Remove new_thread_notify and dead_thread_notify
[deliverable/binutils-gdb.git] / gdb / gdbserver / remote-utils.c
1 /* Remote utility routines for the remote server for GDB.
2 Copyright (C) 1986-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "terminal.h"
21 #include "target.h"
22 #include "gdbthread.h"
23 #include "tdesc.h"
24 #include "dll.h"
25 #include "rsp-low.h"
26 #include <ctype.h>
27 #if HAVE_SYS_IOCTL_H
28 #include <sys/ioctl.h>
29 #endif
30 #if HAVE_SYS_FILE_H
31 #include <sys/file.h>
32 #endif
33 #if HAVE_NETINET_IN_H
34 #include <netinet/in.h>
35 #endif
36 #if HAVE_SYS_SOCKET_H
37 #include <sys/socket.h>
38 #endif
39 #if HAVE_NETDB_H
40 #include <netdb.h>
41 #endif
42 #if HAVE_NETINET_TCP_H
43 #include <netinet/tcp.h>
44 #endif
45 #if HAVE_SYS_IOCTL_H
46 #include <sys/ioctl.h>
47 #endif
48 #if HAVE_SIGNAL_H
49 #include <signal.h>
50 #endif
51 #if HAVE_FCNTL_H
52 #include <fcntl.h>
53 #endif
54 #include "gdb_sys_time.h"
55 #include <unistd.h>
56 #if HAVE_ARPA_INET_H
57 #include <arpa/inet.h>
58 #endif
59 #include <sys/stat.h>
60
61 #if USE_WIN32API
62 #include <winsock2.h>
63 #endif
64
65 #if __QNX__
66 #include <sys/iomgr.h>
67 #endif /* __QNX__ */
68
69 #ifndef HAVE_SOCKLEN_T
70 typedef int socklen_t;
71 #endif
72
73 #ifndef IN_PROCESS_AGENT
74
75 #if USE_WIN32API
76 # define INVALID_DESCRIPTOR INVALID_SOCKET
77 #else
78 # define INVALID_DESCRIPTOR -1
79 #endif
80
81 /* Extra value for readchar_callback. */
82 enum {
83 /* The callback is currently not scheduled. */
84 NOT_SCHEDULED = -1
85 };
86
87 /* Status of the readchar callback.
88 Either NOT_SCHEDULED or the callback id. */
89 static int readchar_callback = NOT_SCHEDULED;
90
91 static int readchar (void);
92 static void reset_readchar (void);
93 static void reschedule (void);
94
95 /* A cache entry for a successfully looked-up symbol. */
96 struct sym_cache
97 {
98 char *name;
99 CORE_ADDR addr;
100 struct sym_cache *next;
101 };
102
103 int remote_debug = 0;
104 struct ui_file *gdb_stdlog;
105
106 static int remote_is_stdio = 0;
107
108 static gdb_fildes_t remote_desc = INVALID_DESCRIPTOR;
109 static gdb_fildes_t listen_desc = INVALID_DESCRIPTOR;
110
111 /* FIXME headerize? */
112 extern int using_threads;
113 extern int debug_threads;
114
115 /* If true, then GDB has requested noack mode. */
116 int noack_mode = 0;
117 /* If true, then we tell GDB to use noack mode by default. */
118 int transport_is_reliable = 0;
119
120 #ifdef USE_WIN32API
121 # define read(fd, buf, len) recv (fd, (char *) buf, len, 0)
122 # define write(fd, buf, len) send (fd, (char *) buf, len, 0)
123 #endif
124
125 int
126 gdb_connected (void)
127 {
128 return remote_desc != INVALID_DESCRIPTOR;
129 }
130
131 /* Return true if the remote connection is over stdio. */
132
133 int
134 remote_connection_is_stdio (void)
135 {
136 return remote_is_stdio;
137 }
138
139 static void
140 enable_async_notification (int fd)
141 {
142 #if defined(F_SETFL) && defined (FASYNC)
143 int save_fcntl_flags;
144
145 save_fcntl_flags = fcntl (fd, F_GETFL, 0);
146 fcntl (fd, F_SETFL, save_fcntl_flags | FASYNC);
147 #if defined (F_SETOWN)
148 fcntl (fd, F_SETOWN, getpid ());
149 #endif
150 #endif
151 }
152
153 static int
154 handle_accept_event (int err, gdb_client_data client_data)
155 {
156 struct sockaddr_in sockaddr;
157 socklen_t tmp;
158
159 if (debug_threads)
160 debug_printf ("handling possible accept event\n");
161
162 tmp = sizeof (sockaddr);
163 remote_desc = accept (listen_desc, (struct sockaddr *) &sockaddr, &tmp);
164 if (remote_desc == -1)
165 perror_with_name ("Accept failed");
166
167 /* Enable TCP keep alive process. */
168 tmp = 1;
169 setsockopt (remote_desc, SOL_SOCKET, SO_KEEPALIVE,
170 (char *) &tmp, sizeof (tmp));
171
172 /* Tell TCP not to delay small packets. This greatly speeds up
173 interactive response. */
174 tmp = 1;
175 setsockopt (remote_desc, IPPROTO_TCP, TCP_NODELAY,
176 (char *) &tmp, sizeof (tmp));
177
178 #ifndef USE_WIN32API
179 signal (SIGPIPE, SIG_IGN); /* If we don't do this, then gdbserver simply
180 exits when the remote side dies. */
181 #endif
182
183 if (run_once)
184 {
185 #ifndef USE_WIN32API
186 close (listen_desc); /* No longer need this */
187 #else
188 closesocket (listen_desc); /* No longer need this */
189 #endif
190 }
191
192 /* Even if !RUN_ONCE no longer notice new connections. Still keep the
193 descriptor open for add_file_handler to wait for a new connection. */
194 delete_file_handler (listen_desc);
195
196 /* Convert IP address to string. */
197 fprintf (stderr, "Remote debugging from host %s\n",
198 inet_ntoa (sockaddr.sin_addr));
199
200 enable_async_notification (remote_desc);
201
202 /* Register the event loop handler. */
203 add_file_handler (remote_desc, handle_serial_event, NULL);
204
205 /* We have a new GDB connection now. If we were disconnected
206 tracing, there's a window where the target could report a stop
207 event to the event loop, and since we have a connection now, we'd
208 try to send vStopped notifications to GDB. But, don't do that
209 until GDB as selected all-stop/non-stop, and has queried the
210 threads' status ('?'). */
211 target_async (0);
212
213 return 0;
214 }
215
216 /* Prepare for a later connection to a remote debugger.
