Fix problem building PE DLL test generator with compilers that do not support c99...
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
579 {
580 int type_flags;
581
582 /* Check for known address space delimiters. */
583 if (!strcmp (space_identifier, "code"))
584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
585 else if (!strcmp (space_identifier, "data"))
586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
591 return type_flags;
592 else
593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
594 }
595
596 /* Identify address space identifier by integer flag as defined in
597 gdbtypes.h -- return the string version of the adress space name. */
598
599 const char *
600 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
601 {
602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
603 return "code";
604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
605 return "data";
606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
609 else
610 return NULL;
611 }
612
613 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
617
618 static struct type *
619 make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
621 {
622 struct type *ntype;
623
624 ntype = type;
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
632
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
648
649 /* Pointers or references to the original type are not relevant to
650 the new type. */
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
653
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
660
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
664 return ntype;
665 }
666
667 /* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
675
676 struct type *
677 make_type_with_address_space (struct type *type, int space_flag)
678 {
679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686 }
687
688 /* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
693
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
699
700 struct type *
701 make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
704 {
705 struct type *ntype; /* New type */
706
707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
710
711 if (cnst)
712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
713
714 if (voltl)
715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
716
717 if (typeptr && *typeptr != NULL)
718 {
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
732 }
733
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
736
737 if (typeptr != NULL)
738 *typeptr = ntype;
739
740 return ntype;
741 }
742
743 /* Make a 'restrict'-qualified version of TYPE. */
744
745 struct type *
746 make_restrict_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752 }
753
754 /* Make a type without const, volatile, or restrict. */
755
756 struct type *
757 make_unqualified_type (struct type *type)
758 {
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765 }
766
767 /* Make a '_Atomic'-qualified version of TYPE. */
768
769 struct type *
770 make_atomic_type (struct type *type)
771 {
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776 }
777
778 /* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
781
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
787
788 void
789 replace_type (struct type *ntype, struct type *type)
790 {
791 struct type *chain;
792
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
798
799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
800
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
803 chain = ntype;
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
818
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
822 }
823
824 /* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829 struct type *
830 lookup_memberptr_type (struct type *type, struct type *domain)
831 {
832 struct type *mtype;
833
834 mtype = alloc_type_copy (type);
835 smash_to_memberptr_type (mtype, domain, type);
836 return mtype;
837 }
838
839 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841 struct type *
842 lookup_methodptr_type (struct type *to_type)
843 {
844 struct type *mtype;
845
846 mtype = alloc_type_copy (to_type);
847 smash_to_methodptr_type (mtype, to_type);
848 return mtype;
849 }
850
851 /* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
856
857 struct type *
858 allocate_stub_method (struct type *type)
859 {
860 struct type *mtype;
861
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
866 TYPE_TARGET_TYPE (mtype) = type;
867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
868 return mtype;
869 }
870
871 /* See gdbtypes.h. */
872
873 bool
874 operator== (const dynamic_prop &l, const dynamic_prop &r)
875 {
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892 }
893
894 /* See gdbtypes.h. */
895
896 bool
897 operator== (const range_bounds &l, const range_bounds &r)
898 {
899 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound)
916 {
917 /* The INDEX_TYPE should be a type capable of holding the upper and lower
918 bounds, as such a zero sized, or void type makes no sense. */
919 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
920 gdb_assert (TYPE_LENGTH (index_type) > 0);
921
922 if (result_type == NULL)
923 result_type = alloc_type_copy (index_type);
924 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
925 TYPE_TARGET_TYPE (result_type) = index_type;
926 if (TYPE_STUB (index_type))
927 TYPE_TARGET_STUB (result_type) = 1;
928 else
929 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
930
931 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
932 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
933 TYPE_RANGE_DATA (result_type)->low = *low_bound;
934 TYPE_RANGE_DATA (result_type)->high = *high_bound;
935
936 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
937 TYPE_UNSIGNED (result_type) = 1;
938
939 /* Ada allows the declaration of range types whose upper bound is
940 less than the lower bound, so checking the lower bound is not
941 enough. Make sure we do not mark a range type whose upper bound
942 is negative as unsigned. */
943 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
944 TYPE_UNSIGNED (result_type) = 0;
945
946 return result_type;
947 }
948
949 /* Create a range type using either a blank type supplied in
950 RESULT_TYPE, or creating a new type, inheriting the objfile from
951 INDEX_TYPE.
952
953 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
954 to HIGH_BOUND, inclusive.
955
956 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
957 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
958
959 struct type *
960 create_static_range_type (struct type *result_type, struct type *index_type,
961 LONGEST low_bound, LONGEST high_bound)
962 {
963 struct dynamic_prop low, high;
964
965 low.kind = PROP_CONST;
966 low.data.const_val = low_bound;
967
968 high.kind = PROP_CONST;
969 high.data.const_val = high_bound;
970
971 result_type = create_range_type (result_type, index_type, &low, &high);
972
973 return result_type;
974 }
975
976 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
977 are static, otherwise returns 0. */
978
979 static int
980 has_static_range (const struct range_bounds *bounds)
981 {
982 return (bounds->low.kind == PROP_CONST
983 && bounds->high.kind == PROP_CONST);
984 }
985
986
987 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
988 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
989 bounds will fit in LONGEST), or -1 otherwise. */
990
991 int
992 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
993 {
994 type = check_typedef (type);
995 switch (TYPE_CODE (type))
996 {
997 case TYPE_CODE_RANGE:
998 *lowp = TYPE_LOW_BOUND (type);
999 *highp = TYPE_HIGH_BOUND (type);
1000 return 1;
1001 case TYPE_CODE_ENUM:
1002 if (TYPE_NFIELDS (type) > 0)
1003 {
1004 /* The enums may not be sorted by value, so search all
1005 entries. */
1006 int i;
1007
1008 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1009 for (i = 0; i < TYPE_NFIELDS (type); i++)
1010 {
1011 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1012 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1013 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1014 *highp = TYPE_FIELD_ENUMVAL (type, i);
1015 }
1016
1017 /* Set unsigned indicator if warranted. */
1018 if (*lowp >= 0)
1019 {
1020 TYPE_UNSIGNED (type) = 1;
1021 }
1022 }
1023 else
1024 {
1025 *lowp = 0;
1026 *highp = -1;
1027 }
1028 return 0;
1029 case TYPE_CODE_BOOL:
1030 *lowp = 0;
1031 *highp = 1;
1032 return 0;
1033 case TYPE_CODE_INT:
1034 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1035 return -1;
1036 if (!TYPE_UNSIGNED (type))
1037 {
1038 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1039 *highp = -*lowp - 1;
1040 return 0;
1041 }
1042 /* fall through */
1043 case TYPE_CODE_CHAR:
1044 *lowp = 0;
1045 /* This round-about calculation is to avoid shifting by
1046 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1047 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1048 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1049 *highp = (*highp - 1) | *highp;
1050 return 0;
1051 default:
1052 return -1;
1053 }
1054 }
1055
1056 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1057 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1058 Save the high bound into HIGH_BOUND if not NULL.
1059
1060 Return 1 if the operation was successful. Return zero otherwise,
1061 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1062
1063 We now simply use get_discrete_bounds call to get the values
1064 of the low and high bounds.
1065 get_discrete_bounds can return three values:
1066 1, meaning that index is a range,
1067 0, meaning that index is a discrete type,
1068 or -1 for failure. */
1069
1070 int
1071 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1072 {
1073 struct type *index = TYPE_INDEX_TYPE (type);
1074 LONGEST low = 0;
1075 LONGEST high = 0;
1076 int res;
1077
1078 if (index == NULL)
1079 return 0;
1080
1081 res = get_discrete_bounds (index, &low, &high);
1082 if (res == -1)
1083 return 0;
1084
1085 /* Check if the array bounds are undefined. */
1086 if (res == 1
1087 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1088 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1089 return 0;
1090
1091 if (low_bound)
1092 *low_bound = low;
1093
1094 if (high_bound)
1095 *high_bound = high;
1096
1097 return 1;
1098 }
1099
1100 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1101 representation of a value of this type, save the corresponding
1102 position number in POS.
1103
1104 Its differs from VAL only in the case of enumeration types. In
1105 this case, the position number of the value of the first listed
1106 enumeration literal is zero; the position number of the value of
1107 each subsequent enumeration literal is one more than that of its
1108 predecessor in the list.
1109
1110 Return 1 if the operation was successful. Return zero otherwise,
1111 in which case the value of POS is unmodified.
1112 */
1113
1114 int
1115 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1116 {
1117 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1118 {
1119 int i;
1120
1121 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1122 {
1123 if (val == TYPE_FIELD_ENUMVAL (type, i))
1124 {
1125 *pos = i;
1126 return 1;
1127 }
1128 }
1129 /* Invalid enumeration value. */
1130 return 0;
1131 }
1132 else
1133 {
1134 *pos = val;
1135 return 1;
1136 }
1137 }
1138
1139 /* Create an array type using either a blank type supplied in
1140 RESULT_TYPE, or creating a new type, inheriting the objfile from
1141 RANGE_TYPE.
1142
1143 Elements will be of type ELEMENT_TYPE, the indices will be of type
1144 RANGE_TYPE.
1145
1146 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1147 This byte stride property is added to the resulting array type
1148 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1149 argument can only be used to create types that are objfile-owned
1150 (see add_dyn_prop), meaning that either this function must be called
1151 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1152
1153 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1154 If BIT_STRIDE is not zero, build a packed array type whose element
1155 size is BIT_STRIDE. Otherwise, ignore this parameter.
1156
1157 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1158 sure it is TYPE_CODE_UNDEF before we bash it into an array
1159 type? */
1160
1161 struct type *
1162 create_array_type_with_stride (struct type *result_type,
1163 struct type *element_type,
1164 struct type *range_type,
1165 struct dynamic_prop *byte_stride_prop,
1166 unsigned int bit_stride)
1167 {
1168 if (byte_stride_prop != NULL
1169 && byte_stride_prop->kind == PROP_CONST)
1170 {
1171 /* The byte stride is actually not dynamic. Pretend we were
1172 called with bit_stride set instead of byte_stride_prop.
1173 This will give us the same result type, while avoiding
1174 the need to handle this as a special case. */
1175 bit_stride = byte_stride_prop->data.const_val * 8;
1176 byte_stride_prop = NULL;
1177 }
1178
1179 if (result_type == NULL)
1180 result_type = alloc_type_copy (range_type);
1181
1182 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1183 TYPE_TARGET_TYPE (result_type) = element_type;
1184 if (byte_stride_prop == NULL
1185 && has_static_range (TYPE_RANGE_DATA (range_type))
1186 && (!type_not_associated (result_type)
1187 && !type_not_allocated (result_type)))
1188 {
1189 LONGEST low_bound, high_bound;
1190
1191 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1192 low_bound = high_bound = 0;
1193 element_type = check_typedef (element_type);
1194 /* Be careful when setting the array length. Ada arrays can be
1195 empty arrays with the high_bound being smaller than the low_bound.
1196 In such cases, the array length should be zero. */
1197 if (high_bound < low_bound)
1198 TYPE_LENGTH (result_type) = 0;
1199 else if (bit_stride > 0)
1200 TYPE_LENGTH (result_type) =
1201 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1202 else
1203 TYPE_LENGTH (result_type) =
1204 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1205 }
1206 else
1207 {
1208 /* This type is dynamic and its length needs to be computed
1209 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1210 undefined by setting it to zero. Although we are not expected
1211 to trust TYPE_LENGTH in this case, setting the size to zero
1212 allows us to avoid allocating objects of random sizes in case
1213 we accidently do. */
1214 TYPE_LENGTH (result_type) = 0;
1215 }
1216
1217 TYPE_NFIELDS (result_type) = 1;
1218 TYPE_FIELDS (result_type) =
1219 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1220 TYPE_INDEX_TYPE (result_type) = range_type;
1221 if (byte_stride_prop != NULL)
1222 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1223 else if (bit_stride > 0)
1224 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1225
1226 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1227 if (TYPE_LENGTH (result_type) == 0)
1228 TYPE_TARGET_STUB (result_type) = 1;
1229
1230 return result_type;
1231 }
1232
1233 /* Same as create_array_type_with_stride but with no bit_stride
1234 (BIT_STRIDE = 0), thus building an unpacked array. */
1235
1236 struct type *
1237 create_array_type (struct type *result_type,
1238 struct type *element_type,
1239 struct type *range_type)
1240 {
1241 return create_array_type_with_stride (result_type, element_type,
1242 range_type, NULL, 0);
1243 }
1244
1245 struct type *
1246 lookup_array_range_type (struct type *element_type,
1247 LONGEST low_bound, LONGEST high_bound)
1248 {
1249 struct type *index_type;
1250 struct type *range_type;
1251
1252 if (TYPE_OBJFILE_OWNED (element_type))
1253 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1254 else
1255 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1256 range_type = create_static_range_type (NULL, index_type,
1257 low_bound, high_bound);
1258
1259 return create_array_type (NULL, element_type, range_type);
1260 }
1261
1262 /* Create a string type using either a blank type supplied in
1263 RESULT_TYPE, or creating a new type. String types are similar
1264 enough to array of char types that we can use create_array_type to
1265 build the basic type and then bash it into a string type.
1266
1267 For fixed length strings, the range type contains 0 as the lower
1268 bound and the length of the string minus one as the upper bound.
