_thread (event_thr);
718
719 /* Set the event status. */
720 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
721 event_lwp->waitstatus.value.execd_pathname
722 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
723
724 /* Mark the exec status as pending. */
725 event_lwp->stopped = 1;
726 event_lwp->status_pending_p = 1;
727 event_lwp->status_pending = wstat;
728 event_thr->last_resume_kind = resume_continue;
729 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
730
731 /* Update syscall state in the new lwp, effectively mid-syscall too. */
732 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
733
734 /* Restore the list to catch. Don't rely on the client, which is free
735 to avoid sending a new list when the architecture doesn't change.
736 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
737 proc->syscalls_to_catch = std::move (syscalls_to_catch);
738
739 /* Report the event. */
740 *orig_event_lwp = event_lwp;
741 return 0;
742 }
743
744 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
745 }
746
747 /* Return the PC as read from the regcache of LWP, without any
748 adjustment. */
749
750 static CORE_ADDR
751 get_pc (struct lwp_info *lwp)
752 {
753 struct thread_info *saved_thread;
754 struct regcache *regcache;
755 CORE_ADDR pc;
756
757 if (the_low_target.get_pc == NULL)
758 return 0;
759
760 saved_thread = current_thread;
761 current_thread = get_lwp_thread (lwp);
762
763 regcache = get_thread_regcache (current_thread, 1);
764 pc = (*the_low_target.get_pc) (regcache);
765
766 if (debug_threads)
767 debug_printf ("pc is 0x%lx\n", (long) pc);
768
769 current_thread = saved_thread;
770 return pc;
771 }
772
773 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
774 Fill *SYSNO with the syscall nr trapped. */
775
776 static void
777 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
778 {
779 struct thread_info *saved_thread;
780 struct regcache *regcache;
781
782 if (the_low_target.get_syscall_trapinfo == NULL)
783 {
784 /* If we cannot get the syscall trapinfo, report an unknown
785 system call number. */
786 *sysno = UNKNOWN_SYSCALL;
787 return;
788 }
789
790 saved_thread = current_thread;
791 current_thread = get_lwp_thread (lwp);
792
793 regcache = get_thread_regcache (current_thread, 1);
794 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
795
796 if (debug_threads)
797 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
798
799 current_thread = saved_thread;
800 }
801
802 static int check_stopped_by_watchpoint (struct lwp_info *child);
803
804 /* Called when the LWP stopped for a signal/trap. If it stopped for a
805 trap check what caused it (breakpoint, watchpoint, trace, etc.),
806 and save the result in the LWP's stop_reason field. If it stopped
807 for a breakpoint, decrement the PC if necessary on the lwp's
808 architecture. Returns true if we now have the LWP's stop PC. */
809
810 static int
811 save_stop_reason (struct lwp_info *lwp)
812 {
813 CORE_ADDR pc;
814 CORE_ADDR sw_breakpoint_pc;
815 struct thread_info *saved_thread;
816 #if USE_SIGTRAP_SIGINFO
817 siginfo_t siginfo;
818 #endif
819
820 if (the_low_target.get_pc == NULL)
821 return 0;
822
823 pc = get_pc (lwp);
824 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
825
826 /* breakpoint_at reads from the current thread. */
827 saved_thread = current_thread;
828 current_thread = get_lwp_thread (lwp);
829
830 #if USE_SIGTRAP_SIGINFO
831 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
832 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
833 {
834 if (siginfo.si_signo == SIGTRAP)
835 {
836 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
837 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
838 {
839 /* The si_code is ambiguous on this arch -- check debug
840 registers. */
841 if (!check_stopped_by_watchpoint (lwp))
842 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
843 }
844 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
845 {
846 /* If we determine the LWP stopped for a SW breakpoint,
847 trust it. Particularly don't check watchpoint
848 registers, because at least on s390, we'd find
849 stopped-by-watchpoint as long as there's a watchpoint
850 set. */
851 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
852 }
853 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
854 {
855 /* This can indicate either a hardware breakpoint or
856 hardware watchpoint. Check debug registers. */
857 if (!check_stopped_by_watchpoint (lwp))
858 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
859 }
860 else if (siginfo.si_code == TRAP_TRACE)
861 {
862 /* We may have single stepped an instruction that
863 triggered a watchpoint. In that case, on some
864 architectures (such as x86), instead of TRAP_HWBKPT,
865 si_code indicates TRAP_TRACE, and we need to check
866 the debug registers separately. */
867 if (!check_stopped_by_watchpoint (lwp))
868 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
869 }
870 }
871 }
872 #else
873 /* We may have just stepped a breakpoint instruction. E.g., in
874 non-stop mode, GDB first tells the thread A to step a range, and
875 then the user inserts a breakpoint inside the range. In that
876 case we need to report the breakpoint PC. */
877 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
878 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
879 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
880
881 if (hardware_breakpoint_inserted_here (pc))
882 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
885 check_stopped_by_watchpoint (lwp);
886 #endif
887
888 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
889 {
890 if (debug_threads)
891 {
892 struct thread_info *thr = get_lwp_thread (lwp);
893
894 debug_printf ("CSBB: %s stopped by software breakpoint\n",
895 target_pid_to_str (ptid_of (thr)));
896 }
897
898 /* Back up the PC if necessary. */
899 if (pc != sw_breakpoint_pc)
900 {
901 struct regcache *regcache
902 = get_thread_regcache (current_thread, 1);
903 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
904 }
905
906 /* Update this so we record the correct stop PC below. */
907 pc = sw_breakpoint_pc;
908 }
909 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
910 {
911 if (debug_threads)
912 {
913 struct thread_info *thr = get_lwp_thread (lwp);
914
915 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
916 target_pid_to_str (ptid_of (thr)));
917 }
918 }
919 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
920 {
921 if (debug_threads)
922 {
923 struct thread_info *thr = get_lwp_thread (lwp);
924
925 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
926 target_pid_to_str (ptid_of (thr)));
927 }
928 }
929 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
930 {
931 if (debug_threads)
932 {
933 struct thread_info *thr = get_lwp_thread (lwp);
934
935 debug_printf ("CSBB: %s stopped by trace\n",
936 target_pid_to_str (ptid_of (thr)));
937 }
938 }
939
940 lwp->stop_pc = pc;
941 current_thread = saved_thread;
942 return 1;
943 }
944
945 static struct lwp_info *
946 add_lwp (ptid_t ptid)
947 {
948 struct lwp_info *lwp;
949
950 lwp = XCNEW (struct lwp_info);
951
952 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
953
954 if (the_low_target.new_thread != NULL)
955 the_low_target.new_thread (lwp);
956
957 lwp->thread = add_thread (ptid, lwp);
958
959 return lwp;
960 }
961
962 /* Callback to be used when calling fork_inferior, responsible for
963 actually initiating the tracing of the inferior. */
964
965 static void
966 linux_ptrace_fun ()
967 {
968 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
969 (PTRACE_TYPE_ARG4) 0) < 0)
970 trace_start_error_with_name ("ptrace");
971
972 if (setpgid (0, 0) < 0)
973 trace_start_error_with_name ("setpgid");
974
975 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
976 stdout to stderr so that inferior i/o doesn't corrupt the connection.
977 Also, redirect stdin to /dev/null. */
978 if (remote_connection_is_stdio ())
979 {
980 if (close (0) < 0)
981 trace_start_error_with_name ("close");
982 if (open ("/dev/null", O_RDONLY) < 0)
983 trace_start_error_with_name ("open");
984 if (dup2 (2, 1) < 0)
985 trace_start_error_with_name ("dup2");
986 if (write (2, "stdin/stdout redirected\n",
987 sizeof ("stdin/stdout redirected\n") - 1) < 0)
988 {
989 /* Errors ignored. */;
990 }
991 }
992 }
993
994 /* Start an inferior process and returns its pid.
995 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
996 are its arguments. */
997
998 static int
999 linux_create_inferior (const char *program,
1000 const std::vector<char *> &program_args)
1001 {
1002 client_state &cs = get_client_state ();
1003 struct lwp_info *new_lwp;
1004 int pid;
1005 ptid_t ptid;
1006
1007 {
1008 maybe_disable_address_space_randomization restore_personality
1009 (cs.disable_randomization);
1010 std::string str_program_args = stringify_argv (program_args);
1011
1012 pid = fork_inferior (program,
1013 str_program_args.c_str (),
1014 get_environ ()->envp (), linux_ptrace_fun,
1015 NULL, NULL, NULL, NULL);
1016 }
1017
1018 linux_add_process (pid, 0);
1019
1020 ptid = ptid_t (pid, pid, 0);
1021 new_lwp = add_lwp (ptid);
1022 new_lwp->must_set_ptrace_flags = 1;
1023
1024 post_fork_inferior (pid, program);
1025
1026 return pid;
1027 }
1028
1029 /* Implement the post_create_inferior target_ops method. */
1030
1031 static void
1032 linux_post_create_inferior (void)
1033 {
1034 struct lwp_info *lwp = get_thread_lwp (current_thread);
1035
1036 linux_arch_setup ();
1037
1038 if (lwp->must_set_ptrace_flags)
1039 {
1040 struct process_info *proc = current_process ();
1041 int options = linux_low_ptrace_options (proc->attached);
1042
1043 linux_enable_event_reporting (lwpid_of (current_thread), options);
1044 lwp->must_set_ptrace_flags = 0;
1045 }
1046 }
1047
1048 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1049 error. */
1050
1051 int
1052 linux_attach_lwp (ptid_t ptid)
1053 {
1054 struct lwp_info *new_lwp;
1055 int lwpid = ptid.lwp ();
1056
1057 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1058 != 0)
1059 return errno;
1060
1061 new_lwp = add_lwp (ptid);
1062
1063 /* We need to wait for SIGSTOP before being able to make the next
1064 ptrace call on this LWP. */
1065 new_lwp->must_set_ptrace_flags = 1;
1066
1067 if (linux_proc_pid_is_stopped (lwpid))
1068 {
1069 if (debug_threads)
1070 debug_printf ("Attached to a stopped process\n");
1071
1072 /* The process is definitely stopped. It is in a job control
1073 stop, unless the kernel predates the TASK_STOPPED /
1074 TASK_TRACED distinction, in which case it might be in a
1075 ptrace stop. Make sure it is in a ptrace stop; from there we
1076 can kill it, signal it, et cetera.
1077
1078 First make sure there is a pending SIGSTOP. Since we are
1079 already attached, the process can not transition from stopped
1080 to running without a PTRACE_CONT; so we know this signal will
1081 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1082 probably already in the queue (unless this kernel is old
1083 enough to use TASK_STOPPED for ptrace stops); but since
1084 SIGSTOP is not an RT signal, it can only be queued once. */
1085 kill_lwp (lwpid, SIGSTOP);
1086
1087 /* Finally, resume the stopped process. This will deliver the
1088 SIGSTOP (or a higher priority signal, just like normal
1089 PTRACE_ATTACH), which we'll catch later on. */
1090 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1091 }
1092
1093 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1094 brings it to a halt.
1095
1096 There are several cases to consider here:
1097
1098 1) gdbserver has already attached to the process and is being notified
1099 of a new thread that is being created.
1100 In this case we should ignore that SIGSTOP and resume the
1101 process. This is handled below by setting stop_expected = 1,
1102 and the fact that add_thread sets last_resume_kind ==
1103 resume_continue.
1104
1105 2) This is the first thread (the process thread), and we're attaching
1106 to it via attach_inferior.
1107 In this case we want the process thread to stop.
1108 This is handled by having linux_attach set last_resume_kind ==
1109 resume_stop after we return.
1110
1111 If the pid we are attaching to is also the tgid, we attach to and
1112 stop all the existing threads. Otherwise, we attach to pid and
1113 ignore any other threads in the same group as this pid.
1114
1115 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1116 existing threads.
1117 In this case we want the thread to stop.
1118 FIXME: This case is currently not properly handled.
1119 We should wait for the SIGSTOP but don't. Things work apparently
1120 because enough time passes between when we ptrace (ATTACH) and when
1121 gdb makes the next ptrace call on the thread.
1122
1123 On the other hand, if we are currently trying to stop all threads, we
1124 should treat the new thread as if we had sent it a SIGSTOP. This works
1125 because we are guaranteed that the add_lwp call above added us to the
1126 end of the list, and so the new thread has not yet reached
1127 wait_for_sigstop (but will). */
1128 new_lwp->stop_expected = 1;
1129
1130 return 0;
1131 }
1132
1133 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1134 already attached. Returns true if a new LWP is found, false
1135 otherwise. */
1136
1137 static int
1138 attach_proc_task_lwp_callback (ptid_t ptid)
1139 {
1140 /* Is this a new thread? */
1141 if (find_thread_ptid (ptid) == NULL)
1142 {
1143 int lwpid = ptid.lwp ();
1144 int err;
1145
1146 if (debug_threads)
1147 debug_printf ("Found new lwp %d\n", lwpid);
1148
1149 err = linux_attach_lwp (ptid);
1150
1151 /* Be quiet if we simply raced with the thread exiting. EPERM
1152 is returned if the thread's task still exists, and is marked
1153 as exited or zombie, as well as other conditions, so in that
1154 case, confirm the status in /proc/PID/status. */
1155 if (err == ESRCH
1156 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1157 {
1158 if (debug_threads)
1159 {
1160 debug_printf ("Cannot attach to lwp %d: "
1161 "thread is gone (%d: %s)\n",
1162 lwpid, err, strerror (err));
1163 }
1164 }
1165 else if (err != 0)
1166 {
1167 std::string reason
1168 = linux_ptrace_attach_fail_reason_string (ptid, err);
1169
1170 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1171 }
1172
1173 return 1;
1174 }
1175 return 0;
1176 }
1177
1178 static void async_file_mark (void);
1179
1180 /* Attach to PID. If PID is the tgid, attach to it and all
1181 of its threads. */
1182
1183 static int
1184 linux_attach (unsigned long pid)
1185 {
1186 struct process_info *proc;
1187 struct thread_info *initial_thread;
1188 ptid_t ptid = ptid_t (pid, pid, 0);
1189 int err;
1190
1191 /* Attach to PID. We will check for other threads
1192 soon. */
1193 err = linux_attach_lwp (ptid);
1194 if (err != 0)
1195 {
1196 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1197
1198 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1199 }
1200
1201 proc = linux_add_process (pid, 1);
1202
1203 /* Don't ignore the initial SIGSTOP if we just attached to this
1204 process. It will be collected by wait shortly. */
1205 initial_thread = find_thread_ptid (ptid_t (pid, pid, 0));
1206 initial_thread->last_resume_kind = resume_stop;
1207
1208 /* We must attach to every LWP. If /proc is mounted, use that to
1209 find them now. On the one hand, the inferior may be using raw
1210 clone instead of using pthreads. On the other hand, even if it
1211 is using pthreads, GDB may not be connected yet (thread_db needs
1212 to do symbol lookups, through qSymbol). Also, thread_db walks
1213 structures in the inferior's address space to find the list of
1214 threads/LWPs, and those structures may well be corrupted. Note
1215 that once thread_db is loaded, we'll still use it to list threads
1216 and associate pthread info with each LWP. */
1217 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1218
1219 /* GDB will shortly read the xml target description for this
1220 process, to figure out the process' architecture. But the target
1221 description is only filled in when the first process/thread in
1222 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1223 that now, otherwise, if GDB is fast enough, it could read the
1224 target description _before_ that initial stop. */
1225 if (non_stop)
1226 {
1227 struct lwp_info *lwp;
1228 int wstat, lwpid;
1229 ptid_t pid_ptid = ptid_t (pid);
1230
1231 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1232 &wstat, __WALL);
1233 gdb_assert (lwpid > 0);
1234
1235 lwp = find_lwp_pid (ptid_t (lwpid));
1236
1237 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1238 {
1239 lwp->status_pending_p = 1;
1240 lwp->status_pending = wstat;
1241 }
1242
1243 initial_thread->last_resume_kind = resume_continue;
1244
1245 async_file_mark ();
1246
1247 gdb_assert (proc->tdesc != NULL);
1248 }
1249
1250 return 0;
1251 }
1252
1253 static int
1254 last_thread_of_process_p (int pid)
1255 {
1256 bool seen_one = false;
1257
1258 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1259 {
1260 if (!seen_one)
1261 {
1262 /* This is the first thread of this process we see. */
1263 seen_one = true;
1264 return false;
1265 }
1266 else
1267 {
1268 /* This is the second thread of this process we see. */
1269 return true;
1270 }
1271 });
1272
1273 return thread == NULL;
1274 }
1275
1276 /* Kill LWP. */
1277
1278 static void
1279 linux_kill_one_lwp (struct lwp_info *lwp)
1280 {
1281 struct thread_info *thr = get_lwp_thread (lwp);
1282 int pid = lwpid_of (thr);
1283
1284 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1285 there is no signal context, and ptrace(PTRACE_KILL) (or
1286 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1287 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1288 alternative is to kill with SIGKILL. We only need one SIGKILL
1289 per process, not one for each thread. But since we still support
1290 support debugging programs using raw clone without CLONE_THREAD,
1291 we send one for each thread. For years, we used PTRACE_KILL
1292 only, so we're being a bit paranoid about some old kernels where
1293 PTRACE_KILL might work better (dubious if there are any such, but
1294 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1295 second, and so we're fine everywhere. */
1296
1297 errno = 0;
1298 kill_lwp (pid, SIGKILL);
1299 if (debug_threads)
1300 {
1301 int save_errno = errno;
1302
1303 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1304 target_pid_to_str (ptid_of (thr)),
1305 save_errno ? strerror (save_errno) : "OK");
1306 }
1307
1308 errno = 0;
1309 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1310 if (debug_threads)
1311 {
1312 int save_errno = errno;
1313
1314 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1315 target_pid_to_str (ptid_of (thr)),
1316 save_errno ? strerror (save_errno) : "OK");
1317 }
1318 }
1319
1320 /* Kill LWP and wait for it to die. */
1321
1322 static void
1323 kill_wait_lwp (struct lwp_info *lwp)
1324 {
1325 struct thread_info *thr = get_lwp_thread (lwp);
1326 int pid = ptid_of (thr).pid ();
1327 int lwpid = ptid_of (thr).lwp ();
1328 int wstat;
1329 int res;
1330
1331 if (debug_threads)
1332 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1333
1334 do
1335 {
1336 linux_kill_one_lwp (lwp);
1337
1338 /* Make sure it died. Notes:
1339
1340 - The loop is most likely unnecessary.
1341
1342 - We don't use linux_wait_for_event as that could delete lwps
1343 while we're iterating over them. We're not interested in
1344 any pending status at this point, only in making sure all
1345 wait status on the kernel side are collected until the
1346 process is reaped.
1347
1348 - We don't use __WALL here as the __WALL emulation relies on
1349 SIGCHLD, and killing a stopped process doesn't generate
1350 one, nor an exit status.
1351 */
1352 res = my_waitpid (lwpid, &wstat, 0);
1353 if (res == -1 && errno == ECHILD)
1354 res = my_waitpid (lwpid, &wstat, __WCLONE);
1355 } while (res > 0 && WIFSTOPPED (wstat));
1356
1357 /* Even if it was stopped, the child may have already disappeared.
1358 E.g., if it was killed by SIGKILL. */
1359 if (res < 0 && errno != ECHILD)
1360 perror_with_name ("kill_wait_lwp");
1361 }
1362
1363 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1364 except the leader. */
1365
1366 static void
1367 kill_one_lwp_callback (thread_info *thread, int pid)
1368 {
1369 struct lwp_info *lwp = get_thread_lwp (thread);
1370
1371 /* We avoid killing the first thread here, because of a Linux kernel (at
1372 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1373 the children get a chance to be reaped, it will remain a zombie
1374 forever. */
1375
1376 if (lwpid_of (thread) == pid)
1377 {
1378 if (debug_threads)
1379 debug_printf ("lkop: is last of process %s\n",
1380 target_pid_to_str (thread->id));
1381 return;
1382 }
1383
1384 kill_wait_lwp (lwp);
1385 }
1386
1387 static int
1388 linux_kill (int pid)
1389 {
1390 struct process_info *process;
1391 struct lwp_info *lwp;
1392
1393 process = find_process_pid (pid);
1394 if (process == NULL)
1395 return -1;
1396
1397 /* If we're killing a running inferior, make sure it is stopped
1398 first, as PTRACE_KILL will not work otherwise. */
1399 stop_all_lwps (0, NULL);
1400
1401 for_each_thread (pid, [&] (thread_info *thread)
1402 {
1403 kill_one_lwp_callback (thread, pid);
1404 });
1405
1406 /* See the comment in linux_kill_one_lwp. We did not kill the first
1407 thread in the list, so do so now. */
1408 lwp = find_lwp_pid (ptid_t (pid));
1409
1410 if (lwp == NULL)
1411 {
1412 if (debug_threads)
1413 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1414 pid);
1415 }
1416 else
1417 kill_wait_lwp (lwp);
1418
1419 the_target->mourn (process);
1420
1421 /* Since we presently can only stop all lwps of all processes, we
1422 need to unstop lwps of other processes. */
1423 unstop_all_lwps (0, NULL);
1424 return 0;
1425 }
1426
1427 /* Get pending signal of THREAD, for detaching purposes. This is the
1428 signal the thread last stopped for, which we need to deliver to the
1429 thread when detaching, otherwise, it'd be suppressed/lost. */
1430
1431 static int
1432 get_detach_signal (struct thread_info *thread)
1433 {
1434 client_state &cs = get_client_state ();
1435 enum gdb_signal signo = GDB_SIGNAL_0;
1436 int status;
1437 struct lwp_info *lp = get_thread_lwp (thread);
1438
1439 if (lp->status_pending_p)
1440 status = lp->status_pending;
1441 else
1442 {
1443 /* If the thread had been suspended by gdbserver, and it stopped
1444 cleanly, then it'll have stopped with SIGSTOP. But we don't
1445 want to deliver that SIGSTOP. */
1446 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1447 || thread->last_status.value.sig == GDB_SIGNAL_0)
1448 return 0;
1449
1450 /* Otherwise, we may need to deliver the signal we
1451 intercepted. */
1452 status = lp->last_status;
1453 }
1454
1455 if (!WIFSTOPPED (status))
1456 {
1457 if (debug_threads)
1458 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 /* Extended wait statuses aren't real SIGTRAPs. */
1464 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1465 {
1466 if (debug_threads)
1467 debug_printf ("GPS: lwp %s had stopped with extended "
1468 "status: no pending signal\n",
1469 target_pid_to_str (ptid_of (thread)));
1470 return 0;
1471 }
1472
1473 signo = gdb_signal_from_host (WSTOPSIG (status));
1474
1475 if (cs.program_signals_p && !cs.program_signals[signo])
1476 {
1477 if (debug_threads)
1478 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1479 target_pid_to_str (ptid_of (thread)),
1480 gdb_signal_to_string (signo));
1481 return 0;
1482 }
1483 else if (!cs.program_signals_p
1484 /* If we have no way to know which signals GDB does not
1485 want to have passed to the program, assume
1486 SIGTRAP/SIGINT, which is GDB's default. */
1487 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s had signal %s, "
1491 "but we don't know if we should pass it. "
1492 "Default to not.\n",
1493 target_pid_to_str (ptid_of (thread)),
1494 gdb_signal_to_string (signo));
1495 return 0;
1496 }
1497 else
1498 {
1499 if (debug_threads)
1500 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1501 target_pid_to_str (ptid_of (thread)),
1502 gdb_signal_to_string (signo));
1503
1504 return WSTOPSIG (status);
1505 }
1506 }
1507
1508 /* Detach from LWP. */
1509
1510 static void
1511 linux_detach_one_lwp (struct lwp_info *lwp)
1512 {
1513 struct thread_info *thread = get_lwp_thread (lwp);
1514 int sig;
1515 int lwpid;
1516
1517 /* If there is a pending SIGSTOP, get rid of it. */
1518 if (lwp->stop_expected)
1519 {
1520 if (debug_threads)
1521 debug_printf ("Sending SIGCONT to %s\n",
1522 target_pid_to_str (ptid_of (thread)));
1523
1524 kill_lwp (lwpid_of (thread), SIGCONT);
1525 lwp->stop_expected = 0;
1526 }
1527
1528 /* Pass on any pending signal for this thread. */
1529 sig = get_detach_signal (thread);
1530
1531 /* Preparing to resume may try to write registers, and fail if the
1532 lwp is zombie. If that happens, ignore the error. We'll handle
1533 it below, when detach fails with ESRCH. */
1534 TRY
1535 {
1536 /* Flush any pending changes to the process's registers. */
1537 regcache_invalidate_thread (thread);
1538
1539 /* Finally, let it resume. */
1540 if (the_low_target.prepare_to_resume != NULL)
1541 the_low_target.prepare_to_resume (lwp);
1542 }
1543 CATCH (ex, RETURN_MASK_ERROR)
1544 {
1545 if (!check_ptrace_stopped_lwp_gone (lwp))
1546 throw_exception (ex);
1547 }
1548 END_CATCH
1549
1550 lwpid = lwpid_of (thread);
1551 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1552 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1553 {
1554 int save_errno = errno;
1555
1556 /* We know the thread exists, so ESRCH must mean the lwp is
1557 zombie. This can happen if one of the already-detached
1558 threads exits the whole thread group. In that case we're
1559 still attached, and must reap the lwp. */
1560 if (save_errno == ESRCH)
1561 {
1562 int ret, status;
1563
1564 ret = my_waitpid (lwpid, &status, __WALL);
1565 if (ret == -1)
1566 {
1567 warning (_("Couldn't reap LWP %d while detaching: %s"),
1568 lwpid, strerror (errno));
1569 }
1570 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1571 {
1572 warning (_("Reaping LWP %d while detaching "
1573 "returned unexpected status 0x%x"),
1574 lwpid, status);
1575 }
1576 }
1577 else
1578 {
1579 error (_("Can't detach %s: %s"),
1580 target_pid_to_str (ptid_of (thread)),
1581 strerror (save_errno));
1582 }
1583 }
1584 else if (debug_threads)
1585 {
1586 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1587 target_pid_to_str (ptid_of (thread)),
1588 strsignal (sig));
1589 }
1590
1591 delete_lwp (lwp);
1592 }
1593
1594 /* Callback for for_each_thread. Detaches from non-leader threads of a
1595 given process. */
1596
1597 static void
1598 linux_detach_lwp_callback (thread_info *thread)
1599 {
1600 /* We don't actually detach from the thread group leader just yet.