217 NAME is the filename used for communication. */
218
219 void
220 remote_prepare (char *name)
221 {
222 char *port_str;
223 #ifdef USE_WIN32API
224 static int winsock_initialized;
225 #endif
226 int port;
227 struct sockaddr_in sockaddr;
228 socklen_t tmp;
229 char *port_end;
230
231 remote_is_stdio = 0;
232 if (strcmp (name, STDIO_CONNECTION_NAME) == 0)
233 {
234 /* We need to record fact that we're using stdio sooner than the
235 call to remote_open so start_inferior knows the connection is
236 via stdio. */
237 remote_is_stdio = 1;
238 transport_is_reliable = 1;
239 return;
240 }
241
242 port_str = strchr (name, ':');
243 if (port_str == NULL)
244 {
245 transport_is_reliable = 0;
246 return;
247 }
248
249 port = strtoul (port_str + 1, &port_end, 10);
250 if (port_str[1] == '\0' || *port_end != '\0')
251 error ("Bad port argument: %s", name);
252
253 #ifdef USE_WIN32API
254 if (!winsock_initialized)
255 {
256 WSADATA wsad;
257
258 WSAStartup (MAKEWORD (1, 0), &wsad);
259 winsock_initialized = 1;
260 }
261 #endif
262
263 listen_desc = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP);
264 if (listen_desc == -1)
265 perror_with_name ("Can't open socket");
266
267 /* Allow rapid reuse of this port. */
268 tmp = 1;
269 setsockopt (listen_desc, SOL_SOCKET, SO_REUSEADDR, (char *) &tmp,
270 sizeof (tmp));
271
272 sockaddr.sin_family = PF_INET;
273 sockaddr.sin_port = htons (port);
274 sockaddr.sin_addr.s_addr = INADDR_ANY;
275
276 if (bind (listen_desc, (struct sockaddr *) &sockaddr, sizeof (sockaddr))
277 || listen (listen_desc, 1))
278 perror_with_name ("Can't bind address");
279
280 transport_is_reliable = 1;
281 }
282
283 /* Open a connection to a remote debugger.
284 NAME is the filename used for communication. */
285
286 void
287 remote_open (char *name)
288 {
289 char *port_str;
290
291 port_str = strchr (name, ':');
292 #ifdef USE_WIN32API
293 if (port_str == NULL)
294 error ("Only <host>:<port> is supported on this platform.");
295 #endif
296
297 if (strcmp (name, STDIO_CONNECTION_NAME) == 0)
298 {
299 fprintf (stderr, "Remote debugging using stdio\n");
300
301 /* Use stdin as the handle of the connection.
302 We only select on reads, for example. */
303 remote_desc = fileno (stdin);
304
305 enable_async_notification (remote_desc);
306
307 /* Register the event loop handler. */
308 add_file_handler (remote_desc, handle_serial_event, NULL);
309 }
310 #ifndef USE_WIN32API
311 else if (port_str == NULL)
312 {
313 struct stat statbuf;
314
315 if (stat (name, &statbuf) == 0
316 && (S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode)))
317 remote_desc = open (name, O_RDWR);
318 else
319 {
320 errno = EINVAL;
321 remote_desc = -1;
322 }
323
324 if (remote_desc < 0)
325 perror_with_name ("Could not open remote device");
326
327 #ifdef HAVE_TERMIOS
328 {
329 struct termios termios;
330 tcgetattr (remote_desc, &termios);
331
332 termios.c_iflag = 0;
333 termios.c_oflag = 0;
334 termios.c_lflag = 0;
335 termios.c_cflag &= ~(CSIZE | PARENB);
336 termios.c_cflag |= CLOCAL | CS8;
337 termios.c_cc[VMIN] = 1;
338 termios.c_cc[VTIME] = 0;
339
340 tcsetattr (remote_desc, TCSANOW, &termios);
341 }
342 #endif
343
344 #ifdef HAVE_TERMIO
345 {
346 struct termio termio;
347 ioctl (remote_desc, TCGETA, &termio);
348
349 termio.c_iflag = 0;
350 termio.c_oflag = 0;
351 termio.c_lflag = 0;
352 termio.c_cflag &= ~(CSIZE | PARENB);
353 termio.c_cflag |= CLOCAL | CS8;
354 termio.c_cc[VMIN] = 1;
355 termio.c_cc[VTIME] = 0;
356
357 ioctl (remote_desc, TCSETA, &termio);
358 }
359 #endif
360
361 #ifdef HAVE_SGTTY
362 {
363 struct sgttyb sg;
364
365 ioctl (remote_desc, TIOCGETP, &sg);
366 sg.sg_flags = RAW;
367 ioctl (remote_desc, TIOCSETP, &sg);
368 }
369 #endif
370
371 fprintf (stderr, "Remote debugging using %s\n", name);
372
373 enable_async_notification (remote_desc);
374
375 /* Register the event loop handler. */
376 add_file_handler (remote_desc, handle_serial_event, NULL);
377 }
378 #endif /* USE_WIN32API */
379 else
380 {
381 int port;
382 socklen_t len;
383 struct sockaddr_in sockaddr;
384
385 len = sizeof (sockaddr);
386 if (getsockname (listen_desc,
387 (struct sockaddr *) &sockaddr, &len) < 0
388 || len < sizeof (sockaddr))
389 perror_with_name ("Can't determine port");
390 port = ntohs (sockaddr.sin_port);
391
392 fprintf (stderr, "Listening on port %d\n", port);
393 fflush (stderr);
394
395 /* Register the event loop handler. */
396 add_file_handler (listen_desc, handle_accept_event, NULL);
397 }
398 }
399
400 void
401 remote_close (void)
402 {
403 delete_file_handler (remote_desc);
404
405 #ifdef USE_WIN32API
406 closesocket (remote_desc);
407 #else
408 if (! remote_connection_is_stdio ())
409 close (remote_desc);
410 #endif
411 remote_desc = INVALID_DESCRIPTOR;
412
413 reset_readchar ();
414 }
415
416 #endif
417
418 #ifndef IN_PROCESS_AGENT
419
420 void
421 decode_address (CORE_ADDR *addrp, const char *start, int len)
422 {
423 CORE_ADDR addr;
424 char ch;
425 int i;
426
427 addr = 0;
428 for (i = 0; i < len; i++)
429 {
430 ch = start[i];
431 addr = addr << 4;
432 addr = addr | (fromhex (ch) & 0x0f);
433 }
434 *addrp = addr;
435 }
436
437 const char *
438 decode_address_to_semicolon (CORE_ADDR *addrp, const char *start)
439 {
440 const char *end;
441
442 end = start;
443 while (*end != '\0' && *end != ';')
444 end++;
445
446 decode_address (addrp, start, end - start);
447
448 if (*end == ';')
449 end++;
450 return end;
451 }
452
453 #endif
454
455 #ifndef IN_PROCESS_AGENT
456
457 /* Look for a sequence of characters which can be run-length encoded.
