Add thread_handle_to_thread_info support for remote targets
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (struct inferior_list_entry *entry, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417 free (lwp->arch_private);
418 free (lwp);
419 }
420
421 /* Add a process to the common process list, and set its private
422 data. */
423
424 static struct process_info *
425 linux_add_process (int pid, int attached)
426 {
427 struct process_info *proc;
428
429 proc = add_process (pid, attached);
430 proc->priv = XCNEW (struct process_info_private);
431
432 if (the_low_target.new_process != NULL)
433 proc->priv->arch_private = the_low_target.new_process ();
434
435 return proc;
436 }
437
438 static CORE_ADDR get_pc (struct lwp_info *lwp);
439
440 /* Call the target arch_setup function on the current thread. */
441
442 static void
443 linux_arch_setup (void)
444 {
445 the_low_target.arch_setup ();
446 }
447
448 /* Call the target arch_setup function on THREAD. */
449
450 static void
451 linux_arch_setup_thread (struct thread_info *thread)
452 {
453 struct thread_info *saved_thread;
454
455 saved_thread = current_thread;
456 current_thread = thread;
457
458 linux_arch_setup ();
459
460 current_thread = saved_thread;
461 }
462
463 /* Handle a GNU/Linux extended wait response. If we see a clone,
464 fork, or vfork event, we need to add the new LWP to our list
465 (and return 0 so as not to report the trap to higher layers).
466 If we see an exec event, we will modify ORIG_EVENT_LWP to point
467 to a new LWP representing the new program. */
468
469 static int
470 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
471 {
472 struct lwp_info *event_lwp = *orig_event_lwp;
473 int event = linux_ptrace_get_extended_event (wstat);
474 struct thread_info *event_thr = get_lwp_thread (event_lwp);
475 struct lwp_info *new_lwp;
476
477 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
478
479 /* All extended events we currently use are mid-syscall. Only
480 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
481 you have to be using PTRACE_SEIZE to get that. */
482 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
483
484 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
485 || (event == PTRACE_EVENT_CLONE))
486 {
487 ptid_t ptid;
488 unsigned long new_pid;
489 int ret, status;
490
491 /* Get the pid of the new lwp. */
492 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
493 &new_pid);
494
495 /* If we haven't already seen the new PID stop, wait for it now. */
496 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
497 {
498 /* The new child has a pending SIGSTOP. We can't affect it until it
499 hits the SIGSTOP, but we're already attached. */
500
501 ret = my_waitpid (new_pid, &status, __WALL);
502
503 if (ret == -1)
504 perror_with_name ("waiting for new child");
505 else if (ret != new_pid)
506 warning ("wait returned unexpected PID %d", ret);
507 else if (!WIFSTOPPED (status))
508 warning ("wait returned unexpected status 0x%x", status);
509 }
510
511 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
512 {
513 struct process_info *parent_proc;
514 struct process_info *child_proc;
515 struct lwp_info *child_lwp;
516 struct thread_info *child_thr;
517 struct target_desc *tdesc;
518
519 ptid = ptid_build (new_pid, new_pid, 0);
520
521 if (debug_threads)
522 {
523 debug_printf ("HEW: Got fork event from LWP %ld, "
524 "new child is %d\n",
525 ptid_get_lwp (ptid_of (event_thr)),
526 ptid_get_pid (ptid));
527 }
528
529 /* Add the new process to the tables and clone the breakpoint
530 lists of the parent. We need to do this even if the new process
531 will be detached, since we will need the process object and the
532 breakpoints to remove any breakpoints from memory when we
533 detach, and the client side will access registers. */
534 child_proc = linux_add_process (new_pid, 0);
535 gdb_assert (child_proc != NULL);
536 child_lwp = add_lwp (ptid);
537 gdb_assert (child_lwp != NULL);
538 child_lwp->stopped = 1;
539 child_lwp->must_set_ptrace_flags = 1;
540 child_lwp->status_pending_p = 0;
541 child_thr = get_lwp_thread (child_lwp);
542 child_thr->last_resume_kind = resume_stop;
543 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
544
545 /* If we're suspending all threads, leave this one suspended
546 too. If the fork/clone parent is stepping over a breakpoint,
547 all other threads have been suspended already. Leave the
548 child suspended too. */
549 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
550 || event_lwp->bp_reinsert != 0)
551 {
552 if (debug_threads)
553 debug_printf ("HEW: leaving child suspended\n");
554 child_lwp->suspended = 1;
555 }
556
557 parent_proc = get_thread_process (event_thr);
558 child_proc->attached = parent_proc->attached;
559
560 if (event_lwp->bp_reinsert != 0
561 && can_software_single_step ()
562 && event == PTRACE_EVENT_VFORK)
563 {
564 /* If we leave single-step breakpoints there, child will
565 hit it, so uninsert single-step breakpoints from parent
566 (and child). Once vfork child is done, reinsert
567 them back to parent. */
568 uninsert_single_step_breakpoints (event_thr);
569 }
570
571 clone_all_breakpoints (child_thr, event_thr);
572
573 tdesc = allocate_target_description ();
574 copy_target_description (tdesc, parent_proc->tdesc);
575 child_proc->tdesc = tdesc;
576
577 /* Clone arch-specific process data. */
578 if (the_low_target.new_fork != NULL)
579 the_low_target.new_fork (parent_proc, child_proc);
580
581 /* Save fork info in the parent thread. */
582 if (event == PTRACE_EVENT_FORK)
583 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
584 else if (event == PTRACE_EVENT_VFORK)
585 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
586
587 event_lwp->waitstatus.value.related_pid = ptid;
588
589 /* The status_pending field contains bits denoting the
590 extended event, so when the pending event is handled,
591 the handler will look at lwp->waitstatus. */
592 event_lwp->status_pending_p = 1;
593 event_lwp->status_pending = wstat;
594
595 /* Link the threads until the parent event is passed on to
596 higher layers. */
597 event_lwp->fork_relative = child_lwp;
598 child_lwp->fork_relative = event_lwp;
599
600 /* If the parent thread is doing step-over with single-step
601 breakpoints, the list of single-step breakpoints are cloned
602 from the parent's. Remove them from the child process.
603 In case of vfork, we'll reinsert them back once vforked
604 child is done. */
605 if (event_lwp->bp_reinsert != 0
606 && can_software_single_step ())
607 {
608 /* The child process is forked and stopped, so it is safe
609 to access its memory without stopping all other threads
610 from other processes. */
611 delete_single_step_breakpoints (child_thr);
612
613 gdb_assert (has_single_step_breakpoints (event_thr));
614 gdb_assert (!has_single_step_breakpoints (child_thr));
615 }
616
617 /* Report the event. */
618 return 0;
619 }
620
621 if (debug_threads)
622 debug_printf ("HEW: Got clone event "
623 "from LWP %ld, new child is LWP %ld\n",
624 lwpid_of (event_thr), new_pid);
625
626 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
627 new_lwp = add_lwp (ptid);
628
629 /* Either we're going to immediately resume the new thread
630 or leave it stopped. linux_resume_one_lwp is a nop if it
631 thinks the thread is currently running, so set this first
632 before calling linux_resume_one_lwp. */
633 new_lwp->stopped = 1;
634
635 /* If we're suspending all threads, leave this one suspended
636 too. If the fork/clone parent is stepping over a breakpoint,
637 all other threads have been suspended already. Leave the
638 child suspended too. */
639 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
640 || event_lwp->bp_reinsert != 0)
641 new_lwp->suspended = 1;
642
643 /* Normally we will get the pending SIGSTOP. But in some cases
644 we might get another signal delivered to the group first.
645 If we do get another signal, be sure not to lose it. */
646 if (WSTOPSIG (status) != SIGSTOP)
647 {
648 new_lwp->stop_expected = 1;
649 new_lwp->status_pending_p = 1;
650 new_lwp->status_pending = status;
651 }
652 else if (report_thread_events)
653 {
654 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
655 new_lwp->status_pending_p = 1;
656 new_lwp->status_pending = status;
657 }
658
659 thread_db_notice_clone (get_thread_process (event_thr), ptid);
660
661 /* Don't report the event. */
662 return 1;
663 }
664 else if (event == PTRACE_EVENT_VFORK_DONE)
665 {
666 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
667
668 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
669 {
670 reinsert_single_step_breakpoints (event_thr);
671
672 gdb_assert (has_single_step_breakpoints (event_thr));
673 }
674
675 /* Report the event. */
676 return 0;
677 }
678 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
679 {
680 struct process_info *proc;
681 VEC (int) *syscalls_to_catch;
682 ptid_t event_ptid;
683 pid_t event_pid;
684
685 if (debug_threads)
686 {
687 debug_printf ("HEW: Got exec event from LWP %ld\n",
688 lwpid_of (event_thr));
689 }
690
691 /* Get the event ptid. */
692 event_ptid = ptid_of (event_thr);
693 event_pid = ptid_get_pid (event_ptid);
694
695 /* Save the syscall list from the execing process. */
696 proc = get_thread_process (event_thr);
697 syscalls_to_catch = proc->syscalls_to_catch;
698 proc->syscalls_to_catch = NULL;
699
700 /* Delete the execing process and all its threads. */
701 linux_mourn (proc);
702 current_thread = NULL;
703
704 /* Create a new process/lwp/thread. */
705 proc = linux_add_process (event_pid, 0);
706 event_lwp = add_lwp (event_ptid);
707 event_thr = get_lwp_thread (event_lwp);
708 gdb_assert (current_thread == event_thr);
709 linux_arch_setup_thread (event_thr);
710
711 /* Set the event status. */
712 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
713 event_lwp->waitstatus.value.execd_pathname
714 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
715
716 /* Mark the exec status as pending. */
717 event_lwp->stopped = 1;
718 event_lwp->status_pending_p = 1;
719 event_lwp->status_pending = wstat;
720 event_thr->last_resume_kind = resume_continue;
721 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
722
723 /* Update syscall state in the new lwp, effectively mid-syscall too. */
724 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
725
726 /* Restore the list to catch. Don't rely on the client, which is free
727 to avoid sending a new list when the architecture doesn't change.
728 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
729 proc->syscalls_to_catch = syscalls_to_catch;
730
731 /* Report the event. */
732 *orig_event_lwp = event_lwp;
733 return 0;
734 }
735
736 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
737 }
738
739 /* Return the PC as read from the regcache of LWP, without any
740 adjustment. */
741
742 static CORE_ADDR
743 get_pc (struct lwp_info *lwp)
744 {
745 struct thread_info *saved_thread;
746 struct regcache *regcache;
747 CORE_ADDR pc;
748
749 if (the_low_target.get_pc == NULL)
750 return 0;
751
752 saved_thread = current_thread;
753 current_thread = get_lwp_thread (lwp);
754
755 regcache = get_thread_regcache (current_thread, 1);
756 pc = (*the_low_target.get_pc) (regcache);
757
758 if (debug_threads)
759 debug_printf ("pc is 0x%lx\n", (long) pc);
760
761 current_thread = saved_thread;
762 return pc;
763 }
764
765 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
766 Fill *SYSNO with the syscall nr trapped. */
767
768 static void
769 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
770 {
771 struct thread_info *saved_thread;
772 struct regcache *regcache;
773
774 if (the_low_target.get_syscall_trapinfo == NULL)
775 {
776 /* If we cannot get the syscall trapinfo, report an unknown
777 system call number. */
778 *sysno = UNKNOWN_SYSCALL;
779 return;
780 }
781
782 saved_thread = current_thread;
783 current_thread = get_lwp_thread (lwp);
784
785 regcache = get_thread_regcache (current_thread, 1);
786 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
787
788 if (debug_threads)
789 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
790
791 current_thread = saved_thread;
792 }
793
794 static int check_stopped_by_watchpoint (struct lwp_info *child);
795
796 /* Called when the LWP stopped for a signal/trap. If it stopped for a
797 trap check what caused it (breakpoint, watchpoint, trace, etc.),
798 and save the result in the LWP's stop_reason field. If it stopped
799 for a breakpoint, decrement the PC if necessary on the lwp's
800 architecture. Returns true if we now have the LWP's stop PC. */
801
802 static int
803 save_stop_reason (struct lwp_info *lwp)
804 {
805 CORE_ADDR pc;
806 CORE_ADDR sw_breakpoint_pc;
807 struct thread_info *saved_thread;
808 #if USE_SIGTRAP_SIGINFO
809 siginfo_t siginfo;
810 #endif
811
812 if (the_low_target.get_pc == NULL)
813 return 0;
814
815 pc = get_pc (lwp);
816 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
817
818 /* breakpoint_at reads from the current thread. */
819 saved_thread = current_thread;
820 current_thread = get_lwp_thread (lwp);
821
822 #if USE_SIGTRAP_SIGINFO
823 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
824 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
825 {
826 if (siginfo.si_signo == SIGTRAP)
827 {
828 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
829 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
830 {
831 /* The si_code is ambiguous on this arch -- check debug
832 registers. */
833 if (!check_stopped_by_watchpoint (lwp))
834 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
835 }
836 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
837 {
838 /* If we determine the LWP stopped for a SW breakpoint,
839 trust it. Particularly don't check watchpoint
840 registers, because at least on s390, we'd find
841 stopped-by-watchpoint as long as there's a watchpoint
842 set. */
843 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
844 }
845 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
846 {
847 /* This can indicate either a hardware breakpoint or
848 hardware watchpoint. Check debug registers. */
849 if (!check_stopped_by_watchpoint (lwp))
850 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
851 }
852 else if (siginfo.si_code == TRAP_TRACE)
853 {
854 /* We may have single stepped an instruction that
855 triggered a watchpoint. In that case, on some
856 architectures (such as x86), instead of TRAP_HWBKPT,
857 si_code indicates TRAP_TRACE, and we need to check
858 the debug registers separately. */
859 if (!check_stopped_by_watchpoint (lwp))
860 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
861 }
862 }
863 }
864 #else
865 /* We may have just stepped a breakpoint instruction. E.g., in
866 non-stop mode, GDB first tells the thread A to step a range, and
867 then the user inserts a breakpoint inside the range. In that
868 case we need to report the breakpoint PC. */
869 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
870 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
871 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
872
873 if (hardware_breakpoint_inserted_here (pc))
874 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
875
876 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
877 check_stopped_by_watchpoint (lwp);
878 #endif
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
881 {
882 if (debug_threads)
883 {
884 struct thread_info *thr = get_lwp_thread (lwp);
885
886 debug_printf ("CSBB: %s stopped by software breakpoint\n",
887 target_pid_to_str (ptid_of (thr)));
888 }
889
890 /* Back up the PC if necessary. */
891 if (pc != sw_breakpoint_pc)
892 {
893 struct regcache *regcache
894 = get_thread_regcache (current_thread, 1);
895 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
896 }
897
898 /* Update this so we record the correct stop PC below. */
899 pc = sw_breakpoint_pc;
900 }
901 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
902 {
903 if (debug_threads)
904 {
905 struct thread_info *thr = get_lwp_thread (lwp);
906
907 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
908 target_pid_to_str (ptid_of (thr)));
909 }
910 }
911 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
912 {
913 if (debug_threads)
914 {
915 struct thread_info *thr = get_lwp_thread (lwp);
916
917 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
918 target_pid_to_str (ptid_of (thr)));
919 }
920 }
921 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
922 {
923 if (debug_threads)
924 {
925 struct thread_info *thr = get_lwp_thread (lwp);
926
927 debug_printf ("CSBB: %s stopped by trace\n",
928 target_pid_to_str (ptid_of (thr)));
929 }
930 }
931
932 lwp->stop_pc = pc;
933 current_thread = saved_thread;
934 return 1;
935 }
936
937 static struct lwp_info *
938 add_lwp (ptid_t ptid)
939 {
940 struct lwp_info *lwp;
941
942 lwp = XCNEW (struct lwp_info);
943
944 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
945
946 if (the_low_target.new_thread != NULL)
947 the_low_target.new_thread (lwp);
948
949 lwp->thread = add_thread (ptid, lwp);
950
951 return lwp;
952 }
953
954 /* Callback to be used when calling fork_inferior, responsible for
955 actually initiating the tracing of the inferior. */
956
957 static void
958 linux_ptrace_fun ()
959 {
960 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
961 (PTRACE_TYPE_ARG4) 0) < 0)
962 trace_start_error_with_name ("ptrace");
963
964 if (setpgid (0, 0) < 0)
965 trace_start_error_with_name ("setpgid");
966
967 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
968 stdout to stderr so that inferior i/o doesn't corrupt the connection.
969 Also, redirect stdin to /dev/null. */
970 if (remote_connection_is_stdio ())
971 {
972 if (close (0) < 0)
973 trace_start_error_with_name ("close");
974 if (open ("/dev/null", O_RDONLY) < 0)
975 trace_start_error_with_name ("open");
976 if (dup2 (2, 1) < 0)
977 trace_start_error_with_name ("dup2");
978 if (write (2, "stdin/stdout redirected\n",
979 sizeof ("stdin/stdout redirected\n") - 1) < 0)
980 {
981 /* Errors ignored. */;
982 }
983 }
984 }
985
986 /* Start an inferior process and returns its pid.
987 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
988 are its arguments. */
989
990 static int
991 linux_create_inferior (const char *program,
992 const std::vector<char *> &program_args)
993 {
994 struct lwp_info *new_lwp;
995 int pid;
996 ptid_t ptid;
997 struct cleanup *restore_personality
998 = maybe_disable_address_space_randomization (disable_randomization);
999 std::string str_program_args = stringify_argv (program_args);
1000
1001 pid = fork_inferior (program,
1002 str_program_args.c_str (),
1003 get_environ ()->envp (), linux_ptrace_fun,
1004 NULL, NULL, NULL, NULL);
1005
1006 do_cleanups (restore_personality);
1007
1008 linux_add_process (pid, 0);
1009
1010 ptid = ptid_build (pid, pid, 0);
1011 new_lwp = add_lwp (ptid);
1012 new_lwp->must_set_ptrace_flags = 1;
1013
1014 post_fork_inferior (pid, program);
1015
1016 return pid;
1017 }
1018
1019 /* Implement the post_create_inferior target_ops method. */
1020
1021 static void
1022 linux_post_create_inferior (void)
1023 {
1024 struct lwp_info *lwp = get_thread_lwp (current_thread);
1025
1026 linux_arch_setup ();
1027
1028 if (lwp->must_set_ptrace_flags)
1029 {
1030 struct process_info *proc = current_process ();
1031 int options = linux_low_ptrace_options (proc->attached);
1032
1033 linux_enable_event_reporting (lwpid_of (current_thread), options);
1034 lwp->must_set_ptrace_flags = 0;
1035 }
1036 }
1037
1038 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1039 error. */
1040
1041 int
1042 linux_attach_lwp (ptid_t ptid)
1043 {
1044 struct lwp_info *new_lwp;
1045 int lwpid = ptid_get_lwp (ptid);
1046
1047 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1048 != 0)
1049 return errno;
1050
1051 new_lwp = add_lwp (ptid);
1052
1053 /* We need to wait for SIGSTOP before being able to make the next
1054 ptrace call on this LWP. */
1055 new_lwp->must_set_ptrace_flags = 1;
1056
1057 if (linux_proc_pid_is_stopped (lwpid))
1058 {
1059 if (debug_threads)
1060 debug_printf ("Attached to a stopped process\n");
1061
1062 /* The process is definitely stopped. It is in a job control
1063 stop, unless the kernel predates the TASK_STOPPED /
1064 TASK_TRACED distinction, in which case it might be in a
1065 ptrace stop. Make sure it is in a ptrace stop; from there we
1066 can kill it, signal it, et cetera.
1067
1068 First make sure there is a pending SIGSTOP. Since we are
1069 already attached, the process can not transition from stopped
1070 to running without a PTRACE_CONT; so we know this signal will
1071 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1072 probably already in the queue (unless this kernel is old
1073 enough to use TASK_STOPPED for ptrace stops); but since
1074 SIGSTOP is not an RT signal, it can only be queued once. */
1075 kill_lwp (lwpid, SIGSTOP);
1076
1077 /* Finally, resume the stopped process. This will deliver the
1078 SIGSTOP (or a higher priority signal, just like normal
1079 PTRACE_ATTACH), which we'll catch later on. */
1080 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1081 }
1082
1083 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1084 brings it to a halt.
1085
1086 There are several cases to consider here:
1087
1088 1) gdbserver has already attached to the process and is being notified
1089 of a new thread that is being created.
1090 In this case we should ignore that SIGSTOP and resume the
1091 process. This is handled below by setting stop_expected = 1,
1092 and the fact that add_thread sets last_resume_kind ==
1093 resume_continue.
1094
1095 2) This is the first thread (the process thread), and we're attaching
1096 to it via attach_inferior.
1097 In this case we want the process thread to stop.
1098 This is handled by having linux_attach set last_resume_kind ==
1099 resume_stop after we return.
1100
1101 If the pid we are attaching to is also the tgid, we attach to and
1102 stop all the existing threads. Otherwise, we attach to pid and
1103 ignore any other threads in the same group as this pid.
1104
1105 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1106 existing threads.
1107 In this case we want the thread to stop.
1108 FIXME: This case is currently not properly handled.
1109 We should wait for the SIGSTOP but don't. Things work apparently
1110 because enough time passes between when we ptrace (ATTACH) and when
1111 gdb makes the next ptrace call on the thread.
1112
1113 On the other hand, if we are currently trying to stop all threads, we
1114 should treat the new thread as if we had sent it a SIGSTOP. This works
1115 because we are guaranteed that the add_lwp call above added us to the
1116 end of the list, and so the new thread has not yet reached
1117 wait_for_sigstop (but will). */
1118 new_lwp->stop_expected = 1;
1119
1120 return 0;
1121 }
1122
1123 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1124 already attached. Returns true if a new LWP is found, false
1125 otherwise. */
1126
1127 static int
1128 attach_proc_task_lwp_callback (ptid_t ptid)
1129 {
1130 /* Is this a new thread? */
1131 if (find_thread_ptid (ptid) == NULL)
1132 {
1133 int lwpid = ptid_get_lwp (ptid);
1134 int err;
1135
1136 if (debug_threads)
1137 debug_printf ("Found new lwp %d\n", lwpid);
1138
1139 err = linux_attach_lwp (ptid);
1140
1141 /* Be quiet if we simply raced with the thread exiting. EPERM
1142 is returned if the thread's task still exists, and is marked
1143 as exited or zombie, as well as other conditions, so in that
1144 case, confirm the status in /proc/PID/status. */
1145 if (err == ESRCH
1146 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1147 {
1148 if (debug_threads)
1149 {
1150 debug_printf ("Cannot attach to lwp %d: "
1151 "thread is gone (%d: %s)\n",
1152 lwpid, err, strerror (err));
1153 }
1154 }
1155 else if (err != 0)
1156 {
1157 warning (_("Cannot attach to lwp %d: %s"),
1158 lwpid,
1159 linux_ptrace_attach_fail_reason_string (ptid, err));
1160 }
1161
1162 return 1;
1163 }
1164 return 0;
1165 }
1166
1167 static void async_file_mark (void);
1168
1169 /* Attach to PID. If PID is the tgid, attach to it and all
1170 of its threads. */
1171
1172 static int
1173 linux_attach (unsigned long pid)
1174 {
1175 struct process_info *proc;
1176 struct thread_info *initial_thread;
1177 ptid_t ptid = ptid_build (pid, pid, 0);
1178 int err;
1179
1180 /* Attach to PID. We will check for other threads
1181 soon. */
1182 err = linux_attach_lwp (ptid);
1183 if (err != 0)
1184 error ("Cannot attach to process %ld: %s",
1185 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1186
1187 proc = linux_add_process (pid, 1);
1188
1189 /* Don't ignore the initial SIGSTOP if we just attached to this
1190 process. It will be collected by wait shortly. */
1191 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1192 initial_thread->last_resume_kind = resume_stop;
1193
1194 /* We must attach to every LWP. If /proc is mounted, use that to
1195 find them now. On the one hand, the inferior may be using raw
1196 clone instead of using pthreads. On the other hand, even if it
1197 is using pthreads, GDB may not be connected yet (thread_db needs
1198 to do symbol lookups, through qSymbol). Also, thread_db walks
1199 structures in the inferior's address space to find the list of
1200 threads/LWPs, and those structures may well be corrupted. Note
1201 that once thread_db is loaded, we'll still use it to list threads
1202 and associate pthread info with each LWP. */
1203 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1204
1205 /* GDB will shortly read the xml target description for this
1206 process, to figure out the process' architecture. But the target
1207 description is only filled in when the first process/thread in
1208 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1209 that now, otherwise, if GDB is fast enough, it could read the
1210 target description _before_ that initial stop. */
1211 if (non_stop)
1212 {
1213 struct lwp_info *lwp;
1214 int wstat, lwpid;
1215 ptid_t pid_ptid = pid_to_ptid (pid);
1216
1217 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1218 &wstat, __WALL);
1219 gdb_assert (lwpid > 0);
1220
1221 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1222
1223 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1224 {
1225 lwp->status_pending_p = 1;
1226 lwp->status_pending = wstat;
1227 }
1228
1229 initial_thread->last_resume_kind = resume_continue;
1230
1231 async_file_mark ();
1232
1233 gdb_assert (proc->tdesc != NULL);
1234 }
1235
1236 return 0;
1237 }
1238
1239 struct counter
1240 {
1241 int pid;
1242 int count;
1243 };
1244
1245 static int
1246 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1247 {
1248 struct counter *counter = (struct counter *) args;
1249
1250 if (ptid_get_pid (entry->id) == counter->pid)
1251 {
1252 if (++counter->count > 1)
1253 return 1;
1254 }
1255
1256 return 0;
1257 }
1258
1259 static int
1260 last_thread_of_process_p (int pid)
1261 {
1262 struct counter counter = { pid , 0 };
1263
1264 return (find_inferior (&all_threads,
1265 second_thread_of_pid_p, &counter) == NULL);
1266 }
1267
1268 /* Kill LWP. */
1269
1270 static void
1271 linux_kill_one_lwp (struct lwp_info *lwp)
1272 {
1273 struct thread_info *thr = get_lwp_thread (lwp);
1274 int pid = lwpid_of (thr);
1275
1276 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1277 there is no signal context, and ptrace(PTRACE_KILL) (or
1278 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1279 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1280 alternative is to kill with SIGKILL. We only need one SIGKILL
1281 per process, not one for each thread. But since we still support
1282 support debugging programs using raw clone without CLONE_THREAD,
1283 we send one for each thread. For years, we used PTRACE_KILL
1284 only, so we're being a bit paranoid about some old kernels where
1285 PTRACE_KILL might work better (dubious if there are any such, but
1286 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1287 second, and so we're fine everywhere. */
1288
1289 errno = 0;
1290 kill_lwp (pid, SIGKILL);
1291 if (debug_threads)
1292 {
1293 int save_errno = errno;
1294
1295 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1296 target_pid_to_str (ptid_of (thr)),
1297 save_errno ? strerror (save_errno) : "OK");
1298 }
1299
1300 errno = 0;
1301 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1302 if (debug_threads)
1303 {
1304 int save_errno = errno;
1305
1306 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1307 target_pid_to_str (ptid_of (thr)),
1308 save_errno ? strerror (save_errno) : "OK");
1309 }
1310 }
1311
1312 /* Kill LWP and wait for it to die. */
1313
1314 static void
1315 kill_wait_lwp (struct lwp_info *lwp)
1316 {
1317 struct thread_info *thr = get_lwp_thread (lwp);
1318 int pid = ptid_get_pid (ptid_of (thr));
1319 int lwpid = ptid_get_lwp (ptid_of (thr));
1320 int wstat;
1321 int res;
1322
1323 if (debug_threads)
1324 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1325
1326 do
1327 {
1328 linux_kill_one_lwp (lwp);
1329
1330 /* Make sure it died. Notes:
1331
1332 - The loop is most likely unnecessary.