1601 If the thread group exits, we must reap the zombie clone lwps
1602 before we're able to reap the leader. */
1603 if (thread->id.pid () == thread->id.lwp ())
1604 return;
1605
1606 lwp_info *lwp = get_thread_lwp (thread);
1607 linux_detach_one_lwp (lwp);
1608 }
1609
1610 static int
1611 linux_detach (process_info *process)
1612 {
1613 struct lwp_info *main_lwp;
1614
1615 /* As there's a step over already in progress, let it finish first,
1616 otherwise nesting a stabilize_threads operation on top gets real
1617 messy. */
1618 complete_ongoing_step_over ();
1619
1620 /* Stop all threads before detaching. First, ptrace requires that
1621 the thread is stopped to sucessfully detach. Second, thread_db
1622 may need to uninstall thread event breakpoints from memory, which
1623 only works with a stopped process anyway. */
1624 stop_all_lwps (0, NULL);
1625
1626 #ifdef USE_THREAD_DB
1627 thread_db_detach (process);
1628 #endif
1629
1630 /* Stabilize threads (move out of jump pads). */
1631 stabilize_threads ();
1632
1633 /* Detach from the clone lwps first. If the thread group exits just
1634 while we're detaching, we must reap the clone lwps before we're
1635 able to reap the leader. */
1636 for_each_thread (process->pid, linux_detach_lwp_callback);
1637
1638 main_lwp = find_lwp_pid (ptid_t (process->pid));
1639 linux_detach_one_lwp (main_lwp);
1640
1641 the_target->mourn (process);
1642
1643 /* Since we presently can only stop all lwps of all processes, we
1644 need to unstop lwps of other processes. */
1645 unstop_all_lwps (0, NULL);
1646 return 0;
1647 }
1648
1649 /* Remove all LWPs that belong to process PROC from the lwp list. */
1650
1651 static void
1652 linux_mourn (struct process_info *process)
1653 {
1654 struct process_info_private *priv;
1655
1656 #ifdef USE_THREAD_DB
1657 thread_db_mourn (process);
1658 #endif
1659
1660 for_each_thread (process->pid, [] (thread_info *thread)
1661 {
1662 delete_lwp (get_thread_lwp (thread));
1663 });
1664
1665 /* Freeing all private data. */
1666 priv = process->priv;
1667 if (the_low_target.delete_process != NULL)
1668 the_low_target.delete_process (priv->arch_private);
1669 else
1670 gdb_assert (priv->arch_private == NULL);
1671 free (priv);
1672 process->priv = NULL;
1673
1674 remove_process (process);
1675 }
1676
1677 static void
1678 linux_join (process_info *proc)
1679 {
1680 int status, ret;
1681
1682 do {
1683 ret = my_waitpid (proc->pid, &status, 0);
1684 if (WIFEXITED (status) || WIFSIGNALED (status))
1685 break;
1686 } while (ret != -1 || errno != ECHILD);
1687 }
1688
1689 /* Return nonzero if the given thread is still alive. */
1690 static int
1691 linux_thread_alive (ptid_t ptid)
1692 {
1693 struct lwp_info *lwp = find_lwp_pid (ptid);
1694
1695 /* We assume we always know if a thread exits. If a whole process
1696 exited but we still haven't been able to report it to GDB, we'll
1697 hold on to the last lwp of the dead process. */
1698 if (lwp != NULL)
1699 return !lwp_is_marked_dead (lwp);
1700 else
1701 return 0;
1702 }
1703
1704 /* Return 1 if this lwp still has an interesting status pending. If
1705 not (e.g., it had stopped for a breakpoint that is gone), return
1706 false. */
1707
1708 static int
1709 thread_still_has_status_pending_p (struct thread_info *thread)
1710 {
1711 struct lwp_info *lp = get_thread_lwp (thread);
1712
1713 if (!lp->status_pending_p)
1714 return 0;
1715
1716 if (thread->last_resume_kind != resume_stop
1717 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1718 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1719 {
1720 struct thread_info *saved_thread;
1721 CORE_ADDR pc;
1722 int discard = 0;
1723
1724 gdb_assert (lp->last_status != 0);
1725
1726 pc = get_pc (lp);
1727
1728 saved_thread = current_thread;
1729 current_thread = thread;
1730
1731 if (pc != lp->stop_pc)
1732 {
1733 if (debug_threads)
1734 debug_printf ("PC of %ld changed\n",
1735 lwpid_of (thread));
1736 discard = 1;
1737 }
1738
1739 #if !USE_SIGTRAP_SIGINFO
1740 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1741 && !(*the_low_target.breakpoint_at) (pc))
1742 {
1743 if (debug_threads)
1744 debug_printf ("previous SW breakpoint of %ld gone\n",
1745 lwpid_of (thread));
1746 discard = 1;
1747 }
1748 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1749 && !hardware_breakpoint_inserted_here (pc))
1750 {
1751 if (debug_threads)
1752 debug_printf ("previous HW breakpoint of %ld gone\n",
1753 lwpid_of (thread));
1754 discard = 1;
1755 }
1756 #endif
1757
1758 current_thread = saved_thread;
1759
1760 if (discard)
1761 {
1762 if (debug_threads)
1763 debug_printf ("discarding pending breakpoint status\n");
1764 lp->status_pending_p = 0;
1765 return 0;
1766 }
1767 }
1768
1769 return 1;
1770 }
1771
1772 /* Returns true if LWP is resumed from the client's perspective. */
1773
1774 static int
1775 lwp_resumed (struct lwp_info *lwp)
1776 {
1777 struct thread_info *thread = get_lwp_thread (lwp);
1778
1779 if (thread->last_resume_kind != resume_stop)
1780 return 1;
1781
1782 /* Did gdb send us a `vCont;t', but we haven't reported the
1783 corresponding stop to gdb yet? If so, the thread is still
1784 resumed/running from gdb's perspective. */
1785 if (thread->last_resume_kind == resume_stop
1786 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1787 return 1;
1788
1789 return 0;
1790 }
1791
1792 /* Return true if this lwp has an interesting status pending. */
1793 static bool
1794 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1795 {
1796 struct lwp_info *lp = get_thread_lwp (thread);
1797
1798 /* Check if we're only interested in events from a specific process
1799 or a specific LWP. */
1800 if (!thread->id.matches (ptid))
1801 return 0;
1802
1803 if (!lwp_resumed (lp))
1804 return 0;
1805
1806 if (lp->status_pending_p
1807 && !thread_still_has_status_pending_p (thread))
1808 {
1809 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1810 return 0;
1811 }
1812
1813 return lp->status_pending_p;
1814 }
1815
1816 struct lwp_info *
1817 find_lwp_pid (ptid_t ptid)
1818 {
1819 thread_info *thread = find_thread ([&] (thread_info *thread)
1820 {
1821 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1822 return thread->id.lwp () == lwp;
1823 });
1824
1825 if (thread == NULL)
1826 return NULL;
1827
1828 return get_thread_lwp (thread);
1829 }
1830
1831 /* Return the number of known LWPs in the tgid given by PID. */
1832
1833 static int
1834 num_lwps (int pid)
1835 {
1836 int count = 0;
1837
1838 for_each_thread (pid, [&] (thread_info *thread)
1839 {
1840 count++;
1841 });
1842
1843 return count;
1844 }
1845
1846 /* See nat/linux-nat.h. */
1847
1848 struct lwp_info *
1849 iterate_over_lwps (ptid_t filter,
1850 iterate_over_lwps_ftype callback,
1851 void *data)
1852 {
1853 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1854 {
1855 lwp_info *lwp = get_thread_lwp (thread);
1856
1857 return callback (lwp, data);
1858 });
1859
1860 if (thread == NULL)
1861 return NULL;
1862
1863 return get_thread_lwp (thread);
1864 }
1865
1866 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1867 their exits until all other threads in the group have exited. */
1868
1869 static void
1870 check_zombie_leaders (void)
1871 {
1872 for_each_process ([] (process_info *proc) {
1873 pid_t leader_pid = pid_of (proc);
1874 struct lwp_info *leader_lp;
1875
1876 leader_lp = find_lwp_pid (ptid_t (leader_pid));
1877
1878 if (debug_threads)
1879 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1880 "num_lwps=%d, zombie=%d\n",
1881 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1882 linux_proc_pid_is_zombie (leader_pid));
1883
1884 if (leader_lp != NULL && !leader_lp->stopped
1885 /* Check if there are other threads in the group, as we may
1886 have raced with the inferior simply exiting. */
1887 && !last_thread_of_process_p (leader_pid)
1888 && linux_proc_pid_is_zombie (leader_pid))
1889 {
1890 /* A leader zombie can mean one of two things:
1891
1892 - It exited, and there's an exit status pending
1893 available, or only the leader exited (not the whole
1894 program). In the latter case, we can't waitpid the
1895 leader's exit status until all other threads are gone.
1896
1897 - There are 3 or more threads in the group, and a thread
1898 other than the leader exec'd. On an exec, the Linux
1899 kernel destroys all other threads (except the execing
1900 one) in the thread group, and resets the execing thread's
1901 tid to the tgid. No exit notification is sent for the
1902 execing thread -- from the ptracer's perspective, it
1903 appears as though the execing thread just vanishes.
1904 Until we reap all other threads except the leader and the
1905 execing thread, the leader will be zombie, and the
1906 execing thread will be in `D (disc sleep)'. As soon as
1907 all other threads are reaped, the execing thread changes
1908 it's tid to the tgid, and the previous (zombie) leader
1909 vanishes, giving place to the "new" leader. We could try
1910 distinguishing the exit and exec cases, by waiting once
1911 more, and seeing if something comes out, but it doesn't
1912 sound useful. The previous leader _does_ go away, and
1913 we'll re-add the new one once we see the exec event
1914 (which is just the same as what would happen if the
1915 previous leader did exit voluntarily before some other
1916 thread execs). */
1917
1918 if (debug_threads)
1919 debug_printf ("CZL: Thread group leader %d zombie "
1920 "(it exited, or another thread execd).\n",
1921 leader_pid);
1922
1923 delete_lwp (leader_lp);
1924 }
1925 });
1926 }
1927
1928 /* Callback for `find_thread'. Returns the first LWP that is not
1929 stopped. */
1930
1931 static bool
1932 not_stopped_callback (thread_info *thread, ptid_t filter)
1933 {
1934 if (!thread->id.matches (filter))
1935 return false;
1936
1937 lwp_info *lwp = get_thread_lwp (thread);
1938
1939 return !lwp->stopped;
1940 }
1941
1942 /* Increment LWP's suspend count. */
1943
1944 static void
1945 lwp_suspended_inc (struct lwp_info *lwp)
1946 {
1947 lwp->suspended++;
1948
1949 if (debug_threads && lwp->suspended > 4)
1950 {
1951 struct thread_info *thread = get_lwp_thread (lwp);
1952
1953 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1954 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1955 }
1956 }
1957
1958 /* Decrement LWP's suspend count. */
1959
1960 static void
1961 lwp_suspended_decr (struct lwp_info *lwp)
1962 {
1963 lwp->suspended--;
1964
1965 if (lwp->suspended < 0)
1966 {
1967 struct thread_info *thread = get_lwp_thread (lwp);
1968
1969 internal_error (__FILE__, __LINE__,
1970 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1971 lwp->suspended);
1972 }
1973 }
1974
1975 /* This function should only be called if the LWP got a SIGTRAP.
1976
1977 Handle any tracepoint steps or hits. Return true if a tracepoint
1978 event was handled, 0 otherwise. */
1979
1980 static int
1981 handle_tracepoints (struct lwp_info *lwp)
1982 {
1983 struct thread_info *tinfo = get_lwp_thread (lwp);
1984 int tpoint_related_event = 0;
1985
1986 gdb_assert (lwp->suspended == 0);
1987
1988 /* If this tracepoint hit causes a tracing stop, we'll immediately
1989 uninsert tracepoints. To do this, we temporarily pause all
1990 threads, unpatch away, and then unpause threads. We need to make
1991 sure the unpausing doesn't resume LWP too. */
1992 lwp_suspended_inc (lwp);
1993
1994 /* And we need to be sure that any all-threads-stopping doesn't try
1995 to move threads out of the jump pads, as it could deadlock the
1996 inferior (LWP could be in the jump pad, maybe even holding the
1997 lock.) */
1998
1999 /* Do any necessary step collect actions. */
2000 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2001
2002 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2003
2004 /* See if we just hit a tracepoint and do its main collect
2005 actions. */
2006 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2007
2008 lwp_suspended_decr (lwp);
2009
2010 gdb_assert (lwp->suspended == 0);
2011 gdb_assert (!stabilizing_threads
2012 || (lwp->collecting_fast_tracepoint
2013 != fast_tpoint_collect_result::not_collecting));
2014
2015 if (tpoint_related_event)
2016 {
2017 if (debug_threads)
2018 debug_printf ("got a tracepoint event\n");
2019 return 1;
2020 }
2021
2022 return 0;
2023 }
2024
2025 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2026 collection status. */
2027
2028 static fast_tpoint_collect_result
2029 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2030 struct fast_tpoint_collect_status *status)
2031 {
2032 CORE_ADDR thread_area;
2033 struct thread_info *thread = get_lwp_thread (lwp);
2034
2035 if (the_low_target.get_thread_area == NULL)
2036 return fast_tpoint_collect_result::not_collecting;
2037
2038 /* Get the thread area address. This is used to recognize which
2039 thread is which when tracing with the in-process agent library.
2040 We don't read anything from the address, and treat it as opaque;
2041 it's the address itself that we assume is unique per-thread. */
2042 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2043 return fast_tpoint_collect_result::not_collecting;
2044
2045 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2046 }
2047
2048 /* The reason we resume in the caller, is because we want to be able
2049 to pass lwp->status_pending as WSTAT, and we need to clear
2050 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2051 refuses to resume. */
2052
2053 static int
2054 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2055 {
2056 struct thread_info *saved_thread;
2057
2058 saved_thread = current_thread;
2059 current_thread = get_lwp_thread (lwp);
2060
2061 if ((wstat == NULL
2062 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2063 && supports_fast_tracepoints ()
2064 && agent_loaded_p ())
2065 {
2066 struct fast_tpoint_collect_status status;
2067
2068 if (debug_threads)
2069 debug_printf ("Checking whether LWP %ld needs to move out of the "
2070 "jump pad.\n",
2071 lwpid_of (current_thread));
2072
2073 fast_tpoint_collect_result r
2074 = linux_fast_tracepoint_collecting (lwp, &status);
2075
2076 if (wstat == NULL
2077 || (WSTOPSIG (*wstat) != SIGILL
2078 && WSTOPSIG (*wstat) != SIGFPE
2079 && WSTOPSIG (*wstat) != SIGSEGV
2080 && WSTOPSIG (*wstat) != SIGBUS))
2081 {
2082 lwp->collecting_fast_tracepoint = r;
2083
2084 if (r != fast_tpoint_collect_result::not_collecting)
2085 {
2086 if (r == fast_tpoint_collect_result::before_insn
2087 && lwp->exit_jump_pad_bkpt == NULL)
2088 {
2089 /* Haven't executed the original instruction yet.
2090 Set breakpoint there, and wait till it's hit,
2091 then single-step until exiting the jump pad. */
2092 lwp->exit_jump_pad_bkpt
2093 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2094 }
2095
2096 if (debug_threads)
2097 debug_printf ("Checking whether LWP %ld needs to move out of "
2098 "the jump pad...it does\n",
2099 lwpid_of (current_thread));
2100 current_thread = saved_thread;
2101
2102 return 1;
2103 }
2104 }
2105 else
2106 {
2107 /* If we get a synchronous signal while collecting, *and*
2108 while executing the (relocated) original instruction,
2109 reset the PC to point at the tpoint address, before
2110 reporting to GDB. Otherwise, it's an IPA lib bug: just
2111 report the signal to GDB, and pray for the best. */
2112
2113 lwp->collecting_fast_tracepoint
2114 = fast_tpoint_collect_result::not_collecting;
2115
2116 if (r != fast_tpoint_collect_result::not_collecting
2117 && (status.adjusted_insn_addr <= lwp->stop_pc
2118 && lwp->stop_pc < status.adjusted_insn_addr_end))
2119 {
2120 siginfo_t info;
2121 struct regcache *regcache;
2122
2123 /* The si_addr on a few signals references the address
2124 of the faulting instruction. Adjust that as
2125 well. */
2126 if ((WSTOPSIG (*wstat) == SIGILL
2127 || WSTOPSIG (*wstat) == SIGFPE
2128 || WSTOPSIG (*wstat) == SIGBUS
2129 || WSTOPSIG (*wstat) == SIGSEGV)
2130 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2131 (PTRACE_TYPE_ARG3) 0, &info) == 0
2132 /* Final check just to make sure we don't clobber
2133 the siginfo of non-kernel-sent signals. */
2134 && (uintptr_t) info.si_addr == lwp->stop_pc)
2135 {
2136 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2137 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2138 (PTRACE_TYPE_ARG3) 0, &info);
2139 }
2140
2141 regcache = get_thread_regcache (current_thread, 1);
2142 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2143 lwp->stop_pc = status.tpoint_addr;
2144
2145 /* Cancel any fast tracepoint lock this thread was
2146 holding. */
2147 force_unlock_trace_buffer ();
2148 }
2149
2150 if (lwp->exit_jump_pad_bkpt != NULL)
2151 {
2152 if (debug_threads)
2153 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2154 "stopping all threads momentarily.\n");
2155
2156 stop_all_lwps (1, lwp);
2157
2158 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2159 lwp->exit_jump_pad_bkpt = NULL;
2160
2161 unstop_all_lwps (1, lwp);
2162
2163 gdb_assert (lwp->suspended >= 0);
2164 }
2165 }
2166 }
2167
2168 if (debug_threads)
2169 debug_printf ("Checking whether LWP %ld needs to move out of the "
2170 "jump pad...no\n",
2171 lwpid_of (current_thread));
2172
2173 current_thread = saved_thread;
2174 return 0;
2175 }
2176
2177 /* Enqueue one signal in the "signals to report later when out of the
2178 jump pad" list. */
2179
2180 static void
2181 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2182 {
2183 struct pending_signals *p_sig;
2184 struct thread_info *thread = get_lwp_thread (lwp);
2185
2186 if (debug_threads)
2187 debug_printf ("Deferring signal %d for LWP %ld.\n",
2188 WSTOPSIG (*wstat), lwpid_of (thread));
2189
2190 if (debug_threads)
2191 {
2192 struct pending_signals *sig;
2193
2194 for (sig = lwp->pending_signals_to_report;
2195 sig != NULL;
2196 sig = sig->prev)
2197 debug_printf (" Already queued %d\n",
2198 sig->signal);
2199
2200 debug_printf (" (no more currently queued signals)\n");
2201 }
2202
2203 /* Don't enqueue non-RT signals if they are already in the deferred
2204 queue. (SIGSTOP being the easiest signal to see ending up here
2205 twice) */
2206 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2207 {
2208 struct pending_signals *sig;
2209
2210 for (sig = lwp->pending_signals_to_report;
2211 sig != NULL;
2212 sig = sig->prev)
2213 {
2214 if (sig->signal == WSTOPSIG (*wstat))
2215 {
2216 if (debug_threads)
2217 debug_printf ("Not requeuing already queued non-RT signal %d"
2218 " for LWP %ld\n",
2219 sig->signal,
2220 lwpid_of (thread));
2221 return;
2222 }
2223 }
2224 }
2225
2226 p_sig = XCNEW (struct pending_signals);
2227 p_sig->prev = lwp->pending_signals_to_report;
2228 p_sig->signal = WSTOPSIG (*wstat);
2229
2230 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2231 &p_sig->info);
2232
2233 lwp->pending_signals_to_report = p_sig;
2234 }
2235
2236 /* Dequeue one signal from the "signals to report later when out of
2237 the jump pad" list. */
2238
2239 static int
2240 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2241 {
2242 struct thread_info *thread = get_lwp_thread (lwp);
2243
2244 if (lwp->pending_signals_to_report != NULL)
2245 {
2246 struct pending_signals **p_sig;
2247
2248 p_sig = &lwp->pending_signals_to_report;
2249 while ((*p_sig)->prev != NULL)
2250 p_sig = &(*p_sig)->prev;
2251
2252 *wstat = W_STOPCODE ((*p_sig)->signal);
2253 if ((*p_sig)->info.si_signo != 0)
2254 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2255 &(*p_sig)->info);
2256 free (*p_sig);
2257 *p_sig = NULL;
2258
2259 if (debug_threads)
2260 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2261 WSTOPSIG (*wstat), lwpid_of (thread));
2262
2263 if (debug_threads)
2264 {
2265 struct pending_signals *sig;
2266
2267 for (sig = lwp->pending_signals_to_report;
2268 sig != NULL;
2269 sig = sig->prev)
2270 debug_printf (" Still queued %d\n",
2271 sig->signal);
2272
2273 debug_printf (" (no more queued signals)\n");
2274 }
2275
2276 return 1;
2277 }
2278
2279 return 0;
2280 }
2281
2282 /* Fetch the possibly triggered data watchpoint info and store it in
2283 CHILD.
2284
2285 On some archs, like x86, that use debug registers to set
2286 watchpoints, it's possible that the way to know which watched
2287 address trapped, is to check the register that is used to select
2288 which address to watch. Problem is, between setting the watchpoint
2289 and reading back which data address trapped, the user may change
2290 the set of watchpoints, and, as a consequence, GDB changes the
2291 debug registers in the inferior. To avoid reading back a stale
2292 stopped-data-address when that happens, we cache in LP the fact
2293 that a watchpoint trapped, and the corresponding data address, as
2294 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2295 registers meanwhile, we have the cached data we can rely on. */
2296
2297 static int
2298 check_stopped_by_watchpoint (struct lwp_info *child)
2299 {
2300 if (the_low_target.stopped_by_watchpoint != NULL)
2301 {
2302 struct thread_info *saved_thread;
2303
2304 saved_thread = current_thread;
2305 current_thread = get_lwp_thread (child);
2306
2307 if (the_low_target.stopped_by_watchpoint ())
2308 {
2309 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2310
2311 if (the_low_target.stopped_data_address != NULL)
2312 child->stopped_data_address
2313 = the_low_target.stopped_data_address ();
2314 else
2315 child->stopped_data_address = 0;
2316 }
2317
2318 current_thread = saved_thread;
2319 }
2320
2321 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2322 }
2323
2324 /* Return the ptrace options that we want to try to enable. */
2325
2326 static int
2327 linux_low_ptrace_options (int attached)
2328 {
2329 client_state &cs = get_client_state ();
2330 int options = 0;
2331
2332 if (!attached)
2333 options |= PTRACE_O_EXITKILL;
2334
2335 if (cs.report_fork_events)
2336 options |= PTRACE_O_TRACEFORK;
2337
2338 if (cs.report_vfork_events)
2339 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2340
2341 if (cs.report_exec_events)
2342 options |= PTRACE_O_TRACEEXEC;
2343
2344 options |= PTRACE_O_TRACESYSGOOD;
2345
2346 return options;
2347 }
2348
2349 /* Do low-level handling of the event, and check if we should go on
2350 and pass it to caller code. Return the affected lwp if we are, or
2351 NULL otherwise. */
2352
2353 static struct lwp_info *
2354 linux_low_filter_event (int lwpid, int wstat)
2355 {
2356 client_state &cs = get_client_state ();
2357 struct lwp_info *child;
2358 struct thread_info *thread;
2359 int have_stop_pc = 0;
2360
2361 child = find_lwp_pid (ptid_t (lwpid));
2362
2363 /* Check for stop events reported by a process we didn't already
2364 know about - anything not already in our LWP list.
2365
2366 If we're expecting to receive stopped processes after
2367 fork, vfork, and clone events, then we'll just add the
2368 new one to our list and go back to waiting for the event
2369 to be reported - the stopped process might be returned
2370 from waitpid before or after the event is.
2371
2372 But note the case of a non-leader thread exec'ing after the
2373 leader having exited, and gone from our lists (because
2374 check_zombie_leaders deleted it). The non-leader thread
2375 changes its tid to the tgid. */
2376
2377 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2378 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2379 {
2380 ptid_t child_ptid;
2381
2382 /* A multi-thread exec after we had seen the leader exiting. */
2383 if (debug_threads)
2384 {
2385 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2386 "after exec.\n", lwpid);
2387 }
2388
2389 child_ptid = ptid_t (lwpid, lwpid, 0);
2390 child = add_lwp (child_ptid);
2391 child->stopped = 1;
2392 current_thread = child->thread;
2393 }
2394
2395 /* If we didn't find a process, one of two things presumably happened:
2396 - A process we started and then detached from has exited. Ignore it.
