f09871ac36fc9fad0451056daa36b547dbe32743
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-x86-low.c
1 /* GNU/Linux/x86-64 specific low level interface, for the remote server
2 for GDB.
3 Copyright (C) 2002-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include <signal.h>
22 #include <limits.h>
23 #include <inttypes.h>
24 #include "linux-low.h"
25 #include "i387-fp.h"
26 #include "x86-low.h"
27 #include "x86-xstate.h"
28 #include "nat/gdb_ptrace.h"
29
30 #ifdef __x86_64__
31 #include "nat/amd64-linux-siginfo.h"
32 #endif
33
34 #include "gdb_proc_service.h"
35 /* Don't include elf/common.h if linux/elf.h got included by
36 gdb_proc_service.h. */
37 #ifndef ELFMAG0
38 #include "elf/common.h"
39 #endif
40
41 #include "agent.h"
42 #include "tdesc.h"
43 #include "tracepoint.h"
44 #include "ax.h"
45 #include "nat/linux-nat.h"
46 #include "nat/x86-linux.h"
47 #include "nat/x86-linux-dregs.h"
48 #include "linux-x86-tdesc.h"
49
50 #ifdef __x86_64__
51 static struct target_desc *tdesc_amd64_linux_no_xml;
52 #endif
53 static struct target_desc *tdesc_i386_linux_no_xml;
54
55
56 static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
57 static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
58
59 /* Backward compatibility for gdb without XML support. */
60
61 static const char *xmltarget_i386_linux_no_xml = "@<target>\
62 <architecture>i386</architecture>\
63 <osabi>GNU/Linux</osabi>\
64 </target>";
65
66 #ifdef __x86_64__
67 static const char *xmltarget_amd64_linux_no_xml = "@<target>\
68 <architecture>i386:x86-64</architecture>\
69 <osabi>GNU/Linux</osabi>\
70 </target>";
71 #endif
72
73 #include <sys/reg.h>
74 #include <sys/procfs.h>
75 #include "nat/gdb_ptrace.h"
76 #include <sys/uio.h>
77
78 #ifndef PTRACE_GET_THREAD_AREA
79 #define PTRACE_GET_THREAD_AREA 25
80 #endif
81
82 /* This definition comes from prctl.h, but some kernels may not have it. */
83 #ifndef PTRACE_ARCH_PRCTL
84 #define PTRACE_ARCH_PRCTL 30
85 #endif
86
87 /* The following definitions come from prctl.h, but may be absent
88 for certain configurations. */
89 #ifndef ARCH_GET_FS
90 #define ARCH_SET_GS 0x1001
91 #define ARCH_SET_FS 0x1002
92 #define ARCH_GET_FS 0x1003
93 #define ARCH_GET_GS 0x1004
94 #endif
95
96 /* Per-process arch-specific data we want to keep. */
97
98 struct arch_process_info
99 {
100 struct x86_debug_reg_state debug_reg_state;
101 };
102
103 #ifdef __x86_64__
104
105 /* Mapping between the general-purpose registers in `struct user'
106 format and GDB's register array layout.
107 Note that the transfer layout uses 64-bit regs. */
108 static /*const*/ int i386_regmap[] =
109 {
110 RAX * 8, RCX * 8, RDX * 8, RBX * 8,
111 RSP * 8, RBP * 8, RSI * 8, RDI * 8,
112 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
113 DS * 8, ES * 8, FS * 8, GS * 8
114 };
115
116 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
117
118 /* So code below doesn't have to care, i386 or amd64. */
119 #define ORIG_EAX ORIG_RAX
120 #define REGSIZE 8
121
122 static const int x86_64_regmap[] =
123 {
124 RAX * 8, RBX * 8, RCX * 8, RDX * 8,
125 RSI * 8, RDI * 8, RBP * 8, RSP * 8,
126 R8 * 8, R9 * 8, R10 * 8, R11 * 8,
127 R12 * 8, R13 * 8, R14 * 8, R15 * 8,
128 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
129 DS * 8, ES * 8, FS * 8, GS * 8,
130 -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1,
133 -1,
134 -1, -1, -1, -1, -1, -1, -1, -1,
135 ORIG_RAX * 8,
136 #ifdef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
137 21 * 8, 22 * 8,
138 #else
139 -1, -1,
140 #endif
141 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
142 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
143 -1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
144 -1, -1, -1, -1, -1, -1, -1, -1,
145 -1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
146 -1, -1, -1, -1, -1, -1, -1, -1,
147 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
148 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
149 -1, -1, -1, -1, -1, -1, -1, -1,
150 -1, -1, -1, -1, -1, -1, -1, -1,
151 -1, -1, -1, -1, -1, -1, -1, -1,
152 -1 /* pkru */
153 };
154
155 #define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
156 #define X86_64_USER_REGS (GS + 1)
157
158 #else /* ! __x86_64__ */
159
160 /* Mapping between the general-purpose registers in `struct user'
161 format and GDB's register array layout. */
162 static /*const*/ int i386_regmap[] =
163 {
164 EAX * 4, ECX * 4, EDX * 4, EBX * 4,
165 UESP * 4, EBP * 4, ESI * 4, EDI * 4,
166 EIP * 4, EFL * 4, CS * 4, SS * 4,
167 DS * 4, ES * 4, FS * 4, GS * 4
168 };
169
170 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
171
172 #define REGSIZE 4
173
174 #endif
175
176 #ifdef __x86_64__
177
178 /* Returns true if the current inferior belongs to a x86-64 process,
179 per the tdesc. */
180
181 static int
182 is_64bit_tdesc (void)
183 {
184 struct regcache *regcache = get_thread_regcache (current_thread, 0);
185
186 return register_size (regcache->tdesc, 0) == 8;
187 }
188
189 #endif
190
191 \f
192 /* Called by libthread_db. */
193
194 ps_err_e
195 ps_get_thread_area (struct ps_prochandle *ph,
196 lwpid_t lwpid, int idx, void **base)
197 {
198 #ifdef __x86_64__
199 int use_64bit = is_64bit_tdesc ();
200
201 if (use_64bit)
202 {
203 switch (idx)
204 {
205 case FS:
206 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
207 return PS_OK;
208 break;
209 case GS:
210 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
211 return PS_OK;
212 break;
213 default:
214 return PS_BADADDR;
215 }
216 return PS_ERR;
217 }
218 #endif
219
220 {
221 unsigned int desc[4];
222
223 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
224 (void *) (intptr_t) idx, (unsigned long) &desc) < 0)
225 return PS_ERR;
226
227 /* Ensure we properly extend the value to 64-bits for x86_64. */
228 *base = (void *) (uintptr_t) desc[1];
229 return PS_OK;
230 }
231 }
232
233 /* Get the thread area address. This is used to recognize which
234 thread is which when tracing with the in-process agent library. We
235 don't read anything from the address, and treat it as opaque; it's
236 the address itself that we assume is unique per-thread. */
237
238 static int
239 x86_get_thread_area (int lwpid, CORE_ADDR *addr)
240 {
241 #ifdef __x86_64__
242 int use_64bit = is_64bit_tdesc ();
243
244 if (use_64bit)
245 {
246 void *base;
247 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
248 {
249 *addr = (CORE_ADDR) (uintptr_t) base;
250 return 0;
251 }
252
253 return -1;
254 }
255 #endif
256
257 {
258 struct lwp_info *lwp = find_lwp_pid (pid_to_ptid (lwpid));
259 struct thread_info *thr = get_lwp_thread (lwp);
260 struct regcache *regcache = get_thread_regcache (thr, 1);
261 unsigned int desc[4];
262 ULONGEST gs = 0;
263 const int reg_thread_area = 3; /* bits to scale down register value. */
264 int idx;
265
266 collect_register_by_name (regcache, "gs", &gs);
267
268 idx = gs >> reg_thread_area;
269
270 if (ptrace (PTRACE_GET_THREAD_AREA,
271 lwpid_of (thr),
272 (void *) (long) idx, (unsigned long) &desc) < 0)
273 return -1;
274
275 *addr = desc[1];
276 return 0;
277 }
278 }
279
280
281 \f
282 static int
283 x86_cannot_store_register (int regno)
284 {
285 #ifdef __x86_64__
286 if (is_64bit_tdesc ())
287 return 0;
288 #endif
289
290 return regno >= I386_NUM_REGS;
291 }
292
293 static int
294 x86_cannot_fetch_register (int regno)
295 {
296 #ifdef __x86_64__
297 if (is_64bit_tdesc ())
298 return 0;
299 #endif
300
301 return regno >= I386_NUM_REGS;
302 }
303
304 static void
305 x86_fill_gregset (struct regcache *regcache, void *buf)
306 {
307 int i;
308
309 #ifdef __x86_64__
310 if (register_size (regcache->tdesc, 0) == 8)
311 {
312 for (i = 0; i < X86_64_NUM_REGS; i++)
313 if (x86_64_regmap[i] != -1)
314 collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
315
316 #ifndef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
317 {
318 unsigned long base;
319 int lwpid = lwpid_of (current_thread);
320
321 collect_register_by_name (regcache, "fs_base", &base);
322 ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_SET_FS);
323
324 collect_register_by_name (regcache, "gs_base", &base);
325 ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_SET_GS);
326 }
327 #endif
328
329 return;
330 }
331
332 /* 32-bit inferior registers need to be zero-extended.
333 Callers would read uninitialized memory otherwise. */
334 memset (buf, 0x00, X86_64_USER_REGS * 8);
335 #endif
336
337 for (i = 0; i < I386_NUM_REGS; i++)
338 collect_register (regcache, i, ((char *) buf) + i386_regmap[i]);
339
340 collect_register_by_name (regcache, "orig_eax",
341 ((char *) buf) + ORIG_EAX * REGSIZE);
342 }
343
344 static void
345 x86_store_gregset (struct regcache *regcache, const void *buf)
346 {
347 int i;
348
349 #ifdef __x86_64__
350 if (register_size (regcache->tdesc, 0) == 8)
351 {
352 for (i = 0; i < X86_64_NUM_REGS; i++)
353 if (x86_64_regmap[i] != -1)
354 supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
355
356 #ifndef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
357 {
358 unsigned long base;
359 int lwpid = lwpid_of (current_thread);
360
361 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
362 supply_register_by_name (regcache, "fs_base", &base);
363
364 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_GS) == 0)
365 supply_register_by_name (regcache, "gs_base", &base);
366 }
367 #endif
368 return;
369 }
370 #endif
371
372 for (i = 0; i < I386_NUM_REGS; i++)
373 supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
374
375 supply_register_by_name (regcache, "orig_eax",
376 ((char *) buf) + ORIG_EAX * REGSIZE);
377 }
378
379 static void
380 x86_fill_fpregset (struct regcache *regcache, void *buf)
381 {
382 #ifdef __x86_64__
383 i387_cache_to_fxsave (regcache, buf);
384 #else
385 i387_cache_to_fsave (regcache, buf);
386 #endif
387 }
388
389 static void
390 x86_store_fpregset (struct regcache *regcache, const void *buf)
391 {
392 #ifdef __x86_64__
393 i387_fxsave_to_cache (regcache, buf);
394 #else
395 i387_fsave_to_cache (regcache, buf);
396 #endif
397 }
398
399 #ifndef __x86_64__
400
401 static void
402 x86_fill_fpxregset (struct regcache *regcache, void *buf)
403 {
404 i387_cache_to_fxsave (regcache, buf);
405 }
406
407 static void
408 x86_store_fpxregset (struct regcache *regcache, const void *buf)
409 {
410 i387_fxsave_to_cache (regcache, buf);
411 }
412
413 #endif
414
415 static void
416 x86_fill_xstateregset (struct regcache *regcache, void *buf)
417 {
418 i387_cache_to_xsave (regcache, buf);
419 }
420
421 static void
422 x86_store_xstateregset (struct regcache *regcache, const void *buf)
423 {
424 i387_xsave_to_cache (regcache, buf);
425 }
426
427 /* ??? The non-biarch i386 case stores all the i387 regs twice.