458 If there are any, update *CSUM and *P. Otherwise, output the
459 single character. Return the number of characters consumed. */
460
461 static int
462 try_rle (char *buf, int remaining, unsigned char *csum, char **p)
463 {
464 int n;
465
466 /* Always output the character. */
467 *csum += buf[0];
468 *(*p)++ = buf[0];
469
470 /* Don't go past '~'. */
471 if (remaining > 97)
472 remaining = 97;
473
474 for (n = 1; n < remaining; n++)
475 if (buf[n] != buf[0])
476 break;
477
478 /* N is the index of the first character not the same as buf[0].
479 buf[0] is counted twice, so by decrementing N, we get the number
480 of characters the RLE sequence will replace. */
481 n--;
482
483 if (n < 3)
484 return 1;
485
486 /* Skip the frame characters. The manual says to skip '+' and '-'
487 also, but there's no reason to. Unfortunately these two unusable
488 characters double the encoded length of a four byte zero
489 value. */
490 while (n + 29 == '$' || n + 29 == '#')
491 n--;
492
493 *csum += '*';
494 *(*p)++ = '*';
495 *csum += n + 29;
496 *(*p)++ = n + 29;
497
498 return n + 1;
499 }
500
501 #endif
502
503 #ifndef IN_PROCESS_AGENT
504
505 /* Write a PTID to BUF. Returns BUF+CHARACTERS_WRITTEN. */
506
507 char *
508 write_ptid (char *buf, ptid_t ptid)
509 {
510 int pid, tid;
511
512 if (multi_process)
513 {
514 pid = ptid_get_pid (ptid);
515 if (pid < 0)
516 buf += sprintf (buf, "p-%x.", -pid);
517 else
518 buf += sprintf (buf, "p%x.", pid);
519 }
520 tid = ptid_get_lwp (ptid);
521 if (tid < 0)
522 buf += sprintf (buf, "-%x", -tid);
523 else
524 buf += sprintf (buf, "%x", tid);
525
526 return buf;
527 }
528
529 static ULONGEST
530 hex_or_minus_one (char *buf, char **obuf)
531 {
532 ULONGEST ret;
533
534 if (startswith (buf, "-1"))
535 {
536 ret = (ULONGEST) -1;
537 buf += 2;
538 }
539 else
540 buf = unpack_varlen_hex (buf, &ret);
541
542 if (obuf)
543 *obuf = buf;
544
545 return ret;
546 }
547
548 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
549 passed the last parsed char. Returns null_ptid on error. */
550 ptid_t
551 read_ptid (char *buf, char **obuf)
552 {
553 char *p = buf;
554 char *pp;
555 ULONGEST pid = 0, tid = 0;
556
557 if (*p == 'p')
558 {
559 /* Multi-process ptid. */
560 pp = unpack_varlen_hex (p + 1, &pid);
561 if (*pp != '.')
562 error ("invalid remote ptid: %s\n", p);
563
564 p = pp + 1;
565
566 tid = hex_or_minus_one (p, &pp);
567
568 if (obuf)
569 *obuf = pp;
570 return ptid_build (pid, tid, 0);
571 }
572
573 /* No multi-process. Just a tid. */
574 tid = hex_or_minus_one (p, &pp);
575
576 /* Since GDB is not sending a process id (multi-process extensions
577 are off), then there's only one process. Default to the first in
578 the list. */
579 pid = pid_of (get_first_process ());
580
581 if (obuf)
582 *obuf = pp;
583 return ptid_build (pid, tid, 0);
584 }
585
586 /* Write COUNT bytes in BUF to the client.
587 The result is the number of bytes written or -1 if error.
588 This may return less than COUNT. */
589
590 static int
591 write_prim (const void *buf, int count)
592 {
593 if (remote_connection_is_stdio ())
594 return write (fileno (stdout), buf, count);
595 else
596 return write (remote_desc, buf, count);
597 }
598
599 /* Read COUNT bytes from the client and store in BUF.
600 The result is the number of bytes read or -1 if error.
601 This may return less than COUNT. */
602
603 static int
604 read_prim (void *buf, int count)
605 {
606 if (remote_connection_is_stdio ())
607 return read (fileno (stdin), buf, count);
608 else
609 return read (remote_desc, buf, count);
610 }
611
612 /* Send a packet to the remote machine, with error checking.