2397 - A process we are controlling has forked and the new child's stop
2398 was reported to us by the kernel. Save its PID. */
2399 if (child == NULL && WIFSTOPPED (wstat))
2400 {
2401 add_to_pid_list (&stopped_pids, lwpid, wstat);
2402 return NULL;
2403 }
2404 else if (child == NULL)
2405 return NULL;
2406
2407 thread = get_lwp_thread (child);
2408
2409 child->stopped = 1;
2410
2411 child->last_status = wstat;
2412
2413 /* Check if the thread has exited. */
2414 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2415 {
2416 if (debug_threads)
2417 debug_printf ("LLFE: %d exited.\n", lwpid);
2418
2419 if (finish_step_over (child))
2420 {
2421 /* Unsuspend all other LWPs, and set them back running again. */
2422 unsuspend_all_lwps (child);
2423 }
2424
2425 /* If there is at least one more LWP, then the exit signal was
2426 not the end of the debugged application and should be
2427 ignored, unless GDB wants to hear about thread exits. */
2428 if (cs.report_thread_events
2429 || last_thread_of_process_p (pid_of (thread)))
2430 {
2431 /* Since events are serialized to GDB core, and we can't
2432 report this one right now. Leave the status pending for
2433 the next time we're able to report it. */
2434 mark_lwp_dead (child, wstat);
2435 return child;
2436 }
2437 else
2438 {
2439 delete_lwp (child);
2440 return NULL;
2441 }
2442 }
2443
2444 gdb_assert (WIFSTOPPED (wstat));
2445
2446 if (WIFSTOPPED (wstat))
2447 {
2448 struct process_info *proc;
2449
2450 /* Architecture-specific setup after inferior is running. */
2451 proc = find_process_pid (pid_of (thread));
2452 if (proc->tdesc == NULL)
2453 {
2454 if (proc->attached)
2455 {
2456 /* This needs to happen after we have attached to the
2457 inferior and it is stopped for the first time, but
2458 before we access any inferior registers. */
2459 linux_arch_setup_thread (thread);
2460 }
2461 else
2462 {
2463 /* The process is started, but GDBserver will do
2464 architecture-specific setup after the program stops at
2465 the first instruction. */
2466 child->status_pending_p = 1;
2467 child->status_pending = wstat;
2468 return child;
2469 }
2470 }
2471 }
2472
2473 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2474 {
2475 struct process_info *proc = find_process_pid (pid_of (thread));
2476 int options = linux_low_ptrace_options (proc->attached);
2477
2478 linux_enable_event_reporting (lwpid, options);
2479 child->must_set_ptrace_flags = 0;
2480 }
2481
2482 /* Always update syscall_state, even if it will be filtered later. */
2483 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2484 {
2485 child->syscall_state
2486 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2487 ? TARGET_WAITKIND_SYSCALL_RETURN
2488 : TARGET_WAITKIND_SYSCALL_ENTRY);
2489 }
2490 else
2491 {
2492 /* Almost all other ptrace-stops are known to be outside of system
2493 calls, with further exceptions in handle_extended_wait. */
2494 child->syscall_state = TARGET_WAITKIND_IGNORE;
2495 }
2496
2497 /* Be careful to not overwrite stop_pc until save_stop_reason is
2498 called. */
2499 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2500 && linux_is_extended_waitstatus (wstat))
2501 {
2502 child->stop_pc = get_pc (child);
2503 if (handle_extended_wait (&child, wstat))
2504 {
2505 /* The event has been handled, so just return without
2506 reporting it. */
2507 return NULL;
2508 }
2509 }
2510
2511 if (linux_wstatus_maybe_breakpoint (wstat))
2512 {
2513 if (save_stop_reason (child))
2514 have_stop_pc = 1;
2515 }
2516
2517 if (!have_stop_pc)
2518 child->stop_pc = get_pc (child);
2519
2520 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2521 && child->stop_expected)
2522 {
2523 if (debug_threads)
2524 debug_printf ("Expected stop.\n");
2525 child->stop_expected = 0;
2526
2527 if (thread->last_resume_kind == resume_stop)
2528 {
2529 /* We want to report the stop to the core. Treat the
2530 SIGSTOP as a normal event. */
2531 if (debug_threads)
2532 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2533 target_pid_to_str (ptid_of (thread)));
2534 }
2535 else if (stopping_threads != NOT_STOPPING_THREADS)
2536 {
2537 /* Stopping threads. We don't want this SIGSTOP to end up
2538 pending. */
2539 if (debug_threads)
2540 debug_printf ("LLW: SIGSTOP caught for %s "
2541 "while stopping threads.\n",
2542 target_pid_to_str (ptid_of (thread)));
2543 return NULL;
2544 }
2545 else
2546 {
2547 /* This is a delayed SIGSTOP. Filter out the event. */
2548 if (debug_threads)
2549 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2550 child->stepping ? "step" : "continue",
2551 target_pid_to_str (ptid_of (thread)));
2552
2553 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2554 return NULL;
2555 }
2556 }
2557
2558 child->status_pending_p = 1;
2559 child->status_pending = wstat;
2560 return child;
2561 }
2562
2563 /* Return true if THREAD is doing hardware single step. */
2564
2565 static int
2566 maybe_hw_step (struct thread_info *thread)
2567 {
2568 if (can_hardware_single_step ())
2569 return 1;
2570 else
2571 {
2572 /* GDBserver must insert single-step breakpoint for software
2573 single step. */
2574 gdb_assert (has_single_step_breakpoints (thread));
2575 return 0;
2576 }
2577 }
2578
2579 /* Resume LWPs that are currently stopped without any pending status
2580 to report, but are resumed from the core's perspective. */
2581
2582 static void
2583 resume_stopped_resumed_lwps (thread_info *thread)
2584 {
2585 struct lwp_info *lp = get_thread_lwp (thread);
2586
2587 if (lp->stopped
2588 && !lp->suspended
2589 && !lp->status_pending_p
2590 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2591 {
2592 int step = 0;
2593
2594 if (thread->last_resume_kind == resume_step)
2595 step = maybe_hw_step (thread);
2596
2597 if (debug_threads)
2598 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2599 target_pid_to_str (ptid_of (thread)),
2600 paddress (lp->stop_pc),
2601 step);
2602
2603 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2604 }
2605 }
2606
2607 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2608 match FILTER_PTID (leaving others pending). The PTIDs can be:
2609 minus_one_ptid, to specify any child; a pid PTID, specifying all
2610 lwps of a thread group; or a PTID representing a single lwp. Store
2611 the stop status through the status pointer WSTAT. OPTIONS is
2612 passed to the waitpid call. Return 0 if no event was found and
2613 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2614 was found. Return the PID of the stopped child otherwise. */
2615
2616 static int
2617 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2618 int *wstatp, int options)
2619 {
2620 struct thread_info *event_thread;
2621 struct lwp_info *event_child, *requested_child;
2622 sigset_t block_mask, prev_mask;
2623
2624 retry:
2625 /* N.B. event_thread points to the thread_info struct that contains
2626 event_child. Keep them in sync. */
2627 event_thread = NULL;
2628 event_child = NULL;
2629 requested_child = NULL;
2630
2631 /* Check for a lwp with a pending status. */
2632
2633 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2634 {
2635 event_thread = find_thread_in_random ([&] (thread_info *thread)
2636 {
2637 return status_pending_p_callback (thread, filter_ptid);
2638 });
2639
2640 if (event_thread != NULL)
2641 event_child = get_thread_lwp (event_thread);
2642 if (debug_threads && event_thread)
2643 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2644 }
2645 else if (filter_ptid != null_ptid)
2646 {
2647 requested_child = find_lwp_pid (filter_ptid);
2648
2649 if (stopping_threads == NOT_STOPPING_THREADS
2650 && requested_child->status_pending_p
2651 && (requested_child->collecting_fast_tracepoint
2652 != fast_tpoint_collect_result::not_collecting))
2653 {
2654 enqueue_one_deferred_signal (requested_child,
2655 &requested_child->status_pending);
2656 requested_child->status_pending_p = 0;
2657 requested_child->status_pending = 0;
2658 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2659 }
2660
2661 if (requested_child->suspended
2662 && requested_child->status_pending_p)
2663 {
2664 internal_error (__FILE__, __LINE__,
2665 "requesting an event out of a"
2666 " suspended child?");
2667 }
2668
2669 if (requested_child->status_pending_p)
2670 {
2671 event_child = requested_child;
2672 event_thread = get_lwp_thread (event_child);
2673 }
2674 }
2675
2676 if (event_child != NULL)
2677 {
2678 if (debug_threads)
2679 debug_printf ("Got an event from pending child %ld (%04x)\n",
2680 lwpid_of (event_thread), event_child->status_pending);
2681 *wstatp = event_child->status_pending;
2682 event_child->status_pending_p = 0;
2683 event_child->status_pending = 0;
2684 current_thread = event_thread;
2685 return lwpid_of (event_thread);
2686 }
2687
2688 /* But if we don't find a pending event, we'll have to wait.
2689
2690 We only enter this loop if no process has a pending wait status.
2691 Thus any action taken in response to a wait status inside this
2692 loop is responding as soon as we detect the status, not after any
2693 pending events. */
2694
2695 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2696 all signals while here. */
2697 sigfillset (&block_mask);
2698 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2699
2700 /* Always pull all events out of the kernel. We'll randomly select
2701 an event LWP out of all that have events, to prevent
2702 starvation. */
2703 while (event_child == NULL)
2704 {
2705 pid_t ret = 0;
2706
2707 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2708 quirks:
2709
2710 - If the thread group leader exits while other threads in the
2711 thread group still exist, waitpid(TGID, ...) hangs. That
2712 waitpid won't return an exit status until the other threads
2713 in the group are reaped.
2714
2715 - When a non-leader thread execs, that thread just vanishes
2716 without reporting an exit (so we'd hang if we waited for it
2717 explicitly in that case). The exec event is reported to
2718 the TGID pid. */
2719 errno = 0;
2720 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2721
2722 if (debug_threads)
2723 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2724 ret, errno ? strerror (errno) : "ERRNO-OK");
2725
2726 if (ret > 0)
2727 {
2728 if (debug_threads)
2729 {
2730 debug_printf ("LLW: waitpid %ld received %s\n",
2731 (long) ret, status_to_str (*wstatp));
2732 }
2733
2734 /* Filter all events. IOW, leave all events pending. We'll
2735 randomly select an event LWP out of all that have events
2736 below. */
2737 linux_low_filter_event (ret, *wstatp);
2738 /* Retry until nothing comes out of waitpid. A single
2739 SIGCHLD can indicate more than one child stopped. */
2740 continue;
2741 }
2742
2743 /* Now that we've pulled all events out of the kernel, resume
2744 LWPs that don't have an interesting event to report. */
2745 if (stopping_threads == NOT_STOPPING_THREADS)
2746 for_each_thread (resume_stopped_resumed_lwps);
2747
2748 /* ... and find an LWP with a status to report to the core, if
2749 any. */
2750 event_thread = find_thread_in_random ([&] (thread_info *thread)
2751 {
2752 return status_pending_p_callback (thread, filter_ptid);
2753 });
2754
2755 if (event_thread != NULL)
2756 {
2757 event_child = get_thread_lwp (event_thread);
2758 *wstatp = event_child->status_pending;
2759 event_child->status_pending_p = 0;
2760 event_child->status_pending = 0;
2761 break;
2762 }
2763
2764 /* Check for zombie thread group leaders. Those can't be reaped
2765 until all other threads in the thread group are. */
2766 check_zombie_leaders ();
2767
2768 auto not_stopped = [&] (thread_info *thread)
2769 {
2770 return not_stopped_callback (thread, wait_ptid);
2771 };
2772
2773 /* If there are no resumed children left in the set of LWPs we
2774 want to wait for, bail. We can't just block in
2775 waitpid/sigsuspend, because lwps might have been left stopped
2776 in trace-stop state, and we'd be stuck forever waiting for
2777 their status to change (which would only happen if we resumed
2778 them). Even if WNOHANG is set, this return code is preferred
2779 over 0 (below), as it is more detailed. */
2780 if (find_thread (not_stopped) == NULL)
2781 {
2782 if (debug_threads)
2783 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2784 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2785 return -1;
2786 }
2787
2788 /* No interesting event to report to the caller. */
2789 if ((options & WNOHANG))
2790 {
2791 if (debug_threads)
2792 debug_printf ("WNOHANG set, no event found\n");
2793
2794 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2795 return 0;
2796 }
2797
2798 /* Block until we get an event reported with SIGCHLD. */
2799 if (debug_threads)
2800 debug_printf ("sigsuspend'ing\n");
2801
2802 sigsuspend (&prev_mask);
2803 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2804 goto retry;
2805 }
2806
2807 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2808
2809 current_thread = event_thread;
2810
2811 return lwpid_of (event_thread);
2812 }
2813
2814 /* Wait for an event from child(ren) PTID. PTIDs can be:
2815 minus_one_ptid, to specify any child; a pid PTID, specifying all
2816 lwps of a thread group; or a PTID representing a single lwp. Store
2817 the stop status through the status pointer WSTAT. OPTIONS is
2818 passed to the waitpid call. Return 0 if no event was found and
2819 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2820 was found. Return the PID of the stopped child otherwise. */
2821
2822 static int
2823 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2824 {
2825 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2826 }
2827
2828 /* Select one LWP out of those that have events pending. */
2829
2830 static void
2831 select_event_lwp (struct lwp_info **orig_lp)
2832 {
2833 int random_selector;
2834 struct thread_info *event_thread = NULL;
2835
2836 /* In all-stop, give preference to the LWP that is being
2837 single-stepped. There will be at most one, and it's the LWP that
2838 the core is most interested in. If we didn't do this, then we'd
2839 have to handle pending step SIGTRAPs somehow in case the core
2840 later continues the previously-stepped thread, otherwise we'd
2841 report the pending SIGTRAP, and the core, not having stepped the
2842 thread, wouldn't understand what the trap was for, and therefore
2843 would report it to the user as a random signal. */
2844 if (!non_stop)
2845 {
2846 event_thread = find_thread ([] (thread_info *thread)
2847 {
2848 lwp_info *lp = get_thread_lwp (thread);
2849
2850 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2851 && thread->last_resume_kind == resume_step
2852 && lp->status_pending_p);
2853 });
2854
2855 if (event_thread != NULL)
2856 {
2857 if (debug_threads)
2858 debug_printf ("SEL: Select single-step %s\n",
2859 target_pid_to_str (ptid_of (event_thread)));
2860 }
2861 }
2862 if (event_thread == NULL)
2863 {
2864 /* No single-stepping LWP. Select one at random, out of those
2865 which have had events. */
2866
2867 /* First see how many events we have. */
2868 int num_events = 0;
2869 for_each_thread ([&] (thread_info *thread)
2870 {
2871 lwp_info *lp = get_thread_lwp (thread);
2872
2873 /* Count only resumed LWPs that have an event pending. */
2874 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2875 && lp->status_pending_p)
2876 num_events++;
2877 });
2878 gdb_assert (num_events > 0);
2879
2880 /* Now randomly pick a LWP out of those that have had
2881 events. */
2882 random_selector = (int)
2883 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2884
2885 if (debug_threads && num_events > 1)
2886 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2887 num_events, random_selector);
2888
2889 event_thread = find_thread ([&] (thread_info *thread)
2890 {
2891 lwp_info *lp = get_thread_lwp (thread);
2892
2893 /* Select only resumed LWPs that have an event pending. */
2894 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2895 && lp->status_pending_p)
2896 if (random_selector-- == 0)
2897 return true;
2898
2899 return false;
2900 });
2901 }
2902
2903 if (event_thread != NULL)
2904 {
2905 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2906
2907 /* Switch the event LWP. */
2908 *orig_lp = event_lp;
2909 }
2910 }
2911
2912 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2913 NULL. */
2914
2915 static void
2916 unsuspend_all_lwps (struct lwp_info *except)
2917 {
2918 for_each_thread ([&] (thread_info *thread)
2919 {
2920 lwp_info *lwp = get_thread_lwp (thread);
2921
2922 if (lwp != except)
2923 lwp_suspended_decr (lwp);
2924 });
2925 }
2926
2927 static void move_out_of_jump_pad_callback (thread_info *thread);
2928 static bool stuck_in_jump_pad_callback (thread_info *thread);
2929 static bool lwp_running (thread_info *thread);
2930 static ptid_t linux_wait_1 (ptid_t ptid,
2931 struct target_waitstatus *ourstatus,
2932 int target_options);
2933
2934 /* Stabilize threads (move out of jump pads).
2935
2936 If a thread is midway collecting a fast tracepoint, we need to
2937 finish the collection and move it out of the jump pad before
2938 reporting the signal.
2939
2940 This avoids recursion while collecting (when a signal arrives
2941 midway, and the signal handler itself collects), which would trash
2942 the trace buffer. In case the user set a breakpoint in a signal
2943 handler, this avoids the backtrace showing the jump pad, etc..
2944 Most importantly, there are certain things we can't do safely if
2945 threads are stopped in a jump pad (or in its callee's). For
2946 example:
2947
2948 - starting a new trace run. A thread still collecting the
2949 previous run, could trash the trace buffer when resumed. The trace
2950 buffer control structures would have been reset but the thread had
2951 no way to tell. The thread could even midway memcpy'ing to the
2952 buffer, which would mean that when resumed, it would clobber the
2953 trace buffer that had been set for a new run.
2954
2955 - we can't rewrite/reuse the jump pads for new tracepoints
2956 safely. Say you do tstart while a thread is stopped midway while
2957 collecting. When the thread is later resumed, it finishes the
2958 collection, and returns to the jump pad, to execute the original
2959 instruction that was under the tracepoint jump at the time the
2960 older run had been started. If the jump pad had been rewritten
2961 since for something else in the new run, the thread would now
2962 execute the wrong / random instructions. */
2963
2964 static void
2965 linux_stabilize_threads (void)
2966 {
2967 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2968
2969 if (thread_stuck != NULL)
2970 {
2971 if (debug_threads)
2972 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2973 lwpid_of (thread_stuck));
2974 return;
2975 }
2976
2977 thread_info *saved_thread = current_thread;
2978
2979 stabilizing_threads = 1;
2980
2981 /* Kick 'em all. */
2982 for_each_thread (move_out_of_jump_pad_callback);
2983
2984 /* Loop until all are stopped out of the jump pads. */
2985 while (find_thread (lwp_running) != NULL)
2986 {
2987 struct target_waitstatus ourstatus;
2988 struct lwp_info *lwp;
2989 int wstat;
2990
2991 /* Note that we go through the full wait even loop. While
2992 moving threads out of jump pad, we need to be able to step
2993 over internal breakpoints and such. */
2994 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2995
2996 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2997 {
2998 lwp = get_thread_lwp (current_thread);
2999
3000 /* Lock it. */
3001 lwp_suspended_inc (lwp);
3002
3003 if (ourstatus.value.sig != GDB_SIGNAL_0
3004 || current_thread->last_resume_kind == resume_stop)
3005 {
3006 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3007 enqueue_one_deferred_signal (lwp, &wstat);
3008 }
3009 }
3010 }
3011
3012 unsuspend_all_lwps (NULL);
3013
3014 stabilizing_threads = 0;
3015
3016 current_thread = saved_thread;
3017
3018 if (debug_threads)
3019 {
3020 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3021
3022 if (thread_stuck != NULL)
3023 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3024 lwpid_of (thread_stuck));
3025 }
3026 }
3027
3028 /* Convenience function that is called when the kernel reports an
3029 event that is not passed out to GDB. */
3030
3031 static ptid_t
3032 ignore_event (struct target_waitstatus *ourstatus)
3033 {
3034 /* If we got an event, there may still be others, as a single
3035 SIGCHLD can indicate more than one child stopped. This forces
3036 another target_wait call. */
3037 async_file_mark ();
3038
3039 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3040 return null_ptid;
3041 }
3042
3043 /* Convenience function that is called when the kernel reports an exit
3044 event. This decides whether to report the event to GDB as a
3045 process exit event, a thread exit event, or to suppress the
3046 event. */
3047
3048 static ptid_t
3049 filter_exit_event (struct lwp_info *event_child,
3050 struct target_waitstatus *ourstatus)
3051 {
3052 client_state &cs = get_client_state ();
3053 struct thread_info *thread = get_lwp_thread (event_child);
3054 ptid_t ptid = ptid_of (thread);
3055
3056 if (!last_thread_of_process_p (pid_of (thread)))
3057 {
3058 if (cs.report_thread_events)
3059 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3060 else
3061 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3062
3063 delete_lwp (event_child);
3064 }
3065 return ptid;
3066 }
3067
3068 /* Returns 1 if GDB is interested in any event_child syscalls. */
3069
3070 static int
3071 gdb_catching_syscalls_p (struct lwp_info *event_child)
3072 {
3073 struct thread_info *thread = get_lwp_thread (event_child);
3074 struct process_info *proc = get_thread_process (thread);
3075
3076 return !proc->syscalls_to_catch.empty ();
3077 }
3078
3079 /* Returns 1 if GDB is interested in the event_child syscall.
3080 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3081
3082 static int
3083 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3084 {
3085 int sysno;
3086 struct thread_info *thread = get_lwp_thread (event_child);
3087 struct process_info *proc = get_thread_process (thread);
3088
3089 if (proc->syscalls_to_catch.empty ())
3090 return 0;
3091
3092 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3093 return 1;
3094
3095 get_syscall_trapinfo (event_child, &sysno);
3096
3097 for (int iter : proc->syscalls_to_catch)
3098 if (iter == sysno)
3099 return 1;
3100
3101 return 0;
3102 }
3103
3104 /* Wait for process, returns status. */
3105
3106 static ptid_t
3107 linux_wait_1 (ptid_t ptid,
3108 struct target_waitstatus *ourstatus, int target_options)
3109 {
3110 client_state &cs = get_client_state ();
3111 int w;
3112 struct lwp_info *event_child;
3113 int options;
3114 int pid;
3115 int step_over_finished;
3116 int bp_explains_trap;
3117 int maybe_internal_trap;
3118 int report_to_gdb;
3119 int trace_event;
3120 int in_step_range;
3121 int any_resumed;
3122
3123 if (debug_threads)
3124 {
3125 debug_enter ();
3126 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3127 }
3128
3129 /* Translate generic target options into linux options. */
3130 options = __WALL;
3131 if (target_options & TARGET_WNOHANG)
3132 options |= WNOHANG;
3133
3134 bp_explains_trap = 0;
3135 trace_event = 0;
3136 in_step_range = 0;
3137 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3138
3139 auto status_pending_p_any = [&] (thread_info *thread)
3140 {
3141 return status_pending_p_callback (thread, minus_one_ptid);
3142 };
3143
3144 auto not_stopped = [&] (thread_info *thread)
3145 {
3146 return not_stopped_callback (thread, minus_one_ptid);
3147 };
3148
3149 /* Find a resumed LWP, if any. */
3150 if (find_thread (status_pending_p_any) != NULL)
3151 any_resumed = 1;
3152 else if (find_thread (not_stopped) != NULL)
3153 any_resumed = 1;
3154 else
3155 any_resumed = 0;
3156
3157 if (step_over_bkpt == null_ptid)
3158 pid = linux_wait_for_event (ptid, &w, options);
3159 else
3160 {
3161 if (debug_threads)
3162 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3163 target_pid_to_str (step_over_bkpt));
3164 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3165 }
3166
3167 if (pid == 0 || (pid == -1 && !any_resumed))
3168 {
3169 gdb_assert (target_options & TARGET_WNOHANG);
3170
3171 if (debug_threads)
3172 {
3173 debug_printf ("linux_wait_1 ret = null_ptid, "
3174 "TARGET_WAITKIND_IGNORE\n");
3175 debug_exit ();
3176 }
3177
3178 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3179 return null_ptid;
3180 }
3181 else if (pid == -1)
3182 {
3183 if (debug_threads)
3184 {
3185 debug_printf ("linux_wait_1 ret = null_ptid, "
3186 "TARGET_WAITKIND_NO_RESUMED\n");
3187 debug_exit ();
3188 }
3189
3190 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3191 return null_ptid;
3192 }
3193
3194 event_child = get_thread_lwp (current_thread);
3195
3196 /* linux_wait_for_event only returns an exit status for the last
3197 child of a process. Report it. */
3198 if (WIFEXITED (w) || WIFSIGNALED (w))
3199 {
3200 if (WIFEXITED (w))
3201 {
3202 ourstatus->kind = TARGET_WAITKIND_EXITED;
3203 ourstatus->value.integer = WEXITSTATUS (w);
3204
3205 if (debug_threads)
3206 {
3207 debug_printf ("linux_wait_1 ret = %s, exited with "
3208 "retcode %d\n",
3209 target_pid_to_str (ptid_of (current_thread)),
3210 WEXITSTATUS (w));
3211 debug_exit ();
3212 }
3213 }
3214 else
3215 {
3216 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3217 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3218
3219 if (debug_threads)
3220 {
3221 debug_printf ("linux_wait_1 ret = %s, terminated with "
3222 "signal %d\n",
3223 target_pid_to_str (ptid_of (current_thread)),
3224 WTERMSIG (w));
3225 debug_exit ();
3226 }
3227 }
3228
3229 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3230 return filter_exit_event (event_child, ourstatus);
3231
3232 return ptid_of (current_thread);
3233 }
3234
3235 /* If step-over executes a breakpoint instruction, in the case of a
3236 hardware single step it means a gdb/gdbserver breakpoint had been
3237 planted on top of a permanent breakpoint, in the case of a software
3238 single step it may just mean that gdbserver hit the reinsert breakpoint.