428 Once in i387_.*fsave.* and once in i387_.*fxsave.*.
429 This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
430 doesn't work. IWBN to avoid the duplication in the case where it
431 does work. Maybe the arch_setup routine could check whether it works
432 and update the supported regsets accordingly. */
433
434 static struct regset_info x86_regsets[] =
435 {
436 #ifdef HAVE_PTRACE_GETREGS
437 { PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
438 GENERAL_REGS,
439 x86_fill_gregset, x86_store_gregset },
440 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
441 EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
442 # ifndef __x86_64__
443 # ifdef HAVE_PTRACE_GETFPXREGS
444 { PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
445 EXTENDED_REGS,
446 x86_fill_fpxregset, x86_store_fpxregset },
447 # endif
448 # endif
449 { PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
450 FP_REGS,
451 x86_fill_fpregset, x86_store_fpregset },
452 #endif /* HAVE_PTRACE_GETREGS */
453 NULL_REGSET
454 };
455
456 static CORE_ADDR
457 x86_get_pc (struct regcache *regcache)
458 {
459 int use_64bit = register_size (regcache->tdesc, 0) == 8;
460
461 if (use_64bit)
462 {
463 uint64_t pc;
464
465 collect_register_by_name (regcache, "rip", &pc);
466 return (CORE_ADDR) pc;
467 }
468 else
469 {
470 uint32_t pc;
471
472 collect_register_by_name (regcache, "eip", &pc);
473 return (CORE_ADDR) pc;
474 }
475 }
476
477 static void
478 x86_set_pc (struct regcache *regcache, CORE_ADDR pc)
479 {
480 int use_64bit = register_size (regcache->tdesc, 0) == 8;
481
482 if (use_64bit)
483 {
484 uint64_t newpc = pc;
485
486 supply_register_by_name (regcache, "rip", &newpc);
487 }
488 else
489 {
490 uint32_t newpc = pc;
491
492 supply_register_by_name (regcache, "eip", &newpc);
493 }
494 }
495 \f
496 static const gdb_byte x86_breakpoint[] = { 0xCC };
497 #define x86_breakpoint_len 1
498
499 static int
500 x86_breakpoint_at (CORE_ADDR pc)
501 {
502 unsigned char c;
503
504 (*the_target->read_memory) (pc, &c, 1);
505 if (c == 0xCC)
506 return 1;
507
508 return 0;
509 }
510 \f
511 /* Low-level function vector. */
512 struct x86_dr_low_type x86_dr_low =
513 {
514 x86_linux_dr_set_control,
515 x86_linux_dr_set_addr,
516 x86_linux_dr_get_addr,
517 x86_linux_dr_get_status,
518 x86_linux_dr_get_control,
519 sizeof (void *),
520 };
521 \f
522 /* Breakpoint/Watchpoint support. */
523
524 static int
525 x86_supports_z_point_type (char z_type)
526 {
527 switch (z_type)
528 {
529 case Z_PACKET_SW_BP:
530 case Z_PACKET_HW_BP:
531 case Z_PACKET_WRITE_WP:
532 case Z_PACKET_ACCESS_WP:
533 return 1;
534 default:
535 return 0;
536 }
537 }
538
539 static int
540 x86_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
541 int size, struct raw_breakpoint *bp)
542 {
543 struct process_info *proc = current_process ();
544
545 switch (type)
546 {
547 case raw_bkpt_type_hw:
548 case raw_bkpt_type_write_wp:
549 case raw_bkpt_type_access_wp:
550 {
551 enum target_hw_bp_type hw_type
552 = raw_bkpt_type_to_target_hw_bp_type (type);
553 struct x86_debug_reg_state *state
554 = &proc->priv->arch_private->debug_reg_state;
555
556 return x86_dr_insert_watchpoint (state, hw_type, addr, size);
557 }
558
559 default:
560 /* Unsupported. */
561 return 1;
562 }
563 }
564
565 static int
566 x86_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
567 int size, struct raw_breakpoint *bp)
568 {
569 struct process_info *proc = current_process ();
570
571 switch (type)
572 {
573 case raw_bkpt_type_hw:
574 case raw_bkpt_type_write_wp:
575 case raw_bkpt_type_access_wp:
576 {
577 enum target_hw_bp_type hw_type
578 = raw_bkpt_type_to_target_hw_bp_type (type);
579 struct x86_debug_reg_state *state
580 = &proc->priv->arch_private->debug_reg_state;
581
582 return x86_dr_remove_watchpoint (state, hw_type, addr, size);
583 }
584 default:
585 /* Unsupported. */
586 return 1;
587 }
588 }
589
590 static int
591 x86_stopped_by_watchpoint (void)
592 {
593 struct process_info *proc = current_process ();
594 return x86_dr_stopped_by_watchpoint (&proc->priv->arch_private->debug_reg_state);
595 }
596
597 static CORE_ADDR
598 x86_stopped_data_address (void)
599 {
600 struct process_info *proc = current_process ();
601 CORE_ADDR addr;
602 if (x86_dr_stopped_data_address (&proc->priv->arch_private->debug_reg_state,
603 &addr))
604 return addr;
605 return 0;
606 }
607 \f
608 /* Called when a new process is created. */
609
610 static struct arch_process_info *
611 x86_linux_new_process (void)
612 {
613 struct arch_process_info *info = XCNEW (struct arch_process_info);
614
615 x86_low_init_dregs (&info->debug_reg_state);
616
617 return info;
618 }
619
620 /* Target routine for linux_new_fork. */
621
622 static void
623 x86_linux_new_fork (struct process_info *parent, struct process_info *child)
624 {
625 /* These are allocated by linux_add_process. */
626 gdb_assert (parent->priv != NULL
627 && parent->priv->arch_private != NULL);
628 gdb_assert (child->priv != NULL
629 && child->priv->arch_private != NULL);
630
631 /* Linux kernel before 2.6.33 commit
632 72f674d203cd230426437cdcf7dd6f681dad8b0d
633 will inherit hardware debug registers from parent
634 on fork/vfork/clone. Newer Linux kernels create such tasks with
635 zeroed debug registers.
636
637 GDB core assumes the child inherits the watchpoints/hw
638 breakpoints of the parent, and will remove them all from the
639 forked off process. Copy the debug registers mirrors into the
640 new process so that all breakpoints and watchpoints can be
641 removed together. The debug registers mirror will become zeroed
642 in the end before detaching the forked off process, thus making
643 this compatible with older Linux kernels too. */
644
645 *child->priv->arch_private = *parent->priv->arch_private;
646 }
647
648 /* See nat/x86-dregs.h. */
649
650 struct x86_debug_reg_state *
651 x86_debug_reg_state (pid_t pid)
652 {
653 struct process_info *proc = find_process_pid (pid);
654
655 return &proc->priv->arch_private->debug_reg_state;
656 }
657 \f
658 /* When GDBSERVER is built as a 64-bit application on linux, the
659 PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
660 debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
661 as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
662 conversion in-place ourselves. */
663
664 /* Convert a ptrace/host siginfo object, into/from the siginfo in the
665 layout of the inferiors' architecture. Returns true if any
666 conversion was done; false otherwise. If DIRECTION is 1, then copy
667 from INF to PTRACE. If DIRECTION is 0, copy from PTRACE to
668 INF. */
669
670 static int
671 x86_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
672 {
673 #ifdef __x86_64__
674 unsigned int machine;
675 int tid = lwpid_of (current_thread);
676 int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
677
678 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
679 if (!is_64bit_tdesc ())
680 return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
681 FIXUP_32);
682 /* No fixup for native x32 GDB. */
683 else if (!is_elf64 && sizeof (void *) == 8)
684 return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
685 FIXUP_X32);
686 #endif
687
688 return 0;
689 }
690 \f
691 static int use_xml;
692
693 /* Format of XSAVE extended state is:
694 struct
695 {
696 fxsave_bytes[0..463]
697 sw_usable_bytes[464..511]
698 xstate_hdr_bytes[512..575]
699 avx_bytes[576..831]
700 future_state etc
701 };
702
703 Same memory layout will be used for the coredump NT_X86_XSTATE
704 representing the XSAVE extended state registers.
