Move TYPE_SELF_TYPE into new field type_specific.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261 static struct type *
262 alloc_type_instance (struct type *oldtype)
263 {
264 struct type *type;
265
266 /* Allocate the structure. */
267
268 if (! TYPE_OBJFILE_OWNED (oldtype))
269 type = XCNEW (struct type);
270 else
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
278 return type;
279 }
280
281 /* Clear all remnants of the previous type at TYPE, in preparation for
282 replacing it with something else. Preserve owner information. */
283
284 static void
285 smash_type (struct type *type)
286 {
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300 }
301
302 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307 struct type *
308 make_pointer_type (struct type *type, struct type **typeptr)
309 {
310 struct type *ntype; /* New type */
311 struct type *chain;
312
313 ntype = TYPE_POINTER_TYPE (type);
314
315 if (ntype)
316 {
317 if (typeptr == 0)
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
321 {
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
323 return ntype;
324 }
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type_copy (type);
330 if (typeptr)
331 *typeptr = ntype;
332 }
333 else /* We have storage, but need to reset it. */
334 {
335 ntype = *typeptr;
336 chain = TYPE_CHAIN (ntype);
337 smash_type (ntype);
338 TYPE_CHAIN (ntype) = chain;
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
344 /* FIXME! Assumes the machine has only one representation for pointers! */
345
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
350 /* Mark pointers as unsigned. The target converts between pointers
351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
352 gdbarch_address_to_pointer. */
353 TYPE_UNSIGNED (ntype) = 1;
354
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
363 return ntype;
364 }
365
366 /* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369 struct type *
370 lookup_pointer_type (struct type *type)
371 {
372 return make_pointer_type (type, (struct type **) 0);
373 }
374
375 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
379
380 struct type *
381 make_reference_type (struct type *type, struct type **typeptr)
382 {
383 struct type *ntype; /* New type */
384 struct type *chain;
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
388 if (ntype)
389 {
390 if (typeptr == 0)
391 return ntype; /* Don't care about alloc,
392 and have new type. */
393 else if (*typeptr == 0)
394 {
395 *typeptr = ntype; /* Tracking alloc, and have new type. */
396 return ntype;
397 }
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
402 ntype = alloc_type_copy (type);
403 if (typeptr)
404 *typeptr = ntype;
405 }
406 else /* We have storage, but need to reset it. */
407 {
408 ntype = *typeptr;
409 chain = TYPE_CHAIN (ntype);
410 smash_type (ntype);
411 TYPE_CHAIN (ntype) = chain;
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
420
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
423 TYPE_CODE (ntype) = TYPE_CODE_REF;
424
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
436 return ntype;
437 }
438
439 /* Same as above, but caller doesn't care about memory allocation
440 details. */
441
442 struct type *
443 lookup_reference_type (struct type *type)
444 {
445 return make_reference_type (type, (struct type **) 0);
446 }
447
448 /* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
451 function type we return. We allocate new memory if needed. */
452
453 struct type *
454 make_function_type (struct type *type, struct type **typeptr)
455 {
456 struct type *ntype; /* New type */
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
460 ntype = alloc_type_copy (type);
461 if (typeptr)
462 *typeptr = ntype;
463 }
464 else /* We have storage, but need to reset it. */
465 {
466 ntype = *typeptr;
467 smash_type (ntype);
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
474
475 INIT_FUNC_SPECIFIC (ntype);
476
477 return ntype;
478 }
479
480 /* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483 struct type *
484 lookup_function_type (struct type *type)
485 {
486 return make_function_type (type, (struct type **) 0);
487 }
488
489 /* Given a type TYPE and argument types, return the appropriate
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
492
493 struct type *
494 lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497 {
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
501 if (nparams > 0)
502 {
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
516 }
517
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524 }
525
526 /* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
528
529 int
530 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
531 {
532 int type_flags;
533
534 /* Check for known address space delimiters. */
535 if (!strcmp (space_identifier, "code"))
536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
537 else if (!strcmp (space_identifier, "data"))
538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
543 return type_flags;
544 else
545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
546 }
547
548 /* Identify address space identifier by integer flag as defined in
549 gdbtypes.h -- return the string version of the adress space name. */
550
551 const char *
552 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
553 {
554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
555 return "code";
556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
557 return "data";
558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
561 else
562 return NULL;
563 }
564
565 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
569
570 static struct type *
571 make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
573 {
574 struct type *ntype;
575
576 ntype = type;
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
584
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
600
601 /* Pointers or references to the original type are not relevant to
602 the new type. */
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
605
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
612
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
616 return ntype;
617 }
618
619 /* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
627
628 struct type *
629 make_type_with_address_space (struct type *type, int space_flag)
630 {
631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638 }
639
640 /* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
645
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
651
652 struct type *
653 make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
656 {
657 struct type *ntype; /* New type */
658
659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
662
663 if (cnst)
664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
665
666 if (voltl)
667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
668
669 if (typeptr && *typeptr != NULL)
670 {
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
684 }
685
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
688
689 if (typeptr != NULL)
690 *typeptr = ntype;
691
692 return ntype;
693 }
694
695 /* Make a 'restrict'-qualified version of TYPE. */
696
697 struct type *
698 make_restrict_type (struct type *type)
699 {
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704 }
705
706 /* Make a type without const, volatile, or restrict. */
707
708 struct type *
709 make_unqualified_type (struct type *type)
710 {
711 return make_qualified_type (type,
712 (TYPE_INSTANCE_FLAGS (type)
713 & ~(TYPE_INSTANCE_FLAG_CONST
714 | TYPE_INSTANCE_FLAG_VOLATILE
715 | TYPE_INSTANCE_FLAG_RESTRICT)),
716 NULL);
717 }
718
719 /* Replace the contents of ntype with the type *type. This changes the
720 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
721 the changes are propogated to all types in the TYPE_CHAIN.
722
723 In order to build recursive types, it's inevitable that we'll need
724 to update types in place --- but this sort of indiscriminate
725 smashing is ugly, and needs to be replaced with something more
726 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
727 clear if more steps are needed. */
728
729 void
730 replace_type (struct type *ntype, struct type *type)
731 {
732 struct type *chain;
733
734 /* These two types had better be in the same objfile. Otherwise,
735 the assignment of one type's main type structure to the other
736 will produce a type with references to objects (names; field
737 lists; etc.) allocated on an objfile other than its own. */
738 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
739
740 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
741
742 /* The type length is not a part of the main type. Update it for
743 each type on the variant chain. */
744 chain = ntype;
745 do
746 {
747 /* Assert that this element of the chain has no address-class bits
748 set in its flags. Such type variants might have type lengths
749 which are supposed to be different from the non-address-class
750 variants. This assertion shouldn't ever be triggered because
751 symbol readers which do construct address-class variants don't
752 call replace_type(). */
753 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
754
755 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
756 chain = TYPE_CHAIN (chain);
757 }
758 while (ntype != chain);
759
760 /* Assert that the two types have equivalent instance qualifiers.
761 This should be true for at least all of our debug readers. */
762 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
763 }
764
765 /* Implement direct support for MEMBER_TYPE in GNU C++.
766 May need to construct such a type if this is the first use.
767 The TYPE is the type of the member. The DOMAIN is the type
768 of the aggregate that the member belongs to. */
769
770 struct type *
771 lookup_memberptr_type (struct type *type, struct type *domain)
772 {
773 struct type *mtype;
774
775 mtype = alloc_type_copy (type);
776 smash_to_memberptr_type (mtype, domain, type);
777 return mtype;
778 }
779
780 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
781
782 struct type *
783 lookup_methodptr_type (struct type *to_type)
784 {
785 struct type *mtype;
786
787 mtype = alloc_type_copy (to_type);
788 smash_to_methodptr_type (mtype, to_type);
789 return mtype;
790 }
791
792 /* Allocate a stub method whose return type is TYPE. This apparently
793 happens for speed of symbol reading, since parsing out the
794 arguments to the method is cpu-intensive, the way we are doing it.
795 So, we will fill in arguments later. This always returns a fresh
796 type. */
797
798 struct type *
799 allocate_stub_method (struct type *type)
800 {
801 struct type *mtype;
802
803 mtype = alloc_type_copy (type);
804 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
805 TYPE_LENGTH (mtype) = 1;
806 TYPE_STUB (mtype) = 1;
807 TYPE_TARGET_TYPE (mtype) = type;
808 /* TYPE_SELF_TYPE (mtype) = unknown yet */
809 return mtype;
810 }
811
812 /* Create a range type with a dynamic range from LOW_BOUND to
813 HIGH_BOUND, inclusive. See create_range_type for further details. */
814
815 struct type *
816 create_range_type (struct type *result_type, struct type *index_type,
817 const struct dynamic_prop *low_bound,
818 const struct dynamic_prop *high_bound)
819 {
820 if (result_type == NULL)
821 result_type = alloc_type_copy (index_type);
822 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
823 TYPE_TARGET_TYPE (result_type) = index_type;
824 if (TYPE_STUB (index_type))
825 TYPE_TARGET_STUB (result_type) = 1;
826 else
827 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
828
829 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
830 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
831 TYPE_RANGE_DATA (result_type)->low = *low_bound;
832 TYPE_RANGE_DATA (result_type)->high = *high_bound;
833
834 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
835 TYPE_UNSIGNED (result_type) = 1;
836
837 /* Ada allows the declaration of range types whose upper bound is
838 less than the lower bound, so checking the lower bound is not
839 enough. Make sure we do not mark a range type whose upper bound
840 is negative as unsigned. */
841 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
842 TYPE_UNSIGNED (result_type) = 0;
843
844 return result_type;
845 }
846
847 /* Create a range type using either a blank type supplied in
848 RESULT_TYPE, or creating a new type, inheriting the objfile from
849 INDEX_TYPE.
850
851 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
852 to HIGH_BOUND, inclusive.
853
854 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
855 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
856
857 struct type *
858 create_static_range_type (struct type *result_type, struct type *index_type,
859 LONGEST low_bound, LONGEST high_bound)
860 {
861 struct dynamic_prop low, high;
862
863 low.kind = PROP_CONST;
864 low.data.const_val = low_bound;
865
866 high.kind = PROP_CONST;
867 high.data.const_val = high_bound;
868
869 result_type = create_range_type (result_type, index_type, &low, &high);
870
871 return result_type;
872 }
873
874 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
875 are static, otherwise returns 0. */
876
877 static int
878 has_static_range (const struct range_bounds *bounds)
879 {
880 return (bounds->low.kind == PROP_CONST
881 && bounds->high.kind == PROP_CONST);
882 }
883
884
885 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
886 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
887 bounds will fit in LONGEST), or -1 otherwise. */
888
889 int
890 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
891 {
892 CHECK_TYPEDEF (type);
893 switch (TYPE_CODE (type))
894 {
895 case TYPE_CODE_RANGE:
896 *lowp = TYPE_LOW_BOUND (type);
897 *highp = TYPE_HIGH_BOUND (type);
898 return 1;
899 case TYPE_CODE_ENUM:
900 if (TYPE_NFIELDS (type) > 0)
901 {
902 /* The enums may not be sorted by value, so search all
903 entries. */
904 int i;
905
906 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
907 for (i = 0; i < TYPE_NFIELDS (type); i++)
908 {
909 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
910 *lowp = TYPE_FIELD_ENUMVAL (type, i);
911 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
912 *highp = TYPE_FIELD_ENUMVAL (type, i);
913 }
914
915 /* Set unsigned indicator if warranted. */
916 if (*lowp >= 0)
917 {
918 TYPE_UNSIGNED (type) = 1;
919 }
920 }
921 else
922 {
923 *lowp = 0;
924 *highp = -1;
925 }
926 return 0;
927 case TYPE_CODE_BOOL:
928 *lowp = 0;
929 *highp = 1;
930 return 0;
931 case TYPE_CODE_INT:
932 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
933 return -1;
934 if (!TYPE_UNSIGNED (type))
935 {
936 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
937 *highp = -*lowp - 1;
938 return 0;
939 }
940 /* ... fall through for unsigned ints ... */
941 case TYPE_CODE_CHAR:
942 *lowp = 0;
943 /* This round-about calculation is to avoid shifting by
944 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
945 if TYPE_LENGTH (type) == sizeof (LONGEST). */
946 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
947 *highp = (*highp - 1) | *highp;
948 return 0;
949 default:
950 return -1;
951 }
952 }
953
954 /* Assuming TYPE is a simple, non-empty array type, compute its upper
955 and lower bound. Save the low bound into LOW_BOUND if not NULL.
956 Save the high bound into HIGH_BOUND if not NULL.
957
958 Return 1 if the operation was successful. Return zero otherwise,
959 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
960
961 We now simply use get_discrete_bounds call to get the values
962 of the low and high bounds.
963 get_discrete_bounds can return three values:
964 1, meaning that index is a range,
965 0, meaning that index is a discrete type,
966 or -1 for failure. */
967
968 int
969 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
970 {
971 struct type *index = TYPE_INDEX_TYPE (type);
972 LONGEST low = 0;
973 LONGEST high = 0;
974 int res;
975
976 if (index == NULL)
977 return 0;
978
979 res = get_discrete_bounds (index, &low, &high);
980 if (res == -1)
981 return 0;
982
983 /* Check if the array bounds are undefined. */
984 if (res == 1
985 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
986 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
987 return 0;
988
989 if (low_bound)
990 *low_bound = low;
991
992 if (high_bound)
993 *high_bound = high;
994
995 return 1;
996 }
997
998 /* Create an array type using either a blank type supplied in
999 RESULT_TYPE, or creating a new type, inheriting the objfile from
1000 RANGE_TYPE.
1001
1002 Elements will be of type ELEMENT_TYPE, the indices will be of type
1003 RANGE_TYPE.
1004
1005 If BIT_STRIDE is not zero, build a packed array type whose element
1006 size is BIT_STRIDE. Otherwise, ignore this parameter.
1007
1008 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1009 sure it is TYPE_CODE_UNDEF before we bash it into an array
1010 type? */
1011
1012 struct type *
1013 create_array_type_with_stride (struct type *result_type,
1014 struct type *element_type,
1015 struct type *range_type,
1016 unsigned int bit_stride)
1017 {
1018 if (result_type == NULL)
1019 result_type = alloc_type_copy (range_type);
1020
1021 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1022 TYPE_TARGET_TYPE (result_type) = element_type;
1023 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1024 {
1025 LONGEST low_bound, high_bound;
1026
1027 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1028 low_bound = high_bound = 0;
1029 CHECK_TYPEDEF (element_type);
1030 /* Be careful when setting the array length. Ada arrays can be
1031 empty arrays with the high_bound being smaller than the low_bound.
1032 In such cases, the array length should be zero. */
1033 if (high_bound < low_bound)
1034 TYPE_LENGTH (result_type) = 0;
1035 else if (bit_stride > 0)
1036 TYPE_LENGTH (result_type) =
1037 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1038 else
1039 TYPE_LENGTH (result_type) =
1040 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1041 }
1042 else
1043 {
1044 /* This type is dynamic and its length needs to be computed
1045 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1046 undefined by setting it to zero. Although we are not expected
1047 to trust TYPE_LENGTH in this case, setting the size to zero
1048 allows us to avoid allocating objects of random sizes in case
1049 we accidently do. */
1050 TYPE_LENGTH (result_type) = 0;
1051 }
1052
1053 TYPE_NFIELDS (result_type) = 1;
1054 TYPE_FIELDS (result_type) =
1055 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1056 TYPE_INDEX_TYPE (result_type) = range_type;
1057 TYPE_VPTR_FIELDNO (result_type) = -1;
1058 if (bit_stride > 0)
1059 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1060
1061 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1062 if (TYPE_LENGTH (result_type) == 0)
1063 TYPE_TARGET_STUB (result_type) = 1;
1064
1065 return result_type;
1066 }
1067
1068 /* Same as create_array_type_with_stride but with no bit_stride
1069 (BIT_STRIDE = 0), thus building an unpacked array. */
1070
1071 struct type *
1072 create_array_type (struct type *result_type,
1073 struct type *element_type,
1074 struct type *range_type)
1075 {
1076 return create_array_type_with_stride (result_type, element_type,
1077 range_type, 0);
1078 }
1079
1080 struct type *
1081 lookup_array_range_type (struct type *element_type,
1082 LONGEST low_bound, LONGEST high_bound)
1083 {
1084 struct gdbarch *gdbarch = get_type_arch (element_type);
1085 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1086 struct type *range_type
1087 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1088
1089 return create_array_type (NULL, element_type, range_type);
1090 }
1091
1092 /* Create a string type using either a blank type supplied in
1093 RESULT_TYPE, or creating a new type. String types are similar
1094 enough to array of char types that we can use create_array_type to
1095 build the basic type and then bash it into a string type.