3239 The PC has been adjusted by save_stop_reason to point at
3240 the breakpoint address.
3241 So in the case of the hardware single step advance the PC manually
3242 past the breakpoint and in the case of software single step advance only
3243 if it's not the single_step_breakpoint we are hitting.
3244 This avoids that a program would keep trapping a permanent breakpoint
3245 forever. */
3246 if (step_over_bkpt != null_ptid
3247 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3248 && (event_child->stepping
3249 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3250 {
3251 int increment_pc = 0;
3252 int breakpoint_kind = 0;
3253 CORE_ADDR stop_pc = event_child->stop_pc;
3254
3255 breakpoint_kind =
3256 the_target->breakpoint_kind_from_current_state (&stop_pc);
3257 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3258
3259 if (debug_threads)
3260 {
3261 debug_printf ("step-over for %s executed software breakpoint\n",
3262 target_pid_to_str (ptid_of (current_thread)));
3263 }
3264
3265 if (increment_pc != 0)
3266 {
3267 struct regcache *regcache
3268 = get_thread_regcache (current_thread, 1);
3269
3270 event_child->stop_pc += increment_pc;
3271 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3272
3273 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3274 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3275 }
3276 }
3277
3278 /* If this event was not handled before, and is not a SIGTRAP, we
3279 report it. SIGILL and SIGSEGV are also treated as traps in case
3280 a breakpoint is inserted at the current PC. If this target does
3281 not support internal breakpoints at all, we also report the
3282 SIGTRAP without further processing; it's of no concern to us. */
3283 maybe_internal_trap
3284 = (supports_breakpoints ()
3285 && (WSTOPSIG (w) == SIGTRAP
3286 || ((WSTOPSIG (w) == SIGILL
3287 || WSTOPSIG (w) == SIGSEGV)
3288 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3289
3290 if (maybe_internal_trap)
3291 {
3292 /* Handle anything that requires bookkeeping before deciding to
3293 report the event or continue waiting. */
3294
3295 /* First check if we can explain the SIGTRAP with an internal
3296 breakpoint, or if we should possibly report the event to GDB.
3297 Do this before anything that may remove or insert a
3298 breakpoint. */
3299 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3300
3301 /* We have a SIGTRAP, possibly a step-over dance has just
3302 finished. If so, tweak the state machine accordingly,
3303 reinsert breakpoints and delete any single-step
3304 breakpoints. */
3305 step_over_finished = finish_step_over (event_child);
3306
3307 /* Now invoke the callbacks of any internal breakpoints there. */
3308 check_breakpoints (event_child->stop_pc);
3309
3310 /* Handle tracepoint data collecting. This may overflow the
3311 trace buffer, and cause a tracing stop, removing
3312 breakpoints. */
3313 trace_event = handle_tracepoints (event_child);
3314
3315 if (bp_explains_trap)
3316 {
3317 if (debug_threads)
3318 debug_printf ("Hit a gdbserver breakpoint.\n");
3319 }
3320 }
3321 else
3322 {
3323 /* We have some other signal, possibly a step-over dance was in
3324 progress, and it should be cancelled too. */
3325 step_over_finished = finish_step_over (event_child);
3326 }
3327
3328 /* We have all the data we need. Either report the event to GDB, or
3329 resume threads and keep waiting for more. */
3330
3331 /* If we're collecting a fast tracepoint, finish the collection and
3332 move out of the jump pad before delivering a signal. See
3333 linux_stabilize_threads. */
3334
3335 if (WIFSTOPPED (w)
3336 && WSTOPSIG (w) != SIGTRAP
3337 && supports_fast_tracepoints ()
3338 && agent_loaded_p ())
3339 {
3340 if (debug_threads)
3341 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3342 "to defer or adjust it.\n",
3343 WSTOPSIG (w), lwpid_of (current_thread));
3344
3345 /* Allow debugging the jump pad itself. */
3346 if (current_thread->last_resume_kind != resume_step
3347 && maybe_move_out_of_jump_pad (event_child, &w))
3348 {
3349 enqueue_one_deferred_signal (event_child, &w);
3350
3351 if (debug_threads)
3352 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3353 WSTOPSIG (w), lwpid_of (current_thread));
3354
3355 linux_resume_one_lwp (event_child, 0, 0, NULL);
3356
3357 if (debug_threads)
3358 debug_exit ();
3359 return ignore_event (ourstatus);
3360 }
3361 }
3362
3363 if (event_child->collecting_fast_tracepoint
3364 != fast_tpoint_collect_result::not_collecting)
3365 {
3366 if (debug_threads)
3367 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3368 "Check if we're already there.\n",
3369 lwpid_of (current_thread),
3370 (int) event_child->collecting_fast_tracepoint);
3371
3372 trace_event = 1;
3373
3374 event_child->collecting_fast_tracepoint
3375 = linux_fast_tracepoint_collecting (event_child, NULL);
3376
3377 if (event_child->collecting_fast_tracepoint
3378 != fast_tpoint_collect_result::before_insn)
3379 {
3380 /* No longer need this breakpoint. */
3381 if (event_child->exit_jump_pad_bkpt != NULL)
3382 {
3383 if (debug_threads)
3384 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3385 "stopping all threads momentarily.\n");
3386
3387 /* Other running threads could hit this breakpoint.
3388 We don't handle moribund locations like GDB does,
3389 instead we always pause all threads when removing
3390 breakpoints, so that any step-over or
3391 decr_pc_after_break adjustment is always taken
3392 care of while the breakpoint is still
3393 inserted. */
3394 stop_all_lwps (1, event_child);
3395
3396 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3397 event_child->exit_jump_pad_bkpt = NULL;
3398
3399 unstop_all_lwps (1, event_child);
3400
3401 gdb_assert (event_child->suspended >= 0);
3402 }
3403 }
3404
3405 if (event_child->collecting_fast_tracepoint
3406 == fast_tpoint_collect_result::not_collecting)
3407 {
3408 if (debug_threads)
3409 debug_printf ("fast tracepoint finished "
3410 "collecting successfully.\n");
3411
3412 /* We may have a deferred signal to report. */
3413 if (dequeue_one_deferred_signal (event_child, &w))
3414 {
3415 if (debug_threads)
3416 debug_printf ("dequeued one signal.\n");
3417 }
3418 else
3419 {
3420 if (debug_threads)
3421 debug_printf ("no deferred signals.\n");
3422
3423 if (stabilizing_threads)
3424 {
3425 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3426 ourstatus->value.sig = GDB_SIGNAL_0;
3427
3428 if (debug_threads)
3429 {
3430 debug_printf ("linux_wait_1 ret = %s, stopped "
3431 "while stabilizing threads\n",
3432 target_pid_to_str (ptid_of (current_thread)));
3433 debug_exit ();
3434 }
3435
3436 return ptid_of (current_thread);
3437 }
3438 }
3439 }
3440 }
3441
3442 /* Check whether GDB would be interested in this event. */
3443
3444 /* Check if GDB is interested in this syscall. */
3445 if (WIFSTOPPED (w)
3446 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3447 && !gdb_catch_this_syscall_p (event_child))
3448 {
3449 if (debug_threads)
3450 {
3451 debug_printf ("Ignored syscall for LWP %ld.\n",
3452 lwpid_of (current_thread));
3453 }
3454
3455 linux_resume_one_lwp (event_child, event_child->stepping,
3456 0, NULL);
3457
3458 if (debug_threads)
3459 debug_exit ();
3460 return ignore_event (ourstatus);
3461 }
3462
3463 /* If GDB is not interested in this signal, don't stop other
3464 threads, and don't report it to GDB. Just resume the inferior
3465 right away. We do this for threading-related signals as well as
3466 any that GDB specifically requested we ignore. But never ignore
3467 SIGSTOP if we sent it ourselves, and do not ignore signals when
3468 stepping - they may require special handling to skip the signal
3469 handler. Also never ignore signals that could be caused by a
3470 breakpoint. */
3471 if (WIFSTOPPED (w)
3472 && current_thread->last_resume_kind != resume_step
3473 && (
3474 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3475 (current_process ()->priv->thread_db != NULL
3476 && (WSTOPSIG (w) == __SIGRTMIN
3477 || WSTOPSIG (w) == __SIGRTMIN + 1))
3478 ||
3479 #endif
3480 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3481 && !(WSTOPSIG (w) == SIGSTOP
3482 && current_thread->last_resume_kind == resume_stop)
3483 && !linux_wstatus_maybe_breakpoint (w))))
3484 {
3485 siginfo_t info, *info_p;
3486
3487 if (debug_threads)
3488 debug_printf ("Ignored signal %d for LWP %ld.\n",
3489 WSTOPSIG (w), lwpid_of (current_thread));
3490
3491 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3492 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3493 info_p = &info;
3494 else
3495 info_p = NULL;
3496
3497 if (step_over_finished)
3498 {
3499 /* We cancelled this thread's step-over above. We still
3500 need to unsuspend all other LWPs, and set them back
3501 running again while the signal handler runs. */
3502 unsuspend_all_lwps (event_child);
3503
3504 /* Enqueue the pending signal info so that proceed_all_lwps
3505 doesn't lose it. */
3506 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3507
3508 proceed_all_lwps ();
3509 }
3510 else
3511 {
3512 linux_resume_one_lwp (event_child, event_child->stepping,
3513 WSTOPSIG (w), info_p);
3514 }
3515
3516 if (debug_threads)
3517 debug_exit ();
3518
3519 return ignore_event (ourstatus);
3520 }
3521
3522 /* Note that all addresses are always "out of the step range" when
3523 there's no range to begin with. */
3524 in_step_range = lwp_in_step_range (event_child);
3525
3526 /* If GDB wanted this thread to single step, and the thread is out
3527 of the step range, we always want to report the SIGTRAP, and let
3528 GDB handle it. Watchpoints should always be reported. So should
3529 signals we can't explain. A SIGTRAP we can't explain could be a
3530 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3531 do, we're be able to handle GDB breakpoints on top of internal
3532 breakpoints, by handling the internal breakpoint and still
3533 reporting the event to GDB. If we don't, we're out of luck, GDB
3534 won't see the breakpoint hit. If we see a single-step event but
3535 the thread should be continuing, don't pass the trap to gdb.
3536 That indicates that we had previously finished a single-step but
3537 left the single-step pending -- see
3538 complete_ongoing_step_over. */
3539 report_to_gdb = (!maybe_internal_trap
3540 || (current_thread->last_resume_kind == resume_step
3541 && !in_step_range)
3542 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3543 || (!in_step_range
3544 && !bp_explains_trap
3545 && !trace_event
3546 && !step_over_finished
3547 && !(current_thread->last_resume_kind == resume_continue
3548 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3549 || (gdb_breakpoint_here (event_child->stop_pc)
3550 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3551 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3552 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3553
3554 run_breakpoint_commands (event_child->stop_pc);
3555
3556 /* We found no reason GDB would want us to stop. We either hit one
3557 of our own breakpoints, or finished an internal step GDB
3558 shouldn't know about. */
3559 if (!report_to_gdb)
3560 {
3561 if (debug_threads)
3562 {
3563 if (bp_explains_trap)
3564 debug_printf ("Hit a gdbserver breakpoint.\n");
3565 if (step_over_finished)
3566 debug_printf ("Step-over finished.\n");
3567 if (trace_event)
3568 debug_printf ("Tracepoint event.\n");
3569 if (lwp_in_step_range (event_child))
3570 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3571 paddress (event_child->stop_pc),
3572 paddress (event_child->step_range_start),
3573 paddress (event_child->step_range_end));
3574 }
3575
3576 /* We're not reporting this breakpoint to GDB, so apply the
3577 decr_pc_after_break adjustment to the inferior's regcache
3578 ourselves. */
3579
3580 if (the_low_target.set_pc != NULL)
3581 {
3582 struct regcache *regcache
3583 = get_thread_regcache (current_thread, 1);
3584 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3585 }
3586
3587 if (step_over_finished)
3588 {
3589 /* If we have finished stepping over a breakpoint, we've
3590 stopped and suspended all LWPs momentarily except the
3591 stepping one. This is where we resume them all again.
3592 We're going to keep waiting, so use proceed, which
3593 handles stepping over the next breakpoint. */
3594 unsuspend_all_lwps (event_child);
3595 }
3596 else
3597 {
3598 /* Remove the single-step breakpoints if any. Note that
3599 there isn't single-step breakpoint if we finished stepping
3600 over. */
3601 if (can_software_single_step ()
3602 && has_single_step_breakpoints (current_thread))
3603 {
3604 stop_all_lwps (0, event_child);
3605 delete_single_step_breakpoints (current_thread);
3606 unstop_all_lwps (0, event_child);
3607 }
3608 }
3609
3610 if (debug_threads)
3611 debug_printf ("proceeding all threads.\n");
3612 proceed_all_lwps ();
3613
3614 if (debug_threads)
3615 debug_exit ();
3616
3617 return ignore_event (ourstatus);
3618 }
3619
3620 if (debug_threads)
3621 {
3622 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3623 {
3624 std::string str
3625 = target_waitstatus_to_string (&event_child->waitstatus);
3626
3627 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3628 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3629 }
3630 if (current_thread->last_resume_kind == resume_step)
3631 {
3632 if (event_child->step_range_start == event_child->step_range_end)
3633 debug_printf ("GDB wanted to single-step, reporting event.\n");
3634 else if (!lwp_in_step_range (event_child))
3635 debug_printf ("Out of step range, reporting event.\n");
3636 }
3637 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3638 debug_printf ("Stopped by watchpoint.\n");
3639 else if (gdb_breakpoint_here (event_child->stop_pc))
3640 debug_printf ("Stopped by GDB breakpoint.\n");
3641 if (debug_threads)
3642 debug_printf ("Hit a non-gdbserver trap event.\n");
3643 }
3644
3645 /* Alright, we're going to report a stop. */
3646
3647 /* Remove single-step breakpoints. */
3648 if (can_software_single_step ())
3649 {
3650 /* Remove single-step breakpoints or not. It it is true, stop all
3651 lwps, so that other threads won't hit the breakpoint in the
3652 staled memory. */
3653 int remove_single_step_breakpoints_p = 0;
3654
3655 if (non_stop)
3656 {
3657 remove_single_step_breakpoints_p
3658 = has_single_step_breakpoints (current_thread);
3659 }
3660 else
3661 {
3662 /* In all-stop, a stop reply cancels all previous resume
3663 requests. Delete all single-step breakpoints. */
3664
3665 find_thread ([&] (thread_info *thread) {
3666 if (has_single_step_breakpoints (thread))
3667 {
3668 remove_single_step_breakpoints_p = 1;
3669 return true;
3670 }
3671
3672 return false;
3673 });
3674 }
3675
3676 if (remove_single_step_breakpoints_p)
3677 {
3678 /* If we remove single-step breakpoints from memory, stop all lwps,
3679 so that other threads won't hit the breakpoint in the staled
3680 memory. */
3681 stop_all_lwps (0, event_child);
3682
3683 if (non_stop)
3684 {
3685 gdb_assert (has_single_step_breakpoints (current_thread));
3686 delete_single_step_breakpoints (current_thread);
3687 }
3688 else
3689 {
3690 for_each_thread ([] (thread_info *thread){
3691 if (has_single_step_breakpoints (thread))
3692 delete_single_step_breakpoints (thread);
3693 });
3694 }
3695
3696 unstop_all_lwps (0, event_child);
3697 }
3698 }
3699
3700 if (!stabilizing_threads)
3701 {
3702 /* In all-stop, stop all threads. */
3703 if (!non_stop)
3704 stop_all_lwps (0, NULL);
3705
3706 if (step_over_finished)
3707 {
3708 if (!non_stop)
3709 {
3710 /* If we were doing a step-over, all other threads but
3711 the stepping one had been paused in start_step_over,
3712 with their suspend counts incremented. We don't want
3713 to do a full unstop/unpause, because we're in
3714 all-stop mode (so we want threads stopped), but we
3715 still need to unsuspend the other threads, to
3716 decrement their `suspended' count back. */
3717 unsuspend_all_lwps (event_child);
3718 }
3719 else
3720 {
3721 /* If we just finished a step-over, then all threads had
3722 been momentarily paused. In all-stop, that's fine,
3723 we want threads stopped by now anyway. In non-stop,
3724 we need to re-resume threads that GDB wanted to be
3725 running. */
3726 unstop_all_lwps (1, event_child);
3727 }
3728 }
3729
3730 /* If we're not waiting for a specific LWP, choose an event LWP
3731 from among those that have had events. Giving equal priority
3732 to all LWPs that have had events helps prevent
3733 starvation. */
3734 if (ptid == minus_one_ptid)
3735 {
3736 event_child->status_pending_p = 1;
3737 event_child->status_pending = w;
3738
3739 select_event_lwp (&event_child);
3740
3741 /* current_thread and event_child must stay in sync. */
3742 current_thread = get_lwp_thread (event_child);
3743
3744 event_child->status_pending_p = 0;
3745 w = event_child->status_pending;
3746 }
3747
3748
3749 /* Stabilize threads (move out of jump pads). */
3750 if (!non_stop)
3751 stabilize_threads ();
3752 }
3753 else
3754 {
3755 /* If we just finished a step-over, then all threads had been
3756 momentarily paused. In all-stop, that's fine, we want
3757 threads stopped by now anyway. In non-stop, we need to
3758 re-resume threads that GDB wanted to be running. */
3759 if (step_over_finished)
3760 unstop_all_lwps (1, event_child);
3761 }
3762
3763 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3764 {
3765 /* If the reported event is an exit, fork, vfork or exec, let
3766 GDB know. */
3767
3768 /* Break the unreported fork relationship chain. */
3769 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3770 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3771 {
3772 event_child->fork_relative->fork_relative = NULL;
3773 event_child->fork_relative = NULL;
3774 }
3775
3776 *ourstatus = event_child->waitstatus;
3777 /* Clear the event lwp's waitstatus since we handled it already. */
3778 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3779 }
3780 else
3781 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3782
3783 /* Now that we've selected our final event LWP, un-adjust its PC if
3784 it was a software breakpoint, and the client doesn't know we can
3785 adjust the breakpoint ourselves. */
3786 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3787 && !cs.swbreak_feature)
3788 {
3789 int decr_pc = the_low_target.decr_pc_after_break;
3790
3791 if (decr_pc != 0)
3792 {
3793 struct regcache *regcache
3794 = get_thread_regcache (current_thread, 1);
3795 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3796 }
3797 }
3798
3799 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3800 {
3801 get_syscall_trapinfo (event_child,
3802 &ourstatus->value.syscall_number);
3803 ourstatus->kind = event_child->syscall_state;
3804 }
3805 else if (current_thread->last_resume_kind == resume_stop
3806 && WSTOPSIG (w) == SIGSTOP)
3807 {
3808 /* A thread that has been requested to stop by GDB with vCont;t,
3809 and it stopped cleanly, so report as SIG0. The use of
3810 SIGSTOP is an implementation detail. */
3811 ourstatus->value.sig = GDB_SIGNAL_0;
3812 }
3813 else if (current_thread->last_resume_kind == resume_stop
3814 && WSTOPSIG (w) != SIGSTOP)
3815 {
3816 /* A thread that has been requested to stop by GDB with vCont;t,
3817 but, it stopped for other reasons. */
3818 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3819 }
3820 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3821 {
3822 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3823 }
3824
3825 gdb_assert (step_over_bkpt == null_ptid);
3826
3827 if (debug_threads)
3828 {
3829 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3830 target_pid_to_str (ptid_of (current_thread)),
3831 ourstatus->kind, ourstatus->value.sig);
3832 debug_exit ();
3833 }
3834
3835 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3836 return filter_exit_event (event_child, ourstatus);
3837
3838 return ptid_of (current_thread);
3839 }
3840
3841 /* Get rid of any pending event in the pipe. */
3842 static void
3843 async_file_flush (void)
3844 {
3845 int ret;
3846 char buf;
3847
3848 do
3849 ret = read (linux_event_pipe[0], &buf, 1);
3850 while (ret >= 0 || (ret == -1 && errno == EINTR));
3851 }
3852
3853 /* Put something in the pipe, so the event loop wakes up. */
3854 static void
3855 async_file_mark (void)
3856 {
3857 int ret;
3858
3859 async_file_flush ();
3860
3861 do
3862 ret = write (linux_event_pipe[1], "+", 1);
3863 while (ret == 0 || (ret == -1 && errno == EINTR));
3864
3865 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3866 be awakened anyway. */
3867 }
3868
3869 static ptid_t
3870 linux_wait (ptid_t ptid,
3871 struct target_waitstatus *ourstatus, int target_options)
3872 {
3873 ptid_t event_ptid;
3874
3875 /* Flush the async file first. */
3876 if (target_is_async_p ())
3877 async_file_flush ();
3878
3879 do
3880 {
3881 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3882 }
3883 while ((target_options & TARGET_WNOHANG) == 0
3884 && event_ptid == null_ptid
3885 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3886
3887 /* If at least one stop was reported, there may be more. A single
3888 SIGCHLD can signal more than one child stop. */
3889 if (target_is_async_p ()
3890 && (target_options & TARGET_WNOHANG) != 0
3891 && event_ptid != null_ptid)
3892 async_file_mark ();
3893
3894 return event_ptid;
3895 }
3896
3897 /* Send a signal to an LWP. */
3898
3899 static int
3900 kill_lwp (unsigned long lwpid, int signo)
3901 {
3902 int ret;
3903
3904 errno = 0;
3905 ret = syscall (__NR_tkill, lwpid, signo);
3906 if (errno == ENOSYS)
3907 {
3908 /* If tkill fails, then we are not using nptl threads, a
3909 configuration we no longer support. */
3910 perror_with_name (("tkill"));
3911 }
3912 return ret;
3913 }
3914
3915 void
3916 linux_stop_lwp (struct lwp_info *lwp)
3917 {
3918 send_sigstop (lwp);
3919 }
3920
3921 static void
3922 send_sigstop (struct lwp_info *lwp)
3923 {
3924 int pid;
3925
3926 pid = lwpid_of (get_lwp_thread (lwp));
3927
3928 /* If we already have a pending stop signal for this process, don't
3929 send another. */
3930 if (lwp->stop_expected)
3931 {
3932 if (debug_threads)
3933 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3934
3935 return;
3936 }
3937
3938 if (debug_threads)
3939 debug_printf ("Sending sigstop to lwp %d\n", pid);
3940
3941 lwp->stop_expected = 1;
3942 kill_lwp (pid, SIGSTOP);
3943 }
3944
3945 static void
3946 send_sigstop (thread_info *thread, lwp_info *except)
3947 {
3948 struct lwp_info *lwp = get_thread_lwp (thread);
3949
3950 /* Ignore EXCEPT. */
3951 if (lwp == except)
3952 return;
3953
3954 if (lwp->stopped)
3955 return;
3956
3957 send_sigstop (lwp);
3958 }
3959
3960 /* Increment the suspend count of an LWP, and stop it, if not stopped
3961 yet. */
3962 static void
3963 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3964 {
3965 struct lwp_info *lwp = get_thread_lwp (thread);
3966
3967 /* Ignore EXCEPT. */
3968 if (lwp == except)
3969 return;
3970
3971 lwp_suspended_inc (lwp);
3972
3973 send_sigstop (thread, except);
3974 }
3975
3976 static void
3977 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3978 {
3979 /* Store the exit status for later. */
3980 lwp->status_pending_p = 1;
3981 lwp->status_pending = wstat;
3982
3983 /* Store in waitstatus as well, as there's nothing else to process
3984 for this event. */
3985 if (WIFEXITED (wstat))
3986 {
3987 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3988 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3989 }
3990 else if (WIFSIGNALED (wstat))
3991 {
3992 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3993 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3994 }
3995
3996 /* Prevent trying to stop it. */
3997 lwp->stopped = 1;
3998
3999 /* No further stops are expected from a dead lwp. */
4000 lwp->stop_expected = 0;
4001 }
4002
4003 /* Return true if LWP has exited already, and has a pending exit event
4004 to report to GDB. */
4005
4006 static int
4007 lwp_is_marked_dead (struct lwp_info *lwp)
4008 {
4009 return (lwp->status_pending_p
4010 && (WIFEXITED (lwp->status_pending)
4011 || WIFSIGNALED (lwp->status_pending)));
4012 }
4013
4014 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4015
4016 static void
4017 wait_for_sigstop (void)
4018 {
4019 struct thread_info *saved_thread;
4020 ptid_t saved_tid;
4021 int wstat;
4022 int ret;
4023
4024 saved_thread = current_thread;
4025 if (saved_thread != NULL)
4026 saved_tid = saved_thread->id;
4027 else
4028 saved_tid = null_ptid; /* avoid bogus unused warning */
4029
4030 if (debug_threads)
4031 debug_printf ("wait_for_sigstop: pulling events\n");
4032
4033 /* Passing NULL_PTID as filter indicates we want all events to be
4034 left pending. Eventually this returns when there are no
4035 unwaited-for children left. */
4036 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4037 &wstat, __WALL);
4038 gdb_assert (ret == -1);
4039
4040 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4041 current_thread = saved_thread;
4042 else
4043 {
4044 if (debug_threads)
4045 debug_printf ("Previously current thread died.\n");
4046
4047 /* We can't change the current inferior behind GDB's back,
4048 otherwise, a subsequent command may apply to the wrong
4049 process. */
4050 current_thread = NULL;
4051 }
4052 }
4053
4054 /* Returns true if THREAD is stopped in a jump pad, and we can't
4055 move it out, because we need to report the stop event to GDB. For
4056 example, if the user puts a breakpoint in the jump pad, it's
4057 because she wants to debug it. */
4058
4059 static bool
4060 stuck_in_jump_pad_callback (thread_info *thread)
4061 {
4062 struct lwp_info *lwp = get_thread_lwp (thread);
4063
4064 if (lwp->suspended != 0)
4065 {
4066 internal_error (__FILE__, __LINE__,
4067 "LWP %ld is suspended, suspended=%d\n",
4068 lwpid_of (thread), lwp->suspended);
4069 }
4070 gdb_assert (lwp->stopped);
4071
4072 /* Allow debugging the jump pad, gdb_collect, etc.. */
4073 return (supports_fast_tracepoints ()
4074 && agent_loaded_p ()
4075 && (gdb_breakpoint_here (lwp->stop_pc)
4076 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4077 || thread->last_resume_kind == resume_step)
4078 && (linux_fast_tracepoint_collecting (lwp, NULL)
4079 != fast_tpoint_collect_result::not_collecting));
4080 }
4081
4082 static void
4083 move_out_of_jump_pad_callback (thread_info *thread)
4084 {
4085 struct thread_info *saved_thread;
4086 struct lwp_info *lwp = get_thread_lwp (thread);
4087 int *wstat;
4088
4089 if (lwp->suspended != 0)
4090 {
4091 internal_error (__FILE__, __LINE__,
4092 "LWP %ld is suspended, suspended=%d\n",
4093 lwpid_of (thread), lwp->suspended);
4094 }
4095 gdb_assert (lwp->stopped);
4096
4097 /* For gdb_breakpoint_here. */
4098 saved_thread = current_thread;
4099 current_thread = thread;
4100
4101 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4102
4103 /* Allow debugging the jump pad, gdb_collect, etc. */
4104 if (!gdb_breakpoint_here (lwp->stop_pc)
4105 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4106 && thread->last_resume_kind != resume_step
4107 && maybe_move_out_of_jump_pad (lwp, wstat))
4108 {
4109 if (debug_threads)
4110 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4111 lwpid_of (thread));
4112
4113 if (wstat)
4114 {
4115 lwp->status_pending_p = 0;
4116 enqueue_one_deferred_signal (lwp, wstat);
4117
4118 if (debug_threads)
4119 debug_printf ("Signal %d for LWP %ld deferred "
4120 "(in jump pad)\n",
4121 WSTOPSIG (*wstat), lwpid_of (thread));
4122 }
4123
4124 linux_resume_one_lwp (lwp, 0, 0, NULL);
4125 }
4126 else
4127 lwp_suspended_inc (lwp);
4128
4129 current_thread = saved_thread;
4130 }
4131
4132 static bool
4133 lwp_running (thread_info *thread)
4134 {
4135 struct lwp_info *lwp = get_thread_lwp (thread);
4136
4137 if (lwp_is_marked_dead (lwp))
4138 return false;
4139
4140 return !lwp->stopped;
4141 }
4142
4143 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4144 If SUSPEND, then also increase the suspend count of every LWP,
4145 except EXCEPT. */
4146
4147 static void
4148 stop_all_lwps (int suspend, struct lwp_info *except)
4149 {
4150 /* Should not be called recursively. */
4151 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4152
4153 if (debug_threads)
4154 {
4155 debug_enter ();
4156 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4157 suspend ? "stop-and-suspend" : "stop",
4158 except != NULL
4159 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4160 : "none");
4161 }
4162
4163 stopping_threads = (suspend
4164 ? STOPPING_AND_SUSPENDING_THREADS
4165 : STOPPING_THREADS);
4166
4167 if (suspend)
4168 for_each_thread ([&] (thread_info *thread)
4169 {
4170 suspend_and_send_sigstop (thread, except);
4171 });
4172 else
4173 for_each_thread ([&] (thread_info *thread)
4174 {
4175 send_sigstop (thread, except);
4176 });
4177
4178 wait_for_sigstop ();
4179 stopping_threads = NOT_STOPPING_THREADS;
4180
4181 if (debug_threads)
4182 {
4183 debug_printf ("stop_all_lwps done, setting stopping_threads "
4184 "back to !stopping\n");
4185 debug_exit ();
4186 }
4187 }
4188
4189 /* Enqueue one signal in the chain of signals which need to be
4190 delivered to this process on next resume. */
4191
4192 static void
4193 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4194 {
4195 struct pending_signals *p_sig = XNEW (struct pending_signals);
4196
4197 p_sig->prev = lwp->pending_signals;
4198 p_sig->signal = signal;
4199 if (info == NULL)
4200 memset (&p_sig->info, 0, sizeof (siginfo_t));
4201 else
4202 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4203 lwp->pending_signals = p_sig;
4204 }
4205
4206 /* Install breakpoints for software single stepping. */
4207
4208 static void
4209 install_software_single_step_breakpoints (struct lwp_info *lwp)
4210 {
4211 struct thread_info *thread = get_lwp_thread (lwp);
4212 struct regcache *regcache = get_thread_regcache (thread, 1);
4213
4214 scoped_restore save_current_thread = make_scoped_restore (&current_thread);
4215
4216 current_thread = thread;
4217 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4218
4219 for (CORE_ADDR pc : next_pcs)
4220 set_single_step_breakpoint (pc, current_ptid);
4221 }
4222
4223 /* Single step via hardware or software single step.