705
706 The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
707 extended state mask, which is the same as the extended control register
708 0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
709 together with the mask saved in the xstate_hdr_bytes to determine what
710 states the processor/OS supports and what state, used or initialized,
711 the process/thread is in. */
712 #define I386_LINUX_XSAVE_XCR0_OFFSET 464
713
714 /* Does the current host support the GETFPXREGS request? The header
715 file may or may not define it, and even if it is defined, the
716 kernel will return EIO if it's running on a pre-SSE processor. */
717 int have_ptrace_getfpxregs =
718 #ifdef HAVE_PTRACE_GETFPXREGS
719 -1
720 #else
721 0
722 #endif
723 ;
724
725 /* Get Linux/x86 target description from running target. */
726
727 static const struct target_desc *
728 x86_linux_read_description (void)
729 {
730 unsigned int machine;
731 int is_elf64;
732 int xcr0_features;
733 int tid;
734 static uint64_t xcr0;
735 struct regset_info *regset;
736
737 tid = lwpid_of (current_thread);
738
739 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
740
741 if (sizeof (void *) == 4)
742 {
743 if (is_elf64 > 0)
744 error (_("Can't debug 64-bit process with 32-bit GDBserver"));
745 #ifndef __x86_64__
746 else if (machine == EM_X86_64)
747 error (_("Can't debug x86-64 process with 32-bit GDBserver"));
748 #endif
749 }
750
751 #if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
752 if (machine == EM_386 && have_ptrace_getfpxregs == -1)
753 {
754 elf_fpxregset_t fpxregs;
755
756 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
757 {
758 have_ptrace_getfpxregs = 0;
759 have_ptrace_getregset = 0;
760 return i386_linux_read_description (X86_XSTATE_X87);
761 }
762 else
763 have_ptrace_getfpxregs = 1;
764 }
765 #endif
766
767 if (!use_xml)
768 {
769 x86_xcr0 = X86_XSTATE_SSE_MASK;
770
771 /* Don't use XML. */
772 #ifdef __x86_64__
773 if (machine == EM_X86_64)
774 return tdesc_amd64_linux_no_xml;
775 else
776 #endif
777 return tdesc_i386_linux_no_xml;
778 }
779
780 if (have_ptrace_getregset == -1)
781 {
782 uint64_t xstateregs[(X86_XSTATE_SSE_SIZE / sizeof (uint64_t))];
783 struct iovec iov;
784
785 iov.iov_base = xstateregs;
786 iov.iov_len = sizeof (xstateregs);
787
788 /* Check if PTRACE_GETREGSET works. */
789 if (ptrace (PTRACE_GETREGSET, tid,
790 (unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
791 have_ptrace_getregset = 0;
792 else
793 {
794 have_ptrace_getregset = 1;
795
796 /* Get XCR0 from XSAVE extended state. */
797 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
798 / sizeof (uint64_t))];
799
800 /* Use PTRACE_GETREGSET if it is available. */
801 for (regset = x86_regsets;
802 regset->fill_function != NULL; regset++)
803 if (regset->get_request == PTRACE_GETREGSET)
804 regset->size = X86_XSTATE_SIZE (xcr0);
805 else if (regset->type != GENERAL_REGS)
806 regset->size = 0;
807 }
808 }
809
810 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
811 xcr0_features = (have_ptrace_getregset
812 && (xcr0 & X86_XSTATE_ALL_MASK));
813
814 if (xcr0_features)
815 x86_xcr0 = xcr0;
816
817 if (machine == EM_X86_64)
818 {
819 #ifdef __x86_64__
820 const target_desc *tdesc = NULL;
821
822 if (xcr0_features)
823 {
824 tdesc = amd64_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK,
825 !is_elf64);
826 }
827
828 if (tdesc == NULL)
829 tdesc = amd64_linux_read_description (X86_XSTATE_SSE_MASK, !is_elf64);
830 return tdesc;
831 #endif
832 }
833 else
834 {
835 const target_desc *tdesc = NULL;
836
837 if (xcr0_features)
838 tdesc = i386_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK);
839
840 if (tdesc == NULL)
841 tdesc = i386_linux_read_description (X86_XSTATE_SSE);
842
843 return tdesc;
844 }
845
846 gdb_assert_not_reached ("failed to return tdesc");
847 }
848
849 /* Callback for find_inferior. Stops iteration when a thread with a
850 given PID is found. */
851
852 static int
853 same_process_callback (struct inferior_list_entry *entry, void *data)
854 {
855 int pid = *(int *) data;
856
857 return (ptid_get_pid (entry->id) == pid);
858 }
859
860 /* Callback for for_each_inferior. Calls the arch_setup routine for
861 each process. */
862
863 static void
864 x86_arch_setup_process_callback (struct inferior_list_entry *entry)
865 {
866 int pid = ptid_get_pid (entry->id);
867
868 /* Look up any thread of this processes. */
869 current_thread
870 = (struct thread_info *) find_inferior (&all_threads,
871 same_process_callback, &pid);
872
873 the_low_target.arch_setup ();
874 }
875
876 /* Update all the target description of all processes; a new GDB
877 connected, and it may or not support xml target descriptions. */
878
879 static void
880 x86_linux_update_xmltarget (void)
881 {
882 struct thread_info *saved_thread = current_thread;
883
884 /* Before changing the register cache's internal layout, flush the
885 contents of the current valid caches back to the threads, and
886 release the current regcache objects. */
887 regcache_release ();
888
889 for_each_inferior (&all_processes, x86_arch_setup_process_callback);
890
891 current_thread = saved_thread;
892 }
893
894 /* Process qSupported query, "xmlRegisters=". Update the buffer size for
895 PTRACE_GETREGSET. */
896
897 static void
898 x86_linux_process_qsupported (char **features, int count)
899 {
900 int i;
901
902 /* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
903 with "i386" in qSupported query, it supports x86 XML target
904 descriptions. */
905 use_xml = 0;
906 for (i = 0; i < count; i++)
907 {
908 const char *feature = features[i];
909
910 if (startswith (feature, "xmlRegisters="))
911 {
912 char *copy = xstrdup (feature + 13);
913 char *p;
914
915 for (p = strtok (copy, ","); p != NULL; p = strtok (NULL, ","))
916 {
917 if (strcmp (p, "i386") == 0)
918 {
919 use_xml = 1;
920 break;
921 }
922 }
923
924 free (copy);
925 }
926 }
927 x86_linux_update_xmltarget ();
928 }
929
930 /* Common for x86/x86-64. */
931
932 static struct regsets_info x86_regsets_info =
933 {
934 x86_regsets, /* regsets */
935 0, /* num_regsets */
936 NULL, /* disabled_regsets */
937 };
938
939 #ifdef __x86_64__
940 static struct regs_info amd64_linux_regs_info =
941 {
942 NULL, /* regset_bitmap */
943 NULL, /* usrregs_info */
944 &x86_regsets_info
945 };
946 #endif
947 static struct usrregs_info i386_linux_usrregs_info =
948 {
949 I386_NUM_REGS,
950 i386_regmap,
951 };
952
953 static struct regs_info i386_linux_regs_info =
954 {
955 NULL, /* regset_bitmap */
956 &i386_linux_usrregs_info,
957 &x86_regsets_info
958 };
959
960 const struct regs_info *
961 x86_linux_regs_info (void)
962 {
963 #ifdef __x86_64__
964 if (is_64bit_tdesc ())
965 return &amd64_linux_regs_info;
966 else
967 #endif
968 return &i386_linux_regs_info;
969 }
970
971 /* Initialize the target description for the architecture of the
972 inferior. */
973
974 static void
975 x86_arch_setup (void)
976 {
977 current_process ()->tdesc = x86_linux_read_description ();
978 }
979
980 /* Fill *SYSNO and *SYSRET with the syscall nr trapped and the syscall return
981 code. This should only be called if LWP got a SYSCALL_SIGTRAP. */
982
983 static void
984 x86_get_syscall_trapinfo (struct regcache *regcache, int *sysno)
985 {
986 int use_64bit = register_size (regcache->tdesc, 0) == 8;
987
988 if (use_64bit)
989 {
990 long l_sysno;
991
992 collect_register_by_name (regcache, "orig_rax", &l_sysno);
993 *sysno = (int) l_sysno;
994 }
995 else
996 collect_register_by_name (regcache, "orig_eax", sysno);
997 }
998
999 static int
1000 x86_supports_tracepoints (void)
1001 {
1002 return 1;
1003 }
1004
1005 static void
1006 append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
1007 {
1008 write_inferior_memory (*to, buf, len);
1009 *to += len;
1010 }
1011
1012 static int
1013 push_opcode (unsigned char *buf, const char *op)
1014 {
1015 unsigned char *buf_org = buf;
1016
1017 while (1)
1018 {
1019 char *endptr;
1020 unsigned long ul = strtoul (op, &endptr, 16);
1021
1022 if (endptr == op)
1023 break;
1024
1025 *buf++ = ul;
1026 op = endptr;
1027 }
1028
1029 return buf - buf_org;
1030 }
1031
1032 #ifdef __x86_64__
1033
1034 /* Build a jump pad that saves registers and calls a collection
1035 function. Writes a jump instruction to the jump pad to
1036 JJUMPAD_INSN. The caller is responsible to write it in at the
1037 tracepoint address. */
1038
1039 static int
1040 amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1041 CORE_ADDR collector,
1042 CORE_ADDR lockaddr,
1043 ULONGEST orig_size,
1044 CORE_ADDR *jump_entry,
1045 CORE_ADDR *trampoline,
1046 ULONGEST *trampoline_size,
1047 unsigned char *jjump_pad_insn,
1048 ULONGEST *jjump_pad_insn_size,
1049 CORE_ADDR *adjusted_insn_addr,
1050 CORE_ADDR *adjusted_insn_addr_end,
1051 char *err)
1052 {
1053 unsigned char buf[40];
1054 int i, offset;
1055 int64_t loffset;
1056
1057 CORE_ADDR buildaddr = *jump_entry;
1058
1059 /* Build the jump pad. */
1060
1061 /* First, do tracepoint data collection. Save registers. */
1062 i = 0;
1063 /* Need to ensure stack pointer saved first. */
1064 buf[i++] = 0x54; /* push %rsp */
1065 buf[i++] = 0x55; /* push %rbp */
1066 buf[i++] = 0x57; /* push %rdi */
1067 buf[i++] = 0x56; /* push %rsi */
1068 buf[i++] = 0x52; /* push %rdx */
1069 buf[i++] = 0x51; /* push %rcx */
1070 buf[i++] = 0x53; /* push %rbx */
1071 buf[i++] = 0x50; /* push %rax */
1072 buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
1073 buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
1074 buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