1096
1097 For fixed length strings, the range type contains 0 as the lower
1098 bound and the length of the string minus one as the upper bound.
1099
1100 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1101 sure it is TYPE_CODE_UNDEF before we bash it into a string
1102 type? */
1103
1104 struct type *
1105 create_string_type (struct type *result_type,
1106 struct type *string_char_type,
1107 struct type *range_type)
1108 {
1109 result_type = create_array_type (result_type,
1110 string_char_type,
1111 range_type);
1112 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1113 return result_type;
1114 }
1115
1116 struct type *
1117 lookup_string_range_type (struct type *string_char_type,
1118 LONGEST low_bound, LONGEST high_bound)
1119 {
1120 struct type *result_type;
1121
1122 result_type = lookup_array_range_type (string_char_type,
1123 low_bound, high_bound);
1124 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1125 return result_type;
1126 }
1127
1128 struct type *
1129 create_set_type (struct type *result_type, struct type *domain_type)
1130 {
1131 if (result_type == NULL)
1132 result_type = alloc_type_copy (domain_type);
1133
1134 TYPE_CODE (result_type) = TYPE_CODE_SET;
1135 TYPE_NFIELDS (result_type) = 1;
1136 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1137
1138 if (!TYPE_STUB (domain_type))
1139 {
1140 LONGEST low_bound, high_bound, bit_length;
1141
1142 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1143 low_bound = high_bound = 0;
1144 bit_length = high_bound - low_bound + 1;
1145 TYPE_LENGTH (result_type)
1146 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1147 if (low_bound >= 0)
1148 TYPE_UNSIGNED (result_type) = 1;
1149 }
1150 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1151
1152 return result_type;
1153 }
1154
1155 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1156 and any array types nested inside it. */
1157
1158 void
1159 make_vector_type (struct type *array_type)
1160 {
1161 struct type *inner_array, *elt_type;
1162 int flags;
1163
1164 /* Find the innermost array type, in case the array is
1165 multi-dimensional. */
1166 inner_array = array_type;
1167 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1168 inner_array = TYPE_TARGET_TYPE (inner_array);
1169
1170 elt_type = TYPE_TARGET_TYPE (inner_array);
1171 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1172 {
1173 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1174 elt_type = make_qualified_type (elt_type, flags, NULL);
1175 TYPE_TARGET_TYPE (inner_array) = elt_type;
1176 }
1177
1178 TYPE_VECTOR (array_type) = 1;
1179 }
1180
1181 struct type *
1182 init_vector_type (struct type *elt_type, int n)
1183 {
1184 struct type *array_type;
1185
1186 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1187 make_vector_type (array_type);
1188 return array_type;
1189 }
1190
1191 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1192 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1193 confusing. "self" is a common enough replacement for "this".
1194 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1195 TYPE_CODE_METHOD. */
1196
1197 struct type *
1198 internal_type_self_type (struct type *type)
1199 {
1200 switch (TYPE_CODE (type))
1201 {
1202 case TYPE_CODE_METHODPTR:
1203 case TYPE_CODE_MEMBERPTR:
1204 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1205 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1206 case TYPE_CODE_METHOD:
1207 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1208 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1209 default:
1210 gdb_assert_not_reached ("bad type");
1211 }
1212 }
1213
1214 /* Set the type of the class that TYPE belongs to.
1215 In c++ this is the class of "this".
1216 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1217 TYPE_CODE_METHOD. */
1218
1219 void
1220 set_type_self_type (struct type *type, struct type *self_type)
1221 {
1222 switch (TYPE_CODE (type))
1223 {
1224 case TYPE_CODE_METHODPTR:
1225 case TYPE_CODE_MEMBERPTR:
1226 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1227 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1228 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1229 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1230 break;
1231 case TYPE_CODE_METHOD:
1232 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1233 INIT_FUNC_SPECIFIC (type);
1234 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1235 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1236 break;
1237 default:
1238 gdb_assert_not_reached ("bad type");
1239 }
1240 }
1241
1242 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1243 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1244 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1245 TYPE doesn't include the offset (that's the value of the MEMBER
1246 itself), but does include the structure type into which it points
1247 (for some reason).
1248
1249 When "smashing" the type, we preserve the objfile that the old type
1250 pointed to, since we aren't changing where the type is actually
1251 allocated. */
1252
1253 void
1254 smash_to_memberptr_type (struct type *type, struct type *self_type,
1255 struct type *to_type)
1256 {
1257 smash_type (type);
1258 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1259 TYPE_TARGET_TYPE (type) = to_type;
1260 set_type_self_type (type, self_type);
1261 /* Assume that a data member pointer is the same size as a normal
1262 pointer. */
1263 TYPE_LENGTH (type)
1264 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1265 }
1266
1267 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1268
1269 When "smashing" the type, we preserve the objfile that the old type
1270 pointed to, since we aren't changing where the type is actually
1271 allocated. */
1272
1273 void
1274 smash_to_methodptr_type (struct type *type, struct type *to_type)
1275 {
1276 smash_type (type);
1277 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1278 TYPE_TARGET_TYPE (type) = to_type;
1279 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1280 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1281 }
1282
1283 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1284 METHOD just means `function that gets an extra "this" argument'.
1285
1286 When "smashing" the type, we preserve the objfile that the old type
1287 pointed to, since we aren't changing where the type is actually
1288 allocated. */
1289
1290 void
1291 smash_to_method_type (struct type *type, struct type *self_type,
1292 struct type *to_type, struct field *args,
1293 int nargs, int varargs)
1294 {
1295 smash_type (type);
1296 TYPE_CODE (type) = TYPE_CODE_METHOD;
1297 TYPE_TARGET_TYPE (type) = to_type;
1298 set_type_self_type (type, self_type);
1299 TYPE_FIELDS (type) = args;
1300 TYPE_NFIELDS (type) = nargs;
1301 if (varargs)
1302 TYPE_VARARGS (type) = 1;
1303 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1304 }
1305
1306 /* Return a typename for a struct/union/enum type without "struct ",
1307 "union ", or "enum ". If the type has a NULL name, return NULL. */
1308
1309 const char *
1310 type_name_no_tag (const struct type *type)
1311 {
1312 if (TYPE_TAG_NAME (type) != NULL)
1313 return TYPE_TAG_NAME (type);
1314
1315 /* Is there code which expects this to return the name if there is
1316 no tag name? My guess is that this is mainly used for C++ in
1317 cases where the two will always be the same. */
1318 return TYPE_NAME (type);
1319 }
1320
1321 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1322 Since GCC PR debug/47510 DWARF provides associated information to detect the
1323 anonymous class linkage name from its typedef.
1324
1325 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1326 apply it itself. */
1327
1328 const char *
1329 type_name_no_tag_or_error (struct type *type)
1330 {
1331 struct type *saved_type = type;
1332 const char *name;
1333 struct objfile *objfile;
1334
1335 CHECK_TYPEDEF (type);
1336
1337 name = type_name_no_tag (type);
1338 if (name != NULL)
1339 return name;
1340
1341 name = type_name_no_tag (saved_type);
1342 objfile = TYPE_OBJFILE (saved_type);
1343 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1344 name ? name : "<anonymous>",
1345 objfile ? objfile_name (objfile) : "<arch>");
1346 }
1347
1348 /* Lookup a typedef or primitive type named NAME, visible in lexical
1349 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1350 suitably defined. */
1351
1352 struct type *
1353 lookup_typename (const struct language_defn *language,
1354 struct gdbarch *gdbarch, const char *name,
1355 const struct block *block, int noerr)
1356 {
1357 struct symbol *sym;
1358 struct type *type;
1359
1360 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1361 language->la_language, NULL);
1362 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1363 return SYMBOL_TYPE (sym);
1364
1365 if (noerr)
1366 return NULL;
1367 error (_("No type named %s."), name);
1368 }
1369
1370 struct type *
1371 lookup_unsigned_typename (const struct language_defn *language,
1372 struct gdbarch *gdbarch, const char *name)
1373 {
1374 char *uns = alloca (strlen (name) + 10);
1375
1376 strcpy (uns, "unsigned ");
1377 strcpy (uns + 9, name);
1378 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1379 }
1380
1381 struct type *
1382 lookup_signed_typename (const struct language_defn *language,
1383 struct gdbarch *gdbarch, const char *name)
1384 {
1385 struct type *t;
1386 char *uns = alloca (strlen (name) + 8);
1387
1388 strcpy (uns, "signed ");
1389 strcpy (uns + 7, name);
1390 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1391 /* If we don't find "signed FOO" just try again with plain "FOO". */
1392 if (t != NULL)
1393 return t;
1394 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1395 }
1396
1397 /* Lookup a structure type named "struct NAME",
1398 visible in lexical block BLOCK. */
1399
1400 struct type *
1401 lookup_struct (const char *name, const struct block *block)
1402 {
1403 struct symbol *sym;
1404
1405 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1406
1407 if (sym == NULL)
1408 {
1409 error (_("No struct type named %s."), name);
1410 }
1411 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1412 {
1413 error (_("This context has class, union or enum %s, not a struct."),
1414 name);
1415 }
1416 return (SYMBOL_TYPE (sym));
1417 }
1418
1419 /* Lookup a union type named "union NAME",
1420 visible in lexical block BLOCK. */
1421
1422 struct type *
1423 lookup_union (const char *name, const struct block *block)
1424 {
1425 struct symbol *sym;
1426 struct type *t;
1427
1428 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1429
1430 if (sym == NULL)
1431 error (_("No union type named %s."), name);
1432
1433 t = SYMBOL_TYPE (sym);
1434
1435 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1436 return t;
1437
1438 /* If we get here, it's not a union. */
1439 error (_("This context has class, struct or enum %s, not a union."),
1440 name);
1441 }
1442
1443 /* Lookup an enum type named "enum NAME",
1444 visible in lexical block BLOCK. */
1445
1446 struct type *
1447 lookup_enum (const char *name, const struct block *block)
1448 {
1449 struct symbol *sym;
1450
1451 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1452 if (sym == NULL)
1453 {
1454 error (_("No enum type named %s."), name);
1455 }
1456 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1457 {
1458 error (_("This context has class, struct or union %s, not an enum."),
1459 name);
1460 }
1461 return (SYMBOL_TYPE (sym));
1462 }
1463
1464 /* Lookup a template type named "template NAME<TYPE>",
1465 visible in lexical block BLOCK. */
1466
1467 struct type *
1468 lookup_template_type (char *name, struct type *type,
1469 const struct block *block)
1470 {
1471 struct symbol *sym;
1472 char *nam = (char *)
1473 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1474
1475 strcpy (nam, name);
1476 strcat (nam, "<");
1477 strcat (nam, TYPE_NAME (type));
1478 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1479
1480 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1481
1482 if (sym == NULL)
1483 {
1484 error (_("No template type named %s."), name);
1485 }
1486 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1487 {
1488 error (_("This context has class, union or enum %s, not a struct."),
1489 name);
1490 }
1491 return (SYMBOL_TYPE (sym));
1492 }
1493
1494 /* Given a type TYPE, lookup the type of the component of type named
1495 NAME.
1496
1497 TYPE can be either a struct or union, or a pointer or reference to
1498 a struct or union. If it is a pointer or reference, its target
1499 type is automatically used. Thus '.' and '->' are interchangable,
1500 as specified for the definitions of the expression element types
1501 STRUCTOP_STRUCT and STRUCTOP_PTR.
1502
1503 If NOERR is nonzero, return zero if NAME is not suitably defined.
1504 If NAME is the name of a baseclass type, return that type. */
1505
1506 struct type *
1507 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1508 {
1509 int i;
1510 char *typename;
1511
1512 for (;;)
1513 {
1514 CHECK_TYPEDEF (type);
1515 if (TYPE_CODE (type) != TYPE_CODE_PTR
1516 && TYPE_CODE (type) != TYPE_CODE_REF)
1517 break;
1518 type = TYPE_TARGET_TYPE (type);
1519 }
1520
1521 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1522 && TYPE_CODE (type) != TYPE_CODE_UNION)
1523 {
1524 typename = type_to_string (type);
1525 make_cleanup (xfree, typename);
1526 error (_("Type %s is not a structure or union type."), typename);
1527 }
1528
1529 #if 0
1530 /* FIXME: This change put in by Michael seems incorrect for the case
1531 where the structure tag name is the same as the member name.
1532 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1533 foo; } bell;" Disabled by fnf. */
1534 {
1535 char *typename;
1536
1537 typename = type_name_no_tag (type);
1538 if (typename != NULL && strcmp (typename, name) == 0)
1539 return type;
1540 }
1541 #endif
1542
1543 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1544 {
1545 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1546
1547 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1548 {
1549 return TYPE_FIELD_TYPE (type, i);
1550 }
1551 else if (!t_field_name || *t_field_name == '\0')
1552 {
1553 struct type *subtype
1554 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1555
1556 if (subtype != NULL)
1557 return subtype;
1558 }
1559 }
1560
1561 /* OK, it's not in this class. Recursively check the baseclasses. */
1562 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1563 {
1564 struct type *t;
1565
1566 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1567 if (t != NULL)
1568 {
1569 return t;
1570 }
1571 }
1572
1573 if (noerr)
1574 {
1575 return NULL;
1576 }
1577
1578 typename = type_to_string (type);
1579 make_cleanup (xfree, typename);
1580 error (_("Type %s has no component named %s."), typename, name);
1581 }
1582
1583 /* Store in *MAX the largest number representable by unsigned integer type
1584 TYPE. */
1585
1586 void
1587 get_unsigned_type_max (struct type *type, ULONGEST *max)
1588 {
1589 unsigned int n;
1590
1591 CHECK_TYPEDEF (type);
1592 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1593 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1594
1595 /* Written this way to avoid overflow. */
1596 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1597 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1598 }
1599
1600 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1601 signed integer type TYPE. */
1602
1603 void
1604 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1605 {
1606 unsigned int n;
1607
1608 CHECK_TYPEDEF (type);
1609 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1610 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1611
1612 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1613 *min = -((ULONGEST) 1 << (n - 1));
1614 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1615 }
1616
1617 /* Lookup the vptr basetype/fieldno values for TYPE.
1618 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1619 vptr_fieldno. Also, if found and basetype is from the same objfile,
1620 cache the results.
1621 If not found, return -1 and ignore BASETYPEP.
1622 Callers should be aware that in some cases (for example,
1623 the type or one of its baseclasses is a stub type and we are
1624 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1625 this function will not be able to find the
1626 virtual function table pointer, and vptr_fieldno will remain -1 and
1627 vptr_basetype will remain NULL or incomplete. */
1628
1629 int
1630 get_vptr_fieldno (struct type *type, struct type **basetypep)
1631 {
1632 CHECK_TYPEDEF (type);
1633
1634 if (TYPE_VPTR_FIELDNO (type) < 0)
1635 {
1636 int i;
1637
1638 /* We must start at zero in case the first (and only) baseclass
1639 is virtual (and hence we cannot share the table pointer). */
1640 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1641 {
1642 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1643 int fieldno;
1644 struct type *basetype;
1645
1646 fieldno = get_vptr_fieldno (baseclass, &basetype);
1647 if (fieldno >= 0)
1648 {
1649 /* If the type comes from a different objfile we can't cache
1650 it, it may have a different lifetime. PR 2384 */
1651 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1652 {
1653 TYPE_VPTR_FIELDNO (type) = fieldno;
1654 TYPE_VPTR_BASETYPE (type) = basetype;
1655 }
1656 if (basetypep)
1657 *basetypep = basetype;
1658 return fieldno;
1659 }
1660 }
1661
1662 /* Not found. */
1663 return -1;
1664 }
1665 else
1666 {
1667 if (basetypep)
1668 *basetypep = TYPE_VPTR_BASETYPE (type);
1669 return TYPE_VPTR_FIELDNO (type);
1670 }
1671 }
1672
1673 static void
1674 stub_noname_complaint (void)
1675 {
1676 complaint (&symfile_complaints, _("stub type has NULL name"));
1677 }
1678
1679 /* Worker for is_dynamic_type. */
1680
1681 static int
1682 is_dynamic_type_internal (struct type *type, int top_level)
1683 {
1684 type = check_typedef (type);
1685
1686 /* We only want to recognize references at the outermost level. */
1687 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1688 type = check_typedef (TYPE_TARGET_TYPE (type));
1689
1690 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1691 dynamic, even if the type itself is statically defined.