4224 Return 1 if hardware single stepping, 0 if software single stepping
4225 or can't single step. */
4226
4227 static int
4228 single_step (struct lwp_info* lwp)
4229 {
4230 int step = 0;
4231
4232 if (can_hardware_single_step ())
4233 {
4234 step = 1;
4235 }
4236 else if (can_software_single_step ())
4237 {
4238 install_software_single_step_breakpoints (lwp);
4239 step = 0;
4240 }
4241 else
4242 {
4243 if (debug_threads)
4244 debug_printf ("stepping is not implemented on this target");
4245 }
4246
4247 return step;
4248 }
4249
4250 /* The signal can be delivered to the inferior if we are not trying to
4251 finish a fast tracepoint collect. Since signal can be delivered in
4252 the step-over, the program may go to signal handler and trap again
4253 after return from the signal handler. We can live with the spurious
4254 double traps. */
4255
4256 static int
4257 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4258 {
4259 return (lwp->collecting_fast_tracepoint
4260 == fast_tpoint_collect_result::not_collecting);
4261 }
4262
4263 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4264 SIGNAL is nonzero, give it that signal. */
4265
4266 static void
4267 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4268 int step, int signal, siginfo_t *info)
4269 {
4270 struct thread_info *thread = get_lwp_thread (lwp);
4271 struct thread_info *saved_thread;
4272 int ptrace_request;
4273 struct process_info *proc = get_thread_process (thread);
4274
4275 /* Note that target description may not be initialised
4276 (proc->tdesc == NULL) at this point because the program hasn't
4277 stopped at the first instruction yet. It means GDBserver skips
4278 the extra traps from the wrapper program (see option --wrapper).
4279 Code in this function that requires register access should be
4280 guarded by proc->tdesc == NULL or something else. */
4281
4282 if (lwp->stopped == 0)
4283 return;
4284
4285 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4286
4287 fast_tpoint_collect_result fast_tp_collecting
4288 = lwp->collecting_fast_tracepoint;
4289
4290 gdb_assert (!stabilizing_threads
4291 || (fast_tp_collecting
4292 != fast_tpoint_collect_result::not_collecting));
4293
4294 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4295 user used the "jump" command, or "set $pc = foo"). */
4296 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4297 {
4298 /* Collecting 'while-stepping' actions doesn't make sense
4299 anymore. */
4300 release_while_stepping_state_list (thread);
4301 }
4302
4303 /* If we have pending signals or status, and a new signal, enqueue the
4304 signal. Also enqueue the signal if it can't be delivered to the
4305 inferior right now. */
4306 if (signal != 0
4307 && (lwp->status_pending_p
4308 || lwp->pending_signals != NULL
4309 || !lwp_signal_can_be_delivered (lwp)))
4310 {
4311 enqueue_pending_signal (lwp, signal, info);
4312
4313 /* Postpone any pending signal. It was enqueued above. */
4314 signal = 0;
4315 }
4316
4317 if (lwp->status_pending_p)
4318 {
4319 if (debug_threads)
4320 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4321 " has pending status\n",
4322 lwpid_of (thread), step ? "step" : "continue",
4323 lwp->stop_expected ? "expected" : "not expected");
4324 return;
4325 }
4326
4327 saved_thread = current_thread;
4328 current_thread = thread;
4329
4330 /* This bit needs some thinking about. If we get a signal that
4331 we must report while a single-step reinsert is still pending,
4332 we often end up resuming the thread. It might be better to
4333 (ew) allow a stack of pending events; then we could be sure that
4334 the reinsert happened right away and not lose any signals.
4335
4336 Making this stack would also shrink the window in which breakpoints are
4337 uninserted (see comment in linux_wait_for_lwp) but not enough for
4338 complete correctness, so it won't solve that problem. It may be
4339 worthwhile just to solve this one, however. */
4340 if (lwp->bp_reinsert != 0)
4341 {
4342 if (debug_threads)
4343 debug_printf (" pending reinsert at 0x%s\n",
4344 paddress (lwp->bp_reinsert));
4345
4346 if (can_hardware_single_step ())
4347 {
4348 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4349 {
4350 if (step == 0)
4351 warning ("BAD - reinserting but not stepping.");
4352 if (lwp->suspended)
4353 warning ("BAD - reinserting and suspended(%d).",
4354 lwp->suspended);
4355 }
4356 }
4357
4358 step = maybe_hw_step (thread);
4359 }
4360
4361 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4362 {
4363 if (debug_threads)
4364 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4365 " (exit-jump-pad-bkpt)\n",
4366 lwpid_of (thread));
4367 }
4368 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4369 {
4370 if (debug_threads)
4371 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4372 " single-stepping\n",
4373 lwpid_of (thread));
4374
4375 if (can_hardware_single_step ())
4376 step = 1;
4377 else
4378 {
4379 internal_error (__FILE__, __LINE__,
4380 "moving out of jump pad single-stepping"
4381 " not implemented on this target");
4382 }
4383 }
4384
4385 /* If we have while-stepping actions in this thread set it stepping.
4386 If we have a signal to deliver, it may or may not be set to
4387 SIG_IGN, we don't know. Assume so, and allow collecting
4388 while-stepping into a signal handler. A possible smart thing to
4389 do would be to set an internal breakpoint at the signal return
4390 address, continue, and carry on catching this while-stepping
4391 action only when that breakpoint is hit. A future
4392 enhancement. */
4393 if (thread->while_stepping != NULL)
4394 {
4395 if (debug_threads)
4396 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4397 lwpid_of (thread));
4398
4399 step = single_step (lwp);
4400 }
4401
4402 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4403 {
4404 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4405
4406 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4407
4408 if (debug_threads)
4409 {
4410 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4411 (long) lwp->stop_pc);
4412 }
4413 }
4414
4415 /* If we have pending signals, consume one if it can be delivered to
4416 the inferior. */
4417 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4418 {
4419 struct pending_signals **p_sig;
4420
4421 p_sig = &lwp->pending_signals;
4422 while ((*p_sig)->prev != NULL)
4423 p_sig = &(*p_sig)->prev;
4424
4425 signal = (*p_sig)->signal;
4426 if ((*p_sig)->info.si_signo != 0)
4427 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4428 &(*p_sig)->info);
4429
4430 free (*p_sig);
4431 *p_sig = NULL;
4432 }
4433
4434 if (debug_threads)
4435 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4436 lwpid_of (thread), step ? "step" : "continue", signal,
4437 lwp->stop_expected ? "expected" : "not expected");
4438
4439 if (the_low_target.prepare_to_resume != NULL)
4440 the_low_target.prepare_to_resume (lwp);
4441
4442 regcache_invalidate_thread (thread);
4443 errno = 0;
4444 lwp->stepping = step;
4445 if (step)
4446 ptrace_request = PTRACE_SINGLESTEP;
4447 else if (gdb_catching_syscalls_p (lwp))
4448 ptrace_request = PTRACE_SYSCALL;
4449 else
4450 ptrace_request = PTRACE_CONT;
4451 ptrace (ptrace_request,
4452 lwpid_of (thread),
4453 (PTRACE_TYPE_ARG3) 0,
4454 /* Coerce to a uintptr_t first to avoid potential gcc warning
4455 of coercing an 8 byte integer to a 4 byte pointer. */
4456 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4457
4458 current_thread = saved_thread;
4459 if (errno)
4460 perror_with_name ("resuming thread");
4461
4462 /* Successfully resumed. Clear state that no longer makes sense,
4463 and mark the LWP as running. Must not do this before resuming
4464 otherwise if that fails other code will be confused. E.g., we'd
4465 later try to stop the LWP and hang forever waiting for a stop
4466 status. Note that we must not throw after this is cleared,
4467 otherwise handle_zombie_lwp_error would get confused. */
4468 lwp->stopped = 0;
4469 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4470 }
4471
4472 /* Called when we try to resume a stopped LWP and that errors out. If
4473 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4474 or about to become), discard the error, clear any pending status
4475 the LWP may have, and return true (we'll collect the exit status
4476 soon enough). Otherwise, return false. */
4477
4478 static int
4479 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4480 {
4481 struct thread_info *thread = get_lwp_thread (lp);
4482
4483 /* If we get an error after resuming the LWP successfully, we'd
4484 confuse !T state for the LWP being gone. */
4485 gdb_assert (lp->stopped);
4486
4487 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4488 because even if ptrace failed with ESRCH, the tracee may be "not
4489 yet fully dead", but already refusing ptrace requests. In that
4490 case the tracee has 'R (Running)' state for a little bit
4491 (observed in Linux 3.18). See also the note on ESRCH in the
4492 ptrace(2) man page. Instead, check whether the LWP has any state
4493 other than ptrace-stopped. */
4494
4495 /* Don't assume anything if /proc/PID/status can't be read. */
4496 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4497 {
4498 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4499 lp->status_pending_p = 0;
4500 return 1;
4501 }
4502 return 0;
4503 }
4504
4505 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4506 disappears while we try to resume it. */
4507
4508 static void
4509 linux_resume_one_lwp (struct lwp_info *lwp,
4510 int step, int signal, siginfo_t *info)
4511 {
4512 TRY
4513 {
4514 linux_resume_one_lwp_throw (lwp, step, signal, info);
4515 }
4516 CATCH (ex, RETURN_MASK_ERROR)
4517 {
4518 if (!check_ptrace_stopped_lwp_gone (lwp))
4519 throw_exception (ex);
4520 }
4521 END_CATCH
4522 }
4523
4524 /* This function is called once per thread via for_each_thread.
4525 We look up which resume request applies to THREAD and mark it with a
4526 pointer to the appropriate resume request.
4527
4528 This algorithm is O(threads * resume elements), but resume elements
4529 is small (and will remain small at least until GDB supports thread
4530 suspension). */
4531
4532 static void
4533 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4534 {
4535 struct lwp_info *lwp = get_thread_lwp (thread);
4536
4537 for (int ndx = 0; ndx < n; ndx++)
4538 {
4539 ptid_t ptid = resume[ndx].thread;
4540 if (ptid == minus_one_ptid
4541 || ptid == thread->id
4542 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4543 of PID'. */
4544 || (ptid.pid () == pid_of (thread)
4545 && (ptid.is_pid ()
4546 || ptid.lwp () == -1)))
4547 {
4548 if (resume[ndx].kind == resume_stop
4549 && thread->last_resume_kind == resume_stop)
4550 {
4551 if (debug_threads)
4552 debug_printf ("already %s LWP %ld at GDB's request\n",
4553 (thread->last_status.kind
4554 == TARGET_WAITKIND_STOPPED)
4555 ? "stopped"
4556 : "stopping",
4557 lwpid_of (thread));
4558
4559 continue;
4560 }
4561
4562 /* Ignore (wildcard) resume requests for already-resumed
4563 threads. */
4564 if (resume[ndx].kind != resume_stop
4565 && thread->last_resume_kind != resume_stop)
4566 {
4567 if (debug_threads)
4568 debug_printf ("already %s LWP %ld at GDB's request\n",
4569 (thread->last_resume_kind
4570 == resume_step)
4571 ? "stepping"
4572 : "continuing",
4573 lwpid_of (thread));
4574 continue;
4575 }
4576
4577 /* Don't let wildcard resumes resume fork children that GDB
4578 does not yet know are new fork children. */
4579 if (lwp->fork_relative != NULL)
4580 {
4581 struct lwp_info *rel = lwp->fork_relative;
4582
4583 if (rel->status_pending_p
4584 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4585 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4586 {
4587 if (debug_threads)
4588 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4589 lwpid_of (thread));
4590 continue;
4591 }
4592 }
4593
4594 /* If the thread has a pending event that has already been
4595 reported to GDBserver core, but GDB has not pulled the
4596 event out of the vStopped queue yet, likewise, ignore the
4597 (wildcard) resume request. */
4598 if (in_queued_stop_replies (thread->id))
4599 {
4600 if (debug_threads)
4601 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4602 lwpid_of (thread));
4603 continue;
4604 }
4605
4606 lwp->resume = &resume[ndx];
4607 thread->last_resume_kind = lwp->resume->kind;
4608
4609 lwp->step_range_start = lwp->resume->step_range_start;
4610 lwp->step_range_end = lwp->resume->step_range_end;
4611
4612 /* If we had a deferred signal to report, dequeue one now.
4613 This can happen if LWP gets more than one signal while
4614 trying to get out of a jump pad. */
4615 if (lwp->stopped
4616 && !lwp->status_pending_p
4617 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4618 {
4619 lwp->status_pending_p = 1;
4620
4621 if (debug_threads)
4622 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4623 "leaving status pending.\n",
4624 WSTOPSIG (lwp->status_pending),
4625 lwpid_of (thread));
4626 }
4627
4628 return;
4629 }
4630 }
4631
4632 /* No resume action for this thread. */
4633 lwp->resume = NULL;
4634 }
4635
4636 /* find_thread callback for linux_resume. Return true if this lwp has an
4637 interesting status pending. */
4638
4639 static bool
4640 resume_status_pending_p (thread_info *thread)
4641 {
4642 struct lwp_info *lwp = get_thread_lwp (thread);
4643
4644 /* LWPs which will not be resumed are not interesting, because
4645 we might not wait for them next time through linux_wait. */
4646 if (lwp->resume == NULL)
4647 return false;
4648
4649 return thread_still_has_status_pending_p (thread);
4650 }
4651
4652 /* Return 1 if this lwp that GDB wants running is stopped at an
4653 internal breakpoint that we need to step over. It assumes that any
4654 required STOP_PC adjustment has already been propagated to the
4655 inferior's regcache. */
4656
4657 static bool
4658 need_step_over_p (thread_info *thread)
4659 {
4660 struct lwp_info *lwp = get_thread_lwp (thread);
4661 struct thread_info *saved_thread;
4662 CORE_ADDR pc;
4663 struct process_info *proc = get_thread_process (thread);
4664
4665 /* GDBserver is skipping the extra traps from the wrapper program,
4666 don't have to do step over. */
4667 if (proc->tdesc == NULL)
4668 return false;
4669
4670 /* LWPs which will not be resumed are not interesting, because we
4671 might not wait for them next time through linux_wait. */
4672
4673 if (!lwp->stopped)
4674 {
4675 if (debug_threads)
4676 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4677 lwpid_of (thread));
4678 return false;
4679 }
4680
4681 if (thread->last_resume_kind == resume_stop)
4682 {
4683 if (debug_threads)
4684 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4685 " stopped\n",
4686 lwpid_of (thread));
4687 return false;
4688 }
4689
4690 gdb_assert (lwp->suspended >= 0);
4691
4692 if (lwp->suspended)
4693 {
4694 if (debug_threads)
4695 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4696 lwpid_of (thread));
4697 return false;
4698 }
4699
4700 if (lwp->status_pending_p)
4701 {
4702 if (debug_threads)
4703 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4704 " status.\n",
4705 lwpid_of (thread));
4706 return false;
4707 }
4708
4709 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4710 or we have. */
4711 pc = get_pc (lwp);
4712
4713 /* If the PC has changed since we stopped, then don't do anything,
4714 and let the breakpoint/tracepoint be hit. This happens if, for
4715 instance, GDB handled the decr_pc_after_break subtraction itself,
4716 GDB is OOL stepping this thread, or the user has issued a "jump"
4717 command, or poked thread's registers herself. */
4718 if (pc != lwp->stop_pc)
4719 {
4720 if (debug_threads)
4721 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4722 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4723 lwpid_of (thread),
4724 paddress (lwp->stop_pc), paddress (pc));
4725 return false;
4726 }
4727
4728 /* On software single step target, resume the inferior with signal
4729 rather than stepping over. */
4730 if (can_software_single_step ()
4731 && lwp->pending_signals != NULL
4732 && lwp_signal_can_be_delivered (lwp))
4733 {
4734 if (debug_threads)
4735 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4736 " signals.\n",
4737 lwpid_of (thread));
4738
4739 return false;
4740 }
4741
4742 saved_thread = current_thread;
4743 current_thread = thread;
4744
4745 /* We can only step over breakpoints we know about. */
4746 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4747 {
4748 /* Don't step over a breakpoint that GDB expects to hit
4749 though. If the condition is being evaluated on the target's side
4750 and it evaluate to false, step over this breakpoint as well. */
4751 if (gdb_breakpoint_here (pc)
4752 && gdb_condition_true_at_breakpoint (pc)
4753 && gdb_no_commands_at_breakpoint (pc))
4754 {
4755 if (debug_threads)
4756 debug_printf ("Need step over [LWP %ld]? yes, but found"
4757 " GDB breakpoint at 0x%s; skipping step over\n",
4758 lwpid_of (thread), paddress (pc));
4759
4760 current_thread = saved_thread;
4761 return false;
4762 }
4763 else
4764 {
4765 if (debug_threads)
4766 debug_printf ("Need step over [LWP %ld]? yes, "
4767 "found breakpoint at 0x%s\n",
4768 lwpid_of (thread), paddress (pc));
4769
4770 /* We've found an lwp that needs stepping over --- return 1 so
4771 that find_thread stops looking. */
4772 current_thread = saved_thread;
4773
4774 return true;
4775 }
4776 }
4777
4778 current_thread = saved_thread;
4779
4780 if (debug_threads)
4781 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4782 " at 0x%s\n",
4783 lwpid_of (thread), paddress (pc));
4784
4785 return false;
4786 }
4787
4788 /* Start a step-over operation on LWP. When LWP stopped at a
4789 breakpoint, to make progress, we need to remove the breakpoint out
4790 of the way. If we let other threads run while we do that, they may
4791 pass by the breakpoint location and miss hitting it. To avoid
4792 that, a step-over momentarily stops all threads while LWP is
4793 single-stepped by either hardware or software while the breakpoint
4794 is temporarily uninserted from the inferior. When the single-step
4795 finishes, we reinsert the breakpoint, and let all threads that are
4796 supposed to be running, run again. */
4797
4798 static int
4799 start_step_over (struct lwp_info *lwp)
4800 {
4801 struct thread_info *thread = get_lwp_thread (lwp);
4802 struct thread_info *saved_thread;
4803 CORE_ADDR pc;
4804 int step;
4805
4806 if (debug_threads)
4807 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4808 lwpid_of (thread));
4809
4810 stop_all_lwps (1, lwp);
4811
4812 if (lwp->suspended != 0)
4813 {
4814 internal_error (__FILE__, __LINE__,
4815 "LWP %ld suspended=%d\n", lwpid_of (thread),
4816 lwp->suspended);
4817 }
4818
4819 if (debug_threads)
4820 debug_printf ("Done stopping all threads for step-over.\n");
4821
4822 /* Note, we should always reach here with an already adjusted PC,
4823 either by GDB (if we're resuming due to GDB's request), or by our
4824 caller, if we just finished handling an internal breakpoint GDB
4825 shouldn't care about. */
4826 pc = get_pc (lwp);
4827
4828 saved_thread = current_thread;
4829 current_thread = thread;
4830
4831 lwp->bp_reinsert = pc;
4832 uninsert_breakpoints_at (pc);
4833 uninsert_fast_tracepoint_jumps_at (pc);
4834
4835 step = single_step (lwp);
4836
4837 current_thread = saved_thread;
4838
4839 linux_resume_one_lwp (lwp, step, 0, NULL);
4840
4841 /* Require next event from this LWP. */
4842 step_over_bkpt = thread->id;
4843 return 1;
4844 }
4845
4846 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4847 start_step_over, if still there, and delete any single-step
4848 breakpoints we've set, on non hardware single-step targets. */
4849
4850 static int
4851 finish_step_over (struct lwp_info *lwp)
4852 {
4853 if (lwp->bp_reinsert != 0)
4854 {
4855 struct thread_info *saved_thread = current_thread;
4856
4857 if (debug_threads)
4858 debug_printf ("Finished step over.\n");
4859
4860 current_thread = get_lwp_thread (lwp);
4861
4862 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4863 may be no breakpoint to reinsert there by now. */
4864 reinsert_breakpoints_at (lwp->bp_reinsert);
4865 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4866
4867 lwp->bp_reinsert = 0;
4868
4869 /* Delete any single-step breakpoints. No longer needed. We
4870 don't have to worry about other threads hitting this trap,
4871 and later not being able to explain it, because we were
4872 stepping over a breakpoint, and we hold all threads but
4873 LWP stopped while doing that. */
4874 if (!can_hardware_single_step ())
4875 {
4876 gdb_assert (has_single_step_breakpoints (current_thread));
4877 delete_single_step_breakpoints (current_thread);
4878 }
4879
4880 step_over_bkpt = null_ptid;
4881 current_thread = saved_thread;
4882 return 1;
4883 }
4884 else
4885 return 0;
4886 }
4887
4888 /* If there's a step over in progress, wait until all threads stop
4889 (that is, until the stepping thread finishes its step), and
4890 unsuspend all lwps. The stepping thread ends with its status
4891 pending, which is processed later when we get back to processing
4892 events. */
4893
4894 static void
4895 complete_ongoing_step_over (void)
4896 {
4897 if (step_over_bkpt != null_ptid)
4898 {
4899 struct lwp_info *lwp;
4900 int wstat;
4901 int ret;
4902
4903 if (debug_threads)
4904 debug_printf ("detach: step over in progress, finish it first\n");
4905
4906 /* Passing NULL_PTID as filter indicates we want all events to
4907 be left pending. Eventually this returns when there are no
4908 unwaited-for children left. */
4909 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4910 &wstat, __WALL);
4911 gdb_assert (ret == -1);
4912
4913 lwp = find_lwp_pid (step_over_bkpt);
4914 if (lwp != NULL)
4915 finish_step_over (lwp);
4916 step_over_bkpt = null_ptid;
4917 unsuspend_all_lwps (lwp);
4918 }
4919 }
4920
4921 /* This function is called once per thread. We check the thread's resume
4922 request, which will tell us whether to resume, step, or leave the thread
4923 stopped; and what signal, if any, it should be sent.