1075 buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
1076 buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
1077 buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
1078 buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
1079 buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
1080 buf[i++] = 0x9c; /* pushfq */
1081 buf[i++] = 0x48; /* movabs <addr>,%rdi */
1082 buf[i++] = 0xbf;
1083 memcpy (buf + i, &tpaddr, 8);
1084 i += 8;
1085 buf[i++] = 0x57; /* push %rdi */
1086 append_insns (&buildaddr, i, buf);
1087
1088 /* Stack space for the collecting_t object. */
1089 i = 0;
1090 i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
1091 i += push_opcode (&buf[i], "48 b8"); /* mov <tpoint>,%rax */
1092 memcpy (buf + i, &tpoint, 8);
1093 i += 8;
1094 i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
1095 i += push_opcode (&buf[i],
1096 "64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
1097 i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
1098 append_insns (&buildaddr, i, buf);
1099
1100 /* spin-lock. */
1101 i = 0;
1102 i += push_opcode (&buf[i], "48 be"); /* movl <lockaddr>,%rsi */
1103 memcpy (&buf[i], (void *) &lockaddr, 8);
1104 i += 8;
1105 i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
1106 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1107 i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
1108 i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
1109 i += push_opcode (&buf[i], "75 f4"); /* jne <again> */
1110 append_insns (&buildaddr, i, buf);
1111
1112 /* Set up the gdb_collect call. */
1113 /* At this point, (stack pointer + 0x18) is the base of our saved
1114 register block. */
1115
1116 i = 0;
1117 i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
1118 i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
1119
1120 /* tpoint address may be 64-bit wide. */
1121 i += push_opcode (&buf[i], "48 bf"); /* movl <addr>,%rdi */
1122 memcpy (buf + i, &tpoint, 8);
1123 i += 8;
1124 append_insns (&buildaddr, i, buf);
1125
1126 /* The collector function being in the shared library, may be
1127 >31-bits away off the jump pad. */
1128 i = 0;
1129 i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
1130 memcpy (buf + i, &collector, 8);
1131 i += 8;
1132 i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
1133 append_insns (&buildaddr, i, buf);
1134
1135 /* Clear the spin-lock. */
1136 i = 0;
1137 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1138 i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
1139 memcpy (buf + i, &lockaddr, 8);
1140 i += 8;
1141 append_insns (&buildaddr, i, buf);
1142
1143 /* Remove stack that had been used for the collect_t object. */
1144 i = 0;
1145 i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
1146 append_insns (&buildaddr, i, buf);
1147
1148 /* Restore register state. */
1149 i = 0;
1150 buf[i++] = 0x48; /* add $0x8,%rsp */
1151 buf[i++] = 0x83;
1152 buf[i++] = 0xc4;
1153 buf[i++] = 0x08;
1154 buf[i++] = 0x9d; /* popfq */
1155 buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
1156 buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
1157 buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
1158 buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
1159 buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
1160 buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
1161 buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
1162 buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
1163 buf[i++] = 0x58; /* pop %rax */
1164 buf[i++] = 0x5b; /* pop %rbx */
1165 buf[i++] = 0x59; /* pop %rcx */
1166 buf[i++] = 0x5a; /* pop %rdx */
1167 buf[i++] = 0x5e; /* pop %rsi */
1168 buf[i++] = 0x5f; /* pop %rdi */
1169 buf[i++] = 0x5d; /* pop %rbp */
1170 buf[i++] = 0x5c; /* pop %rsp */
1171 append_insns (&buildaddr, i, buf);
1172
1173 /* Now, adjust the original instruction to execute in the jump
1174 pad. */
1175 *adjusted_insn_addr = buildaddr;
1176 relocate_instruction (&buildaddr, tpaddr);
1177 *adjusted_insn_addr_end = buildaddr;
1178
1179 /* Finally, write a jump back to the program. */
1180
1181 loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1182 if (loffset > INT_MAX || loffset < INT_MIN)
1183 {
1184 sprintf (err,
1185 "E.Jump back from jump pad too far from tracepoint "
1186 "(offset 0x%" PRIx64 " > int32).", loffset);
1187 return 1;
1188 }
1189
1190 offset = (int) loffset;
1191 memcpy (buf, jump_insn, sizeof (jump_insn));
1192 memcpy (buf + 1, &offset, 4);
1193 append_insns (&buildaddr, sizeof (jump_insn), buf);
1194
1195 /* The jump pad is now built. Wire in a jump to our jump pad. This
1196 is always done last (by our caller actually), so that we can
1197 install fast tracepoints with threads running. This relies on
1198 the agent's atomic write support. */
1199 loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
1200 if (loffset > INT_MAX || loffset < INT_MIN)
1201 {
1202 sprintf (err,
1203 "E.Jump pad too far from tracepoint "
1204 "(offset 0x%" PRIx64 " > int32).", loffset);
1205 return 1;
1206 }
1207
1208 offset = (int) loffset;
1209
1210 memcpy (buf, jump_insn, sizeof (jump_insn));
1211 memcpy (buf + 1, &offset, 4);
1212 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1213 *jjump_pad_insn_size = sizeof (jump_insn);
1214
1215 /* Return the end address of our pad. */
1216 *jump_entry = buildaddr;
1217
1218 return 0;
1219 }
1220
1221 #endif /* __x86_64__ */
1222
1223 /* Build a jump pad that saves registers and calls a collection
1224 function. Writes a jump instruction to the jump pad to
1225 JJUMPAD_INSN. The caller is responsible to write it in at the
1226 tracepoint address. */
1227
1228 static int
1229 i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1230 CORE_ADDR collector,
1231 CORE_ADDR lockaddr,
1232 ULONGEST orig_size,
1233 CORE_ADDR *jump_entry,
1234 CORE_ADDR *trampoline,
1235 ULONGEST *trampoline_size,
1236 unsigned char *jjump_pad_insn,
1237 ULONGEST *jjump_pad_insn_size,
1238 CORE_ADDR *adjusted_insn_addr,
1239 CORE_ADDR *adjusted_insn_addr_end,
1240 char *err)
1241 {
1242 unsigned char buf[0x100];
1243 int i, offset;
1244 CORE_ADDR buildaddr = *jump_entry;
1245
1246 /* Build the jump pad. */
1247
1248 /* First, do tracepoint data collection. Save registers. */
1249 i = 0;
1250 buf[i++] = 0x60; /* pushad */
1251 buf[i++] = 0x68; /* push tpaddr aka $pc */
1252 *((int *)(buf + i)) = (int) tpaddr;
1253 i += 4;
1254 buf[i++] = 0x9c; /* pushf */
1255 buf[i++] = 0x1e; /* push %ds */
1256 buf[i++] = 0x06; /* push %es */
1257 buf[i++] = 0x0f; /* push %fs */
1258 buf[i++] = 0xa0;
1259 buf[i++] = 0x0f; /* push %gs */
1260 buf[i++] = 0xa8;
1261 buf[i++] = 0x16; /* push %ss */
1262 buf[i++] = 0x0e; /* push %cs */
1263 append_insns (&buildaddr, i, buf);
1264
1265 /* Stack space for the collecting_t object. */
1266 i = 0;
1267 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1268
1269 /* Build the object. */
1270 i += push_opcode (&buf[i], "b8"); /* mov <tpoint>,%eax */
1271 memcpy (buf + i, &tpoint, 4);
1272 i += 4;
1273 i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
1274
1275 i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
1276 i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
1277 append_insns (&buildaddr, i, buf);
1278
1279 /* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
1280 If we cared for it, this could be using xchg alternatively. */
1281
1282 i = 0;
1283 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1284 i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
1285 %esp,<lockaddr> */
1286 memcpy (&buf[i], (void *) &lockaddr, 4);
1287 i += 4;
1288 i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
1289 i += push_opcode (&buf[i], "75 f2"); /* jne <again> */
1290 append_insns (&buildaddr, i, buf);
1291
1292
1293 /* Set up arguments to the gdb_collect call. */
1294 i = 0;
1295 i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
1296 i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
1297 i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
1298 append_insns (&buildaddr, i, buf);
1299
1300 i = 0;
1301 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1302 append_insns (&buildaddr, i, buf);
1303
1304 i = 0;
1305 i += push_opcode (&buf[i], "c7 04 24"); /* movl <addr>,(%esp) */
1306 memcpy (&buf[i], (void *) &tpoint, 4);
1307 i += 4;
1308 append_insns (&buildaddr, i, buf);
1309
1310 buf[0] = 0xe8; /* call <reladdr> */
1311 offset = collector - (buildaddr + sizeof (jump_insn));
1312 memcpy (buf + 1, &offset, 4);
1313 append_insns (&buildaddr, 5, buf);
1314 /* Clean up after the call. */
1315 buf[0] = 0x83; /* add $0x8,%esp */
1316 buf[1] = 0xc4;
1317 buf[2] = 0x08;
1318 append_insns (&buildaddr, 3, buf);
1319
1320
1321 /* Clear the spin-lock. This would need the LOCK prefix on older
1322 broken archs. */
1323 i = 0;
1324 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1325 i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
1326 memcpy (buf + i, &lockaddr, 4);
1327 i += 4;
1328 append_insns (&buildaddr, i, buf);
1329
1330
1331 /* Remove stack that had been used for the collect_t object. */
1332 i = 0;
1333 i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
1334 append_insns (&buildaddr, i, buf);
1335
1336 i = 0;
1337 buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
1338 buf[i++] = 0xc4;
1339 buf[i++] = 0x04;
1340 buf[i++] = 0x17; /* pop %ss */
1341 buf[i++] = 0x0f; /* pop %gs */
1342 buf[i++] = 0xa9;
1343 buf[i++] = 0x0f; /* pop %fs */
1344 buf[i++] = 0xa1;
1345 buf[i++] = 0x07; /* pop %es */
1346 buf[i++] = 0x1f; /* pop %ds */