1692 From a user's point of view, this may appear counter-intuitive;
1693 but it makes sense in this context, because the point is to determine
1694 whether any part of the type needs to be resolved before it can
1695 be exploited. */
1696 if (TYPE_DATA_LOCATION (type) != NULL
1697 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1698 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1699 return 1;
1700
1701 switch (TYPE_CODE (type))
1702 {
1703 case TYPE_CODE_RANGE:
1704 {
1705 /* A range type is obviously dynamic if it has at least one
1706 dynamic bound. But also consider the range type to be
1707 dynamic when its subtype is dynamic, even if the bounds
1708 of the range type are static. It allows us to assume that
1709 the subtype of a static range type is also static. */
1710 return (!has_static_range (TYPE_RANGE_DATA (type))
1711 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1712 }
1713
1714 case TYPE_CODE_ARRAY:
1715 {
1716 gdb_assert (TYPE_NFIELDS (type) == 1);
1717
1718 /* The array is dynamic if either the bounds are dynamic,
1719 or the elements it contains have a dynamic contents. */
1720 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1721 return 1;
1722 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1723 }
1724
1725 case TYPE_CODE_STRUCT:
1726 case TYPE_CODE_UNION:
1727 {
1728 int i;
1729
1730 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1731 if (!field_is_static (&TYPE_FIELD (type, i))
1732 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1733 return 1;
1734 }
1735 break;
1736 }
1737
1738 return 0;
1739 }
1740
1741 /* See gdbtypes.h. */
1742
1743 int
1744 is_dynamic_type (struct type *type)
1745 {
1746 return is_dynamic_type_internal (type, 1);
1747 }
1748
1749 static struct type *resolve_dynamic_type_internal
1750 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1751
1752 /* Given a dynamic range type (dyn_range_type) and a stack of
1753 struct property_addr_info elements, return a static version
1754 of that type. */
1755
1756 static struct type *
1757 resolve_dynamic_range (struct type *dyn_range_type,
1758 struct property_addr_info *addr_stack)
1759 {
1760 CORE_ADDR value;
1761 struct type *static_range_type, *static_target_type;
1762 const struct dynamic_prop *prop;
1763 const struct dwarf2_locexpr_baton *baton;
1764 struct dynamic_prop low_bound, high_bound;
1765
1766 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1767
1768 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1769 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1770 {
1771 low_bound.kind = PROP_CONST;
1772 low_bound.data.const_val = value;
1773 }
1774 else
1775 {
1776 low_bound.kind = PROP_UNDEFINED;
1777 low_bound.data.const_val = 0;
1778 }
1779
1780 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1781 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1782 {
1783 high_bound.kind = PROP_CONST;
1784 high_bound.data.const_val = value;
1785
1786 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1787 high_bound.data.const_val
1788 = low_bound.data.const_val + high_bound.data.const_val - 1;
1789 }
1790 else
1791 {
1792 high_bound.kind = PROP_UNDEFINED;
1793 high_bound.data.const_val = 0;
1794 }
1795
1796 static_target_type
1797 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1798 addr_stack, 0);
1799 static_range_type = create_range_type (copy_type (dyn_range_type),
1800 static_target_type,
1801 &low_bound, &high_bound);
1802 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1803 return static_range_type;
1804 }
1805
1806 /* Resolves dynamic bound values of an array type TYPE to static ones.
1807 ADDR_STACK is a stack of struct property_addr_info to be used
1808 if needed during the dynamic resolution. */
1809
1810 static struct type *
1811 resolve_dynamic_array (struct type *type,
1812 struct property_addr_info *addr_stack)
1813 {
1814 CORE_ADDR value;
1815 struct type *elt_type;
1816 struct type *range_type;
1817 struct type *ary_dim;
1818
1819 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1820
1821 elt_type = type;
1822 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1823 range_type = resolve_dynamic_range (range_type, addr_stack);
1824
1825 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1826
1827 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1828 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1829 else
1830 elt_type = TYPE_TARGET_TYPE (type);
1831
1832 return create_array_type (copy_type (type),
1833 elt_type,
1834 range_type);
1835 }
1836
1837 /* Resolve dynamic bounds of members of the union TYPE to static
1838 bounds. ADDR_STACK is a stack of struct property_addr_info
1839 to be used if needed during the dynamic resolution. */
1840
1841 static struct type *
1842 resolve_dynamic_union (struct type *type,
1843 struct property_addr_info *addr_stack)
1844 {
1845 struct type *resolved_type;
1846 int i;
1847 unsigned int max_len = 0;
1848
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1850
1851 resolved_type = copy_type (type);
1852 TYPE_FIELDS (resolved_type)
1853 = TYPE_ALLOC (resolved_type,
1854 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1855 memcpy (TYPE_FIELDS (resolved_type),
1856 TYPE_FIELDS (type),
1857 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1858 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1859 {
1860 struct type *t;
1861
1862 if (field_is_static (&TYPE_FIELD (type, i)))
1863 continue;
1864
1865 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1866 addr_stack, 0);
1867 TYPE_FIELD_TYPE (resolved_type, i) = t;
1868 if (TYPE_LENGTH (t) > max_len)
1869 max_len = TYPE_LENGTH (t);
1870 }
1871
1872 TYPE_LENGTH (resolved_type) = max_len;
1873 return resolved_type;
1874 }
1875
1876 /* Resolve dynamic bounds of members of the struct TYPE to static
1877 bounds. ADDR_STACK is a stack of struct property_addr_info to
1878 be used if needed during the dynamic resolution. */
1879
1880 static struct type *
1881 resolve_dynamic_struct (struct type *type,
1882 struct property_addr_info *addr_stack)
1883 {
1884 struct type *resolved_type;
1885 int i;
1886 unsigned resolved_type_bit_length = 0;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1889 gdb_assert (TYPE_NFIELDS (type) > 0);
1890
1891 resolved_type = copy_type (type);
1892 TYPE_FIELDS (resolved_type)
1893 = TYPE_ALLOC (resolved_type,
1894 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1895 memcpy (TYPE_FIELDS (resolved_type),
1896 TYPE_FIELDS (type),
1897 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1898 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1899 {
1900 unsigned new_bit_length;
1901 struct property_addr_info pinfo;
1902
1903 if (field_is_static (&TYPE_FIELD (type, i)))
1904 continue;
1905
1906 /* As we know this field is not a static field, the field's
1907 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1908 this is the case, but only trigger a simple error rather
1909 than an internal error if that fails. While failing
1910 that verification indicates a bug in our code, the error
1911 is not severe enough to suggest to the user he stops
1912 his debugging session because of it. */
1913 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1914 error (_("Cannot determine struct field location"
1915 " (invalid location kind)"));
1916
1917 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1918 pinfo.addr = addr_stack->addr;
1919 pinfo.next = addr_stack;
1920
1921 TYPE_FIELD_TYPE (resolved_type, i)
1922 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1923 &pinfo, 0);
1924 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1925 == FIELD_LOC_KIND_BITPOS);
1926
1927 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1928 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1929 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1930 else
1931 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1932 * TARGET_CHAR_BIT);
1933
1934 /* Normally, we would use the position and size of the last field
1935 to determine the size of the enclosing structure. But GCC seems
1936 to be encoding the position of some fields incorrectly when
1937 the struct contains a dynamic field that is not placed last.
1938 So we compute the struct size based on the field that has
1939 the highest position + size - probably the best we can do. */
1940 if (new_bit_length > resolved_type_bit_length)
1941 resolved_type_bit_length = new_bit_length;
1942 }
1943
1944 TYPE_LENGTH (resolved_type)
1945 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1946
1947 return resolved_type;
1948 }
1949
1950 /* Worker for resolved_dynamic_type. */
1951
1952 static struct type *
1953 resolve_dynamic_type_internal (struct type *type,
1954 struct property_addr_info *addr_stack,
1955 int top_level)
1956 {
1957 struct type *real_type = check_typedef (type);
1958 struct type *resolved_type = type;
1959 const struct dynamic_prop *prop;
1960 CORE_ADDR value;
1961
1962 if (!is_dynamic_type_internal (real_type, top_level))
1963 return type;
1964
1965 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1966 {
1967 resolved_type = copy_type (type);
1968 TYPE_TARGET_TYPE (resolved_type)
1969 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
1970 top_level);
1971 }
1972 else
1973 {
1974 /* Before trying to resolve TYPE, make sure it is not a stub. */
1975 type = real_type;
1976
1977 switch (TYPE_CODE (type))
1978 {
1979 case TYPE_CODE_REF:
1980 {
1981 struct property_addr_info pinfo;
1982
1983 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
1984 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
1985 pinfo.next = addr_stack;
1986
1987 resolved_type = copy_type (type);
1988 TYPE_TARGET_TYPE (resolved_type)
1989 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1990 &pinfo, top_level);
1991 break;
1992 }
1993
1994 case TYPE_CODE_ARRAY:
1995 resolved_type = resolve_dynamic_array (type, addr_stack);
1996 break;
1997
1998 case TYPE_CODE_RANGE:
1999 resolved_type = resolve_dynamic_range (type, addr_stack);
2000 break;
2001
2002 case TYPE_CODE_UNION:
2003 resolved_type = resolve_dynamic_union (type, addr_stack);
2004 break;
2005
2006 case TYPE_CODE_STRUCT:
2007 resolved_type = resolve_dynamic_struct (type, addr_stack);
2008 break;
2009 }
2010 }
2011
2012 /* Resolve data_location attribute. */
2013 prop = TYPE_DATA_LOCATION (resolved_type);
2014 if (dwarf2_evaluate_property (prop, addr_stack, &value))
2015 {
2016 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2017 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2018 }
2019 else
2020 TYPE_DATA_LOCATION (resolved_type) = NULL;
2021
2022 return resolved_type;
2023 }
2024
2025 /* See gdbtypes.h */
2026
2027 struct type *
2028 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2029 {
2030 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2031
2032 return resolve_dynamic_type_internal (type, &pinfo, 1);
2033 }
2034
2035 /* Find the real type of TYPE. This function returns the real type,
2036 after removing all layers of typedefs, and completing opaque or stub
2037 types. Completion changes the TYPE argument, but stripping of
2038 typedefs does not.
2039
2040 Instance flags (e.g. const/volatile) are preserved as typedefs are
2041 stripped. If necessary a new qualified form of the underlying type
2042 is created.
2043
2044 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2045 not been computed and we're either in the middle of reading symbols, or
2046 there was no name for the typedef in the debug info.
2047
2048 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2049 QUITs in the symbol reading code can also throw.
2050 Thus this function can throw an exception.
2051
2052 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2053 the target type.
2054
2055 If this is a stubbed struct (i.e. declared as struct foo *), see if
2056 we can find a full definition in some other file. If so, copy this
2057 definition, so we can use it in future. There used to be a comment
2058 (but not any code) that if we don't find a full definition, we'd
2059 set a flag so we don't spend time in the future checking the same
2060 type. That would be a mistake, though--we might load in more
2061 symbols which contain a full definition for the type. */
2062
2063 struct type *
2064 check_typedef (struct type *type)
2065 {
2066 struct type *orig_type = type;
2067 /* While we're removing typedefs, we don't want to lose qualifiers.
2068 E.g., const/volatile. */
2069 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2070
2071 gdb_assert (type);
2072
2073 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2074 {
2075 if (!TYPE_TARGET_TYPE (type))
2076 {
2077 const char *name;
2078 struct symbol *sym;
2079
2080 /* It is dangerous to call lookup_symbol if we are currently
2081 reading a symtab. Infinite recursion is one danger. */
2082 if (currently_reading_symtab)
2083 return make_qualified_type (type, instance_flags, NULL);
2084
2085 name = type_name_no_tag (type);
2086 /* FIXME: shouldn't we separately check the TYPE_NAME and
2087 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2088 VAR_DOMAIN as appropriate? (this code was written before
2089 TYPE_NAME and TYPE_TAG_NAME were separate). */
2090 if (name == NULL)
2091 {
2092 stub_noname_complaint ();
2093 return make_qualified_type (type, instance_flags, NULL);
2094 }
2095 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2096 if (sym)
2097 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2098 else /* TYPE_CODE_UNDEF */
2099 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2100 }
2101 type = TYPE_TARGET_TYPE (type);
2102
2103 /* Preserve the instance flags as we traverse down the typedef chain.
2104
2105 Handling address spaces/classes is nasty, what do we do if there's a
2106 conflict?
2107 E.g., what if an outer typedef marks the type as class_1 and an inner
2108 typedef marks the type as class_2?
2109 This is the wrong place to do such error checking. We leave it to
2110 the code that created the typedef in the first place to flag the
2111 error. We just pick the outer address space (akin to letting the
2112 outer cast in a chain of casting win), instead of assuming
2113 "it can't happen". */
2114 {
2115 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2116 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2117 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2118 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2119
2120 /* Treat code vs data spaces and address classes separately. */
2121 if ((instance_flags & ALL_SPACES) != 0)
2122 new_instance_flags &= ~ALL_SPACES;
2123 if ((instance_flags & ALL_CLASSES) != 0)
2124 new_instance_flags &= ~ALL_CLASSES;
2125
2126 instance_flags |= new_instance_flags;
2127 }
2128 }
2129
2130 /* If this is a struct/class/union with no fields, then check
2131 whether a full definition exists somewhere else. This is for
2132 systems where a type definition with no fields is issued for such
2133 types, instead of identifying them as stub types in the first
2134 place. */
2135
2136 if (TYPE_IS_OPAQUE (type)
2137 && opaque_type_resolution
2138 && !currently_reading_symtab)
2139 {
2140 const char *name = type_name_no_tag (type);
2141 struct type *newtype;
2142
2143 if (name == NULL)
2144 {
2145 stub_noname_complaint ();
2146 return make_qualified_type (type, instance_flags, NULL);
2147 }
2148 newtype = lookup_transparent_type (name);
2149
2150 if (newtype)
2151 {
2152 /* If the resolved type and the stub are in the same
2153 objfile, then replace the stub type with the real deal.
2154 But if they're in separate objfiles, leave the stub
2155 alone; we'll just look up the transparent type every time
2156 we call check_typedef. We can't create pointers between
2157 types allocated to different objfiles, since they may
2158 have different lifetimes. Trying to copy NEWTYPE over to
2159 TYPE's objfile is pointless, too, since you'll have to
2160 move over any other types NEWTYPE refers to, which could
2161 be an unbounded amount of stuff. */
2162 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2163 type = make_qualified_type (newtype,
2164 TYPE_INSTANCE_FLAGS (type),
2165 type);
2166 else
2167 type = newtype;
2168 }
2169 }
2170 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2171 types. */
2172 else if (TYPE_STUB (type) && !currently_reading_symtab)
2173 {
2174 const char *name = type_name_no_tag (type);
2175 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2176 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2177 as appropriate? (this code was written before TYPE_NAME and
2178 TYPE_TAG_NAME were separate). */
2179 struct symbol *sym;
2180
2181 if (name == NULL)
2182 {
2183 stub_noname_complaint ();
2184 return make_qualified_type (type, instance_flags, NULL);
2185 }
2186 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2187 if (sym)
2188 {
2189 /* Same as above for opaque types, we can replace the stub
2190 with the complete type only if they are in the same
2191 objfile. */
2192 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2193 type = make_qualified_type (SYMBOL_TYPE (sym),
2194 TYPE_INSTANCE_FLAGS (type),
2195 type);
2196 else
2197 type = SYMBOL_TYPE (sym);
2198 }
2199 }
2200
2201 if (TYPE_TARGET_STUB (type))
2202 {
2203 struct type *range_type;
2204 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2205
2206 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2207 {
2208 /* Nothing we can do. */
2209 }
2210 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2211 {
2212 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2213 TYPE_TARGET_STUB (type) = 0;
2214 }
2215 }
2216
2217 type = make_qualified_type (type, instance_flags, NULL);
2218
2219 /* Cache TYPE_LENGTH for future use. */
2220 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2221
2222 return type;
2223 }
2224
2225 /* Parse a type expression in the string [P..P+LENGTH). If an error
2226 occurs, silently return a void type. */
2227
2228 static struct type *
2229 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2230 {
2231 struct ui_file *saved_gdb_stderr;
2232 struct type *type = NULL; /* Initialize to keep gcc happy. */
2233 volatile struct gdb_exception except;
2234
2235 /* Suppress error messages. */
2236 saved_gdb_stderr = gdb_stderr;
2237 gdb_stderr = ui_file_new ();
2238
2239 /* Call parse_and_eval_type() without fear of longjmp()s. */
2240 TRY_CATCH (except, RETURN_MASK_ERROR)
2241 {
2242 type = parse_and_eval_type (p, length);
2243 }
2244
2245 if (except.reason < 0)
2246 type = builtin_type (gdbarch)->builtin_void;
2247
2248 /* Stop suppressing error messages. */
2249 ui_file_delete (gdb_stderr);
2250 gdb_stderr = saved_gdb_stderr;
2251
2252 return type;
2253 }
2254
2255 /* Ugly hack to convert method stubs into method types.