4924
4925 For threads which we aren't explicitly told otherwise, we preserve
4926 the stepping flag; this is used for stepping over gdbserver-placed
4927 breakpoints.
4928
4929 If pending_flags was set in any thread, we queue any needed
4930 signals, since we won't actually resume. We already have a pending
4931 event to report, so we don't need to preserve any step requests;
4932 they should be re-issued if necessary. */
4933
4934 static void
4935 linux_resume_one_thread (thread_info *thread, bool leave_all_stopped)
4936 {
4937 struct lwp_info *lwp = get_thread_lwp (thread);
4938 int leave_pending;
4939
4940 if (lwp->resume == NULL)
4941 return;
4942
4943 if (lwp->resume->kind == resume_stop)
4944 {
4945 if (debug_threads)
4946 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4947
4948 if (!lwp->stopped)
4949 {
4950 if (debug_threads)
4951 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4952
4953 /* Stop the thread, and wait for the event asynchronously,
4954 through the event loop. */
4955 send_sigstop (lwp);
4956 }
4957 else
4958 {
4959 if (debug_threads)
4960 debug_printf ("already stopped LWP %ld\n",
4961 lwpid_of (thread));
4962
4963 /* The LWP may have been stopped in an internal event that
4964 was not meant to be notified back to GDB (e.g., gdbserver
4965 breakpoint), so we should be reporting a stop event in
4966 this case too. */
4967
4968 /* If the thread already has a pending SIGSTOP, this is a
4969 no-op. Otherwise, something later will presumably resume
4970 the thread and this will cause it to cancel any pending
4971 operation, due to last_resume_kind == resume_stop. If
4972 the thread already has a pending status to report, we
4973 will still report it the next time we wait - see
4974 status_pending_p_callback. */
4975
4976 /* If we already have a pending signal to report, then
4977 there's no need to queue a SIGSTOP, as this means we're
4978 midway through moving the LWP out of the jumppad, and we
4979 will report the pending signal as soon as that is
4980 finished. */
4981 if (lwp->pending_signals_to_report == NULL)
4982 send_sigstop (lwp);
4983 }
4984
4985 /* For stop requests, we're done. */
4986 lwp->resume = NULL;
4987 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4988 return;
4989 }
4990
4991 /* If this thread which is about to be resumed has a pending status,
4992 then don't resume it - we can just report the pending status.
4993 Likewise if it is suspended, because e.g., another thread is
4994 stepping past a breakpoint. Make sure to queue any signals that
4995 would otherwise be sent. In all-stop mode, we do this decision
4996 based on if *any* thread has a pending status. If there's a
4997 thread that needs the step-over-breakpoint dance, then don't
4998 resume any other thread but that particular one. */
4999 leave_pending = (lwp->suspended
5000 || lwp->status_pending_p
5001 || leave_all_stopped);
5002
5003 /* If we have a new signal, enqueue the signal. */
5004 if (lwp->resume->sig != 0)
5005 {
5006 siginfo_t info, *info_p;
5007
5008 /* If this is the same signal we were previously stopped by,
5009 make sure to queue its siginfo. */
5010 if (WIFSTOPPED (lwp->last_status)
5011 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5012 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5013 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5014 info_p = &info;
5015 else
5016 info_p = NULL;
5017
5018 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5019 }
5020
5021 if (!leave_pending)
5022 {
5023 if (debug_threads)
5024 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5025
5026 proceed_one_lwp (thread, NULL);
5027 }
5028 else
5029 {
5030 if (debug_threads)
5031 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5032 }
5033
5034 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5035 lwp->resume = NULL;
5036 }
5037
5038 static void
5039 linux_resume (struct thread_resume *resume_info, size_t n)
5040 {
5041 struct thread_info *need_step_over = NULL;
5042
5043 if (debug_threads)
5044 {
5045 debug_enter ();
5046 debug_printf ("linux_resume:\n");
5047 }
5048
5049 for_each_thread ([&] (thread_info *thread)
5050 {
5051 linux_set_resume_request (thread, resume_info, n);
5052 });
5053
5054 /* If there is a thread which would otherwise be resumed, which has
5055 a pending status, then don't resume any threads - we can just
5056 report the pending status. Make sure to queue any signals that
5057 would otherwise be sent. In non-stop mode, we'll apply this
5058 logic to each thread individually. We consume all pending events
5059 before considering to start a step-over (in all-stop). */
5060 bool any_pending = false;
5061 if (!non_stop)
5062 any_pending = find_thread (resume_status_pending_p) != NULL;
5063
5064 /* If there is a thread which would otherwise be resumed, which is
5065 stopped at a breakpoint that needs stepping over, then don't
5066 resume any threads - have it step over the breakpoint with all
5067 other threads stopped, then resume all threads again. Make sure
5068 to queue any signals that would otherwise be delivered or
5069 queued. */
5070 if (!any_pending && supports_breakpoints ())
5071 need_step_over = find_thread (need_step_over_p);
5072
5073 bool leave_all_stopped = (need_step_over != NULL || any_pending);
5074
5075 if (debug_threads)
5076 {
5077 if (need_step_over != NULL)
5078 debug_printf ("Not resuming all, need step over\n");
5079 else if (any_pending)
5080 debug_printf ("Not resuming, all-stop and found "
5081 "an LWP with pending status\n");
5082 else
5083 debug_printf ("Resuming, no pending status or step over needed\n");
5084 }
5085
5086 /* Even if we're leaving threads stopped, queue all signals we'd
5087 otherwise deliver. */
5088 for_each_thread ([&] (thread_info *thread)
5089 {
5090 linux_resume_one_thread (thread, leave_all_stopped);
5091 });
5092
5093 if (need_step_over)
5094 start_step_over (get_thread_lwp (need_step_over));
5095
5096 if (debug_threads)
5097 {
5098 debug_printf ("linux_resume done\n");
5099 debug_exit ();
5100 }
5101
5102 /* We may have events that were pending that can/should be sent to
5103 the client now. Trigger a linux_wait call. */
5104 if (target_is_async_p ())
5105 async_file_mark ();
5106 }
5107
5108 /* This function is called once per thread. We check the thread's
5109 last resume request, which will tell us whether to resume, step, or
5110 leave the thread stopped. Any signal the client requested to be
5111 delivered has already been enqueued at this point.
5112
5113 If any thread that GDB wants running is stopped at an internal
5114 breakpoint that needs stepping over, we start a step-over operation
5115 on that particular thread, and leave all others stopped. */
5116
5117 static void
5118 proceed_one_lwp (thread_info *thread, lwp_info *except)
5119 {
5120 struct lwp_info *lwp = get_thread_lwp (thread);
5121 int step;
5122
5123 if (lwp == except)
5124 return;
5125
5126 if (debug_threads)
5127 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5128
5129 if (!lwp->stopped)
5130 {
5131 if (debug_threads)
5132 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5133 return;
5134 }
5135
5136 if (thread->last_resume_kind == resume_stop
5137 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5138 {
5139 if (debug_threads)
5140 debug_printf (" client wants LWP to remain %ld stopped\n",
5141 lwpid_of (thread));
5142 return;
5143 }
5144
5145 if (lwp->status_pending_p)
5146 {
5147 if (debug_threads)
5148 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5149 lwpid_of (thread));
5150 return;
5151 }
5152
5153 gdb_assert (lwp->suspended >= 0);
5154
5155 if (lwp->suspended)
5156 {
5157 if (debug_threads)
5158 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5159 return;
5160 }
5161
5162 if (thread->last_resume_kind == resume_stop
5163 && lwp->pending_signals_to_report == NULL
5164 && (lwp->collecting_fast_tracepoint
5165 == fast_tpoint_collect_result::not_collecting))
5166 {
5167 /* We haven't reported this LWP as stopped yet (otherwise, the
5168 last_status.kind check above would catch it, and we wouldn't
5169 reach here. This LWP may have been momentarily paused by a
5170 stop_all_lwps call while handling for example, another LWP's
5171 step-over. In that case, the pending expected SIGSTOP signal
5172 that was queued at vCont;t handling time will have already
5173 been consumed by wait_for_sigstop, and so we need to requeue
5174 another one here. Note that if the LWP already has a SIGSTOP
5175 pending, this is a no-op. */
5176
5177 if (debug_threads)
5178 debug_printf ("Client wants LWP %ld to stop. "
5179 "Making sure it has a SIGSTOP pending\n",
5180 lwpid_of (thread));
5181
5182 send_sigstop (lwp);
5183 }
5184
5185 if (thread->last_resume_kind == resume_step)
5186 {
5187 if (debug_threads)
5188 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5189 lwpid_of (thread));
5190
5191 /* If resume_step is requested by GDB, install single-step
5192 breakpoints when the thread is about to be actually resumed if
5193 the single-step breakpoints weren't removed. */
5194 if (can_software_single_step ()
5195 && !has_single_step_breakpoints (thread))
5196 install_software_single_step_breakpoints (lwp);
5197
5198 step = maybe_hw_step (thread);
5199 }
5200 else if (lwp->bp_reinsert != 0)
5201 {
5202 if (debug_threads)
5203 debug_printf (" stepping LWP %ld, reinsert set\n",
5204 lwpid_of (thread));
5205
5206 step = maybe_hw_step (thread);
5207 }
5208 else
5209 step = 0;
5210
5211 linux_resume_one_lwp (lwp, step, 0, NULL);
5212 }
5213
5214 static void
5215 unsuspend_and_proceed_one_lwp (thread_info *thread, lwp_info *except)
5216 {
5217 struct lwp_info *lwp = get_thread_lwp (thread);
5218
5219 if (lwp == except)
5220 return;
5221
5222 lwp_suspended_decr (lwp);
5223
5224 proceed_one_lwp (thread, except);
5225 }
5226
5227 /* When we finish a step-over, set threads running again. If there's
5228 another thread that may need a step-over, now's the time to start
5229 it. Eventually, we'll move all threads past their breakpoints. */
5230
5231 static void
5232 proceed_all_lwps (void)
5233 {
5234 struct thread_info *need_step_over;
5235
5236 /* If there is a thread which would otherwise be resumed, which is
5237 stopped at a breakpoint that needs stepping over, then don't
5238 resume any threads - have it step over the breakpoint with all
5239 other threads stopped, then resume all threads again. */
5240
5241 if (supports_breakpoints ())
5242 {
5243 need_step_over = find_thread (need_step_over_p);
5244
5245 if (need_step_over != NULL)
5246 {
5247 if (debug_threads)
5248 debug_printf ("proceed_all_lwps: found "
5249 "thread %ld needing a step-over\n",
5250 lwpid_of (need_step_over));
5251
5252 start_step_over (get_thread_lwp (need_step_over));
5253 return;
5254 }
5255 }
5256
5257 if (debug_threads)
5258 debug_printf ("Proceeding, no step-over needed\n");
5259
5260 for_each_thread ([] (thread_info *thread)
5261 {
5262 proceed_one_lwp (thread, NULL);
5263 });
5264 }
5265
5266 /* Stopped LWPs that the client wanted to be running, that don't have
5267 pending statuses, are set to run again, except for EXCEPT, if not
5268 NULL. This undoes a stop_all_lwps call. */
5269
5270 static void
5271 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5272 {
5273 if (debug_threads)
5274 {
5275 debug_enter ();
5276 if (except)
5277 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5278 lwpid_of (get_lwp_thread (except)));
5279 else
5280 debug_printf ("unstopping all lwps\n");
5281 }
5282
5283 if (unsuspend)
5284 for_each_thread ([&] (thread_info *thread)
5285 {
5286 unsuspend_and_proceed_one_lwp (thread, except);
5287 });
5288 else
5289 for_each_thread ([&] (thread_info *thread)
5290 {
5291 proceed_one_lwp (thread, except);
5292 });
5293
5294 if (debug_threads)
5295 {
5296 debug_printf ("unstop_all_lwps done\n");
5297 debug_exit ();
5298 }
5299 }
5300
5301
5302 #ifdef HAVE_LINUX_REGSETS
5303
5304 #define use_linux_regsets 1
5305
5306 /* Returns true if REGSET has been disabled. */
5307
5308 static int
5309 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5310 {
5311 return (info->disabled_regsets != NULL
5312 && info->disabled_regsets[regset - info->regsets]);
5313 }
5314
5315 /* Disable REGSET. */
5316
5317 static void
5318 disable_regset (struct regsets_info *info, struct regset_info *regset)
5319 {
5320 int dr_offset;
5321
5322 dr_offset = regset - info->regsets;
5323 if (info->disabled_regsets == NULL)
5324 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5325 info->disabled_regsets[dr_offset] = 1;
5326 }
5327
5328 static int
5329 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5330 struct regcache *regcache)
5331 {
5332 struct regset_info *regset;
5333 int saw_general_regs = 0;
5334 int pid;
5335 struct iovec iov;
5336
5337 pid = lwpid_of (current_thread);
5338 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5339 {
5340 void *buf, *data;
5341 int nt_type, res;
5342
5343 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5344 continue;
5345
5346 buf = xmalloc (regset->size);
5347
5348 nt_type = regset->nt_type;
5349 if (nt_type)
5350 {
5351 iov.iov_base = buf;
5352 iov.iov_len = regset->size;
5353 data = (void *) &iov;
5354 }
5355 else
5356 data = buf;
5357
5358 #ifndef __sparc__
5359 res = ptrace (regset->get_request, pid,
5360 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5361 #else
5362 res = ptrace (regset->get_request, pid, data, nt_type);
5363 #endif
5364 if (res < 0)
5365 {
5366 if (errno == EIO)
5367 {
5368 /* If we get EIO on a regset, do not try it again for
5369 this process mode. */
5370 disable_regset (regsets_info, regset);
5371 }
5372 else if (errno == ENODATA)
5373 {
5374 /* ENODATA may be returned if the regset is currently
5375 not "active". This can happen in normal operation,
5376 so suppress the warning in this case. */
5377 }
5378 else if (errno == ESRCH)
5379 {
5380 /* At this point, ESRCH should mean the process is
5381 already gone, in which case we simply ignore attempts
5382 to read its registers. */
5383 }
5384 else
5385 {
5386 char s[256];
5387 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5388 pid);
5389 perror (s);
5390 }
5391 }
5392 else
5393 {
5394 if (regset->type == GENERAL_REGS)
5395 saw_general_regs = 1;
5396 regset->store_function (regcache, buf);
5397 }
5398 free (buf);
5399 }
5400 if (saw_general_regs)
5401 return 0;
5402 else
5403 return 1;
5404 }
5405
5406 static int
5407 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5408 struct regcache *regcache)
5409 {
5410 struct regset_info *regset;
5411 int saw_general_regs = 0;
5412 int pid;
5413 struct iovec iov;
5414
5415 pid = lwpid_of (current_thread);
5416 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5417 {
5418 void *buf, *data;
5419 int nt_type, res;
5420
5421 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5422 || regset->fill_function == NULL)
5423 continue;
5424
5425 buf = xmalloc (regset->size);
5426
5427 /* First fill the buffer with the current register set contents,
5428 in case there are any items in the kernel's regset that are
5429 not in gdbserver's regcache. */
5430
5431 nt_type = regset->nt_type;
5432 if (nt_type)
5433 {
5434 iov.iov_base = buf;
5435 iov.iov_len = regset->size;
5436 data = (void *) &iov;
5437 }
5438 else
5439 data = buf;
5440
5441 #ifndef __sparc__
5442 res = ptrace (regset->get_request, pid,
5443 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5444 #else
5445 res = ptrace (regset->get_request, pid, data, nt_type);
5446 #endif
5447
5448 if (res == 0)
5449 {
5450 /* Then overlay our cached registers on that. */
5451 regset->fill_function (regcache, buf);
5452
5453 /* Only now do we write the register set. */
5454 #ifndef __sparc__
5455 res = ptrace (regset->set_request, pid,
5456 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5457 #else
5458 res = ptrace (regset->set_request, pid, data, nt_type);
5459 #endif
5460 }
5461
5462 if (res < 0)
5463 {
5464 if (errno == EIO)
5465 {
5466 /* If we get EIO on a regset, do not try it again for
5467 this process mode. */
5468 disable_regset (regsets_info, regset);
5469 }
5470 else if (errno == ESRCH)
5471 {
5472 /* At this point, ESRCH should mean the process is
5473 already gone, in which case we simply ignore attempts
5474 to change its registers. See also the related
5475 comment in linux_resume_one_lwp. */
5476 free (buf);
5477 return 0;
5478 }
5479 else
5480 {
5481 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5482 }
5483 }
5484 else if (regset->type == GENERAL_REGS)
5485 saw_general_regs = 1;
5486 free (buf);
5487 }
5488 if (saw_general_regs)
5489 return 0;
5490 else
5491 return 1;
5492 }
5493
5494 #else /* !HAVE_LINUX_REGSETS */
5495
5496 #define use_linux_regsets 0
5497 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5498 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5499
5500 #endif
5501
5502 /* Return 1 if register REGNO is supported by one of the regset ptrace
5503 calls or 0 if it has to be transferred individually. */
5504
5505 static int
5506 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5507 {
5508 unsigned char mask = 1 << (regno % 8);
5509 size_t index = regno / 8;
5510
5511 return (use_linux_regsets
5512 && (regs_info->regset_bitmap == NULL
5513 || (regs_info->regset_bitmap[index] & mask) != 0));
5514 }
5515
5516 #ifdef HAVE_LINUX_USRREGS
5517
5518 static int
5519 register_addr (const struct usrregs_info *usrregs, int regnum)
5520 {
5521 int addr;
5522
5523 if (regnum < 0 || regnum >= usrregs->num_regs)
5524 error ("Invalid register number %d.", regnum);
5525
5526 addr = usrregs->regmap[regnum];
5527
5528 return addr;
5529 }
5530
5531 /* Fetch one register. */
5532 static void
5533 fetch_register (const struct usrregs_info *usrregs,
5534 struct regcache *regcache, int regno)
5535 {
5536 CORE_ADDR regaddr;
5537 int i, size;
5538 char *buf;
5539 int pid;
5540
5541 if (regno >= usrregs->num_regs)
5542 return;
5543 if ((*the_low_target.cannot_fetch_register) (regno))
5544 return;
5545
5546 regaddr = register_addr (usrregs, regno);
5547 if (regaddr == -1)
5548 return;
5549
5550 size = ((register_size (regcache->tdesc, regno)
5551 + sizeof (PTRACE_XFER_TYPE) - 1)
5552 & -sizeof (PTRACE_XFER_TYPE));
5553 buf = (char *) alloca (size);
5554
5555 pid = lwpid_of (current_thread);
5556 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5557 {
5558 errno = 0;
5559 *(PTRACE_XFER_TYPE *) (buf + i) =
5560 ptrace (PTRACE_PEEKUSER, pid,
5561 /* Coerce to a uintptr_t first to avoid potential gcc warning
5562 of coercing an 8 byte integer to a 4 byte pointer. */
5563 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5564 regaddr += sizeof (PTRACE_XFER_TYPE);
5565 if (errno != 0)
5566 {
5567 /* Mark register REGNO unavailable. */
5568 supply_register (regcache, regno, NULL);
5569 return;
5570 }
5571 }
5572
5573 if (the_low_target.supply_ptrace_register)
5574 the_low_target.supply_ptrace_register (regcache, regno, buf);
5575 else
5576 supply_register (regcache, regno, buf);
5577 }
5578
5579 /* Store one register. */
5580 static void
5581 store_register (const struct usrregs_info *usrregs,
5582 struct regcache *regcache, int regno)
5583 {
5584 CORE_ADDR regaddr;
5585 int i, size;
5586 char *buf;
5587 int pid;
5588
5589 if (regno >= usrregs->num_regs)
5590 return;
5591 if ((*the_low_target.cannot_store_register) (regno))
5592 return;
5593
5594 regaddr = register_addr (usrregs, regno);
5595 if (regaddr == -1)
5596 return;
5597
5598 size = ((register_size (regcache->tdesc, regno)
5599 + sizeof (PTRACE_XFER_TYPE) - 1)
5600 & -sizeof (PTRACE_XFER_TYPE));
5601 buf = (char *) alloca (size);
5602 memset (buf, 0, size);
5603
5604 if (the_low_target.collect_ptrace_register)
5605 the_low_target.collect_ptrace_register (regcache, regno, buf);
5606 else
5607 collect_register (regcache, regno, buf);
5608
5609 pid = lwpid_of (current_thread);
5610 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5611 {
5612 errno = 0;
5613 ptrace (PTRACE_POKEUSER, pid,
5614 /* Coerce to a uintptr_t first to avoid potential gcc warning
5615 about coercing an 8 byte integer to a 4 byte pointer. */
5616 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5617 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5618 if (errno != 0)
5619 {
5620 /* At this point, ESRCH should mean the process is
5621 already gone, in which case we simply ignore attempts
5622 to change its registers. See also the related
5623 comment in linux_resume_one_lwp. */
5624 if (errno == ESRCH)
5625 return;
5626
5627 if ((*the_low_target.cannot_store_register) (regno) == 0)
5628 error ("writing register %d: %s", regno, strerror (errno));
5629 }
5630 regaddr += sizeof (PTRACE_XFER_TYPE);
5631 }
5632 }
5633
5634 /* Fetch all registers, or just one, from the child process.
5635 If REGNO is -1, do this for all registers, skipping any that are
5636 assumed to have been retrieved by regsets_fetch_inferior_registers,
5637 unless ALL is non-zero.
5638 Otherwise, REGNO specifies which register (so we can save time). */
5639 static void
5640 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5641 struct regcache *regcache, int regno, int all)
5642 {
5643 struct usrregs_info *usr = regs_info->usrregs;
5644
5645 if (regno == -1)
5646 {
5647 for (regno = 0; regno < usr->num_regs; regno++)
5648 if (all || !linux_register_in_regsets (regs_info, regno))
5649 fetch_register (usr, regcache, regno);
5650 }
5651 else
5652 fetch_register (usr, regcache, regno);
5653 }
5654
5655 /* Store our register values back into the inferior.
5656 If REGNO is -1, do this for all registers, skipping any that are
5657 assumed to have been saved by regsets_store_inferior_registers,
5658 unless ALL is non-zero.