1347 buf[i++] = 0x9d; /* popf */
1348 buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
1349 buf[i++] = 0xc4;
1350 buf[i++] = 0x04;
1351 buf[i++] = 0x61; /* popad */
1352 append_insns (&buildaddr, i, buf);
1353
1354 /* Now, adjust the original instruction to execute in the jump
1355 pad. */
1356 *adjusted_insn_addr = buildaddr;
1357 relocate_instruction (&buildaddr, tpaddr);
1358 *adjusted_insn_addr_end = buildaddr;
1359
1360 /* Write the jump back to the program. */
1361 offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1362 memcpy (buf, jump_insn, sizeof (jump_insn));
1363 memcpy (buf + 1, &offset, 4);
1364 append_insns (&buildaddr, sizeof (jump_insn), buf);
1365
1366 /* The jump pad is now built. Wire in a jump to our jump pad. This
1367 is always done last (by our caller actually), so that we can
1368 install fast tracepoints with threads running. This relies on
1369 the agent's atomic write support. */
1370 if (orig_size == 4)
1371 {
1372 /* Create a trampoline. */
1373 *trampoline_size = sizeof (jump_insn);
1374 if (!claim_trampoline_space (*trampoline_size, trampoline))
1375 {
1376 /* No trampoline space available. */
1377 strcpy (err,
1378 "E.Cannot allocate trampoline space needed for fast "
1379 "tracepoints on 4-byte instructions.");
1380 return 1;
1381 }
1382
1383 offset = *jump_entry - (*trampoline + sizeof (jump_insn));
1384 memcpy (buf, jump_insn, sizeof (jump_insn));
1385 memcpy (buf + 1, &offset, 4);
1386 write_inferior_memory (*trampoline, buf, sizeof (jump_insn));
1387
1388 /* Use a 16-bit relative jump instruction to jump to the trampoline. */
1389 offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
1390 memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
1391 memcpy (buf + 2, &offset, 2);
1392 memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
1393 *jjump_pad_insn_size = sizeof (small_jump_insn);
1394 }
1395 else
1396 {
1397 /* Else use a 32-bit relative jump instruction. */
1398 offset = *jump_entry - (tpaddr + sizeof (jump_insn));
1399 memcpy (buf, jump_insn, sizeof (jump_insn));
1400 memcpy (buf + 1, &offset, 4);
1401 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1402 *jjump_pad_insn_size = sizeof (jump_insn);
1403 }
1404
1405 /* Return the end address of our pad. */
1406 *jump_entry = buildaddr;
1407
1408 return 0;
1409 }
1410
1411 static int
1412 x86_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1413 CORE_ADDR collector,
1414 CORE_ADDR lockaddr,
1415 ULONGEST orig_size,
1416 CORE_ADDR *jump_entry,
1417 CORE_ADDR *trampoline,
1418 ULONGEST *trampoline_size,
1419 unsigned char *jjump_pad_insn,
1420 ULONGEST *jjump_pad_insn_size,
1421 CORE_ADDR *adjusted_insn_addr,
1422 CORE_ADDR *adjusted_insn_addr_end,
1423 char *err)
1424 {
1425 #ifdef __x86_64__
1426 if (is_64bit_tdesc ())
1427 return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1428 collector, lockaddr,
1429 orig_size, jump_entry,
1430 trampoline, trampoline_size,
1431 jjump_pad_insn,
1432 jjump_pad_insn_size,
1433 adjusted_insn_addr,
1434 adjusted_insn_addr_end,
1435 err);
1436 #endif
1437
1438 return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1439 collector, lockaddr,
1440 orig_size, jump_entry,
1441 trampoline, trampoline_size,
1442 jjump_pad_insn,
1443 jjump_pad_insn_size,
1444 adjusted_insn_addr,
1445 adjusted_insn_addr_end,
1446 err);
1447 }
1448
1449 /* Return the minimum instruction length for fast tracepoints on x86/x86-64
1450 architectures. */
1451
1452 static int
1453 x86_get_min_fast_tracepoint_insn_len (void)
1454 {
1455 static int warned_about_fast_tracepoints = 0;
1456
1457 #ifdef __x86_64__
1458 /* On x86-64, 5-byte jump instructions with a 4-byte offset are always
1459 used for fast tracepoints. */
1460 if (is_64bit_tdesc ())
1461 return 5;
1462 #endif
1463
1464 if (agent_loaded_p ())
1465 {
1466 char errbuf[IPA_BUFSIZ];
1467
1468 errbuf[0] = '\0';
1469
1470 /* On x86, if trampolines are available, then 4-byte jump instructions
1471 with a 2-byte offset may be used, otherwise 5-byte jump instructions
1472 with a 4-byte offset are used instead. */
1473 if (have_fast_tracepoint_trampoline_buffer (errbuf))
1474 return 4;
1475 else
1476 {
1477 /* GDB has no channel to explain to user why a shorter fast
1478 tracepoint is not possible, but at least make GDBserver
1479 mention that something has gone awry. */
1480 if (!warned_about_fast_tracepoints)
1481 {
1482 warning ("4-byte fast tracepoints not available; %s\n", errbuf);
1483 warned_about_fast_tracepoints = 1;
1484 }
1485 return 5;
1486 }
1487 }
1488 else
1489 {
1490 /* Indicate that the minimum length is currently unknown since the IPA
1491 has not loaded yet. */
1492 return 0;
1493 }
1494 }
1495
1496 static void
1497 add_insns (unsigned char *start, int len)
1498 {
1499 CORE_ADDR buildaddr = current_insn_ptr;
1500
1501 if (debug_threads)
1502 debug_printf ("Adding %d bytes of insn at %s\n",
1503 len, paddress (buildaddr));
1504
1505 append_insns (&buildaddr, len, start);
1506 current_insn_ptr = buildaddr;
1507 }
1508
1509 /* Our general strategy for emitting code is to avoid specifying raw
1510 bytes whenever possible, and instead copy a block of inline asm
1511 that is embedded in the function. This is a little messy, because
1512 we need to keep the compiler from discarding what looks like dead
1513 code, plus suppress various warnings. */
1514
1515 #define EMIT_ASM(NAME, INSNS) \
1516 do \
1517 { \
1518 extern unsigned char start_ ## NAME, end_ ## NAME; \
1519 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1520 __asm__ ("jmp end_" #NAME "\n" \
1521 "\t" "start_" #NAME ":" \
1522 "\t" INSNS "\n" \
1523 "\t" "end_" #NAME ":"); \
1524 } while (0)
1525
1526 #ifdef __x86_64__
1527
1528 #define EMIT_ASM32(NAME,INSNS) \
1529 do \
1530 { \
1531 extern unsigned char start_ ## NAME, end_ ## NAME; \
1532 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1533 __asm__ (".code32\n" \
1534 "\t" "jmp end_" #NAME "\n" \
1535 "\t" "start_" #NAME ":\n" \
1536 "\t" INSNS "\n" \
1537 "\t" "end_" #NAME ":\n" \
1538 ".code64\n"); \
1539 } while (0)
1540
1541 #else
1542
1543 #define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
1544
1545 #endif
1546
1547 #ifdef __x86_64__
1548
1549 static void
1550 amd64_emit_prologue (void)
1551 {
1552 EMIT_ASM (amd64_prologue,
1553 "pushq %rbp\n\t"
1554 "movq %rsp,%rbp\n\t"
1555 "sub $0x20,%rsp\n\t"
1556 "movq %rdi,-8(%rbp)\n\t"
1557 "movq %rsi,-16(%rbp)");
1558 }
1559
1560
1561 static void
1562 amd64_emit_epilogue (void)
1563 {
1564 EMIT_ASM (amd64_epilogue,
1565 "movq -16(%rbp),%rdi\n\t"
1566 "movq %rax,(%rdi)\n\t"
1567 "xor %rax,%rax\n\t"
1568 "leave\n\t"
1569 "ret");
1570 }
1571
1572 static void
1573 amd64_emit_add (void)
1574 {
1575 EMIT_ASM (amd64_add,
1576 "add (%rsp),%rax\n\t"
1577 "lea 0x8(%rsp),%rsp");
1578 }
1579
1580 static void
1581 amd64_emit_sub (void)
1582 {
1583 EMIT_ASM (amd64_sub,
1584 "sub %rax,(%rsp)\n\t"
1585 "pop %rax");
1586 }
1587
1588 static void
1589 amd64_emit_mul (void)
1590 {
1591 emit_error = 1;
1592 }
1593
1594 static void
1595 amd64_emit_lsh (void)
1596 {
1597 emit_error = 1;
1598 }
1599
1600 static void
1601 amd64_emit_rsh_signed (void)
1602 {
1603 emit_error = 1;
1604 }
1605
1606 static void
1607 amd64_emit_rsh_unsigned (void)
1608 {
1609 emit_error = 1;
1610 }
1611
1612 static void
1613 amd64_emit_ext (int arg)
1614 {
1615 switch (arg)
1616 {
1617 case 8:
1618 EMIT_ASM (amd64_ext_8,
1619 "cbtw\n\t"
1620 "cwtl\n\t"
1621 "cltq");
1622 break;
1623 case 16:
1624 EMIT_ASM (amd64_ext_16,
1625 "cwtl\n\t"
1626 "cltq");
1627 break;
1628 case 32:
1629 EMIT_ASM (amd64_ext_32,
1630 "cltq");
1631 break;
1632 default:
1633 emit_error = 1;
1634 }
1635 }
1636
1637 static void
1638 amd64_emit_log_not (void)
1639 {
1640 EMIT_ASM (amd64_log_not,
1641 "test %rax,%rax\n\t"
1642 "sete %cl\n\t"
1643 "movzbq %cl,%rax");
1644 }
1645
1646 static void
1647 amd64_emit_bit_and (void)
1648 {
1649 EMIT_ASM (amd64_and,
1650 "and (%rsp),%rax\n\t"
1651 "lea 0x8(%rsp),%rsp");
1652 }
1653
1654 static void
1655 amd64_emit_bit_or (void)
1656 {
1657 EMIT_ASM (amd64_or,
1658 "or (%rsp),%rax\n\t"
1659 "lea 0x8(%rsp),%rsp");
1660 }
1661
1662 static void
1663 amd64_emit_bit_xor (void)
1664 {
1665 EMIT_ASM (amd64_xor,
1666 "xor (%rsp),%rax\n\t"
1667 "lea 0x8(%rsp),%rsp");
1668 }
1669
1670 static void
1671 amd64_emit_bit_not (void)
1672 {
1673 EMIT_ASM (amd64_bit_not,
1674 "xorq $0xffffffffffffffff,%rax");
1675 }
1676
1677 static void
1678 amd64_emit_equal (void)
1679 {
1680 EMIT_ASM (amd64_equal,
1681 "cmp %rax,(%rsp)\n\t"
1682 "je .Lamd64_equal_true\n\t"
1683 "xor %rax,%rax\n\t"
1684 "jmp .Lamd64_equal_end\n\t"
1685 ".Lamd64_equal_true:\n\t"
1686 "mov $0x1,%rax\n\t"
1687 ".Lamd64_equal_end:\n\t"
1688 "lea 0x8(%rsp),%rsp");
1689 }
1690
1691 static void
1692 amd64_emit_less_signed (void)
1693 {
1694 EMIT_ASM (amd64_less_signed,
1695 "cmp %rax,(%rsp)\n\t"
1696 "jl .Lamd64_less_signed_true\n\t"
1697 "xor %rax,%rax\n\t"
1698 "jmp .Lamd64_less_signed_end\n\t"
1699 ".Lamd64_less_signed_true:\n\t"
1700 "mov $1,%rax\n\t"
1701 ".Lamd64_less_signed_end:\n\t"
1702 "lea 0x8(%rsp),%rsp");
1703 }
1704
1705 static void
1706 amd64_emit_less_unsigned (void)
1707 {
1708 EMIT_ASM (amd64_less_unsigned,
1709 "cmp %rax,(%rsp)\n\t"
1710 "jb .Lamd64_less_unsigned_true\n\t"
1711 "xor %rax,%rax\n\t"
1712 "jmp .Lamd64_less_unsigned_end\n\t"
1713 ".Lamd64_less_unsigned_true:\n\t"
1714 "mov $1,%rax\n\t"
1715 ".Lamd64_less_unsigned_end:\n\t"
1716 "lea 0x8(%rsp),%rsp");
1717 }
1718
1719 static void
1720 amd64_emit_ref (int size)
1721 {
1722 switch (size)
1723 {
1724 case 1:
1725 EMIT_ASM (amd64_ref1,
1726 "movb (%rax),%al");
1727 break;
1728 case 2:
1729 EMIT_ASM (amd64_ref2,
1730 "movw (%rax),%ax");
1731 break;
1732 case 4:
1733 EMIT_ASM (amd64_ref4,
1734 "movl (%rax),%eax");
1735 break;
1736 case 8:
1737 EMIT_ASM (amd64_ref8,
1738 "movq (%rax),%rax");
1739 break;
1740 }
1741 }
1742
1743 static void
1744 amd64_emit_if_goto (int *offset_p, int *size_p)
1745 {
1746 EMIT_ASM (amd64_if_goto,
1747 "mov %rax,%rcx\n\t"
1748 "pop %rax\n\t"
1749 "cmp $0,%rcx\n\t"
1750 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
1751 if (offset_p)
1752 *offset_p = 10;
1753 if (size_p)
1754 *size_p = 4;
1755 }
1756
1757 static void
1758 amd64_emit_goto (int *offset_p, int *size_p)
1759 {
1760 EMIT_ASM (amd64_goto,
1761 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
1762 if (offset_p)
1763 *offset_p = 1;
1764 if (size_p)
1765 *size_p = 4;
1766 }
1767
1768 static void
1769 amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
1770 {
1771 int diff = (to - (from + size));
1772 unsigned char buf[sizeof (int)];
1773
1774 if (size != 4)
1775 {
1776 emit_error = 1;
1777 return;
1778 }
1779
1780 memcpy (buf, &diff, sizeof (int));
1781 write_inferior_memory (from, buf, sizeof (int));
1782 }
1783
1784 static void
1785 amd64_emit_const (LONGEST num)
1786 {
1787 unsigned char buf[16];
1788 int i;
1789 CORE_ADDR buildaddr = current_insn_ptr;
1790
1791 i = 0;
1792 buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $<n>,%rax */
1793 memcpy (&buf[i], &num, sizeof (num));
1794 i += 8;
1795 append_insns (&buildaddr, i, buf);
1796 current_insn_ptr = buildaddr;
1797 }
1798
1799 static void
1800 amd64_emit_call (CORE_ADDR fn)
1801 {
1802 unsigned char buf[16];
1803 int i;
1804 CORE_ADDR buildaddr;
1805 LONGEST offset64;
1806
1807 /* The destination function being in the shared library, may be
1808 >31-bits away off the compiled code pad. */
1809
1810 buildaddr = current_insn_ptr;
1811
1812 offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
1813
1814 i = 0;
1815
1816 if (offset64 > INT_MAX || offset64 < INT_MIN)
1817 {
1818 /* Offset is too large for a call. Use callq, but that requires
1819 a register, so avoid it if possible. Use r10, since it is
1820 call-clobbered, we don't have to push/pop it. */
1821 buf[i++] = 0x48; /* mov $fn,%r10 */
1822 buf[i++] = 0xba;
1823 memcpy (buf + i, &fn, 8);
1824 i += 8;
1825 buf[i++] = 0xff; /* callq *%r10 */
1826 buf[i++] = 0xd2;
1827 }
1828 else
1829 {
1830 int offset32 = offset64; /* we know we can't overflow here. */
1831
1832 buf[i++] = 0xe8; /* call <reladdr> */
1833 memcpy (buf + i, &offset32, 4);
1834 i += 4;
1835 }
1836
1837 append_insns (&buildaddr, i, buf);
1838 current_insn_ptr = buildaddr;
1839 }
1840
1841 static void
1842 amd64_emit_reg (int reg)
1843 {
1844 unsigned char buf[16];
1845 int i;
1846 CORE_ADDR buildaddr;
1847
1848 /* Assume raw_regs is still in %rdi. */
1849 buildaddr = current_insn_ptr;
1850 i = 0;
1851 buf[i++] = 0xbe; /* mov $<n>,%esi */
1852 memcpy (&buf[i], &reg, sizeof (reg));
1853 i += 4;
1854 append_insns (&buildaddr, i, buf);
1855 current_insn_ptr = buildaddr;
1856 amd64_emit_call (get_raw_reg_func_addr ());
1857 }
1858
1859 static void
1860 amd64_emit_pop (void)
1861 {
1862 EMIT_ASM (amd64_pop,
1863 "pop %rax");
1864 }
1865
1866 static void
1867 amd64_emit_stack_flush (void)
1868 {
1869 EMIT_ASM (amd64_stack_flush,
1870 "push %rax");
1871 }
1872
1873 static void
1874 amd64_emit_zero_ext (int arg)
1875 {
1876 switch (arg)
1877 {
1878 case 8:
1879 EMIT_ASM (amd64_zero_ext_8,
1880 "and $0xff,%rax");
1881 break;
1882 case 16:
1883 EMIT_ASM (amd64_zero_ext_16,
1884 "and $0xffff,%rax");
1885 break;
1886 case 32:
1887 EMIT_ASM (amd64_zero_ext_32,
1888 "mov $0xffffffff,%rcx\n\t"
1889 "and %rcx,%rax");
1890 break;
1891 default:
1892 emit_error = 1;
1893 }
1894 }
1895
1896 static void
1897 amd64_emit_swap (void)
1898 {
1899 EMIT_ASM (amd64_swap,
1900 "mov %rax,%rcx\n\t"
1901 "pop %rax\n\t"
1902 "push %rcx");
1903 }
1904
1905 static void
1906 amd64_emit_stack_adjust (int n)
1907 {
1908 unsigned char buf[16];
1909 int i;
1910 CORE_ADDR buildaddr = current_insn_ptr;
1911
1912 i = 0;
1913 buf[i++] = 0x48; /* lea $<n>(%rsp),%rsp */
1914 buf[i++] = 0x8d;
1915 buf[i++] = 0x64;
1916 buf[i++] = 0x24;
1917 /* This only handles adjustments up to 16, but we don't expect any more. */
1918 buf[i++] = n * 8;
1919 append_insns (&buildaddr, i, buf);
1920 current_insn_ptr = buildaddr;
1921 }
1922
1923 /* FN's prototype is `LONGEST(*fn)(int)'. */
1924
1925 static void
1926 amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
1927 {
1928 unsigned char buf[16];
1929 int i;
1930 CORE_ADDR buildaddr;
1931
1932 buildaddr = current_insn_ptr;
1933 i = 0;
1934 buf[i++] = 0xbf; /* movl $<n>,%edi */
1935 memcpy (&buf[i], &arg1, sizeof (arg1));
1936 i += 4;
1937 append_insns (&buildaddr, i, buf);
1938 current_insn_ptr = buildaddr;
1939 amd64_emit_call (fn);
1940 }
1941
1942 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
1943
1944 static void
1945 amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
1946 {
1947 unsigned char buf[16];
1948 int i;
1949 CORE_ADDR buildaddr;
1950
1951 buildaddr = current_insn_ptr;
1952 i = 0;
1953 buf[i++] = 0xbf; /* movl $<n>,%edi */
1954 memcpy (&buf[i], &arg1, sizeof (arg1));
1955 i += 4;
1956 append_insns (&buildaddr, i, buf);
1957 current_insn_ptr = buildaddr;
1958 EMIT_ASM (amd64_void_call_2_a,
1959 /* Save away a copy of the stack top. */
1960 "push %rax\n\t"
1961 /* Also pass top as the second argument. */
1962 "mov %rax,%rsi");
1963 amd64_emit_call (fn);
1964 EMIT_ASM (amd64_void_call_2_b,
1965 /* Restore the stack top, %rax may have been trashed. */
1966 "pop %rax");
1967 }
1968
1969 void
1970 amd64_emit_eq_goto (int *offset_p, int *size_p)
1971 {
1972 EMIT_ASM (amd64_eq,
1973 "cmp %rax,(%rsp)\n\t"
1974 "jne .Lamd64_eq_fallthru\n\t"
1975 "lea 0x8(%rsp),%rsp\n\t"
1976 "pop %rax\n\t"
1977 /* jmp, but don't trust the assembler to choose the right jump */
1978 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
1979 ".Lamd64_eq_fallthru:\n\t"
1980 "lea 0x8(%rsp),%rsp\n\t"
1981 "pop %rax");
1982
1983 if (offset_p)
1984 *offset_p = 13;
1985 if (size_p)
1986 *size_p = 4;
1987 }
1988
1989 void
1990 amd64_emit_ne_goto (int *offset_p, int *size_p)
1991 {
1992 EMIT_ASM (amd64_ne,
1993 "cmp %rax,(%rsp)\n\t"
1994 "je .Lamd64_ne_fallthru\n\t"
1995 "lea 0x8(%rsp),%rsp\n\t"
1996 "pop %rax\n\t"
1997 /* jmp, but don't trust the assembler to choose the right jump */
1998 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
1999 ".Lamd64_ne_fallthru:\n\t"
2000 "lea 0x8(%rsp),%rsp\n\t"
2001 "pop %rax");
2002
2003 if (offset_p)
2004 *offset_p = 13;
2005 if (size_p)
2006 *size_p = 4;
2007 }
2008
2009 void
2010 amd64_emit_lt_goto (int *offset_p, int *size_p)
2011 {
2012 EMIT_ASM (amd64_lt,
2013 "cmp %rax,(%rsp)\n\t"
2014 "jnl .Lamd64_lt_fallthru\n\t"
2015 "lea 0x8(%rsp),%rsp\n\t"
2016 "pop %rax\n\t"
2017 /* jmp, but don't trust the assembler to choose the right jump */
2018 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2019 ".Lamd64_lt_fallthru:\n\t"
2020 "lea 0x8(%rsp),%rsp\n\t"
2021 "pop %rax");
2022
2023 if (offset_p)
2024 *offset_p = 13;
2025 if (size_p)
2026 *size_p = 4;
2027 }
2028
2029 void
2030 amd64_emit_le_goto (int *offset_p, int *size_p)
2031 {
2032 EMIT_ASM (amd64_le,
2033 "cmp %rax,(%rsp)\n\t"
2034 "jnle .Lamd64_le_fallthru\n\t"
2035 "lea 0x8(%rsp),%rsp\n\t"
2036 "pop %rax\n\t"
2037 /* jmp, but don't trust the assembler to choose the right jump */
2038 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2039 ".Lamd64_le_fallthru:\n\t"
2040 "lea 0x8(%rsp),%rsp\n\t"
2041 "pop %rax");
2042
2043 if (offset_p)
2044 *offset_p = 13;
2045 if (size_p)
2046 *size_p = 4;
2047 }
2048
2049 void
2050 amd64_emit_gt_goto (int *offset_p, int *size_p)
2051 {
2052 EMIT_ASM (amd64_gt,
2053 "cmp %rax,(%rsp)\n\t"
2054 "jng .Lamd64_gt_fallthru\n\t"
2055 "lea 0x8(%rsp),%rsp\n\t"
2056 "pop %rax\n\t"
2057 /* jmp, but don't trust the assembler to choose the right jump */
2058 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2059 ".Lamd64_gt_fallthru:\n\t"
2060 "lea 0x8(%rsp),%rsp\n\t"
2061 "pop %rax");
2062
2063 if (offset_p)
2064 *offset_p = 13;
2065 if (size_p)
2066 *size_p = 4;
2067 }
2068
2069 void
2070 amd64_emit_ge_goto (int *offset_p, int *size_p)
2071 {
2072 EMIT_ASM (amd64_ge,
2073 "cmp %rax,(%rsp)\n\t"
2074 "jnge .Lamd64_ge_fallthru\n\t"
2075 ".Lamd64_ge_jump:\n\t"
2076 "lea 0x8(%rsp),%rsp\n\t"
2077 "pop %rax\n\t"
2078 /* jmp, but don't trust the assembler to choose the right jump */
2079 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2080 ".Lamd64_ge_fallthru:\n\t"
2081 "lea 0x8(%rsp),%rsp\n\t"
2082 "pop %rax");
2083
2084 if (offset_p)
2085 *offset_p = 13;
2086 if (size_p)
2087 *size_p = 4;
2088 }
2089
2090 struct emit_ops amd64_emit_ops =
2091 {
2092 amd64_emit_prologue,
2093 amd64_emit_epilogue,
2094 amd64_emit_add,
2095 amd64_emit_sub,
2096 amd64_emit_mul,
2097 amd64_emit_lsh,
2098 amd64_emit_rsh_signed,
2099 amd64_emit_rsh_unsigned,
2100 amd64_emit_ext,
2101 amd64_emit_log_not,
2102 amd64_emit_bit_and,
2103 amd64_emit_bit_or,
2104 amd64_emit_bit_xor,
2105 amd64_emit_bit_not,
2106 amd64_emit_equal,
2107 amd64_emit_less_signed,
2108 amd64_emit_less_unsigned,
2109 amd64_emit_ref,
2110 amd64_emit_if_goto,
2111 amd64_emit_goto,
2112 amd64_write_goto_address,
2113 amd64_emit_const,
2114 amd64_emit_call,
2115 amd64_emit_reg,
2116 amd64_emit_pop,
2117 amd64_emit_stack_flush,
2118 amd64_emit_zero_ext,
2119 amd64_emit_swap,
2120 amd64_emit_stack_adjust,
2121 amd64_emit_int_call_1,