1333
1334 - We don't use linux_wait_for_event as that could delete lwps
1335 while we're iterating over them. We're not interested in
1336 any pending status at this point, only in making sure all
1337 wait status on the kernel side are collected until the
1338 process is reaped.
1339
1340 - We don't use __WALL here as the __WALL emulation relies on
1341 SIGCHLD, and killing a stopped process doesn't generate
1342 one, nor an exit status.
1343 */
1344 res = my_waitpid (lwpid, &wstat, 0);
1345 if (res == -1 && errno == ECHILD)
1346 res = my_waitpid (lwpid, &wstat, __WCLONE);
1347 } while (res > 0 && WIFSTOPPED (wstat));
1348
1349 /* Even if it was stopped, the child may have already disappeared.
1350 E.g., if it was killed by SIGKILL. */
1351 if (res < 0 && errno != ECHILD)
1352 perror_with_name ("kill_wait_lwp");
1353 }
1354
1355 /* Callback for `find_inferior'. Kills an lwp of a given process,
1356 except the leader. */
1357
1358 static int
1359 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1360 {
1361 struct thread_info *thread = (struct thread_info *) entry;
1362 struct lwp_info *lwp = get_thread_lwp (thread);
1363 int pid = * (int *) args;
1364
1365 if (ptid_get_pid (entry->id) != pid)
1366 return 0;
1367
1368 /* We avoid killing the first thread here, because of a Linux kernel (at
1369 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1370 the children get a chance to be reaped, it will remain a zombie
1371 forever. */
1372
1373 if (lwpid_of (thread) == pid)
1374 {
1375 if (debug_threads)
1376 debug_printf ("lkop: is last of process %s\n",
1377 target_pid_to_str (entry->id));
1378 return 0;
1379 }
1380
1381 kill_wait_lwp (lwp);
1382 return 0;
1383 }
1384
1385 static int
1386 linux_kill (int pid)
1387 {
1388 struct process_info *process;
1389 struct lwp_info *lwp;
1390
1391 process = find_process_pid (pid);
1392 if (process == NULL)
1393 return -1;
1394
1395 /* If we're killing a running inferior, make sure it is stopped
1396 first, as PTRACE_KILL will not work otherwise. */
1397 stop_all_lwps (0, NULL);
1398
1399 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1400
1401 /* See the comment in linux_kill_one_lwp. We did not kill the first
1402 thread in the list, so do so now. */
1403 lwp = find_lwp_pid (pid_to_ptid (pid));
1404
1405 if (lwp == NULL)
1406 {
1407 if (debug_threads)
1408 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1409 pid);
1410 }
1411 else
1412 kill_wait_lwp (lwp);
1413
1414 the_target->mourn (process);
1415
1416 /* Since we presently can only stop all lwps of all processes, we
1417 need to unstop lwps of other processes. */
1418 unstop_all_lwps (0, NULL);
1419 return 0;
1420 }
1421
1422 /* Get pending signal of THREAD, for detaching purposes. This is the
1423 signal the thread last stopped for, which we need to deliver to the
1424 thread when detaching, otherwise, it'd be suppressed/lost. */
1425
1426 static int
1427 get_detach_signal (struct thread_info *thread)
1428 {
1429 enum gdb_signal signo = GDB_SIGNAL_0;
1430 int status;
1431 struct lwp_info *lp = get_thread_lwp (thread);
1432
1433 if (lp->status_pending_p)
1434 status = lp->status_pending;
1435 else
1436 {
1437 /* If the thread had been suspended by gdbserver, and it stopped
1438 cleanly, then it'll have stopped with SIGSTOP. But we don't
1439 want to deliver that SIGSTOP. */
1440 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1441 || thread->last_status.value.sig == GDB_SIGNAL_0)
1442 return 0;
1443
1444 /* Otherwise, we may need to deliver the signal we
1445 intercepted. */
1446 status = lp->last_status;
1447 }
1448
1449 if (!WIFSTOPPED (status))
1450 {
1451 if (debug_threads)
1452 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1453 target_pid_to_str (ptid_of (thread)));
1454 return 0;
1455 }
1456
1457 /* Extended wait statuses aren't real SIGTRAPs. */
1458 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1459 {
1460 if (debug_threads)
1461 debug_printf ("GPS: lwp %s had stopped with extended "
1462 "status: no pending signal\n",
1463 target_pid_to_str (ptid_of (thread)));
1464 return 0;
1465 }
1466
1467 signo = gdb_signal_from_host (WSTOPSIG (status));
1468
1469 if (program_signals_p && !program_signals[signo])
1470 {
1471 if (debug_threads)
1472 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1473 target_pid_to_str (ptid_of (thread)),
1474 gdb_signal_to_string (signo));
1475 return 0;
1476 }
1477 else if (!program_signals_p
1478 /* If we have no way to know which signals GDB does not
1479 want to have passed to the program, assume
1480 SIGTRAP/SIGINT, which is GDB's default. */
1481 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1482 {
1483 if (debug_threads)
1484 debug_printf ("GPS: lwp %s had signal %s, "
1485 "but we don't know if we should pass it. "
1486 "Default to not.\n",
1487 target_pid_to_str (ptid_of (thread)),
1488 gdb_signal_to_string (signo));
1489 return 0;
1490 }
1491 else
1492 {
1493 if (debug_threads)
1494 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1495 target_pid_to_str (ptid_of (thread)),
1496 gdb_signal_to_string (signo));
1497
1498 return WSTOPSIG (status);
1499 }
1500 }
1501
1502 /* Detach from LWP. */
1503
1504 static void
1505 linux_detach_one_lwp (struct lwp_info *lwp)
1506 {
1507 struct thread_info *thread = get_lwp_thread (lwp);
1508 int sig;
1509 int lwpid;
1510
1511 /* If there is a pending SIGSTOP, get rid of it. */
1512 if (lwp->stop_expected)
1513 {
1514 if (debug_threads)
1515 debug_printf ("Sending SIGCONT to %s\n",
1516 target_pid_to_str (ptid_of (thread)));
1517
1518 kill_lwp (lwpid_of (thread), SIGCONT);
1519 lwp->stop_expected = 0;
1520 }
1521
1522 /* Pass on any pending signal for this thread. */
1523 sig = get_detach_signal (thread);
1524
1525 /* Preparing to resume may try to write registers, and fail if the
1526 lwp is zombie. If that happens, ignore the error. We'll handle
1527 it below, when detach fails with ESRCH. */
1528 TRY
1529 {
1530 /* Flush any pending changes to the process's registers. */
1531 regcache_invalidate_thread (thread);
1532
1533 /* Finally, let it resume. */
1534 if (the_low_target.prepare_to_resume != NULL)
1535 the_low_target.prepare_to_resume (lwp);
1536 }
1537 CATCH (ex, RETURN_MASK_ERROR)
1538 {
1539 if (!check_ptrace_stopped_lwp_gone (lwp))
1540 throw_exception (ex);
1541 }
1542 END_CATCH
1543
1544 lwpid = lwpid_of (thread);
1545 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1546 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1547 {
1548 int save_errno = errno;
1549
1550 /* We know the thread exists, so ESRCH must mean the lwp is
1551 zombie. This can happen if one of the already-detached
1552 threads exits the whole thread group. In that case we're
1553 still attached, and must reap the lwp. */
1554 if (save_errno == ESRCH)
1555 {
1556 int ret, status;
1557
1558 ret = my_waitpid (lwpid, &status, __WALL);
1559 if (ret == -1)
1560 {
1561 warning (_("Couldn't reap LWP %d while detaching: %s"),
1562 lwpid, strerror (errno));
1563 }
1564 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1565 {
1566 warning (_("Reaping LWP %d while detaching "
1567 "returned unexpected status 0x%x"),
1568 lwpid, status);
1569 }
1570 }
1571 else
1572 {
1573 error (_("Can't detach %s: %s"),
1574 target_pid_to_str (ptid_of (thread)),
1575 strerror (save_errno));
1576 }
1577 }
1578 else if (debug_threads)
1579 {
1580 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1581 target_pid_to_str (ptid_of (thread)),
1582 strsignal (sig));
1583 }
1584
1585 delete_lwp (lwp);
1586 }
1587
1588 /* Callback for find_inferior. Detaches from non-leader threads of a
1589 given process. */
1590
1591 static int
1592 linux_detach_lwp_callback (struct inferior_list_entry *entry, void *args)
1593 {
1594 struct thread_info *thread = (struct thread_info *) entry;
1595 struct lwp_info *lwp = get_thread_lwp (thread);
1596 int pid = *(int *) args;
1597 int lwpid = lwpid_of (thread);
1598
1599 /* Skip other processes. */
1600 if (ptid_get_pid (entry->id) != pid)
1601 return 0;
1602
1603 /* We don't actually detach from the thread group leader just yet.
1604 If the thread group exits, we must reap the zombie clone lwps
1605 before we're able to reap the leader. */
1606 if (ptid_get_pid (entry->id) == lwpid)
1607 return 0;
1608
1609 linux_detach_one_lwp (lwp);
1610 return 0;
1611 }
1612
1613 static int
1614 linux_detach (int pid)
1615 {
1616 struct process_info *process;
1617 struct lwp_info *main_lwp;
1618
1619 process = find_process_pid (pid);
1620 if (process == NULL)
1621 return -1;
1622
1623 /* As there's a step over already in progress, let it finish first,
1624 otherwise nesting a stabilize_threads operation on top gets real
1625 messy. */
1626 complete_ongoing_step_over ();
1627
1628 /* Stop all threads before detaching. First, ptrace requires that
1629 the thread is stopped to sucessfully detach. Second, thread_db
1630 may need to uninstall thread event breakpoints from memory, which
1631 only works with a stopped process anyway. */
1632 stop_all_lwps (0, NULL);
1633
1634 #ifdef USE_THREAD_DB
1635 thread_db_detach (process);
1636 #endif
1637
1638 /* Stabilize threads (move out of jump pads). */
1639 stabilize_threads ();
1640
1641 /* Detach from the clone lwps first. If the thread group exits just
1642 while we're detaching, we must reap the clone lwps before we're
1643 able to reap the leader. */
1644 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1645
1646 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1647 linux_detach_one_lwp (main_lwp);
1648
1649 the_target->mourn (process);
1650
1651 /* Since we presently can only stop all lwps of all processes, we
1652 need to unstop lwps of other processes. */
1653 unstop_all_lwps (0, NULL);
1654 return 0;
1655 }
1656
1657 /* Remove all LWPs that belong to process PROC from the lwp list. */
1658
1659 static int
1660 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1661 {
1662 struct thread_info *thread = (struct thread_info *) entry;
1663 struct lwp_info *lwp = get_thread_lwp (thread);
1664 struct process_info *process = (struct process_info *) proc;
1665
1666 if (pid_of (thread) == pid_of (process))
1667 delete_lwp (lwp);
1668
1669 return 0;
1670 }
1671
1672 static void
1673 linux_mourn (struct process_info *process)
1674 {
1675 struct process_info_private *priv;
1676
1677 #ifdef USE_THREAD_DB
1678 thread_db_mourn (process);
1679 #endif
1680
1681 find_inferior (&all_threads, delete_lwp_callback, process);
1682
1683 /* Freeing all private data. */
1684 priv = process->priv;
1685 free (priv->arch_private);
1686 free (priv);
1687 process->priv = NULL;
1688
1689 remove_process (process);
1690 }
1691
1692 static void
1693 linux_join (int pid)
1694 {
1695 int status, ret;
1696
1697 do {
1698 ret = my_waitpid (pid, &status, 0);
1699 if (WIFEXITED (status) || WIFSIGNALED (status))
1700 break;
1701 } while (ret != -1 || errno != ECHILD);
1702 }
1703
1704 /* Return nonzero if the given thread is still alive. */
1705 static int
1706 linux_thread_alive (ptid_t ptid)
1707 {
1708 struct lwp_info *lwp = find_lwp_pid (ptid);
1709
1710 /* We assume we always know if a thread exits. If a whole process
1711 exited but we still haven't been able to report it to GDB, we'll
1712 hold on to the last lwp of the dead process. */
1713 if (lwp != NULL)
1714 return !lwp_is_marked_dead (lwp);
1715 else
1716 return 0;
1717 }
1718
1719 /* Return 1 if this lwp still has an interesting status pending. If
1720 not (e.g., it had stopped for a breakpoint that is gone), return
1721 false. */
1722
1723 static int
1724 thread_still_has_status_pending_p (struct thread_info *thread)
1725 {
1726 struct lwp_info *lp = get_thread_lwp (thread);
1727
1728 if (!lp->status_pending_p)
1729 return 0;
1730
1731 if (thread->last_resume_kind != resume_stop
1732 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1733 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1734 {
1735 struct thread_info *saved_thread;
1736 CORE_ADDR pc;
1737 int discard = 0;
1738
1739 gdb_assert (lp->last_status != 0);
1740
1741 pc = get_pc (lp);
1742
1743 saved_thread = current_thread;
1744 current_thread = thread;
1745
1746 if (pc != lp->stop_pc)
1747 {
1748 if (debug_threads)
1749 debug_printf ("PC of %ld changed\n",
1750 lwpid_of (thread));
1751 discard = 1;
1752 }
1753
1754 #if !USE_SIGTRAP_SIGINFO
1755 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1756 && !(*the_low_target.breakpoint_at) (pc))
1757 {
1758 if (debug_threads)
1759 debug_printf ("previous SW breakpoint of %ld gone\n",
1760 lwpid_of (thread));
1761 discard = 1;
1762 }
1763 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1764 && !hardware_breakpoint_inserted_here (pc))
1765 {
1766 if (debug_threads)
1767 debug_printf ("previous HW breakpoint of %ld gone\n",
1768 lwpid_of (thread));
1769 discard = 1;
1770 }
1771 #endif
1772
1773 current_thread = saved_thread;
1774
1775 if (discard)
1776 {
1777 if (debug_threads)
1778 debug_printf ("discarding pending breakpoint status\n");
1779 lp->status_pending_p = 0;
1780 return 0;
1781 }
1782 }
1783
1784 return 1;
1785 }
1786
1787 /* Returns true if LWP is resumed from the client's perspective. */
1788
1789 static int
1790 lwp_resumed (struct lwp_info *lwp)
1791 {
1792 struct thread_info *thread = get_lwp_thread (lwp);
1793
1794 if (thread->last_resume_kind != resume_stop)
1795 return 1;
1796
1797 /* Did gdb send us a `vCont;t', but we haven't reported the
1798 corresponding stop to gdb yet? If so, the thread is still
1799 resumed/running from gdb's perspective. */
1800 if (thread->last_resume_kind == resume_stop
1801 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1802 return 1;
1803
1804 return 0;
1805 }
1806
1807 /* Return 1 if this lwp has an interesting status pending. */
1808 static int
1809 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1810 {
1811 struct thread_info *thread = (struct thread_info *) entry;
1812 struct lwp_info *lp = get_thread_lwp (thread);
1813 ptid_t ptid = * (ptid_t *) arg;
1814
1815 /* Check if we're only interested in events from a specific process
1816 or a specific LWP. */
1817 if (!ptid_match (ptid_of (thread), ptid))
1818 return 0;
1819
1820 if (!lwp_resumed (lp))
1821 return 0;
1822
1823 if (lp->status_pending_p
1824 && !thread_still_has_status_pending_p (thread))
1825 {
1826 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1827 return 0;
1828 }
1829
1830 return lp->status_pending_p;
1831 }
1832
1833 static int
1834 same_lwp (struct inferior_list_entry *entry, void *data)
1835 {
1836 ptid_t ptid = *(ptid_t *) data;
1837 int lwp;
1838
1839 if (ptid_get_lwp (ptid) != 0)
1840 lwp = ptid_get_lwp (ptid);
1841 else
1842 lwp = ptid_get_pid (ptid);
1843
1844 if (ptid_get_lwp (entry->id) == lwp)
1845 return 1;
1846
1847 return 0;
1848 }
1849
1850 struct lwp_info *
1851 find_lwp_pid (ptid_t ptid)
1852 {
1853 struct inferior_list_entry *thread
1854 = find_inferior (&all_threads, same_lwp, &ptid);
1855
1856 if (thread == NULL)
1857 return NULL;
1858
1859 return get_thread_lwp ((struct thread_info *) thread);
1860 }
1861
1862 /* Return the number of known LWPs in the tgid given by PID. */
1863
1864 static int
1865 num_lwps (int pid)
1866 {
1867 struct inferior_list_entry *inf, *tmp;
1868 int count = 0;
1869
1870 ALL_INFERIORS (&all_threads, inf, tmp)
1871 {
1872 if (ptid_get_pid (inf->id) == pid)
1873 count++;
1874 }
1875
1876 return count;
1877 }
1878
1879 /* The arguments passed to iterate_over_lwps. */
1880
1881 struct iterate_over_lwps_args
1882 {
1883 /* The FILTER argument passed to iterate_over_lwps. */
1884 ptid_t filter;
1885
1886 /* The CALLBACK argument passed to iterate_over_lwps. */
1887 iterate_over_lwps_ftype *callback;
1888
1889 /* The DATA argument passed to iterate_over_lwps. */
1890 void *data;
1891 };
1892
1893 /* Callback for find_inferior used by iterate_over_lwps to filter
1894 calls to the callback supplied to that function. Returning a
1895 nonzero value causes find_inferiors to stop iterating and return
1896 the current inferior_list_entry. Returning zero indicates that
1897 find_inferiors should continue iterating. */
1898
1899 static int
1900 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1901 {
1902 struct iterate_over_lwps_args *args
1903 = (struct iterate_over_lwps_args *) args_p;
1904
1905 if (ptid_match (entry->id, args->filter))
1906 {
1907 struct thread_info *thr = (struct thread_info *) entry;
1908 struct lwp_info *lwp = get_thread_lwp (thr);
1909
1910 return (*args->callback) (lwp, args->data);
1911 }
1912
1913 return 0;
1914 }
1915
1916 /* See nat/linux-nat.h. */
1917
1918 struct lwp_info *
1919 iterate_over_lwps (ptid_t filter,
1920 iterate_over_lwps_ftype callback,
1921 void *data)
1922 {
1923 struct iterate_over_lwps_args args = {filter, callback, data};
1924 struct inferior_list_entry *entry;
1925
1926 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1927 if (entry == NULL)
1928 return NULL;
1929
1930 return get_thread_lwp ((struct thread_info *) entry);
1931 }
1932
1933 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1934 their exits until all other threads in the group have exited. */
1935
1936 static void
1937 check_zombie_leaders (void)
1938 {
1939 struct process_info *proc, *tmp;
1940
1941 ALL_PROCESSES (proc, tmp)
1942 {
1943 pid_t leader_pid = pid_of (proc);
1944 struct lwp_info *leader_lp;
1945
1946 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1947
1948 if (debug_threads)
1949 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1950 "num_lwps=%d, zombie=%d\n",
1951 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1952 linux_proc_pid_is_zombie (leader_pid));
1953
1954 if (leader_lp != NULL && !leader_lp->stopped
1955 /* Check if there are other threads in the group, as we may
1956 have raced with the inferior simply exiting. */
1957 && !last_thread_of_process_p (leader_pid)
1958 && linux_proc_pid_is_zombie (leader_pid))
1959 {
1960 /* A leader zombie can mean one of two things:
1961
1962 - It exited, and there's an exit status pending
1963 available, or only the leader exited (not the whole
1964 program). In the latter case, we can't waitpid the
1965 leader's exit status until all other threads are gone.
1966
1967 - There are 3 or more threads in the group, and a thread
1968 other than the leader exec'd. On an exec, the Linux
1969 kernel destroys all other threads (except the execing
1970 one) in the thread group, and resets the execing thread's
1971 tid to the tgid. No exit notification is sent for the
1972 execing thread -- from the ptracer's perspective, it
1973 appears as though the execing thread just vanishes.
1974 Until we reap all other threads except the leader and the
1975 execing thread, the leader will be zombie, and the
1976 execing thread will be in `D (disc sleep)'. As soon as
1977 all other threads are reaped, the execing thread changes
1978 it's tid to the tgid, and the previous (zombie) leader
1979 vanishes, giving place to the "new" leader. We could try
1980 distinguishing the exit and exec cases, by waiting once
1981 more, and seeing if something comes out, but it doesn't
1982 sound useful. The previous leader _does_ go away, and
1983 we'll re-add the new one once we see the exec event
1984 (which is just the same as what would happen if the
1985 previous leader did exit voluntarily before some other
1986 thread execs). */
1987
1988 if (debug_threads)
1989 debug_printf ("CZL: Thread group leader %d zombie "
1990 "(it exited, or another thread execd).\n",
1991 leader_pid);
1992
1993 delete_lwp (leader_lp);
1994 }
1995 }
1996 }
1997
1998 /* Callback for `find_inferior'. Returns the first LWP that is not
1999 stopped. ARG is a PTID filter. */
2000
2001 static int
2002 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
2003 {
2004 struct thread_info *thr = (struct thread_info *) entry;
2005 struct lwp_info *lwp;
2006 ptid_t filter = *(ptid_t *) arg;
2007
2008 if (!ptid_match (ptid_of (thr), filter))
2009 return 0;
2010
2011 lwp = get_thread_lwp (thr);
2012 if (!lwp->stopped)
2013 return 1;
2014
2015 return 0;
2016 }
2017
2018 /* Increment LWP's suspend count. */
2019
2020 static void
2021 lwp_suspended_inc (struct lwp_info *lwp)
2022 {
2023 lwp->suspended++;
2024
2025 if (debug_threads && lwp->suspended > 4)
2026 {
2027 struct thread_info *thread = get_lwp_thread (lwp);
2028
2029 debug_printf ("LWP %ld has a suspiciously high suspend count,"
2030 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
2031 }
2032 }
2033
2034 /* Decrement LWP's suspend count. */
2035
2036 static void
2037 lwp_suspended_decr (struct lwp_info *lwp)
2038 {
2039 lwp->suspended--;
2040
2041 if (lwp->suspended < 0)
2042 {
2043 struct thread_info *thread = get_lwp_thread (lwp);
2044
2045 internal_error (__FILE__, __LINE__,
2046 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2047 lwp->suspended);
2048 }
2049 }
2050
2051 /* This function should only be called if the LWP got a SIGTRAP.
2052
2053 Handle any tracepoint steps or hits. Return true if a tracepoint
2054 event was handled, 0 otherwise. */
2055
2056 static int
2057 handle_tracepoints (struct lwp_info *lwp)
2058 {
2059 struct thread_info *tinfo = get_lwp_thread (lwp);
2060 int tpoint_related_event = 0;
2061
2062 gdb_assert (lwp->suspended == 0);
2063
2064 /* If this tracepoint hit causes a tracing stop, we'll immediately
2065 uninsert tracepoints. To do this, we temporarily pause all
2066 threads, unpatch away, and then unpause threads. We need to make
2067 sure the unpausing doesn't resume LWP too. */
2068 lwp_suspended_inc (lwp);
2069
2070 /* And we need to be sure that any all-threads-stopping doesn't try
2071 to move threads out of the jump pads, as it could deadlock the
2072 inferior (LWP could be in the jump pad, maybe even holding the
2073 lock.) */
2074
2075 /* Do any necessary step collect actions. */
2076 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2077
2078 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2079
2080 /* See if we just hit a tracepoint and do its main collect
2081 actions. */
2082 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2083
2084 lwp_suspended_decr (lwp);
2085
2086 gdb_assert (lwp->suspended == 0);
2087 gdb_assert (!stabilizing_threads
2088 || (lwp->collecting_fast_tracepoint
2089 != fast_tpoint_collect_result::not_collecting));
2090
2091 if (tpoint_related_event)
2092 {
2093 if (debug_threads)
2094 debug_printf ("got a tracepoint event\n");
2095 return 1;
2096 }
2097
2098 return 0;
2099 }
2100
2101 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2102 collection status. */
2103
2104 static fast_tpoint_collect_result
2105 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2106 struct fast_tpoint_collect_status *status)
2107 {
2108 CORE_ADDR thread_area;
2109 struct thread_info *thread = get_lwp_thread (lwp);
2110
2111 if (the_low_target.get_thread_area == NULL)
2112 return fast_tpoint_collect_result::not_collecting;
2113
2114 /* Get the thread area address. This is used to recognize which
2115 thread is which when tracing with the in-process agent library.
2116 We don't read anything from the address, and treat it as opaque;
2117 it's the address itself that we assume is unique per-thread. */
2118 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2119 return fast_tpoint_collect_result::not_collecting;
2120
2121 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2122 }
2123
2124 /* The reason we resume in the caller, is because we want to be able
2125 to pass lwp->status_pending as WSTAT, and we need to clear
2126 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2127 refuses to resume. */
2128
2129 static int
2130 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2131 {
2132 struct thread_info *saved_thread;
2133
2134 saved_thread = current_thread;
2135 current_thread = get_lwp_thread (lwp);
2136
2137 if ((wstat == NULL
2138 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2139 && supports_fast_tracepoints ()
2140 && agent_loaded_p ())
2141 {
2142 struct fast_tpoint_collect_status status;
2143
2144 if (debug_threads)
2145 debug_printf ("Checking whether LWP %ld needs to move out of the "
2146 "jump pad.\n",
2147 lwpid_of (current_thread));
2148
2149 fast_tpoint_collect_result r
2150 = linux_fast_tracepoint_collecting (lwp, &status);
2151
2152 if (wstat == NULL
2153 || (WSTOPSIG (*wstat) != SIGILL
2154 && WSTOPSIG (*wstat) != SIGFPE
2155 && WSTOPSIG (*wstat) != SIGSEGV
2156 && WSTOPSIG (*wstat) != SIGBUS))
2157 {
2158 lwp->collecting_fast_tracepoint = r;
2159
2160 if (r != fast_tpoint_collect_result::not_collecting)
2161 {
2162 if (r == fast_tpoint_collect_result::before_insn
2163 && lwp->exit_jump_pad_bkpt == NULL)
2164 {
2165 /* Haven't executed the original instruction yet.