1269
1270 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1271 sure it is TYPE_CODE_UNDEF before we bash it into a string
1272 type? */
1273
1274 struct type *
1275 create_string_type (struct type *result_type,
1276 struct type *string_char_type,
1277 struct type *range_type)
1278 {
1279 result_type = create_array_type (result_type,
1280 string_char_type,
1281 range_type);
1282 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1283 return result_type;
1284 }
1285
1286 struct type *
1287 lookup_string_range_type (struct type *string_char_type,
1288 LONGEST low_bound, LONGEST high_bound)
1289 {
1290 struct type *result_type;
1291
1292 result_type = lookup_array_range_type (string_char_type,
1293 low_bound, high_bound);
1294 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1295 return result_type;
1296 }
1297
1298 struct type *
1299 create_set_type (struct type *result_type, struct type *domain_type)
1300 {
1301 if (result_type == NULL)
1302 result_type = alloc_type_copy (domain_type);
1303
1304 TYPE_CODE (result_type) = TYPE_CODE_SET;
1305 TYPE_NFIELDS (result_type) = 1;
1306 TYPE_FIELDS (result_type)
1307 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1308
1309 if (!TYPE_STUB (domain_type))
1310 {
1311 LONGEST low_bound, high_bound, bit_length;
1312
1313 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1314 low_bound = high_bound = 0;
1315 bit_length = high_bound - low_bound + 1;
1316 TYPE_LENGTH (result_type)
1317 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1318 if (low_bound >= 0)
1319 TYPE_UNSIGNED (result_type) = 1;
1320 }
1321 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1322
1323 return result_type;
1324 }
1325
1326 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1327 and any array types nested inside it. */
1328
1329 void
1330 make_vector_type (struct type *array_type)
1331 {
1332 struct type *inner_array, *elt_type;
1333 int flags;
1334
1335 /* Find the innermost array type, in case the array is
1336 multi-dimensional. */
1337 inner_array = array_type;
1338 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1339 inner_array = TYPE_TARGET_TYPE (inner_array);
1340
1341 elt_type = TYPE_TARGET_TYPE (inner_array);
1342 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1343 {
1344 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1345 elt_type = make_qualified_type (elt_type, flags, NULL);
1346 TYPE_TARGET_TYPE (inner_array) = elt_type;
1347 }
1348
1349 TYPE_VECTOR (array_type) = 1;
1350 }
1351
1352 struct type *
1353 init_vector_type (struct type *elt_type, int n)
1354 {
1355 struct type *array_type;
1356
1357 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1358 make_vector_type (array_type);
1359 return array_type;
1360 }
1361
1362 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1363 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1364 confusing. "self" is a common enough replacement for "this".
1365 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1366 TYPE_CODE_METHOD. */
1367
1368 struct type *
1369 internal_type_self_type (struct type *type)
1370 {
1371 switch (TYPE_CODE (type))
1372 {
1373 case TYPE_CODE_METHODPTR:
1374 case TYPE_CODE_MEMBERPTR:
1375 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1376 return NULL;
1377 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1378 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1379 case TYPE_CODE_METHOD:
1380 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1381 return NULL;
1382 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1383 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1384 default:
1385 gdb_assert_not_reached ("bad type");
1386 }
1387 }
1388
1389 /* Set the type of the class that TYPE belongs to.
1390 In c++ this is the class of "this".
1391 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1392 TYPE_CODE_METHOD. */
1393
1394 void
1395 set_type_self_type (struct type *type, struct type *self_type)
1396 {
1397 switch (TYPE_CODE (type))
1398 {
1399 case TYPE_CODE_METHODPTR:
1400 case TYPE_CODE_MEMBERPTR:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1404 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1405 break;
1406 case TYPE_CODE_METHOD:
1407 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1408 INIT_FUNC_SPECIFIC (type);
1409 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1410 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1411 break;
1412 default:
1413 gdb_assert_not_reached ("bad type");
1414 }
1415 }
1416
1417 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1418 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1419 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1420 TYPE doesn't include the offset (that's the value of the MEMBER
1421 itself), but does include the structure type into which it points
1422 (for some reason).
1423
1424 When "smashing" the type, we preserve the objfile that the old type
1425 pointed to, since we aren't changing where the type is actually
1426 allocated. */
1427
1428 void
1429 smash_to_memberptr_type (struct type *type, struct type *self_type,
1430 struct type *to_type)
1431 {
1432 smash_type (type);
1433 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1434 TYPE_TARGET_TYPE (type) = to_type;
1435 set_type_self_type (type, self_type);
1436 /* Assume that a data member pointer is the same size as a normal
1437 pointer. */
1438 TYPE_LENGTH (type)
1439 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1440 }
1441
1442 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1443
1444 When "smashing" the type, we preserve the objfile that the old type
1445 pointed to, since we aren't changing where the type is actually
1446 allocated. */
1447
1448 void
1449 smash_to_methodptr_type (struct type *type, struct type *to_type)
1450 {
1451 smash_type (type);
1452 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1453 TYPE_TARGET_TYPE (type) = to_type;
1454 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1455 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1456 }
1457
1458 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1459 METHOD just means `function that gets an extra "this" argument'.
1460
1461 When "smashing" the type, we preserve the objfile that the old type
1462 pointed to, since we aren't changing where the type is actually
1463 allocated. */
1464
1465 void
1466 smash_to_method_type (struct type *type, struct type *self_type,
1467 struct type *to_type, struct field *args,
1468 int nargs, int varargs)
1469 {
1470 smash_type (type);
1471 TYPE_CODE (type) = TYPE_CODE_METHOD;
1472 TYPE_TARGET_TYPE (type) = to_type;
1473 set_type_self_type (type, self_type);
1474 TYPE_FIELDS (type) = args;
1475 TYPE_NFIELDS (type) = nargs;
1476 if (varargs)
1477 TYPE_VARARGS (type) = 1;
1478 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1479 }
1480
1481 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1482 Since GCC PR debug/47510 DWARF provides associated information to detect the
1483 anonymous class linkage name from its typedef.
1484
1485 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1486 apply it itself. */
1487
1488 const char *
1489 type_name_or_error (struct type *type)
1490 {
1491 struct type *saved_type = type;
1492 const char *name;
1493 struct objfile *objfile;
1494
1495 type = check_typedef (type);
1496
1497 name = TYPE_NAME (type);
1498 if (name != NULL)
1499 return name;
1500
1501 name = TYPE_NAME (saved_type);
1502 objfile = TYPE_OBJFILE (saved_type);
1503 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1504 name ? name : "<anonymous>",
1505 objfile ? objfile_name (objfile) : "<arch>");
1506 }
1507
1508 /* Lookup a typedef or primitive type named NAME, visible in lexical
1509 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1510 suitably defined. */
1511
1512 struct type *
1513 lookup_typename (const struct language_defn *language,
1514 struct gdbarch *gdbarch, const char *name,
1515 const struct block *block, int noerr)
1516 {
1517 struct symbol *sym;
1518
1519 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1520 language->la_language, NULL).symbol;
1521 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1522 return SYMBOL_TYPE (sym);
1523
1524 if (noerr)
1525 return NULL;
1526 error (_("No type named %s."), name);
1527 }
1528
1529 struct type *
1530 lookup_unsigned_typename (const struct language_defn *language,
1531 struct gdbarch *gdbarch, const char *name)
1532 {
1533 char *uns = (char *) alloca (strlen (name) + 10);
1534
1535 strcpy (uns, "unsigned ");
1536 strcpy (uns + 9, name);
1537 return lookup_typename (language, gdbarch, uns, NULL, 0);
1538 }
1539
1540 struct type *
1541 lookup_signed_typename (const struct language_defn *language,
1542 struct gdbarch *gdbarch, const char *name)
1543 {
1544 struct type *t;
1545 char *uns = (char *) alloca (strlen (name) + 8);
1546
1547 strcpy (uns, "signed ");
1548 strcpy (uns + 7, name);
1549 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1550 /* If we don't find "signed FOO" just try again with plain "FOO". */
1551 if (t != NULL)
1552 return t;
1553 return lookup_typename (language, gdbarch, name, NULL, 0);
1554 }
1555
1556 /* Lookup a structure type named "struct NAME",
1557 visible in lexical block BLOCK. */
1558
1559 struct type *
1560 lookup_struct (const char *name, const struct block *block)
1561 {
1562 struct symbol *sym;
1563
1564 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1565
1566 if (sym == NULL)
1567 {
1568 error (_("No struct type named %s."), name);
1569 }
1570 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1571 {
1572 error (_("This context has class, union or enum %s, not a struct."),
1573 name);
1574 }
1575 return (SYMBOL_TYPE (sym));
1576 }
1577
1578 /* Lookup a union type named "union NAME",
1579 visible in lexical block BLOCK. */
1580
1581 struct type *
1582 lookup_union (const char *name, const struct block *block)
1583 {
1584 struct symbol *sym;
1585 struct type *t;
1586
1587 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1588
1589 if (sym == NULL)
1590 error (_("No union type named %s."), name);
1591
1592 t = SYMBOL_TYPE (sym);
1593
1594 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1595 return t;
1596
1597 /* If we get here, it's not a union. */
1598 error (_("This context has class, struct or enum %s, not a union."),
1599 name);
1600 }
1601
1602 /* Lookup an enum type named "enum NAME",
1603 visible in lexical block BLOCK. */
1604
1605 struct type *
1606 lookup_enum (const char *name, const struct block *block)
1607 {
1608 struct symbol *sym;
1609
1610 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1611 if (sym == NULL)
1612 {
1613 error (_("No enum type named %s."), name);
1614 }
1615 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1616 {
1617 error (_("This context has class, struct or union %s, not an enum."),
1618 name);
1619 }
1620 return (SYMBOL_TYPE (sym));
1621 }
1622
1623 /* Lookup a template type named "template NAME<TYPE>",
1624 visible in lexical block BLOCK. */
1625
1626 struct type *
1627 lookup_template_type (const char *name, struct type *type,
1628 const struct block *block)
1629 {
1630 struct symbol *sym;
1631 char *nam = (char *)
1632 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1633
1634 strcpy (nam, name);
1635 strcat (nam, "<");
1636 strcat (nam, TYPE_NAME (type));
1637 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1638
1639 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1640
1641 if (sym == NULL)
1642 {
1643 error (_("No template type named %s."), name);
1644 }
1645 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1646 {
1647 error (_("This context has class, union or enum %s, not a struct."),
1648 name);
1649 }
1650 return (SYMBOL_TYPE (sym));
1651 }
1652
1653 /* See gdbtypes.h. */
1654
1655 struct_elt
1656 lookup_struct_elt (struct type *type, const char *name, int noerr)
1657 {
1658 int i;
1659
1660 for (;;)
1661 {
1662 type = check_typedef (type);
1663 if (TYPE_CODE (type) != TYPE_CODE_PTR
1664 && TYPE_CODE (type) != TYPE_CODE_REF)
1665 break;
1666 type = TYPE_TARGET_TYPE (type);
1667 }
1668
1669 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1670 && TYPE_CODE (type) != TYPE_CODE_UNION)
1671 {
1672 std::string type_name = type_to_string (type);
1673 error (_("Type %s is not a structure or union type."),
1674 type_name.c_str ());
1675 }
1676
1677 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1678 {
1679 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1680
1681 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1682 {
1683 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1684 }
1685 else if (!t_field_name || *t_field_name == '\0')
1686 {
1687 struct_elt elt
1688 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1689 if (elt.field != NULL)
1690 {
1691 elt.offset += TYPE_FIELD_BITPOS (type, i);
1692 return elt;
1693 }
1694 }
1695 }
1696
1697 /* OK, it's not in this class. Recursively check the baseclasses. */
1698 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1699 {
1700 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1701 if (elt.field != NULL)
1702 return elt;
1703 }
1704
1705 if (noerr)
1706 return {nullptr, 0};
1707
1708 std::string type_name = type_to_string (type);
1709 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1710 }
1711
1712 /* See gdbtypes.h. */
1713
1714 struct type *
1715 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1716 {
1717 struct_elt elt = lookup_struct_elt (type, name, noerr);
1718 if (elt.field != NULL)
1719 return FIELD_TYPE (*elt.field);
1720 else
1721 return NULL;
1722 }
1723
1724 /* Store in *MAX the largest number representable by unsigned integer type
1725 TYPE. */
1726
1727 void
1728 get_unsigned_type_max (struct type *type, ULONGEST *max)
1729 {
1730 unsigned int n;
1731
1732 type = check_typedef (type);
1733 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1734 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1735
1736 /* Written this way to avoid overflow. */
1737 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1738 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1739 }
1740
1741 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1742 signed integer type TYPE. */
1743
1744 void
1745 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1746 {
1747 unsigned int n;
1748
1749 type = check_typedef (type);
1750 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1751 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1752
1753 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1754 *min = -((ULONGEST) 1 << (n - 1));
1755 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1756 }
1757
1758 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1759 cplus_stuff.vptr_fieldno.
1760
1761 cplus_stuff is initialized to cplus_struct_default which does not
1762 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1763 designated initializers). We cope with that here. */
1764
1765 int
1766 internal_type_vptr_fieldno (struct type *type)
1767 {
1768 type = check_typedef (type);
1769 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1770 || TYPE_CODE (type) == TYPE_CODE_UNION);
1771 if (!HAVE_CPLUS_STRUCT (type))
1772 return -1;
1773 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1774 }
1775
1776 /* Set the value of cplus_stuff.vptr_fieldno. */
1777
1778 void
1779 set_type_vptr_fieldno (struct type *type, int fieldno)
1780 {
1781 type = check_typedef (type);
1782 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1783 || TYPE_CODE (type) == TYPE_CODE_UNION);
1784 if (!HAVE_CPLUS_STRUCT (type))
1785 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1786 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1787 }
1788
1789 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1790 cplus_stuff.vptr_basetype. */
1791
1792 struct type *
1793 internal_type_vptr_basetype (struct type *type)
1794 {
1795 type = check_typedef (type);
1796 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1797 || TYPE_CODE (type) == TYPE_CODE_UNION);
1798 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1799 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1800 }
1801
1802 /* Set the value of cplus_stuff.vptr_basetype. */
1803
1804 void
1805 set_type_vptr_basetype (struct type *type, struct type *basetype)
1806 {
1807 type = check_typedef (type);
1808 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1809 || TYPE_CODE (type) == TYPE_CODE_UNION);
1810 if (!HAVE_CPLUS_STRUCT (type))
1811 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1812 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1813 }
1814
1815 /* Lookup the vptr basetype/fieldno values for TYPE.