5659 Otherwise, REGNO specifies which register (so we can save time). */
5660 static void
5661 usr_store_inferior_registers (const struct regs_info *regs_info,
5662 struct regcache *regcache, int regno, int all)
5663 {
5664 struct usrregs_info *usr = regs_info->usrregs;
5665
5666 if (regno == -1)
5667 {
5668 for (regno = 0; regno < usr->num_regs; regno++)
5669 if (all || !linux_register_in_regsets (regs_info, regno))
5670 store_register (usr, regcache, regno);
5671 }
5672 else
5673 store_register (usr, regcache, regno);
5674 }
5675
5676 #else /* !HAVE_LINUX_USRREGS */
5677
5678 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5679 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5680
5681 #endif
5682
5683
5684 static void
5685 linux_fetch_registers (struct regcache *regcache, int regno)
5686 {
5687 int use_regsets;
5688 int all = 0;
5689 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5690
5691 if (regno == -1)
5692 {
5693 if (the_low_target.fetch_register != NULL
5694 && regs_info->usrregs != NULL)
5695 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5696 (*the_low_target.fetch_register) (regcache, regno);
5697
5698 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5699 if (regs_info->usrregs != NULL)
5700 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5701 }
5702 else
5703 {
5704 if (the_low_target.fetch_register != NULL
5705 && (*the_low_target.fetch_register) (regcache, regno))
5706 return;
5707
5708 use_regsets = linux_register_in_regsets (regs_info, regno);
5709 if (use_regsets)
5710 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5711 regcache);
5712 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5713 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5714 }
5715 }
5716
5717 static void
5718 linux_store_registers (struct regcache *regcache, int regno)
5719 {
5720 int use_regsets;
5721 int all = 0;
5722 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5723
5724 if (regno == -1)
5725 {
5726 all = regsets_store_inferior_registers (regs_info->regsets_info,
5727 regcache);
5728 if (regs_info->usrregs != NULL)
5729 usr_store_inferior_registers (regs_info, regcache, regno, all);
5730 }
5731 else
5732 {
5733 use_regsets = linux_register_in_regsets (regs_info, regno);
5734 if (use_regsets)
5735 all = regsets_store_inferior_registers (regs_info->regsets_info,
5736 regcache);
5737 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5738 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5739 }
5740 }
5741
5742
5743 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5744 to debugger memory starting at MYADDR. */
5745
5746 static int
5747 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5748 {
5749 int pid = lwpid_of (current_thread);
5750 PTRACE_XFER_TYPE *buffer;
5751 CORE_ADDR addr;
5752 int count;
5753 char filename[64];
5754 int i;
5755 int ret;
5756 int fd;
5757
5758 /* Try using /proc. Don't bother for one word. */
5759 if (len >= 3 * sizeof (long))
5760 {
5761 int bytes;
5762
5763 /* We could keep this file open and cache it - possibly one per
5764 thread. That requires some juggling, but is even faster. */
5765 sprintf (filename, "/proc/%d/mem", pid);
5766 fd = open (filename, O_RDONLY | O_LARGEFILE);
5767 if (fd == -1)
5768 goto no_proc;
5769
5770 /* If pread64 is available, use it. It's faster if the kernel
5771 supports it (only one syscall), and it's 64-bit safe even on
5772 32-bit platforms (for instance, SPARC debugging a SPARC64
5773 application). */
5774 #ifdef HAVE_PREAD64
5775 bytes = pread64 (fd, myaddr, len, memaddr);
5776 #else
5777 bytes = -1;
5778 if (lseek (fd, memaddr, SEEK_SET) != -1)
5779 bytes = read (fd, myaddr, len);
5780 #endif
5781
5782 close (fd);
5783 if (bytes == len)
5784 return 0;
5785
5786 /* Some data was read, we'll try to get the rest with ptrace. */
5787 if (bytes > 0)
5788 {
5789 memaddr += bytes;
5790 myaddr += bytes;
5791 len -= bytes;
5792 }
5793 }
5794
5795 no_proc:
5796 /* Round starting address down to longword boundary. */
5797 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5798 /* Round ending address up; get number of longwords that makes. */
5799 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5800 / sizeof (PTRACE_XFER_TYPE));
5801 /* Allocate buffer of that many longwords. */
5802 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5803
5804 /* Read all the longwords */
5805 errno = 0;
5806 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5807 {
5808 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5809 about coercing an 8 byte integer to a 4 byte pointer. */
5810 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5811 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5812 (PTRACE_TYPE_ARG4) 0);
5813 if (errno)
5814 break;
5815 }
5816 ret = errno;
5817
5818 /* Copy appropriate bytes out of the buffer. */
5819 if (i > 0)
5820 {
5821 i *= sizeof (PTRACE_XFER_TYPE);
5822 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5823 memcpy (myaddr,
5824 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5825 i < len ? i : len);
5826 }
5827
5828 return ret;
5829 }
5830
5831 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5832 memory at MEMADDR. On failure (cannot write to the inferior)
5833 returns the value of errno. Always succeeds if LEN is zero. */
5834
5835 static int
5836 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5837 {
5838 int i;
5839 /* Round starting address down to longword boundary. */
5840 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5841 /* Round ending address up; get number of longwords that makes. */
5842 int count
5843 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5844 / sizeof (PTRACE_XFER_TYPE);
5845
5846 /* Allocate buffer of that many longwords. */
5847 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5848
5849 int pid = lwpid_of (current_thread);
5850
5851 if (len == 0)
5852 {
5853 /* Zero length write always succeeds. */
5854 return 0;
5855 }
5856
5857 if (debug_threads)
5858 {
5859 /* Dump up to four bytes. */
5860 char str[4 * 2 + 1];
5861 char *p = str;
5862 int dump = len < 4 ? len : 4;
5863
5864 for (i = 0; i < dump; i++)
5865 {
5866 sprintf (p, "%02x", myaddr[i]);
5867 p += 2;
5868 }
5869 *p = '\0';
5870
5871 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5872 str, (long) memaddr, pid);
5873 }
5874
5875 /* Fill start and end extra bytes of buffer with existing memory data. */
5876
5877 errno = 0;
5878 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5879 about coercing an 8 byte integer to a 4 byte pointer. */
5880 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5881 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5882 (PTRACE_TYPE_ARG4) 0);
5883 if (errno)
5884 return errno;
5885
5886 if (count > 1)
5887 {
5888 errno = 0;
5889 buffer[count - 1]
5890 = ptrace (PTRACE_PEEKTEXT, pid,
5891 /* Coerce to a uintptr_t first to avoid potential gcc warning
5892 about coercing an 8 byte integer to a 4 byte pointer. */
5893 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5894 * sizeof (PTRACE_XFER_TYPE)),
5895 (PTRACE_TYPE_ARG4) 0);
5896 if (errno)
5897 return errno;
5898 }
5899
5900 /* Copy data to be written over corresponding part of buffer. */
5901
5902 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5903 myaddr, len);
5904
5905 /* Write the entire buffer. */
5906
5907 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5908 {
5909 errno = 0;
5910 ptrace (PTRACE_POKETEXT, pid,
5911 /* Coerce to a uintptr_t first to avoid potential gcc warning
5912 about coercing an 8 byte integer to a 4 byte pointer. */
5913 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5914 (PTRACE_TYPE_ARG4) buffer[i]);
5915 if (errno)
5916 return errno;
5917 }
5918
5919 return 0;
5920 }
5921
5922 static void
5923 linux_look_up_symbols (void)
5924 {
5925 #ifdef USE_THREAD_DB
5926 struct process_info *proc = current_process ();
5927
5928 if (proc->priv->thread_db != NULL)
5929 return;
5930
5931 thread_db_init ();
5932 #endif
5933 }
5934
5935 static void
5936 linux_request_interrupt (void)
5937 {
5938 /* Send a SIGINT to the process group. This acts just like the user
5939 typed a ^C on the controlling terminal. */
5940 kill (-signal_pid, SIGINT);
5941 }
5942
5943 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5944 to debugger memory starting at MYADDR. */
5945
5946 static int
5947 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5948 {
5949 char filename[PATH_MAX];
5950 int fd, n;
5951 int pid = lwpid_of (current_thread);
5952
5953 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5954
5955 fd = open (filename, O_RDONLY);
5956 if (fd < 0)
5957 return -1;
5958
5959 if (offset != (CORE_ADDR) 0
5960 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5961 n = -1;
5962 else
5963 n = read (fd, myaddr, len);
5964
5965 close (fd);
5966
5967 return n;
5968 }
5969
5970 /* These breakpoint and watchpoint related wrapper functions simply
5971 pass on the function call if the target has registered a
5972 corresponding function. */
5973
5974 static int
5975 linux_supports_z_point_type (char z_type)
5976 {
5977 return (the_low_target.supports_z_point_type != NULL
5978 && the_low_target.supports_z_point_type (z_type));
5979 }
5980
5981 static int
5982 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5983 int size, struct raw_breakpoint *bp)
5984 {
5985 if (type == raw_bkpt_type_sw)
5986 return insert_memory_breakpoint (bp);
5987 else if (the_low_target.insert_point != NULL)
5988 return the_low_target.insert_point (type, addr, size, bp);
5989 else
5990 /* Unsupported (see target.h). */
5991 return 1;
5992 }
5993
5994 static int
5995 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5996 int size, struct raw_breakpoint *bp)
5997 {
5998 if (type == raw_bkpt_type_sw)
5999 return remove_memory_breakpoint (bp);
6000 else if (the_low_target.remove_point != NULL)
6001 return the_low_target.remove_point (type, addr, size, bp);
6002 else
6003 /* Unsupported (see target.h). */
6004 return 1;
6005 }
6006
6007 /* Implement the to_stopped_by_sw_breakpoint target_ops
6008 method. */
6009
6010 static int
6011 linux_stopped_by_sw_breakpoint (void)
6012 {
6013 struct lwp_info *lwp = get_thread_lwp (current_thread);
6014
6015 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6016 }
6017
6018 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6019 method. */
6020
6021 static int
6022 linux_supports_stopped_by_sw_breakpoint (void)
6023 {
6024 return USE_SIGTRAP_SIGINFO;
6025 }
6026
6027 /* Implement the to_stopped_by_hw_breakpoint target_ops
6028 method. */
6029
6030 static int
6031 linux_stopped_by_hw_breakpoint (void)
6032 {
6033 struct lwp_info *lwp = get_thread_lwp (current_thread);
6034
6035 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6036 }
6037
6038 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6039 method. */
6040
6041 static int
6042 linux_supports_stopped_by_hw_breakpoint (void)
6043 {
6044 return USE_SIGTRAP_SIGINFO;
6045 }
6046
6047 /* Implement the supports_hardware_single_step target_ops method. */
6048
6049 static int
6050 linux_supports_hardware_single_step (void)
6051 {
6052 return can_hardware_single_step ();
6053 }
6054
6055 static int
6056 linux_supports_software_single_step (void)
6057 {
6058 return can_software_single_step ();
6059 }
6060
6061 static int
6062 linux_stopped_by_watchpoint (void)
6063 {
6064 struct lwp_info *lwp = get_thread_lwp (current_thread);
6065
6066 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6067 }
6068
6069 static CORE_ADDR
6070 linux_stopped_data_address (void)
6071 {
6072 struct lwp_info *lwp = get_thread_lwp (current_thread);
6073
6074 return lwp->stopped_data_address;
6075 }
6076
6077 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6078 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6079 && defined(PT_TEXT_END_ADDR)
6080
6081 /* This is only used for targets that define PT_TEXT_ADDR,
6082 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6083 the target has different ways of acquiring this information, like
6084 loadmaps. */
6085
6086 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6087 to tell gdb about. */
6088
6089 static int
6090 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6091 {
6092 unsigned long text, text_end, data;
6093 int pid = lwpid_of (current_thread);
6094
6095 errno = 0;
6096
6097 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6098 (PTRACE_TYPE_ARG4) 0);
6099 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6100 (PTRACE_TYPE_ARG4) 0);
6101 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6102 (PTRACE_TYPE_ARG4) 0);
6103
6104 if (errno == 0)
6105 {
6106 /* Both text and data offsets produced at compile-time (and so
6107 used by gdb) are relative to the beginning of the program,
6108 with the data segment immediately following the text segment.
6109 However, the actual runtime layout in memory may put the data
6110 somewhere else, so when we send gdb a data base-address, we
6111 use the real data base address and subtract the compile-time
6112 data base-address from it (which is just the length of the
6113 text segment). BSS immediately follows data in both
6114 cases. */
6115 *text_p = text;
6116 *data_p = data - (text_end - text);
6117
6118 return 1;
6119 }
6120 return 0;
6121 }
6122 #endif
6123
6124 static int
6125 linux_qxfer_osdata (const char *annex,
6126 unsigned char *readbuf, unsigned const char *writebuf,
6127 CORE_ADDR offset, int len)
6128 {
6129 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6130 }
6131
6132 /* Convert a native/host siginfo object, into/from the siginfo in the
6133 layout of the inferiors' architecture. */
6134
6135 static void
6136 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6137 {
6138 int done = 0;
6139
6140 if (the_low_target.siginfo_fixup != NULL)
6141 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6142
6143 /* If there was no callback, or the callback didn't do anything,
6144 then just do a straight memcpy. */
6145 if (!done)
6146 {
6147 if (direction == 1)
6148 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6149 else
6150 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6151 }
6152 }
6153
6154 static int
6155 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6156 unsigned const char *writebuf, CORE_ADDR offset, int len)
6157 {
6158 int pid;
6159 siginfo_t siginfo;
6160 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6161
6162 if (current_thread == NULL)
6163 return -1;
6164
6165 pid = lwpid_of (current_thread);
6166
6167 if (debug_threads)
6168 debug_printf ("%s siginfo for lwp %d.\n",
6169 readbuf != NULL ? "Reading" : "Writing",
6170 pid);
6171
6172 if (offset >= sizeof (siginfo))
6173 return -1;
6174
6175 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6176 return -1;
6177
6178 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6179 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6180 inferior with a 64-bit GDBSERVER should look the same as debugging it
6181 with a 32-bit GDBSERVER, we need to convert it. */
6182 siginfo_fixup (&siginfo, inf_siginfo, 0);
6183
6184 if (offset + len > sizeof (siginfo))
6185 len = sizeof (siginfo) - offset;
6186
6187 if (readbuf != NULL)
6188 memcpy (readbuf, inf_siginfo + offset, len);
6189 else
6190 {
6191 memcpy (inf_siginfo + offset, writebuf, len);
6192
6193 /* Convert back to ptrace layout before flushing it out. */
6194 siginfo_fixup (&siginfo, inf_siginfo, 1);
6195
6196 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6197 return -1;
6198 }
6199
6200 return len;
6201 }
6202
6203 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6204 so we notice when children change state; as the handler for the
6205 sigsuspend in my_waitpid. */
6206
6207 static void
6208 sigchld_handler (int signo)
6209 {
6210 int old_errno = errno;
6211
6212 if (debug_threads)
6213 {
6214 do
6215 {
6216 /* fprintf is not async-signal-safe, so call write
6217 directly. */
6218 if (write (2, "sigchld_handler\n",
6219 sizeof ("sigchld_handler\n") - 1) < 0)
6220 break; /* just ignore */
6221 } while (0);
6222 }
6223
6224 if (target_is_async_p ())
6225 async_file_mark (); /* trigger a linux_wait */
6226
6227 errno = old_errno;
6228 }
6229
6230 static int
6231 linux_supports_non_stop (void)
6232 {
6233 return 1;
6234 }
6235
6236 static int
6237 linux_async (int enable)
6238 {
6239 int previous = target_is_async_p ();
6240
6241 if (debug_threads)
6242 debug_printf ("linux_async (%d), previous=%d\n",
6243 enable, previous);
6244
6245 if (previous != enable)
6246 {
6247 sigset_t mask;
6248 sigemptyset (&mask);
6249 sigaddset (&mask, SIGCHLD);
6250
6251 sigprocmask (SIG_BLOCK, &mask, NULL);
6252
6253 if (enable)
6254 {
6255 if (pipe (linux_event_pipe) == -1)
6256 {
6257 linux_event_pipe[0] = -1;
6258 linux_event_pipe[1] = -1;
6259 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6260
6261 warning ("creating event pipe failed.");
6262 return previous;
6263 }
6264
6265 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6266 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6267
6268 /* Register the event loop handler. */
6269 add_file_handler (linux_event_pipe[0],
6270 handle_target_event, NULL);
6271
6272 /* Always trigger a linux_wait. */
6273 async_file_mark ();
6274 }
6275 else
6276 {
6277 delete_file_handler (linux_event_pipe[0]);
6278
6279 close (linux_event_pipe[0]);
6280 close (linux_event_pipe[1]);
6281 linux_event_pipe[0] = -1;
6282 linux_event_pipe[1] = -1;
6283 }
6284
6285 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6286 }
6287
6288 return previous;
6289 }
6290
6291 static int
6292 linux_start_non_stop (int nonstop)
6293 {
6294 /* Register or unregister from event-loop accordingly. */
6295 linux_async (nonstop);
6296
6297 if (target_is_async_p () != (nonstop != 0))
6298 return -1;
6299
6300 return 0;
6301 }
6302
6303 static int
6304 linux_supports_multi_process (void)
6305 {
6306 return 1;
6307 }
6308
6309 /* Check if fork events are supported. */
6310
6311 static int
6312 linux_supports_fork_events (void)
6313 {
6314 return linux_supports_tracefork ();
6315 }
6316
6317 /* Check if vfork events are supported. */
6318
6319 static int
6320 linux_supports_vfork_events (void)
6321 {
6322 return linux_supports_tracefork ();
6323 }
6324
6325 /* Check if exec events are supported. */
6326
6327 static int
6328 linux_supports_exec_events (void)
6329 {
6330 return linux_supports_traceexec ();
6331 }
6332
6333 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6334 ptrace flags for all inferiors. This is in case the new GDB connection
6335 doesn't support the same set of events that the previous one did. */
6336
6337 static void
6338 linux_handle_new_gdb_connection (void)
6339 {
6340 /* Request that all the lwps reset their ptrace options. */
6341 for_each_thread ([] (thread_info *thread)
6342 {
6343 struct lwp_info *lwp = get_thread_lwp (thread);
6344
6345 if (!lwp->stopped)
6346 {
6347 /* Stop the lwp so we can modify its ptrace options. */
6348 lwp->must_set_ptrace_flags = 1;
6349 linux_stop_lwp (lwp);
6350 }
6351 else
6352 {
6353 /* Already stopped; go ahead and set the ptrace options. */
6354 struct process_info *proc = find_process_pid (pid_of (thread));
6355 int options = linux_low_ptrace_options (proc->attached);
6356
6357 linux_enable_event_reporting (lwpid_of (thread), options);
6358 lwp->must_set_ptrace_flags = 0;
6359 }
6360 });
6361 }
6362
6363 static int
6364 linux_supports_disable_randomization (void)
6365 {
6366 #ifdef HAVE_PERSONALITY
6367 return 1;
6368 #else
6369 return 0;
6370 #endif
6371 }
6372
6373 static int
6374 linux_supports_agent (void)
6375 {
6376 return 1;
6377 }
6378
6379 static int
6380 linux_supports_range_stepping (void)
6381 {
6382 if (can_software_single_step ())
6383 return 1;
6384 if (*the_low_target.supports_range_stepping == NULL)
6385 return 0;
6386
6387 return (*the_low_target.supports_range_stepping) ();
6388 }
6389
6390 /* Enumerate spufs IDs for process PID. */
6391 static int
6392 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6393 {
6394 int pos = 0;
6395 int written = 0;
6396 char path[128];
6397 DIR *dir;
6398 struct dirent *entry;
6399
6400 sprintf (path, "/proc/%ld/fd", pid);
6401 dir = opendir (path);
6402 if (!dir)
6403 return -1;
6404
6405 rewinddir (dir);
6406 while ((entry = readdir (dir)) != NULL)
6407 {
6408 struct stat st;
6409 struct statfs stfs;
6410 int fd;
6411
6412 fd = atoi (entry->d_name);
6413 if (!fd)
6414 continue;
6415
6416 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6417 if (stat (path, &st) != 0)
6418 continue;
6419 if (!S_ISDIR (st.st_mode))
6420 continue;
6421
6422 if (statfs (path, &stfs) != 0)
6423 continue;
6424 if (stfs.f_type != SPUFS_MAGIC)
6425 continue;
6426
6427 if (pos >= offset && pos + 4 <= offset + len)
6428 {
6429 *(unsigned int *)(buf + pos - offset) = fd;
6430 written += 4;
6431 }
6432 pos += 4;
6433 }
6434
6435 closedir (dir);
6436 return written;
6437 }
6438
6439 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6440 object type, using the /proc file system. */
6441 static int
6442 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6443 unsigned const char *writebuf,
6444 CORE_ADDR offset, int len)
6445 {
6446 long pid = lwpid_of (current_thread);
6447 char buf[128];
6448 int fd = 0;
6449 int ret = 0;
6450
6451 if (!writebuf && !readbuf)
6452 return -1;
6453
6454 if (!*annex)
6455 {
6456 if (!readbuf)
6457 return -1;
6458 else
6459 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6460 }
6461
6462 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6463 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6464 if (fd <= 0)
6465 return -1;
6466
6467 if (offset != 0
6468 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6469 {
6470 close (fd);
6471 return 0;
6472 }
6473
6474 if (writebuf)
6475 ret = write (fd, writebuf, (size_t) len);
6476 else
6477 ret = read (fd, readbuf, (size_t) len);
6478
6479 close (fd);
6480 return ret;
6481 }
6482
6483 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6484 struct target_loadseg
6485 {
6486 /* Core address to which the segment is mapped. */
6487 Elf32_Addr addr;
6488 /* VMA recorded in the program header. */
6489 Elf32_Addr p_vaddr;
6490 /* Size of this segment in memory. */
6491 Elf32_Word p_memsz;
6492 };
6493
6494 # if defined PT_GETDSBT
6495 struct target_loadmap
6496 {
6497 /* Protocol version number, must be zero. */
6498 Elf32_Word version;
6499 /* Pointer to the DSBT table, its size, and the DSBT index. */
6500 unsigned *dsbt_table;
6501 unsigned dsbt_size, dsbt_index;
6502 /* Number of segments in this map. */
6503 Elf32_Word nsegs;
6504 /* The actual memory map. */
6505 struct target_loadseg segs[/*nsegs*/];
6506 };
6507 # define LINUX_LOADMAP PT_GETDSBT
6508 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6509 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6510 # else
6511 struct target_loadmap
6512 {
6513 /* Protocol version number, must be zero. */
6514 Elf32_Half version;
6515 /* Number of segments in this map. */
6516 Elf32_Half nsegs;
6517 /* The actual memory map. */
6518 struct target_loadseg segs[/*nsegs*/];
6519 };
6520 # define LINUX_LOADMAP PTRACE_GETFDPIC
6521 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6522 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6523 # endif
6524
6525 static int
6526 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6527 unsigned char *myaddr, unsigned int len)
6528 {
6529 int pid = lwpid_of (current_thread);
6530 int addr = -1;
6531 struct target_loadmap *data = NULL;
6532 unsigned int actual_length, copy_length;
6533
6534 if (strcmp (annex, "exec") == 0)
6535 addr = (int) LINUX_LOADMAP_EXEC;
6536 else if (strcmp (annex, "interp") == 0)
6537 addr = (int) LINUX_LOADMAP_INTERP;
6538 else
6539 return -1;
6540
6541 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6542 return -1;
6543
6544 if (data == NULL)
6545 return -1;
6546
6547 actual_length = sizeof (struct target_loadmap)
6548 + sizeof (struct target_loadseg) * data->nsegs;
6549
6550 if (offset < 0 || offset > actual_length)
6551 return -1;
6552
6553 copy_length = actual_length - offset < len ? actual_length - offset : len;
6554 memcpy (myaddr, (char *) data + offset, copy_length);
6555 return copy_length;
6556 }
6557 #else
6558 # define linux_read_loadmap NULL
6559 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6560
6561 static void
6562 linux_process_qsupported (char **features, int count)
6563 {
6564 if (the_low_target.process_qsupported != NULL)
6565 the_low_target.process_qsupported (features, count);
6566 }
6567
6568 static int
6569 linux_supports_catch_syscall (void)
6570 {
6571 return (the_low_target.get_syscall_trapinfo != NULL
6572 && linux_supports_tracesysgood ());
6573 }
6574
6575 static int
6576 linux_get_ipa_tdesc_idx (void)
6577 {
6578 if (the_low_target.get_ipa_tdesc_idx == NULL)
6579 return 0;
6580
6581 return (*the_low_target.get_ipa_tdesc_idx) ();
6582 }
6583
6584 static int
6585 linux_supports_tracepoints (void)
6586 {
6587 if (*the_low_target.supports_tracepoints == NULL)
6588 return 0;
6589
6590 return (*the_low_target.supports_tracepoints) ();
6591 }
6592
6593 static CORE_ADDR
6594 linux_read_pc (struct regcache *regcache)
6595 {
6596 if (the_low_target.get_pc == NULL)
6597 return 0;
6598
6599 return (*the_low_target.get_pc) (regcache);
6600 }
6601
6602 static void
6603 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6604 {
6605 gdb_assert (the_low_target.set_pc != NULL);
6606
6607 (*the_low_target.set_pc) (regcache, pc);
6608 }
6609
6610 static int
6611 linux_thread_stopped (struct thread_info *thread)
6612 {
6613 return get_thread_lwp (thread)->stopped;
6614 }
6615
6616 /* This exposes stop-all-threads functionality to other modules. */
6617
6618 static void
6619 linux_pause_all (int freeze)
6620 {
6621 stop_all_lwps (freeze, NULL);
6622 }
6623
6624 /* This exposes unstop-all-threads functionality to other gdbserver
6625 modules. */
6626
6627 static void
6628 linux_unpause_all (int unfreeze)
6629 {
6630 unstop_all_lwps (unfreeze, NULL);
6631 }
6632
6633 static int
6634 linux_prepare_to_access_memory (void)
6635 {
6636 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6637 running LWP. */
6638 if (non_stop)
6639 linux_pause_all (1);
6640 return 0;
6641 }
6642
6643 static void
6644 linux_done_accessing_memory (void)
6645 {
6646 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6647 running LWP. */
6648 if (non_stop)
6649 linux_unpause_all (1);
6650 }
6651
6652 static int
6653 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6654 CORE_ADDR collector,
6655 CORE_ADDR lockaddr,
6656 ULONGEST orig_size,
6657 CORE_ADDR *jump_entry,
6658 CORE_ADDR *trampoline,
6659 ULONGEST *trampoline_size,
6660 unsigned char *jjump_pad_insn,
6661 ULONGEST *jjump_pad_insn_size,
6662 CORE_ADDR *adjusted_insn_addr,
6663 CORE_ADDR *adjusted_insn_addr_end,
6664 char *err)
6665 {
6666 return (*the_low_target.install_fast_tracepoint_jump_pad)
6667 (tpoint, tpaddr, collector, lockaddr, orig_size,
6668 jump_entry, trampoline, trampoline_size,
6669 jjump_pad_insn, jjump_pad_insn_size,
6670 adjusted_insn_addr, adjusted_insn_addr_end,
6671 err);
6672 }
6673
6674 static struct emit_ops *
6675 linux_emit_ops (void)
6676 {
6677 if (the_low_target.emit_ops != NULL)
6678 return (*the_low_target.emit_ops) ();
6679 else
6680 return NULL;
6681 }
6682
6683 static int
6684 linux_get_min_fast_tracepoint_insn_len (void)
6685 {
6686 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6687 }
6688
6689 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6690
6691 static int
6692 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6693 CORE_ADDR *phdr_memaddr, int *num_phdr)
6694 {
6695 char filename[PATH_MAX];
6696 int fd;
6697 const int auxv_size = is_elf64
6698 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6699 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6700
6701 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6702
6703 fd = open (filename, O_RDONLY);
6704 if (fd < 0)
6705 return 1;
6706
6707 *phdr_memaddr = 0;
6708 *num_phdr = 0;
6709 while (read (fd, buf, auxv_size) == auxv_size
6710 && (*phdr_memaddr == 0 || *num_phdr == 0))
6711 {
6712 if (is_elf64)
6713 {
6714 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6715
6716 switch (aux->a_type)
6717 {
6718 case AT_PHDR:
6719 *phdr_memaddr = aux->a_un.a_val;
6720 break;
6721 case AT_PHNUM:
6722 *num_phdr = aux->a_un.a_val;
6723 break;
6724 }
6725 }
6726 else
6727 {
6728 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6729
6730 switch (aux->a_type)
6731 {
6732 case AT_PHDR:
6733 *phdr_memaddr = aux->a_un.a_val;
6734 break;
6735 case AT_PHNUM:
6736 *num_phdr = aux->a_un.a_val;
6737 break;
6738 }
6739 }
6740 }
6741
6742 close (fd);
6743
6744 if (*phdr_memaddr == 0 || *num_phdr == 0)
6745 {
6746 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6747 "phdr_memaddr = %ld, phdr_num = %d",
6748 (long) *phdr_memaddr, *num_phdr);
6749 return 2;
6750 }
6751
6752 return 0;
6753 }
6754
6755 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6756
6757 static CORE_ADDR
6758 get_dynamic (const int pid, const int is_elf64)
6759 {
6760 CORE_ADDR phdr_memaddr, relocation;
6761 int num_phdr, i;
6762 unsigned char *phdr_buf;
6763 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6764
6765 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6766 return 0;
6767
6768 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6769 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6770
6771 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6772 return 0;
6773
6774 /* Compute relocation: it is expected to be 0 for "regular" executables,
6775 non-zero for PIE ones. */
6776 relocation = -1;
6777 for (i = 0; relocation == -1 && i < num_phdr; i++)
6778 if (is_elf64)
6779 {
6780 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6781
6782 if (p->p_type == PT_PHDR)
6783 relocation = phdr_memaddr - p->p_vaddr;
6784 }
6785 else
6786 {
6787 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6788
6789 if (p->p_type == PT_PHDR)
6790 relocation = phdr_memaddr - p->p_vaddr;
6791 }
6792
6793 if (relocation == -1)
6794 {
6795 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6796 any real world executables, including PIE executables, have always
6797 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6798 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6799 or present DT_DEBUG anyway (fpc binaries are statically linked).