2166 Set breakpoint there, and wait till it's hit,
2167 then single-step until exiting the jump pad. */
2168 lwp->exit_jump_pad_bkpt
2169 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2170 }
2171
2172 if (debug_threads)
2173 debug_printf ("Checking whether LWP %ld needs to move out of "
2174 "the jump pad...it does\n",
2175 lwpid_of (current_thread));
2176 current_thread = saved_thread;
2177
2178 return 1;
2179 }
2180 }
2181 else
2182 {
2183 /* If we get a synchronous signal while collecting, *and*
2184 while executing the (relocated) original instruction,
2185 reset the PC to point at the tpoint address, before
2186 reporting to GDB. Otherwise, it's an IPA lib bug: just
2187 report the signal to GDB, and pray for the best. */
2188
2189 lwp->collecting_fast_tracepoint
2190 = fast_tpoint_collect_result::not_collecting;
2191
2192 if (r != fast_tpoint_collect_result::not_collecting
2193 && (status.adjusted_insn_addr <= lwp->stop_pc
2194 && lwp->stop_pc < status.adjusted_insn_addr_end))
2195 {
2196 siginfo_t info;
2197 struct regcache *regcache;
2198
2199 /* The si_addr on a few signals references the address
2200 of the faulting instruction. Adjust that as
2201 well. */
2202 if ((WSTOPSIG (*wstat) == SIGILL
2203 || WSTOPSIG (*wstat) == SIGFPE
2204 || WSTOPSIG (*wstat) == SIGBUS
2205 || WSTOPSIG (*wstat) == SIGSEGV)
2206 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2207 (PTRACE_TYPE_ARG3) 0, &info) == 0
2208 /* Final check just to make sure we don't clobber
2209 the siginfo of non-kernel-sent signals. */
2210 && (uintptr_t) info.si_addr == lwp->stop_pc)
2211 {
2212 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2213 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2214 (PTRACE_TYPE_ARG3) 0, &info);
2215 }
2216
2217 regcache = get_thread_regcache (current_thread, 1);
2218 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2219 lwp->stop_pc = status.tpoint_addr;
2220
2221 /* Cancel any fast tracepoint lock this thread was
2222 holding. */
2223 force_unlock_trace_buffer ();
2224 }
2225
2226 if (lwp->exit_jump_pad_bkpt != NULL)
2227 {
2228 if (debug_threads)
2229 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2230 "stopping all threads momentarily.\n");
2231
2232 stop_all_lwps (1, lwp);
2233
2234 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2235 lwp->exit_jump_pad_bkpt = NULL;
2236
2237 unstop_all_lwps (1, lwp);
2238
2239 gdb_assert (lwp->suspended >= 0);
2240 }
2241 }
2242 }
2243
2244 if (debug_threads)
2245 debug_printf ("Checking whether LWP %ld needs to move out of the "
2246 "jump pad...no\n",
2247 lwpid_of (current_thread));
2248
2249 current_thread = saved_thread;
2250 return 0;
2251 }
2252
2253 /* Enqueue one signal in the "signals to report later when out of the
2254 jump pad" list. */
2255
2256 static void
2257 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2258 {
2259 struct pending_signals *p_sig;
2260 struct thread_info *thread = get_lwp_thread (lwp);
2261
2262 if (debug_threads)
2263 debug_printf ("Deferring signal %d for LWP %ld.\n",
2264 WSTOPSIG (*wstat), lwpid_of (thread));
2265
2266 if (debug_threads)
2267 {
2268 struct pending_signals *sig;
2269
2270 for (sig = lwp->pending_signals_to_report;
2271 sig != NULL;
2272 sig = sig->prev)
2273 debug_printf (" Already queued %d\n",
2274 sig->signal);
2275
2276 debug_printf (" (no more currently queued signals)\n");
2277 }
2278
2279 /* Don't enqueue non-RT signals if they are already in the deferred
2280 queue. (SIGSTOP being the easiest signal to see ending up here
2281 twice) */
2282 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2283 {
2284 struct pending_signals *sig;
2285
2286 for (sig = lwp->pending_signals_to_report;
2287 sig != NULL;
2288 sig = sig->prev)
2289 {
2290 if (sig->signal == WSTOPSIG (*wstat))
2291 {
2292 if (debug_threads)
2293 debug_printf ("Not requeuing already queued non-RT signal %d"
2294 " for LWP %ld\n",
2295 sig->signal,
2296 lwpid_of (thread));
2297 return;
2298 }
2299 }
2300 }
2301
2302 p_sig = XCNEW (struct pending_signals);
2303 p_sig->prev = lwp->pending_signals_to_report;
2304 p_sig->signal = WSTOPSIG (*wstat);
2305
2306 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2307 &p_sig->info);
2308
2309 lwp->pending_signals_to_report = p_sig;
2310 }
2311
2312 /* Dequeue one signal from the "signals to report later when out of
2313 the jump pad" list. */
2314
2315 static int
2316 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2317 {
2318 struct thread_info *thread = get_lwp_thread (lwp);
2319
2320 if (lwp->pending_signals_to_report != NULL)
2321 {
2322 struct pending_signals **p_sig;
2323
2324 p_sig = &lwp->pending_signals_to_report;
2325 while ((*p_sig)->prev != NULL)
2326 p_sig = &(*p_sig)->prev;
2327
2328 *wstat = W_STOPCODE ((*p_sig)->signal);
2329 if ((*p_sig)->info.si_signo != 0)
2330 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2331 &(*p_sig)->info);
2332 free (*p_sig);
2333 *p_sig = NULL;
2334
2335 if (debug_threads)
2336 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2337 WSTOPSIG (*wstat), lwpid_of (thread));
2338
2339 if (debug_threads)
2340 {
2341 struct pending_signals *sig;
2342
2343 for (sig = lwp->pending_signals_to_report;
2344 sig != NULL;
2345 sig = sig->prev)
2346 debug_printf (" Still queued %d\n",
2347 sig->signal);
2348
2349 debug_printf (" (no more queued signals)\n");
2350 }
2351
2352 return 1;
2353 }
2354
2355 return 0;
2356 }
2357
2358 /* Fetch the possibly triggered data watchpoint info and store it in
2359 CHILD.
2360
2361 On some archs, like x86, that use debug registers to set
2362 watchpoints, it's possible that the way to know which watched
2363 address trapped, is to check the register that is used to select
2364 which address to watch. Problem is, between setting the watchpoint
2365 and reading back which data address trapped, the user may change
2366 the set of watchpoints, and, as a consequence, GDB changes the
2367 debug registers in the inferior. To avoid reading back a stale
2368 stopped-data-address when that happens, we cache in LP the fact
2369 that a watchpoint trapped, and the corresponding data address, as
2370 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2371 registers meanwhile, we have the cached data we can rely on. */
2372
2373 static int
2374 check_stopped_by_watchpoint (struct lwp_info *child)
2375 {
2376 if (the_low_target.stopped_by_watchpoint != NULL)
2377 {
2378 struct thread_info *saved_thread;
2379
2380 saved_thread = current_thread;
2381 current_thread = get_lwp_thread (child);
2382
2383 if (the_low_target.stopped_by_watchpoint ())
2384 {
2385 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2386
2387 if (the_low_target.stopped_data_address != NULL)
2388 child->stopped_data_address
2389 = the_low_target.stopped_data_address ();
2390 else
2391 child->stopped_data_address = 0;
2392 }
2393
2394 current_thread = saved_thread;
2395 }
2396
2397 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2398 }
2399
2400 /* Return the ptrace options that we want to try to enable. */
2401
2402 static int
2403 linux_low_ptrace_options (int attached)
2404 {
2405 int options = 0;
2406
2407 if (!attached)
2408 options |= PTRACE_O_EXITKILL;
2409
2410 if (report_fork_events)
2411 options |= PTRACE_O_TRACEFORK;
2412
2413 if (report_vfork_events)
2414 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2415
2416 if (report_exec_events)
2417 options |= PTRACE_O_TRACEEXEC;
2418
2419 options |= PTRACE_O_TRACESYSGOOD;
2420
2421 return options;
2422 }
2423
2424 /* Do low-level handling of the event, and check if we should go on
2425 and pass it to caller code. Return the affected lwp if we are, or
2426 NULL otherwise. */
2427
2428 static struct lwp_info *
2429 linux_low_filter_event (int lwpid, int wstat)
2430 {
2431 struct lwp_info *child;
2432 struct thread_info *thread;
2433 int have_stop_pc = 0;
2434
2435 child = find_lwp_pid (pid_to_ptid (lwpid));
2436
2437 /* Check for stop events reported by a process we didn't already
2438 know about - anything not already in our LWP list.
2439
2440 If we're expecting to receive stopped processes after
2441 fork, vfork, and clone events, then we'll just add the
2442 new one to our list and go back to waiting for the event
2443 to be reported - the stopped process might be returned
2444 from waitpid before or after the event is.
2445
2446 But note the case of a non-leader thread exec'ing after the
2447 leader having exited, and gone from our lists (because
2448 check_zombie_leaders deleted it). The non-leader thread
2449 changes its tid to the tgid. */
2450
2451 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2452 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2453 {
2454 ptid_t child_ptid;
2455
2456 /* A multi-thread exec after we had seen the leader exiting. */
2457 if (debug_threads)
2458 {
2459 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2460 "after exec.\n", lwpid);
2461 }
2462
2463 child_ptid = ptid_build (lwpid, lwpid, 0);
2464 child = add_lwp (child_ptid);
2465 child->stopped = 1;
2466 current_thread = child->thread;
2467 }
2468
2469 /* If we didn't find a process, one of two things presumably happened:
2470 - A process we started and then detached from has exited. Ignore it.
2471 - A process we are controlling has forked and the new child's stop
2472 was reported to us by the kernel. Save its PID. */
2473 if (child == NULL && WIFSTOPPED (wstat))
2474 {
2475 add_to_pid_list (&stopped_pids, lwpid, wstat);
2476 return NULL;
2477 }
2478 else if (child == NULL)
2479 return NULL;
2480
2481 thread = get_lwp_thread (child);
2482
2483 child->stopped = 1;
2484
2485 child->last_status = wstat;
2486
2487 /* Check if the thread has exited. */
2488 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2489 {
2490 if (debug_threads)
2491 debug_printf ("LLFE: %d exited.\n", lwpid);
2492
2493 if (finish_step_over (child))
2494 {
2495 /* Unsuspend all other LWPs, and set them back running again. */
2496 unsuspend_all_lwps (child);
2497 }
2498
2499 /* If there is at least one more LWP, then the exit signal was
2500 not the end of the debugged application and should be
2501 ignored, unless GDB wants to hear about thread exits. */
2502 if (report_thread_events
2503 || last_thread_of_process_p (pid_of (thread)))
2504 {
2505 /* Since events are serialized to GDB core, and we can't
2506 report this one right now. Leave the status pending for
2507 the next time we're able to report it. */
2508 mark_lwp_dead (child, wstat);
2509 return child;
2510 }
2511 else
2512 {
2513 delete_lwp (child);
2514 return NULL;
2515 }
2516 }
2517
2518 gdb_assert (WIFSTOPPED (wstat));
2519
2520 if (WIFSTOPPED (wstat))
2521 {
2522 struct process_info *proc;
2523
2524 /* Architecture-specific setup after inferior is running. */
2525 proc = find_process_pid (pid_of (thread));
2526 if (proc->tdesc == NULL)
2527 {
2528 if (proc->attached)
2529 {
2530 /* This needs to happen after we have attached to the
2531 inferior and it is stopped for the first time, but
2532 before we access any inferior registers. */
2533 linux_arch_setup_thread (thread);
2534 }
2535 else
2536 {
2537 /* The process is started, but GDBserver will do
2538 architecture-specific setup after the program stops at
2539 the first instruction. */
2540 child->status_pending_p = 1;
2541 child->status_pending = wstat;
2542 return child;
2543 }
2544 }
2545 }
2546
2547 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2548 {
2549 struct process_info *proc = find_process_pid (pid_of (thread));
2550 int options = linux_low_ptrace_options (proc->attached);
2551
2552 linux_enable_event_reporting (lwpid, options);
2553 child->must_set_ptrace_flags = 0;
2554 }
2555
2556 /* Always update syscall_state, even if it will be filtered later. */
2557 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2558 {
2559 child->syscall_state
2560 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2561 ? TARGET_WAITKIND_SYSCALL_RETURN
2562 : TARGET_WAITKIND_SYSCALL_ENTRY);
2563 }
2564 else
2565 {
2566 /* Almost all other ptrace-stops are known to be outside of system
2567 calls, with further exceptions in handle_extended_wait. */
2568 child->syscall_state = TARGET_WAITKIND_IGNORE;
2569 }
2570
2571 /* Be careful to not overwrite stop_pc until save_stop_reason is
2572 called. */
2573 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2574 && linux_is_extended_waitstatus (wstat))
2575 {
2576 child->stop_pc = get_pc (child);
2577 if (handle_extended_wait (&child, wstat))
2578 {
2579 /* The event has been handled, so just return without
2580 reporting it. */
2581 return NULL;
2582 }
2583 }
2584
2585 if (linux_wstatus_maybe_breakpoint (wstat))
2586 {
2587 if (save_stop_reason (child))
2588 have_stop_pc = 1;
2589 }
2590
2591 if (!have_stop_pc)
2592 child->stop_pc = get_pc (child);
2593
2594 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2595 && child->stop_expected)
2596 {
2597 if (debug_threads)
2598 debug_printf ("Expected stop.\n");
2599 child->stop_expected = 0;
2600
2601 if (thread->last_resume_kind == resume_stop)
2602 {
2603 /* We want to report the stop to the core. Treat the
2604 SIGSTOP as a normal event. */
2605 if (debug_threads)
2606 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2607 target_pid_to_str (ptid_of (thread)));
2608 }
2609 else if (stopping_threads != NOT_STOPPING_THREADS)
2610 {
2611 /* Stopping threads. We don't want this SIGSTOP to end up
2612 pending. */
2613 if (debug_threads)
2614 debug_printf ("LLW: SIGSTOP caught for %s "
2615 "while stopping threads.\n",
2616 target_pid_to_str (ptid_of (thread)));
2617 return NULL;
2618 }
2619 else
2620 {
2621 /* This is a delayed SIGSTOP. Filter out the event. */
2622 if (debug_threads)
2623 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2624 child->stepping ? "step" : "continue",
2625 target_pid_to_str (ptid_of (thread)));
2626
2627 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2628 return NULL;
2629 }
2630 }
2631
2632 child->status_pending_p = 1;
2633 child->status_pending = wstat;
2634 return child;
2635 }
2636
2637 /* Return true if THREAD is doing hardware single step. */
2638
2639 static int
2640 maybe_hw_step (struct thread_info *thread)
2641 {
2642 if (can_hardware_single_step ())
2643 return 1;
2644 else
2645 {
2646 /* GDBserver must insert single-step breakpoint for software
2647 single step. */
2648 gdb_assert (has_single_step_breakpoints (thread));
2649 return 0;
2650 }
2651 }
2652
2653 /* Resume LWPs that are currently stopped without any pending status
2654 to report, but are resumed from the core's perspective. */
2655
2656 static void
2657 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2658 {
2659 struct thread_info *thread = (struct thread_info *) entry;
2660 struct lwp_info *lp = get_thread_lwp (thread);
2661
2662 if (lp->stopped
2663 && !lp->suspended
2664 && !lp->status_pending_p
2665 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2666 {
2667 int step = 0;
2668
2669 if (thread->last_resume_kind == resume_step)
2670 step = maybe_hw_step (thread);
2671
2672 if (debug_threads)
2673 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2674 target_pid_to_str (ptid_of (thread)),
2675 paddress (lp->stop_pc),
2676 step);
2677
2678 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2679 }
2680 }
2681
2682 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2683 match FILTER_PTID (leaving others pending). The PTIDs can be:
2684 minus_one_ptid, to specify any child; a pid PTID, specifying all
2685 lwps of a thread group; or a PTID representing a single lwp. Store
2686 the stop status through the status pointer WSTAT. OPTIONS is
2687 passed to the waitpid call. Return 0 if no event was found and
2688 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2689 was found. Return the PID of the stopped child otherwise. */
2690
2691 static int
2692 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2693 int *wstatp, int options)
2694 {
2695 struct thread_info *event_thread;
2696 struct lwp_info *event_child, *requested_child;
2697 sigset_t block_mask, prev_mask;
2698
2699 retry:
2700 /* N.B. event_thread points to the thread_info struct that contains
2701 event_child. Keep them in sync. */
2702 event_thread = NULL;
2703 event_child = NULL;
2704 requested_child = NULL;
2705
2706 /* Check for a lwp with a pending status. */
2707
2708 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2709 {
2710 event_thread = (struct thread_info *)
2711 find_inferior_in_random (&all_threads, status_pending_p_callback,
2712 &filter_ptid);
2713 if (event_thread != NULL)
2714 event_child = get_thread_lwp (event_thread);
2715 if (debug_threads && event_thread)
2716 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2717 }
2718 else if (!ptid_equal (filter_ptid, null_ptid))
2719 {
2720 requested_child = find_lwp_pid (filter_ptid);
2721
2722 if (stopping_threads == NOT_STOPPING_THREADS
2723 && requested_child->status_pending_p
2724 && (requested_child->collecting_fast_tracepoint
2725 != fast_tpoint_collect_result::not_collecting))
2726 {
2727 enqueue_one_deferred_signal (requested_child,
2728 &requested_child->status_pending);
2729 requested_child->status_pending_p = 0;
2730 requested_child->status_pending = 0;
2731 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2732 }
2733
2734 if (requested_child->suspended
2735 && requested_child->status_pending_p)
2736 {
2737 internal_error (__FILE__, __LINE__,
2738 "requesting an event out of a"
2739 " suspended child?");
2740 }
2741
2742 if (requested_child->status_pending_p)
2743 {
2744 event_child = requested_child;
2745 event_thread = get_lwp_thread (event_child);
2746 }
2747 }
2748
2749 if (event_child != NULL)
2750 {
2751 if (debug_threads)
2752 debug_printf ("Got an event from pending child %ld (%04x)\n",
2753 lwpid_of (event_thread), event_child->status_pending);
2754 *wstatp = event_child->status_pending;
2755 event_child->status_pending_p = 0;
2756 event_child->status_pending = 0;
2757 current_thread = event_thread;
2758 return lwpid_of (event_thread);
2759 }
2760
2761 /* But if we don't find a pending event, we'll have to wait.
2762
2763 We only enter this loop if no process has a pending wait status.
2764 Thus any action taken in response to a wait status inside this
2765 loop is responding as soon as we detect the status, not after any
2766 pending events. */
2767
2768 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2769 all signals while here. */
2770 sigfillset (&block_mask);
2771 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2772
2773 /* Always pull all events out of the kernel. We'll randomly select
2774 an event LWP out of all that have events, to prevent
2775 starvation. */
2776 while (event_child == NULL)
2777 {
2778 pid_t ret = 0;
2779
2780 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2781 quirks:
2782
2783 - If the thread group leader exits while other threads in the
2784 thread group still exist, waitpid(TGID, ...) hangs. That
2785 waitpid won't return an exit status until the other threads
2786 in the group are reaped.
2787
2788 - When a non-leader thread execs, that thread just vanishes
2789 without reporting an exit (so we'd hang if we waited for it
2790 explicitly in that case). The exec event is reported to
2791 the TGID pid. */
2792 errno = 0;
2793 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2794
2795 if (debug_threads)
2796 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2797 ret, errno ? strerror (errno) : "ERRNO-OK");
2798
2799 if (ret > 0)
2800 {
2801 if (debug_threads)
2802 {
2803 debug_printf ("LLW: waitpid %ld received %s\n",
2804 (long) ret, status_to_str (*wstatp));
2805 }
2806
2807 /* Filter all events. IOW, leave all events pending. We'll
2808 randomly select an event LWP out of all that have events
2809 below. */
2810 linux_low_filter_event (ret, *wstatp);
2811 /* Retry until nothing comes out of waitpid. A single
2812 SIGCHLD can indicate more than one child stopped. */
2813 continue;
2814 }
2815
2816 /* Now that we've pulled all events out of the kernel, resume
2817 LWPs that don't have an interesting event to report. */
2818 if (stopping_threads == NOT_STOPPING_THREADS)
2819 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2820
2821 /* ... and find an LWP with a status to report to the core, if
2822 any. */
2823 event_thread = (struct thread_info *)
2824 find_inferior_in_random (&all_threads, status_pending_p_callback,
2825 &filter_ptid);
2826 if (event_thread != NULL)
2827 {
2828 event_child = get_thread_lwp (event_thread);
2829 *wstatp = event_child->status_pending;
2830 event_child->status_pending_p = 0;
2831 event_child->status_pending = 0;
2832 break;
2833 }
2834
2835 /* Check for zombie thread group leaders. Those can't be reaped
2836 until all other threads in the thread group are. */
2837 check_zombie_leaders ();
2838
2839 /* If there are no resumed children left in the set of LWPs we
2840 want to wait for, bail. We can't just block in
2841 waitpid/sigsuspend, because lwps might have been left stopped
2842 in trace-stop state, and we'd be stuck forever waiting for
2843 their status to change (which would only happen if we resumed
2844 them). Even if WNOHANG is set, this return code is preferred
2845 over 0 (below), as it is more detailed. */
2846 if ((find_inferior (&all_threads,
2847 not_stopped_callback,
2848 &wait_ptid) == NULL))
2849 {
2850 if (debug_threads)
2851 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2852 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2853 return -1;
2854 }
2855
2856 /* No interesting event to report to the caller. */
2857 if ((options & WNOHANG))
2858 {
2859 if (debug_threads)
2860 debug_printf ("WNOHANG set, no event found\n");
2861
2862 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2863 return 0;
2864 }
2865
2866 /* Block until we get an event reported with SIGCHLD. */
2867 if (debug_threads)
2868 debug_printf ("sigsuspend'ing\n");
2869
2870 sigsuspend (&prev_mask);
2871 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2872 goto retry;
2873 }
2874
2875 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2876
2877 current_thread = event_thread;
2878
2879 return lwpid_of (event_thread);
2880 }
2881
2882 /* Wait for an event from child(ren) PTID. PTIDs can be:
2883 minus_one_ptid, to specify any child; a pid PTID, specifying all
2884 lwps of a thread group; or a PTID representing a single lwp. Store
2885 the stop status through the status pointer WSTAT. OPTIONS is
2886 passed to the waitpid call. Return 0 if no event was found and
2887 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2888 was found. Return the PID of the stopped child otherwise. */
2889
2890 static int
2891 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2892 {
2893 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2894 }
2895
2896 /* Count the LWP's that have had events. */
2897
2898 static int
2899 count_events_callback (struct inferior_list_entry *entry, void *data)
2900 {
2901 struct thread_info *thread = (struct thread_info *) entry;
2902 struct lwp_info *lp = get_thread_lwp (thread);
2903 int *count = (int *) data;
2904
2905 gdb_assert (count != NULL);
2906
2907 /* Count only resumed LWPs that have an event pending. */
2908 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2909 && lp->status_pending_p)
2910 (*count)++;
2911
2912 return 0;
2913 }
2914
2915 /* Select the LWP (if any) that is currently being single-stepped. */
2916
2917 static int
2918 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2919 {
2920 struct thread_info *thread = (struct thread_info *) entry;
2921 struct lwp_info *lp = get_thread_lwp (thread);
2922
2923 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2924 && thread->last_resume_kind == resume_step
2925 && lp->status_pending_p)
2926 return 1;
2927 else
2928 return 0;
2929 }
2930
2931 /* Select the Nth LWP that has had an event. */
2932
2933 static int
2934 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2935 {
2936 struct thread_info *thread = (struct thread_info *) entry;
2937 struct lwp_info *lp = get_thread_lwp (thread);
2938 int *selector = (int *) data;
2939
2940 gdb_assert (selector != NULL);
2941
2942 /* Select only resumed LWPs that have an event pending. */
2943 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2944 && lp->status_pending_p)
2945 if ((*selector)-- == 0)
2946 return 1;
2947
2948 return 0;
2949 }
2950
2951 /* Select one LWP out of those that have events pending. */
2952
2953 static void
2954 select_event_lwp (struct lwp_info **orig_lp)
2955 {
2956 int num_events = 0;
2957 int random_selector;
2958 struct thread_info *event_thread = NULL;
2959
2960 /* In all-stop, give preference to the LWP that is being
2961 single-stepped. There will be at most one, and it's the LWP that
2962 the core is most interested in. If we didn't do this, then we'd
2963 have to handle pending step SIGTRAPs somehow in case the core
2964 later continues the previously-stepped thread, otherwise we'd
2965 report the pending SIGTRAP, and the core, not having stepped the
2966 thread, wouldn't understand what the trap was for, and therefore
2967 would report it to the user as a random signal. */
2968 if (!non_stop)
2969 {
2970 event_thread
2971 = (struct thread_info *) find_inferior (&all_threads,
2972 select_singlestep_lwp_callback,
2973 NULL);
2974 if (event_thread != NULL)
2975 {
2976 if (debug_threads)
2977 debug_printf ("SEL: Select single-step %s\n",
2978 target_pid_to_str (ptid_of (event_thread)));
2979 }
2980 }
2981 if (event_thread == NULL)
2982 {
2983 /* No single-stepping LWP. Select one at random, out of those
2984 which have had events. */
2985
2986 /* First see how many events we have. */
2987 find_inferior (&all_threads, count_events_callback, &num_events);
2988 gdb_assert (num_events > 0);
2989
2990 /* Now randomly pick a LWP out of those that have had
2991 events. */
2992 random_selector = (int)
2993 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2994
2995 if (debug_threads && num_events > 1)
2996 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2997 num_events, random_selector);
2998
2999 event_thread
3000 = (struct thread_info *) find_inferior (&all_threads,
3001 select_event_lwp_callback,
3002 &random_selector);
3003 }
3004
3005 if (event_thread != NULL)
3006 {
3007 struct lwp_info *event_lp = get_thread_lwp (event_thread);
3008
3009 /* Switch the event LWP. */
3010 *orig_lp = event_lp;
3011 }
3012 }
3013
3014 /* Decrement the suspend count of an LWP. */
3015
3016 static int
3017 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
3018 {
3019 struct thread_info *thread = (struct thread_info *) entry;
3020 struct lwp_info *lwp = get_thread_lwp (thread);
3021
3022 /* Ignore EXCEPT. */
3023 if (lwp == except)
3024 return 0;
3025
3026 lwp_suspended_decr (lwp);
3027 return 0;
3028 }
3029
3030 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
3031 NULL. */
3032
3033 static void
3034 unsuspend_all_lwps (struct lwp_info *except)
3035 {
3036 find_inferior (&all_threads, unsuspend_one_lwp, except);
3037 }
3038
3039 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
3040 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
3041 void *data);
3042 static int lwp_running (struct inferior_list_entry *entry, void *data);
3043 static ptid_t linux_wait_1 (ptid_t ptid,
3044 struct target_waitstatus *ourstatus,
3045 int target_options);
3046
3047 /* Stabilize threads (move out of jump pads).
3048
3049 If a thread is midway collecting a fast tracepoint, we need to
3050 finish the collection and move it out of the jump pad before
3051 reporting the signal.
3052
3053 This avoids recursion while collecting (when a signal arrives
3054 midway, and the signal handler itself collects), which would trash
3055 the trace buffer. In case the user set a breakpoint in a signal
3056 handler, this avoids the backtrace showing the jump pad, etc..
3057 Most importantly, there are certain things we can't do safely if
3058 threads are stopped in a jump pad (or in its callee's). For
3059 example:
3060
3061 - starting a new trace run. A thread still collecting the
3062 previous run, could trash the trace buffer when resumed. The trace
3063 buffer control structures would have been reset but the thread had
3064 no way to tell. The thread could even midway memcpy'ing to the
3065 buffer, which would mean that when resumed, it would clobber the
3066 trace buffer that had been set for a new run.