1816 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1817 vptr_fieldno. Also, if found and basetype is from the same objfile,
1818 cache the results.
1819 If not found, return -1 and ignore BASETYPEP.
1820 Callers should be aware that in some cases (for example,
1821 the type or one of its baseclasses is a stub type and we are
1822 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1823 this function will not be able to find the
1824 virtual function table pointer, and vptr_fieldno will remain -1 and
1825 vptr_basetype will remain NULL or incomplete. */
1826
1827 int
1828 get_vptr_fieldno (struct type *type, struct type **basetypep)
1829 {
1830 type = check_typedef (type);
1831
1832 if (TYPE_VPTR_FIELDNO (type) < 0)
1833 {
1834 int i;
1835
1836 /* We must start at zero in case the first (and only) baseclass
1837 is virtual (and hence we cannot share the table pointer). */
1838 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1839 {
1840 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1841 int fieldno;
1842 struct type *basetype;
1843
1844 fieldno = get_vptr_fieldno (baseclass, &basetype);
1845 if (fieldno >= 0)
1846 {
1847 /* If the type comes from a different objfile we can't cache
1848 it, it may have a different lifetime. PR 2384 */
1849 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1850 {
1851 set_type_vptr_fieldno (type, fieldno);
1852 set_type_vptr_basetype (type, basetype);
1853 }
1854 if (basetypep)
1855 *basetypep = basetype;
1856 return fieldno;
1857 }
1858 }
1859
1860 /* Not found. */
1861 return -1;
1862 }
1863 else
1864 {
1865 if (basetypep)
1866 *basetypep = TYPE_VPTR_BASETYPE (type);
1867 return TYPE_VPTR_FIELDNO (type);
1868 }
1869 }
1870
1871 static void
1872 stub_noname_complaint (void)
1873 {
1874 complaint (_("stub type has NULL name"));
1875 }
1876
1877 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1878 attached to it, and that property has a non-constant value. */
1879
1880 static int
1881 array_type_has_dynamic_stride (struct type *type)
1882 {
1883 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1884
1885 return (prop != NULL && prop->kind != PROP_CONST);
1886 }
1887
1888 /* Worker for is_dynamic_type. */
1889
1890 static int
1891 is_dynamic_type_internal (struct type *type, int top_level)
1892 {
1893 type = check_typedef (type);
1894
1895 /* We only want to recognize references at the outermost level. */
1896 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1897 type = check_typedef (TYPE_TARGET_TYPE (type));
1898
1899 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1900 dynamic, even if the type itself is statically defined.
1901 From a user's point of view, this may appear counter-intuitive;
1902 but it makes sense in this context, because the point is to determine
1903 whether any part of the type needs to be resolved before it can
1904 be exploited. */
1905 if (TYPE_DATA_LOCATION (type) != NULL
1906 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1907 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1908 return 1;
1909
1910 if (TYPE_ASSOCIATED_PROP (type))
1911 return 1;
1912
1913 if (TYPE_ALLOCATED_PROP (type))
1914 return 1;
1915
1916 switch (TYPE_CODE (type))
1917 {
1918 case TYPE_CODE_RANGE:
1919 {
1920 /* A range type is obviously dynamic if it has at least one
1921 dynamic bound. But also consider the range type to be
1922 dynamic when its subtype is dynamic, even if the bounds
1923 of the range type are static. It allows us to assume that
1924 the subtype of a static range type is also static. */
1925 return (!has_static_range (TYPE_RANGE_DATA (type))
1926 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1927 }
1928
1929 case TYPE_CODE_ARRAY:
1930 {
1931 gdb_assert (TYPE_NFIELDS (type) == 1);
1932
1933 /* The array is dynamic if either the bounds are dynamic... */
1934 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1935 return 1;
1936 /* ... or the elements it contains have a dynamic contents... */
1937 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1938 return 1;
1939 /* ... or if it has a dynamic stride... */
1940 if (array_type_has_dynamic_stride (type))
1941 return 1;
1942 return 0;
1943 }
1944
1945 case TYPE_CODE_STRUCT:
1946 case TYPE_CODE_UNION:
1947 {
1948 int i;
1949
1950 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1951 if (!field_is_static (&TYPE_FIELD (type, i))
1952 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1953 return 1;
1954 }
1955 break;
1956 }
1957
1958 return 0;
1959 }
1960
1961 /* See gdbtypes.h. */
1962
1963 int
1964 is_dynamic_type (struct type *type)
1965 {
1966 return is_dynamic_type_internal (type, 1);
1967 }
1968
1969 static struct type *resolve_dynamic_type_internal
1970 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1971
1972 /* Given a dynamic range type (dyn_range_type) and a stack of
1973 struct property_addr_info elements, return a static version
1974 of that type. */
1975
1976 static struct type *
1977 resolve_dynamic_range (struct type *dyn_range_type,
1978 struct property_addr_info *addr_stack)
1979 {
1980 CORE_ADDR value;
1981 struct type *static_range_type, *static_target_type;
1982 const struct dynamic_prop *prop;
1983 struct dynamic_prop low_bound, high_bound;
1984
1985 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1986
1987 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1988 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1989 {
1990 low_bound.kind = PROP_CONST;
1991 low_bound.data.const_val = value;
1992 }
1993 else
1994 {
1995 low_bound.kind = PROP_UNDEFINED;
1996 low_bound.data.const_val = 0;
1997 }
1998
1999 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2000 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2001 {
2002 high_bound.kind = PROP_CONST;
2003 high_bound.data.const_val = value;
2004
2005 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2006 high_bound.data.const_val
2007 = low_bound.data.const_val + high_bound.data.const_val - 1;
2008 }
2009 else
2010 {
2011 high_bound.kind = PROP_UNDEFINED;
2012 high_bound.data.const_val = 0;
2013 }
2014
2015 static_target_type
2016 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2017 addr_stack, 0);
2018 static_range_type = create_range_type (copy_type (dyn_range_type),
2019 static_target_type,
2020 &low_bound, &high_bound);
2021 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2022 return static_range_type;
2023 }
2024
2025 /* Resolves dynamic bound values of an array type TYPE to static ones.
2026 ADDR_STACK is a stack of struct property_addr_info to be used
2027 if needed during the dynamic resolution. */
2028
2029 static struct type *
2030 resolve_dynamic_array (struct type *type,
2031 struct property_addr_info *addr_stack)
2032 {
2033 CORE_ADDR value;
2034 struct type *elt_type;
2035 struct type *range_type;
2036 struct type *ary_dim;
2037 struct dynamic_prop *prop;
2038 unsigned int bit_stride = 0;
2039
2040 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2041
2042 type = copy_type (type);
2043
2044 elt_type = type;
2045 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2046 range_type = resolve_dynamic_range (range_type, addr_stack);
2047
2048 /* Resolve allocated/associated here before creating a new array type, which
2049 will update the length of the array accordingly. */
2050 prop = TYPE_ALLOCATED_PROP (type);
2051 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2052 {
2053 TYPE_DYN_PROP_ADDR (prop) = value;
2054 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2055 }
2056 prop = TYPE_ASSOCIATED_PROP (type);
2057 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2058 {
2059 TYPE_DYN_PROP_ADDR (prop) = value;
2060 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2061 }
2062
2063 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2064
2065 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2066 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2067 else
2068 elt_type = TYPE_TARGET_TYPE (type);
2069
2070 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2071 if (prop != NULL)
2072 {
2073 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2076 bit_stride = (unsigned int) (value * 8);
2077 }
2078 else
2079 {
2080 /* Could be a bug in our code, but it could also happen
2081 if the DWARF info is not correct. Issue a warning,
2082 and assume no byte/bit stride (leave bit_stride = 0). */
2083 warning (_("cannot determine array stride for type %s"),
2084 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2085 }
2086 }
2087 else
2088 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2089
2090 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2091 bit_stride);
2092 }
2093
2094 /* Resolve dynamic bounds of members of the union TYPE to static
2095 bounds. ADDR_STACK is a stack of struct property_addr_info
2096 to be used if needed during the dynamic resolution. */
2097
2098 static struct type *
2099 resolve_dynamic_union (struct type *type,
2100 struct property_addr_info *addr_stack)
2101 {
2102 struct type *resolved_type;
2103 int i;
2104 unsigned int max_len = 0;
2105
2106 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2107
2108 resolved_type = copy_type (type);
2109 TYPE_FIELDS (resolved_type)
2110 = (struct field *) TYPE_ALLOC (resolved_type,
2111 TYPE_NFIELDS (resolved_type)
2112 * sizeof (struct field));
2113 memcpy (TYPE_FIELDS (resolved_type),
2114 TYPE_FIELDS (type),
2115 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2116 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2117 {
2118 struct type *t;
2119
2120 if (field_is_static (&TYPE_FIELD (type, i)))
2121 continue;
2122
2123 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2124 addr_stack, 0);
2125 TYPE_FIELD_TYPE (resolved_type, i) = t;
2126 if (TYPE_LENGTH (t) > max_len)
2127 max_len = TYPE_LENGTH (t);
2128 }
2129
2130 TYPE_LENGTH (resolved_type) = max_len;
2131 return resolved_type;
2132 }
2133
2134 /* Resolve dynamic bounds of members of the struct TYPE to static
2135 bounds. ADDR_STACK is a stack of struct property_addr_info to
2136 be used if needed during the dynamic resolution. */
2137
2138 static struct type *
2139 resolve_dynamic_struct (struct type *type,
2140 struct property_addr_info *addr_stack)
2141 {
2142 struct type *resolved_type;
2143 int i;
2144 unsigned resolved_type_bit_length = 0;
2145
2146 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2147 gdb_assert (TYPE_NFIELDS (type) > 0);
2148
2149 resolved_type = copy_type (type);
2150 TYPE_FIELDS (resolved_type)
2151 = (struct field *) TYPE_ALLOC (resolved_type,
2152 TYPE_NFIELDS (resolved_type)
2153 * sizeof (struct field));
2154 memcpy (TYPE_FIELDS (resolved_type),
2155 TYPE_FIELDS (type),
2156 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2157 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2158 {
2159 unsigned new_bit_length;
2160 struct property_addr_info pinfo;
2161
2162 if (field_is_static (&TYPE_FIELD (type, i)))
2163 continue;
2164
2165 /* As we know this field is not a static field, the field's
2166 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2167 this is the case, but only trigger a simple error rather
2168 than an internal error if that fails. While failing
2169 that verification indicates a bug in our code, the error
2170 is not severe enough to suggest to the user he stops
2171 his debugging session because of it. */
2172 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2173 error (_("Cannot determine struct field location"
2174 " (invalid location kind)"));
2175
2176 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2177 pinfo.valaddr = addr_stack->valaddr;
2178 pinfo.addr
2179 = (addr_stack->addr
2180 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2181 pinfo.next = addr_stack;
2182
2183 TYPE_FIELD_TYPE (resolved_type, i)
2184 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2185 &pinfo, 0);
2186 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2187 == FIELD_LOC_KIND_BITPOS);
2188
2189 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2190 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2191 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2192 else
2193 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2194 * TARGET_CHAR_BIT);
2195
2196 /* Normally, we would use the position and size of the last field
2197 to determine the size of the enclosing structure. But GCC seems
2198 to be encoding the position of some fields incorrectly when
2199 the struct contains a dynamic field that is not placed last.
2200 So we compute the struct size based on the field that has
2201 the highest position + size - probably the best we can do. */
2202 if (new_bit_length > resolved_type_bit_length)
2203 resolved_type_bit_length = new_bit_length;
2204 }
2205
2206 /* The length of a type won't change for fortran, but it does for C and Ada.
2207 For fortran the size of dynamic fields might change over time but not the
2208 type length of the structure. If we adapt it, we run into problems
2209 when calculating the element offset for arrays of structs. */
2210 if (current_language->la_language != language_fortran)
2211 TYPE_LENGTH (resolved_type)
2212 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2213
2214 /* The Ada language uses this field as a cache for static fixed types: reset
2215 it as RESOLVED_TYPE must have its own static fixed type. */
2216 TYPE_TARGET_TYPE (resolved_type) = NULL;
2217
2218 return resolved_type;
2219 }
2220
2221 /* Worker for resolved_dynamic_type. */
2222
2223 static struct type *
2224 resolve_dynamic_type_internal (struct type *type,
2225 struct property_addr_info *addr_stack,
2226 int top_level)
2227 {
2228 struct type *real_type = check_typedef (type);
2229 struct type *resolved_type = type;
2230 struct dynamic_prop *prop;
2231 CORE_ADDR value;
2232
2233 if (!is_dynamic_type_internal (real_type, top_level))
2234 return type;
2235
2236 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2237 {
2238 resolved_type = copy_type (type);
2239 TYPE_TARGET_TYPE (resolved_type)
2240 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2241 top_level);
2242 }
2243 else
2244 {
2245 /* Before trying to resolve TYPE, make sure it is not a stub. */
2246 type = real_type;
2247
2248 switch (TYPE_CODE (type))
2249 {
2250 case TYPE_CODE_REF:
2251 {
2252 struct property_addr_info pinfo;
2253
2254 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2255 pinfo.valaddr = NULL;
2256 if (addr_stack->valaddr != NULL)
2257 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2258 else
2259 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2260 pinfo.next = addr_stack;
2261
2262 resolved_type = copy_type (type);
2263 TYPE_TARGET_TYPE (resolved_type)
2264 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2265 &pinfo, top_level);
2266 break;
2267 }
2268
2269 case TYPE_CODE_ARRAY:
2270 resolved_type = resolve_dynamic_array (type, addr_stack);
2271 break;
2272
2273 case TYPE_CODE_RANGE:
2274 resolved_type = resolve_dynamic_range (type, addr_stack);
2275 break;
2276
2277 case TYPE_CODE_UNION:
2278 resolved_type = resolve_dynamic_union (type, addr_stack);
2279 break;
2280
2281 case TYPE_CODE_STRUCT:
2282 resolved_type = resolve_dynamic_struct (type, addr_stack);
2283 break;
2284 }
2285 }
2286
2287 /* Resolve data_location attribute. */
2288 prop = TYPE_DATA_LOCATION (resolved_type);
2289 if (prop != NULL
2290 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2291 {
2292 TYPE_DYN_PROP_ADDR (prop) = value;
2293 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2294 }
2295
2296 return resolved_type;
2297 }
2298
2299 /* See gdbtypes.h */
2300
2301 struct type *
2302 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2303 CORE_ADDR addr)
2304 {
2305 struct property_addr_info pinfo
2306 = {check_typedef (type), valaddr, addr, NULL};
2307
2308 return resolve_dynamic_type_internal (type, &pinfo, 1);
2309 }
2310
2311 /* See gdbtypes.h */
2312
2313 struct dynamic_prop *
2314 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2315 {
2316 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2317
2318 while (node != NULL)
2319 {
2320 if (node->prop_kind == prop_kind)
2321 return &node->prop;
2322 node = node->next;
2323 }
2324 return NULL;
2325 }
2326
2327 /* See gdbtypes.h */
2328
2329 void
2330 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2331 struct type *type)
2332 {
2333 struct dynamic_prop_list *temp;
2334
2335 gdb_assert (TYPE_OBJFILE_OWNED (type));
2336
2337 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2338 struct dynamic_prop_list);
2339 temp->prop_kind = prop_kind;
2340 temp->prop = prop;
2341 temp->next = TYPE_DYN_PROP_LIST (type);
2342
2343 TYPE_DYN_PROP_LIST (type) = temp;
2344 }
2345
2346 /* Remove dynamic property from TYPE in case it exists. */
2347
2348 void
2349 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2350 struct type *type)
2351 {
2352 struct dynamic_prop_list *prev_node, *curr_node;
2353
2354 curr_node = TYPE_DYN_PROP_LIST (type);
2355 prev_node = NULL;
2356
2357 while (NULL != curr_node)
2358 {
2359 if (curr_node->prop_kind == prop_kind)
2360 {
2361 /* Update the linked list but don't free anything.