613 The data of the packet is in BUF, and the length of the
614 packet is in CNT. Returns >= 0 on success, -1 otherwise. */
615
616 static int
617 putpkt_binary_1 (char *buf, int cnt, int is_notif)
618 {
619 int i;
620 unsigned char csum = 0;
621 char *buf2;
622 char *p;
623 int cc;
624
625 buf2 = (char *) xmalloc (strlen ("$") + cnt + strlen ("#nn") + 1);
626
627 /* Copy the packet into buffer BUF2, encapsulating it
628 and giving it a checksum. */
629
630 p = buf2;
631 if (is_notif)
632 *p++ = '%';
633 else
634 *p++ = '$';
635
636 for (i = 0; i < cnt;)
637 i += try_rle (buf + i, cnt - i, &csum, &p);
638
639 *p++ = '#';
640 *p++ = tohex ((csum >> 4) & 0xf);
641 *p++ = tohex (csum & 0xf);
642
643 *p = '\0';
644
645 /* Send it over and over until we get a positive ack. */
646
647 do
648 {
649 if (write_prim (buf2, p - buf2) != p - buf2)
650 {
651 perror ("putpkt(write)");
652 free (buf2);
653 return -1;
654 }
655
656 if (noack_mode || is_notif)
657 {
658 /* Don't expect an ack then. */
659 if (remote_debug)
660 {
661 if (is_notif)
662 fprintf (stderr, "putpkt (\"%s\"); [notif]\n", buf2);
663 else
664 fprintf (stderr, "putpkt (\"%s\"); [noack mode]\n", buf2);
665 fflush (stderr);
666 }
667 break;
668 }
669
670 if (remote_debug)
671 {
672 fprintf (stderr, "putpkt (\"%s\"); [looking for ack]\n", buf2);
673 fflush (stderr);
674 }
675
676 cc = readchar ();
677
678 if (cc < 0)
679 {
680 free (buf2);
681 return -1;
682 }
683
684 if (remote_debug)
685 {
686 fprintf (stderr, "[received '%c' (0x%x)]\n", cc, cc);
687 fflush (stderr);
688 }
689
690 /* Check for an input interrupt while we're here. */
691 if (cc == '\003' && current_thread != NULL)
692 (*the_target->request_interrupt) ();
693 }
694 while (cc != '+');
695
696 free (buf2);
697 return 1; /* Success! */
698 }
699
700 int
701 putpkt_binary (char *buf, int cnt)
702 {
703 return putpkt_binary_1 (buf, cnt, 0);
704 }
705
706 /* Send a packet to the remote machine, with error checking. The data
707 of the packet is in BUF, and the packet should be a NUL-terminated
708 string. Returns >= 0 on success, -1 otherwise. */
709
710 int
711 putpkt (char *buf)
712 {
713 return putpkt_binary (buf, strlen (buf));
714 }
715
716 int
717 putpkt_notif (char *buf)
718 {
719 return putpkt_binary_1 (buf, strlen (buf), 1);
720 }
721
722 /* Come here when we get an input interrupt from the remote side. This
723 interrupt should only be active while we are waiting for the child to do
724 something. Thus this assumes readchar:bufcnt is 0.
725 About the only thing that should come through is a ^C, which
726 will cause us to request child interruption. */
727
728 static void
729 input_interrupt (int unused)
730 {
731 fd_set readset;
732 struct timeval immediate = { 0, 0 };
733
734 /* Protect against spurious interrupts. This has been observed to
735 be a problem under NetBSD 1.4 and 1.5. */
736
737 FD_ZERO (&readset);
738 FD_SET (remote_desc, &readset);
739 if (select (remote_desc + 1, &readset, 0, 0, &immediate) > 0)
740 {
741 int cc;
742 char c = 0;
743
744 cc = read_prim (&c, 1);
745
746 if (cc == 0)
747 {
748 fprintf (stderr, "client connection closed\n");
749 return;
750 }
751 else if (cc != 1 || c != '\003')
752 {
753 fprintf (stderr, "input_interrupt, count = %d c = %d ", cc, c);
754 if (isprint (c))
755 fprintf (stderr, "('%c')\n", c);
756 else
757 fprintf (stderr, "('\\x%02x')\n", c & 0xff);
758 return;
759 }
760
761 (*the_target->request_interrupt) ();
762 }
763 }
764
765 /* Check if the remote side sent us an interrupt request (^C). */
766 void
767 check_remote_input_interrupt_request (void)
768 {
769 /* This function may be called before establishing communications,
770 therefore we need to validate the remote descriptor. */
771
772 if (remote_desc == INVALID_DESCRIPTOR)
773 return;
774
775 input_interrupt (0);
776 }
777
778 /* Asynchronous I/O support. SIGIO must be enabled when waiting, in order to
779 accept Control-C from the client, and must be disabled when talking to
780 the client. */
781
782 static void
783 unblock_async_io (void)
784 {
785 #ifndef USE_WIN32API
786 sigset_t sigio_set;
787
788 sigemptyset (&sigio_set);
789 sigaddset (&sigio_set, SIGIO);
790 sigprocmask (SIG_UNBLOCK, &sigio_set, NULL);
791 #endif
792 }
793
794 #ifdef __QNX__
795 static void
796 nto_comctrl (int enable)
797 {
798 struct sigevent event;
799
800 if (enable)
801 {
802 event.sigev_notify = SIGEV_SIGNAL_THREAD;
803 event.sigev_signo = SIGIO;
804 event.sigev_code = 0;
805 event.sigev_value.sival_ptr = NULL;
806 event.sigev_priority = -1;
807 ionotify (remote_desc, _NOTIFY_ACTION_POLLARM, _NOTIFY_COND_INPUT,
808 &event);
809 }
810 else
811 ionotify (remote_desc, _NOTIFY_ACTION_POLL, _NOTIFY_COND_INPUT, NULL);
812 }
813 #endif /* __QNX__ */
814
815
816 /* Current state of asynchronous I/O. */
817 static int async_io_enabled;
818
819 /* Enable asynchronous I/O. */
820 void
821 enable_async_io (void)
822 {
823 if (async_io_enabled)
824 return;
825
826 #ifndef USE_WIN32API
827 signal (SIGIO, input_interrupt);
828 #endif
829 async_io_enabled = 1;
830 #ifdef __QNX__
831 nto_comctrl (1);
832 #endif /* __QNX__ */
833 }
834
835 /* Disable asynchronous I/O. */
836 void
837 disable_async_io (void)
838 {
839 if (!async_io_enabled)
840 return;
841
842 #ifndef USE_WIN32API
843 signal (SIGIO, SIG_IGN);
844 #endif
845 async_io_enabled = 0;
846 #ifdef __QNX__
847 nto_comctrl (0);
848 #endif /* __QNX__ */
849
850 }
851
852 void
853 initialize_async_io (void)
854 {
855 /* Make sure that async I/O starts disabled. */
856 async_io_enabled = 1;
857 disable_async_io ();
858
859 /* Make sure the signal is unblocked. */
860 unblock_async_io ();
861 }
862
863 /* Internal buffer used by readchar.