3067
3068 - we can't rewrite/reuse the jump pads for new tracepoints
3069 safely. Say you do tstart while a thread is stopped midway while
3070 collecting. When the thread is later resumed, it finishes the
3071 collection, and returns to the jump pad, to execute the original
3072 instruction that was under the tracepoint jump at the time the
3073 older run had been started. If the jump pad had been rewritten
3074 since for something else in the new run, the thread would now
3075 execute the wrong / random instructions. */
3076
3077 static void
3078 linux_stabilize_threads (void)
3079 {
3080 struct thread_info *saved_thread;
3081 struct thread_info *thread_stuck;
3082
3083 thread_stuck
3084 = (struct thread_info *) find_inferior (&all_threads,
3085 stuck_in_jump_pad_callback,
3086 NULL);
3087 if (thread_stuck != NULL)
3088 {
3089 if (debug_threads)
3090 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3091 lwpid_of (thread_stuck));
3092 return;
3093 }
3094
3095 saved_thread = current_thread;
3096
3097 stabilizing_threads = 1;
3098
3099 /* Kick 'em all. */
3100 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3101
3102 /* Loop until all are stopped out of the jump pads. */
3103 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3104 {
3105 struct target_waitstatus ourstatus;
3106 struct lwp_info *lwp;
3107 int wstat;
3108
3109 /* Note that we go through the full wait even loop. While
3110 moving threads out of jump pad, we need to be able to step
3111 over internal breakpoints and such. */
3112 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3113
3114 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3115 {
3116 lwp = get_thread_lwp (current_thread);
3117
3118 /* Lock it. */
3119 lwp_suspended_inc (lwp);
3120
3121 if (ourstatus.value.sig != GDB_SIGNAL_0
3122 || current_thread->last_resume_kind == resume_stop)
3123 {
3124 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3125 enqueue_one_deferred_signal (lwp, &wstat);
3126 }
3127 }
3128 }
3129
3130 unsuspend_all_lwps (NULL);
3131
3132 stabilizing_threads = 0;
3133
3134 current_thread = saved_thread;
3135
3136 if (debug_threads)
3137 {
3138 thread_stuck
3139 = (struct thread_info *) find_inferior (&all_threads,
3140 stuck_in_jump_pad_callback,
3141 NULL);
3142 if (thread_stuck != NULL)
3143 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3144 lwpid_of (thread_stuck));
3145 }
3146 }
3147
3148 /* Convenience function that is called when the kernel reports an
3149 event that is not passed out to GDB. */
3150
3151 static ptid_t
3152 ignore_event (struct target_waitstatus *ourstatus)
3153 {
3154 /* If we got an event, there may still be others, as a single
3155 SIGCHLD can indicate more than one child stopped. This forces
3156 another target_wait call. */
3157 async_file_mark ();
3158
3159 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3160 return null_ptid;
3161 }
3162
3163 /* Convenience function that is called when the kernel reports an exit
3164 event. This decides whether to report the event to GDB as a
3165 process exit event, a thread exit event, or to suppress the
3166 event. */
3167
3168 static ptid_t
3169 filter_exit_event (struct lwp_info *event_child,
3170 struct target_waitstatus *ourstatus)
3171 {
3172 struct thread_info *thread = get_lwp_thread (event_child);
3173 ptid_t ptid = ptid_of (thread);
3174
3175 if (!last_thread_of_process_p (pid_of (thread)))
3176 {
3177 if (report_thread_events)
3178 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3179 else
3180 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3181
3182 delete_lwp (event_child);
3183 }
3184 return ptid;
3185 }
3186
3187 /* Returns 1 if GDB is interested in any event_child syscalls. */
3188
3189 static int
3190 gdb_catching_syscalls_p (struct lwp_info *event_child)
3191 {
3192 struct thread_info *thread = get_lwp_thread (event_child);
3193 struct process_info *proc = get_thread_process (thread);
3194
3195 return !VEC_empty (int, proc->syscalls_to_catch);
3196 }
3197
3198 /* Returns 1 if GDB is interested in the event_child syscall.
3199 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3200
3201 static int
3202 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3203 {
3204 int i, iter;
3205 int sysno;
3206 struct thread_info *thread = get_lwp_thread (event_child);
3207 struct process_info *proc = get_thread_process (thread);
3208
3209 if (VEC_empty (int, proc->syscalls_to_catch))
3210 return 0;
3211
3212 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3213 return 1;
3214
3215 get_syscall_trapinfo (event_child, &sysno);
3216 for (i = 0;
3217 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3218 i++)
3219 if (iter == sysno)
3220 return 1;
3221
3222 return 0;
3223 }
3224
3225 /* Wait for process, returns status. */
3226
3227 static ptid_t
3228 linux_wait_1 (ptid_t ptid,
3229 struct target_waitstatus *ourstatus, int target_options)
3230 {
3231 int w;
3232 struct lwp_info *event_child;
3233 int options;
3234 int pid;
3235 int step_over_finished;
3236 int bp_explains_trap;
3237 int maybe_internal_trap;
3238 int report_to_gdb;
3239 int trace_event;
3240 int in_step_range;
3241 int any_resumed;
3242
3243 if (debug_threads)
3244 {
3245 debug_enter ();
3246 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3247 }
3248
3249 /* Translate generic target options into linux options. */
3250 options = __WALL;
3251 if (target_options & TARGET_WNOHANG)
3252 options |= WNOHANG;
3253
3254 bp_explains_trap = 0;
3255 trace_event = 0;
3256 in_step_range = 0;
3257 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3258
3259 /* Find a resumed LWP, if any. */
3260 if (find_inferior (&all_threads,
3261 status_pending_p_callback,
3262 &minus_one_ptid) != NULL)
3263 any_resumed = 1;
3264 else if ((find_inferior (&all_threads,
3265 not_stopped_callback,
3266 &minus_one_ptid) != NULL))
3267 any_resumed = 1;
3268 else
3269 any_resumed = 0;
3270
3271 if (ptid_equal (step_over_bkpt, null_ptid))
3272 pid = linux_wait_for_event (ptid, &w, options);
3273 else
3274 {
3275 if (debug_threads)
3276 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3277 target_pid_to_str (step_over_bkpt));
3278 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3279 }
3280
3281 if (pid == 0 || (pid == -1 && !any_resumed))
3282 {
3283 gdb_assert (target_options & TARGET_WNOHANG);
3284
3285 if (debug_threads)
3286 {
3287 debug_printf ("linux_wait_1 ret = null_ptid, "
3288 "TARGET_WAITKIND_IGNORE\n");
3289 debug_exit ();
3290 }
3291
3292 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3293 return null_ptid;
3294 }
3295 else if (pid == -1)
3296 {
3297 if (debug_threads)
3298 {
3299 debug_printf ("linux_wait_1 ret = null_ptid, "
3300 "TARGET_WAITKIND_NO_RESUMED\n");
3301 debug_exit ();
3302 }
3303
3304 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3305 return null_ptid;
3306 }
3307
3308 event_child = get_thread_lwp (current_thread);
3309
3310 /* linux_wait_for_event only returns an exit status for the last
3311 child of a process. Report it. */
3312 if (WIFEXITED (w) || WIFSIGNALED (w))
3313 {
3314 if (WIFEXITED (w))
3315 {
3316 ourstatus->kind = TARGET_WAITKIND_EXITED;
3317 ourstatus->value.integer = WEXITSTATUS (w);
3318
3319 if (debug_threads)
3320 {
3321 debug_printf ("linux_wait_1 ret = %s, exited with "
3322 "retcode %d\n",
3323 target_pid_to_str (ptid_of (current_thread)),
3324 WEXITSTATUS (w));
3325 debug_exit ();
3326 }
3327 }
3328 else
3329 {
3330 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3331 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3332
3333 if (debug_threads)
3334 {
3335 debug_printf ("linux_wait_1 ret = %s, terminated with "
3336 "signal %d\n",
3337 target_pid_to_str (ptid_of (current_thread)),
3338 WTERMSIG (w));
3339 debug_exit ();
3340 }
3341 }
3342
3343 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3344 return filter_exit_event (event_child, ourstatus);
3345
3346 return ptid_of (current_thread);
3347 }
3348
3349 /* If step-over executes a breakpoint instruction, in the case of a
3350 hardware single step it means a gdb/gdbserver breakpoint had been
3351 planted on top of a permanent breakpoint, in the case of a software
3352 single step it may just mean that gdbserver hit the reinsert breakpoint.
3353 The PC has been adjusted by save_stop_reason to point at
3354 the breakpoint address.
3355 So in the case of the hardware single step advance the PC manually
3356 past the breakpoint and in the case of software single step advance only
3357 if it's not the single_step_breakpoint we are hitting.
3358 This avoids that a program would keep trapping a permanent breakpoint
3359 forever. */
3360 if (!ptid_equal (step_over_bkpt, null_ptid)
3361 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3362 && (event_child->stepping
3363 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3364 {
3365 int increment_pc = 0;
3366 int breakpoint_kind = 0;
3367 CORE_ADDR stop_pc = event_child->stop_pc;
3368
3369 breakpoint_kind =
3370 the_target->breakpoint_kind_from_current_state (&stop_pc);
3371 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3372
3373 if (debug_threads)
3374 {
3375 debug_printf ("step-over for %s executed software breakpoint\n",
3376 target_pid_to_str (ptid_of (current_thread)));
3377 }
3378
3379 if (increment_pc != 0)
3380 {
3381 struct regcache *regcache
3382 = get_thread_regcache (current_thread, 1);
3383
3384 event_child->stop_pc += increment_pc;
3385 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3386
3387 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3388 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3389 }
3390 }
3391
3392 /* If this event was not handled before, and is not a SIGTRAP, we
3393 report it. SIGILL and SIGSEGV are also treated as traps in case
3394 a breakpoint is inserted at the current PC. If this target does
3395 not support internal breakpoints at all, we also report the
3396 SIGTRAP without further processing; it's of no concern to us. */
3397 maybe_internal_trap
3398 = (supports_breakpoints ()
3399 && (WSTOPSIG (w) == SIGTRAP
3400 || ((WSTOPSIG (w) == SIGILL
3401 || WSTOPSIG (w) == SIGSEGV)
3402 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3403
3404 if (maybe_internal_trap)
3405 {
3406 /* Handle anything that requires bookkeeping before deciding to
3407 report the event or continue waiting. */
3408
3409 /* First check if we can explain the SIGTRAP with an internal
3410 breakpoint, or if we should possibly report the event to GDB.
3411 Do this before anything that may remove or insert a
3412 breakpoint. */
3413 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3414
3415 /* We have a SIGTRAP, possibly a step-over dance has just
3416 finished. If so, tweak the state machine accordingly,
3417 reinsert breakpoints and delete any single-step
3418 breakpoints. */
3419 step_over_finished = finish_step_over (event_child);
3420
3421 /* Now invoke the callbacks of any internal breakpoints there. */
3422 check_breakpoints (event_child->stop_pc);
3423
3424 /* Handle tracepoint data collecting. This may overflow the
3425 trace buffer, and cause a tracing stop, removing
3426 breakpoints. */
3427 trace_event = handle_tracepoints (event_child);
3428
3429 if (bp_explains_trap)
3430 {
3431 if (debug_threads)
3432 debug_printf ("Hit a gdbserver breakpoint.\n");
3433 }
3434 }
3435 else
3436 {
3437 /* We have some other signal, possibly a step-over dance was in
3438 progress, and it should be cancelled too. */
3439 step_over_finished = finish_step_over (event_child);
3440 }
3441
3442 /* We have all the data we need. Either report the event to GDB, or
3443 resume threads and keep waiting for more. */
3444
3445 /* If we're collecting a fast tracepoint, finish the collection and
3446 move out of the jump pad before delivering a signal. See
3447 linux_stabilize_threads. */
3448
3449 if (WIFSTOPPED (w)
3450 && WSTOPSIG (w) != SIGTRAP
3451 && supports_fast_tracepoints ()
3452 && agent_loaded_p ())
3453 {
3454 if (debug_threads)
3455 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3456 "to defer or adjust it.\n",
3457 WSTOPSIG (w), lwpid_of (current_thread));
3458
3459 /* Allow debugging the jump pad itself. */
3460 if (current_thread->last_resume_kind != resume_step
3461 && maybe_move_out_of_jump_pad (event_child, &w))
3462 {
3463 enqueue_one_deferred_signal (event_child, &w);
3464
3465 if (debug_threads)
3466 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3467 WSTOPSIG (w), lwpid_of (current_thread));
3468
3469 linux_resume_one_lwp (event_child, 0, 0, NULL);
3470
3471 if (debug_threads)
3472 debug_exit ();
3473 return ignore_event (ourstatus);
3474 }
3475 }
3476
3477 if (event_child->collecting_fast_tracepoint
3478 != fast_tpoint_collect_result::not_collecting)
3479 {
3480 if (debug_threads)
3481 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3482 "Check if we're already there.\n",
3483 lwpid_of (current_thread),
3484 (int) event_child->collecting_fast_tracepoint);
3485
3486 trace_event = 1;
3487
3488 event_child->collecting_fast_tracepoint
3489 = linux_fast_tracepoint_collecting (event_child, NULL);
3490
3491 if (event_child->collecting_fast_tracepoint
3492 != fast_tpoint_collect_result::before_insn)
3493 {
3494 /* No longer need this breakpoint. */
3495 if (event_child->exit_jump_pad_bkpt != NULL)
3496 {
3497 if (debug_threads)
3498 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3499 "stopping all threads momentarily.\n");
3500
3501 /* Other running threads could hit this breakpoint.
3502 We don't handle moribund locations like GDB does,
3503 instead we always pause all threads when removing
3504 breakpoints, so that any step-over or
3505 decr_pc_after_break adjustment is always taken
3506 care of while the breakpoint is still
3507 inserted. */
3508 stop_all_lwps (1, event_child);
3509
3510 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3511 event_child->exit_jump_pad_bkpt = NULL;
3512
3513 unstop_all_lwps (1, event_child);
3514
3515 gdb_assert (event_child->suspended >= 0);
3516 }
3517 }
3518
3519 if (event_child->collecting_fast_tracepoint
3520 == fast_tpoint_collect_result::not_collecting)
3521 {
3522 if (debug_threads)
3523 debug_printf ("fast tracepoint finished "
3524 "collecting successfully.\n");
3525
3526 /* We may have a deferred signal to report. */
3527 if (dequeue_one_deferred_signal (event_child, &w))
3528 {
3529 if (debug_threads)
3530 debug_printf ("dequeued one signal.\n");
3531 }
3532 else
3533 {
3534 if (debug_threads)
3535 debug_printf ("no deferred signals.\n");
3536
3537 if (stabilizing_threads)
3538 {
3539 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3540 ourstatus->value.sig = GDB_SIGNAL_0;
3541
3542 if (debug_threads)
3543 {
3544 debug_printf ("linux_wait_1 ret = %s, stopped "
3545 "while stabilizing threads\n",
3546 target_pid_to_str (ptid_of (current_thread)));
3547 debug_exit ();
3548 }
3549
3550 return ptid_of (current_thread);
3551 }
3552 }
3553 }
3554 }
3555
3556 /* Check whether GDB would be interested in this event. */
3557
3558 /* Check if GDB is interested in this syscall. */
3559 if (WIFSTOPPED (w)
3560 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3561 && !gdb_catch_this_syscall_p (event_child))
3562 {
3563 if (debug_threads)
3564 {
3565 debug_printf ("Ignored syscall for LWP %ld.\n",
3566 lwpid_of (current_thread));
3567 }
3568
3569 linux_resume_one_lwp (event_child, event_child->stepping,
3570 0, NULL);
3571
3572 if (debug_threads)
3573 debug_exit ();
3574 return ignore_event (ourstatus);
3575 }
3576
3577 /* If GDB is not interested in this signal, don't stop other
3578 threads, and don't report it to GDB. Just resume the inferior
3579 right away. We do this for threading-related signals as well as
3580 any that GDB specifically requested we ignore. But never ignore
3581 SIGSTOP if we sent it ourselves, and do not ignore signals when
3582 stepping - they may require special handling to skip the signal
3583 handler. Also never ignore signals that could be caused by a
3584 breakpoint. */
3585 if (WIFSTOPPED (w)
3586 && current_thread->last_resume_kind != resume_step
3587 && (
3588 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3589 (current_process ()->priv->thread_db != NULL
3590 && (WSTOPSIG (w) == __SIGRTMIN
3591 || WSTOPSIG (w) == __SIGRTMIN + 1))
3592 ||
3593 #endif
3594 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3595 && !(WSTOPSIG (w) == SIGSTOP
3596 && current_thread->last_resume_kind == resume_stop)
3597 && !linux_wstatus_maybe_breakpoint (w))))
3598 {
3599 siginfo_t info, *info_p;
3600
3601 if (debug_threads)
3602 debug_printf ("Ignored signal %d for LWP %ld.\n",
3603 WSTOPSIG (w), lwpid_of (current_thread));
3604
3605 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3606 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3607 info_p = &info;
3608 else
3609 info_p = NULL;
3610
3611 if (step_over_finished)
3612 {
3613 /* We cancelled this thread's step-over above. We still
3614 need to unsuspend all other LWPs, and set them back
3615 running again while the signal handler runs. */
3616 unsuspend_all_lwps (event_child);
3617
3618 /* Enqueue the pending signal info so that proceed_all_lwps
3619 doesn't lose it. */
3620 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3621
3622 proceed_all_lwps ();
3623 }
3624 else
3625 {
3626 linux_resume_one_lwp (event_child, event_child->stepping,
3627 WSTOPSIG (w), info_p);
3628 }
3629
3630 if (debug_threads)
3631 debug_exit ();
3632
3633 return ignore_event (ourstatus);
3634 }
3635
3636 /* Note that all addresses are always "out of the step range" when
3637 there's no range to begin with. */
3638 in_step_range = lwp_in_step_range (event_child);
3639
3640 /* If GDB wanted this thread to single step, and the thread is out
3641 of the step range, we always want to report the SIGTRAP, and let
3642 GDB handle it. Watchpoints should always be reported. So should
3643 signals we can't explain. A SIGTRAP we can't explain could be a
3644 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3645 do, we're be able to handle GDB breakpoints on top of internal
3646 breakpoints, by handling the internal breakpoint and still
3647 reporting the event to GDB. If we don't, we're out of luck, GDB
3648 won't see the breakpoint hit. If we see a single-step event but
3649 the thread should be continuing, don't pass the trap to gdb.
3650 That indicates that we had previously finished a single-step but
3651 left the single-step pending -- see
3652 complete_ongoing_step_over. */
3653 report_to_gdb = (!maybe_internal_trap
3654 || (current_thread->last_resume_kind == resume_step
3655 && !in_step_range)
3656 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3657 || (!in_step_range
3658 && !bp_explains_trap
3659 && !trace_event
3660 && !step_over_finished
3661 && !(current_thread->last_resume_kind == resume_continue
3662 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3663 || (gdb_breakpoint_here (event_child->stop_pc)
3664 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3665 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3666 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3667
3668 run_breakpoint_commands (event_child->stop_pc);
3669
3670 /* We found no reason GDB would want us to stop. We either hit one
3671 of our own breakpoints, or finished an internal step GDB
3672 shouldn't know about. */
3673 if (!report_to_gdb)
3674 {
3675 if (debug_threads)
3676 {
3677 if (bp_explains_trap)
3678 debug_printf ("Hit a gdbserver breakpoint.\n");
3679 if (step_over_finished)
3680 debug_printf ("Step-over finished.\n");
3681 if (trace_event)
3682 debug_printf ("Tracepoint event.\n");
3683 if (lwp_in_step_range (event_child))
3684 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3685 paddress (event_child->stop_pc),
3686 paddress (event_child->step_range_start),
3687 paddress (event_child->step_range_end));
3688 }
3689
3690 /* We're not reporting this breakpoint to GDB, so apply the
3691 decr_pc_after_break adjustment to the inferior's regcache
3692 ourselves. */
3693
3694 if (the_low_target.set_pc != NULL)
3695 {
3696 struct regcache *regcache
3697 = get_thread_regcache (current_thread, 1);
3698 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3699 }
3700
3701 if (step_over_finished)
3702 {
3703 /* If we have finished stepping over a breakpoint, we've
3704 stopped and suspended all LWPs momentarily except the
3705 stepping one. This is where we resume them all again.