2362 The property was allocated on objstack and it is not known
2363 if we are on top of it. Nevertheless, everything is released
2364 when the complete objstack is freed. */
2365 if (NULL == prev_node)
2366 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2367 else
2368 prev_node->next = curr_node->next;
2369
2370 return;
2371 }
2372
2373 prev_node = curr_node;
2374 curr_node = curr_node->next;
2375 }
2376 }
2377
2378 /* Find the real type of TYPE. This function returns the real type,
2379 after removing all layers of typedefs, and completing opaque or stub
2380 types. Completion changes the TYPE argument, but stripping of
2381 typedefs does not.
2382
2383 Instance flags (e.g. const/volatile) are preserved as typedefs are
2384 stripped. If necessary a new qualified form of the underlying type
2385 is created.
2386
2387 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2388 not been computed and we're either in the middle of reading symbols, or
2389 there was no name for the typedef in the debug info.
2390
2391 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2392 QUITs in the symbol reading code can also throw.
2393 Thus this function can throw an exception.
2394
2395 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2396 the target type.
2397
2398 If this is a stubbed struct (i.e. declared as struct foo *), see if
2399 we can find a full definition in some other file. If so, copy this
2400 definition, so we can use it in future. There used to be a comment
2401 (but not any code) that if we don't find a full definition, we'd
2402 set a flag so we don't spend time in the future checking the same
2403 type. That would be a mistake, though--we might load in more
2404 symbols which contain a full definition for the type. */
2405
2406 struct type *
2407 check_typedef (struct type *type)
2408 {
2409 struct type *orig_type = type;
2410 /* While we're removing typedefs, we don't want to lose qualifiers.
2411 E.g., const/volatile. */
2412 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2413
2414 gdb_assert (type);
2415
2416 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2417 {
2418 if (!TYPE_TARGET_TYPE (type))
2419 {
2420 const char *name;
2421 struct symbol *sym;
2422
2423 /* It is dangerous to call lookup_symbol if we are currently
2424 reading a symtab. Infinite recursion is one danger. */
2425 if (currently_reading_symtab)
2426 return make_qualified_type (type, instance_flags, NULL);
2427
2428 name = TYPE_NAME (type);
2429 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2430 VAR_DOMAIN as appropriate? */
2431 if (name == NULL)
2432 {
2433 stub_noname_complaint ();
2434 return make_qualified_type (type, instance_flags, NULL);
2435 }
2436 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2437 if (sym)
2438 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2439 else /* TYPE_CODE_UNDEF */
2440 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2441 }
2442 type = TYPE_TARGET_TYPE (type);
2443
2444 /* Preserve the instance flags as we traverse down the typedef chain.
2445
2446 Handling address spaces/classes is nasty, what do we do if there's a
2447 conflict?
2448 E.g., what if an outer typedef marks the type as class_1 and an inner
2449 typedef marks the type as class_2?
2450 This is the wrong place to do such error checking. We leave it to
2451 the code that created the typedef in the first place to flag the
2452 error. We just pick the outer address space (akin to letting the
2453 outer cast in a chain of casting win), instead of assuming
2454 "it can't happen". */
2455 {
2456 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2457 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2458 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2459 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2460
2461 /* Treat code vs data spaces and address classes separately. */
2462 if ((instance_flags & ALL_SPACES) != 0)
2463 new_instance_flags &= ~ALL_SPACES;
2464 if ((instance_flags & ALL_CLASSES) != 0)
2465 new_instance_flags &= ~ALL_CLASSES;
2466
2467 instance_flags |= new_instance_flags;
2468 }
2469 }
2470
2471 /* If this is a struct/class/union with no fields, then check
2472 whether a full definition exists somewhere else. This is for
2473 systems where a type definition with no fields is issued for such
2474 types, instead of identifying them as stub types in the first
2475 place. */
2476
2477 if (TYPE_IS_OPAQUE (type)
2478 && opaque_type_resolution
2479 && !currently_reading_symtab)
2480 {
2481 const char *name = TYPE_NAME (type);
2482 struct type *newtype;
2483
2484 if (name == NULL)
2485 {
2486 stub_noname_complaint ();
2487 return make_qualified_type (type, instance_flags, NULL);
2488 }
2489 newtype = lookup_transparent_type (name);
2490
2491 if (newtype)
2492 {
2493 /* If the resolved type and the stub are in the same
2494 objfile, then replace the stub type with the real deal.
2495 But if they're in separate objfiles, leave the stub
2496 alone; we'll just look up the transparent type every time
2497 we call check_typedef. We can't create pointers between
2498 types allocated to different objfiles, since they may
2499 have different lifetimes. Trying to copy NEWTYPE over to
2500 TYPE's objfile is pointless, too, since you'll have to
2501 move over any other types NEWTYPE refers to, which could
2502 be an unbounded amount of stuff. */
2503 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2504 type = make_qualified_type (newtype,
2505 TYPE_INSTANCE_FLAGS (type),
2506 type);
2507 else
2508 type = newtype;
2509 }
2510 }
2511 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2512 types. */
2513 else if (TYPE_STUB (type) && !currently_reading_symtab)
2514 {
2515 const char *name = TYPE_NAME (type);
2516 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2517 as appropriate? */
2518 struct symbol *sym;
2519
2520 if (name == NULL)
2521 {
2522 stub_noname_complaint ();
2523 return make_qualified_type (type, instance_flags, NULL);
2524 }
2525 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2526 if (sym)
2527 {
2528 /* Same as above for opaque types, we can replace the stub
2529 with the complete type only if they are in the same
2530 objfile. */
2531 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2532 type = make_qualified_type (SYMBOL_TYPE (sym),
2533 TYPE_INSTANCE_FLAGS (type),
2534 type);
2535 else
2536 type = SYMBOL_TYPE (sym);
2537 }
2538 }
2539
2540 if (TYPE_TARGET_STUB (type))
2541 {
2542 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2543
2544 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2545 {
2546 /* Nothing we can do. */
2547 }
2548 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2549 {
2550 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2551 TYPE_TARGET_STUB (type) = 0;
2552 }
2553 }
2554
2555 type = make_qualified_type (type, instance_flags, NULL);
2556
2557 /* Cache TYPE_LENGTH for future use. */
2558 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2559
2560 return type;
2561 }
2562
2563 /* Parse a type expression in the string [P..P+LENGTH). If an error
2564 occurs, silently return a void type. */
2565
2566 static struct type *
2567 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2568 {
2569 struct ui_file *saved_gdb_stderr;
2570 struct type *type = NULL; /* Initialize to keep gcc happy. */
2571
2572 /* Suppress error messages. */
2573 saved_gdb_stderr = gdb_stderr;
2574 gdb_stderr = &null_stream;
2575
2576 /* Call parse_and_eval_type() without fear of longjmp()s. */
2577 try
2578 {
2579 type = parse_and_eval_type (p, length);
2580 }
2581 catch (const gdb_exception_error &except)
2582 {
2583 type = builtin_type (gdbarch)->builtin_void;
2584 }
2585
2586 /* Stop suppressing error messages. */
2587 gdb_stderr = saved_gdb_stderr;
2588
2589 return type;
2590 }
2591
2592 /* Ugly hack to convert method stubs into method types.
2593
2594 He ain't kiddin'. This demangles the name of the method into a
2595 string including argument types, parses out each argument type,
2596 generates a string casting a zero to that type, evaluates the
2597 string, and stuffs the resulting type into an argtype vector!!!
2598 Then it knows the type of the whole function (including argument
2599 types for overloading), which info used to be in the stab's but was
2600 removed to hack back the space required for them. */
2601
2602 static void
2603 check_stub_method (struct type *type, int method_id, int signature_id)
2604 {
2605 struct gdbarch *gdbarch = get_type_arch (type);
2606 struct fn_field *f;
2607 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2608 char *demangled_name = gdb_demangle (mangled_name,
2609 DMGL_PARAMS | DMGL_ANSI);
2610 char *argtypetext, *p;
2611 int depth = 0, argcount = 1;
2612 struct field *argtypes;
2613 struct type *mtype;
2614
2615 /* Make sure we got back a function string that we can use. */
2616 if (demangled_name)
2617 p = strchr (demangled_name, '(');
2618 else
2619 p = NULL;
2620
2621 if (demangled_name == NULL || p == NULL)
2622 error (_("Internal: Cannot demangle mangled name `%s'."),
2623 mangled_name);
2624
2625 /* Now, read in the parameters that define this type. */
2626 p += 1;
2627 argtypetext = p;
2628 while (*p)
2629 {
2630 if (*p == '(' || *p == '<')
2631 {
2632 depth += 1;
2633 }
2634 else if (*p == ')' || *p == '>')
2635 {
2636 depth -= 1;
2637 }
2638 else if (*p == ',' && depth == 0)
2639 {
2640 argcount += 1;
2641 }
2642
2643 p += 1;
2644 }
2645
2646 /* If we read one argument and it was ``void'', don't count it. */
2647 if (startswith (argtypetext, "(void)"))
2648 argcount -= 1;
2649
2650 /* We need one extra slot, for the THIS pointer. */
2651
2652 argtypes = (struct field *)
2653 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2654 p = argtypetext;
2655
2656 /* Add THIS pointer for non-static methods. */
2657 f = TYPE_FN_FIELDLIST1 (type, method_id);
2658 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2659 argcount = 0;
2660 else
2661 {
2662 argtypes[0].type = lookup_pointer_type (type);
2663 argcount = 1;
2664 }
2665
2666 if (*p != ')') /* () means no args, skip while. */
2667 {
2668 depth = 0;
2669 while (*p)
2670 {
2671 if (depth <= 0 && (*p == ',' || *p == ')'))
2672 {
2673 /* Avoid parsing of ellipsis, they will be handled below.
2674 Also avoid ``void'' as above. */
2675 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2676 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2677 {
2678 argtypes[argcount].type =
2679 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2680 argcount += 1;
2681 }
2682 argtypetext = p + 1;
2683 }
2684
2685 if (*p == '(' || *p == '<')
2686 {
2687 depth += 1;
2688 }
2689 else if (*p == ')' || *p == '>')
2690 {
2691 depth -= 1;
2692 }
2693
2694 p += 1;
2695 }
2696 }
2697
2698 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2699
2700 /* Now update the old "stub" type into a real type. */
2701 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2702 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2703 We want a method (TYPE_CODE_METHOD). */
2704 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2705 argtypes, argcount, p[-2] == '.');
2706 TYPE_STUB (mtype) = 0;
2707 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2708
2709 xfree (demangled_name);
2710 }
2711
2712 /* This is the external interface to check_stub_method, above. This
2713 function unstubs all of the signatures for TYPE's METHOD_ID method
2714 name. After calling this function TYPE_FN_FIELD_STUB will be
2715 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2716 correct.
2717
2718 This function unfortunately can not die until stabs do. */
2719
2720 void
2721 check_stub_method_group (struct type *type, int method_id)
2722 {
2723 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2724 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2725
2726 for (int j = 0; j < len; j++)
2727 {
2728 if (TYPE_FN_FIELD_STUB (f, j))
2729 check_stub_method (type, method_id, j);
2730 }
2731 }
2732
2733 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2734 const struct cplus_struct_type cplus_struct_default = { };
2735
2736 void
2737 allocate_cplus_struct_type (struct type *type)
2738 {
2739 if (HAVE_CPLUS_STRUCT (type))
2740 /* Structure was already allocated. Nothing more to do. */
2741 return;
2742
2743 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2744 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2745 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2746 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2747 set_type_vptr_fieldno (type, -1);
2748 }
2749
2750 const struct gnat_aux_type gnat_aux_default =
2751 { NULL };
2752
2753 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2754 and allocate the associated gnat-specific data. The gnat-specific
2755 data is also initialized to gnat_aux_default. */
2756
2757 void
2758 allocate_gnat_aux_type (struct type *type)
2759 {
2760 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2761 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2762 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2763 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2764 }
2765
2766 /* Helper function to initialize a newly allocated type. Set type code
2767 to CODE and initialize the type-specific fields accordingly. */
2768
2769 static void
2770 set_type_code (struct type *type, enum type_code code)
2771 {
2772 TYPE_CODE (type) = code;
2773
2774 switch (code)
2775 {
2776 case TYPE_CODE_STRUCT:
2777 case TYPE_CODE_UNION:
2778 case TYPE_CODE_NAMESPACE:
2779 INIT_CPLUS_SPECIFIC (type);
2780 break;
2781 case TYPE_CODE_FLT:
2782 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2783 break;
2784 case TYPE_CODE_FUNC:
2785 INIT_FUNC_SPECIFIC (type);
2786 break;
2787 }
2788 }
2789
2790 /* Helper function to verify floating-point format and size.