2122 amd64_emit_void_call_2,
2123 amd64_emit_eq_goto,
2124 amd64_emit_ne_goto,
2125 amd64_emit_lt_goto,
2126 amd64_emit_le_goto,
2127 amd64_emit_gt_goto,
2128 amd64_emit_ge_goto
2129 };
2130
2131 #endif /* __x86_64__ */
2132
2133 static void
2134 i386_emit_prologue (void)
2135 {
2136 EMIT_ASM32 (i386_prologue,
2137 "push %ebp\n\t"
2138 "mov %esp,%ebp\n\t"
2139 "push %ebx");
2140 /* At this point, the raw regs base address is at 8(%ebp), and the
2141 value pointer is at 12(%ebp). */
2142 }
2143
2144 static void
2145 i386_emit_epilogue (void)
2146 {
2147 EMIT_ASM32 (i386_epilogue,
2148 "mov 12(%ebp),%ecx\n\t"
2149 "mov %eax,(%ecx)\n\t"
2150 "mov %ebx,0x4(%ecx)\n\t"
2151 "xor %eax,%eax\n\t"
2152 "pop %ebx\n\t"
2153 "pop %ebp\n\t"
2154 "ret");
2155 }
2156
2157 static void
2158 i386_emit_add (void)
2159 {
2160 EMIT_ASM32 (i386_add,
2161 "add (%esp),%eax\n\t"
2162 "adc 0x4(%esp),%ebx\n\t"
2163 "lea 0x8(%esp),%esp");
2164 }
2165
2166 static void
2167 i386_emit_sub (void)
2168 {
2169 EMIT_ASM32 (i386_sub,
2170 "subl %eax,(%esp)\n\t"
2171 "sbbl %ebx,4(%esp)\n\t"
2172 "pop %eax\n\t"
2173 "pop %ebx\n\t");
2174 }
2175
2176 static void
2177 i386_emit_mul (void)
2178 {
2179 emit_error = 1;
2180 }
2181
2182 static void
2183 i386_emit_lsh (void)
2184 {
2185 emit_error = 1;
2186 }
2187
2188 static void
2189 i386_emit_rsh_signed (void)
2190 {
2191 emit_error = 1;
2192 }
2193
2194 static void
2195 i386_emit_rsh_unsigned (void)
2196 {
2197 emit_error = 1;
2198 }
2199
2200 static void
2201 i386_emit_ext (int arg)
2202 {
2203 switch (arg)
2204 {
2205 case 8:
2206 EMIT_ASM32 (i386_ext_8,
2207 "cbtw\n\t"
2208 "cwtl\n\t"
2209 "movl %eax,%ebx\n\t"
2210 "sarl $31,%ebx");
2211 break;
2212 case 16:
2213 EMIT_ASM32 (i386_ext_16,
2214 "cwtl\n\t"
2215 "movl %eax,%ebx\n\t"
2216 "sarl $31,%ebx");
2217 break;
2218 case 32:
2219 EMIT_ASM32 (i386_ext_32,
2220 "movl %eax,%ebx\n\t"
2221 "sarl $31,%ebx");
2222 break;
2223 default:
2224 emit_error = 1;
2225 }
2226 }
2227
2228 static void
2229 i386_emit_log_not (void)
2230 {
2231 EMIT_ASM32 (i386_log_not,
2232 "or %ebx,%eax\n\t"
2233 "test %eax,%eax\n\t"
2234 "sete %cl\n\t"
2235 "xor %ebx,%ebx\n\t"
2236 "movzbl %cl,%eax");
2237 }
2238
2239 static void
2240 i386_emit_bit_and (void)
2241 {
2242 EMIT_ASM32 (i386_and,
2243 "and (%esp),%eax\n\t"
2244 "and 0x4(%esp),%ebx\n\t"
2245 "lea 0x8(%esp),%esp");
2246 }
2247
2248 static void
2249 i386_emit_bit_or (void)
2250 {
2251 EMIT_ASM32 (i386_or,
2252 "or (%esp),%eax\n\t"
2253 "or 0x4(%esp),%ebx\n\t"
2254 "lea 0x8(%esp),%esp");
2255 }
2256
2257 static void
2258 i386_emit_bit_xor (void)
2259 {
2260 EMIT_ASM32 (i386_xor,
2261 "xor (%esp),%eax\n\t"
2262 "xor 0x4(%esp),%ebx\n\t"
2263 "lea 0x8(%esp),%esp");
2264 }
2265
2266 static void
2267 i386_emit_bit_not (void)
2268 {
2269 EMIT_ASM32 (i386_bit_not,
2270 "xor $0xffffffff,%eax\n\t"
2271 "xor $0xffffffff,%ebx\n\t");
2272 }
2273
2274 static void
2275 i386_emit_equal (void)
2276 {
2277 EMIT_ASM32 (i386_equal,
2278 "cmpl %ebx,4(%esp)\n\t"
2279 "jne .Li386_equal_false\n\t"
2280 "cmpl %eax,(%esp)\n\t"
2281 "je .Li386_equal_true\n\t"
2282 ".Li386_equal_false:\n\t"
2283 "xor %eax,%eax\n\t"
2284 "jmp .Li386_equal_end\n\t"
2285 ".Li386_equal_true:\n\t"
2286 "mov $1,%eax\n\t"
2287 ".Li386_equal_end:\n\t"
2288 "xor %ebx,%ebx\n\t"
2289 "lea 0x8(%esp),%esp");
2290 }
2291
2292 static void
2293 i386_emit_less_signed (void)
2294 {
2295 EMIT_ASM32 (i386_less_signed,
2296 "cmpl %ebx,4(%esp)\n\t"
2297 "jl .Li386_less_signed_true\n\t"
2298 "jne .Li386_less_signed_false\n\t"
2299 "cmpl %eax,(%esp)\n\t"
2300 "jl .Li386_less_signed_true\n\t"
2301 ".Li386_less_signed_false:\n\t"
2302 "xor %eax,%eax\n\t"
2303 "jmp .Li386_less_signed_end\n\t"
2304 ".Li386_less_signed_true:\n\t"
2305 "mov $1,%eax\n\t"
2306 ".Li386_less_signed_end:\n\t"
2307 "xor %ebx,%ebx\n\t"
2308 "lea 0x8(%esp),%esp");
2309 }
2310
2311 static void
2312 i386_emit_less_unsigned (void)
2313 {
2314 EMIT_ASM32 (i386_less_unsigned,
2315 "cmpl %ebx,4(%esp)\n\t"
2316 "jb .Li386_less_unsigned_true\n\t"
2317 "jne .Li386_less_unsigned_false\n\t"
2318 "cmpl %eax,(%esp)\n\t"
2319 "jb .Li386_less_unsigned_true\n\t"
2320 ".Li386_less_unsigned_false:\n\t"
2321 "xor %eax,%eax\n\t"
2322 "jmp .Li386_less_unsigned_end\n\t"
2323 ".Li386_less_unsigned_true:\n\t"
2324 "mov $1,%eax\n\t"
2325 ".Li386_less_unsigned_end:\n\t"
2326 "xor %ebx,%ebx\n\t"
2327 "lea 0x8(%esp),%esp");
2328 }
2329
2330 static void
2331 i386_emit_ref (int size)
2332 {
2333 switch (size)
2334 {
2335 case 1:
2336 EMIT_ASM32 (i386_ref1,
2337 "movb (%eax),%al");
2338 break;
2339 case 2:
2340 EMIT_ASM32 (i386_ref2,
2341 "movw (%eax),%ax");
2342 break;
2343 case 4:
2344 EMIT_ASM32 (i386_ref4,
2345 "movl (%eax),%eax");
2346 break;
2347 case 8:
2348 EMIT_ASM32 (i386_ref8,
2349 "movl 4(%eax),%ebx\n\t"
2350 "movl (%eax),%eax");
2351 break;
2352 }
2353 }
2354
2355 static void
2356 i386_emit_if_goto (int *offset_p, int *size_p)
2357 {
2358 EMIT_ASM32 (i386_if_goto,
2359 "mov %eax,%ecx\n\t"
2360 "or %ebx,%ecx\n\t"
2361 "pop %eax\n\t"
2362 "pop %ebx\n\t"
2363 "cmpl $0,%ecx\n\t"
2364 /* Don't trust the assembler to choose the right jump */
2365 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2366
2367 if (offset_p)
2368 *offset_p = 11; /* be sure that this matches the sequence above */
2369 if (size_p)
2370 *size_p = 4;
2371 }
2372
2373 static void
2374 i386_emit_goto (int *offset_p, int *size_p)
2375 {
2376 EMIT_ASM32 (i386_goto,
2377 /* Don't trust the assembler to choose the right jump */
2378 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2379 if (offset_p)
2380 *offset_p = 1;
2381 if (size_p)
2382 *size_p = 4;
2383 }
2384
2385 static void
2386 i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2387 {
2388 int diff = (to - (from + size));
2389 unsigned char buf[sizeof (int)];
2390
2391 /* We're only doing 4-byte sizes at the moment. */
2392 if (size != 4)
2393 {
2394 emit_error = 1;
2395 return;
2396 }
2397
2398 memcpy (buf, &diff, sizeof (int));
2399 write_inferior_memory (from, buf, sizeof (int));
2400 }
2401
2402 static void
2403 i386_emit_const (LONGEST num)
2404 {
2405 unsigned char buf[16];
2406 int i, hi, lo;
2407 CORE_ADDR buildaddr = current_insn_ptr;
2408
2409 i = 0;
2410 buf[i++] = 0xb8; /* mov $<n>,%eax */
2411 lo = num & 0xffffffff;
2412 memcpy (&buf[i], &lo, sizeof (lo));
2413 i += 4;
2414 hi = ((num >> 32) & 0xffffffff);
2415 if (hi)
2416 {
2417 buf[i++] = 0xbb; /* mov $<n>,%ebx */
2418 memcpy (&buf[i], &hi, sizeof (hi));
2419 i += 4;
2420 }
2421 else
2422 {
2423 buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
2424 }
2425 append_insns (&buildaddr, i, buf);
2426 current_insn_ptr = buildaddr;
2427 }
2428
2429 static void
2430 i386_emit_call (CORE_ADDR fn)
2431 {
2432 unsigned char buf[16];
2433 int i, offset;
2434 CORE_ADDR buildaddr;
2435
2436 buildaddr = current_insn_ptr;
2437 i = 0;
2438 buf[i++] = 0xe8; /* call <reladdr> */
2439 offset = ((int) fn) - (buildaddr + 5);
2440 memcpy (buf + 1, &offset, 4);
2441 append_insns (&buildaddr, 5, buf);
2442 current_insn_ptr = buildaddr;
2443 }
2444
2445 static void
2446 i386_emit_reg (int reg)
2447 {
2448 unsigned char buf[16];
2449 int i;
2450 CORE_ADDR buildaddr;
2451
2452 EMIT_ASM32 (i386_reg_a,
2453 "sub $0x8,%esp");
2454 buildaddr = current_insn_ptr;
2455 i = 0;
2456 buf[i++] = 0xb8; /* mov $<n>,%eax */
2457 memcpy (&buf[i], &reg, sizeof (reg));
2458 i += 4;
2459 append_insns (&buildaddr, i, buf);
2460 current_insn_ptr = buildaddr;
2461 EMIT_ASM32 (i386_reg_b,
2462 "mov %eax,4(%esp)\n\t"
2463 "mov 8(%ebp),%eax\n\t"
2464 "mov %eax,(%esp)");
2465 i386_emit_call (get_raw_reg_func_addr ());
2466 EMIT_ASM32 (i386_reg_c,
2467 "xor %ebx,%ebx\n\t"
2468 "lea 0x8(%esp),%esp");
2469 }
2470
2471 static void
2472 i386_emit_pop (void)
2473 {
2474 EMIT_ASM32 (i386_pop,
2475 "pop %eax\n\t"
2476 "pop %ebx");
2477 }
2478
2479 static void
2480 i386_emit_stack_flush (void)
2481 {
2482 EMIT_ASM32 (i386_stack_flush,
2483 "push %ebx\n\t"
2484 "push %eax");
2485 }
2486
2487 static void
2488 i386_emit_zero_ext (int arg)
2489 {
2490 switch (arg)
2491 {
2492 case 8:
2493 EMIT_ASM32 (i386_zero_ext_8,
2494 "and $0xff,%eax\n\t"
2495 "xor %ebx,%ebx");
2496 break;
2497 case 16:
2498 EMIT_ASM32 (i386_zero_ext_16,
2499 "and $0xffff,%eax\n\t"
2500 "xor %ebx,%ebx");
2501 break;
2502 case 32:
2503 EMIT_ASM32 (i386_zero_ext_32,
2504 "xor %ebx,%ebx");
2505 break;
2506 default:
2507 emit_error = 1;
2508 }
2509 }
2510
2511 static void
2512 i386_emit_swap (void)
2513 {
2514 EMIT_ASM32 (i386_swap,
2515 "mov %eax,%ecx\n\t"
2516 "mov %ebx,%edx\n\t"
2517 "pop %eax\n\t"
2518 "pop %ebx\n\t"
2519 "push %edx\n\t"
2520 "push %ecx");
2521 }
2522
2523 static void
2524 i386_emit_stack_adjust (int n)
2525 {
2526 unsigned char buf[16];
2527 int i;
2528 CORE_ADDR buildaddr = current_insn_ptr;
2529
2530 i = 0;
2531 buf[i++] = 0x8d; /* lea $<n>(%esp),%esp */
2532 buf[i++] = 0x64;
2533 buf[i++] = 0x24;
2534 buf[i++] = n * 8;
2535 append_insns (&buildaddr, i, buf);
2536 current_insn_ptr = buildaddr;
2537 }
2538
2539 /* FN's prototype is `LONGEST(*fn)(int)'. */
2540
2541 static void
2542 i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
2543 {
2544 unsigned char buf[16];
2545 int i;
2546 CORE_ADDR buildaddr;
2547
2548 EMIT_ASM32 (i386_int_call_1_a,
2549 /* Reserve a bit of stack space. */
2550 "sub $0x8,%esp");
2551 /* Put the one argument on the stack. */
2552 buildaddr = current_insn_ptr;
2553 i = 0;
2554 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2555 buf[i++] = 0x04;
2556 buf[i++] = 0x24;
2557 memcpy (&buf[i], &arg1, sizeof (arg1));
2558 i += 4;