3706 We're going to keep waiting, so use proceed, which
3707 handles stepping over the next breakpoint. */
3708 unsuspend_all_lwps (event_child);
3709 }
3710 else
3711 {
3712 /* Remove the single-step breakpoints if any. Note that
3713 there isn't single-step breakpoint if we finished stepping
3714 over. */
3715 if (can_software_single_step ()
3716 && has_single_step_breakpoints (current_thread))
3717 {
3718 stop_all_lwps (0, event_child);
3719 delete_single_step_breakpoints (current_thread);
3720 unstop_all_lwps (0, event_child);
3721 }
3722 }
3723
3724 if (debug_threads)
3725 debug_printf ("proceeding all threads.\n");
3726 proceed_all_lwps ();
3727
3728 if (debug_threads)
3729 debug_exit ();
3730
3731 return ignore_event (ourstatus);
3732 }
3733
3734 if (debug_threads)
3735 {
3736 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3737 {
3738 std::string str
3739 = target_waitstatus_to_string (&event_child->waitstatus);
3740
3741 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3742 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3743 }
3744 if (current_thread->last_resume_kind == resume_step)
3745 {
3746 if (event_child->step_range_start == event_child->step_range_end)
3747 debug_printf ("GDB wanted to single-step, reporting event.\n");
3748 else if (!lwp_in_step_range (event_child))
3749 debug_printf ("Out of step range, reporting event.\n");
3750 }
3751 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3752 debug_printf ("Stopped by watchpoint.\n");
3753 else if (gdb_breakpoint_here (event_child->stop_pc))
3754 debug_printf ("Stopped by GDB breakpoint.\n");
3755 if (debug_threads)
3756 debug_printf ("Hit a non-gdbserver trap event.\n");
3757 }
3758
3759 /* Alright, we're going to report a stop. */
3760
3761 /* Remove single-step breakpoints. */
3762 if (can_software_single_step ())
3763 {
3764 /* Remove single-step breakpoints or not. It it is true, stop all
3765 lwps, so that other threads won't hit the breakpoint in the
3766 staled memory. */
3767 int remove_single_step_breakpoints_p = 0;
3768
3769 if (non_stop)
3770 {
3771 remove_single_step_breakpoints_p
3772 = has_single_step_breakpoints (current_thread);
3773 }
3774 else
3775 {
3776 /* In all-stop, a stop reply cancels all previous resume
3777 requests. Delete all single-step breakpoints. */
3778 struct inferior_list_entry *inf, *tmp;
3779
3780 ALL_INFERIORS (&all_threads, inf, tmp)
3781 {
3782 struct thread_info *thread = (struct thread_info *) inf;
3783
3784 if (has_single_step_breakpoints (thread))
3785 {
3786 remove_single_step_breakpoints_p = 1;
3787 break;
3788 }
3789 }
3790 }
3791
3792 if (remove_single_step_breakpoints_p)
3793 {
3794 /* If we remove single-step breakpoints from memory, stop all lwps,
3795 so that other threads won't hit the breakpoint in the staled
3796 memory. */
3797 stop_all_lwps (0, event_child);
3798
3799 if (non_stop)
3800 {
3801 gdb_assert (has_single_step_breakpoints (current_thread));
3802 delete_single_step_breakpoints (current_thread);
3803 }
3804 else
3805 {
3806 struct inferior_list_entry *inf, *tmp;
3807
3808 ALL_INFERIORS (&all_threads, inf, tmp)
3809 {
3810 struct thread_info *thread = (struct thread_info *) inf;
3811
3812 if (has_single_step_breakpoints (thread))
3813 delete_single_step_breakpoints (thread);
3814 }
3815 }
3816
3817 unstop_all_lwps (0, event_child);
3818 }
3819 }
3820
3821 if (!stabilizing_threads)
3822 {
3823 /* In all-stop, stop all threads. */
3824 if (!non_stop)
3825 stop_all_lwps (0, NULL);
3826
3827 if (step_over_finished)
3828 {
3829 if (!non_stop)
3830 {
3831 /* If we were doing a step-over, all other threads but
3832 the stepping one had been paused in start_step_over,
3833 with their suspend counts incremented. We don't want
3834 to do a full unstop/unpause, because we're in
3835 all-stop mode (so we want threads stopped), but we
3836 still need to unsuspend the other threads, to
3837 decrement their `suspended' count back. */
3838 unsuspend_all_lwps (event_child);
3839 }
3840 else
3841 {
3842 /* If we just finished a step-over, then all threads had
3843 been momentarily paused. In all-stop, that's fine,
3844 we want threads stopped by now anyway. In non-stop,
3845 we need to re-resume threads that GDB wanted to be
3846 running. */
3847 unstop_all_lwps (1, event_child);
3848 }
3849 }
3850
3851 /* If we're not waiting for a specific LWP, choose an event LWP
3852 from among those that have had events. Giving equal priority
3853 to all LWPs that have had events helps prevent
3854 starvation. */
3855 if (ptid_equal (ptid, minus_one_ptid))
3856 {
3857 event_child->status_pending_p = 1;
3858 event_child->status_pending = w;
3859
3860 select_event_lwp (&event_child);
3861
3862 /* current_thread and event_child must stay in sync. */
3863 current_thread = get_lwp_thread (event_child);
3864
3865 event_child->status_pending_p = 0;
3866 w = event_child->status_pending;
3867 }
3868
3869
3870 /* Stabilize threads (move out of jump pads). */
3871 if (!non_stop)
3872 stabilize_threads ();
3873 }
3874 else
3875 {
3876 /* If we just finished a step-over, then all threads had been
3877 momentarily paused. In all-stop, that's fine, we want
3878 threads stopped by now anyway. In non-stop, we need to
3879 re-resume threads that GDB wanted to be running. */
3880 if (step_over_finished)
3881 unstop_all_lwps (1, event_child);
3882 }
3883
3884 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3885 {
3886 /* If the reported event is an exit, fork, vfork or exec, let
3887 GDB know. */
3888
3889 /* Break the unreported fork relationship chain. */
3890 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3891 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3892 {
3893 event_child->fork_relative->fork_relative = NULL;
3894 event_child->fork_relative = NULL;
3895 }
3896
3897 *ourstatus = event_child->waitstatus;
3898 /* Clear the event lwp's waitstatus since we handled it already. */
3899 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3900 }
3901 else
3902 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3903
3904 /* Now that we've selected our final event LWP, un-adjust its PC if
3905 it was a software breakpoint, and the client doesn't know we can
3906 adjust the breakpoint ourselves. */
3907 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3908 && !swbreak_feature)
3909 {
3910 int decr_pc = the_low_target.decr_pc_after_break;
3911
3912 if (decr_pc != 0)
3913 {
3914 struct regcache *regcache
3915 = get_thread_regcache (current_thread, 1);
3916 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3917 }
3918 }
3919
3920 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3921 {
3922 get_syscall_trapinfo (event_child,
3923 &ourstatus->value.syscall_number);
3924 ourstatus->kind = event_child->syscall_state;
3925 }
3926 else if (current_thread->last_resume_kind == resume_stop
3927 && WSTOPSIG (w) == SIGSTOP)
3928 {
3929 /* A thread that has been requested to stop by GDB with vCont;t,
3930 and it stopped cleanly, so report as SIG0. The use of
3931 SIGSTOP is an implementation detail. */
3932 ourstatus->value.sig = GDB_SIGNAL_0;
3933 }
3934 else if (current_thread->last_resume_kind == resume_stop
3935 && WSTOPSIG (w) != SIGSTOP)
3936 {
3937 /* A thread that has been requested to stop by GDB with vCont;t,
3938 but, it stopped for other reasons. */
3939 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3940 }
3941 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3942 {
3943 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3944 }
3945
3946 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3947
3948 if (debug_threads)
3949 {
3950 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3951 target_pid_to_str (ptid_of (current_thread)),
3952 ourstatus->kind, ourstatus->value.sig);
3953 debug_exit ();
3954 }
3955
3956 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3957 return filter_exit_event (event_child, ourstatus);
3958
3959 return ptid_of (current_thread);
3960 }
3961
3962 /* Get rid of any pending event in the pipe. */
3963 static void
3964 async_file_flush (void)
3965 {
3966 int ret;
3967 char buf;
3968
3969 do
3970 ret = read (linux_event_pipe[0], &buf, 1);
3971 while (ret >= 0 || (ret == -1 && errno == EINTR));
3972 }
3973
3974 /* Put something in the pipe, so the event loop wakes up. */
3975 static void
3976 async_file_mark (void)
3977 {
3978 int ret;
3979
3980 async_file_flush ();
3981
3982 do
3983 ret = write (linux_event_pipe[1], "+", 1);
3984 while (ret == 0 || (ret == -1 && errno == EINTR));
3985
3986 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3987 be awakened anyway. */
3988 }
3989
3990 static ptid_t
3991 linux_wait (ptid_t ptid,
3992 struct target_waitstatus *ourstatus, int target_options)
3993 {
3994 ptid_t event_ptid;
3995
3996 /* Flush the async file first. */
3997 if (target_is_async_p ())
3998 async_file_flush ();
3999
4000 do
4001 {
4002 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
4003 }
4004 while ((target_options & TARGET_WNOHANG) == 0
4005 && ptid_equal (event_ptid, null_ptid)
4006 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
4007
4008 /* If at least one stop was reported, there may be more. A single
4009 SIGCHLD can signal more than one child stop. */
4010 if (target_is_async_p ()
4011 && (target_options & TARGET_WNOHANG) != 0
4012 && !ptid_equal (event_ptid, null_ptid))
4013 async_file_mark ();
4014
4015 return event_ptid;
4016 }
4017
4018 /* Send a signal to an LWP. */
4019
4020 static int
4021 kill_lwp (unsigned long lwpid, int signo)
4022 {
4023 int ret;
4024
4025 errno = 0;
4026 ret = syscall (__NR_tkill, lwpid, signo);
4027 if (errno == ENOSYS)
4028 {
4029 /* If tkill fails, then we are not using nptl threads, a
4030 configuration we no longer support. */
4031 perror_with_name (("tkill"));
4032 }
4033 return ret;
4034 }
4035
4036 void
4037 linux_stop_lwp (struct lwp_info *lwp)
4038 {
4039 send_sigstop (lwp);
4040 }
4041
4042 static void
4043 send_sigstop (struct lwp_info *lwp)
4044 {
4045 int pid;
4046
4047 pid = lwpid_of (get_lwp_thread (lwp));
4048
4049 /* If we already have a pending stop signal for this process, don't
4050 send another. */
4051 if (lwp->stop_expected)
4052 {
4053 if (debug_threads)
4054 debug_printf ("Have pending sigstop for lwp %d\n", pid);
4055
4056 return;
4057 }
4058
4059 if (debug_threads)
4060 debug_printf ("Sending sigstop to lwp %d\n", pid);
4061
4062 lwp->stop_expected = 1;
4063 kill_lwp (pid, SIGSTOP);
4064 }
4065
4066 static int
4067 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
4068 {
4069 struct thread_info *thread = (struct thread_info *) entry;
4070 struct lwp_info *lwp = get_thread_lwp (thread);
4071
4072 /* Ignore EXCEPT. */
4073 if (lwp == except)
4074 return 0;
4075
4076 if (lwp->stopped)
4077 return 0;
4078
4079 send_sigstop (lwp);
4080 return 0;
4081 }
4082
4083 /* Increment the suspend count of an LWP, and stop it, if not stopped
4084 yet. */
4085 static int
4086 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
4087 void *except)
4088 {
4089 struct thread_info *thread = (struct thread_info *) entry;
4090 struct lwp_info *lwp = get_thread_lwp (thread);
4091
4092 /* Ignore EXCEPT. */
4093 if (lwp == except)
4094 return 0;
4095
4096 lwp_suspended_inc (lwp);
4097
4098 return send_sigstop_callback (entry, except);
4099 }
4100
4101 static void
4102 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4103 {
4104 /* Store the exit status for later. */
4105 lwp->status_pending_p = 1;
4106 lwp->status_pending = wstat;
4107
4108 /* Store in waitstatus as well, as there's nothing else to process
4109 for this event. */
4110 if (WIFEXITED (wstat))
4111 {
4112 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4113 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4114 }
4115 else if (WIFSIGNALED (wstat))
4116 {
4117 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4118 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4119 }
4120
4121 /* Prevent trying to stop it. */
4122 lwp->stopped = 1;
4123
4124 /* No further stops are expected from a dead lwp. */
4125 lwp->stop_expected = 0;
4126 }
4127
4128 /* Return true if LWP has exited already, and has a pending exit event
4129 to report to GDB. */
4130
4131 static int
4132 lwp_is_marked_dead (struct lwp_info *lwp)
4133 {
4134 return (lwp->status_pending_p
4135 && (WIFEXITED (lwp->status_pending)
4136 || WIFSIGNALED (lwp->status_pending)));
4137 }
4138
4139 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4140
4141 static void
4142 wait_for_sigstop (void)
4143 {
4144 struct thread_info *saved_thread;
4145 ptid_t saved_tid;
4146 int wstat;
4147 int ret;
4148
4149 saved_thread = current_thread;
4150 if (saved_thread != NULL)
4151 saved_tid = saved_thread->entry.id;
4152 else
4153 saved_tid = null_ptid; /* avoid bogus unused warning */
4154
4155 if (debug_threads)
4156 debug_printf ("wait_for_sigstop: pulling events\n");
4157
4158 /* Passing NULL_PTID as filter indicates we want all events to be
4159 left pending. Eventually this returns when there are no
4160 unwaited-for children left. */
4161 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4162 &wstat, __WALL);
4163 gdb_assert (ret == -1);
4164
4165 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4166 current_thread = saved_thread;
4167 else
4168 {
4169 if (debug_threads)
4170 debug_printf ("Previously current thread died.\n");
4171
4172 /* We can't change the current inferior behind GDB's back,
4173 otherwise, a subsequent command may apply to the wrong
4174 process. */
4175 current_thread = NULL;
4176 }
4177 }
4178
4179 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
4180 move it out, because we need to report the stop event to GDB. For
4181 example, if the user puts a breakpoint in the jump pad, it's
4182 because she wants to debug it. */
4183
4184 static int
4185 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
4186 {
4187 struct thread_info *thread = (struct thread_info *) entry;
4188 struct lwp_info *lwp = get_thread_lwp (thread);
4189
4190 if (lwp->suspended != 0)
4191 {
4192 internal_error (__FILE__, __LINE__,
4193 "LWP %ld is suspended, suspended=%d\n",
4194 lwpid_of (thread), lwp->suspended);
4195 }
4196 gdb_assert (lwp->stopped);
4197
4198 /* Allow debugging the jump pad, gdb_collect, etc.. */
4199 return (supports_fast_tracepoints ()
4200 && agent_loaded_p ()
4201 && (gdb_breakpoint_here (lwp->stop_pc)
4202 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4203 || thread->last_resume_kind == resume_step)
4204 && (linux_fast_tracepoint_collecting (lwp, NULL)
4205 != fast_tpoint_collect_result::not_collecting));
4206 }
4207
4208 static void
4209 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
4210 {
4211 struct thread_info *thread = (struct thread_info *) entry;
4212 struct thread_info *saved_thread;
4213 struct lwp_info *lwp = get_thread_lwp (thread);
4214 int *wstat;
4215
4216 if (lwp->suspended != 0)
4217 {
4218 internal_error (__FILE__, __LINE__,
4219 "LWP %ld is suspended, suspended=%d\n",
4220 lwpid_of (thread), lwp->suspended);
4221 }
4222 gdb_assert (lwp->stopped);
4223
4224 /* For gdb_breakpoint_here. */
4225 saved_thread = current_thread;
4226 current_thread = thread;
4227
4228 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4229
4230 /* Allow debugging the jump pad, gdb_collect, etc. */
4231 if (!gdb_breakpoint_here (lwp->stop_pc)
4232 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4233 && thread->last_resume_kind != resume_step
4234 && maybe_move_out_of_jump_pad (lwp, wstat))
4235 {
4236 if (debug_threads)
4237 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4238 lwpid_of (thread));
4239
4240 if (wstat)
4241 {
4242 lwp->status_pending_p = 0;
4243 enqueue_one_deferred_signal (lwp, wstat);
4244
4245 if (debug_threads)
4246 debug_printf ("Signal %d for LWP %ld deferred "
4247 "(in jump pad)\n",
4248 WSTOPSIG (*wstat), lwpid_of (thread));
4249 }
4250
4251 linux_resume_one_lwp (lwp, 0, 0, NULL);
4252 }
4253 else
4254 lwp_suspended_inc (lwp);
4255
4256 current_thread = saved_thread;
4257 }
4258
4259 static int
4260 lwp_running (struct inferior_list_entry *entry, void *data)
4261 {
4262 struct thread_info *thread = (struct thread_info *) entry;
4263 struct lwp_info *lwp = get_thread_lwp (thread);
4264
4265 if (lwp_is_marked_dead (lwp))
4266 return 0;
4267 if (lwp->stopped)
4268 return 0;
4269 return 1;
4270 }
4271
4272 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4273 If SUSPEND, then also increase the suspend count of every LWP,
4274 except EXCEPT. */
4275
4276 static void
4277 stop_all_lwps (int suspend, struct lwp_info *except)
4278 {
4279 /* Should not be called recursively. */
4280 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4281
4282 if (debug_threads)
4283 {
4284 debug_enter ();
4285 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4286 suspend ? "stop-and-suspend" : "stop",
4287 except != NULL
4288 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4289 : "none");
4290 }
4291
4292 stopping_threads = (suspend
4293 ? STOPPING_AND_SUSPENDING_THREADS
4294 : STOPPING_THREADS);
4295
4296 if (suspend)
4297 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4298 else
4299 find_inferior (&all_threads, send_sigstop_callback, except);
4300 wait_for_sigstop ();
4301 stopping_threads = NOT_STOPPING_THREADS;
4302
4303 if (debug_threads)
4304 {
4305 debug_printf ("stop_all_lwps done, setting stopping_threads "
4306 "back to !stopping\n");
4307 debug_exit ();
4308 }
4309 }
4310
4311 /* Enqueue one signal in the chain of signals which need to be
4312 delivered to this process on next resume. */
4313
4314 static void
4315 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4316 {
4317 struct pending_signals *p_sig = XNEW (struct pending_signals);
4318
4319 p_sig->prev = lwp->pending_signals;
4320 p_sig->signal = signal;
4321 if (info == NULL)
4322 memset (&p_sig->info, 0, sizeof (siginfo_t));
4323 else
4324 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4325 lwp->pending_signals = p_sig;
4326 }
4327
4328 /* Install breakpoints for software single stepping. */
4329
4330 static void
4331 install_software_single_step_breakpoints (struct lwp_info *lwp)
4332 {
4333 struct thread_info *thread = get_lwp_thread (lwp);
4334 struct regcache *regcache = get_thread_regcache (thread, 1);
4335 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4336
4337 current_thread = thread;
4338 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4339
4340 for (CORE_ADDR pc : next_pcs)
4341 set_single_step_breakpoint (pc, current_ptid);
4342
4343 do_cleanups (old_chain);
4344 }
4345
4346 /* Single step via hardware or software single step.
4347 Return 1 if hardware single stepping, 0 if software single stepping
4348 or can't single step. */
4349
4350 static int
4351 single_step (struct lwp_info* lwp)
4352 {
4353 int step = 0;
4354
4355 if (can_hardware_single_step ())
4356 {
4357 step = 1;
4358 }
4359 else if (can_software_single_step ())
4360 {
4361 install_software_single_step_breakpoints (lwp);
4362 step = 0;
4363 }
4364 else
4365 {
4366 if (debug_threads)
4367 debug_printf ("stepping is not implemented on this target");
4368 }
4369
4370 return step;
4371 }
4372
4373 /* The signal can be delivered to the inferior if we are not trying to
4374 finish a fast tracepoint collect. Since signal can be delivered in
4375 the step-over, the program may go to signal handler and trap again
4376 after return from the signal handler. We can live with the spurious
4377 double traps. */
4378
4379 static int
4380 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4381 {
4382 return (lwp->collecting_fast_tracepoint
4383 == fast_tpoint_collect_result::not_collecting);
4384 }
4385
4386 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4387 SIGNAL is nonzero, give it that signal. */
4388
4389 static void
4390 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4391 int step, int signal, siginfo_t *info)
4392 {
4393 struct thread_info *thread = get_lwp_thread (lwp);
4394 struct thread_info *saved_thread;
4395 int ptrace_request;
4396 struct process_info *proc = get_thread_process (thread);
4397
4398 /* Note that target description may not be initialised
4399 (proc->tdesc == NULL) at this point because the program hasn't
4400 stopped at the first instruction yet. It means GDBserver skips
4401 the extra traps from the wrapper program (see option --wrapper).
4402 Code in this function that requires register access should be
4403 guarded by proc->tdesc == NULL or something else. */
4404
4405 if (lwp->stopped == 0)
4406 return;
4407
4408 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4409
4410 fast_tpoint_collect_result fast_tp_collecting
4411 = lwp->collecting_fast_tracepoint;
4412
4413 gdb_assert (!stabilizing_threads
4414 || (fast_tp_collecting
4415 != fast_tpoint_collect_result::not_collecting));
4416
4417 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4418 user used the "jump" command, or "set $pc = foo"). */
4419 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4420 {
4421 /* Collecting 'while-stepping' actions doesn't make sense
4422 anymore. */
4423 release_while_stepping_state_list (thread);
4424 }
4425
4426 /* If we have pending signals or status, and a new signal, enqueue the
4427 signal. Also enqueue the signal if it can't be delivered to the
4428 inferior right now. */
4429 if (signal != 0
4430 && (lwp->status_pending_p
4431 || lwp->pending_signals != NULL
4432 || !lwp_signal_can_be_delivered (lwp)))
4433 {
4434 enqueue_pending_signal (lwp, signal, info);
4435
4436 /* Postpone any pending signal. It was enqueued above. */
4437 signal = 0;
4438 }
4439
4440 if (lwp->status_pending_p)
4441 {
4442 if (debug_threads)
4443 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4444 " has pending status\n",
4445 lwpid_of (thread), step ? "step" : "continue",
4446 lwp->stop_expected ? "expected" : "not expected");
4447 return;
4448 }
4449
4450 saved_thread = current_thread;
4451 current_thread = thread;
4452
4453 /* This bit needs some thinking about. If we get a signal that
4454 we must report while a single-step reinsert is still pending,
4455 we often end up resuming the thread. It might be better to
4456 (ew) allow a stack of pending events; then we could be sure that
4457 the reinsert happened right away and not lose any signals.
4458
4459 Making this stack would also shrink the window in which breakpoints are
4460 uninserted (see comment in linux_wait_for_lwp) but not enough for
4461 complete correctness, so it won't solve that problem. It may be
4462 worthwhile just to solve this one, however. */
4463 if (lwp->bp_reinsert != 0)
4464 {
4465 if (debug_threads)
4466 debug_printf (" pending reinsert at 0x%s\n",
4467 paddress (lwp->bp_reinsert));
4468
4469 if (can_hardware_single_step ())
4470 {
4471 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4472 {
4473 if (step == 0)
4474 warning ("BAD - reinserting but not stepping.");
4475 if (lwp->suspended)
4476 warning ("BAD - reinserting and suspended(%d).",
4477 lwp->suspended);
4478 }
4479 }
4480
4481 step = maybe_hw_step (thread);
4482 }
4483
4484 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4485 {
4486 if (debug_threads)
4487 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4488 " (exit-jump-pad-bkpt)\n",
4489 lwpid_of (thread));
4490 }
4491 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4492 {
4493 if (debug_threads)
4494 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4495 " single-stepping\n",
4496 lwpid_of (thread));
4497
4498 if (can_hardware_single_step ())
4499 step = 1;
4500 else
4501 {
4502 internal_error (__FILE__, __LINE__,
4503 "moving out of jump pad single-stepping"
4504 " not implemented on this target");
4505 }
4506 }
4507
4508 /* If we have while-stepping actions in this thread set it stepping.
4509 If we have a signal to deliver, it may or may not be set to
4510 SIG_IGN, we don't know. Assume so, and allow collecting
4511 while-stepping into a signal handler. A possible smart thing to
4512 do would be to set an internal breakpoint at the signal return
4513 address, continue, and carry on catching this while-stepping
4514 action only when that breakpoint is hit. A future
4515 enhancement. */
4516 if (thread->while_stepping != NULL)
4517 {
4518 if (debug_threads)
4519 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4520 lwpid_of (thread));
4521
4522 step = single_step (lwp);
4523 }
4524
4525 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4526 {
4527 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4528
4529 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4530
4531 if (debug_threads)
4532 {
4533 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4534 (long) lwp->stop_pc);
4535 }
4536 }
4537
4538 /* If we have pending signals, consume one if it can be delivered to
4539 the inferior. */
4540 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4541 {
4542 struct pending_signals **p_sig;
4543
4544 p_sig = &lwp->pending_signals;
4545 while ((*p_sig)->prev != NULL)
4546 p_sig = &(*p_sig)->prev;
4547
4548 signal = (*p_sig)->signal;
4549 if ((*p_sig)->info.si_signo != 0)
4550 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4551 &(*p_sig)->info);
4552
4553 free (*p_sig);
4554 *p_sig = NULL;
4555 }
4556
4557 if (debug_threads)
4558 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4559 lwpid_of (thread), step ? "step" : "continue", signal,
4560 lwp->stop_expected ? "expected" : "not expected");
4561
4562 if (the_low_target.prepare_to_resume != NULL)
4563 the_low_target.prepare_to_resume (lwp);
4564
4565 regcache_invalidate_thread (thread);
4566 errno = 0;
4567 lwp->stepping = step;
4568 if (step)
4569 ptrace_request = PTRACE_SINGLESTEP;
4570 else if (gdb_catching_syscalls_p (lwp))
4571 ptrace_request = PTRACE_SYSCALL;
4572 else
4573 ptrace_request = PTRACE_CONT;
4574 ptrace (ptrace_request,
4575 lwpid_of (thread),
4576 (PTRACE_TYPE_ARG3) 0,
4577 /* Coerce to a uintptr_t first to avoid potential gcc warning
4578 of coercing an 8 byte integer to a 4 byte pointer. */
4579 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4580
4581 current_thread = saved_thread;
4582 if (errno)
4583 perror_with_name ("resuming thread");
4584
4585 /* Successfully resumed. Clear state that no longer makes sense,
4586 and mark the LWP as running. Must not do this before resuming
4587 otherwise if that fails other code will be confused. E.g., we'd
4588 later try to stop the LWP and hang forever waiting for a stop
4589 status. Note that we must not throw after this is cleared,
4590 otherwise handle_zombie_lwp_error would get confused. */
4591 lwp->stopped = 0;
4592 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4593 }
4594
4595 /* Called when we try to resume a stopped LWP and that errors out. If
4596 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4597 or about to become), discard the error, clear any pending status
4598 the LWP may have, and return true (we'll collect the exit status
4599 soon enough). Otherwise, return false. */
4600
4601 static int
4602 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4603 {
4604 struct thread_info *thread = get_lwp_thread (lp);
4605
4606 /* If we get an error after resuming the LWP successfully, we'd
4607 confuse !T state for the LWP being gone. */
4608 gdb_assert (lp->stopped);
4609
4610 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4611 because even if ptrace failed with ESRCH, the tracee may be "not
4612 yet fully dead", but already refusing ptrace requests. In that
4613 case the tracee has 'R (Running)' state for a little bit
4614 (observed in Linux 3.18). See also the note on ESRCH in the
4615 ptrace(2) man page. Instead, check whether the LWP has any state
4616 other than ptrace-stopped. */
4617
4618 /* Don't assume anything if /proc/PID/status can't be read. */
4619 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4620 {
4621 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4622 lp->status_pending_p = 0;
4623 return 1;
4624 }
4625 return 0;
4626 }
4627
4628 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4629 disappears while we try to resume it. */
4630
4631 static void
4632 linux_resume_one_lwp (struct lwp_info *lwp,
4633 int step, int signal, siginfo_t *info)
4634 {
4635 TRY
4636 {
4637 linux_resume_one_lwp_throw (lwp, step, signal, info);
4638 }
4639 CATCH (ex, RETURN_MASK_ERROR)
4640 {
4641 if (!check_ptrace_stopped_lwp_gone (lwp))
4642 throw_exception (ex);
4643 }
4644 END_CATCH
4645 }
4646
4647 struct thread_resume_array
4648 {
4649 struct thread_resume *resume;
4650 size_t n;
4651 };
4652
4653 /* This function is called once per thread via find_inferior.
4654 ARG is a pointer to a thread_resume_array struct.
4655 We look up the thread specified by ENTRY in ARG, and mark the thread
4656 with a pointer to the appropriate resume request.
4657
4658 This algorithm is O(threads * resume elements), but resume elements
4659 is small (and will remain small at least until GDB supports thread
4660 suspension). */
4661
4662 static int
4663 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4664 {
4665 struct thread_info *thread = (struct thread_info *) entry;
4666 struct lwp_info *lwp = get_thread_lwp (thread);
4667 int ndx;
4668 struct thread_resume_array *r;
4669
4670 r = (struct thread_resume_array *) arg;
4671
4672 for (ndx = 0; ndx < r->n; ndx++)
4673 {
4674 ptid_t ptid = r->resume[ndx].thread;
4675 if (ptid_equal (ptid, minus_one_ptid)
4676 || ptid_equal (ptid, entry->id)
4677 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4678 of PID'. */
4679 || (ptid_get_pid (ptid) == pid_of (thread)
4680 && (ptid_is_pid (ptid)
4681 || ptid_get_lwp (ptid) == -1)))
4682 {
4683 if (r->resume[ndx].kind == resume_stop
4684 && thread->last_resume_kind == resume_stop)
4685 {
4686 if (debug_threads)
4687 debug_printf ("already %s LWP %ld at GDB's request\n",
4688 (thread->last_status.kind
4689 == TARGET_WAITKIND_STOPPED)
4690 ? "stopped"
4691 : "stopping",
4692 lwpid_of (thread));
4693
4694 continue;
4695 }
4696
4697 /* Ignore (wildcard) resume requests for already-resumed
4698 threads. */
4699 if (r->resume[ndx].kind != resume_stop
4700 && thread->last_resume_kind != resume_stop)
4701 {
4702 if (debug_threads)
4703 debug_printf ("already %s LWP %ld at GDB's request\n",
4704 (thread->last_resume_kind
4705 == resume_step)
4706 ? "stepping"
4707 : "continuing",
4708 lwpid_of (thread));
4709 continue;
4710 }
4711
4712 /* Don't let wildcard resumes resume fork children that GDB
4713 does not yet know are new fork children. */
4714 if (lwp->fork_relative != NULL)
4715 {
4716 struct lwp_info *rel = lwp->fork_relative;
4717
4718 if (rel->status_pending_p
4719 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4720 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4721 {
4722 if (debug_threads)
4723 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4724 lwpid_of (thread));
4725 continue;
4726 }
4727 }
4728
4729 /* If the thread has a pending event that has already been
4730 reported to GDBserver core, but GDB has not pulled the
4731 event out of the vStopped queue yet, likewise, ignore the
4732 (wildcard) resume request. */
4733 if (in_queued_stop_replies (entry->id))
4734 {
4735 if (debug_threads)
4736 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4737 lwpid_of (thread));
4738 continue;
4739 }
4740
4741 lwp->resume = &r->resume[ndx];
4742 thread->last_resume_kind = lwp->resume->kind;
4743
4744 lwp->step_range_start = lwp->resume->step_range_start;
4745 lwp->step_range_end = lwp->resume->step_range_end;
4746
4747 /* If we had a deferred signal to report, dequeue one now.
4748 This can happen if LWP gets more than one signal while
4749 trying to get out of a jump pad. */
4750 if (lwp->stopped
4751 && !lwp->status_pending_p
4752 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4753 {
4754 lwp->status_pending_p = 1;
4755
4756 if (debug_threads)
4757 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4758 "leaving status pending.\n",
4759 WSTOPSIG (lwp->status_pending),
4760 lwpid_of (thread));
4761 }
4762
4763 return 0;
4764 }
4765 }
4766
4767 /* No resume action for this thread. */
4768 lwp->resume = NULL;
4769
4770 return 0;
4771 }
4772
4773 /* find_inferior callback for linux_resume.