2791 BIT is the type size in bits; if BIT equals -1, the size is
2792 determined by the floatformat. Returns size to be used. */
2793
2794 static int
2795 verify_floatformat (int bit, const struct floatformat *floatformat)
2796 {
2797 gdb_assert (floatformat != NULL);
2798
2799 if (bit == -1)
2800 bit = floatformat->totalsize;
2801
2802 gdb_assert (bit >= 0);
2803 gdb_assert (bit >= floatformat->totalsize);
2804
2805 return bit;
2806 }
2807
2808 /* Return the floating-point format for a floating-point variable of
2809 type TYPE. */
2810
2811 const struct floatformat *
2812 floatformat_from_type (const struct type *type)
2813 {
2814 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2815 gdb_assert (TYPE_FLOATFORMAT (type));
2816 return TYPE_FLOATFORMAT (type);
2817 }
2818
2819 /* Helper function to initialize the standard scalar types.
2820
2821 If NAME is non-NULL, then it is used to initialize the type name.
2822 Note that NAME is not copied; it is required to have a lifetime at
2823 least as long as OBJFILE. */
2824
2825 struct type *
2826 init_type (struct objfile *objfile, enum type_code code, int bit,
2827 const char *name)
2828 {
2829 struct type *type;
2830
2831 type = alloc_type (objfile);
2832 set_type_code (type, code);
2833 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2834 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2835 TYPE_NAME (type) = name;
2836
2837 return type;
2838 }
2839
2840 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2841 to use with variables that have no debug info. NAME is the type
2842 name. */
2843
2844 static struct type *
2845 init_nodebug_var_type (struct objfile *objfile, const char *name)
2846 {
2847 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2848 }
2849
2850 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2851 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2852 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2853
2854 struct type *
2855 init_integer_type (struct objfile *objfile,
2856 int bit, int unsigned_p, const char *name)
2857 {
2858 struct type *t;
2859
2860 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2861 if (unsigned_p)
2862 TYPE_UNSIGNED (t) = 1;
2863
2864 return t;
2865 }
2866
2867 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2868 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2869 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2870
2871 struct type *
2872 init_character_type (struct objfile *objfile,
2873 int bit, int unsigned_p, const char *name)
2874 {
2875 struct type *t;
2876
2877 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2878 if (unsigned_p)
2879 TYPE_UNSIGNED (t) = 1;
2880
2881 return t;
2882 }
2883
2884 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2885 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2886 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2887
2888 struct type *
2889 init_boolean_type (struct objfile *objfile,
2890 int bit, int unsigned_p, const char *name)
2891 {
2892 struct type *t;
2893
2894 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2895 if (unsigned_p)
2896 TYPE_UNSIGNED (t) = 1;
2897
2898 return t;
2899 }
2900
2901 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2902 BIT is the type size in bits; if BIT equals -1, the size is
2903 determined by the floatformat. NAME is the type name. Set the
2904 TYPE_FLOATFORMAT from FLOATFORMATS. */
2905
2906 struct type *
2907 init_float_type (struct objfile *objfile,
2908 int bit, const char *name,
2909 const struct floatformat **floatformats)
2910 {
2911 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2912 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2913 struct type *t;
2914
2915 bit = verify_floatformat (bit, fmt);
2916 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2917 TYPE_FLOATFORMAT (t) = fmt;
2918
2919 return t;
2920 }
2921
2922 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2923 BIT is the type size in bits. NAME is the type name. */
2924
2925 struct type *
2926 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2927 {
2928 struct type *t;
2929
2930 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2931 return t;
2932 }
2933
2934 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2935 NAME is the type name. TARGET_TYPE is the component float type. */
2936
2937 struct type *
2938 init_complex_type (struct objfile *objfile,
2939 const char *name, struct type *target_type)
2940 {
2941 struct type *t;
2942
2943 t = init_type (objfile, TYPE_CODE_COMPLEX,
2944 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2945 TYPE_TARGET_TYPE (t) = target_type;
2946 return t;
2947 }
2948
2949 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2950 BIT is the pointer type size in bits. NAME is the type name.
2951 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2952 TYPE_UNSIGNED flag. */
2953
2954 struct type *
2955 init_pointer_type (struct objfile *objfile,
2956 int bit, const char *name, struct type *target_type)
2957 {
2958 struct type *t;
2959
2960 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2961 TYPE_TARGET_TYPE (t) = target_type;
2962 TYPE_UNSIGNED (t) = 1;
2963 return t;
2964 }
2965
2966 /* See gdbtypes.h. */
2967
2968 unsigned
2969 type_raw_align (struct type *type)
2970 {
2971 if (type->align_log2 != 0)
2972 return 1 << (type->align_log2 - 1);
2973 return 0;
2974 }
2975
2976 /* See gdbtypes.h. */
2977
2978 unsigned
2979 type_align (struct type *type)
2980 {
2981 /* Check alignment provided in the debug information. */
2982 unsigned raw_align = type_raw_align (type);
2983 if (raw_align != 0)
2984 return raw_align;
2985
2986 /* Allow the architecture to provide an alignment. */
2987 struct gdbarch *arch = get_type_arch (type);
2988 ULONGEST align = gdbarch_type_align (arch, type);
2989 if (align != 0)
2990 return align;
2991
2992 switch (TYPE_CODE (type))
2993 {
2994 case TYPE_CODE_PTR:
2995 case TYPE_CODE_FUNC:
2996 case TYPE_CODE_FLAGS:
2997 case TYPE_CODE_INT:
2998 case TYPE_CODE_RANGE:
2999 case TYPE_CODE_FLT:
3000 case TYPE_CODE_ENUM:
3001 case TYPE_CODE_REF:
3002 case TYPE_CODE_RVALUE_REF:
3003 case TYPE_CODE_CHAR:
3004 case TYPE_CODE_BOOL:
3005 case TYPE_CODE_DECFLOAT:
3006 case TYPE_CODE_METHODPTR:
3007 case TYPE_CODE_MEMBERPTR:
3008 align = type_length_units (check_typedef (type));
3009 break;
3010
3011 case TYPE_CODE_ARRAY:
3012 case TYPE_CODE_COMPLEX:
3013 case TYPE_CODE_TYPEDEF:
3014 align = type_align (TYPE_TARGET_TYPE (type));
3015 break;
3016
3017 case TYPE_CODE_STRUCT:
3018 case TYPE_CODE_UNION:
3019 {
3020 int number_of_non_static_fields = 0;
3021 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3022 {
3023 if (!field_is_static (&TYPE_FIELD (type, i)))
3024 {
3025 number_of_non_static_fields++;
3026 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3027 if (f_align == 0)
3028 {
3029 /* Don't pretend we know something we don't. */
3030 align = 0;
3031 break;
3032 }
3033 if (f_align > align)
3034 align = f_align;
3035 }
3036 }
3037 /* A struct with no fields, or with only static fields has an
3038 alignment of 1. */
3039 if (number_of_non_static_fields == 0)
3040 align = 1;
3041 }
3042 break;
3043
3044 case TYPE_CODE_SET:
3045 case TYPE_CODE_STRING:
3046 /* Not sure what to do here, and these can't appear in C or C++
3047 anyway. */
3048 break;
3049
3050 case TYPE_CODE_VOID:
3051 align = 1;
3052 break;
3053
3054 case TYPE_CODE_ERROR:
3055 case TYPE_CODE_METHOD:
3056 default:
3057 break;
3058 }
3059
3060 if ((align & (align - 1)) != 0)
3061 {
3062 /* Not a power of 2, so pass. */
3063 align = 0;
3064 }
3065
3066 return align;
3067 }
3068
3069 /* See gdbtypes.h. */
3070
3071 bool
3072 set_type_align (struct type *type, ULONGEST align)
3073 {
3074 /* Must be a power of 2. Zero is ok. */
3075 gdb_assert ((align & (align - 1)) == 0);
3076
3077 unsigned result = 0;
3078 while (align != 0)
3079 {
3080 ++result;
3081 align >>= 1;
3082 }
3083
3084 if (result >= (1 << TYPE_ALIGN_BITS))
3085 return false;
3086
3087 type->align_log2 = result;
3088 return true;
3089 }
3090
3091 \f
3092 /* Queries on types. */
3093
3094 int
3095 can_dereference (struct type *t)
3096 {
3097 /* FIXME: Should we return true for references as well as
3098 pointers? */
3099 t = check_typedef (t);
3100 return
3101 (t != NULL
3102 && TYPE_CODE (t) == TYPE_CODE_PTR
3103 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3104 }
3105
3106 int
3107 is_integral_type (struct type *t)
3108 {
3109 t = check_typedef (t);
3110 return
3111 ((t != NULL)
3112 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3113 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3114 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3115 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3116 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3117 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3118 }
3119
3120 int
3121 is_floating_type (struct type *t)
3122 {
3123 t = check_typedef (t);
3124 return
3125 ((t != NULL)
3126 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3127 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3128 }
3129
3130 /* Return true if TYPE is scalar. */
3131
3132 int
3133 is_scalar_type (struct type *type)
3134 {
3135 type = check_typedef (type);
3136
3137 switch (TYPE_CODE (type))
3138 {
3139 case TYPE_CODE_ARRAY:
3140 case TYPE_CODE_STRUCT:
3141 case TYPE_CODE_UNION:
3142 case TYPE_CODE_SET:
3143 case TYPE_CODE_STRING:
3144 return 0;
3145 default:
3146 return 1;
3147 }
3148 }
3149
3150 /* Return true if T is scalar, or a composite type which in practice has
3151 the memory layout of a scalar type. E.g., an array or struct with only
3152 one scalar element inside it, or a union with only scalar elements. */
3153
3154 int
3155 is_scalar_type_recursive (struct type *t)
3156 {
3157 t = check_typedef (t);
3158
3159 if (is_scalar_type (t))
3160 return 1;
3161 /* Are we dealing with an array or string of known dimensions? */
3162 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3163 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3164 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3165 {
3166 LONGEST low_bound, high_bound;
3167 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3168
3169 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3170
3171 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3172 }
3173 /* Are we dealing with a struct with one element? */
3174 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3175 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3176 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3177 {
3178 int i, n = TYPE_NFIELDS (t);
3179
3180 /* If all elements of the union are scalar, then the union is scalar. */
3181 for (i = 0; i < n; i++)
3182 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3183 return 0;
3184
3185 return 1;
3186 }
3187
3188 return 0;
3189 }
3190
3191 /* Return true is T is a class or a union. False otherwise. */
3192
3193 int
3194 class_or_union_p (const struct type *t)
3195 {
3196 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3197 || TYPE_CODE (t) == TYPE_CODE_UNION);
3198 }
3199
3200 /* A helper function which returns true if types A and B represent the
3201 "same" class type. This is true if the types have the same main
3202 type, or the same name. */
3203
3204 int
3205 class_types_same_p (const struct type *a, const struct type *b)
3206 {
3207 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3208 || (TYPE_NAME (a) && TYPE_NAME (b)
3209 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3210 }
3211
3212 /* If BASE is an ancestor of DCLASS return the distance between them.
3213 otherwise return -1;
3214 eg:
3215
3216 class A {};
3217 class B: public A {};
3218 class C: public B {};
3219 class D: C {};
3220
3221 distance_to_ancestor (A, A, 0) = 0
3222 distance_to_ancestor (A, B, 0) = 1
3223 distance_to_ancestor (A, C, 0) = 2
3224 distance_to_ancestor (A, D, 0) = 3
3225
3226 If PUBLIC is 1 then only public ancestors are considered,
3227 and the function returns the distance only if BASE is a public ancestor
3228 of DCLASS.