864 These are global to readchar because reschedule_remote needs to be
865 able to tell whether the buffer is empty. */
866
867 static unsigned char readchar_buf[BUFSIZ];
868 static int readchar_bufcnt = 0;
869 static unsigned char *readchar_bufp;
870
871 /* Returns next char from remote GDB. -1 if error. */
872
873 static int
874 readchar (void)
875 {
876 int ch;
877
878 if (readchar_bufcnt == 0)
879 {
880 readchar_bufcnt = read_prim (readchar_buf, sizeof (readchar_buf));
881
882 if (readchar_bufcnt <= 0)
883 {
884 if (readchar_bufcnt == 0)
885 {
886 if (remote_debug)
887 fprintf (stderr, "readchar: Got EOF\n");
888 }
889 else
890 perror ("readchar");
891
892 return -1;
893 }
894
895 readchar_bufp = readchar_buf;
896 }
897
898 readchar_bufcnt--;
899 ch = *readchar_bufp++;
900 reschedule ();
901 return ch;
902 }
903
904 /* Reset the readchar state machine. */
905
906 static void
907 reset_readchar (void)
908 {
909 readchar_bufcnt = 0;
910 if (readchar_callback != NOT_SCHEDULED)
911 {
912 delete_callback_event (readchar_callback);
913 readchar_callback = NOT_SCHEDULED;
914 }
915 }
916
917 /* Process remaining data in readchar_buf. */
918
919 static int
920 process_remaining (void *context)
921 {
922 int res;
923
924 /* This is a one-shot event. */
925 readchar_callback = NOT_SCHEDULED;
926
927 if (readchar_bufcnt > 0)
928 res = handle_serial_event (0, NULL);
929 else
930 res = 0;
931
932 return res;
933 }
934
935 /* If there is still data in the buffer, queue another event to process it,
936 we can't sleep in select yet. */
937
938 static void
939 reschedule (void)
940 {
941 if (readchar_bufcnt > 0 && readchar_callback == NOT_SCHEDULED)
942 readchar_callback = append_callback_event (process_remaining, NULL);
943 }
944
945 /* Read a packet from the remote machine, with error checking,
946 and store it in BUF. Returns length of packet, or negative if error. */
947
948 int
949 getpkt (char *buf)
950 {
951 char *bp;
952 unsigned char csum, c1, c2;
953 int c;
954
955 while (1)
956 {
957 csum = 0;
958
959 while (1)
960 {
961 c = readchar ();
962
963 /* The '\003' may appear before or after each packet, so
964 check for an input interrupt. */
965 if (c == '\003')
966 {
967 (*the_target->request_interrupt) ();
968 continue;
969 }
970
971 if (c == '$')
972 break;
973 if (remote_debug)
974 {
975 fprintf (stderr, "[getpkt: discarding char '%c']\n", c);
976 fflush (stderr);
977 }
978
979 if (c < 0)
980 return -1;
981 }
982
983 bp = buf;
984 while (1)
985 {
986 c = readchar ();
987 if (c < 0)
988 return -1;
989 if (c == '#')
990 break;
991 *bp++ = c;
992 csum += c;
993 }
994 *bp = 0;
995
996 c1 = fromhex (readchar ());
997 c2 = fromhex (readchar ());
998
999 if (csum == (c1 << 4) + c2)
1000 break;
1001
1002 if (noack_mode)
1003 {
1004 fprintf (stderr,
1005 "Bad checksum, sentsum=0x%x, csum=0x%x, "
1006 "buf=%s [no-ack-mode, Bad medium?]\n",
1007 (c1 << 4) + c2, csum, buf);
1008 /* Not much we can do, GDB wasn't expecting an ack/nac. */
1009 break;
1010 }
1011
1012 fprintf (stderr, "Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
1013 (c1 << 4) + c2, csum, buf);
1014 if (write_prim ("-", 1) != 1)
1015 return -1;
1016 }
1017
1018 if (!noack_mode)
1019 {
1020 if (remote_debug)
1021 {
1022 fprintf (stderr, "getpkt (\"%s\"); [sending ack] \n", buf);
1023 fflush (stderr);
1024 }
1025
1026 if (write_prim ("+", 1) != 1)
1027 return -1;
1028
1029 if (remote_debug)
1030 {
1031 fprintf (stderr, "[sent ack]\n");
1032 fflush (stderr);
1033 }
1034 }
1035 else
1036 {
1037 if (remote_debug)
1038 {
1039 fprintf (stderr, "getpkt (\"%s\"); [no ack sent] \n", buf);
1040 fflush (stderr);
1041 }
1042 }
1043
1044 return bp - buf;
1045 }
1046
1047 void
1048 write_ok (char *buf)
1049 {
1050 buf[0] = 'O';
1051 buf[1] = 'K';
1052 buf[2] = '\0';
1053 }
1054
1055 void
1056 write_enn (char *buf)
1057 {
1058 /* Some day, we should define the meanings of the error codes... */
1059 buf[0] = 'E';
1060 buf[1] = '0';
1061 buf[2] = '1';
1062 buf[3] = '\0';
1063 }
1064
1065 #endif
1066
1067 #ifndef IN_PROCESS_AGENT
1068
1069 static char *
1070 outreg (struct regcache *regcache, int regno, char *buf)
1071 {
1072 if ((regno >> 12) != 0)
1073 *buf++ = tohex ((regno >> 12) & 0xf);
1074 if ((regno >> 8) != 0)
1075 *buf++ = tohex ((regno >> 8) & 0xf);
1076 *buf++ = tohex ((regno >> 4) & 0xf);
1077 *buf++ = tohex (regno & 0xf);
1078 *buf++ = ':';
1079 collect_register_as_string (regcache, regno, buf);
1080 buf += 2 * register_size (regcache->tdesc, regno);
1081 *buf++ = ';';
1082
1083 return buf;
1084 }
1085
1086 void
1087 prepare_resume_reply (char *buf, ptid_t ptid,
1088 struct target_waitstatus *status)
1089 {
1090 if (debug_threads)
1091 debug_printf ("Writing resume reply for %s:%d\n",