4774 Set *FLAG_P if this lwp has an interesting status pending. */
4775
4776 static int
4777 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4778 {
4779 struct thread_info *thread = (struct thread_info *) entry;
4780 struct lwp_info *lwp = get_thread_lwp (thread);
4781
4782 /* LWPs which will not be resumed are not interesting, because
4783 we might not wait for them next time through linux_wait. */
4784 if (lwp->resume == NULL)
4785 return 0;
4786
4787 if (thread_still_has_status_pending_p (thread))
4788 * (int *) flag_p = 1;
4789
4790 return 0;
4791 }
4792
4793 /* Return 1 if this lwp that GDB wants running is stopped at an
4794 internal breakpoint that we need to step over. It assumes that any
4795 required STOP_PC adjustment has already been propagated to the
4796 inferior's regcache. */
4797
4798 static int
4799 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4800 {
4801 struct thread_info *thread = (struct thread_info *) entry;
4802 struct lwp_info *lwp = get_thread_lwp (thread);
4803 struct thread_info *saved_thread;
4804 CORE_ADDR pc;
4805 struct process_info *proc = get_thread_process (thread);
4806
4807 /* GDBserver is skipping the extra traps from the wrapper program,
4808 don't have to do step over. */
4809 if (proc->tdesc == NULL)
4810 return 0;
4811
4812 /* LWPs which will not be resumed are not interesting, because we
4813 might not wait for them next time through linux_wait. */
4814
4815 if (!lwp->stopped)
4816 {
4817 if (debug_threads)
4818 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4819 lwpid_of (thread));
4820 return 0;
4821 }
4822
4823 if (thread->last_resume_kind == resume_stop)
4824 {
4825 if (debug_threads)
4826 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4827 " stopped\n",
4828 lwpid_of (thread));
4829 return 0;
4830 }
4831
4832 gdb_assert (lwp->suspended >= 0);
4833
4834 if (lwp->suspended)
4835 {
4836 if (debug_threads)
4837 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4838 lwpid_of (thread));
4839 return 0;
4840 }
4841
4842 if (lwp->status_pending_p)
4843 {
4844 if (debug_threads)
4845 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4846 " status.\n",
4847 lwpid_of (thread));
4848 return 0;
4849 }
4850
4851 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4852 or we have. */
4853 pc = get_pc (lwp);
4854
4855 /* If the PC has changed since we stopped, then don't do anything,
4856 and let the breakpoint/tracepoint be hit. This happens if, for
4857 instance, GDB handled the decr_pc_after_break subtraction itself,
4858 GDB is OOL stepping this thread, or the user has issued a "jump"
4859 command, or poked thread's registers herself. */
4860 if (pc != lwp->stop_pc)
4861 {
4862 if (debug_threads)
4863 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4864 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4865 lwpid_of (thread),
4866 paddress (lwp->stop_pc), paddress (pc));
4867 return 0;
4868 }
4869
4870 /* On software single step target, resume the inferior with signal
4871 rather than stepping over. */
4872 if (can_software_single_step ()
4873 && lwp->pending_signals != NULL
4874 && lwp_signal_can_be_delivered (lwp))
4875 {
4876 if (debug_threads)
4877 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4878 " signals.\n",
4879 lwpid_of (thread));
4880
4881 return 0;
4882 }
4883
4884 saved_thread = current_thread;
4885 current_thread = thread;
4886
4887 /* We can only step over breakpoints we know about. */
4888 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4889 {
4890 /* Don't step over a breakpoint that GDB expects to hit
4891 though. If the condition is being evaluated on the target's side
4892 and it evaluate to false, step over this breakpoint as well. */
4893 if (gdb_breakpoint_here (pc)
4894 && gdb_condition_true_at_breakpoint (pc)
4895 && gdb_no_commands_at_breakpoint (pc))
4896 {
4897 if (debug_threads)
4898 debug_printf ("Need step over [LWP %ld]? yes, but found"
4899 " GDB breakpoint at 0x%s; skipping step over\n",
4900 lwpid_of (thread), paddress (pc));
4901
4902 current_thread = saved_thread;
4903 return 0;
4904 }
4905 else
4906 {
4907 if (debug_threads)
4908 debug_printf ("Need step over [LWP %ld]? yes, "
4909 "found breakpoint at 0x%s\n",
4910 lwpid_of (thread), paddress (pc));
4911
4912 /* We've found an lwp that needs stepping over --- return 1 so
4913 that find_inferior stops looking. */
4914 current_thread = saved_thread;
4915
4916 return 1;
4917 }
4918 }
4919
4920 current_thread = saved_thread;
4921
4922 if (debug_threads)
4923 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4924 " at 0x%s\n",
4925 lwpid_of (thread), paddress (pc));
4926
4927 return 0;
4928 }
4929
4930 /* Start a step-over operation on LWP. When LWP stopped at a
4931 breakpoint, to make progress, we need to remove the breakpoint out
4932 of the way. If we let other threads run while we do that, they may
4933 pass by the breakpoint location and miss hitting it. To avoid
4934 that, a step-over momentarily stops all threads while LWP is
4935 single-stepped by either hardware or software while the breakpoint
4936 is temporarily uninserted from the inferior. When the single-step
4937 finishes, we reinsert the breakpoint, and let all threads that are
4938 supposed to be running, run again. */
4939
4940 static int
4941 start_step_over (struct lwp_info *lwp)
4942 {
4943 struct thread_info *thread = get_lwp_thread (lwp);
4944 struct thread_info *saved_thread;
4945 CORE_ADDR pc;
4946 int step;
4947
4948 if (debug_threads)
4949 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4950 lwpid_of (thread));
4951
4952 stop_all_lwps (1, lwp);
4953
4954 if (lwp->suspended != 0)
4955 {
4956 internal_error (__FILE__, __LINE__,
4957 "LWP %ld suspended=%d\n", lwpid_of (thread),
4958 lwp->suspended);
4959 }
4960
4961 if (debug_threads)
4962 debug_printf ("Done stopping all threads for step-over.\n");
4963
4964 /* Note, we should always reach here with an already adjusted PC,
4965 either by GDB (if we're resuming due to GDB's request), or by our
4966 caller, if we just finished handling an internal breakpoint GDB
4967 shouldn't care about. */
4968 pc = get_pc (lwp);
4969
4970 saved_thread = current_thread;
4971 current_thread = thread;
4972
4973 lwp->bp_reinsert = pc;
4974 uninsert_breakpoints_at (pc);
4975 uninsert_fast_tracepoint_jumps_at (pc);
4976
4977 step = single_step (lwp);
4978
4979 current_thread = saved_thread;
4980
4981 linux_resume_one_lwp (lwp, step, 0, NULL);
4982
4983 /* Require next event from this LWP. */
4984 step_over_bkpt = thread->entry.id;
4985 return 1;
4986 }
4987
4988 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4989 start_step_over, if still there, and delete any single-step
4990 breakpoints we've set, on non hardware single-step targets. */
4991
4992 static int
4993 finish_step_over (struct lwp_info *lwp)
4994 {
4995 if (lwp->bp_reinsert != 0)
4996 {
4997 struct thread_info *saved_thread = current_thread;
4998
4999 if (debug_threads)
5000 debug_printf ("Finished step over.\n");
5001
5002 current_thread = get_lwp_thread (lwp);
5003
5004 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
5005 may be no breakpoint to reinsert there by now. */
5006 reinsert_breakpoints_at (lwp->bp_reinsert);
5007 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
5008
5009 lwp->bp_reinsert = 0;
5010
5011 /* Delete any single-step breakpoints. No longer needed. We
5012 don't have to worry about other threads hitting this trap,
5013 and later not being able to explain it, because we were
5014 stepping over a breakpoint, and we hold all threads but
5015 LWP stopped while doing that. */
5016 if (!can_hardware_single_step ())
5017 {
5018 gdb_assert (has_single_step_breakpoints (current_thread));
5019 delete_single_step_breakpoints (current_thread);
5020 }
5021
5022 step_over_bkpt = null_ptid;
5023 current_thread = saved_thread;
5024 return 1;
5025 }
5026 else
5027 return 0;
5028 }
5029
5030 /* If there's a step over in progress, wait until all threads stop
5031 (that is, until the stepping thread finishes its step), and
5032 unsuspend all lwps. The stepping thread ends with its status
5033 pending, which is processed later when we get back to processing
5034 events. */
5035
5036 static void
5037 complete_ongoing_step_over (void)
5038 {
5039 if (!ptid_equal (step_over_bkpt, null_ptid))
5040 {
5041 struct lwp_info *lwp;
5042 int wstat;
5043 int ret;
5044
5045 if (debug_threads)
5046 debug_printf ("detach: step over in progress, finish it first\n");
5047
5048 /* Passing NULL_PTID as filter indicates we want all events to
5049 be left pending. Eventually this returns when there are no
5050 unwaited-for children left. */
5051 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
5052 &wstat, __WALL);
5053 gdb_assert (ret == -1);
5054
5055 lwp = find_lwp_pid (step_over_bkpt);
5056 if (lwp != NULL)
5057 finish_step_over (lwp);
5058 step_over_bkpt = null_ptid;
5059 unsuspend_all_lwps (lwp);
5060 }
5061 }
5062
5063 /* This function is called once per thread. We check the thread's resume
5064 request, which will tell us whether to resume, step, or leave the thread
5065 stopped; and what signal, if any, it should be sent.
5066
5067 For threads which we aren't explicitly told otherwise, we preserve
5068 the stepping flag; this is used for stepping over gdbserver-placed
5069 breakpoints.
5070
5071 If pending_flags was set in any thread, we queue any needed
5072 signals, since we won't actually resume. We already have a pending
5073 event to report, so we don't need to preserve any step requests;
5074 they should be re-issued if necessary. */
5075
5076 static int
5077 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
5078 {
5079 struct thread_info *thread = (struct thread_info *) entry;
5080 struct lwp_info *lwp = get_thread_lwp (thread);
5081 int leave_all_stopped = * (int *) arg;
5082 int leave_pending;
5083
5084 if (lwp->resume == NULL)
5085 return 0;
5086
5087 if (lwp->resume->kind == resume_stop)
5088 {
5089 if (debug_threads)
5090 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
5091
5092 if (!lwp->stopped)
5093 {
5094 if (debug_threads)
5095 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5096
5097 /* Stop the thread, and wait for the event asynchronously,
5098 through the event loop. */
5099 send_sigstop (lwp);
5100 }
5101 else
5102 {
5103 if (debug_threads)
5104 debug_printf ("already stopped LWP %ld\n",
5105 lwpid_of (thread));
5106
5107 /* The LWP may have been stopped in an internal event that
5108 was not meant to be notified back to GDB (e.g., gdbserver
5109 breakpoint), so we should be reporting a stop event in
5110 this case too. */
5111
5112 /* If the thread already has a pending SIGSTOP, this is a
5113 no-op. Otherwise, something later will presumably resume
5114 the thread and this will cause it to cancel any pending
5115 operation, due to last_resume_kind == resume_stop. If
5116 the thread already has a pending status to report, we
5117 will still report it the next time we wait - see
5118 status_pending_p_callback. */
5119
5120 /* If we already have a pending signal to report, then
5121 there's no need to queue a SIGSTOP, as this means we're
5122 midway through moving the LWP out of the jumppad, and we
5123 will report the pending signal as soon as that is
5124 finished. */
5125 if (lwp->pending_signals_to_report == NULL)
5126 send_sigstop (lwp);
5127 }
5128
5129 /* For stop requests, we're done. */
5130 lwp->resume = NULL;
5131 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5132 return 0;
5133 }
5134
5135 /* If this thread which is about to be resumed has a pending status,
5136 then don't resume it - we can just report the pending status.
5137 Likewise if it is suspended, because e.g., another thread is
5138 stepping past a breakpoint. Make sure to queue any signals that
5139 would otherwise be sent. In all-stop mode, we do this decision
5140 based on if *any* thread has a pending status. If there's a
5141 thread that needs the step-over-breakpoint dance, then don't
5142 resume any other thread but that particular one. */
5143 leave_pending = (lwp->suspended
5144 || lwp->status_pending_p
5145 || leave_all_stopped);
5146
5147 /* If we have a new signal, enqueue the signal. */
5148 if (lwp->resume->sig != 0)
5149 {
5150 siginfo_t info, *info_p;
5151
5152 /* If this is the same signal we were previously stopped by,
5153 make sure to queue its siginfo. */
5154 if (WIFSTOPPED (lwp->last_status)
5155 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5156 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5157 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5158 info_p = &info;
5159 else
5160 info_p = NULL;
5161
5162 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5163 }
5164
5165 if (!leave_pending)
5166 {
5167 if (debug_threads)
5168 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5169
5170 proceed_one_lwp (entry, NULL);
5171 }
5172 else
5173 {
5174 if (debug_threads)
5175 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5176 }
5177
5178 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5179 lwp->resume = NULL;
5180 return 0;
5181 }
5182
5183 static void
5184 linux_resume (struct thread_resume *resume_info, size_t n)
5185 {
5186 struct thread_resume_array array = { resume_info, n };
5187 struct thread_info *need_step_over = NULL;
5188 int any_pending;
5189 int leave_all_stopped;
5190
5191 if (debug_threads)
5192 {
5193 debug_enter ();
5194 debug_printf ("linux_resume:\n");
5195 }
5196
5197 find_inferior (&all_threads, linux_set_resume_request, &array);
5198
5199 /* If there is a thread which would otherwise be resumed, which has
5200 a pending status, then don't resume any threads - we can just
5201 report the pending status. Make sure to queue any signals that
5202 would otherwise be sent. In non-stop mode, we'll apply this
5203 logic to each thread individually. We consume all pending events
5204 before considering to start a step-over (in all-stop). */
5205 any_pending = 0;
5206 if (!non_stop)
5207 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
5208
5209 /* If there is a thread which would otherwise be resumed, which is
5210 stopped at a breakpoint that needs stepping over, then don't
5211 resume any threads - have it step over the breakpoint with all
5212 other threads stopped, then resume all threads again. Make sure
5213 to queue any signals that would otherwise be delivered or
5214 queued. */
5215 if (!any_pending && supports_breakpoints ())
5216 need_step_over
5217 = (struct thread_info *) find_inferior (&all_threads,
5218 need_step_over_p, NULL);
5219
5220 leave_all_stopped = (need_step_over != NULL || any_pending);
5221
5222 if (debug_threads)
5223 {
5224 if (need_step_over != NULL)
5225 debug_printf ("Not resuming all, need step over\n");
5226 else if (any_pending)
5227 debug_printf ("Not resuming, all-stop and found "
5228 "an LWP with pending status\n");
5229 else
5230 debug_printf ("Resuming, no pending status or step over needed\n");
5231 }
5232
5233 /* Even if we're leaving threads stopped, queue all signals we'd
5234 otherwise deliver. */
5235 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5236
5237 if (need_step_over)
5238 start_step_over (get_thread_lwp (need_step_over));
5239
5240 if (debug_threads)
5241 {
5242 debug_printf ("linux_resume done\n");
5243 debug_exit ();
5244 }
5245
5246 /* We may have events that were pending that can/should be sent to
5247 the client now. Trigger a linux_wait call. */
5248 if (target_is_async_p ())
5249 async_file_mark ();
5250 }
5251
5252 /* This function is called once per thread. We check the thread's
5253 last resume request, which will tell us whether to resume, step, or
5254 leave the thread stopped. Any signal the client requested to be
5255 delivered has already been enqueued at this point.
5256
5257 If any thread that GDB wants running is stopped at an internal
5258 breakpoint that needs stepping over, we start a step-over operation
5259 on that particular thread, and leave all others stopped. */
5260
5261 static int
5262 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5263 {
5264 struct thread_info *thread = (struct thread_info *) entry;
5265 struct lwp_info *lwp = get_thread_lwp (thread);
5266 int step;
5267
5268 if (lwp == except)
5269 return 0;
5270
5271 if (debug_threads)
5272 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5273
5274 if (!lwp->stopped)
5275 {
5276 if (debug_threads)
5277 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5278 return 0;
5279 }
5280
5281 if (thread->last_resume_kind == resume_stop
5282 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5283 {
5284 if (debug_threads)
5285 debug_printf (" client wants LWP to remain %ld stopped\n",
5286 lwpid_of (thread));
5287 return 0;
5288 }
5289
5290 if (lwp->status_pending_p)
5291 {
5292 if (debug_threads)
5293 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5294 lwpid_of (thread));
5295 return 0;
5296 }
5297
5298 gdb_assert (lwp->suspended >= 0);
5299
5300 if (lwp->suspended)
5301 {
5302 if (debug_threads)
5303 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5304 return 0;
5305 }
5306
5307 if (thread->last_resume_kind == resume_stop
5308 && lwp->pending_signals_to_report == NULL
5309 && (lwp->collecting_fast_tracepoint
5310 == fast_tpoint_collect_result::not_collecting))
5311 {
5312 /* We haven't reported this LWP as stopped yet (otherwise, the
5313 last_status.kind check above would catch it, and we wouldn't
5314 reach here. This LWP may have been momentarily paused by a
5315 stop_all_lwps call while handling for example, another LWP's
5316 step-over. In that case, the pending expected SIGSTOP signal
5317 that was queued at vCont;t handling time will have already
5318 been consumed by wait_for_sigstop, and so we need to requeue
5319 another one here. Note that if the LWP already has a SIGSTOP
5320 pending, this is a no-op. */
5321
5322 if (debug_threads)
5323 debug_printf ("Client wants LWP %ld to stop. "
5324 "Making sure it has a SIGSTOP pending\n",
5325 lwpid_of (thread));
5326
5327 send_sigstop (lwp);
5328 }
5329
5330 if (thread->last_resume_kind == resume_step)
5331 {
5332 if (debug_threads)
5333 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5334 lwpid_of (thread));
5335
5336 /* If resume_step is requested by GDB, install single-step
5337 breakpoints when the thread is about to be actually resumed if
5338 the single-step breakpoints weren't removed. */
5339 if (can_software_single_step ()
5340 && !has_single_step_breakpoints (thread))
5341 install_software_single_step_breakpoints (lwp);
5342
5343 step = maybe_hw_step (thread);
5344 }
5345 else if (lwp->bp_reinsert != 0)
5346 {
5347 if (debug_threads)
5348 debug_printf (" stepping LWP %ld, reinsert set\n",
5349 lwpid_of (thread));
5350
5351 step = maybe_hw_step (thread);
5352 }
5353 else
5354 step = 0;
5355
5356 linux_resume_one_lwp (lwp, step, 0, NULL);
5357 return 0;
5358 }
5359
5360 static int
5361 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5362 {
5363 struct thread_info *thread = (struct thread_info *) entry;
5364 struct lwp_info *lwp = get_thread_lwp (thread);
5365
5366 if (lwp == except)
5367 return 0;
5368
5369 lwp_suspended_decr (lwp);
5370
5371 return proceed_one_lwp (entry, except);
5372 }
5373
5374 /* When we finish a step-over, set threads running again. If there's
5375 another thread that may need a step-over, now's the time to start
5376 it. Eventually, we'll move all threads past their breakpoints. */
5377
5378 static void
5379 proceed_all_lwps (void)
5380 {
5381 struct thread_info *need_step_over;
5382
5383 /* If there is a thread which would otherwise be resumed, which is
5384 stopped at a breakpoint that needs stepping over, then don't
5385 resume any threads - have it step over the breakpoint with all
5386 other threads stopped, then resume all threads again. */
5387
5388 if (supports_breakpoints ())
5389 {
5390 need_step_over
5391 = (struct thread_info *) find_inferior (&all_threads,
5392 need_step_over_p, NULL);
5393
5394 if (need_step_over != NULL)
5395 {
5396 if (debug_threads)
5397 debug_printf ("proceed_all_lwps: found "
5398 "thread %ld needing a step-over\n",
5399 lwpid_of (need_step_over));
5400
5401 start_step_over (get_thread_lwp (need_step_over));
5402 return;
5403 }
5404 }
5405
5406 if (debug_threads)
5407 debug_printf ("Proceeding, no step-over needed\n");
5408
5409 find_inferior (&all_threads, proceed_one_lwp, NULL);
5410 }
5411
5412 /* Stopped LWPs that the client wanted to be running, that don't have
5413 pending statuses, are set to run again, except for EXCEPT, if not
5414 NULL. This undoes a stop_all_lwps call. */
5415
5416 static void
5417 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5418 {
5419 if (debug_threads)
5420 {
5421 debug_enter ();
5422 if (except)
5423 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5424 lwpid_of (get_lwp_thread (except)));
5425 else
5426 debug_printf ("unstopping all lwps\n");
5427 }
5428
5429 if (unsuspend)
5430 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5431 else
5432 find_inferior (&all_threads, proceed_one_lwp, except);
5433
5434 if (debug_threads)
5435 {
5436 debug_printf ("unstop_all_lwps done\n");
5437 debug_exit ();
5438 }
5439 }
5440
5441
5442 #ifdef HAVE_LINUX_REGSETS
5443
5444 #define use_linux_regsets 1
5445
5446 /* Returns true if REGSET has been disabled. */
5447
5448 static int
5449 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5450 {
5451 return (info->disabled_regsets != NULL
5452 && info->disabled_regsets[regset - info->regsets]);
5453 }
5454
5455 /* Disable REGSET. */
5456
5457 static void
5458 disable_regset (struct regsets_info *info, struct regset_info *regset)
5459 {
5460 int dr_offset;
5461
5462 dr_offset = regset - info->regsets;
5463 if (info->disabled_regsets == NULL)
5464 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5465 info->disabled_regsets[dr_offset] = 1;
5466 }
5467
5468 static int
5469 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5470 struct regcache *regcache)
5471 {
5472 struct regset_info *regset;
5473 int saw_general_regs = 0;
5474 int pid;
5475 struct iovec iov;
5476
5477 pid = lwpid_of (current_thread);
5478 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5479 {
5480 void *buf, *data;
5481 int nt_type, res;
5482
5483 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5484 continue;
5485
5486 buf = xmalloc (regset->size);
5487
5488 nt_type = regset->nt_type;
5489 if (nt_type)
5490 {
5491 iov.iov_base = buf;
5492 iov.iov_len = regset->size;
5493 data = (void *) &iov;
5494 }
5495 else
5496 data = buf;
5497
5498 #ifndef __sparc__
5499 res = ptrace (regset->get_request, pid,
5500 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5501 #else
5502 res = ptrace (regset->get_request, pid, data, nt_type);
5503 #endif
5504 if (res < 0)
5505 {
5506 if (errno == EIO)
5507 {
5508 /* If we get EIO on a regset, do not try it again for
5509 this process mode. */
5510 disable_regset (regsets_info, regset);
5511 }
5512 else if (errno == ENODATA)
5513 {
5514 /* ENODATA may be returned if the regset is currently
5515 not "active". This can happen in normal operation,
5516 so suppress the warning in this case. */
5517 }
5518 else if (errno == ESRCH)
5519 {
5520 /* At this point, ESRCH should mean the process is
5521 already gone, in which case we simply ignore attempts
5522 to read its registers. */
5523 }
5524 else
5525 {
5526 char s[256];
5527 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5528 pid);
5529 perror (s);
5530 }
5531 }
5532 else
5533 {
5534 if (regset->type == GENERAL_REGS)
5535 saw_general_regs = 1;
5536 regset->store_function (regcache, buf);
5537 }
5538 free (buf);
5539 }
5540 if (saw_general_regs)
5541 return 0;
5542 else
5543 return 1;
5544 }
5545
5546 static int
5547 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5548 struct regcache *regcache)
5549 {
5550 struct regset_info *regset;
5551 int saw_general_regs = 0;
5552 int pid;
5553 struct iovec iov;
5554
5555 pid = lwpid_of (current_thread);
5556 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5557 {
5558 void *buf, *data;
5559 int nt_type, res;
5560
5561 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5562 || regset->fill_function == NULL)
5563 continue;
5564
5565 buf = xmalloc (regset->size);
5566
5567 /* First fill the buffer with the current register set contents,
5568 in case there are any items in the kernel's regset that are
5569 not in gdbserver's regcache. */
5570
5571 nt_type = regset->nt_type;
5572 if (nt_type)
5573 {
5574 iov.iov_base = buf;
5575 iov.iov_len = regset->size;
5576 data = (void *) &iov;
5577 }
5578 else
5579 data = buf;
5580
5581 #ifndef __sparc__
5582 res = ptrace (regset->get_request, pid,
5583 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5584 #else
5585 res = ptrace (regset->get_request, pid, data, nt_type);
5586 #endif
5587
5588 if (res == 0)
5589 {
5590 /* Then overlay our cached registers on that. */
5591 regset->fill_function (regcache, buf);
5592
5593 /* Only now do we write the register set. */
5594 #ifndef __sparc__
5595 res = ptrace (regset->set_request, pid,
5596 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5597 #else
5598 res = ptrace (regset->set_request, pid, data, nt_type);
5599 #endif
5600 }
5601
5602 if (res < 0)
5603 {
5604 if (errno == EIO)
5605 {
5606 /* If we get EIO on a regset, do not try it again for
5607 this process mode. */
5608 disable_regset (regsets_info, regset);
5609 }
5610 else if (errno == ESRCH)
5611 {
5612 /* At this point, ESRCH should mean the process is
5613 already gone, in which case we simply ignore attempts
5614 to change its registers. See also the related
5615 comment in linux_resume_one_lwp. */
5616 free (buf);
5617 return 0;
5618 }
5619 else
5620 {
5621 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5622 }
5623 }
5624 else if (regset->type == GENERAL_REGS)
5625 saw_general_regs = 1;
5626 free (buf);
5627 }
5628 if (saw_general_regs)
5629 return 0;
5630 else
5631 return 1;
5632 }
5633
5634 #else /* !HAVE_LINUX_REGSETS */
5635
5636 #define use_linux_regsets 0
5637 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5638 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5639
5640 #endif
5641
5642 /* Return 1 if register REGNO is supported by one of the regset ptrace
5643 calls or 0 if it has to be transferred individually. */
5644
5645 static int
5646 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5647 {
5648 unsigned char mask = 1 << (regno % 8);
5649 size_t index = regno / 8;
5650
5651 return (use_linux_regsets
5652 && (regs_info->regset_bitmap == NULL
5653 || (regs_info->regset_bitmap[index] & mask) != 0));
5654 }
5655
5656 #ifdef HAVE_LINUX_USRREGS
5657
5658 static int
5659 register_addr (const struct usrregs_info *usrregs, int regnum)
5660 {
5661 int addr;
5662
5663 if (regnum < 0 || regnum >= usrregs->num_regs)
5664 error ("Invalid register number %d.", regnum);
5665
5666 addr = usrregs->regmap[regnum];
5667
5668 return addr;
5669 }
5670
5671 /* Fetch one register. */
5672 static void
5673 fetch_register (const struct usrregs_info *usrregs,
5674 struct regcache *regcache, int regno)
5675 {
5676 CORE_ADDR regaddr;
5677 int i, size;
5678 char *buf;
5679 int pid;
5680
5681 if (regno >= usrregs->num_regs)
5682 return;
5683 if ((*the_low_target.cannot_fetch_register) (regno))
5684 return;
5685
5686 regaddr = register_addr (usrregs, regno);
5687 if (regaddr == -1)
5688 return;
5689
5690 size = ((register_size (regcache->tdesc, regno)
5691 + sizeof (PTRACE_XFER_TYPE) - 1)
5692 & -sizeof (PTRACE_XFER_TYPE));
5693 buf = (char *) alloca (size);
5694
5695 pid = lwpid_of (current_thread);
5696 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5697 {
5698 errno = 0;
5699 *(PTRACE_XFER_TYPE *) (buf + i) =
5700 ptrace (PTRACE_PEEKUSER, pid,
5701 /* Coerce to a uintptr_t first to avoid potential gcc warning
5702 of coercing an 8 byte integer to a 4 byte pointer. */
5703 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5704 regaddr += sizeof (PTRACE_XFER_TYPE);
5705 if (errno != 0)
5706 error ("reading register %d: %s", regno, strerror (errno));
5707 }
5708
5709 if (the_low_target.supply_ptrace_register)
5710 the_low_target.supply_ptrace_register (regcache, regno, buf);
5711 else
5712 supply_register (regcache, regno, buf);
5713 }
5714
5715 /* Store one register. */
5716 static void
5717 store_register (const struct usrregs_info *usrregs,
5718 struct regcache *regcache, int regno)
5719 {
5720 CORE_ADDR regaddr;
5721 int i, size;
5722 char *buf;
5723 int pid;
5724
5725 if (regno >= usrregs->num_regs)
5726 return;
5727 if ((*the_low_target.cannot_store_register) (regno))
5728 return;
5729
5730 regaddr = register_addr (usrregs, regno);
5731 if (regaddr == -1)
5732 return;
5733
5734 size = ((register_size (regcache->tdesc, regno)
5735 + sizeof (PTRACE_XFER_TYPE) - 1)
5736 & -sizeof (PTRACE_XFER_TYPE));
5737 buf = (char *) alloca (size);
5738 memset (buf, 0, size);
5739
5740 if (the_low_target.collect_ptrace_register)
5741 the_low_target.collect_ptrace_register (regcache, regno, buf);
5742 else
5743 collect_register (regcache, regno, buf);
5744
5745 pid = lwpid_of (current_thread);
5746 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5747 {
5748 errno = 0;
5749 ptrace (PTRACE_POKEUSER, pid,
5750 /* Coerce to a uintptr_t first to avoid potential gcc warning
5751 about coercing an 8 byte integer to a 4 byte pointer. */
5752 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5753 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5754 if (errno != 0)
5755 {
5756 /* At this point, ESRCH should mean the process is
5757 already gone, in which case we simply ignore attempts
5758 to change its registers. See also the related
5759 comment in linux_resume_one_lwp. */
5760 if (errno == ESRCH)
5761 return;
5762
5763 if ((*the_low_target.cannot_store_register) (regno) == 0)
5764 error ("writing register %d: %s", regno, strerror (errno));
5765 }
5766 regaddr += sizeof (PTRACE_XFER_TYPE);
5767 }
5768 }
5769
5770 /* Fetch all registers, or just one, from the child process.