2256
2257 He ain't kiddin'. This demangles the name of the method into a
2258 string including argument types, parses out each argument type,
2259 generates a string casting a zero to that type, evaluates the
2260 string, and stuffs the resulting type into an argtype vector!!!
2261 Then it knows the type of the whole function (including argument
2262 types for overloading), which info used to be in the stab's but was
2263 removed to hack back the space required for them. */
2264
2265 static void
2266 check_stub_method (struct type *type, int method_id, int signature_id)
2267 {
2268 struct gdbarch *gdbarch = get_type_arch (type);
2269 struct fn_field *f;
2270 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2271 char *demangled_name = gdb_demangle (mangled_name,
2272 DMGL_PARAMS | DMGL_ANSI);
2273 char *argtypetext, *p;
2274 int depth = 0, argcount = 1;
2275 struct field *argtypes;
2276 struct type *mtype;
2277
2278 /* Make sure we got back a function string that we can use. */
2279 if (demangled_name)
2280 p = strchr (demangled_name, '(');
2281 else
2282 p = NULL;
2283
2284 if (demangled_name == NULL || p == NULL)
2285 error (_("Internal: Cannot demangle mangled name `%s'."),
2286 mangled_name);
2287
2288 /* Now, read in the parameters that define this type. */
2289 p += 1;
2290 argtypetext = p;
2291 while (*p)
2292 {
2293 if (*p == '(' || *p == '<')
2294 {
2295 depth += 1;
2296 }
2297 else if (*p == ')' || *p == '>')
2298 {
2299 depth -= 1;
2300 }
2301 else if (*p == ',' && depth == 0)
2302 {
2303 argcount += 1;
2304 }
2305
2306 p += 1;
2307 }
2308
2309 /* If we read one argument and it was ``void'', don't count it. */
2310 if (strncmp (argtypetext, "(void)", 6) == 0)
2311 argcount -= 1;
2312
2313 /* We need one extra slot, for the THIS pointer. */
2314
2315 argtypes = (struct field *)
2316 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2317 p = argtypetext;
2318
2319 /* Add THIS pointer for non-static methods. */
2320 f = TYPE_FN_FIELDLIST1 (type, method_id);
2321 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2322 argcount = 0;
2323 else
2324 {
2325 argtypes[0].type = lookup_pointer_type (type);
2326 argcount = 1;
2327 }
2328
2329 if (*p != ')') /* () means no args, skip while. */
2330 {
2331 depth = 0;
2332 while (*p)
2333 {
2334 if (depth <= 0 && (*p == ',' || *p == ')'))
2335 {
2336 /* Avoid parsing of ellipsis, they will be handled below.
2337 Also avoid ``void'' as above. */
2338 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2339 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2340 {
2341 argtypes[argcount].type =
2342 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2343 argcount += 1;
2344 }
2345 argtypetext = p + 1;
2346 }
2347
2348 if (*p == '(' || *p == '<')
2349 {
2350 depth += 1;
2351 }
2352 else if (*p == ')' || *p == '>')
2353 {
2354 depth -= 1;
2355 }
2356
2357 p += 1;
2358 }
2359 }
2360
2361 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2362
2363 /* Now update the old "stub" type into a real type. */
2364 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2365 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2366 We want a method (TYPE_CODE_METHOD). */
2367 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2368 argtypes, argcount, p[-2] == '.');
2369 TYPE_STUB (mtype) = 0;
2370 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2371
2372 xfree (demangled_name);
2373 }
2374
2375 /* This is the external interface to check_stub_method, above. This
2376 function unstubs all of the signatures for TYPE's METHOD_ID method
2377 name. After calling this function TYPE_FN_FIELD_STUB will be
2378 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2379 correct.
2380
2381 This function unfortunately can not die until stabs do. */
2382
2383 void
2384 check_stub_method_group (struct type *type, int method_id)
2385 {
2386 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2387 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2388 int j, found_stub = 0;
2389
2390 for (j = 0; j < len; j++)
2391 if (TYPE_FN_FIELD_STUB (f, j))
2392 {
2393 found_stub = 1;
2394 check_stub_method (type, method_id, j);
2395 }
2396
2397 /* GNU v3 methods with incorrect names were corrected when we read
2398 in type information, because it was cheaper to do it then. The
2399 only GNU v2 methods with incorrect method names are operators and
2400 destructors; destructors were also corrected when we read in type
2401 information.
2402
2403 Therefore the only thing we need to handle here are v2 operator
2404 names. */
2405 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2406 {
2407 int ret;
2408 char dem_opname[256];
2409
2410 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2411 method_id),
2412 dem_opname, DMGL_ANSI);
2413 if (!ret)
2414 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2415 method_id),
2416 dem_opname, 0);
2417 if (ret)
2418 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2419 }
2420 }
2421
2422 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2423 const struct cplus_struct_type cplus_struct_default = { };
2424
2425 void
2426 allocate_cplus_struct_type (struct type *type)
2427 {
2428 if (HAVE_CPLUS_STRUCT (type))
2429 /* Structure was already allocated. Nothing more to do. */
2430 return;
2431
2432 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2433 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2434 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2435 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2436 }
2437
2438 const struct gnat_aux_type gnat_aux_default =
2439 { NULL };
2440
2441 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2442 and allocate the associated gnat-specific data. The gnat-specific
2443 data is also initialized to gnat_aux_default. */
2444
2445 void
2446 allocate_gnat_aux_type (struct type *type)
2447 {
2448 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2449 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2450 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2451 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2452 }
2453
2454 /* Helper function to initialize the standard scalar types.
2455
2456 If NAME is non-NULL, then it is used to initialize the type name.
2457 Note that NAME is not copied; it is required to have a lifetime at
2458 least as long as OBJFILE. */
2459
2460 struct type *
2461 init_type (enum type_code code, int length, int flags,
2462 const char *name, struct objfile *objfile)
2463 {
2464 struct type *type;
2465
2466 type = alloc_type (objfile);
2467 TYPE_CODE (type) = code;
2468 TYPE_LENGTH (type) = length;
2469
2470 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2471 if (flags & TYPE_FLAG_UNSIGNED)
2472 TYPE_UNSIGNED (type) = 1;
2473 if (flags & TYPE_FLAG_NOSIGN)
2474 TYPE_NOSIGN (type) = 1;
2475 if (flags & TYPE_FLAG_STUB)
2476 TYPE_STUB (type) = 1;
2477 if (flags & TYPE_FLAG_TARGET_STUB)
2478 TYPE_TARGET_STUB (type) = 1;
2479 if (flags & TYPE_FLAG_STATIC)
2480 TYPE_STATIC (type) = 1;
2481 if (flags & TYPE_FLAG_PROTOTYPED)
2482 TYPE_PROTOTYPED (type) = 1;
2483 if (flags & TYPE_FLAG_INCOMPLETE)
2484 TYPE_INCOMPLETE (type) = 1;
2485 if (flags & TYPE_FLAG_VARARGS)
2486 TYPE_VARARGS (type) = 1;
2487 if (flags & TYPE_FLAG_VECTOR)
2488 TYPE_VECTOR (type) = 1;
2489 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2490 TYPE_STUB_SUPPORTED (type) = 1;
2491 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2492 TYPE_FIXED_INSTANCE (type) = 1;
2493 if (flags & TYPE_FLAG_GNU_IFUNC)
2494 TYPE_GNU_IFUNC (type) = 1;
2495
2496 TYPE_NAME (type) = name;
2497
2498 /* C++ fancies. */
2499
2500 if (name && strcmp (name, "char") == 0)
2501 TYPE_NOSIGN (type) = 1;
2502
2503 switch (code)
2504 {
2505 case TYPE_CODE_STRUCT:
2506 case TYPE_CODE_UNION:
2507 case TYPE_CODE_NAMESPACE:
2508 INIT_CPLUS_SPECIFIC (type);
2509 break;
2510 case TYPE_CODE_FLT:
2511 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2512 break;
2513 case TYPE_CODE_FUNC:
2514 INIT_FUNC_SPECIFIC (type);
2515 break;
2516 }
2517 return type;
2518 }
2519 \f
2520 /* Queries on types. */
2521
2522 int
2523 can_dereference (struct type *t)
2524 {
2525 /* FIXME: Should we return true for references as well as
2526 pointers? */
2527 CHECK_TYPEDEF (t);
2528 return
2529 (t != NULL
2530 && TYPE_CODE (t) == TYPE_CODE_PTR
2531 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2532 }
2533
2534 int
2535 is_integral_type (struct type *t)
2536 {
2537 CHECK_TYPEDEF (t);
2538 return
2539 ((t != NULL)
2540 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2541 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2542 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2543 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2544 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2545 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2546 }
2547
2548 /* Return true if TYPE is scalar. */
2549
2550 static int
2551 is_scalar_type (struct type *type)
2552 {
2553 CHECK_TYPEDEF (type);
2554
2555 switch (TYPE_CODE (type))
2556 {
2557 case TYPE_CODE_ARRAY:
2558 case TYPE_CODE_STRUCT:
2559 case TYPE_CODE_UNION:
2560 case TYPE_CODE_SET:
2561 case TYPE_CODE_STRING:
2562 return 0;
2563 default:
2564 return 1;
2565 }
2566 }
2567
2568 /* Return true if T is scalar, or a composite type which in practice has
2569 the memory layout of a scalar type. E.g., an array or struct with only
2570 one scalar element inside it, or a union with only scalar elements. */
2571
2572 int
2573 is_scalar_type_recursive (struct type *t)
2574 {
2575 CHECK_TYPEDEF (t);
2576
2577 if (is_scalar_type (t))
2578 return 1;
2579 /* Are we dealing with an array or string of known dimensions? */
2580 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2581 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2582 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2583 {
2584 LONGEST low_bound, high_bound;
2585 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2586
2587 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2588
2589 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2590 }
2591 /* Are we dealing with a struct with one element? */
2592 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2593 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2594 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2595 {
2596 int i, n = TYPE_NFIELDS (t);
2597
2598 /* If all elements of the union are scalar, then the union is scalar. */
2599 for (i = 0; i < n; i++)
2600 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2601 return 0;
2602
2603 return 1;
2604 }
2605
2606 return 0;
2607 }
2608
2609 /* Return true is T is a class or a union. False otherwise. */
2610
2611 int
2612 class_or_union_p (const struct type *t)
2613 {
2614 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2615 || TYPE_CODE (t) == TYPE_CODE_UNION);
2616 }
2617
2618 /* A helper function which returns true if types A and B represent the
2619 "same" class type. This is true if the types have the same main
2620 type, or the same name. */
2621
2622 int
2623 class_types_same_p (const struct type *a, const struct type *b)
2624 {
2625 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2626 || (TYPE_NAME (a) && TYPE_NAME (b)
2627 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2628 }
2629
2630 /* If BASE is an ancestor of DCLASS return the distance between them.
2631 otherwise return -1;
2632 eg:
2633
2634 class A {};
2635 class B: public A {};
2636 class C: public B {};
2637 class D: C {};
2638
2639 distance_to_ancestor (A, A, 0) = 0
2640 distance_to_ancestor (A, B, 0) = 1
2641 distance_to_ancestor (A, C, 0) = 2
2642 distance_to_ancestor (A, D, 0) = 3
2643
2644 If PUBLIC is 1 then only public ancestors are considered,
2645 and the function returns the distance only if BASE is a public ancestor
2646 of DCLASS.
2647 Eg:
2648
2649 distance_to_ancestor (A, D, 1) = -1. */
2650
2651 static int
2652 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2653 {
2654 int i;
2655 int d;
2656
2657 CHECK_TYPEDEF (base);
2658 CHECK_TYPEDEF (dclass);
2659
2660 if (class_types_same_p (base, dclass))
2661 return 0;
2662
2663 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2664 {
2665 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2666 continue;
2667
2668 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2669 if (d >= 0)
2670 return 1 + d;
2671 }
2672
2673 return -1;
2674 }
2675
2676 /* Check whether BASE is an ancestor or base class or DCLASS
2677 Return 1 if so, and 0 if not.
2678 Note: If BASE and DCLASS are of the same type, this function
2679 will return 1. So for some class A, is_ancestor (A, A) will
2680 return 1. */
2681
2682 int
2683 is_ancestor (struct type *base, struct type *dclass)
2684 {
2685 return distance_to_ancestor (base, dclass, 0) >= 0;
2686 }
2687
2688 /* Like is_ancestor, but only returns true when BASE is a public
2689 ancestor of DCLASS. */
2690
2691 int
2692 is_public_ancestor (struct type *base, struct type *dclass)
2693 {
2694 return distance_to_ancestor (base, dclass, 1) >= 0;
2695 }
2696
2697 /* A helper function for is_unique_ancestor. */
2698
2699 static int
2700 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2701 int *offset,
2702 const gdb_byte *valaddr, int embedded_offset,
2703 CORE_ADDR address, struct value *val)
2704 {
2705 int i, count = 0;
2706
2707 CHECK_TYPEDEF (base);
2708 CHECK_TYPEDEF (dclass);
2709
2710 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2711 {
2712 struct type *iter;
2713 int this_offset;
2714
2715 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2716
2717 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2718 address, val);
2719
2720 if (class_types_same_p (base, iter))
2721 {
2722 /* If this is the first subclass, set *OFFSET and set count
2723 to 1. Otherwise, if this is at the same offset as
2724 previous instances, do nothing. Otherwise, increment
2725 count. */
2726 if (*offset == -1)
2727 {
2728 *offset = this_offset;
2729 count = 1;
2730 }
2731 else if (this_offset == *offset)
2732 {
2733 /* Nothing. */
2734 }
2735 else
2736 ++count;
2737 }
2738 else
2739 count += is_unique_ancestor_worker (base, iter, offset,
2740 valaddr,
2741 embedded_offset + this_offset,
2742 address, val);
2743 }
2744
2745 return count;
2746 }
2747
2748 /* Like is_ancestor, but only returns true if BASE is a unique base
2749 class of the type of VAL. */
2750
2751 int
2752 is_unique_ancestor (struct type *base, struct value *val)
2753 {
2754 int offset = -1;
2755
2756 return is_unique_ancestor_worker (base, value_type (val), &offset,
2757 value_contents_for_printing (val),
2758 value_embedded_offset (val),
2759 value_address (val), val) == 1;
2760 }
2761
2762 \f
2763 /* Overload resolution. */
2764
2765 /* Return the sum of the rank of A with the rank of B. */
2766
2767 struct rank
2768 sum_ranks (struct rank a, struct rank b)
2769 {
2770 struct rank c;
2771 c.rank = a.rank + b.rank;
2772 c.subrank = a.subrank + b.subrank;
2773 return c;
2774 }
2775
2776 /* Compare rank A and B and return:
2777 0 if a = b
2778 1 if a is better than b
2779 -1 if b is better than a. */
2780
2781 int
2782 compare_ranks (struct rank a, struct rank b)
2783 {
2784 if (a.rank == b.rank)
2785 {
2786 if (a.subrank == b.subrank)
2787 return 0;
2788 if (a.subrank < b.subrank)
2789 return 1;
2790 if (a.subrank > b.subrank)
2791 return -1;
2792 }
2793
2794 if (a.rank < b.rank)
2795 return 1;
2796
2797 /* a.rank > b.rank */
2798 return -1;
2799 }
2800
2801 /* Functions for overload resolution begin here. */
2802
2803 /* Compare two badness vectors A and B and return the result.