1092 target_pid_to_str (ptid), status->kind);
1093
1094 switch (status->kind)
1095 {
1096 case TARGET_WAITKIND_STOPPED:
1097 case TARGET_WAITKIND_FORKED:
1098 case TARGET_WAITKIND_VFORKED:
1099 case TARGET_WAITKIND_VFORK_DONE:
1100 case TARGET_WAITKIND_EXECD:
1101 case TARGET_WAITKIND_THREAD_CREATED:
1102 case TARGET_WAITKIND_SYSCALL_ENTRY:
1103 case TARGET_WAITKIND_SYSCALL_RETURN:
1104 {
1105 struct thread_info *saved_thread;
1106 const char **regp;
1107 struct regcache *regcache;
1108
1109 if ((status->kind == TARGET_WAITKIND_FORKED && report_fork_events)
1110 || (status->kind == TARGET_WAITKIND_VFORKED && report_vfork_events))
1111 {
1112 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1113 const char *event = (status->kind == TARGET_WAITKIND_FORKED
1114 ? "fork" : "vfork");
1115
1116 sprintf (buf, "T%02x%s:", signal, event);
1117 buf += strlen (buf);
1118 buf = write_ptid (buf, status->value.related_pid);
1119 strcat (buf, ";");
1120 }
1121 else if (status->kind == TARGET_WAITKIND_VFORK_DONE && report_vfork_events)
1122 {
1123 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1124
1125 sprintf (buf, "T%02xvforkdone:;", signal);
1126 }
1127 else if (status->kind == TARGET_WAITKIND_EXECD && report_exec_events)
1128 {
1129 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1130 const char *event = "exec";
1131 char hexified_pathname[PATH_MAX * 2];
1132
1133 sprintf (buf, "T%02x%s:", signal, event);
1134 buf += strlen (buf);
1135
1136 /* Encode pathname to hexified format. */
1137 bin2hex ((const gdb_byte *) status->value.execd_pathname,
1138 hexified_pathname,
1139 strlen (status->value.execd_pathname));
1140
1141 sprintf (buf, "%s;", hexified_pathname);
1142 xfree (status->value.execd_pathname);
1143 status->value.execd_pathname = NULL;
1144 buf += strlen (buf);
1145 }
1146 else if (status->kind == TARGET_WAITKIND_THREAD_CREATED
1147 && report_thread_events)
1148 {
1149 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1150
1151 sprintf (buf, "T%02xcreate:;", signal);
1152 }
1153 else if (status->kind == TARGET_WAITKIND_SYSCALL_ENTRY
1154 || status->kind == TARGET_WAITKIND_SYSCALL_RETURN)
1155 {
1156 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1157 const char *event = (status->kind == TARGET_WAITKIND_SYSCALL_ENTRY
1158 ? "syscall_entry" : "syscall_return");
1159
1160 sprintf (buf, "T%02x%s:%x;", signal, event,
1161 status->value.syscall_number);
1162 }
1163 else
1164 sprintf (buf, "T%02x", status->value.sig);
1165
1166 buf += strlen (buf);
1167
1168 saved_thread = current_thread;
1169
1170 current_thread = find_thread_ptid (ptid);
1171
1172 regp = current_target_desc ()->expedite_regs;
1173
1174 regcache = get_thread_regcache (current_thread, 1);
1175
1176 if (the_target->stopped_by_watchpoint != NULL
1177 && (*the_target->stopped_by_watchpoint) ())
1178 {
1179 CORE_ADDR addr;
1180 int i;
1181
1182 strncpy (buf, "watch:", 6);
1183 buf += 6;
1184
1185 addr = (*the_target->stopped_data_address) ();
1186
1187 /* Convert each byte of the address into two hexadecimal
1188 chars. Note that we take sizeof (void *) instead of
1189 sizeof (addr); this is to avoid sending a 64-bit
1190 address to a 32-bit GDB. */
1191 for (i = sizeof (void *) * 2; i > 0; i--)
1192 *buf++ = tohex ((addr >> (i - 1) * 4) & 0xf);
1193 *buf++ = ';';
1194 }
1195 else if (swbreak_feature && target_stopped_by_sw_breakpoint ())
1196 {
1197 sprintf (buf, "swbreak:;");
1198 buf += strlen (buf);
1199 }
1200 else if (hwbreak_feature && target_stopped_by_hw_breakpoint ())
1201 {
1202 sprintf (buf, "hwbreak:;");
1203 buf += strlen (buf);
1204 }
1205
1206 while (*regp)
1207 {
1208 buf = outreg (regcache, find_regno (regcache->tdesc, *regp), buf);
1209 regp ++;
1210 }
1211 *buf = '\0';
1212
1213 /* Formerly, if the debugger had not used any thread features
1214 we would not burden it with a thread status response. This
1215 was for the benefit of GDB 4.13 and older. However, in
1216 recent GDB versions the check (``if (cont_thread != 0)'')
1217 does not have the desired effect because of sillyness in
1218 the way that the remote protocol handles specifying a
1219 thread. Since thread support relies on qSymbol support
1220 anyway, assume GDB can handle threads. */
1221
1222 if (using_threads && !disable_packet_Tthread)
1223 {
1224 /* This if (1) ought to be unnecessary. But remote_wait
1225 in GDB will claim this event belongs to inferior_ptid
1226 if we do not specify a thread, and there's no way for
1227 gdbserver to know what inferior_ptid is. */
1228 if (1 || !ptid_equal (general_thread, ptid))
1229 {
1230 int core = -1;
1231 /* In non-stop, don't change the general thread behind
1232 GDB's back. */
1233 if (!non_stop)