3229 Eg:
3230
3231 distance_to_ancestor (A, D, 1) = -1. */
3232
3233 static int
3234 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3235 {
3236 int i;
3237 int d;
3238
3239 base = check_typedef (base);
3240 dclass = check_typedef (dclass);
3241
3242 if (class_types_same_p (base, dclass))
3243 return 0;
3244
3245 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3246 {
3247 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3248 continue;
3249
3250 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3251 if (d >= 0)
3252 return 1 + d;
3253 }
3254
3255 return -1;
3256 }
3257
3258 /* Check whether BASE is an ancestor or base class or DCLASS
3259 Return 1 if so, and 0 if not.
3260 Note: If BASE and DCLASS are of the same type, this function
3261 will return 1. So for some class A, is_ancestor (A, A) will
3262 return 1. */
3263
3264 int
3265 is_ancestor (struct type *base, struct type *dclass)
3266 {
3267 return distance_to_ancestor (base, dclass, 0) >= 0;
3268 }
3269
3270 /* Like is_ancestor, but only returns true when BASE is a public
3271 ancestor of DCLASS. */
3272
3273 int
3274 is_public_ancestor (struct type *base, struct type *dclass)
3275 {
3276 return distance_to_ancestor (base, dclass, 1) >= 0;
3277 }
3278
3279 /* A helper function for is_unique_ancestor. */
3280
3281 static int
3282 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3283 int *offset,
3284 const gdb_byte *valaddr, int embedded_offset,
3285 CORE_ADDR address, struct value *val)
3286 {
3287 int i, count = 0;
3288
3289 base = check_typedef (base);
3290 dclass = check_typedef (dclass);
3291
3292 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3293 {
3294 struct type *iter;
3295 int this_offset;
3296
3297 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3298
3299 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3300 address, val);
3301
3302 if (class_types_same_p (base, iter))
3303 {
3304 /* If this is the first subclass, set *OFFSET and set count
3305 to 1. Otherwise, if this is at the same offset as
3306 previous instances, do nothing. Otherwise, increment
3307 count. */
3308 if (*offset == -1)
3309 {
3310 *offset = this_offset;
3311 count = 1;
3312 }
3313 else if (this_offset == *offset)
3314 {
3315 /* Nothing. */
3316 }
3317 else
3318 ++count;
3319 }
3320 else
3321 count += is_unique_ancestor_worker (base, iter, offset,
3322 valaddr,
3323 embedded_offset + this_offset,
3324 address, val);
3325 }
3326
3327 return count;
3328 }
3329
3330 /* Like is_ancestor, but only returns true if BASE is a unique base
3331 class of the type of VAL. */
3332
3333 int
3334 is_unique_ancestor (struct type *base, struct value *val)
3335 {
3336 int offset = -1;
3337
3338 return is_unique_ancestor_worker (base, value_type (val), &offset,
3339 value_contents_for_printing (val),
3340 value_embedded_offset (val),
3341 value_address (val), val) == 1;
3342 }
3343
3344 \f
3345 /* Overload resolution. */
3346
3347 /* Return the sum of the rank of A with the rank of B. */
3348
3349 struct rank
3350 sum_ranks (struct rank a, struct rank b)
3351 {
3352 struct rank c;
3353 c.rank = a.rank + b.rank;
3354 c.subrank = a.subrank + b.subrank;
3355 return c;
3356 }
3357
3358 /* Compare rank A and B and return:
3359 0 if a = b
3360 1 if a is better than b
3361 -1 if b is better than a. */
3362
3363 int
3364 compare_ranks (struct rank a, struct rank b)
3365 {
3366 if (a.rank == b.rank)
3367 {
3368 if (a.subrank == b.subrank)
3369 return 0;
3370 if (a.subrank < b.subrank)
3371 return 1;
3372 if (a.subrank > b.subrank)
3373 return -1;
3374 }
3375
3376 if (a.rank < b.rank)
3377 return 1;
3378
3379 /* a.rank > b.rank */
3380 return -1;
3381 }
3382
3383 /* Functions for overload resolution begin here. */
3384
3385 /* Compare two badness vectors A and B and return the result.
3386 0 => A and B are identical
3387 1 => A and B are incomparable
3388 2 => A is better than B
3389 3 => A is worse than B */
3390
3391 int
3392 compare_badness (const badness_vector &a, const badness_vector &b)
3393 {
3394 int i;
3395 int tmp;
3396 short found_pos = 0; /* any positives in c? */
3397 short found_neg = 0; /* any negatives in c? */
3398
3399 /* differing sizes => incomparable */
3400 if (a.size () != b.size ())
3401 return 1;
3402
3403 /* Subtract b from a */
3404 for (i = 0; i < a.size (); i++)
3405 {
3406 tmp = compare_ranks (b[i], a[i]);
3407 if (tmp > 0)
3408 found_pos = 1;
3409 else if (tmp < 0)
3410 found_neg = 1;
3411 }
3412
3413 if (found_pos)
3414 {
3415 if (found_neg)
3416 return 1; /* incomparable */
3417 else
3418 return 3; /* A > B */
3419 }
3420 else
3421 /* no positives */
3422 {
3423 if (found_neg)
3424 return 2; /* A < B */
3425 else
3426 return 0; /* A == B */
3427 }
3428 }
3429
3430 /* Rank a function by comparing its parameter types (PARMS), to the
3431 types of an argument list (ARGS). Return the badness vector. This
3432 has ARGS.size() + 1 entries. */
3433
3434 badness_vector
3435 rank_function (gdb::array_view<type *> parms,
3436 gdb::array_view<value *> args)
3437 {
3438 /* add 1 for the length-match rank. */
3439 badness_vector bv;
3440 bv.reserve (1 + args.size ());
3441
3442 /* First compare the lengths of the supplied lists.
3443 If there is a mismatch, set it to a high value. */
3444
3445 /* pai/1997-06-03 FIXME: when we have debug info about default
3446 arguments and ellipsis parameter lists, we should consider those
3447 and rank the length-match more finely. */
3448
3449 bv.push_back ((args.size () != parms.size ())
3450 ? LENGTH_MISMATCH_BADNESS
3451 : EXACT_MATCH_BADNESS);
3452
3453 /* Now rank all the parameters of the candidate function. */
3454 size_t min_len = std::min (parms.size (), args.size ());
3455
3456 for (size_t i = 0; i < min_len; i++)
3457 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3458 args[i]));
3459
3460 /* If more arguments than parameters, add dummy entries. */
3461 for (size_t i = min_len; i < args.size (); i++)
3462 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3463
3464 return bv;
3465 }
3466
3467 /* Compare the names of two integer types, assuming that any sign
3468 qualifiers have been checked already. We do it this way because
3469 there may be an "int" in the name of one of the types. */
3470
3471 static int
3472 integer_types_same_name_p (const char *first, const char *second)
3473 {
3474 int first_p, second_p;
3475
3476 /* If both are shorts, return 1; if neither is a short, keep
3477 checking. */
3478 first_p = (strstr (first, "short") != NULL);
3479 second_p = (strstr (second, "short") != NULL);
3480 if (first_p && second_p)
3481 return 1;
3482 if (first_p || second_p)
3483 return 0;
3484
3485 /* Likewise for long. */
3486 first_p = (strstr (first, "long") != NULL);
3487 second_p = (strstr (second, "long") != NULL);
3488 if (first_p && second_p)
3489 return 1;
3490 if (first_p || second_p)
3491 return 0;
3492
3493 /* Likewise for char. */
3494 first_p = (strstr (first, "char") != NULL);
3495 second_p = (strstr (second, "char") != NULL);
3496 if (first_p && second_p)
3497 return 1;
3498 if (first_p || second_p)
3499 return 0;
3500
3501 /* They must both be ints. */
3502 return 1;
3503 }
3504
3505 /* Compares type A to type B. Returns true if they represent the same
3506 type, false otherwise. */
3507
3508 bool
3509 types_equal (struct type *a, struct type *b)
3510 {
3511 /* Identical type pointers. */
3512 /* However, this still doesn't catch all cases of same type for b
3513 and a. The reason is that builtin types are different from
3514 the same ones constructed from the object. */
3515 if (a == b)
3516 return true;
3517
3518 /* Resolve typedefs */
3519 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3520 a = check_typedef (a);
3521 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3522 b = check_typedef (b);
3523
3524 /* If after resolving typedefs a and b are not of the same type
3525 code then they are not equal. */
3526 if (TYPE_CODE (a) != TYPE_CODE (b))
3527 return false;
3528
3529 /* If a and b are both pointers types or both reference types then
3530 they are equal of the same type iff the objects they refer to are
3531 of the same type. */
3532 if (TYPE_CODE (a) == TYPE_CODE_PTR
3533 || TYPE_CODE (a) == TYPE_CODE_REF)
3534 return types_equal (TYPE_TARGET_TYPE (a),
3535 TYPE_TARGET_TYPE (b));
3536
3537 /* Well, damnit, if the names are exactly the same, I'll say they
3538 are exactly the same. This happens when we generate method
3539 stubs. The types won't point to the same address, but they
3540 really are the same. */
3541
3542 if (TYPE_NAME (a) && TYPE_NAME (b)
3543 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3544 return true;
3545
3546 /* Check if identical after resolving typedefs. */
3547 if (a == b)
3548 return true;
3549
3550 /* Two function types are equal if their argument and return types
3551 are equal. */
3552 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3553 {
3554 int i;
3555
3556 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3557 return false;
3558
3559 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3560 return false;
3561
3562 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3563 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3564 return false;
3565
3566 return true;
3567 }
3568
3569 return false;
3570 }
3571 \f
3572 /* Deep comparison of types. */
3573
3574 /* An entry in the type-equality bcache. */
3575
3576 struct type_equality_entry
3577 {
3578 type_equality_entry (struct type *t1, struct type *t2)
3579 : type1 (t1),
3580 type2 (t2)
3581 {
3582 }
3583
3584 struct type *type1, *type2;
3585 };
3586
3587 /* A helper function to compare two strings. Returns true if they are
3588 the same, false otherwise. Handles NULLs properly. */
3589
3590 static bool
3591 compare_maybe_null_strings (const char *s, const char *t)
3592 {
3593 if (s == NULL || t == NULL)
3594 return s == t;
3595 return strcmp (s, t) == 0;
3596 }
3597
3598 /* A helper function for check_types_worklist that checks two types for
3599 "deep" equality. Returns true if the types are considered the
3600 same, false otherwise. */
3601
3602 static bool
3603 check_types_equal (struct type *type1, struct type *type2,
3604 std::vector<type_equality_entry> *worklist)
3605 {
3606 type1 = check_typedef (type1);
3607 type2 = check_typedef (type2);
3608
3609 if (type1 == type2)
3610 return true;
3611
3612 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3613 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3614 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3615 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3616 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3617 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3618 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3619 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3620 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3621 return false;
3622
3623 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3624 return false;
3625 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3626 return false;
3627
3628 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3629 {
3630 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3631 return false;
3632 }
3633 else
3634 {
3635 int i;
3636
3637 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3638 {
3639 const struct field *field1 = &TYPE_FIELD (type1, i);
3640 const struct field *field2 = &TYPE_FIELD (type2, i);
3641
3642 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3643 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3644 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3645 return false;
3646 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3647 FIELD_NAME (*field2)))
3648 return false;
3649 switch (FIELD_LOC_KIND (*field1))
3650 {
3651 case FIELD_LOC_KIND_BITPOS:
3652 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3653 return false;
3654 break;
3655 case FIELD_LOC_KIND_ENUMVAL:
3656 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3657 return false;
3658 break;
3659 case FIELD_LOC_KIND_PHYSADDR:
3660 if (FIELD_STATIC_PHYSADDR (*field1)
3661 != FIELD_STATIC_PHYSADDR (*field2))
3662 return false;
3663 break;
3664 case FIELD_LOC_KIND_PHYSNAME:
3665 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3666 FIELD_STATIC_PHYSNAME (*field2)))
3667 return false;
3668 break;
3669 case FIELD_LOC_KIND_DWARF_BLOCK:
3670 {
3671 struct dwarf2_locexpr_baton *block1, *block2;
3672
3673 block1 = FIELD_DWARF_BLOCK (*field1);
3674 block2 = FIELD_DWARF_BLOCK (*field2);
3675 if (block1->per_cu != block2->per_cu
3676 || block1->size != block2->size
3677 || memcmp (block1->data, block2->data, block1->size) != 0)
3678 return false;
3679 }
3680 break;
3681 default:
3682 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3683 "%d by check_types_equal"),
3684 FIELD_LOC_KIND (*field1));
3685 }
3686
3687 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3688 }
3689 }
3690
3691 if (TYPE_TARGET_TYPE (type1) != NULL)
3692 {
3693 if (TYPE_TARGET_TYPE (type2) == NULL)
3694 return false;
3695
3696 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3697 TYPE_TARGET_TYPE (type2));
3698 }
3699 else if (TYPE_TARGET_TYPE (type2) != NULL)
3700 return false;
3701
3702 return true;
3703 }
3704
3705 /* Check types on a worklist for equality. Returns false if any pair
3706 is not equal, true if they are all considered equal. */
3707
3708 static bool
3709 check_types_worklist (std::vector<type_equality_entry> *worklist,
3710 struct bcache *cache)
3711 {
3712 while (!worklist->empty ())
3713 {
3714 int added;
3715
3716 struct type_equality_entry entry = std::move (worklist->back ());
3717 worklist->pop_back ();
3718
3719 /* If the type pair has already been visited, we know it is
3720 ok. */
3721 cache->insert (&entry, sizeof (entry), &added);
3722 if (!added)
3723 continue;
3724
3725 if (!check_types_equal (entry.type1, entry.type2, worklist))
3726 return false;
3727 }
3728
3729 return true;
3730 }
3731
3732 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3733 "deep comparison". Otherwise return false. */
3734
3735 bool
3736 types_deeply_equal (struct type *type1, struct type *type2)
3737 {
3738 std::vector<type_equality_entry> worklist;
3739
3740 gdb_assert (type1 != NULL && type2 != NULL);
3741
3742 /* Early exit for the simple case. */
3743 if (type1 == type2)
3744 return true;
3745
3746 struct bcache cache (nullptr, nullptr);
3747 worklist.emplace_back (type1, type2);
3748 return check_types_worklist (&worklist, &cache);
3749 }
3750
3751 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3752 Otherwise return one. */
3753
3754 int
3755 type_not_allocated (const struct type *type)
3756 {
3757 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3758
3759 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3760 && !TYPE_DYN_PROP_ADDR (prop));
3761 }
3762
3763 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3764 Otherwise return one. */
3765
3766 int
3767 type_not_associated (const struct type *type)
3768 {
3769 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3770
3771 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3772 && !TYPE_DYN_PROP_ADDR (prop));
3773 }
3774
3775 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3776
3777 static struct rank
3778 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3779 {
3780 struct rank rank = {0,0};
3781
3782 switch (TYPE_CODE (arg))
3783 {
3784 case TYPE_CODE_PTR:
3785
3786 /* Allowed pointer conversions are:
3787 (a) pointer to void-pointer conversion. */
3788 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3789 return VOID_PTR_CONVERSION_BADNESS;
3790
3791 /* (b) pointer to ancestor-pointer conversion. */
3792 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3793 TYPE_TARGET_TYPE (arg),
3794 0);
3795 if (rank.subrank >= 0)
3796 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3797
3798 return INCOMPATIBLE_TYPE_BADNESS;
3799 case TYPE_CODE_ARRAY:
3800 {
3801 struct type *t1 = TYPE_TARGET_TYPE (parm);
3802 struct type *t2 = TYPE_TARGET_TYPE (arg);
3803
3804 if (types_equal (t1, t2))
3805 {
3806 /* Make sure they are CV equal. */
3807 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3808 rank.subrank |= CV_CONVERSION_CONST;
3809 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3810 rank.subrank |= CV_CONVERSION_VOLATILE;
3811 if (rank.subrank != 0)
3812 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3813 return EXACT_MATCH_BADNESS;
3814 }
3815 return INCOMPATIBLE_TYPE_BADNESS;
3816 }
3817 case TYPE_CODE_FUNC:
3818 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3819 case TYPE_CODE_INT:
3820 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3821 {
3822 if (value_as_long (value) == 0)
3823 {
3824 /* Null pointer conversion: allow it to be cast to a pointer.