2804 0 => A and B are identical
2805 1 => A and B are incomparable
2806 2 => A is better than B
2807 3 => A is worse than B */
2808
2809 int
2810 compare_badness (struct badness_vector *a, struct badness_vector *b)
2811 {
2812 int i;
2813 int tmp;
2814 short found_pos = 0; /* any positives in c? */
2815 short found_neg = 0; /* any negatives in c? */
2816
2817 /* differing lengths => incomparable */
2818 if (a->length != b->length)
2819 return 1;
2820
2821 /* Subtract b from a */
2822 for (i = 0; i < a->length; i++)
2823 {
2824 tmp = compare_ranks (b->rank[i], a->rank[i]);
2825 if (tmp > 0)
2826 found_pos = 1;
2827 else if (tmp < 0)
2828 found_neg = 1;
2829 }
2830
2831 if (found_pos)
2832 {
2833 if (found_neg)
2834 return 1; /* incomparable */
2835 else
2836 return 3; /* A > B */
2837 }
2838 else
2839 /* no positives */
2840 {
2841 if (found_neg)
2842 return 2; /* A < B */
2843 else
2844 return 0; /* A == B */
2845 }
2846 }
2847
2848 /* Rank a function by comparing its parameter types (PARMS, length
2849 NPARMS), to the types of an argument list (ARGS, length NARGS).
2850 Return a pointer to a badness vector. This has NARGS + 1
2851 entries. */
2852
2853 struct badness_vector *
2854 rank_function (struct type **parms, int nparms,
2855 struct value **args, int nargs)
2856 {
2857 int i;
2858 struct badness_vector *bv;
2859 int min_len = nparms < nargs ? nparms : nargs;
2860
2861 bv = xmalloc (sizeof (struct badness_vector));
2862 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2863 bv->rank = XNEWVEC (struct rank, nargs + 1);
2864
2865 /* First compare the lengths of the supplied lists.
2866 If there is a mismatch, set it to a high value. */
2867
2868 /* pai/1997-06-03 FIXME: when we have debug info about default
2869 arguments and ellipsis parameter lists, we should consider those
2870 and rank the length-match more finely. */
2871
2872 LENGTH_MATCH (bv) = (nargs != nparms)
2873 ? LENGTH_MISMATCH_BADNESS
2874 : EXACT_MATCH_BADNESS;
2875
2876 /* Now rank all the parameters of the candidate function. */
2877 for (i = 1; i <= min_len; i++)
2878 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2879 args[i - 1]);
2880
2881 /* If more arguments than parameters, add dummy entries. */
2882 for (i = min_len + 1; i <= nargs; i++)
2883 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2884
2885 return bv;
2886 }
2887
2888 /* Compare the names of two integer types, assuming that any sign
2889 qualifiers have been checked already. We do it this way because
2890 there may be an "int" in the name of one of the types. */
2891
2892 static int
2893 integer_types_same_name_p (const char *first, const char *second)
2894 {
2895 int first_p, second_p;
2896
2897 /* If both are shorts, return 1; if neither is a short, keep
2898 checking. */
2899 first_p = (strstr (first, "short") != NULL);
2900 second_p = (strstr (second, "short") != NULL);
2901 if (first_p && second_p)
2902 return 1;
2903 if (first_p || second_p)
2904 return 0;
2905
2906 /* Likewise for long. */
2907 first_p = (strstr (first, "long") != NULL);
2908 second_p = (strstr (second, "long") != NULL);
2909 if (first_p && second_p)
2910 return 1;
2911 if (first_p || second_p)
2912 return 0;
2913
2914 /* Likewise for char. */
2915 first_p = (strstr (first, "char") != NULL);
2916 second_p = (strstr (second, "char") != NULL);
2917 if (first_p && second_p)
2918 return 1;
2919 if (first_p || second_p)
2920 return 0;
2921
2922 /* They must both be ints. */
2923 return 1;
2924 }
2925
2926 /* Compares type A to type B returns 1 if the represent the same type
2927 0 otherwise. */
2928
2929 int
2930 types_equal (struct type *a, struct type *b)
2931 {
2932 /* Identical type pointers. */
2933 /* However, this still doesn't catch all cases of same type for b
2934 and a. The reason is that builtin types are different from
2935 the same ones constructed from the object. */
2936 if (a == b)
2937 return 1;
2938
2939 /* Resolve typedefs */
2940 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2941 a = check_typedef (a);
2942 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2943 b = check_typedef (b);
2944
2945 /* If after resolving typedefs a and b are not of the same type
2946 code then they are not equal. */
2947 if (TYPE_CODE (a) != TYPE_CODE (b))
2948 return 0;
2949
2950 /* If a and b are both pointers types or both reference types then
2951 they are equal of the same type iff the objects they refer to are
2952 of the same type. */
2953 if (TYPE_CODE (a) == TYPE_CODE_PTR
2954 || TYPE_CODE (a) == TYPE_CODE_REF)
2955 return types_equal (TYPE_TARGET_TYPE (a),
2956 TYPE_TARGET_TYPE (b));
2957
2958 /* Well, damnit, if the names are exactly the same, I'll say they
2959 are exactly the same. This happens when we generate method
2960 stubs. The types won't point to the same address, but they
2961 really are the same. */
2962
2963 if (TYPE_NAME (a) && TYPE_NAME (b)
2964 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2965 return 1;
2966
2967 /* Check if identical after resolving typedefs. */
2968 if (a == b)
2969 return 1;
2970
2971 /* Two function types are equal if their argument and return types
2972 are equal. */
2973 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2974 {
2975 int i;
2976
2977 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2978 return 0;
2979
2980 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2981 return 0;
2982
2983 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2984 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2985 return 0;
2986
2987 return 1;
2988 }
2989
2990 return 0;
2991 }
2992 \f
2993 /* Deep comparison of types. */
2994
2995 /* An entry in the type-equality bcache. */
2996
2997 typedef struct type_equality_entry
2998 {
2999 struct type *type1, *type2;
3000 } type_equality_entry_d;
3001
3002 DEF_VEC_O (type_equality_entry_d);
3003
3004 /* A helper function to compare two strings. Returns 1 if they are
3005 the same, 0 otherwise. Handles NULLs properly. */
3006
3007 static int
3008 compare_maybe_null_strings (const char *s, const char *t)
3009 {
3010 if (s == NULL && t != NULL)
3011 return 0;
3012 else if (s != NULL && t == NULL)
3013 return 0;
3014 else if (s == NULL && t== NULL)
3015 return 1;
3016 return strcmp (s, t) == 0;
3017 }
3018
3019 /* A helper function for check_types_worklist that checks two types for
3020 "deep" equality. Returns non-zero if the types are considered the
3021 same, zero otherwise. */
3022
3023 static int
3024 check_types_equal (struct type *type1, struct type *type2,
3025 VEC (type_equality_entry_d) **worklist)
3026 {
3027 CHECK_TYPEDEF (type1);
3028 CHECK_TYPEDEF (type2);
3029
3030 if (type1 == type2)
3031 return 1;
3032
3033 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3034 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3035 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3036 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3037 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3038 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3039 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3040 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3041 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3042 return 0;
3043
3044 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3045 TYPE_TAG_NAME (type2)))
3046 return 0;
3047 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3048 return 0;
3049
3050 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3051 {
3052 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3053 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3054 return 0;
3055 }
3056 else
3057 {
3058 int i;
3059
3060 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3061 {
3062 const struct field *field1 = &TYPE_FIELD (type1, i);
3063 const struct field *field2 = &TYPE_FIELD (type2, i);
3064 struct type_equality_entry entry;
3065
3066 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3067 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3068 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3069 return 0;
3070 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3071 FIELD_NAME (*field2)))
3072 return 0;
3073 switch (FIELD_LOC_KIND (*field1))
3074 {
3075 case FIELD_LOC_KIND_BITPOS:
3076 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3077 return 0;
3078 break;
3079 case FIELD_LOC_KIND_ENUMVAL:
3080 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3081 return 0;
3082 break;
3083 case FIELD_LOC_KIND_PHYSADDR:
3084 if (FIELD_STATIC_PHYSADDR (*field1)
3085 != FIELD_STATIC_PHYSADDR (*field2))
3086 return 0;
3087 break;
3088 case FIELD_LOC_KIND_PHYSNAME:
3089 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3090 FIELD_STATIC_PHYSNAME (*field2)))
3091 return 0;
3092 break;
3093 case FIELD_LOC_KIND_DWARF_BLOCK:
3094 {
3095 struct dwarf2_locexpr_baton *block1, *block2;
3096
3097 block1 = FIELD_DWARF_BLOCK (*field1);
3098 block2 = FIELD_DWARF_BLOCK (*field2);
3099 if (block1->per_cu != block2->per_cu
3100 || block1->size != block2->size
3101 || memcmp (block1->data, block2->data, block1->size) != 0)
3102 return 0;
3103 }
3104 break;
3105 default:
3106 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3107 "%d by check_types_equal"),
3108 FIELD_LOC_KIND (*field1));
3109 }
3110
3111 entry.type1 = FIELD_TYPE (*field1);
3112 entry.type2 = FIELD_TYPE (*field2);
3113 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3114 }
3115 }
3116
3117 if (TYPE_TARGET_TYPE (type1) != NULL)
3118 {
3119 struct type_equality_entry entry;
3120
3121 if (TYPE_TARGET_TYPE (type2) == NULL)
3122 return 0;
3123
3124 entry.type1 = TYPE_TARGET_TYPE (type1);
3125 entry.type2 = TYPE_TARGET_TYPE (type2);
3126 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3127 }
3128 else if (TYPE_TARGET_TYPE (type2) != NULL)
3129 return 0;
3130
3131 return 1;
3132 }
3133
3134 /* Check types on a worklist for equality. Returns zero if any pair
3135 is not equal, non-zero if they are all considered equal. */
3136
3137 static int
3138 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3139 struct bcache *cache)
3140 {
3141 while (!VEC_empty (type_equality_entry_d, *worklist))
3142 {
3143 struct type_equality_entry entry;
3144 int added;
3145
3146 entry = *VEC_last (type_equality_entry_d, *worklist);
3147 VEC_pop (type_equality_entry_d, *worklist);
3148
3149 /* If the type pair has already been visited, we know it is
3150 ok. */
3151 bcache_full (&entry, sizeof (entry), cache, &added);
3152 if (!added)
3153 continue;
3154
3155 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3156 return 0;
3157 }
3158
3159 return 1;
3160 }
3161
3162 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3163 "deep comparison". Otherwise return zero. */
3164
3165 int
3166 types_deeply_equal (struct type *type1, struct type *type2)
3167 {
3168 volatile struct gdb_exception except;
3169 int result = 0;
3170 struct bcache *cache;
3171 VEC (type_equality_entry_d) *worklist = NULL;
3172 struct type_equality_entry entry;
3173
3174 gdb_assert (type1 != NULL && type2 != NULL);
3175
3176 /* Early exit for the simple case. */
3177 if (type1 == type2)
3178 return 1;
3179
3180 cache = bcache_xmalloc (NULL, NULL);
3181
3182 entry.type1 = type1;
3183 entry.type2 = type2;
3184 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3185
3186 TRY_CATCH (except, RETURN_MASK_ALL)
3187 {
3188 result = check_types_worklist (&worklist, cache);
3189 }
3190 /* check_types_worklist calls several nested helper functions,
3191 some of which can raise a GDB Exception, so we just check
3192 and rethrow here. If there is a GDB exception, a comparison
3193 is not capable (or trusted), so exit. */
3194 bcache_xfree (cache);
3195 VEC_free (type_equality_entry_d, worklist);
3196 /* Rethrow if there was a problem. */
3197 if (except.reason < 0)
3198 throw_exception (except);
3199
3200 return result;
3201 }
3202 \f
3203 /* Compare one type (PARM) for compatibility with another (ARG).
3204 * PARM is intended to be the parameter type of a function; and
3205 * ARG is the supplied argument's type. This function tests if
3206 * the latter can be converted to the former.
3207 * VALUE is the argument's value or NULL if none (or called recursively)
3208 *
3209 * Return 0 if they are identical types;
3210 * Otherwise, return an integer which corresponds to how compatible
3211 * PARM is to ARG. The higher the return value, the worse the match.
3212 * Generally the "bad" conversions are all uniformly assigned a 100. */
3213
3214 struct rank
3215 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3216 {
3217 struct rank rank = {0,0};
3218
3219 if (types_equal (parm, arg))
3220 return EXACT_MATCH_BADNESS;
3221
3222 /* Resolve typedefs */
3223 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3224 parm = check_typedef (parm);
3225 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3226 arg = check_typedef (arg);
3227
3228 /* See through references, since we can almost make non-references
3229 references. */
3230 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3231 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3232 REFERENCE_CONVERSION_BADNESS));
3233 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3234 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3235 REFERENCE_CONVERSION_BADNESS));
3236 if (overload_debug)
3237 /* Debugging only. */
3238 fprintf_filtered (gdb_stderr,
3239 "------ Arg is %s [%d], parm is %s [%d]\n",
3240 TYPE_NAME (arg), TYPE_CODE (arg),
3241 TYPE_NAME (parm), TYPE_CODE (parm));
3242
3243 /* x -> y means arg of type x being supplied for parameter of type y. */
3244
3245 switch (TYPE_CODE (parm))
3246 {
3247 case TYPE_CODE_PTR:
3248 switch (TYPE_CODE (arg))
3249 {
3250 case TYPE_CODE_PTR:
3251
3252 /* Allowed pointer conversions are:
3253 (a) pointer to void-pointer conversion. */
3254 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3255 return VOID_PTR_CONVERSION_BADNESS;
3256
3257 /* (b) pointer to ancestor-pointer conversion. */
3258 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3259 TYPE_TARGET_TYPE (arg),
3260 0);
3261 if (rank.subrank >= 0)
3262 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3263
3264 return INCOMPATIBLE_TYPE_BADNESS;
3265 case TYPE_CODE_ARRAY:
3266 if (types_equal (TYPE_TARGET_TYPE (parm),
3267 TYPE_TARGET_TYPE (arg)))
3268 return EXACT_MATCH_BADNESS;
3269 return INCOMPATIBLE_TYPE_BADNESS;
3270 case TYPE_CODE_FUNC:
3271 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3272 case TYPE_CODE_INT:
3273 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3274 {
3275 if (value_as_long (value) == 0)
3276 {
3277 /* Null pointer conversion: allow it to be cast to a pointer.