5771 If REGNO is -1, do this for all registers, skipping any that are
5772 assumed to have been retrieved by regsets_fetch_inferior_registers,
5773 unless ALL is non-zero.
5774 Otherwise, REGNO specifies which register (so we can save time). */
5775 static void
5776 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5777 struct regcache *regcache, int regno, int all)
5778 {
5779 struct usrregs_info *usr = regs_info->usrregs;
5780
5781 if (regno == -1)
5782 {
5783 for (regno = 0; regno < usr->num_regs; regno++)
5784 if (all || !linux_register_in_regsets (regs_info, regno))
5785 fetch_register (usr, regcache, regno);
5786 }
5787 else
5788 fetch_register (usr, regcache, regno);
5789 }
5790
5791 /* Store our register values back into the inferior.
5792 If REGNO is -1, do this for all registers, skipping any that are
5793 assumed to have been saved by regsets_store_inferior_registers,
5794 unless ALL is non-zero.
5795 Otherwise, REGNO specifies which register (so we can save time). */
5796 static void
5797 usr_store_inferior_registers (const struct regs_info *regs_info,
5798 struct regcache *regcache, int regno, int all)
5799 {
5800 struct usrregs_info *usr = regs_info->usrregs;
5801
5802 if (regno == -1)
5803 {
5804 for (regno = 0; regno < usr->num_regs; regno++)
5805 if (all || !linux_register_in_regsets (regs_info, regno))
5806 store_register (usr, regcache, regno);
5807 }
5808 else
5809 store_register (usr, regcache, regno);
5810 }
5811
5812 #else /* !HAVE_LINUX_USRREGS */
5813
5814 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5815 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5816
5817 #endif
5818
5819
5820 static void
5821 linux_fetch_registers (struct regcache *regcache, int regno)
5822 {
5823 int use_regsets;
5824 int all = 0;
5825 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5826
5827 if (regno == -1)
5828 {
5829 if (the_low_target.fetch_register != NULL
5830 && regs_info->usrregs != NULL)
5831 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5832 (*the_low_target.fetch_register) (regcache, regno);
5833
5834 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5835 if (regs_info->usrregs != NULL)
5836 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5837 }
5838 else
5839 {
5840 if (the_low_target.fetch_register != NULL
5841 && (*the_low_target.fetch_register) (regcache, regno))
5842 return;
5843
5844 use_regsets = linux_register_in_regsets (regs_info, regno);
5845 if (use_regsets)
5846 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5847 regcache);
5848 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5849 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5850 }
5851 }
5852
5853 static void
5854 linux_store_registers (struct regcache *regcache, int regno)
5855 {
5856 int use_regsets;
5857 int all = 0;
5858 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5859
5860 if (regno == -1)
5861 {
5862 all = regsets_store_inferior_registers (regs_info->regsets_info,
5863 regcache);
5864 if (regs_info->usrregs != NULL)
5865 usr_store_inferior_registers (regs_info, regcache, regno, all);
5866 }
5867 else
5868 {
5869 use_regsets = linux_register_in_regsets (regs_info, regno);
5870 if (use_regsets)
5871 all = regsets_store_inferior_registers (regs_info->regsets_info,
5872 regcache);
5873 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5874 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5875 }
5876 }
5877
5878
5879 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5880 to debugger memory starting at MYADDR. */
5881
5882 static int
5883 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5884 {
5885 int pid = lwpid_of (current_thread);
5886 PTRACE_XFER_TYPE *buffer;
5887 CORE_ADDR addr;
5888 int count;
5889 char filename[64];
5890 int i;
5891 int ret;
5892 int fd;
5893
5894 /* Try using /proc. Don't bother for one word. */
5895 if (len >= 3 * sizeof (long))
5896 {
5897 int bytes;
5898
5899 /* We could keep this file open and cache it - possibly one per
5900 thread. That requires some juggling, but is even faster. */
5901 sprintf (filename, "/proc/%d/mem", pid);
5902 fd = open (filename, O_RDONLY | O_LARGEFILE);
5903 if (fd == -1)
5904 goto no_proc;
5905
5906 /* If pread64 is available, use it. It's faster if the kernel
5907 supports it (only one syscall), and it's 64-bit safe even on
5908 32-bit platforms (for instance, SPARC debugging a SPARC64
5909 application). */
5910 #ifdef HAVE_PREAD64
5911 bytes = pread64 (fd, myaddr, len, memaddr);
5912 #else
5913 bytes = -1;
5914 if (lseek (fd, memaddr, SEEK_SET) != -1)
5915 bytes = read (fd, myaddr, len);
5916 #endif
5917
5918 close (fd);
5919 if (bytes == len)
5920 return 0;
5921
5922 /* Some data was read, we'll try to get the rest with ptrace. */
5923 if (bytes > 0)
5924 {
5925 memaddr += bytes;
5926 myaddr += bytes;
5927 len -= bytes;
5928 }
5929 }
5930
5931 no_proc:
5932 /* Round starting address down to longword boundary. */
5933 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5934 /* Round ending address up; get number of longwords that makes. */
5935 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5936 / sizeof (PTRACE_XFER_TYPE));
5937 /* Allocate buffer of that many longwords. */
5938 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5939
5940 /* Read all the longwords */
5941 errno = 0;
5942 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5943 {
5944 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5945 about coercing an 8 byte integer to a 4 byte pointer. */
5946 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5947 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5948 (PTRACE_TYPE_ARG4) 0);
5949 if (errno)
5950 break;
5951 }
5952 ret = errno;
5953
5954 /* Copy appropriate bytes out of the buffer. */
5955 if (i > 0)
5956 {
5957 i *= sizeof (PTRACE_XFER_TYPE);
5958 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5959 memcpy (myaddr,
5960 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5961 i < len ? i : len);
5962 }
5963
5964 return ret;
5965 }
5966
5967 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5968 memory at MEMADDR. On failure (cannot write to the inferior)
5969 returns the value of errno. Always succeeds if LEN is zero. */
5970
5971 static int
5972 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5973 {
5974 int i;
5975 /* Round starting address down to longword boundary. */
5976 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5977 /* Round ending address up; get number of longwords that makes. */
5978 int count
5979 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5980 / sizeof (PTRACE_XFER_TYPE);
5981
5982 /* Allocate buffer of that many longwords. */
5983 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5984
5985 int pid = lwpid_of (current_thread);
5986
5987 if (len == 0)
5988 {
5989 /* Zero length write always succeeds. */
5990 return 0;
5991 }
5992
5993 if (debug_threads)
5994 {
5995 /* Dump up to four bytes. */
5996 char str[4 * 2 + 1];
5997 char *p = str;
5998 int dump = len < 4 ? len : 4;
5999
6000 for (i = 0; i < dump; i++)
6001 {
6002 sprintf (p, "%02x", myaddr[i]);
6003 p += 2;
6004 }
6005 *p = '\0';
6006
6007 debug_printf ("Writing %s to 0x%08lx in process %d\n",
6008 str, (long) memaddr, pid);
6009 }
6010
6011 /* Fill start and end extra bytes of buffer with existing memory data. */
6012
6013 errno = 0;
6014 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
6015 about coercing an 8 byte integer to a 4 byte pointer. */
6016 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
6017 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6018 (PTRACE_TYPE_ARG4) 0);
6019 if (errno)
6020 return errno;
6021
6022 if (count > 1)
6023 {
6024 errno = 0;
6025 buffer[count - 1]
6026 = ptrace (PTRACE_PEEKTEXT, pid,
6027 /* Coerce to a uintptr_t first to avoid potential gcc warning
6028 about coercing an 8 byte integer to a 4 byte pointer. */
6029 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
6030 * sizeof (PTRACE_XFER_TYPE)),
6031 (PTRACE_TYPE_ARG4) 0);
6032 if (errno)
6033 return errno;
6034 }
6035
6036 /* Copy data to be written over corresponding part of buffer. */
6037
6038 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
6039 myaddr, len);
6040
6041 /* Write the entire buffer. */
6042
6043 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
6044 {
6045 errno = 0;
6046 ptrace (PTRACE_POKETEXT, pid,
6047 /* Coerce to a uintptr_t first to avoid potential gcc warning
6048 about coercing an 8 byte integer to a 4 byte pointer. */
6049 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6050 (PTRACE_TYPE_ARG4) buffer[i]);
6051 if (errno)
6052 return errno;
6053 }
6054
6055 return 0;
6056 }
6057
6058 static void
6059 linux_look_up_symbols (void)
6060 {
6061 #ifdef USE_THREAD_DB
6062 struct process_info *proc = current_process ();
6063
6064 if (proc->priv->thread_db != NULL)
6065 return;
6066
6067 thread_db_init ();
6068 #endif
6069 }
6070
6071 static void
6072 linux_request_interrupt (void)
6073 {
6074 /* Send a SIGINT to the process group. This acts just like the user
6075 typed a ^C on the controlling terminal. */
6076 kill (-signal_pid, SIGINT);
6077 }
6078
6079 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
6080 to debugger memory starting at MYADDR. */
6081
6082 static int
6083 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
6084 {
6085 char filename[PATH_MAX];
6086 int fd, n;
6087 int pid = lwpid_of (current_thread);
6088
6089 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6090
6091 fd = open (filename, O_RDONLY);
6092 if (fd < 0)
6093 return -1;
6094
6095 if (offset != (CORE_ADDR) 0
6096 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6097 n = -1;
6098 else
6099 n = read (fd, myaddr, len);
6100
6101 close (fd);
6102
6103 return n;
6104 }
6105
6106 /* These breakpoint and watchpoint related wrapper functions simply
6107 pass on the function call if the target has registered a
6108 corresponding function. */
6109
6110 static int
6111 linux_supports_z_point_type (char z_type)
6112 {
6113 return (the_low_target.supports_z_point_type != NULL
6114 && the_low_target.supports_z_point_type (z_type));
6115 }
6116
6117 static int
6118 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6119 int size, struct raw_breakpoint *bp)
6120 {
6121 if (type == raw_bkpt_type_sw)
6122 return insert_memory_breakpoint (bp);
6123 else if (the_low_target.insert_point != NULL)
6124 return the_low_target.insert_point (type, addr, size, bp);
6125 else
6126 /* Unsupported (see target.h). */
6127 return 1;
6128 }
6129
6130 static int
6131 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6132 int size, struct raw_breakpoint *bp)
6133 {
6134 if (type == raw_bkpt_type_sw)
6135 return remove_memory_breakpoint (bp);
6136 else if (the_low_target.remove_point != NULL)
6137 return the_low_target.remove_point (type, addr, size, bp);
6138 else
6139 /* Unsupported (see target.h). */
6140 return 1;
6141 }
6142
6143 /* Implement the to_stopped_by_sw_breakpoint target_ops
6144 method. */
6145
6146 static int
6147 linux_stopped_by_sw_breakpoint (void)
6148 {
6149 struct lwp_info *lwp = get_thread_lwp (current_thread);
6150
6151 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6152 }
6153
6154 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6155 method. */
6156
6157 static int
6158 linux_supports_stopped_by_sw_breakpoint (void)
6159 {
6160 return USE_SIGTRAP_SIGINFO;
6161 }
6162
6163 /* Implement the to_stopped_by_hw_breakpoint target_ops
6164 method. */
6165
6166 static int
6167 linux_stopped_by_hw_breakpoint (void)
6168 {
6169 struct lwp_info *lwp = get_thread_lwp (current_thread);
6170
6171 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6172 }
6173
6174 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6175 method. */
6176
6177 static int
6178 linux_supports_stopped_by_hw_breakpoint (void)
6179 {
6180 return USE_SIGTRAP_SIGINFO;
6181 }
6182
6183 /* Implement the supports_hardware_single_step target_ops method. */
6184
6185 static int
6186 linux_supports_hardware_single_step (void)
6187 {
6188 return can_hardware_single_step ();
6189 }
6190
6191 static int
6192 linux_supports_software_single_step (void)
6193 {
6194 return can_software_single_step ();
6195 }
6196
6197 static int
6198 linux_stopped_by_watchpoint (void)
6199 {
6200 struct lwp_info *lwp = get_thread_lwp (current_thread);
6201
6202 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6203 }
6204
6205 static CORE_ADDR
6206 linux_stopped_data_address (void)
6207 {
6208 struct lwp_info *lwp = get_thread_lwp (current_thread);
6209
6210 return lwp->stopped_data_address;
6211 }
6212
6213 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6214 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6215 && defined(PT_TEXT_END_ADDR)
6216
6217 /* This is only used for targets that define PT_TEXT_ADDR,
6218 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6219 the target has different ways of acquiring this information, like
6220 loadmaps. */
6221
6222 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6223 to tell gdb about. */
6224
6225 static int
6226 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6227 {
6228 unsigned long text, text_end, data;
6229 int pid = lwpid_of (current_thread);
6230
6231 errno = 0;
6232
6233 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6234 (PTRACE_TYPE_ARG4) 0);
6235 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6236 (PTRACE_TYPE_ARG4) 0);
6237 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6238 (PTRACE_TYPE_ARG4) 0);
6239
6240 if (errno == 0)
6241 {
6242 /* Both text and data offsets produced at compile-time (and so
6243 used by gdb) are relative to the beginning of the program,
6244 with the data segment immediately following the text segment.
6245 However, the actual runtime layout in memory may put the data
6246 somewhere else, so when we send gdb a data base-address, we
6247 use the real data base address and subtract the compile-time
6248 data base-address from it (which is just the length of the
6249 text segment). BSS immediately follows data in both
6250 cases. */
6251 *text_p = text;
6252 *data_p = data - (text_end - text);
6253
6254 return 1;
6255 }
6256 return 0;
6257 }
6258 #endif
6259
6260 static int
6261 linux_qxfer_osdata (const char *annex,
6262 unsigned char *readbuf, unsigned const char *writebuf,
6263 CORE_ADDR offset, int len)
6264 {
6265 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6266 }
6267
6268 /* Convert a native/host siginfo object, into/from the siginfo in the
6269 layout of the inferiors' architecture. */
6270
6271 static void
6272 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6273 {
6274 int done = 0;
6275
6276 if (the_low_target.siginfo_fixup != NULL)
6277 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6278
6279 /* If there was no callback, or the callback didn't do anything,
6280 then just do a straight memcpy. */
6281 if (!done)
6282 {
6283 if (direction == 1)
6284 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6285 else
6286 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6287 }
6288 }
6289
6290 static int
6291 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6292 unsigned const char *writebuf, CORE_ADDR offset, int len)
6293 {
6294 int pid;
6295 siginfo_t siginfo;
6296 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6297
6298 if (current_thread == NULL)
6299 return -1;
6300
6301 pid = lwpid_of (current_thread);
6302
6303 if (debug_threads)
6304 debug_printf ("%s siginfo for lwp %d.\n",
6305 readbuf != NULL ? "Reading" : "Writing",
6306 pid);
6307
6308 if (offset >= sizeof (siginfo))
6309 return -1;
6310
6311 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6312 return -1;
6313
6314 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6315 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6316 inferior with a 64-bit GDBSERVER should look the same as debugging it
6317 with a 32-bit GDBSERVER, we need to convert it. */
6318 siginfo_fixup (&siginfo, inf_siginfo, 0);
6319
6320 if (offset + len > sizeof (siginfo))
6321 len = sizeof (siginfo) - offset;
6322
6323 if (readbuf != NULL)
6324 memcpy (readbuf, inf_siginfo + offset, len);
6325 else
6326 {
6327 memcpy (inf_siginfo + offset, writebuf, len);
6328
6329 /* Convert back to ptrace layout before flushing it out. */
6330 siginfo_fixup (&siginfo, inf_siginfo, 1);
6331
6332 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6333 return -1;
6334 }
6335
6336 return len;
6337 }
6338
6339 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6340 so we notice when children change state; as the handler for the
6341 sigsuspend in my_waitpid. */
6342
6343 static void
6344 sigchld_handler (int signo)
6345 {
6346 int old_errno = errno;
6347
6348 if (debug_threads)
6349 {
6350 do
6351 {
6352 /* fprintf is not async-signal-safe, so call write
6353 directly. */
6354 if (write (2, "sigchld_handler\n",
6355 sizeof ("sigchld_handler\n") - 1) < 0)
6356 break; /* just ignore */
6357 } while (0);
6358 }
6359
6360 if (target_is_async_p ())
6361 async_file_mark (); /* trigger a linux_wait */
6362
6363 errno = old_errno;
6364 }
6365
6366 static int
6367 linux_supports_non_stop (void)
6368 {
6369 return 1;
6370 }
6371
6372 static int
6373 linux_async (int enable)
6374 {
6375 int previous = target_is_async_p ();
6376
6377 if (debug_threads)
6378 debug_printf ("linux_async (%d), previous=%d\n",
6379 enable, previous);
6380
6381 if (previous != enable)
6382 {
6383 sigset_t mask;
6384 sigemptyset (&mask);
6385 sigaddset (&mask, SIGCHLD);
6386
6387 sigprocmask (SIG_BLOCK, &mask, NULL);
6388
6389 if (enable)
6390 {
6391 if (pipe (linux_event_pipe) == -1)
6392 {
6393 linux_event_pipe[0] = -1;
6394 linux_event_pipe[1] = -1;
6395 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6396
6397 warning ("creating event pipe failed.");
6398 return previous;
6399 }
6400
6401 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6402 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6403
6404 /* Register the event loop handler. */
6405 add_file_handler (linux_event_pipe[0],
6406 handle_target_event, NULL);
6407
6408 /* Always trigger a linux_wait. */
6409 async_file_mark ();
6410 }
6411 else
6412 {
6413 delete_file_handler (linux_event_pipe[0]);
6414
6415 close (linux_event_pipe[0]);
6416 close (linux_event_pipe[1]);
6417 linux_event_pipe[0] = -1;
6418 linux_event_pipe[1] = -1;
6419 }
6420
6421 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6422 }
6423
6424 return previous;
6425 }
6426
6427 static int
6428 linux_start_non_stop (int nonstop)
6429 {
6430 /* Register or unregister from event-loop accordingly. */
6431 linux_async (nonstop);
6432
6433 if (target_is_async_p () != (nonstop != 0))
6434 return -1;
6435
6436 return 0;
6437 }
6438
6439 static int
6440 linux_supports_multi_process (void)
6441 {
6442 return 1;
6443 }
6444
6445 /* Check if fork events are supported. */
6446
6447 static int
6448 linux_supports_fork_events (void)
6449 {
6450 return linux_supports_tracefork ();
6451 }
6452
6453 /* Check if vfork events are supported. */
6454
6455 static int
6456 linux_supports_vfork_events (void)
6457 {
6458 return linux_supports_tracefork ();
6459 }
6460
6461 /* Check if exec events are supported. */
6462
6463 static int
6464 linux_supports_exec_events (void)
6465 {
6466 return linux_supports_traceexec ();
6467 }
6468
6469 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6470 options for the specified lwp. */
6471
6472 static int
6473 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6474 void *args)
6475 {
6476 struct thread_info *thread = (struct thread_info *) entry;
6477 struct lwp_info *lwp = get_thread_lwp (thread);
6478
6479 if (!lwp->stopped)
6480 {
6481 /* Stop the lwp so we can modify its ptrace options. */
6482 lwp->must_set_ptrace_flags = 1;
6483 linux_stop_lwp (lwp);
6484 }
6485 else
6486 {
6487 /* Already stopped; go ahead and set the ptrace options. */
6488 struct process_info *proc = find_process_pid (pid_of (thread));
6489 int options = linux_low_ptrace_options (proc->attached);
6490
6491 linux_enable_event_reporting (lwpid_of (thread), options);
6492 lwp->must_set_ptrace_flags = 0;
6493 }
6494
6495 return 0;
6496 }
6497
6498 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6499 ptrace flags for all inferiors. This is in case the new GDB connection
6500 doesn't support the same set of events that the previous one did. */
6501
6502 static void
6503 linux_handle_new_gdb_connection (void)
6504 {
6505 pid_t pid;
6506
6507 /* Request that all the lwps reset their ptrace options. */
6508 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6509 }
6510
6511 static int
6512 linux_supports_disable_randomization (void)
6513 {
6514 #ifdef HAVE_PERSONALITY
6515 return 1;
6516 #else
6517 return 0;
6518 #endif
6519 }
6520
6521 static int
6522 linux_supports_agent (void)
6523 {
6524 return 1;
6525 }
6526
6527 static int
6528 linux_supports_range_stepping (void)
6529 {
6530 if (can_software_single_step ())
6531 return 1;
6532 if (*the_low_target.supports_range_stepping == NULL)
6533 return 0;
6534
6535 return (*the_low_target.supports_range_stepping) ();
6536 }
6537
6538 /* Enumerate spufs IDs for process PID. */
6539 static int
6540 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6541 {
6542 int pos = 0;
6543 int written = 0;
6544 char path[128];
6545 DIR *dir;
6546 struct dirent *entry;
6547
6548 sprintf (path, "/proc/%ld/fd", pid);
6549 dir = opendir (path);
6550 if (!dir)
6551 return -1;
6552
6553 rewinddir (dir);
6554 while ((entry = readdir (dir)) != NULL)
6555 {
6556 struct stat st;
6557 struct statfs stfs;
6558 int fd;
6559
6560 fd = atoi (entry->d_name);
6561 if (!fd)
6562 continue;
6563
6564 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6565 if (stat (path, &st) != 0)
6566 continue;
6567 if (!S_ISDIR (st.st_mode))
6568 continue;
6569
6570 if (statfs (path, &stfs) != 0)
6571 continue;
6572 if (stfs.f_type != SPUFS_MAGIC)
6573 continue;
6574
6575 if (pos >= offset && pos + 4 <= offset + len)
6576 {
6577 *(unsigned int *)(buf + pos - offset) = fd;
6578 written += 4;
6579 }
6580 pos += 4;
6581 }
6582
6583 closedir (dir);
6584 return written;
6585 }
6586
6587 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6588 object type, using the /proc file system. */
6589 static int
6590 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6591 unsigned const char *writebuf,
6592 CORE_ADDR offset, int len)
6593 {
6594 long pid = lwpid_of (current_thread);
6595 char buf[128];
6596 int fd = 0;
6597 int ret = 0;
6598
6599 if (!writebuf && !readbuf)
6600 return -1;
6601
6602 if (!*annex)
6603 {
6604 if (!readbuf)
6605 return -1;
6606 else
6607 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6608 }
6609
6610 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6611 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6612 if (fd <= 0)
6613 return -1;
6614
6615 if (offset != 0
6616 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6617 {
6618 close (fd);
6619 return 0;
6620 }
6621
6622 if (writebuf)
6623 ret = write (fd, writebuf, (size_t) len);
6624 else
6625 ret = read (fd, readbuf, (size_t) len);
6626
6627 close (fd);
6628 return ret;
6629 }
6630
6631 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6632 struct target_loadseg
6633 {
6634 /* Core address to which the segment is mapped. */
6635 Elf32_Addr addr;
6636 /* VMA recorded in the program header. */
6637 Elf32_Addr p_vaddr;
6638 /* Size of this segment in memory. */
6639 Elf32_Word p_memsz;
6640 };
6641
6642 # if defined PT_GETDSBT
6643 struct target_loadmap
6644 {
6645 /* Protocol version number, must be zero. */
6646 Elf32_Word version;
6647 /* Pointer to the DSBT table, its size, and the DSBT index. */
6648 unsigned *dsbt_table;
6649 unsigned dsbt_size, dsbt_index;
6650 /* Number of segments in this map. */
6651 Elf32_Word nsegs;
6652 /* The actual memory map. */
6653 struct target_loadseg segs[/*nsegs*/];
6654 };
6655 # define LINUX_LOADMAP PT_GETDSBT
6656 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6657 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6658 # else
6659 struct target_loadmap
6660 {
6661 /* Protocol version number, must be zero. */
6662 Elf32_Half version;
6663 /* Number of segments in this map. */
6664 Elf32_Half nsegs;
6665 /* The actual memory map. */
6666 struct target_loadseg segs[/*nsegs*/];
6667 };
6668 # define LINUX_LOADMAP PTRACE_GETFDPIC
6669 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6670 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6671 # endif
6672
6673 static int
6674 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6675 unsigned char *myaddr, unsigned int len)
6676 {
6677 int pid = lwpid_of (current_thread);
6678 int addr = -1;
6679 struct target_loadmap *data = NULL;
6680 unsigned int actual_length, copy_length;
6681
6682 if (strcmp (annex, "exec") == 0)
6683 addr = (int) LINUX_LOADMAP_EXEC;
6684 else if (strcmp (annex, "interp") == 0)
6685 addr = (int) LINUX_LOADMAP_INTERP;
6686 else
6687 return -1;
6688
6689 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6690 return -1;
6691
6692 if (data == NULL)
6693 return -1;
6694
6695 actual_length = sizeof (struct target_loadmap)
6696 + sizeof (struct target_loadseg) * data->nsegs;
6697
6698 if (offset < 0 || offset > actual_length)
6699 return -1;
6700
6701 copy_length = actual_length - offset < len ? actual_length - offset : len;
6702 memcpy (myaddr, (char *) data + offset, copy_length);
6703 return copy_length;
6704 }
6705 #else
6706 # define linux_read_loadmap NULL
6707 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6708
6709 static void
6710 linux_process_qsupported (char **features, int count)
6711 {
6712 if (the_low_target.process_qsupported != NULL)
6713 the_low_target.process_qsupported (features, count);
6714 }
6715
6716 static int
6717 linux_supports_catch_syscall (void)
6718 {
6719 return (the_low_target.get_syscall_trapinfo != NULL
6720 && linux_supports_tracesysgood ());
6721 }
6722
6723 static int
6724 linux_get_ipa_tdesc_idx (void)
6725 {
6726 if (the_low_target.get_ipa_tdesc_idx == NULL)
6727 return 0;
6728
6729 return (*the_low_target.get_ipa_tdesc_idx) ();
6730 }
6731
6732 static int
6733 linux_supports_tracepoints (void)
6734 {
6735 if (*the_low_target.supports_tracepoints == NULL)
6736 return 0;
6737
6738 return (*the_low_target.supports_tracepoints) ();
6739 }
6740
6741 static CORE_ADDR
6742 linux_read_pc (struct regcache *regcache)
6743 {
6744 if (the_low_target.get_pc == NULL)
6745 return 0;
6746
6747 return (*the_low_target.get_pc) (regcache);
6748 }
6749
6750 static void
6751 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6752 {
6753 gdb_assert (the_low_target.set_pc != NULL);
6754
6755 (*the_low_target.set_pc) (regcache, pc);
6756 }
6757
6758 static int
6759 linux_thread_stopped (struct thread_info *thread)
6760 {
6761 return get_thread_lwp (thread)->stopped;
6762 }
6763
6764 /* This exposes stop-all-threads functionality to other modules. */
6765
6766 static void
6767 linux_pause_all (int freeze)
6768 {
6769 stop_all_lwps (freeze, NULL);
6770 }
6771
6772 /* This exposes unstop-all-threads functionality to other gdbserver
6773 modules. */
6774
6775 static void
6776 linux_unpause_all (int unfreeze)
6777 {
6778 unstop_all_lwps (unfreeze, NULL);
6779 }
6780
6781 static int
6782 linux_prepare_to_access_memory (void)
6783 {
6784 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6785 running LWP. */
6786 if (non_stop)
6787 linux_pause_all (1);
6788 return 0;
6789 }
6790
6791 static void
6792 linux_done_accessing_memory (void)
6793 {
6794 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6795 running LWP. */
6796 if (non_stop)
6797 linux_unpause_all (1);
6798 }
6799
6800 static int
6801 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6802 CORE_ADDR collector,
6803 CORE_ADDR lockaddr,
6804 ULONGEST orig_size,
6805 CORE_ADDR *jump_entry,
6806 CORE_ADDR *trampoline,
6807 ULONGEST *trampoline_size,
6808 unsigned char *jjump_pad_insn,
6809 ULONGEST *jjump_pad_insn_size,
6810 CORE_ADDR *adjusted_insn_addr,
6811 CORE_ADDR *adjusted_insn_addr_end,
6812 char *err)
6813 {
6814 return (*the_low_target.install_fast_tracepoint_jump_pad)
6815 (tpoint, tpaddr, collector, lockaddr, orig_size,
6816 jump_entry, trampoline, trampoline_size,
6817 jjump_pad_insn, jjump_pad_insn_size,
6818 adjusted_insn_addr, adjusted_insn_addr_end,
6819 err);
6820 }
6821
6822 static struct emit_ops *
6823 linux_emit_ops (void)
6824 {
6825 if (the_low_target.emit_ops != NULL)
6826 return (*the_low_target.emit_ops) ();
6827 else
6828 return NULL;
6829 }
6830
6831 static int
6832 linux_get_min_fast_tracepoint_insn_len (void)
6833 {
6834 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6835 }
6836
6837 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6838
6839 static int
6840 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6841 CORE_ADDR *phdr_memaddr, int *num_phdr)
6842 {
6843 char filename[PATH_MAX];
6844 int fd;
6845 const int auxv_size = is_elf64
6846 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6847 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6848
6849 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6850
6851 fd = open (filename, O_RDONLY);
6852 if (fd < 0)
6853 return 1;
6854
6855 *phdr_memaddr = 0;
6856 *num_phdr = 0;
6857 while (read (fd, buf, auxv_size) == auxv_size
6858 && (*phdr_memaddr == 0 || *num_phdr == 0))
6859 {
6860 if (is_elf64)
6861 {
6862 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6863
6864 switch (aux->a_type)
6865 {
6866 case AT_PHDR:
6867 *phdr_memaddr = aux->a_un.a_val;
6868 break;
6869 case AT_PHNUM:
6870 *num_phdr = aux->a_un.a_val;
6871 break;
6872 }
6873 }
6874 else
6875 {
6876 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6877
6878 switch (aux->a_type)
6879 {
6880 case AT_PHDR:
6881 *phdr_memaddr = aux->a_un.a_val;
6882 break;
6883 case AT_PHNUM:
6884 *num_phdr = aux->a_un.a_val;
6885 break;
6886 }
6887 }
6888 }
6889
6890 close (fd);
6891
6892 if (*phdr_memaddr == 0 || *num_phdr == 0)
6893 {
6894 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6895 "phdr_memaddr = %ld, phdr_num = %d",
6896 (long) *phdr_memaddr, *num_phdr);
6897 return 2;
6898 }
6899
6900 return 0;
6901 }
6902
6903 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6904
6905 static CORE_ADDR
6906 get_dynamic (const int pid, const int is_elf64)
6907 {
6908 CORE_ADDR phdr_memaddr, relocation;
6909 int num_phdr, i;
6910 unsigned char *phdr_buf;
6911 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6912
6913 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6914 return 0;
6915
6916 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6917 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6918
6919 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6920 return 0;
6921
6922 /* Compute relocation: it is expected to be 0 for "regular" executables,
6923 non-zero for PIE ones. */
6924 relocation = -1;
6925 for (i = 0; relocation == -1 && i < num_phdr; i++)
6926 if (is_elf64)
6927 {
6928 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6929
6930 if (p->p_type == PT_PHDR)
6931 relocation = phdr_memaddr - p->p_vaddr;
6932 }
6933 else
6934 {
6935 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6936
6937 if (p->p_type == PT_PHDR)
6938 relocation = phdr_memaddr - p->p_vaddr;
6939 }
6940
6941 if (relocation == -1)
6942 {
6943 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6944 any real world executables, including PIE executables, have always
6945 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6946 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6947 or present DT_DEBUG anyway (fpc binaries are statically linked).