1234 general_thread = ptid;
1235 sprintf (buf, "thread:");
1236 buf += strlen (buf);
1237 buf = write_ptid (buf, ptid);
1238 strcat (buf, ";");
1239 buf += strlen (buf);
1240
1241 core = target_core_of_thread (ptid);
1242
1243 if (core != -1)
1244 {
1245 sprintf (buf, "core:");
1246 buf += strlen (buf);
1247 sprintf (buf, "%x", core);
1248 strcat (buf, ";");
1249 buf += strlen (buf);
1250 }
1251 }
1252 }
1253
1254 if (dlls_changed)
1255 {
1256 strcpy (buf, "library:;");
1257 buf += strlen (buf);
1258 dlls_changed = 0;
1259 }
1260
1261 current_thread = saved_thread;
1262 }
1263 break;
1264 case TARGET_WAITKIND_EXITED:
1265 if (multi_process)
1266 sprintf (buf, "W%x;process:%x",
1267 status->value.integer, ptid_get_pid (ptid));
1268 else
1269 sprintf (buf, "W%02x", status->value.integer);
1270 break;
1271 case TARGET_WAITKIND_SIGNALLED:
1272 if (multi_process)
1273 sprintf (buf, "X%x;process:%x",
1274 status->value.sig, ptid_get_pid (ptid));
1275 else
1276 sprintf (buf, "X%02x", status->value.sig);
1277 break;
1278 case TARGET_WAITKIND_THREAD_EXITED:
1279 sprintf (buf, "w%x;", status->value.integer);
1280 buf += strlen (buf);
1281 buf = write_ptid (buf, ptid);
1282 break;
1283 case TARGET_WAITKIND_NO_RESUMED:
1284 sprintf (buf, "N");
1285 break;
1286 default:
1287 error ("unhandled waitkind");
1288 break;
1289 }
1290 }
1291
1292 void
1293 decode_m_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr)
1294 {
1295 int i = 0, j = 0;
1296 char ch;
1297 *mem_addr_ptr = *len_ptr = 0;
1298
1299 while ((ch = from[i++]) != ',')
1300 {
1301 *mem_addr_ptr = *mem_addr_ptr << 4;
1302 *mem_addr_ptr |= fromhex (ch) & 0x0f;
1303 }
1304
1305 for (j = 0; j < 4; j++)
1306 {
1307 if ((ch = from[i++]) == 0)
1308 break;
1309 *len_ptr = *len_ptr << 4;
1310 *len_ptr |= fromhex (ch) & 0x0f;
1311 }
1312 }
1313
1314 void
1315 decode_M_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr,
1316 unsigned char **to_p)
1317 {
1318 int i = 0;
1319 char ch;
1320 *mem_addr_ptr = *len_ptr = 0;
1321
1322 while ((ch = from[i++]) != ',')
1323 {
1324 *mem_addr_ptr = *mem_addr_ptr << 4;
1325 *mem_addr_ptr |= fromhex (ch) & 0x0f;
1326 }
1327
1328 while ((ch = from[i++]) != ':')
1329 {
1330 *len_ptr = *len_ptr << 4;
1331 *len_ptr |= fromhex (ch) & 0x0f;
1332 }
1333
1334 if (*to_p == NULL)
1335 *to_p = (unsigned char *) xmalloc (*len_ptr);
1336
1337 hex2bin (&from[i++], *to_p, *len_ptr);
1338 }
1339
1340 int
1341 decode_X_packet (char *from, int packet_len, CORE_ADDR *mem_addr_ptr,
1342 unsigned int *len_ptr, unsigned char **to_p)
1343 {
1344 int i = 0;
1345 char ch;
1346 *mem_addr_ptr = *len_ptr = 0;
1347
1348 while ((ch = from[i++]) != ',')
1349 {
1350 *mem_addr_ptr = *mem_addr_ptr << 4;
1351 *mem_addr_ptr |= fromhex (ch) & 0x0f;
1352 }
1353
1354 while ((ch = from[i++]) != ':')
1355 {
1356 *len_ptr = *len_ptr << 4;
1357 *len_ptr |= fromhex (ch) & 0x0f;
1358 }
1359
1360 if (*to_p == NULL)
1361 *to_p = (unsigned char *) xmalloc (*len_ptr);
1362
1363 if (remote_unescape_input ((const gdb_byte *) &from[i], packet_len - i,
1364 *to_p, *len_ptr) != *len_ptr)
1365 return -1;
1366
1367 return 0;
1368 }
1369
1370 /* Decode a qXfer write request. */
1371
1372 int
1373 decode_xfer_write (char *buf, int packet_len, CORE_ADDR *offset,
1374 unsigned int *len, unsigned char *data)
1375 {
1376 char ch;
1377 char *b = buf;
1378
1379 /* Extract the offset. */
1380 *offset = 0;
1381 while ((ch = *buf++) != ':')
1382 {
1383 *offset = *offset << 4;
1384 *offset |= fromhex (ch) & 0x0f;
1385 }
1386
1387 /* Get encoded data. */
1388 packet_len -= buf - b;
1389 *len = remote_unescape_input ((const gdb_byte *) buf, packet_len,
1390 data, packet_len);
1391 return 0;
1392 }
1393
1394 /* Decode the parameters of a qSearch:memory packet. */
1395
1396 int
1397 decode_search_memory_packet (const char *buf, int packet_len,
1398 CORE_ADDR *start_addrp,
1399 CORE_ADDR *search_space_lenp,
1400 gdb_byte *pattern, unsigned int *pattern_lenp)
1401 {
1402 const char *p = buf;
1403
1404 p = decode_address_to_semicolon (start_addrp, p);
1405 p = decode_address_to_semicolon (search_space_lenp, p);
1406 packet_len -= p - buf;
1407 *pattern_lenp = remote_unescape_input ((const gdb_byte *) p, packet_len,
1408 pattern, packet_len);
1409 return 0;
1410 }
1411
1412 static void
1413 free_sym_cache (struct sym_cache *sym)
1414 {
1415 if (sym != NULL)
1416 {
1417 free (sym->name);
1418 free (sym);
1419 }
1420 }
1421
1422 void
1423 clear_symbol_cache (struct sym_cache **symcache_p)
1424 {
1425 struct sym_cache *sym, *next;
1426
1427 /* Check the cache first. */
1428 for (sym = *symcache_p; sym; sym = next)
1429 {
1430 next = sym->next;
1431 free_sym_cache (sym);
1432 }
1433
1434 *symcache_p = NULL;