3278 [4.10.1 of C++ standard draft n3290] */
3279 return NULL_POINTER_CONVERSION_BADNESS;
3280 }
3281 else
3282 {
3283 /* If type checking is disabled, allow the conversion. */
3284 if (!strict_type_checking)
3285 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3286 }
3287 }
3288 /* fall through */
3289 case TYPE_CODE_ENUM:
3290 case TYPE_CODE_FLAGS:
3291 case TYPE_CODE_CHAR:
3292 case TYPE_CODE_RANGE:
3293 case TYPE_CODE_BOOL:
3294 default:
3295 return INCOMPATIBLE_TYPE_BADNESS;
3296 }
3297 case TYPE_CODE_ARRAY:
3298 switch (TYPE_CODE (arg))
3299 {
3300 case TYPE_CODE_PTR:
3301 case TYPE_CODE_ARRAY:
3302 return rank_one_type (TYPE_TARGET_TYPE (parm),
3303 TYPE_TARGET_TYPE (arg), NULL);
3304 default:
3305 return INCOMPATIBLE_TYPE_BADNESS;
3306 }
3307 case TYPE_CODE_FUNC:
3308 switch (TYPE_CODE (arg))
3309 {
3310 case TYPE_CODE_PTR: /* funcptr -> func */
3311 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3312 default:
3313 return INCOMPATIBLE_TYPE_BADNESS;
3314 }
3315 case TYPE_CODE_INT:
3316 switch (TYPE_CODE (arg))
3317 {
3318 case TYPE_CODE_INT:
3319 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3320 {
3321 /* Deal with signed, unsigned, and plain chars and
3322 signed and unsigned ints. */
3323 if (TYPE_NOSIGN (parm))
3324 {
3325 /* This case only for character types. */
3326 if (TYPE_NOSIGN (arg))
3327 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3328 else /* signed/unsigned char -> plain char */
3329 return INTEGER_CONVERSION_BADNESS;
3330 }
3331 else if (TYPE_UNSIGNED (parm))
3332 {
3333 if (TYPE_UNSIGNED (arg))
3334 {
3335 /* unsigned int -> unsigned int, or
3336 unsigned long -> unsigned long */
3337 if (integer_types_same_name_p (TYPE_NAME (parm),
3338 TYPE_NAME (arg)))
3339 return EXACT_MATCH_BADNESS;
3340 else if (integer_types_same_name_p (TYPE_NAME (arg),
3341 "int")
3342 && integer_types_same_name_p (TYPE_NAME (parm),
3343 "long"))
3344 /* unsigned int -> unsigned long */
3345 return INTEGER_PROMOTION_BADNESS;
3346 else
3347 /* unsigned long -> unsigned int */
3348 return INTEGER_CONVERSION_BADNESS;
3349 }
3350 else
3351 {
3352 if (integer_types_same_name_p (TYPE_NAME (arg),
3353 "long")
3354 && integer_types_same_name_p (TYPE_NAME (parm),
3355 "int"))
3356 /* signed long -> unsigned int */
3357 return INTEGER_CONVERSION_BADNESS;
3358 else
3359 /* signed int/long -> unsigned int/long */
3360 return INTEGER_CONVERSION_BADNESS;
3361 }
3362 }
3363 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3364 {
3365 if (integer_types_same_name_p (TYPE_NAME (parm),
3366 TYPE_NAME (arg)))
3367 return EXACT_MATCH_BADNESS;
3368 else if (integer_types_same_name_p (TYPE_NAME (arg),
3369 "int")
3370 && integer_types_same_name_p (TYPE_NAME (parm),
3371 "long"))
3372 return INTEGER_PROMOTION_BADNESS;
3373 else
3374 return INTEGER_CONVERSION_BADNESS;
3375 }
3376 else
3377 return INTEGER_CONVERSION_BADNESS;
3378 }
3379 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3380 return INTEGER_PROMOTION_BADNESS;
3381 else
3382 return INTEGER_CONVERSION_BADNESS;
3383 case TYPE_CODE_ENUM:
3384 case TYPE_CODE_FLAGS:
3385 case TYPE_CODE_CHAR:
3386 case TYPE_CODE_RANGE:
3387 case TYPE_CODE_BOOL:
3388 if (TYPE_DECLARED_CLASS (arg))
3389 return INCOMPATIBLE_TYPE_BADNESS;
3390 return INTEGER_PROMOTION_BADNESS;
3391 case TYPE_CODE_FLT:
3392 return INT_FLOAT_CONVERSION_BADNESS;
3393 case TYPE_CODE_PTR:
3394 return NS_POINTER_CONVERSION_BADNESS;
3395 default:
3396 return INCOMPATIBLE_TYPE_BADNESS;
3397 }
3398 break;
3399 case TYPE_CODE_ENUM:
3400 switch (TYPE_CODE (arg))
3401 {
3402 case TYPE_CODE_INT:
3403 case TYPE_CODE_CHAR:
3404 case TYPE_CODE_RANGE:
3405 case TYPE_CODE_BOOL:
3406 case TYPE_CODE_ENUM:
3407 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3408 return INCOMPATIBLE_TYPE_BADNESS;
3409 return INTEGER_CONVERSION_BADNESS;
3410 case TYPE_CODE_FLT:
3411 return INT_FLOAT_CONVERSION_BADNESS;
3412 default:
3413 return INCOMPATIBLE_TYPE_BADNESS;
3414 }
3415 break;
3416 case TYPE_CODE_CHAR:
3417 switch (TYPE_CODE (arg))
3418 {
3419 case TYPE_CODE_RANGE:
3420 case TYPE_CODE_BOOL:
3421 case TYPE_CODE_ENUM:
3422 if (TYPE_DECLARED_CLASS (arg))
3423 return INCOMPATIBLE_TYPE_BADNESS;
3424 return INTEGER_CONVERSION_BADNESS;
3425 case TYPE_CODE_FLT:
3426 return INT_FLOAT_CONVERSION_BADNESS;
3427 case TYPE_CODE_INT:
3428 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3429 return INTEGER_CONVERSION_BADNESS;
3430 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3431 return INTEGER_PROMOTION_BADNESS;
3432 /* >>> !! else fall through !! <<< */
3433 case TYPE_CODE_CHAR:
3434 /* Deal with signed, unsigned, and plain chars for C++ and
3435 with int cases falling through from previous case. */
3436 if (TYPE_NOSIGN (parm))
3437 {
3438 if (TYPE_NOSIGN (arg))
3439 return EXACT_MATCH_BADNESS;
3440 else
3441 return INTEGER_CONVERSION_BADNESS;
3442 }
3443 else if (TYPE_UNSIGNED (parm))
3444 {
3445 if (TYPE_UNSIGNED (arg))
3446 return EXACT_MATCH_BADNESS;
3447 else
3448 return INTEGER_PROMOTION_BADNESS;
3449 }
3450 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3451 return EXACT_MATCH_BADNESS;
3452 else
3453 return INTEGER_CONVERSION_BADNESS;
3454 default:
3455 return INCOMPATIBLE_TYPE_BADNESS;
3456 }
3457 break;
3458 case TYPE_CODE_RANGE:
3459 switch (TYPE_CODE (arg))
3460 {
3461 case TYPE_CODE_INT:
3462 case TYPE_CODE_CHAR:
3463 case TYPE_CODE_RANGE:
3464 case TYPE_CODE_BOOL:
3465 case TYPE_CODE_ENUM:
3466 return INTEGER_CONVERSION_BADNESS;
3467 case TYPE_CODE_FLT:
3468 return INT_FLOAT_CONVERSION_BADNESS;
3469 default:
3470 return INCOMPATIBLE_TYPE_BADNESS;
3471 }
3472 break;
3473 case TYPE_CODE_BOOL:
3474 switch (TYPE_CODE (arg))
3475 {
3476 /* n3290 draft, section 4.12.1 (conv.bool):
3477
3478 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3479 pointer to member type can be converted to a prvalue of type
3480 bool. A zero value, null pointer value, or null member pointer
3481 value is converted to false; any other value is converted to
3482 true. A prvalue of type std::nullptr_t can be converted to a
3483 prvalue of type bool; the resulting value is false." */
3484 case TYPE_CODE_INT:
3485 case TYPE_CODE_CHAR:
3486 case TYPE_CODE_ENUM:
3487 case TYPE_CODE_FLT:
3488 case TYPE_CODE_MEMBERPTR:
3489 case TYPE_CODE_PTR:
3490 return BOOL_CONVERSION_BADNESS;
3491 case TYPE_CODE_RANGE:
3492 return INCOMPATIBLE_TYPE_BADNESS;
3493 case TYPE_CODE_BOOL:
3494 return EXACT_MATCH_BADNESS;
3495 default:
3496 return INCOMPATIBLE_TYPE_BADNESS;
3497 }
3498 break;
3499 case TYPE_CODE_FLT:
3500 switch (TYPE_CODE (arg))
3501 {
3502 case TYPE_CODE_FLT:
3503 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3504 return FLOAT_PROMOTION_BADNESS;
3505 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3506 return EXACT_MATCH_BADNESS;
3507 else
3508 return FLOAT_CONVERSION_BADNESS;
3509 case TYPE_CODE_INT:
3510 case TYPE_CODE_BOOL:
3511 case TYPE_CODE_ENUM:
3512 case TYPE_CODE_RANGE:
3513 case TYPE_CODE_CHAR:
3514 return INT_FLOAT_CONVERSION_BADNESS;
3515 default:
3516 return INCOMPATIBLE_TYPE_BADNESS;
3517 }
3518 break;
3519 case TYPE_CODE_COMPLEX:
3520 switch (TYPE_CODE (arg))
3521 { /* Strictly not needed for C++, but... */
3522 case TYPE_CODE_FLT:
3523 return FLOAT_PROMOTION_BADNESS;
3524 case TYPE_CODE_COMPLEX:
3525 return EXACT_MATCH_BADNESS;
3526 default:
3527 return INCOMPATIBLE_TYPE_BADNESS;
3528 }
3529 break;
3530 case TYPE_CODE_STRUCT:
3531 switch (TYPE_CODE (arg))
3532 {
3533 case TYPE_CODE_STRUCT:
3534 /* Check for derivation */
3535 rank.subrank = distance_to_ancestor (parm, arg, 0);
3536 if (rank.subrank >= 0)
3537 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3538 /* else fall through */
3539 default:
3540 return INCOMPATIBLE_TYPE_BADNESS;
3541 }
3542 break;
3543 case TYPE_CODE_UNION:
3544 switch (TYPE_CODE (arg))
3545 {
3546 case TYPE_CODE_UNION:
3547 default:
3548 return INCOMPATIBLE_TYPE_BADNESS;
3549 }
3550 break;
3551 case TYPE_CODE_MEMBERPTR:
3552 switch (TYPE_CODE (arg))
3553 {
3554 default:
3555 return INCOMPATIBLE_TYPE_BADNESS;
3556 }
3557 break;
3558 case TYPE_CODE_METHOD:
3559 switch (TYPE_CODE (arg))
3560 {
3561
3562 default:
3563 return INCOMPATIBLE_TYPE_BADNESS;
3564 }
3565 break;
3566 case TYPE_CODE_REF:
3567 switch (TYPE_CODE (arg))
3568 {
3569
3570 default:
3571 return INCOMPATIBLE_TYPE_BADNESS;
3572 }
3573
3574 break;
3575 case TYPE_CODE_SET:
3576 switch (TYPE_CODE (arg))
3577 {
3578 /* Not in C++ */
3579 case TYPE_CODE_SET:
3580 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3581 TYPE_FIELD_TYPE (arg, 0), NULL);
3582 default:
3583 return INCOMPATIBLE_TYPE_BADNESS;
3584 }
3585 break;
3586 case TYPE_CODE_VOID:
3587 default:
3588 return INCOMPATIBLE_TYPE_BADNESS;
3589 } /* switch (TYPE_CODE (arg)) */
3590 }
3591
3592 /* End of functions for overload resolution. */
3593 \f
3594 /* Routines to pretty-print types. */
3595
3596 static void
3597 print_bit_vector (B_TYPE *bits, int nbits)
3598 {
3599 int bitno;
3600
3601 for (bitno = 0; bitno < nbits; bitno++)
3602 {
3603 if ((bitno % 8) == 0)
3604 {
3605 puts_filtered (" ");
3606 }
3607 if (B_TST (bits, bitno))
3608 printf_filtered (("1"));
3609 else
3610 printf_filtered (("0"));
3611 }
3612 }
3613
3614 /* Note the first arg should be the "this" pointer, we may not want to
3615 include it since we may get into a infinitely recursive
3616 situation. */
3617
3618 static void
3619 print_args (struct field *args, int nargs, int spaces)
3620 {
3621 if (args != NULL)
3622 {
3623 int i;
3624
3625 for (i = 0; i < nargs; i++)
3626 {
3627 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3628 args[i].name != NULL ? args[i].name : "<NULL>");
3629 recursive_dump_type (args[i].type, spaces + 2);
3630 }
3631 }
3632 }
3633
3634 int
3635 field_is_static (struct field *f)
3636 {
3637 /* "static" fields are the fields whose location is not relative
3638 to the address of the enclosing struct. It would be nice to
3639 have a dedicated flag that would be set for static fields when
3640 the type is being created. But in practice, checking the field
3641 loc_kind should give us an accurate answer. */
3642 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3643 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3644 }
3645
3646 static void
3647 dump_fn_fieldlists (struct type *type, int spaces)
3648 {
3649 int method_idx;
3650 int overload_idx;
3651 struct fn_field *f;
3652
3653 printfi_filtered (spaces, "fn_fieldlists ");
3654 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3655 printf_filtered ("\n");
3656 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3657 {
3658 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3659 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3660 method_idx,
3661 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3662 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3663 gdb_stdout);
3664 printf_filtered (_(") length %d\n"),
3665 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3666 for (overload_idx = 0;
3667 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3668 overload_idx++)
3669 {
3670 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3671 overload_idx,
3672 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3673 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3674 gdb_stdout);
3675 printf_filtered (")\n");
3676 printfi_filtered (spaces + 8, "type ");
3677 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3678 gdb_stdout);
3679 printf_filtered ("\n");
3680
3681 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3682 spaces + 8 + 2);
3683
3684 printfi_filtered (spaces + 8, "args ");
3685 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3686 gdb_stdout);
3687 printf_filtered ("\n");
3688 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3689 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3690 spaces + 8 + 2);
3691 printfi_filtered (spaces + 8, "fcontext ");
3692 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3693 gdb_stdout);
3694 printf_filtered ("\n");
3695
3696 printfi_filtered (spaces + 8, "is_const %d\n",
3697 TYPE_FN_FIELD_CONST (f, overload_idx));
3698 printfi_filtered (spaces + 8, "is_volatile %d\n",
3699 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3700 printfi_filtered (spaces + 8, "is_private %d\n",
3701 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3702 printfi_filtered (spaces + 8, "is_protected %d\n",
3703 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3704 printfi_filtered (spaces + 8, "is_stub %d\n",
3705 TYPE_FN_FIELD_STUB (f, overload_idx));
3706 printfi_filtered (spaces + 8, "voffset %u\n",
3707 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3708 }
3709 }
3710 }
3711
3712 static void
3713 print_cplus_stuff (struct type *type, int spaces)
3714 {
3715 printfi_filtered (spaces, "n_baseclasses %d\n",
3716 TYPE_N_BASECLASSES (type));
3717 printfi_filtered (spaces, "nfn_fields %d\n",
3718 TYPE_NFN_FIELDS (type));
3719 if (TYPE_N_BASECLASSES (type) > 0)
3720 {
3721 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3722 TYPE_N_BASECLASSES (type));
3723 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3724 gdb_stdout);
3725 printf_filtered (")");
3726
3727 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3728 TYPE_N_BASECLASSES (type));
3729 puts_filtered ("\n");
3730 }
3731 if (TYPE_NFIELDS (type) > 0)
3732 {
3733 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3734 {
3735 printfi_filtered (spaces,
3736 "private_field_bits (%d bits at *",
3737 TYPE_NFIELDS (type));
3738 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3739 gdb_stdout);
3740 printf_filtered (")");
3741 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3742 TYPE_NFIELDS (type));
3743 puts_filtered ("\n");
3744 }
3745 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3746 {
3747 printfi_filtered (spaces,
3748 "protected_field_bits (%d bits at *",
3749 TYPE_NFIELDS (type));
3750 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3751 gdb_stdout);
3752 printf_filtered (")");
3753 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3754 TYPE_NFIELDS (type));
3755 puts_filtered ("\n");
3756 }
3757 }
3758 if (TYPE_NFN_FIELDS (type) > 0)
3759 {
3760 dump_fn_fieldlists (type, spaces);
3761 }
3762 }
3763
3764 /* Print the contents of the TYPE's type_specific union, assuming that
3765 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3766
3767 static void
3768 print_gnat_stuff (struct type *type, int spaces)
3769 {
3770 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3771
3772 recursive_dump_type (descriptive_type, spaces + 2);
3773 }
3774
3775 static struct obstack dont_print_type_obstack;
3776
3777 void
3778 recursive_dump_type (struct type *type, int spaces)
3779 {
3780 int idx;
3781
3782 if (spaces == 0)
3783 obstack_begin (&dont_print_type_obstack, 0);
3784
3785 if (TYPE_NFIELDS (type) > 0
3786 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3787 {
3788 struct type **first_dont_print
3789 = (struct type **) obstack_base (&dont_print_type_obstack);
3790
3791 int i = (struct type **)
3792 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3793
3794 while (--i >= 0)
3795 {
3796 if (type == first_dont_print[i])
3797 {
3798 printfi_filtered (spaces, "type node ");
3799 gdb_print_host_address (type, gdb_stdout);
3800 printf_filtered (_(" <same as already seen type>\n"));
3801 return;
3802 }
3803 }
3804
3805 obstack_ptr_grow (&dont_print_type_obstack, type);
3806 }
3807
3808 printfi_filtered (spaces, "type node ");
3809 gdb_print_host_address (type, gdb_stdout);
3810 printf_filtered ("\n");
3811 printfi_filtered (spaces, "name '%s' (",