6800
6801 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6802
6803 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6804
6805 return 0;
6806 }
6807
6808 for (i = 0; i < num_phdr; i++)
6809 {
6810 if (is_elf64)
6811 {
6812 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6813
6814 if (p->p_type == PT_DYNAMIC)
6815 return p->p_vaddr + relocation;
6816 }
6817 else
6818 {
6819 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6820
6821 if (p->p_type == PT_DYNAMIC)
6822 return p->p_vaddr + relocation;
6823 }
6824 }
6825
6826 return 0;
6827 }
6828
6829 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6830 can be 0 if the inferior does not yet have the library list initialized.
6831 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6832 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6833
6834 static CORE_ADDR
6835 get_r_debug (const int pid, const int is_elf64)
6836 {
6837 CORE_ADDR dynamic_memaddr;
6838 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6839 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6840 CORE_ADDR map = -1;
6841
6842 dynamic_memaddr = get_dynamic (pid, is_elf64);
6843 if (dynamic_memaddr == 0)
6844 return map;
6845
6846 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6847 {
6848 if (is_elf64)
6849 {
6850 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6851 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6852 union
6853 {
6854 Elf64_Xword map;
6855 unsigned char buf[sizeof (Elf64_Xword)];
6856 }
6857 rld_map;
6858 #endif
6859 #ifdef DT_MIPS_RLD_MAP
6860 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6861 {
6862 if (linux_read_memory (dyn->d_un.d_val,
6863 rld_map.buf, sizeof (rld_map.buf)) == 0)
6864 return rld_map.map;
6865 else
6866 break;
6867 }
6868 #endif /* DT_MIPS_RLD_MAP */
6869 #ifdef DT_MIPS_RLD_MAP_REL
6870 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6871 {
6872 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6873 rld_map.buf, sizeof (rld_map.buf)) == 0)
6874 return rld_map.map;
6875 else
6876 break;
6877 }
6878 #endif /* DT_MIPS_RLD_MAP_REL */
6879
6880 if (dyn->d_tag == DT_DEBUG && map == -1)
6881 map = dyn->d_un.d_val;
6882
6883 if (dyn->d_tag == DT_NULL)
6884 break;
6885 }
6886 else
6887 {
6888 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6889 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6890 union
6891 {
6892 Elf32_Word map;
6893 unsigned char buf[sizeof (Elf32_Word)];
6894 }
6895 rld_map;
6896 #endif
6897 #ifdef DT_MIPS_RLD_MAP
6898 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6899 {
6900 if (linux_read_memory (dyn->d_un.d_val,
6901 rld_map.buf, sizeof (rld_map.buf)) == 0)
6902 return rld_map.map;
6903 else
6904 break;
6905 }
6906 #endif /* DT_MIPS_RLD_MAP */
6907 #ifdef DT_MIPS_RLD_MAP_REL
6908 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6909 {
6910 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6911 rld_map.buf, sizeof (rld_map.buf)) == 0)
6912 return rld_map.map;
6913 else
6914 break;
6915 }
6916 #endif /* DT_MIPS_RLD_MAP_REL */
6917
6918 if (dyn->d_tag == DT_DEBUG && map == -1)
6919 map = dyn->d_un.d_val;
6920
6921 if (dyn->d_tag == DT_NULL)
6922 break;
6923 }
6924
6925 dynamic_memaddr += dyn_size;
6926 }
6927
6928 return map;
6929 }
6930
6931 /* Read one pointer from MEMADDR in the inferior. */
6932
6933 static int
6934 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6935 {
6936 int ret;
6937
6938 /* Go through a union so this works on either big or little endian
6939 hosts, when the inferior's pointer size is smaller than the size
6940 of CORE_ADDR. It is assumed the inferior's endianness is the
6941 same of the superior's. */
6942 union
6943 {
6944 CORE_ADDR core_addr;
6945 unsigned int ui;
6946 unsigned char uc;
6947 } addr;
6948
6949 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6950 if (ret == 0)
6951 {
6952 if (ptr_size == sizeof (CORE_ADDR))
6953 *ptr = addr.core_addr;
6954 else if (ptr_size == sizeof (unsigned int))
6955 *ptr = addr.ui;
6956 else
6957 gdb_assert_not_reached ("unhandled pointer size");
6958 }
6959 return ret;
6960 }
6961
6962 struct link_map_offsets
6963 {
6964 /* Offset and size of r_debug.r_version. */
6965 int r_version_offset;
6966
6967 /* Offset and size of r_debug.r_map. */
6968 int r_map_offset;
6969
6970 /* Offset to l_addr field in struct link_map. */
6971 int l_addr_offset;
6972
6973 /* Offset to l_name field in struct link_map. */
6974 int l_name_offset;
6975
6976 /* Offset to l_ld field in struct link_map. */
6977 int l_ld_offset;
6978
6979 /* Offset to l_next field in struct link_map. */
6980 int l_next_offset;
6981
6982 /* Offset to l_prev field in struct link_map. */
6983 int l_prev_offset;
6984 };
6985
6986 /* Construct qXfer:libraries-svr4:read reply. */
6987
6988 static int
6989 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6990 unsigned const char *writebuf,
6991 CORE_ADDR offset, int len)
6992 {
6993 struct process_info_private *const priv = current_process ()->priv;
6994 char filename[PATH_MAX];
6995 int pid, is_elf64;
6996
6997 static const struct link_map_offsets lmo_32bit_offsets =
6998 {
6999 0, /* r_version offset. */
7000 4, /* r_debug.r_map offset. */
7001 0, /* l_addr offset in link_map. */
7002 4, /* l_name offset in link_map. */
7003 8, /* l_ld offset in link_map. */
7004 12, /* l_next offset in link_map. */
7005 16 /* l_prev offset in link_map. */
7006 };
7007
7008 static const struct link_map_offsets lmo_64bit_offsets =
7009 {
7010 0, /* r_version offset. */
7011 8, /* r_debug.r_map offset. */
7012 0, /* l_addr offset in link_map. */
7013 8, /* l_name offset in link_map. */
7014 16, /* l_ld offset in link_map. */
7015 24, /* l_next offset in link_map. */
7016 32 /* l_prev offset in link_map. */
7017 };
7018 const struct link_map_offsets *lmo;
7019 unsigned int machine;
7020 int ptr_size;
7021 CORE_ADDR lm_addr = 0, lm_prev = 0;
7022 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7023 int header_done = 0;
7024
7025 if (writebuf != NULL)
7026 return -2;
7027 if (readbuf == NULL)
7028 return -1;
7029
7030 pid = lwpid_of (current_thread);
7031 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7032 is_elf64 = elf_64_file_p (filename, &machine);
7033 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7034 ptr_size = is_elf64 ? 8 : 4;
7035
7036 while (annex[0] != '\0')
7037 {
7038 const char *sep;
7039 CORE_ADDR *addrp;
7040 int len;
7041
7042 sep = strchr (annex, '=');
7043 if (sep == NULL)
7044 break;
7045
7046 len = sep - annex;
7047 if (len == 5 && startswith (annex, "start"))
7048 addrp = &lm_addr;
7049 else if (len == 4 && startswith (annex, "prev"))
7050 addrp = &lm_prev;
7051 else
7052 {
7053 annex = strchr (sep, ';');
7054 if (annex == NULL)
7055 break;
7056 annex++;
7057 continue;
7058 }
7059
7060 annex = decode_address_to_semicolon (addrp, sep + 1);
7061 }
7062
7063 if (lm_addr == 0)
7064 {
7065 int r_version = 0;
7066
7067 if (priv->r_debug == 0)
7068 priv->r_debug = get_r_debug (pid, is_elf64);
7069
7070 /* We failed to find DT_DEBUG. Such situation will not change
7071 for this inferior - do not retry it. Report it to GDB as
7072 E01, see for the reasons at the GDB solib-svr4.c side. */
7073 if (priv->r_debug == (CORE_ADDR) -1)
7074 return -1;
7075
7076 if (priv->r_debug != 0)
7077 {
7078 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7079 (unsigned char *) &r_version,
7080 sizeof (r_version)) != 0
7081 || r_version != 1)
7082 {
7083 warning ("unexpected r_debug version %d", r_version);
7084 }
7085 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7086 &lm_addr, ptr_size) != 0)
7087 {
7088 warning ("unable to read r_map from 0x%lx",
7089 (long) priv->r_debug + lmo->r_map_offset);
7090 }
7091 }
7092 }
7093
7094 std::string document = "<library-list-svr4 version=\"1.0\"";
7095
7096 while (lm_addr
7097 && read_one_ptr (lm_addr + lmo->l_name_offset,
7098 &l_name, ptr_size) == 0
7099 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7100 &l_addr, ptr_size) == 0
7101 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7102 &l_ld, ptr_size) == 0
7103 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7104 &l_prev, ptr_size) == 0
7105 && read_one_ptr (lm_addr + lmo->l_next_offset,
7106 &l_next, ptr_size) == 0)
7107 {
7108 unsigned char libname[PATH_MAX];
7109
7110 if (lm_prev != l_prev)
7111 {
7112 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7113 (long) lm_prev, (long) l_prev);
7114 break;
7115 }
7116
7117 /* Ignore the first entry even if it has valid name as the first entry
7118 corresponds to the main executable. The first entry should not be
7119 skipped if the dynamic loader was loaded late by a static executable
7120 (see solib-svr4.c parameter ignore_first). But in such case the main
7121 executable does not have PT_DYNAMIC present and this function already
7122 exited above due to failed get_r_debug. */
7123 if (lm_prev == 0)
7124 string_appendf (document, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7125 else
7126 {
7127 /* Not checking for error because reading may stop before
7128 we've got PATH_MAX worth of characters. */
7129 libname[0] = '\0';
7130 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7131 libname[sizeof (libname) - 1] = '\0';
7132 if (libname[0] != '\0')
7133 {
7134 if (!header_done)
7135 {
7136 /* Terminate `<library-list-svr4'. */
7137 document += '>';
7138 header_done = 1;
7139 }
7140
7141 string_appendf (document, "<library name=\"");
7142 xml_escape_text_append (&document, (char *) libname);
7143 string_appendf (document, "\" lm=\"0x%lx\" "
7144 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7145 (unsigned long) lm_addr, (unsigned long) l_addr,
7146 (unsigned long) l_ld);
7147 }
7148 }
7149
7150 lm_prev = lm_addr;
7151 lm_addr = l_next;
7152 }
7153
7154 if (!header_done)
7155 {
7156 /* Empty list; terminate `<library-list-svr4'. */
7157 document += "/>";
7158 }
7159 else
7160 document += "</library-list-svr4>";
7161
7162 int document_len = document.length ();
7163 if (offset < document_len)
7164 document_len -= offset;
7165 else
7166 document_len = 0;
7167 if (len > document_len)
7168 len = document_len;
7169
7170 memcpy (readbuf, document.data () + offset, len);
7171
7172 return len;
7173 }
7174
7175 #ifdef HAVE_LINUX_BTRACE
7176
7177 /* See to_disable_btrace target method. */
7178
7179 static int
7180 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7181 {
7182 enum btrace_error err;
7183
7184 err = linux_disable_btrace (tinfo);
7185 return (err == BTRACE_ERR_NONE ? 0 : -1);
7186 }
7187
7188 /* Encode an Intel Processor Trace configuration. */
7189
7190 static void
7191 linux_low_encode_pt_config (struct buffer *buffer,
7192 const struct btrace_data_pt_config *config)
7193 {
7194 buffer_grow_str (buffer, "<pt-config>\n");
7195
7196 switch (config->cpu.vendor)
7197 {
7198 case CV_INTEL:
7199 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7200 "model=\"%u\" stepping=\"%u\"/>\n",
7201 config->cpu.family, config->cpu.model,
7202 config->cpu.stepping);
7203 break;
7204
7205 default:
7206 break;
7207 }
7208
7209 buffer_grow_str (buffer, "</pt-config>\n");
7210 }
7211
7212 /* Encode a raw buffer. */
7213
7214 static void
7215 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7216 unsigned int size)
7217 {
7218 if (size == 0)
7219 return;
7220
7221 /* We use hex encoding - see common/rsp-low.h. */
7222 buffer_grow_str (buffer, "<raw>\n");
7223
7224 while (size-- > 0)
7225 {
7226 char elem[2];
7227
7228 elem[0] = tohex ((*data >> 4) & 0xf);
7229 elem[1] = tohex (*data++ & 0xf);
7230
7231 buffer_grow (buffer, elem, 2);
7232 }
7233
7234 buffer_grow_str (buffer, "</raw>\n");
7235 }
7236
7237 /* See to_read_btrace target method. */
7238
7239 static int
7240 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7241 enum btrace_read_type type)
7242 {
7243 struct btrace_data btrace;
7244 struct btrace_block *block;
7245 enum btrace_error err;
7246 int i;
7247
7248 err = linux_read_btrace (&btrace, tinfo, type);
7249 if (err != BTRACE_ERR_NONE)
7250 {
7251 if (err == BTRACE_ERR_OVERFLOW)
7252 buffer_grow_str0 (buffer, "E.Overflow.");
7253 else
7254 buffer_grow_str0 (buffer, "E.Generic Error.");
7255
7256 return -1;
7257 }
7258
7259 switch (btrace.format)
7260 {
7261 case BTRACE_FORMAT_NONE:
7262 buffer_grow_str0 (buffer, "E.No Trace.");
7263 return -1;
7264
7265 case BTRACE_FORMAT_BTS:
7266 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7267 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7268
7269 for (i = 0;
7270 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7271 i++)
7272 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7273 paddress (block->begin), paddress (block->end));
7274
7275 buffer_grow_str0 (buffer, "</btrace>\n");
7276 break;
7277
7278 case BTRACE_FORMAT_PT:
7279 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7280 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7281 buffer_grow_str (buffer, "<pt>\n");
7282
7283 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7284
7285 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7286 btrace.variant.pt.size);
7287
7288 buffer_grow_str (buffer, "</pt>\n");
7289 buffer_grow_str0 (buffer, "</btrace>\n");
7290 break;
7291
7292 default:
7293 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7294 return -1;
7295 }
7296
7297 return 0;
7298 }
7299
7300 /* See to_btrace_conf target method. */
7301
7302 static int
7303 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7304 struct buffer *buffer)
7305 {
7306 const struct btrace_config *conf;
7307
7308 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7309 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7310
7311 conf = linux_btrace_conf (tinfo);
7312 if (conf != NULL)
7313 {
7314 switch (conf->format)
7315 {
7316 case BTRACE_FORMAT_NONE:
7317 break;
7318
7319 case BTRACE_FORMAT_BTS:
7320 buffer_xml_printf (buffer, "<bts");
7321 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7322 buffer_xml_printf (buffer, " />\n");
7323 break;
7324
7325 case BTRACE_FORMAT_PT:
7326 buffer_xml_printf (buffer, "<pt");
7327 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7328 buffer_xml_printf (buffer, "/>\n");
7329 break;
7330 }
7331 }
7332
7333 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7334 return 0;
7335 }
7336 #endif /* HAVE_LINUX_BTRACE */
7337
7338 /* See nat/linux-nat.h. */
7339
7340 ptid_t
7341 current_lwp_ptid (void)
7342 {
7343 return ptid_of (current_thread);
7344 }
7345
7346 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7347
7348 static int
7349 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7350 {
7351 if (the_low_target.breakpoint_kind_from_pc != NULL)
7352 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7353 else
7354 return default_breakpoint_kind_from_pc (pcptr);
7355 }
7356
7357 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7358
7359 static const gdb_byte *
7360 linux_sw_breakpoint_from_kind (int kind, int *size)
7361 {
7362 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7363
7364 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7365 }
7366
7367 /* Implementation of the target_ops method
7368 "breakpoint_kind_from_current_state". */
7369
7370 static int
7371 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7372 {
7373 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7374 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7375 else
7376 return linux_breakpoint_kind_from_pc (pcptr);
7377 }
7378
7379 /* Default implementation of linux_target_ops method "set_pc" for
7380 32-bit pc register which is literally named "pc". */
7381
7382 void
7383 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7384 {
7385 uint32_t newpc = pc;
7386
7387 supply_register_by_name (regcache, "pc", &newpc);
7388 }
7389
7390 /* Default implementation of linux_target_ops method "get_pc" for
7391 32-bit pc register which is literally named "pc". */
7392
7393 CORE_ADDR
7394 linux_get_pc_32bit (struct regcache *regcache)
7395 {
7396 uint32_t pc;
7397
7398 collect_register_by_name (regcache, "pc", &pc);
7399 if (debug_threads)
7400 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7401 return pc;
7402 }
7403
7404 /* Default implementation of linux_target_ops method "set_pc" for
7405 64-bit pc register which is literally named "pc". */
7406
7407 void
7408 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7409 {
7410 uint64_t newpc = pc;
7411
7412 supply_register_by_name (regcache, "pc", &newpc);
7413 }
7414
7415 /* Default implementation of linux_target_ops method "get_pc" for
7416 64-bit pc register which is literally named "pc". */
7417
7418 CORE_ADDR
7419 linux_get_pc_64bit (struct regcache *regcache)
7420 {
7421 uint64_t pc;
7422
7423 collect_register_by_name (regcache, "pc", &pc);
7424 if (debug_threads)
7425 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7426 return pc;
7427 }
7428
7429
7430 static struct target_ops linux_target_ops = {
7431 linux_create_inferior,
7432 linux_post_create_inferior,
7433 linux_attach,
7434 linux_kill,
7435 linux_detach,
7436 linux_mourn,
7437 linux_join,
7438 linux_thread_alive,
7439 linux_resume,
7440 linux_wait,
7441 linux_fetch_registers,
7442 linux_store_registers,
7443 linux_prepare_to_access_memory,
7444 linux_done_accessing_memory,
7445 linux_read_memory,
7446 linux_write_memory,
7447 linux_look_up_symbols,
7448 linux_request_interrupt,
7449 linux_read_auxv,
7450 linux_supports_z_point_type,
7451 linux_insert_point,
7452 linux_remove_point,
7453 linux_stopped_by_sw_breakpoint,
7454 linux_supports_stopped_by_sw_breakpoint,
7455 linux_stopped_by_hw_breakpoint,
7456 linux_supports_stopped_by_hw_breakpoint,
7457 linux_supports_hardware_single_step,
7458 linux_stopped_by_watchpoint,
7459 linux_stopped_data_address,
7460 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7461 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7462 && defined(PT_TEXT_END_ADDR)
7463 linux_read_offsets,
7464 #else
7465 NULL,
7466 #endif
7467 #ifdef USE_THREAD_DB
7468 thread_db_get_tls_address,
7469 #else
7470 NULL,
7471 #endif
7472 linux_qxfer_spu,
7473 hostio_last_error_from_errno,
7474 linux_qxfer_osdata,
7475 linux_xfer_siginfo,
7476 linux_supports_non_stop,
7477 linux_async,
7478 linux_start_non_stop,
7479 linux_supports_multi_process,
7480 linux_supports_fork_events,
7481 linux_supports_vfork_events,
7482 linux_supports_exec_events,
7483 linux_handle_new_gdb_connection,
7484 #ifdef USE_THREAD_DB
7485 thread_db_handle_monitor_command,
7486 #else
7487 NULL,
7488 #endif
7489 linux_common_core_of_thread,
7490 linux_read_loadmap,
7491 linux_process_qsupported,
7492 linux_supports_tracepoints,
7493 linux_read_pc,
7494 linux_write_pc,
7495 linux_thread_stopped,
7496 NULL,
7497 linux_pause_all,
7498 linux_unpause_all,
7499 linux_stabilize_threads,
7500 linux_install_fast_tracepoint_jump_pad,
7501 linux_emit_ops,
7502 linux_supports_disable_randomization,
7503 linux_get_min_fast_tracepoint_insn_len,
7504 linux_qxfer_libraries_svr4,
7505 linux_supports_agent,
7506 #ifdef HAVE_LINUX_BTRACE
7507 linux_enable_btrace,
7508 linux_low_disable_btrace,
7509 linux_low_read_btrace,
7510 linux_low_btrace_conf,
7511 #else
7512 NULL,
7513 NULL,
7514 NULL,
7515 NULL,
7516 #endif
7517 linux_supports_range_stepping,
7518 linux_proc_pid_to_exec_file,
7519 linux_mntns_open_cloexec,
7520 linux_mntns_unlink,
7521 linux_mntns_readlink,
7522 linux_breakpoint_kind_from_pc,
7523 linux_sw_breakpoint_from_kind,
7524 linux_proc_tid_get_name,
7525 linux_breakpoint_kind_from_current_state,
7526 linux_supports_software_single_step,
7527 linux_supports_catch_syscall,
7528 linux_get_ipa_tdesc_idx,
7529 #if USE_THREAD_DB
7530 thread_db_thread_handle,
7531 #else
7532 NULL,
7533 #endif
7534 };
7535
7536 #ifdef HAVE_LINUX_REGSETS
7537 void
7538 initialize_regsets_info (struct regsets_info *info)
7539 {
7540 for (info->num_regsets = 0;
7541 info->regsets[info->num_regsets].size >= 0;
7542 info->num_regsets++)
7543 ;
7544 }
7545 #endif
7546
7547 void
7548 initialize_low (void)
7549 {
7550 struct sigaction sigchld_action;
7551
7552 memset (&sigchld_action, 0, sizeof (sigchld_action));
7553 set_target_ops (&linux_target_ops);
7554
7555 linux_ptrace_init_warnings ();
7556 linux_proc_init_warnings ();
7557
7558 sigchld_action.sa_handler = sigchld_handler;
7559 sigemptyset (&sigchld_action.sa_mask);
7560 sigchld_action.sa_flags = SA_RESTART;
7561 sigaction (SIGCHLD, &sigchld_action, NULL);
7562
7563 initialize_low_arch ();
7564
7565 linux_check_ptrace_features ();
7566 }
This page took 0.198266 seconds and 5 git commands to generate.