1435 }
1436
1437 /* Get the address of NAME, and return it in ADDRP if found. if
1438 MAY_ASK_GDB is false, assume symbol cache misses are failures.
1439 Returns 1 if the symbol is found, 0 if it is not, -1 on error. */
1440
1441 int
1442 look_up_one_symbol (const char *name, CORE_ADDR *addrp, int may_ask_gdb)
1443 {
1444 char own_buf[266], *p, *q;
1445 int len;
1446 struct sym_cache *sym;
1447 struct process_info *proc;
1448
1449 proc = current_process ();
1450
1451 /* Check the cache first. */
1452 for (sym = proc->symbol_cache; sym; sym = sym->next)
1453 if (strcmp (name, sym->name) == 0)
1454 {
1455 *addrp = sym->addr;
1456 return 1;
1457 }
1458
1459 /* It might not be an appropriate time to look up a symbol,
1460 e.g. while we're trying to fetch registers. */
1461 if (!may_ask_gdb)
1462 return 0;
1463
1464 /* Send the request. */
1465 strcpy (own_buf, "qSymbol:");
1466 bin2hex ((const gdb_byte *) name, own_buf + strlen ("qSymbol:"),
1467 strlen (name));
1468 if (putpkt (own_buf) < 0)
1469 return -1;
1470
1471 /* FIXME: Eventually add buffer overflow checking (to getpkt?) */
1472 len = getpkt (own_buf);
1473 if (len < 0)
1474 return -1;
1475
1476 /* We ought to handle pretty much any packet at this point while we
1477 wait for the qSymbol "response". That requires re-entering the
1478 main loop. For now, this is an adequate approximation; allow
1479 GDB to read from memory while it figures out the address of the
1480 symbol. */
1481 while (own_buf[0] == 'm')
1482 {
1483 CORE_ADDR mem_addr;
1484 unsigned char *mem_buf;
1485 unsigned int mem_len;
1486
1487 decode_m_packet (&own_buf[1], &mem_addr, &mem_len);
1488 mem_buf = (unsigned char *) xmalloc (mem_len);
1489 if (read_inferior_memory (mem_addr, mem_buf, mem_len) == 0)
1490 bin2hex (mem_buf, own_buf, mem_len);
1491 else
1492 write_enn (own_buf);
1493 free (mem_buf);
1494 if (putpkt (own_buf) < 0)
1495 return -1;
1496 len = getpkt (own_buf);
1497 if (len < 0)
1498 return -1;
1499 }
1500
1501 if (!startswith (own_buf, "qSymbol:"))
1502 {
1503 warning ("Malformed response to qSymbol, ignoring: %s\n", own_buf);
1504 return -1;
1505 }
1506
1507 p = own_buf + strlen ("qSymbol:");
1508 q = p;
1509 while (*q && *q != ':')
1510 q++;
1511
1512 /* Make sure we found a value for the symbol. */
1513 if (p == q || *q == '\0')
1514 return 0;
1515
1516 decode_address (addrp, p, q - p);
1517
1518 /* Save the symbol in our cache. */
1519 sym = XNEW (struct sym_cache);
1520 sym->name = xstrdup (name);
1521 sym->addr = *addrp;
1522 sym->next = proc->symbol_cache;
1523 proc->symbol_cache = sym;
1524
1525 return 1;
1526 }
1527
1528 /* Relocate an instruction to execute at a different address. OLDLOC
1529 is the address in the inferior memory where the instruction to
1530 relocate is currently at. On input, TO points to the destination
1531 where we want the instruction to be copied (and possibly adjusted)
1532 to. On output, it points to one past the end of the resulting
1533 instruction(s). The effect of executing the instruction at TO
1534 shall be the same as if executing it at OLDLOC. For example, call
1535 instructions that implicitly push the return address on the stack
1536 should be adjusted to return to the instruction after OLDLOC;
1537 relative branches, and other PC-relative instructions need the
1538 offset adjusted; etc. Returns 0 on success, -1 on failure. */
1539
1540 int
1541 relocate_instruction (CORE_ADDR *to, CORE_ADDR oldloc)
1542 {
1543 char own_buf[266];
1544 int len;
1545 ULONGEST written = 0;
1546
1547 /* Send the request. */
1548 strcpy (own_buf, "qRelocInsn:");
1549 sprintf (own_buf, "qRelocInsn:%s;%s", paddress (oldloc),
1550 paddress (*to));
1551 if (putpkt (own_buf) < 0)
1552 return -1;
1553
1554 /* FIXME: Eventually add buffer overflow checking (to getpkt?) */
1555 len = getpkt (own_buf);
1556 if (len < 0)
1557 return -1;
1558
1559 /* We ought to handle pretty much any packet at this point while we
1560 wait for the qRelocInsn "response". That requires re-entering
1561 the main loop. For now, this is an adequate approximation; allow
1562 GDB to access memory. */
1563 while (own_buf[0] == 'm' || own_buf[0] == 'M' || own_buf[0] == 'X')
1564 {
1565 CORE_ADDR mem_addr;
1566 unsigned char *mem_buf = NULL;
1567 unsigned int mem_len;
1568
1569 if (own_buf[0] == 'm')
1570 {
1571 decode_m_packet (&own_buf[1], &mem_addr, &mem_len);
1572 mem_buf = (unsigned char *) xmalloc (mem_len);
1573 if (read_inferior_memory (mem_addr, mem_buf, mem_len) == 0)
1574 bin2hex (mem_buf, own_buf, mem_len);
1575 else
1576 write_enn (own_buf);
1577 }
1578 else if (own_buf[0] == 'X')
1579 {
1580 if (decode_X_packet (&own_buf[1], len - 1, &mem_addr,
1581 &mem_len, &mem_buf) < 0
1582 || write_inferior_memory (mem_addr, mem_buf, mem_len) != 0)
1583 write_enn (own_buf);
1584 else
1585 write_ok (own_buf);
1586 }
1587 else
1588 {
1589 decode_M_packet (&own_buf[1], &mem_addr, &mem_len, &mem_buf);
1590 if (write_inferior_memory (mem_addr, mem_buf, mem_len) == 0)
1591 write_ok (own_buf);
1592 else
1593 write_enn (own_buf);
1594 }
1595 free (mem_buf);
1596 if (putpkt (own_buf) < 0)
1597 return -1;
1598 len = getpkt (own_buf);
1599 if (len < 0)
1600 return -1;
1601 }
1602
1603 if (own_buf[0] == 'E')
1604 {
1605 warning ("An error occurred while relocating an instruction: %s\n",
1606 own_buf);
1607 return -1;
1608 }
1609
1610 if (!startswith (own_buf, "qRelocInsn:"))
1611 {
1612 warning ("Malformed response to qRelocInsn, ignoring: %s\n",
1613 own_buf);
1614 return -1;
1615 }
1616
1617 unpack_varlen_hex (own_buf + strlen ("qRelocInsn:"), &written);
1618
1619 *to += written;
1620 return 0;
1621 }
1622
1623 void
1624 monitor_output (const char *msg)
1625 {
1626 int len = strlen (msg);
1627 char *buf = (char *) xmalloc (len * 2 + 2);
1628
1629 buf[0] = 'O';
1630 bin2hex ((const gdb_byte *) msg, buf + 1, len);
1631
1632 putpkt (buf);
1633 free (buf);
1634 }
1635
1636 #endif
This page took 0.069204 seconds and 5 git commands to generate.