3812 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3813 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3814 printf_filtered (")\n");
3815 printfi_filtered (spaces, "tagname '%s' (",
3816 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3817 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3818 printf_filtered (")\n");
3819 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3820 switch (TYPE_CODE (type))
3821 {
3822 case TYPE_CODE_UNDEF:
3823 printf_filtered ("(TYPE_CODE_UNDEF)");
3824 break;
3825 case TYPE_CODE_PTR:
3826 printf_filtered ("(TYPE_CODE_PTR)");
3827 break;
3828 case TYPE_CODE_ARRAY:
3829 printf_filtered ("(TYPE_CODE_ARRAY)");
3830 break;
3831 case TYPE_CODE_STRUCT:
3832 printf_filtered ("(TYPE_CODE_STRUCT)");
3833 break;
3834 case TYPE_CODE_UNION:
3835 printf_filtered ("(TYPE_CODE_UNION)");
3836 break;
3837 case TYPE_CODE_ENUM:
3838 printf_filtered ("(TYPE_CODE_ENUM)");
3839 break;
3840 case TYPE_CODE_FLAGS:
3841 printf_filtered ("(TYPE_CODE_FLAGS)");
3842 break;
3843 case TYPE_CODE_FUNC:
3844 printf_filtered ("(TYPE_CODE_FUNC)");
3845 break;
3846 case TYPE_CODE_INT:
3847 printf_filtered ("(TYPE_CODE_INT)");
3848 break;
3849 case TYPE_CODE_FLT:
3850 printf_filtered ("(TYPE_CODE_FLT)");
3851 break;
3852 case TYPE_CODE_VOID:
3853 printf_filtered ("(TYPE_CODE_VOID)");
3854 break;
3855 case TYPE_CODE_SET:
3856 printf_filtered ("(TYPE_CODE_SET)");
3857 break;
3858 case TYPE_CODE_RANGE:
3859 printf_filtered ("(TYPE_CODE_RANGE)");
3860 break;
3861 case TYPE_CODE_STRING:
3862 printf_filtered ("(TYPE_CODE_STRING)");
3863 break;
3864 case TYPE_CODE_ERROR:
3865 printf_filtered ("(TYPE_CODE_ERROR)");
3866 break;
3867 case TYPE_CODE_MEMBERPTR:
3868 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3869 break;
3870 case TYPE_CODE_METHODPTR:
3871 printf_filtered ("(TYPE_CODE_METHODPTR)");
3872 break;
3873 case TYPE_CODE_METHOD:
3874 printf_filtered ("(TYPE_CODE_METHOD)");
3875 break;
3876 case TYPE_CODE_REF:
3877 printf_filtered ("(TYPE_CODE_REF)");
3878 break;
3879 case TYPE_CODE_CHAR:
3880 printf_filtered ("(TYPE_CODE_CHAR)");
3881 break;
3882 case TYPE_CODE_BOOL:
3883 printf_filtered ("(TYPE_CODE_BOOL)");
3884 break;
3885 case TYPE_CODE_COMPLEX:
3886 printf_filtered ("(TYPE_CODE_COMPLEX)");
3887 break;
3888 case TYPE_CODE_TYPEDEF:
3889 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3890 break;
3891 case TYPE_CODE_NAMESPACE:
3892 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3893 break;
3894 default:
3895 printf_filtered ("(UNKNOWN TYPE CODE)");
3896 break;
3897 }
3898 puts_filtered ("\n");
3899 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3900 if (TYPE_OBJFILE_OWNED (type))
3901 {
3902 printfi_filtered (spaces, "objfile ");
3903 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3904 }
3905 else
3906 {
3907 printfi_filtered (spaces, "gdbarch ");
3908 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3909 }
3910 printf_filtered ("\n");
3911 printfi_filtered (spaces, "target_type ");
3912 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3913 printf_filtered ("\n");
3914 if (TYPE_TARGET_TYPE (type) != NULL)
3915 {
3916 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3917 }
3918 printfi_filtered (spaces, "pointer_type ");
3919 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3920 printf_filtered ("\n");
3921 printfi_filtered (spaces, "reference_type ");
3922 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3923 printf_filtered ("\n");
3924 printfi_filtered (spaces, "type_chain ");
3925 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3926 printf_filtered ("\n");
3927 printfi_filtered (spaces, "instance_flags 0x%x",
3928 TYPE_INSTANCE_FLAGS (type));
3929 if (TYPE_CONST (type))
3930 {
3931 puts_filtered (" TYPE_FLAG_CONST");
3932 }
3933 if (TYPE_VOLATILE (type))
3934 {
3935 puts_filtered (" TYPE_FLAG_VOLATILE");
3936 }
3937 if (TYPE_CODE_SPACE (type))
3938 {
3939 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3940 }
3941 if (TYPE_DATA_SPACE (type))
3942 {
3943 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3944 }
3945 if (TYPE_ADDRESS_CLASS_1 (type))
3946 {
3947 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3948 }
3949 if (TYPE_ADDRESS_CLASS_2 (type))
3950 {
3951 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3952 }
3953 if (TYPE_RESTRICT (type))
3954 {
3955 puts_filtered (" TYPE_FLAG_RESTRICT");
3956 }
3957 puts_filtered ("\n");
3958
3959 printfi_filtered (spaces, "flags");
3960 if (TYPE_UNSIGNED (type))
3961 {
3962 puts_filtered (" TYPE_FLAG_UNSIGNED");
3963 }
3964 if (TYPE_NOSIGN (type))
3965 {
3966 puts_filtered (" TYPE_FLAG_NOSIGN");
3967 }
3968 if (TYPE_STUB (type))
3969 {
3970 puts_filtered (" TYPE_FLAG_STUB");
3971 }
3972 if (TYPE_TARGET_STUB (type))
3973 {
3974 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3975 }
3976 if (TYPE_STATIC (type))
3977 {
3978 puts_filtered (" TYPE_FLAG_STATIC");
3979 }
3980 if (TYPE_PROTOTYPED (type))
3981 {
3982 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3983 }
3984 if (TYPE_INCOMPLETE (type))
3985 {
3986 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3987 }
3988 if (TYPE_VARARGS (type))
3989 {
3990 puts_filtered (" TYPE_FLAG_VARARGS");
3991 }
3992 /* This is used for things like AltiVec registers on ppc. Gcc emits
3993 an attribute for the array type, which tells whether or not we
3994 have a vector, instead of a regular array. */
3995 if (TYPE_VECTOR (type))
3996 {
3997 puts_filtered (" TYPE_FLAG_VECTOR");
3998 }
3999 if (TYPE_FIXED_INSTANCE (type))
4000 {
4001 puts_filtered (" TYPE_FIXED_INSTANCE");
4002 }
4003 if (TYPE_STUB_SUPPORTED (type))
4004 {
4005 puts_filtered (" TYPE_STUB_SUPPORTED");
4006 }
4007 if (TYPE_NOTTEXT (type))
4008 {
4009 puts_filtered (" TYPE_NOTTEXT");
4010 }
4011 puts_filtered ("\n");
4012 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4013 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4014 puts_filtered ("\n");
4015 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4016 {
4017 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4018 printfi_filtered (spaces + 2,
4019 "[%d] enumval %s type ",
4020 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4021 else
4022 printfi_filtered (spaces + 2,
4023 "[%d] bitpos %d bitsize %d type ",
4024 idx, TYPE_FIELD_BITPOS (type, idx),
4025 TYPE_FIELD_BITSIZE (type, idx));
4026 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4027 printf_filtered (" name '%s' (",
4028 TYPE_FIELD_NAME (type, idx) != NULL
4029 ? TYPE_FIELD_NAME (type, idx)
4030 : "<NULL>");
4031 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4032 printf_filtered (")\n");
4033 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4034 {
4035 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4036 }
4037 }
4038 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4039 {
4040 printfi_filtered (spaces, "low %s%s high %s%s\n",
4041 plongest (TYPE_LOW_BOUND (type)),
4042 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4043 plongest (TYPE_HIGH_BOUND (type)),
4044 TYPE_HIGH_BOUND_UNDEFINED (type)
4045 ? " (undefined)" : "");
4046 }
4047 printfi_filtered (spaces, "vptr_basetype ");
4048 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4049 puts_filtered ("\n");
4050 if (TYPE_VPTR_BASETYPE (type) != NULL)
4051 {
4052 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4053 }
4054 printfi_filtered (spaces, "vptr_fieldno %d\n",
4055 TYPE_VPTR_FIELDNO (type));
4056
4057 switch (TYPE_SPECIFIC_FIELD (type))
4058 {
4059 case TYPE_SPECIFIC_CPLUS_STUFF:
4060 printfi_filtered (spaces, "cplus_stuff ");
4061 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4062 gdb_stdout);
4063 puts_filtered ("\n");
4064 print_cplus_stuff (type, spaces);
4065 break;
4066
4067 case TYPE_SPECIFIC_GNAT_STUFF:
4068 printfi_filtered (spaces, "gnat_stuff ");
4069 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4070 puts_filtered ("\n");
4071 print_gnat_stuff (type, spaces);
4072 break;
4073
4074 case TYPE_SPECIFIC_FLOATFORMAT:
4075 printfi_filtered (spaces, "floatformat ");
4076 if (TYPE_FLOATFORMAT (type) == NULL)
4077 puts_filtered ("(null)");
4078 else
4079 {
4080 puts_filtered ("{ ");
4081 if (TYPE_FLOATFORMAT (type)[0] == NULL
4082 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4083 puts_filtered ("(null)");
4084 else
4085 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4086
4087 puts_filtered (", ");
4088 if (TYPE_FLOATFORMAT (type)[1] == NULL
4089 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4090 puts_filtered ("(null)");
4091 else
4092 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4093
4094 puts_filtered (" }");
4095 }
4096 puts_filtered ("\n");
4097 break;
4098
4099 case TYPE_SPECIFIC_FUNC:
4100 printfi_filtered (spaces, "calling_convention %d\n",
4101 TYPE_CALLING_CONVENTION (type));
4102 /* tail_call_list is not printed. */
4103 break;
4104
4105 case TYPE_SPECIFIC_SELF_TYPE:
4106 printfi_filtered (spaces, "self_type ");
4107 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4108 puts_filtered ("\n");
4109 break;
4110 }
4111
4112 if (spaces == 0)
4113 obstack_free (&dont_print_type_obstack, NULL);
4114 }
4115 \f
4116 /* Trivial helpers for the libiberty hash table, for mapping one
4117 type to another. */
4118
4119 struct type_pair
4120 {
4121 struct type *old, *new;
4122 };
4123
4124 static hashval_t
4125 type_pair_hash (const void *item)
4126 {
4127 const struct type_pair *pair = item;
4128
4129 return htab_hash_pointer (pair->old);
4130 }
4131
4132 static int
4133 type_pair_eq (const void *item_lhs, const void *item_rhs)
4134 {
4135 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4136
4137 return lhs->old == rhs->old;
4138 }
4139
4140 /* Allocate the hash table used by copy_type_recursive to walk
4141 types without duplicates. We use OBJFILE's obstack, because
4142 OBJFILE is about to be deleted. */
4143
4144 htab_t
4145 create_copied_types_hash (struct objfile *objfile)
4146 {
4147 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4148 NULL, &objfile->objfile_obstack,
4149 hashtab_obstack_allocate,
4150 dummy_obstack_deallocate);
4151 }
4152
4153 /* Recursively copy (deep copy) TYPE, if it is associated with
4154 OBJFILE. Return a new type allocated using malloc, a saved type if
4155 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4156 not associated with OBJFILE. */
4157
4158 struct type *
4159 copy_type_recursive (struct objfile *objfile,
4160 struct type *type,
4161 htab_t copied_types)
4162 {
4163 struct type_pair *stored, pair;
4164 void **slot;
4165 struct type *new_type;
4166
4167 if (! TYPE_OBJFILE_OWNED (type))
4168 return type;
4169
4170 /* This type shouldn't be pointing to any types in other objfiles;
4171 if it did, the type might disappear unexpectedly. */
4172 gdb_assert (TYPE_OBJFILE (type) == objfile);
4173
4174 pair.old = type;
4175 slot = htab_find_slot (copied_types, &pair, INSERT);
4176 if (*slot != NULL)
4177 return ((struct type_pair *) *slot)->new;
4178
4179 new_type = alloc_type_arch (get_type_arch (type));
4180
4181 /* We must add the new type to the hash table immediately, in case
4182 we encounter this type again during a recursive call below. */
4183 stored
4184 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4185 stored->old = type;
4186 stored->new = new_type;
4187 *slot = stored;
4188
4189 /* Copy the common fields of types. For the main type, we simply
4190 copy the entire thing and then update specific fields as needed. */
4191 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4192 TYPE_OBJFILE_OWNED (new_type) = 0;
4193 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4194
4195 if (TYPE_NAME (type))
4196 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4197 if (TYPE_TAG_NAME (type))
4198 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4199
4200 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4201 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4202
4203 /* Copy the fields. */
4204 if (TYPE_NFIELDS (type))
4205 {
4206 int i, nfields;
4207
4208 nfields = TYPE_NFIELDS (type);
4209 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4210 for (i = 0; i < nfields; i++)
4211 {
4212 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4213 TYPE_FIELD_ARTIFICIAL (type, i);
4214 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4215 if (TYPE_FIELD_TYPE (type, i))
4216 TYPE_FIELD_TYPE (new_type, i)
4217 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4218 copied_types);
4219 if (TYPE_FIELD_NAME (type, i))
4220 TYPE_FIELD_NAME (new_type, i) =
4221 xstrdup (TYPE_FIELD_NAME (type, i));
4222 switch (TYPE_FIELD_LOC_KIND (type, i))
4223 {
4224 case FIELD_LOC_KIND_BITPOS:
4225 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4226 TYPE_FIELD_BITPOS (type, i));
4227 break;
4228 case FIELD_LOC_KIND_ENUMVAL:
4229 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4230 TYPE_FIELD_ENUMVAL (type, i));
4231 break;
4232 case FIELD_LOC_KIND_PHYSADDR:
4233 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4234 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4235 break;
4236 case FIELD_LOC_KIND_PHYSNAME:
4237 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4238 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4239 i)));
4240 break;
4241 default:
4242 internal_error (__FILE__, __LINE__,
4243 _("Unexpected type field location kind: %d"),
4244 TYPE_FIELD_LOC_KIND (type, i));
4245 }
4246 }
4247 }
4248
4249 /* For range types, copy the bounds information. */
4250 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4251 {
4252 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4253 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4254 }
4255
4256 /* Copy the data location information. */
4257 if (TYPE_DATA_LOCATION (type) != NULL)
4258 {
4259 TYPE_DATA_LOCATION (new_type)
4260 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4261 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4262 sizeof (struct dynamic_prop));
4263 }
4264
4265 /* Copy pointers to other types. */
4266 if (TYPE_TARGET_TYPE (type))
4267 TYPE_TARGET_TYPE (new_type) =
4268 copy_type_recursive (objfile,
4269 TYPE_TARGET_TYPE (type),
4270 copied_types);
4271 if (TYPE_VPTR_BASETYPE (type))
4272 TYPE_VPTR_BASETYPE (new_type) =
4273 copy_type_recursive (objfile,
4274 TYPE_VPTR_BASETYPE (type),
4275 copied_types);
4276
4277 /* Maybe copy the type_specific bits.
4278
4279 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4280 base classes and methods. There's no fundamental reason why we
4281 can't, but at the moment it is not needed. */
4282
4283 switch (TYPE_SPECIFIC_FIELD (type))
4284 {
4285 case TYPE_SPECIFIC_NONE:
4286 break;
4287 case TYPE_SPECIFIC_FUNC:
4288 INIT_FUNC_SPECIFIC (new_type);
4289 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4290 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4291 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4292 break;
4293 case TYPE_SPECIFIC_FLOATFORMAT:
4294 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4295 break;
4296 case TYPE_SPECIFIC_CPLUS_STUFF:
4297 INIT_CPLUS_SPECIFIC (new_type);
4298 break;
4299 case TYPE_SPECIFIC_GNAT_STUFF:
4300 INIT_GNAT_SPECIFIC (new_type);
4301 break;
4302 case TYPE_SPECIFIC_SELF_TYPE:
4303 set_type_self_type (new_type,
4304 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4305 copied_types));
4306 break;
4307 default:
4308 gdb_assert_not_reached ("bad type_specific_kind");
4309 }
4310
4311 return new_type;
4312 }
4313
4314 /* Make a copy of the given TYPE, except that the pointer & reference
4315 types are not preserved.