3825 [4.10.1 of C++ standard draft n3290] */
3826 return NULL_POINTER_CONVERSION_BADNESS;
3827 }
3828 else
3829 {
3830 /* If type checking is disabled, allow the conversion. */
3831 if (!strict_type_checking)
3832 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3833 }
3834 }
3835 /* fall through */
3836 case TYPE_CODE_ENUM:
3837 case TYPE_CODE_FLAGS:
3838 case TYPE_CODE_CHAR:
3839 case TYPE_CODE_RANGE:
3840 case TYPE_CODE_BOOL:
3841 default:
3842 return INCOMPATIBLE_TYPE_BADNESS;
3843 }
3844 }
3845
3846 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3847
3848 static struct rank
3849 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3850 {
3851 switch (TYPE_CODE (arg))
3852 {
3853 case TYPE_CODE_PTR:
3854 case TYPE_CODE_ARRAY:
3855 return rank_one_type (TYPE_TARGET_TYPE (parm),
3856 TYPE_TARGET_TYPE (arg), NULL);
3857 default:
3858 return INCOMPATIBLE_TYPE_BADNESS;
3859 }
3860 }
3861
3862 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3863
3864 static struct rank
3865 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3866 {
3867 switch (TYPE_CODE (arg))
3868 {
3869 case TYPE_CODE_PTR: /* funcptr -> func */
3870 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3871 default:
3872 return INCOMPATIBLE_TYPE_BADNESS;
3873 }
3874 }
3875
3876 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3877
3878 static struct rank
3879 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3880 {
3881 switch (TYPE_CODE (arg))
3882 {
3883 case TYPE_CODE_INT:
3884 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3885 {
3886 /* Deal with signed, unsigned, and plain chars and
3887 signed and unsigned ints. */
3888 if (TYPE_NOSIGN (parm))
3889 {
3890 /* This case only for character types. */
3891 if (TYPE_NOSIGN (arg))
3892 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3893 else /* signed/unsigned char -> plain char */
3894 return INTEGER_CONVERSION_BADNESS;
3895 }
3896 else if (TYPE_UNSIGNED (parm))
3897 {
3898 if (TYPE_UNSIGNED (arg))
3899 {
3900 /* unsigned int -> unsigned int, or
3901 unsigned long -> unsigned long */
3902 if (integer_types_same_name_p (TYPE_NAME (parm),
3903 TYPE_NAME (arg)))
3904 return EXACT_MATCH_BADNESS;
3905 else if (integer_types_same_name_p (TYPE_NAME (arg),
3906 "int")
3907 && integer_types_same_name_p (TYPE_NAME (parm),
3908 "long"))
3909 /* unsigned int -> unsigned long */
3910 return INTEGER_PROMOTION_BADNESS;
3911 else
3912 /* unsigned long -> unsigned int */
3913 return INTEGER_CONVERSION_BADNESS;
3914 }
3915 else
3916 {
3917 if (integer_types_same_name_p (TYPE_NAME (arg),
3918 "long")
3919 && integer_types_same_name_p (TYPE_NAME (parm),
3920 "int"))
3921 /* signed long -> unsigned int */
3922 return INTEGER_CONVERSION_BADNESS;
3923 else
3924 /* signed int/long -> unsigned int/long */
3925 return INTEGER_CONVERSION_BADNESS;
3926 }
3927 }
3928 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3929 {
3930 if (integer_types_same_name_p (TYPE_NAME (parm),
3931 TYPE_NAME (arg)))
3932 return EXACT_MATCH_BADNESS;
3933 else if (integer_types_same_name_p (TYPE_NAME (arg),
3934 "int")
3935 && integer_types_same_name_p (TYPE_NAME (parm),
3936 "long"))
3937 return INTEGER_PROMOTION_BADNESS;
3938 else
3939 return INTEGER_CONVERSION_BADNESS;
3940 }
3941 else
3942 return INTEGER_CONVERSION_BADNESS;
3943 }
3944 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3945 return INTEGER_PROMOTION_BADNESS;
3946 else
3947 return INTEGER_CONVERSION_BADNESS;
3948 case TYPE_CODE_ENUM:
3949 case TYPE_CODE_FLAGS:
3950 case TYPE_CODE_CHAR:
3951 case TYPE_CODE_RANGE:
3952 case TYPE_CODE_BOOL:
3953 if (TYPE_DECLARED_CLASS (arg))
3954 return INCOMPATIBLE_TYPE_BADNESS;
3955 return INTEGER_PROMOTION_BADNESS;
3956 case TYPE_CODE_FLT:
3957 return INT_FLOAT_CONVERSION_BADNESS;
3958 case TYPE_CODE_PTR:
3959 return NS_POINTER_CONVERSION_BADNESS;
3960 default:
3961 return INCOMPATIBLE_TYPE_BADNESS;
3962 }
3963 }
3964
3965 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3966
3967 static struct rank
3968 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3969 {
3970 switch (TYPE_CODE (arg))
3971 {
3972 case TYPE_CODE_INT:
3973 case TYPE_CODE_CHAR:
3974 case TYPE_CODE_RANGE:
3975 case TYPE_CODE_BOOL:
3976 case TYPE_CODE_ENUM:
3977 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 return INTEGER_CONVERSION_BADNESS;
3980 case TYPE_CODE_FLT:
3981 return INT_FLOAT_CONVERSION_BADNESS;
3982 default:
3983 return INCOMPATIBLE_TYPE_BADNESS;
3984 }
3985 }
3986
3987 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3988
3989 static struct rank
3990 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3991 {
3992 switch (TYPE_CODE (arg))
3993 {
3994 case TYPE_CODE_RANGE:
3995 case TYPE_CODE_BOOL:
3996 case TYPE_CODE_ENUM:
3997 if (TYPE_DECLARED_CLASS (arg))
3998 return INCOMPATIBLE_TYPE_BADNESS;
3999 return INTEGER_CONVERSION_BADNESS;
4000 case TYPE_CODE_FLT:
4001 return INT_FLOAT_CONVERSION_BADNESS;
4002 case TYPE_CODE_INT:
4003 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4004 return INTEGER_CONVERSION_BADNESS;
4005 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4006 return INTEGER_PROMOTION_BADNESS;
4007 /* fall through */
4008 case TYPE_CODE_CHAR:
4009 /* Deal with signed, unsigned, and plain chars for C++ and
4010 with int cases falling through from previous case. */
4011 if (TYPE_NOSIGN (parm))
4012 {
4013 if (TYPE_NOSIGN (arg))
4014 return EXACT_MATCH_BADNESS;
4015 else
4016 return INTEGER_CONVERSION_BADNESS;
4017 }
4018 else if (TYPE_UNSIGNED (parm))
4019 {
4020 if (TYPE_UNSIGNED (arg))
4021 return EXACT_MATCH_BADNESS;
4022 else
4023 return INTEGER_PROMOTION_BADNESS;
4024 }
4025 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4026 return EXACT_MATCH_BADNESS;
4027 else
4028 return INTEGER_CONVERSION_BADNESS;
4029 default:
4030 return INCOMPATIBLE_TYPE_BADNESS;
4031 }
4032 }
4033
4034 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4035
4036 static struct rank
4037 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4038 {
4039 switch (TYPE_CODE (arg))
4040 {
4041 case TYPE_CODE_INT:
4042 case TYPE_CODE_CHAR:
4043 case TYPE_CODE_RANGE:
4044 case TYPE_CODE_BOOL:
4045 case TYPE_CODE_ENUM:
4046 return INTEGER_CONVERSION_BADNESS;
4047 case TYPE_CODE_FLT:
4048 return INT_FLOAT_CONVERSION_BADNESS;
4049 default:
4050 return INCOMPATIBLE_TYPE_BADNESS;
4051 }
4052 }
4053
4054 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4055
4056 static struct rank
4057 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4058 {
4059 switch (TYPE_CODE (arg))
4060 {
4061 /* n3290 draft, section 4.12.1 (conv.bool):
4062
4063 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4064 pointer to member type can be converted to a prvalue of type
4065 bool. A zero value, null pointer value, or null member pointer
4066 value is converted to false; any other value is converted to
4067 true. A prvalue of type std::nullptr_t can be converted to a
4068 prvalue of type bool; the resulting value is false." */
4069 case TYPE_CODE_INT:
4070 case TYPE_CODE_CHAR:
4071 case TYPE_CODE_ENUM:
4072 case TYPE_CODE_FLT:
4073 case TYPE_CODE_MEMBERPTR:
4074 case TYPE_CODE_PTR:
4075 return BOOL_CONVERSION_BADNESS;
4076 case TYPE_CODE_RANGE:
4077 return INCOMPATIBLE_TYPE_BADNESS;
4078 case TYPE_CODE_BOOL:
4079 return EXACT_MATCH_BADNESS;
4080 default:
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 }
4083 }
4084
4085 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4086
4087 static struct rank
4088 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4089 {
4090 switch (TYPE_CODE (arg))
4091 {
4092 case TYPE_CODE_FLT:
4093 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4094 return FLOAT_PROMOTION_BADNESS;
4095 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4096 return EXACT_MATCH_BADNESS;
4097 else
4098 return FLOAT_CONVERSION_BADNESS;
4099 case TYPE_CODE_INT:
4100 case TYPE_CODE_BOOL:
4101 case TYPE_CODE_ENUM:
4102 case TYPE_CODE_RANGE:
4103 case TYPE_CODE_CHAR:
4104 return INT_FLOAT_CONVERSION_BADNESS;
4105 default:
4106 return INCOMPATIBLE_TYPE_BADNESS;
4107 }
4108 }
4109
4110 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4111
4112 static struct rank
4113 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4114 {
4115 switch (TYPE_CODE (arg))
4116 { /* Strictly not needed for C++, but... */
4117 case TYPE_CODE_FLT:
4118 return FLOAT_PROMOTION_BADNESS;
4119 case TYPE_CODE_COMPLEX:
4120 return EXACT_MATCH_BADNESS;
4121 default:
4122 return INCOMPATIBLE_TYPE_BADNESS;
4123 }
4124 }
4125
4126 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4127
4128 static struct rank
4129 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4130 {
4131 struct rank rank = {0, 0};
4132
4133 switch (TYPE_CODE (arg))
4134 {
4135 case TYPE_CODE_STRUCT:
4136 /* Check for derivation */
4137 rank.subrank = distance_to_ancestor (parm, arg, 0);
4138 if (rank.subrank >= 0)
4139 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4140 /* fall through */
4141 default:
4142 return INCOMPATIBLE_TYPE_BADNESS;
4143 }
4144 }
4145
4146 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4147
4148 static struct rank
4149 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4150 {
4151 switch (TYPE_CODE (arg))
4152 {
4153 /* Not in C++ */
4154 case TYPE_CODE_SET:
4155 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4156 TYPE_FIELD_TYPE (arg, 0), NULL);
4157 default:
4158 return INCOMPATIBLE_TYPE_BADNESS;
4159 }
4160 }
4161
4162 /* Compare one type (PARM) for compatibility with another (ARG).
4163 * PARM is intended to be the parameter type of a function; and
4164 * ARG is the supplied argument's type. This function tests if
4165 * the latter can be converted to the former.
4166 * VALUE is the argument's value or NULL if none (or called recursively)
4167 *
4168 * Return 0 if they are identical types;
4169 * Otherwise, return an integer which corresponds to how compatible
4170 * PARM is to ARG. The higher the return value, the worse the match.