6948
6949 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6950
6951 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6952
6953 return 0;
6954 }
6955
6956 for (i = 0; i < num_phdr; i++)
6957 {
6958 if (is_elf64)
6959 {
6960 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6961
6962 if (p->p_type == PT_DYNAMIC)
6963 return p->p_vaddr + relocation;
6964 }
6965 else
6966 {
6967 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6968
6969 if (p->p_type == PT_DYNAMIC)
6970 return p->p_vaddr + relocation;
6971 }
6972 }
6973
6974 return 0;
6975 }
6976
6977 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6978 can be 0 if the inferior does not yet have the library list initialized.
6979 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6980 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6981
6982 static CORE_ADDR
6983 get_r_debug (const int pid, const int is_elf64)
6984 {
6985 CORE_ADDR dynamic_memaddr;
6986 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6987 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6988 CORE_ADDR map = -1;
6989
6990 dynamic_memaddr = get_dynamic (pid, is_elf64);
6991 if (dynamic_memaddr == 0)
6992 return map;
6993
6994 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6995 {
6996 if (is_elf64)
6997 {
6998 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6999 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7000 union
7001 {
7002 Elf64_Xword map;
7003 unsigned char buf[sizeof (Elf64_Xword)];
7004 }
7005 rld_map;
7006 #endif
7007 #ifdef DT_MIPS_RLD_MAP
7008 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7009 {
7010 if (linux_read_memory (dyn->d_un.d_val,
7011 rld_map.buf, sizeof (rld_map.buf)) == 0)
7012 return rld_map.map;
7013 else
7014 break;
7015 }
7016 #endif /* DT_MIPS_RLD_MAP */
7017 #ifdef DT_MIPS_RLD_MAP_REL
7018 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7019 {
7020 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7021 rld_map.buf, sizeof (rld_map.buf)) == 0)
7022 return rld_map.map;
7023 else
7024 break;
7025 }
7026 #endif /* DT_MIPS_RLD_MAP_REL */
7027
7028 if (dyn->d_tag == DT_DEBUG && map == -1)
7029 map = dyn->d_un.d_val;
7030
7031 if (dyn->d_tag == DT_NULL)
7032 break;
7033 }
7034 else
7035 {
7036 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
7037 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7038 union
7039 {
7040 Elf32_Word map;
7041 unsigned char buf[sizeof (Elf32_Word)];
7042 }
7043 rld_map;
7044 #endif
7045 #ifdef DT_MIPS_RLD_MAP
7046 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7047 {
7048 if (linux_read_memory (dyn->d_un.d_val,
7049 rld_map.buf, sizeof (rld_map.buf)) == 0)
7050 return rld_map.map;
7051 else
7052 break;
7053 }
7054 #endif /* DT_MIPS_RLD_MAP */
7055 #ifdef DT_MIPS_RLD_MAP_REL
7056 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7057 {
7058 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7059 rld_map.buf, sizeof (rld_map.buf)) == 0)
7060 return rld_map.map;
7061 else
7062 break;
7063 }
7064 #endif /* DT_MIPS_RLD_MAP_REL */
7065
7066 if (dyn->d_tag == DT_DEBUG && map == -1)
7067 map = dyn->d_un.d_val;
7068
7069 if (dyn->d_tag == DT_NULL)
7070 break;
7071 }
7072
7073 dynamic_memaddr += dyn_size;
7074 }
7075
7076 return map;
7077 }
7078
7079 /* Read one pointer from MEMADDR in the inferior. */
7080
7081 static int
7082 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
7083 {
7084 int ret;
7085
7086 /* Go through a union so this works on either big or little endian
7087 hosts, when the inferior's pointer size is smaller than the size
7088 of CORE_ADDR. It is assumed the inferior's endianness is the
7089 same of the superior's. */
7090 union
7091 {
7092 CORE_ADDR core_addr;
7093 unsigned int ui;
7094 unsigned char uc;
7095 } addr;
7096
7097 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
7098 if (ret == 0)
7099 {
7100 if (ptr_size == sizeof (CORE_ADDR))
7101 *ptr = addr.core_addr;
7102 else if (ptr_size == sizeof (unsigned int))
7103 *ptr = addr.ui;
7104 else
7105 gdb_assert_not_reached ("unhandled pointer size");
7106 }
7107 return ret;
7108 }
7109
7110 struct link_map_offsets
7111 {
7112 /* Offset and size of r_debug.r_version. */
7113 int r_version_offset;
7114
7115 /* Offset and size of r_debug.r_map. */
7116 int r_map_offset;
7117
7118 /* Offset to l_addr field in struct link_map. */
7119 int l_addr_offset;
7120
7121 /* Offset to l_name field in struct link_map. */
7122 int l_name_offset;
7123
7124 /* Offset to l_ld field in struct link_map. */
7125 int l_ld_offset;
7126
7127 /* Offset to l_next field in struct link_map. */
7128 int l_next_offset;
7129
7130 /* Offset to l_prev field in struct link_map. */
7131 int l_prev_offset;
7132 };
7133
7134 /* Construct qXfer:libraries-svr4:read reply. */
7135
7136 static int
7137 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7138 unsigned const char *writebuf,
7139 CORE_ADDR offset, int len)
7140 {
7141 char *document;
7142 unsigned document_len;
7143 struct process_info_private *const priv = current_process ()->priv;
7144 char filename[PATH_MAX];
7145 int pid, is_elf64;
7146
7147 static const struct link_map_offsets lmo_32bit_offsets =
7148 {
7149 0, /* r_version offset. */
7150 4, /* r_debug.r_map offset. */
7151 0, /* l_addr offset in link_map. */
7152 4, /* l_name offset in link_map. */
7153 8, /* l_ld offset in link_map. */
7154 12, /* l_next offset in link_map. */
7155 16 /* l_prev offset in link_map. */
7156 };
7157
7158 static const struct link_map_offsets lmo_64bit_offsets =
7159 {
7160 0, /* r_version offset. */
7161 8, /* r_debug.r_map offset. */
7162 0, /* l_addr offset in link_map. */
7163 8, /* l_name offset in link_map. */
7164 16, /* l_ld offset in link_map. */
7165 24, /* l_next offset in link_map. */
7166 32 /* l_prev offset in link_map. */
7167 };
7168 const struct link_map_offsets *lmo;
7169 unsigned int machine;
7170 int ptr_size;
7171 CORE_ADDR lm_addr = 0, lm_prev = 0;
7172 int allocated = 1024;
7173 char *p;
7174 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7175 int header_done = 0;
7176
7177 if (writebuf != NULL)
7178 return -2;
7179 if (readbuf == NULL)
7180 return -1;
7181
7182 pid = lwpid_of (current_thread);
7183 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7184 is_elf64 = elf_64_file_p (filename, &machine);
7185 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7186 ptr_size = is_elf64 ? 8 : 4;
7187
7188 while (annex[0] != '\0')
7189 {
7190 const char *sep;
7191 CORE_ADDR *addrp;
7192 int len;
7193
7194 sep = strchr (annex, '=');
7195 if (sep == NULL)
7196 break;
7197
7198 len = sep - annex;
7199 if (len == 5 && startswith (annex, "start"))
7200 addrp = &lm_addr;
7201 else if (len == 4 && startswith (annex, "prev"))
7202 addrp = &lm_prev;
7203 else
7204 {
7205 annex = strchr (sep, ';');
7206 if (annex == NULL)
7207 break;
7208 annex++;
7209 continue;
7210 }
7211
7212 annex = decode_address_to_semicolon (addrp, sep + 1);
7213 }
7214
7215 if (lm_addr == 0)
7216 {
7217 int r_version = 0;
7218
7219 if (priv->r_debug == 0)
7220 priv->r_debug = get_r_debug (pid, is_elf64);
7221
7222 /* We failed to find DT_DEBUG. Such situation will not change
7223 for this inferior - do not retry it. Report it to GDB as
7224 E01, see for the reasons at the GDB solib-svr4.c side. */
7225 if (priv->r_debug == (CORE_ADDR) -1)
7226 return -1;
7227
7228 if (priv->r_debug != 0)
7229 {
7230 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7231 (unsigned char *) &r_version,
7232 sizeof (r_version)) != 0
7233 || r_version != 1)
7234 {
7235 warning ("unexpected r_debug version %d", r_version);
7236 }
7237 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7238 &lm_addr, ptr_size) != 0)
7239 {
7240 warning ("unable to read r_map from 0x%lx",
7241 (long) priv->r_debug + lmo->r_map_offset);
7242 }
7243 }
7244 }
7245
7246 document = (char *) xmalloc (allocated);
7247 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7248 p = document + strlen (document);
7249
7250 while (lm_addr
7251 && read_one_ptr (lm_addr + lmo->l_name_offset,
7252 &l_name, ptr_size) == 0
7253 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7254 &l_addr, ptr_size) == 0
7255 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7256 &l_ld, ptr_size) == 0
7257 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7258 &l_prev, ptr_size) == 0
7259 && read_one_ptr (lm_addr + lmo->l_next_offset,
7260 &l_next, ptr_size) == 0)
7261 {
7262 unsigned char libname[PATH_MAX];
7263
7264 if (lm_prev != l_prev)
7265 {
7266 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7267 (long) lm_prev, (long) l_prev);
7268 break;
7269 }
7270
7271 /* Ignore the first entry even if it has valid name as the first entry
7272 corresponds to the main executable. The first entry should not be
7273 skipped if the dynamic loader was loaded late by a static executable
7274 (see solib-svr4.c parameter ignore_first). But in such case the main
7275 executable does not have PT_DYNAMIC present and this function already
7276 exited above due to failed get_r_debug. */
7277 if (lm_prev == 0)
7278 {
7279 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7280 p = p + strlen (p);
7281 }
7282 else
7283 {
7284 /* Not checking for error because reading may stop before
7285 we've got PATH_MAX worth of characters. */
7286 libname[0] = '\0';
7287 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7288 libname[sizeof (libname) - 1] = '\0';
7289 if (libname[0] != '\0')
7290 {
7291 /* 6x the size for xml_escape_text below. */
7292 size_t len = 6 * strlen ((char *) libname);
7293
7294 if (!header_done)
7295 {
7296 /* Terminate `<library-list-svr4'. */
7297 *p++ = '>';
7298 header_done = 1;
7299 }
7300
7301 while (allocated < p - document + len + 200)
7302 {
7303 /* Expand to guarantee sufficient storage. */
7304 uintptr_t document_len = p - document;
7305
7306 document = (char *) xrealloc (document, 2 * allocated);
7307 allocated *= 2;
7308 p = document + document_len;
7309 }
7310
7311 std::string name = xml_escape_text ((char *) libname);
7312 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7313 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7314 name.c_str (), (unsigned long) lm_addr,
7315 (unsigned long) l_addr, (unsigned long) l_ld);
7316 }
7317 }
7318
7319 lm_prev = lm_addr;
7320 lm_addr = l_next;
7321 }
7322
7323 if (!header_done)
7324 {
7325 /* Empty list; terminate `<library-list-svr4'. */
7326 strcpy (p, "/>");
7327 }
7328 else
7329 strcpy (p, "</library-list-svr4>");
7330
7331 document_len = strlen (document);
7332 if (offset < document_len)
7333 document_len -= offset;
7334 else
7335 document_len = 0;
7336 if (len > document_len)
7337 len = document_len;
7338
7339 memcpy (readbuf, document + offset, len);
7340 xfree (document);
7341
7342 return len;
7343 }
7344
7345 #ifdef HAVE_LINUX_BTRACE
7346
7347 /* See to_disable_btrace target method. */
7348
7349 static int
7350 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7351 {
7352 enum btrace_error err;
7353
7354 err = linux_disable_btrace (tinfo);
7355 return (err == BTRACE_ERR_NONE ? 0 : -1);
7356 }
7357
7358 /* Encode an Intel Processor Trace configuration. */
7359
7360 static void
7361 linux_low_encode_pt_config (struct buffer *buffer,
7362 const struct btrace_data_pt_config *config)
7363 {
7364 buffer_grow_str (buffer, "<pt-config>\n");
7365
7366 switch (config->cpu.vendor)
7367 {
7368 case CV_INTEL:
7369 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7370 "model=\"%u\" stepping=\"%u\"/>\n",
7371 config->cpu.family, config->cpu.model,
7372 config->cpu.stepping);
7373 break;
7374
7375 default:
7376 break;
7377 }
7378
7379 buffer_grow_str (buffer, "</pt-config>\n");
7380 }
7381
7382 /* Encode a raw buffer. */
7383
7384 static void
7385 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7386 unsigned int size)
7387 {
7388 if (size == 0)
7389 return;
7390
7391 /* We use hex encoding - see common/rsp-low.h. */
7392 buffer_grow_str (buffer, "<raw>\n");
7393
7394 while (size-- > 0)
7395 {
7396 char elem[2];
7397
7398 elem[0] = tohex ((*data >> 4) & 0xf);
7399 elem[1] = tohex (*data++ & 0xf);
7400
7401 buffer_grow (buffer, elem, 2);
7402 }
7403
7404 buffer_grow_str (buffer, "</raw>\n");
7405 }
7406
7407 /* See to_read_btrace target method. */
7408
7409 static int
7410 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7411 enum btrace_read_type type)
7412 {
7413 struct btrace_data btrace;
7414 struct btrace_block *block;
7415 enum btrace_error err;
7416 int i;
7417
7418 btrace_data_init (&btrace);
7419
7420 err = linux_read_btrace (&btrace, tinfo, type);
7421 if (err != BTRACE_ERR_NONE)
7422 {
7423 if (err == BTRACE_ERR_OVERFLOW)
7424 buffer_grow_str0 (buffer, "E.Overflow.");
7425 else
7426 buffer_grow_str0 (buffer, "E.Generic Error.");
7427
7428 goto err;
7429 }
7430
7431 switch (btrace.format)
7432 {
7433 case BTRACE_FORMAT_NONE:
7434 buffer_grow_str0 (buffer, "E.No Trace.");
7435 goto err;
7436
7437 case BTRACE_FORMAT_BTS:
7438 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7439 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7440
7441 for (i = 0;
7442 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7443 i++)
7444 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7445 paddress (block->begin), paddress (block->end));
7446
7447 buffer_grow_str0 (buffer, "</btrace>\n");
7448 break;
7449
7450 case BTRACE_FORMAT_PT:
7451 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7452 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7453 buffer_grow_str (buffer, "<pt>\n");
7454
7455 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7456
7457 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7458 btrace.variant.pt.size);
7459
7460 buffer_grow_str (buffer, "</pt>\n");
7461 buffer_grow_str0 (buffer, "</btrace>\n");
7462 break;
7463
7464 default:
7465 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7466 goto err;
7467 }
7468
7469 btrace_data_fini (&btrace);
7470 return 0;
7471
7472 err:
7473 btrace_data_fini (&btrace);
7474 return -1;
7475 }
7476
7477 /* See to_btrace_conf target method. */
7478
7479 static int
7480 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7481 struct buffer *buffer)
7482 {
7483 const struct btrace_config *conf;
7484
7485 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7486 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7487
7488 conf = linux_btrace_conf (tinfo);
7489 if (conf != NULL)
7490 {
7491 switch (conf->format)
7492 {
7493 case BTRACE_FORMAT_NONE:
7494 break;
7495
7496 case BTRACE_FORMAT_BTS:
7497 buffer_xml_printf (buffer, "<bts");
7498 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7499 buffer_xml_printf (buffer, " />\n");
7500 break;
7501
7502 case BTRACE_FORMAT_PT:
7503 buffer_xml_printf (buffer, "<pt");
7504 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7505 buffer_xml_printf (buffer, "/>\n");
7506 break;
7507 }
7508 }
7509
7510 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7511 return 0;
7512 }
7513 #endif /* HAVE_LINUX_BTRACE */
7514
7515 /* See nat/linux-nat.h. */
7516
7517 ptid_t
7518 current_lwp_ptid (void)
7519 {
7520 return ptid_of (current_thread);
7521 }
7522
7523 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7524
7525 static int
7526 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7527 {
7528 if (the_low_target.breakpoint_kind_from_pc != NULL)
7529 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7530 else
7531 return default_breakpoint_kind_from_pc (pcptr);
7532 }
7533
7534 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7535
7536 static const gdb_byte *
7537 linux_sw_breakpoint_from_kind (int kind, int *size)
7538 {
7539 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7540
7541 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7542 }
7543
7544 /* Implementation of the target_ops method
7545 "breakpoint_kind_from_current_state". */
7546
7547 static int
7548 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7549 {
7550 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7551 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7552 else
7553 return linux_breakpoint_kind_from_pc (pcptr);
7554 }
7555
7556 /* Default implementation of linux_target_ops method "set_pc" for
7557 32-bit pc register which is literally named "pc". */
7558
7559 void
7560 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7561 {
7562 uint32_t newpc = pc;
7563
7564 supply_register_by_name (regcache, "pc", &newpc);
7565 }
7566
7567 /* Default implementation of linux_target_ops method "get_pc" for
7568 32-bit pc register which is literally named "pc". */
7569
7570 CORE_ADDR
7571 linux_get_pc_32bit (struct regcache *regcache)
7572 {
7573 uint32_t pc;
7574
7575 collect_register_by_name (regcache, "pc", &pc);
7576 if (debug_threads)
7577 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7578 return pc;
7579 }
7580
7581 /* Default implementation of linux_target_ops method "set_pc" for
7582 64-bit pc register which is literally named "pc". */
7583
7584 void
7585 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7586 {
7587 uint64_t newpc = pc;
7588
7589 supply_register_by_name (regcache, "pc", &newpc);
7590 }
7591
7592 /* Default implementation of linux_target_ops method "get_pc" for
7593 64-bit pc register which is literally named "pc". */
7594
7595 CORE_ADDR
7596 linux_get_pc_64bit (struct regcache *regcache)
7597 {
7598 uint64_t pc;
7599
7600 collect_register_by_name (regcache, "pc", &pc);
7601 if (debug_threads)
7602 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7603 return pc;
7604 }
7605
7606
7607 static struct target_ops linux_target_ops = {
7608 linux_create_inferior,
7609 linux_post_create_inferior,
7610 linux_attach,
7611 linux_kill,
7612 linux_detach,
7613 linux_mourn,
7614 linux_join,
7615 linux_thread_alive,
7616 linux_resume,
7617 linux_wait,
7618 linux_fetch_registers,
7619 linux_store_registers,
7620 linux_prepare_to_access_memory,
7621 linux_done_accessing_memory,
7622 linux_read_memory,
7623 linux_write_memory,
7624 linux_look_up_symbols,
7625 linux_request_interrupt,
7626 linux_read_auxv,
7627 linux_supports_z_point_type,
7628 linux_insert_point,
7629 linux_remove_point,
7630 linux_stopped_by_sw_breakpoint,
7631 linux_supports_stopped_by_sw_breakpoint,
7632 linux_stopped_by_hw_breakpoint,
7633 linux_supports_stopped_by_hw_breakpoint,
7634 linux_supports_hardware_single_step,
7635 linux_stopped_by_watchpoint,
7636 linux_stopped_data_address,
7637 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7638 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7639 && defined(PT_TEXT_END_ADDR)
7640 linux_read_offsets,
7641 #else
7642 NULL,
7643 #endif
7644 #ifdef USE_THREAD_DB
7645 thread_db_get_tls_address,
7646 #else
7647 NULL,
7648 #endif
7649 linux_qxfer_spu,
7650 hostio_last_error_from_errno,
7651 linux_qxfer_osdata,
7652 linux_xfer_siginfo,
7653 linux_supports_non_stop,
7654 linux_async,
7655 linux_start_non_stop,
7656 linux_supports_multi_process,
7657 linux_supports_fork_events,
7658 linux_supports_vfork_events,
7659 linux_supports_exec_events,
7660 linux_handle_new_gdb_connection,
7661 #ifdef USE_THREAD_DB
7662 thread_db_handle_monitor_command,
7663 #else
7664 NULL,
7665 #endif
7666 linux_common_core_of_thread,
7667 linux_read_loadmap,
7668 linux_process_qsupported,
7669 linux_supports_tracepoints,
7670 linux_read_pc,
7671 linux_write_pc,
7672 linux_thread_stopped,
7673 NULL,
7674 linux_pause_all,
7675 linux_unpause_all,
7676 linux_stabilize_threads,
7677 linux_install_fast_tracepoint_jump_pad,
7678 linux_emit_ops,
7679 linux_supports_disable_randomization,
7680 linux_get_min_fast_tracepoint_insn_len,
7681 linux_qxfer_libraries_svr4,
7682 linux_supports_agent,
7683 #ifdef HAVE_LINUX_BTRACE
7684 linux_supports_btrace,
7685 linux_enable_btrace,
7686 linux_low_disable_btrace,
7687 linux_low_read_btrace,
7688 linux_low_btrace_conf,
7689 #else
7690 NULL,
7691 NULL,
7692 NULL,
7693 NULL,
7694 NULL,
7695 #endif
7696 linux_supports_range_stepping,
7697 linux_proc_pid_to_exec_file,
7698 linux_mntns_open_cloexec,
7699 linux_mntns_unlink,
7700 linux_mntns_readlink,
7701 linux_breakpoint_kind_from_pc,
7702 linux_sw_breakpoint_from_kind,
7703 linux_proc_tid_get_name,
7704 linux_breakpoint_kind_from_current_state,
7705 linux_supports_software_single_step,
7706 linux_supports_catch_syscall,
7707 linux_get_ipa_tdesc_idx,
7708 #if USE_THREAD_DB
7709 thread_db_thread_handle,
7710 #else
7711 NULL,
7712 #endif
7713 };
7714
7715 #ifdef HAVE_LINUX_REGSETS
7716 void
7717 initialize_regsets_info (struct regsets_info *info)
7718 {
7719 for (info->num_regsets = 0;
7720 info->regsets[info->num_regsets].size >= 0;
7721 info->num_regsets++)
7722 ;
7723 }
7724 #endif
7725
7726 void
7727 initialize_low (void)
7728 {
7729 struct sigaction sigchld_action;
7730
7731 memset (&sigchld_action, 0, sizeof (sigchld_action));
7732 set_target_ops (&linux_target_ops);
7733
7734 linux_ptrace_init_warnings ();
7735
7736 sigchld_action.sa_handler = sigchld_handler;
7737 sigemptyset (&sigchld_action.sa_mask);
7738 sigchld_action.sa_flags = SA_RESTART;
7739 sigaction (SIGCHLD, &sigchld_action, NULL);
7740
7741 initialize_low_arch ();
7742
7743 linux_check_ptrace_features ();
7744 }
This page took 0.183093 seconds and 5 git commands to generate.