4316
4317 This function assumes that the given type has an associated objfile.
4318 This objfile is used to allocate the new type. */
4319
4320 struct type *
4321 copy_type (const struct type *type)
4322 {
4323 struct type *new_type;
4324
4325 gdb_assert (TYPE_OBJFILE_OWNED (type));
4326
4327 new_type = alloc_type_copy (type);
4328 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4329 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4330 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4331 sizeof (struct main_type));
4332 if (TYPE_DATA_LOCATION (type) != NULL)
4333 {
4334 TYPE_DATA_LOCATION (new_type)
4335 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4336 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4337 sizeof (struct dynamic_prop));
4338 }
4339
4340 return new_type;
4341 }
4342 \f
4343 /* Helper functions to initialize architecture-specific types. */
4344
4345 /* Allocate a type structure associated with GDBARCH and set its
4346 CODE, LENGTH, and NAME fields. */
4347
4348 struct type *
4349 arch_type (struct gdbarch *gdbarch,
4350 enum type_code code, int length, char *name)
4351 {
4352 struct type *type;
4353
4354 type = alloc_type_arch (gdbarch);
4355 TYPE_CODE (type) = code;
4356 TYPE_LENGTH (type) = length;
4357
4358 if (name)
4359 TYPE_NAME (type) = xstrdup (name);
4360
4361 return type;
4362 }
4363
4364 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4365 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4366 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4367
4368 struct type *
4369 arch_integer_type (struct gdbarch *gdbarch,
4370 int bit, int unsigned_p, char *name)
4371 {
4372 struct type *t;
4373
4374 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4375 if (unsigned_p)
4376 TYPE_UNSIGNED (t) = 1;
4377 if (name && strcmp (name, "char") == 0)
4378 TYPE_NOSIGN (t) = 1;
4379
4380 return t;
4381 }
4382
4383 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4384 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4385 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4386
4387 struct type *
4388 arch_character_type (struct gdbarch *gdbarch,
4389 int bit, int unsigned_p, char *name)
4390 {
4391 struct type *t;
4392
4393 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4394 if (unsigned_p)
4395 TYPE_UNSIGNED (t) = 1;
4396
4397 return t;
4398 }
4399
4400 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4401 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4402 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4403
4404 struct type *
4405 arch_boolean_type (struct gdbarch *gdbarch,
4406 int bit, int unsigned_p, char *name)
4407 {
4408 struct type *t;
4409
4410 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4411 if (unsigned_p)
4412 TYPE_UNSIGNED (t) = 1;
4413
4414 return t;
4415 }
4416
4417 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4418 BIT is the type size in bits; if BIT equals -1, the size is
4419 determined by the floatformat. NAME is the type name. Set the
4420 TYPE_FLOATFORMAT from FLOATFORMATS. */
4421
4422 struct type *
4423 arch_float_type (struct gdbarch *gdbarch,
4424 int bit, char *name, const struct floatformat **floatformats)
4425 {
4426 struct type *t;
4427
4428 if (bit == -1)
4429 {
4430 gdb_assert (floatformats != NULL);
4431 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4432 bit = floatformats[0]->totalsize;
4433 }
4434 gdb_assert (bit >= 0);
4435
4436 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4437 TYPE_FLOATFORMAT (t) = floatformats;
4438 return t;
4439 }
4440
4441 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4442 NAME is the type name. TARGET_TYPE is the component float type. */
4443
4444 struct type *
4445 arch_complex_type (struct gdbarch *gdbarch,
4446 char *name, struct type *target_type)
4447 {
4448 struct type *t;
4449
4450 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4451 2 * TYPE_LENGTH (target_type), name);
4452 TYPE_TARGET_TYPE (t) = target_type;
4453 return t;
4454 }
4455
4456 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4457 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4458
4459 struct type *
4460 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4461 {
4462 int nfields = length * TARGET_CHAR_BIT;
4463 struct type *type;
4464
4465 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4466 TYPE_UNSIGNED (type) = 1;
4467 TYPE_NFIELDS (type) = nfields;
4468 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4469
4470 return type;
4471 }
4472
4473 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4474 position BITPOS is called NAME. */
4475
4476 void
4477 append_flags_type_flag (struct type *type, int bitpos, char *name)
4478 {
4479 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4480 gdb_assert (bitpos < TYPE_NFIELDS (type));
4481 gdb_assert (bitpos >= 0);
4482
4483 if (name)
4484 {
4485 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4486 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4487 }
4488 else
4489 {
4490 /* Don't show this field to the user. */
4491 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4492 }
4493 }
4494
4495 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4496 specified by CODE) associated with GDBARCH. NAME is the type name. */
4497
4498 struct type *
4499 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4500 {
4501 struct type *t;
4502
4503 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4504 t = arch_type (gdbarch, code, 0, NULL);
4505 TYPE_TAG_NAME (t) = name;
4506 INIT_CPLUS_SPECIFIC (t);
4507 return t;
4508 }
4509
4510 /* Add new field with name NAME and type FIELD to composite type T.
4511 Do not set the field's position or adjust the type's length;
4512 the caller should do so. Return the new field. */
4513
4514 struct field *
4515 append_composite_type_field_raw (struct type *t, char *name,
4516 struct type *field)
4517 {
4518 struct field *f;
4519
4520 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4521 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4522 sizeof (struct field) * TYPE_NFIELDS (t));
4523 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4524 memset (f, 0, sizeof f[0]);
4525 FIELD_TYPE (f[0]) = field;
4526 FIELD_NAME (f[0]) = name;
4527 return f;
4528 }
4529
4530 /* Add new field with name NAME and type FIELD to composite type T.
4531 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4532
4533 void
4534 append_composite_type_field_aligned (struct type *t, char *name,
4535 struct type *field, int alignment)
4536 {
4537 struct field *f = append_composite_type_field_raw (t, name, field);
4538
4539 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4540 {
4541 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4542 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4543 }
4544 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4545 {
4546 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4547 if (TYPE_NFIELDS (t) > 1)
4548 {
4549 SET_FIELD_BITPOS (f[0],
4550 (FIELD_BITPOS (f[-1])
4551 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4552 * TARGET_CHAR_BIT)));
4553
4554 if (alignment)
4555 {
4556 int left;
4557
4558 alignment *= TARGET_CHAR_BIT;
4559 left = FIELD_BITPOS (f[0]) % alignment;
4560
4561 if (left)
4562 {
4563 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4564 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4565 }
4566 }
4567 }
4568 }
4569 }
4570
4571 /* Add new field with name NAME and type FIELD to composite type T. */
4572
4573 void
4574 append_composite_type_field (struct type *t, char *name,
4575 struct type *field)
4576 {
4577 append_composite_type_field_aligned (t, name, field, 0);
4578 }
4579
4580 static struct gdbarch_data *gdbtypes_data;
4581
4582 const struct builtin_type *
4583 builtin_type (struct gdbarch *gdbarch)
4584 {
4585 return gdbarch_data (gdbarch, gdbtypes_data);
4586 }
4587
4588 static void *
4589 gdbtypes_post_init (struct gdbarch *gdbarch)
4590 {
4591 struct builtin_type *builtin_type
4592 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4593
4594 /* Basic types. */
4595 builtin_type->builtin_void
4596 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4597 builtin_type->builtin_char
4598 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4599 !gdbarch_char_signed (gdbarch), "char");
4600 builtin_type->builtin_signed_char
4601 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4602 0, "signed char");
4603 builtin_type->builtin_unsigned_char
4604 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4605 1, "unsigned char");
4606 builtin_type->builtin_short
4607 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4608 0, "short");
4609 builtin_type->builtin_unsigned_short
4610 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4611 1, "unsigned short");
4612 builtin_type->builtin_int
4613 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4614 0, "int");
4615 builtin_type->builtin_unsigned_int
4616 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4617 1, "unsigned int");
4618 builtin_type->builtin_long
4619 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4620 0, "long");
4621 builtin_type->builtin_unsigned_long
4622 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4623 1, "unsigned long");
4624 builtin_type->builtin_long_long
4625 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4626 0, "long long");
4627 builtin_type->builtin_unsigned_long_long
4628 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4629 1, "unsigned long long");
4630 builtin_type->builtin_float
4631 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4632 "float", gdbarch_float_format (gdbarch));
4633 builtin_type->builtin_double
4634 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4635 "double", gdbarch_double_format (gdbarch));
4636 builtin_type->builtin_long_double
4637 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4638 "long double", gdbarch_long_double_format (gdbarch));
4639 builtin_type->builtin_complex
4640 = arch_complex_type (gdbarch, "complex",
4641 builtin_type->builtin_float);
4642 builtin_type->builtin_double_complex
4643 = arch_complex_type (gdbarch, "double complex",
4644 builtin_type->builtin_double);
4645 builtin_type->builtin_string
4646 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4647 builtin_type->builtin_bool
4648 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4649
4650 /* The following three are about decimal floating point types, which
4651 are 32-bits, 64-bits and 128-bits respectively. */
4652 builtin_type->builtin_decfloat
4653 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4654 builtin_type->builtin_decdouble
4655 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4656 builtin_type->builtin_declong
4657 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4658
4659 /* "True" character types. */
4660 builtin_type->builtin_true_char
4661 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4662 builtin_type->builtin_true_unsigned_char
4663 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4664
4665 /* Fixed-size integer types. */
4666 builtin_type->builtin_int0
4667 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4668 builtin_type->builtin_int8
4669 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4670 builtin_type->builtin_uint8
4671 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4672 builtin_type->builtin_int16
4673 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4674 builtin_type->builtin_uint16
4675 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4676 builtin_type->builtin_int32
4677 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4678 builtin_type->builtin_uint32
4679 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4680 builtin_type->builtin_int64
4681 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4682 builtin_type->builtin_uint64
4683 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4684 builtin_type->builtin_int128
4685 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4686 builtin_type->builtin_uint128
4687 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4688 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4689 TYPE_INSTANCE_FLAG_NOTTEXT;
4690 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4691 TYPE_INSTANCE_FLAG_NOTTEXT;
4692
4693 /* Wide character types. */
4694 builtin_type->builtin_char16
4695 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4696 builtin_type->builtin_char32
4697 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4698
4699
4700 /* Default data/code pointer types. */
4701 builtin_type->builtin_data_ptr
4702 = lookup_pointer_type (builtin_type->builtin_void);
4703 builtin_type->builtin_func_ptr
4704 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4705 builtin_type->builtin_func_func
4706 = lookup_function_type (builtin_type->builtin_func_ptr);
4707
4708 /* This type represents a GDB internal function. */
4709 builtin_type->internal_fn
4710 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4711 "<internal function>");
4712
4713 /* This type represents an xmethod. */
4714 builtin_type->xmethod
4715 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4716
4717 return builtin_type;
4718 }
4719
4720 /* This set of objfile-based types is intended to be used by symbol
4721 readers as basic types. */
4722
4723 static const struct objfile_data *objfile_type_data;
4724
4725 const struct objfile_type *
4726 objfile_type (struct objfile *objfile)
4727 {
4728 struct gdbarch *gdbarch;
4729 struct objfile_type *objfile_type
4730 = objfile_data (objfile, objfile_type_data);
4731
4732 if (objfile_type)
4733 return objfile_type;
4734
4735 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4736 1, struct objfile_type);
4737
4738 /* Use the objfile architecture to determine basic type properties. */
4739 gdbarch = get_objfile_arch (objfile);
4740
4741 /* Basic types. */
4742 objfile_type->builtin_void
4743 = init_type (TYPE_CODE_VOID, 1,
4744 0,
4745 "void", objfile);
4746
4747 objfile_type->builtin_char
4748 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4749 (TYPE_FLAG_NOSIGN
4750 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4751 "char", objfile);
4752 objfile_type->builtin_signed_char
4753 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4754 0,
4755 "signed char", objfile);
4756 objfile_type->builtin_unsigned_char
4757 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4758 TYPE_FLAG_UNSIGNED,
4759 "unsigned char", objfile);
4760 objfile_type->builtin_short
4761 = init_type (TYPE_CODE_INT,
4762 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4763 0, "short", objfile);
4764 objfile_type->builtin_unsigned_short
4765 = init_type (TYPE_CODE_INT,
4766 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4767 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4768 objfile_type->builtin_int
4769 = init_type (TYPE_CODE_INT,
4770 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4771 0, "int", objfile);
4772 objfile_type->builtin_unsigned_int
4773 = init_type (TYPE_CODE_INT,
4774 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4775 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4776 objfile_type->builtin_long
4777 = init_type (TYPE_CODE_INT,
4778 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4779 0, "long", objfile);
4780 objfile_type->builtin_unsigned_long
4781 = init_type (TYPE_CODE_INT,
4782 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4783 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4784 objfile_type->builtin_long_long
4785 = init_type (TYPE_CODE_INT,
4786 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4787 0, "long long", objfile);
4788 objfile_type->builtin_unsigned_long_long
4789 = init_type (TYPE_CODE_INT,
4790 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4791 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4792
4793 objfile_type->builtin_float
4794 = init_type (TYPE_CODE_FLT,
4795 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4796 0, "float", objfile);
4797 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4798 = gdbarch_float_format (gdbarch);
4799 objfile_type->builtin_double
4800 = init_type (TYPE_CODE_FLT,
4801 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4802 0, "double", objfile);
4803 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4804 = gdbarch_double_format (gdbarch);
4805 objfile_type->builtin_long_double
4806 = init_type (TYPE_CODE_FLT,
4807 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4808 0, "long double", objfile);
4809 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4810 = gdbarch_long_double_format (gdbarch);
4811
4812 /* This type represents a type that was unrecognized in symbol read-in. */
4813 objfile_type->builtin_error
4814 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4815
4816 /* The following set of types is used for symbols with no
4817 debug information. */
4818 objfile_type->nodebug_text_symbol
4819 = init_type (TYPE_CODE_FUNC, 1, 0,
4820 "<text variable, no debug info>", objfile);
4821 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4822 = objfile_type->builtin_int;
4823 objfile_type->nodebug_text_gnu_ifunc_symbol
4824 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4825 "<text gnu-indirect-function variable, no debug info>",
4826 objfile);
4827 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4828 = objfile_type->nodebug_text_symbol;
4829 objfile_type->nodebug_got_plt_symbol
4830 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4831 "<text from jump slot in .got.plt, no debug info>",
4832 objfile);
4833 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4834 = objfile_type->nodebug_text_symbol;
4835 objfile_type->nodebug_data_symbol
4836 = init_type (TYPE_CODE_INT,
4837 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4838 "<data variable, no debug info>", objfile);
4839 objfile_type->nodebug_unknown_symbol
4840 = init_type (TYPE_CODE_INT, 1, 0,
4841 "<variable (not text or data), no debug info>", objfile);
4842 objfile_type->nodebug_tls_symbol
4843 = init_type (TYPE_CODE_INT,
4844 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4845 "<thread local variable, no debug info>", objfile);
4846
4847 /* NOTE: on some targets, addresses and pointers are not necessarily
4848 the same.
4849
4850 The upshot is:
4851 - gdb's `struct type' always describes the target's
4852 representation.
4853 - gdb's `struct value' objects should always hold values in
4854 target form.
4855 - gdb's CORE_ADDR values are addresses in the unified virtual
4856 address space that the assembler and linker work with. Thus,
4857 since target_read_memory takes a CORE_ADDR as an argument, it
4858 can access any memory on the target, even if the processor has
4859 separate code and data address spaces.
4860
4861 In this context, objfile_type->builtin_core_addr is a bit odd:
4862 it's a target type for a value the target will never see. It's
4863 only used to hold the values of (typeless) linker symbols, which
4864 are indeed in the unified virtual address space. */
4865
4866 objfile_type->builtin_core_addr
4867 = init_type (TYPE_CODE_INT,
4868 gdbarch_addr_bit (gdbarch) / 8,
4869 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4870
4871 set_objfile_data (objfile, objfile_type_data, objfile_type);
4872 return objfile_type;
4873 }
4874
4875 extern initialize_file_ftype _initialize_gdbtypes;
4876
4877 void
4878 _initialize_gdbtypes (void)
4879 {
4880 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4881 objfile_type_data = register_objfile_data ();
4882
4883 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4884 _("Set debugging of C++ overloading."),
4885 _("Show debugging of C++ overloading."),
4886 _("When enabled, ranking of the "
4887 "functions is displayed."),
4888 NULL,
4889 show_overload_debug,
4890 &setdebuglist, &showdebuglist);
4891
4892 /* Add user knob for controlling resolution of opaque types. */
4893 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4894 &opaque_type_resolution,
4895 _("Set resolution of opaque struct/class/union"
4896 " types (if set before loading symbols)."),
4897 _("Show resolution of opaque struct/class/union"
4898 " types (if set before loading symbols)."),
4899 NULL, NULL,
4900 show_opaque_type_resolution,
4901 &setlist, &showlist);
4902
4903 /* Add an option to permit non-strict type checking. */
4904 add_setshow_boolean_cmd ("type", class_support,
4905 &strict_type_checking,
4906 _("Set strict type checking."),
4907 _("Show strict type checking."),
4908 NULL, NULL,
4909 show_strict_type_checking,
4910 &setchecklist, &showchecklist);
4911 }
This page took 0.188451 seconds and 4 git commands to generate.