2559 append_insns (&buildaddr, i, buf);
2560 current_insn_ptr = buildaddr;
2561 i386_emit_call (fn);
2562 EMIT_ASM32 (i386_int_call_1_c,
2563 "mov %edx,%ebx\n\t"
2564 "lea 0x8(%esp),%esp");
2565 }
2566
2567 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2568
2569 static void
2570 i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
2571 {
2572 unsigned char buf[16];
2573 int i;
2574 CORE_ADDR buildaddr;
2575
2576 EMIT_ASM32 (i386_void_call_2_a,
2577 /* Preserve %eax only; we don't have to worry about %ebx. */
2578 "push %eax\n\t"
2579 /* Reserve a bit of stack space for arguments. */
2580 "sub $0x10,%esp\n\t"
2581 /* Copy "top" to the second argument position. (Note that
2582 we can't assume function won't scribble on its
2583 arguments, so don't try to restore from this.) */
2584 "mov %eax,4(%esp)\n\t"
2585 "mov %ebx,8(%esp)");
2586 /* Put the first argument on the stack. */
2587 buildaddr = current_insn_ptr;
2588 i = 0;
2589 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2590 buf[i++] = 0x04;
2591 buf[i++] = 0x24;
2592 memcpy (&buf[i], &arg1, sizeof (arg1));
2593 i += 4;
2594 append_insns (&buildaddr, i, buf);
2595 current_insn_ptr = buildaddr;
2596 i386_emit_call (fn);
2597 EMIT_ASM32 (i386_void_call_2_b,
2598 "lea 0x10(%esp),%esp\n\t"
2599 /* Restore original stack top. */
2600 "pop %eax");
2601 }
2602
2603
2604 void
2605 i386_emit_eq_goto (int *offset_p, int *size_p)
2606 {
2607 EMIT_ASM32 (eq,
2608 /* Check low half first, more likely to be decider */
2609 "cmpl %eax,(%esp)\n\t"
2610 "jne .Leq_fallthru\n\t"
2611 "cmpl %ebx,4(%esp)\n\t"
2612 "jne .Leq_fallthru\n\t"
2613 "lea 0x8(%esp),%esp\n\t"
2614 "pop %eax\n\t"
2615 "pop %ebx\n\t"
2616 /* jmp, but don't trust the assembler to choose the right jump */
2617 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2618 ".Leq_fallthru:\n\t"
2619 "lea 0x8(%esp),%esp\n\t"
2620 "pop %eax\n\t"
2621 "pop %ebx");
2622
2623 if (offset_p)
2624 *offset_p = 18;
2625 if (size_p)
2626 *size_p = 4;
2627 }
2628
2629 void
2630 i386_emit_ne_goto (int *offset_p, int *size_p)
2631 {
2632 EMIT_ASM32 (ne,
2633 /* Check low half first, more likely to be decider */
2634 "cmpl %eax,(%esp)\n\t"
2635 "jne .Lne_jump\n\t"
2636 "cmpl %ebx,4(%esp)\n\t"
2637 "je .Lne_fallthru\n\t"
2638 ".Lne_jump:\n\t"
2639 "lea 0x8(%esp),%esp\n\t"
2640 "pop %eax\n\t"
2641 "pop %ebx\n\t"
2642 /* jmp, but don't trust the assembler to choose the right jump */
2643 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2644 ".Lne_fallthru:\n\t"
2645 "lea 0x8(%esp),%esp\n\t"
2646 "pop %eax\n\t"
2647 "pop %ebx");
2648
2649 if (offset_p)
2650 *offset_p = 18;
2651 if (size_p)
2652 *size_p = 4;
2653 }
2654
2655 void
2656 i386_emit_lt_goto (int *offset_p, int *size_p)
2657 {
2658 EMIT_ASM32 (lt,
2659 "cmpl %ebx,4(%esp)\n\t"
2660 "jl .Llt_jump\n\t"
2661 "jne .Llt_fallthru\n\t"
2662 "cmpl %eax,(%esp)\n\t"
2663 "jnl .Llt_fallthru\n\t"
2664 ".Llt_jump:\n\t"
2665 "lea 0x8(%esp),%esp\n\t"
2666 "pop %eax\n\t"
2667 "pop %ebx\n\t"
2668 /* jmp, but don't trust the assembler to choose the right jump */
2669 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2670 ".Llt_fallthru:\n\t"
2671 "lea 0x8(%esp),%esp\n\t"
2672 "pop %eax\n\t"
2673 "pop %ebx");
2674
2675 if (offset_p)
2676 *offset_p = 20;
2677 if (size_p)
2678 *size_p = 4;
2679 }
2680
2681 void
2682 i386_emit_le_goto (int *offset_p, int *size_p)
2683 {
2684 EMIT_ASM32 (le,
2685 "cmpl %ebx,4(%esp)\n\t"
2686 "jle .Lle_jump\n\t"
2687 "jne .Lle_fallthru\n\t"
2688 "cmpl %eax,(%esp)\n\t"
2689 "jnle .Lle_fallthru\n\t"
2690 ".Lle_jump:\n\t"
2691 "lea 0x8(%esp),%esp\n\t"
2692 "pop %eax\n\t"
2693 "pop %ebx\n\t"
2694 /* jmp, but don't trust the assembler to choose the right jump */
2695 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2696 ".Lle_fallthru:\n\t"
2697 "lea 0x8(%esp),%esp\n\t"
2698 "pop %eax\n\t"
2699 "pop %ebx");
2700
2701 if (offset_p)
2702 *offset_p = 20;
2703 if (size_p)
2704 *size_p = 4;
2705 }
2706
2707 void
2708 i386_emit_gt_goto (int *offset_p, int *size_p)
2709 {
2710 EMIT_ASM32 (gt,
2711 "cmpl %ebx,4(%esp)\n\t"
2712 "jg .Lgt_jump\n\t"
2713 "jne .Lgt_fallthru\n\t"
2714 "cmpl %eax,(%esp)\n\t"
2715 "jng .Lgt_fallthru\n\t"
2716 ".Lgt_jump:\n\t"
2717 "lea 0x8(%esp),%esp\n\t"
2718 "pop %eax\n\t"
2719 "pop %ebx\n\t"
2720 /* jmp, but don't trust the assembler to choose the right jump */
2721 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2722 ".Lgt_fallthru:\n\t"
2723 "lea 0x8(%esp),%esp\n\t"
2724 "pop %eax\n\t"
2725 "pop %ebx");
2726
2727 if (offset_p)
2728 *offset_p = 20;
2729 if (size_p)
2730 *size_p = 4;
2731 }
2732
2733 void
2734 i386_emit_ge_goto (int *offset_p, int *size_p)
2735 {
2736 EMIT_ASM32 (ge,
2737 "cmpl %ebx,4(%esp)\n\t"
2738 "jge .Lge_jump\n\t"
2739 "jne .Lge_fallthru\n\t"
2740 "cmpl %eax,(%esp)\n\t"
2741 "jnge .Lge_fallthru\n\t"
2742 ".Lge_jump:\n\t"
2743 "lea 0x8(%esp),%esp\n\t"
2744 "pop %eax\n\t"
2745 "pop %ebx\n\t"
2746 /* jmp, but don't trust the assembler to choose the right jump */
2747 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2748 ".Lge_fallthru:\n\t"
2749 "lea 0x8(%esp),%esp\n\t"
2750 "pop %eax\n\t"
2751 "pop %ebx");
2752
2753 if (offset_p)
2754 *offset_p = 20;
2755 if (size_p)
2756 *size_p = 4;
2757 }
2758
2759 struct emit_ops i386_emit_ops =
2760 {
2761 i386_emit_prologue,
2762 i386_emit_epilogue,
2763 i386_emit_add,
2764 i386_emit_sub,
2765 i386_emit_mul,
2766 i386_emit_lsh,
2767 i386_emit_rsh_signed,
2768 i386_emit_rsh_unsigned,
2769 i386_emit_ext,
2770 i386_emit_log_not,
2771 i386_emit_bit_and,
2772 i386_emit_bit_or,
2773 i386_emit_bit_xor,
2774 i386_emit_bit_not,
2775 i386_emit_equal,
2776 i386_emit_less_signed,
2777 i386_emit_less_unsigned,
2778 i386_emit_ref,
2779 i386_emit_if_goto,
2780 i386_emit_goto,
2781 i386_write_goto_address,
2782 i386_emit_const,
2783 i386_emit_call,
2784 i386_emit_reg,
2785 i386_emit_pop,
2786 i386_emit_stack_flush,
2787 i386_emit_zero_ext,
2788 i386_emit_swap,
2789 i386_emit_stack_adjust,
2790 i386_emit_int_call_1,
2791 i386_emit_void_call_2,
2792 i386_emit_eq_goto,
2793 i386_emit_ne_goto,
2794 i386_emit_lt_goto,
2795 i386_emit_le_goto,
2796 i386_emit_gt_goto,
2797 i386_emit_ge_goto
2798 };
2799
2800
2801 static struct emit_ops *
2802 x86_emit_ops (void)
2803 {
2804 #ifdef __x86_64__
2805 if (is_64bit_tdesc ())
2806 return &amd64_emit_ops;
2807 else
2808 #endif
2809 return &i386_emit_ops;
2810 }
2811
2812 /* Implementation of linux_target_ops method "sw_breakpoint_from_kind". */
2813
2814 static const gdb_byte *
2815 x86_sw_breakpoint_from_kind (int kind, int *size)
2816 {
2817 *size = x86_breakpoint_len;
2818 return x86_breakpoint;
2819 }
2820
2821 static int
2822 x86_supports_range_stepping (void)
2823 {
2824 return 1;
2825 }
2826
2827 /* Implementation of linux_target_ops method "supports_hardware_single_step".
2828 */
2829
2830 static int
2831 x86_supports_hardware_single_step (void)
2832 {
2833 return 1;
2834 }
2835
2836 static int
2837 x86_get_ipa_tdesc_idx (void)
2838 {
2839 struct regcache *regcache = get_thread_regcache (current_thread, 0);
2840 const struct target_desc *tdesc = regcache->tdesc;
2841
2842 #ifdef __x86_64__
2843 return amd64_get_ipa_tdesc_idx (tdesc);
2844 #endif
2845
2846 if (tdesc == tdesc_i386_linux_no_xml)
2847 return X86_TDESC_SSE;
2848
2849 return i386_get_ipa_tdesc_idx (tdesc);
2850 }
2851
2852 /* This is initialized assuming an amd64 target.
2853 x86_arch_setup will correct it for i386 or amd64 targets. */
2854
2855 struct linux_target_ops the_low_target =
2856 {
2857 x86_arch_setup,
2858 x86_linux_regs_info,
2859 x86_cannot_fetch_register,
2860 x86_cannot_store_register,
2861 NULL, /* fetch_register */
2862 x86_get_pc,
2863 x86_set_pc,
2864 NULL, /* breakpoint_kind_from_pc */
2865 x86_sw_breakpoint_from_kind,
2866 NULL,
2867 1,
2868 x86_breakpoint_at,
2869 x86_supports_z_point_type,
2870 x86_insert_point,
2871 x86_remove_point,
2872 x86_stopped_by_watchpoint,
2873 x86_stopped_data_address,
2874 /* collect_ptrace_register/supply_ptrace_register are not needed in the
2875 native i386 case (no registers smaller than an xfer unit), and are not
2876 used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
2877 NULL,
2878 NULL,
2879 /* need to fix up i386 siginfo if host is amd64 */
2880 x86_siginfo_fixup,
2881 x86_linux_new_process,
2882 x86_linux_new_thread,
2883 x86_linux_new_fork,
2884 x86_linux_prepare_to_resume,
2885 x86_linux_process_qsupported,
2886 x86_supports_tracepoints,
2887 x86_get_thread_area,
2888 x86_install_fast_tracepoint_jump_pad,
2889 x86_emit_ops,
2890 x86_get_min_fast_tracepoint_insn_len,
2891 x86_supports_range_stepping,
2892 NULL, /* breakpoint_kind_from_current_state */
2893 x86_supports_hardware_single_step,
2894 x86_get_syscall_trapinfo,
2895 x86_get_ipa_tdesc_idx,
2896 };
2897
2898 void
2899 initialize_low_arch (void)
2900 {
2901 /* Initialize the Linux target descriptions. */
2902 #ifdef __x86_64__
2903 tdesc_amd64_linux_no_xml = XNEW (struct target_desc);
2904 copy_target_description (tdesc_amd64_linux_no_xml,
2905 amd64_linux_read_description (X86_XSTATE_SSE_MASK,
2906 false));
2907 tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
2908 #endif
2909
2910 #if GDB_SELF_TEST
2911 initialize_low_tdesc ();
2912 #endif
2913
2914 tdesc_i386_linux_no_xml = XNEW (struct target_desc);
2915 copy_target_description (tdesc_i386_linux_no_xml,
2916 i386_linux_read_description (X86_XSTATE_SSE_MASK));
2917 tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
2918
2919 initialize_regsets_info (&x86_regsets_info);
2920 }
This page took 0.157146 seconds and 3 git commands to generate.