4171 * Generally the "bad" conversions are all uniformly assigned a 100. */
4172
4173 struct rank
4174 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4175 {
4176 struct rank rank = {0,0};
4177
4178 /* Resolve typedefs */
4179 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4180 parm = check_typedef (parm);
4181 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4182 arg = check_typedef (arg);
4183
4184 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4185 {
4186 if (VALUE_LVAL (value) == not_lval)
4187 {
4188 /* Rvalues should preferably bind to rvalue references or const
4189 lvalue references. */
4190 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4191 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4192 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4193 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4194 else
4195 return INCOMPATIBLE_TYPE_BADNESS;
4196 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4197 }
4198 else
4199 {
4200 /* Lvalues should prefer lvalue overloads. */
4201 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4202 {
4203 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4204 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4205 }
4206 }
4207 }
4208
4209 if (types_equal (parm, arg))
4210 {
4211 struct type *t1 = parm;
4212 struct type *t2 = arg;
4213
4214 /* For pointers and references, compare target type. */
4215 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4216 {
4217 t1 = TYPE_TARGET_TYPE (parm);
4218 t2 = TYPE_TARGET_TYPE (arg);
4219 }
4220
4221 /* Make sure they are CV equal, too. */
4222 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4223 rank.subrank |= CV_CONVERSION_CONST;
4224 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4225 rank.subrank |= CV_CONVERSION_VOLATILE;
4226 if (rank.subrank != 0)
4227 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4228 return EXACT_MATCH_BADNESS;
4229 }
4230
4231 /* See through references, since we can almost make non-references
4232 references. */
4233
4234 if (TYPE_IS_REFERENCE (arg))
4235 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4236 REFERENCE_CONVERSION_BADNESS));
4237 if (TYPE_IS_REFERENCE (parm))
4238 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4239 REFERENCE_CONVERSION_BADNESS));
4240 if (overload_debug)
4241 /* Debugging only. */
4242 fprintf_filtered (gdb_stderr,
4243 "------ Arg is %s [%d], parm is %s [%d]\n",
4244 TYPE_NAME (arg), TYPE_CODE (arg),
4245 TYPE_NAME (parm), TYPE_CODE (parm));
4246
4247 /* x -> y means arg of type x being supplied for parameter of type y. */
4248
4249 switch (TYPE_CODE (parm))
4250 {
4251 case TYPE_CODE_PTR:
4252 return rank_one_type_parm_ptr (parm, arg, value);
4253 case TYPE_CODE_ARRAY:
4254 return rank_one_type_parm_array (parm, arg, value);
4255 case TYPE_CODE_FUNC:
4256 return rank_one_type_parm_func (parm, arg, value);
4257 case TYPE_CODE_INT:
4258 return rank_one_type_parm_int (parm, arg, value);
4259 case TYPE_CODE_ENUM:
4260 return rank_one_type_parm_enum (parm, arg, value);
4261 case TYPE_CODE_CHAR:
4262 return rank_one_type_parm_char (parm, arg, value);
4263 case TYPE_CODE_RANGE:
4264 return rank_one_type_parm_range (parm, arg, value);
4265 case TYPE_CODE_BOOL:
4266 return rank_one_type_parm_bool (parm, arg, value);
4267 case TYPE_CODE_FLT:
4268 return rank_one_type_parm_float (parm, arg, value);
4269 case TYPE_CODE_COMPLEX:
4270 return rank_one_type_parm_complex (parm, arg, value);
4271 case TYPE_CODE_STRUCT:
4272 return rank_one_type_parm_struct (parm, arg, value);
4273 case TYPE_CODE_SET:
4274 return rank_one_type_parm_set (parm, arg, value);
4275 default:
4276 return INCOMPATIBLE_TYPE_BADNESS;
4277 } /* switch (TYPE_CODE (arg)) */
4278 }
4279
4280 /* End of functions for overload resolution. */
4281 \f
4282 /* Routines to pretty-print types. */
4283
4284 static void
4285 print_bit_vector (B_TYPE *bits, int nbits)
4286 {
4287 int bitno;
4288
4289 for (bitno = 0; bitno < nbits; bitno++)
4290 {
4291 if ((bitno % 8) == 0)
4292 {
4293 puts_filtered (" ");
4294 }
4295 if (B_TST (bits, bitno))
4296 printf_filtered (("1"));
4297 else
4298 printf_filtered (("0"));
4299 }
4300 }
4301
4302 /* Note the first arg should be the "this" pointer, we may not want to
4303 include it since we may get into a infinitely recursive
4304 situation. */
4305
4306 static void
4307 print_args (struct field *args, int nargs, int spaces)
4308 {
4309 if (args != NULL)
4310 {
4311 int i;
4312
4313 for (i = 0; i < nargs; i++)
4314 {
4315 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4316 args[i].name != NULL ? args[i].name : "<NULL>");
4317 recursive_dump_type (args[i].type, spaces + 2);
4318 }
4319 }
4320 }
4321
4322 int
4323 field_is_static (struct field *f)
4324 {
4325 /* "static" fields are the fields whose location is not relative
4326 to the address of the enclosing struct. It would be nice to
4327 have a dedicated flag that would be set for static fields when
4328 the type is being created. But in practice, checking the field
4329 loc_kind should give us an accurate answer. */
4330 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4331 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4332 }
4333
4334 static void
4335 dump_fn_fieldlists (struct type *type, int spaces)
4336 {
4337 int method_idx;
4338 int overload_idx;
4339 struct fn_field *f;
4340
4341 printfi_filtered (spaces, "fn_fieldlists ");
4342 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4343 printf_filtered ("\n");
4344 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4345 {
4346 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4347 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4348 method_idx,
4349 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4350 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4351 gdb_stdout);
4352 printf_filtered (_(") length %d\n"),
4353 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4354 for (overload_idx = 0;
4355 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4356 overload_idx++)
4357 {
4358 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4359 overload_idx,
4360 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4361 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4362 gdb_stdout);
4363 printf_filtered (")\n");
4364 printfi_filtered (spaces + 8, "type ");
4365 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4366 gdb_stdout);
4367 printf_filtered ("\n");
4368
4369 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4370 spaces + 8 + 2);
4371
4372 printfi_filtered (spaces + 8, "args ");
4373 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4374 gdb_stdout);
4375 printf_filtered ("\n");
4376 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4377 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4378 spaces + 8 + 2);
4379 printfi_filtered (spaces + 8, "fcontext ");
4380 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4381 gdb_stdout);
4382 printf_filtered ("\n");
4383
4384 printfi_filtered (spaces + 8, "is_const %d\n",
4385 TYPE_FN_FIELD_CONST (f, overload_idx));
4386 printfi_filtered (spaces + 8, "is_volatile %d\n",
4387 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4388 printfi_filtered (spaces + 8, "is_private %d\n",
4389 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4390 printfi_filtered (spaces + 8, "is_protected %d\n",
4391 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4392 printfi_filtered (spaces + 8, "is_stub %d\n",
4393 TYPE_FN_FIELD_STUB (f, overload_idx));
4394 printfi_filtered (spaces + 8, "voffset %u\n",
4395 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4396 }
4397 }
4398 }
4399
4400 static void
4401 print_cplus_stuff (struct type *type, int spaces)
4402 {
4403 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4404 printfi_filtered (spaces, "vptr_basetype ");
4405 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4406 puts_filtered ("\n");
4407 if (TYPE_VPTR_BASETYPE (type) != NULL)
4408 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4409
4410 printfi_filtered (spaces, "n_baseclasses %d\n",
4411 TYPE_N_BASECLASSES (type));
4412 printfi_filtered (spaces, "nfn_fields %d\n",
4413 TYPE_NFN_FIELDS (type));
4414 if (TYPE_N_BASECLASSES (type) > 0)
4415 {
4416 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4417 TYPE_N_BASECLASSES (type));
4418 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4419 gdb_stdout);
4420 printf_filtered (")");
4421
4422 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4423 TYPE_N_BASECLASSES (type));
4424 puts_filtered ("\n");
4425 }
4426 if (TYPE_NFIELDS (type) > 0)
4427 {
4428 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4429 {
4430 printfi_filtered (spaces,
4431 "private_field_bits (%d bits at *",
4432 TYPE_NFIELDS (type));
4433 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4434 gdb_stdout);
4435 printf_filtered (")");
4436 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4437 TYPE_NFIELDS (type));
4438 puts_filtered ("\n");
4439 }
4440 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4441 {
4442 printfi_filtered (spaces,
4443 "protected_field_bits (%d bits at *",
4444 TYPE_NFIELDS (type));
4445 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4446 gdb_stdout);
4447 printf_filtered (")");
4448 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4449 TYPE_NFIELDS (type));
4450 puts_filtered ("\n");
4451 }
4452 }
4453 if (TYPE_NFN_FIELDS (type) > 0)
4454 {
4455 dump_fn_fieldlists (type, spaces);
4456 }
4457 }
4458
4459 /* Print the contents of the TYPE's type_specific union, assuming that
4460 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4461
4462 static void
4463 print_gnat_stuff (struct type *type, int spaces)
4464 {
4465 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4466
4467 if (descriptive_type == NULL)
4468 printfi_filtered (spaces + 2, "no descriptive type\n");
4469 else
4470 {
4471 printfi_filtered (spaces + 2, "descriptive type\n");
4472 recursive_dump_type (descriptive_type, spaces + 4);
4473 }
4474 }
4475
4476 static struct obstack dont_print_type_obstack;
4477
4478 void
4479 recursive_dump_type (struct type *type, int spaces)
4480 {
4481 int idx;
4482
4483 if (spaces == 0)
4484 obstack_begin (&dont_print_type_obstack, 0);
4485
4486 if (TYPE_NFIELDS (type) > 0
4487 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4488 {
4489 struct type **first_dont_print
4490 = (struct type **) obstack_base (&dont_print_type_obstack);
4491
4492 int i = (struct type **)
4493 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4494
4495 while (--i >= 0)
4496 {
4497 if (type == first_dont_print[i])
4498 {
4499 printfi_filtered (spaces, "type node ");
4500 gdb_print_host_address (type, gdb_stdout);
4501 printf_filtered (_(" <same as already seen type>\n"));
4502 return;
4503 }
4504 }
4505
4506 obstack_ptr_grow (&dont_print_type_obstack, type);
4507 }
4508
4509 printfi_filtered (spaces, "type node ");
4510 gdb_print_host_address (type, gdb_stdout);
4511 printf_filtered ("\n");
4512 printfi_filtered (spaces, "name '%s' (",
4513 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4514 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4515 printf_filtered (")\n");
4516 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4517 switch (TYPE_CODE (type))
4518 {
4519 case TYPE_CODE_UNDEF:
4520 printf_filtered ("(TYPE_CODE_UNDEF)");
4521 break;
4522 case TYPE_CODE_PTR:
4523 printf_filtered ("(TYPE_CODE_PTR)");
4524 break;
4525 case TYPE_CODE_ARRAY:
4526 printf_filtered ("(TYPE_CODE_ARRAY)");
4527 break;
4528 case TYPE_CODE_STRUCT:
4529 printf_filtered ("(TYPE_CODE_STRUCT)");
4530 break;
4531 case TYPE_CODE_UNION:
4532 printf_filtered ("(TYPE_CODE_UNION)");
4533 break;
4534 case TYPE_CODE_ENUM:
4535 printf_filtered ("(TYPE_CODE_ENUM)");
4536 break;
4537 case TYPE_CODE_FLAGS:
4538 printf_filtered ("(TYPE_CODE_FLAGS)");
4539 break;
4540 case TYPE_CODE_FUNC:
4541 printf_filtered ("(TYPE_CODE_FUNC)");
4542 break;
4543 case TYPE_CODE_INT:
4544 printf_filtered ("(TYPE_CODE_INT)");
4545 break;
4546 case TYPE_CODE_FLT:
4547 printf_filtered ("(TYPE_CODE_FLT)");
4548 break;
4549 case TYPE_CODE_VOID:
4550 printf_filtered ("(TYPE_CODE_VOID)");
4551 break;
4552 case TYPE_CODE_SET:
4553 printf_filtered ("(TYPE_CODE_SET)");
4554 break;
4555 case TYPE_CODE_RANGE:
4556 printf_filtered ("(TYPE_CODE_RANGE)");
4557 break;
4558 case TYPE_CODE_STRING:
4559 printf_filtered ("(TYPE_CODE_STRING)");
4560 break;
4561 case TYPE_CODE_ERROR:
4562 printf_filtered ("(TYPE_CODE_ERROR)");
4563 break;
4564 case TYPE_CODE_MEMBERPTR:
4565 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4566 break;
4567 case TYPE_CODE_METHODPTR:
4568 printf_filtered ("(TYPE_CODE_METHODPTR)");
4569 break;
4570 case TYPE_CODE_METHOD:
4571 printf_filtered ("(TYPE_CODE_METHOD)");
4572 break;
4573 case TYPE_CODE_REF:
4574 printf_filtered ("(TYPE_CODE_REF)");
4575 break;
4576 case TYPE_CODE_CHAR:
4577 printf_filtered ("(TYPE_CODE_CHAR)");
4578 break;
4579 case TYPE_CODE_BOOL:
4580 printf_filtered ("(TYPE_CODE_BOOL)");
4581 break;
4582 case TYPE_CODE_COMPLEX:
4583 printf_filtered ("(TYPE_CODE_COMPLEX)");
4584 break;
4585 case TYPE_CODE_TYPEDEF:
4586 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4587 break;
4588 case TYPE_CODE_NAMESPACE:
4589 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4590 break;
4591 default:
4592 printf_filtered ("(UNKNOWN TYPE CODE)");
4593 break;
4594 }
4595 puts_filtered ("\n");
4596 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4597 if (TYPE_OBJFILE_OWNED (type))
4598 {
4599 printfi_filtered (spaces, "objfile ");
4600 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4601 }
4602 else
4603 {
4604 printfi_filtered (spaces, "gdbarch ");
4605 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4606 }
4607 printf_filtered ("\n");
4608 printfi_filtered (spaces, "target_type ");
4609 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4610 printf_filtered ("\n");
4611 if (TYPE_TARGET_TYPE (type) != NULL)
4612 {
4613 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4614 }
4615 printfi_filtered (spaces, "pointer_type ");
4616 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4617 printf_filtered ("\n");
4618 printfi_filtered (spaces, "reference_type ");
4619 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4620 printf_filtered ("\n");
4621 printfi_filtered (spaces, "type_chain ");
4622 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4623 printf_filtered ("\n");
4624 printfi_filtered (spaces, "instance_flags 0x%x",
4625 TYPE_INSTANCE_FLAGS (type));
4626 if (TYPE_CONST (type))
4627 {
4628 puts_filtered (" TYPE_CONST");
4629 }
4630 if (TYPE_VOLATILE (type))
4631 {
4632 puts_filtered (" TYPE_VOLATILE");
4633 }
4634 if (TYPE_CODE_SPACE (type))
4635 {
4636 puts_filtered (" TYPE_CODE_SPACE");
4637 }
4638 if (TYPE_DATA_SPACE (type))
4639 {
4640 puts_filtered (" TYPE_DATA_SPACE");
4641 }
4642 if (TYPE_ADDRESS_CLASS_1 (type))
4643 {
4644 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4645 }
4646 if (TYPE_ADDRESS_CLASS_2 (type))
4647 {
4648 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4649 }
4650 if (TYPE_RESTRICT (type))
4651 {
4652 puts_filtered (" TYPE_RESTRICT");
4653 }
4654 if (TYPE_ATOMIC (type))
4655 {
4656 puts_filtered (" TYPE_ATOMIC");
4657 }
4658 puts_filtered ("\n");
4659
4660 printfi_filtered (spaces, "flags");
4661 if (TYPE_UNSIGNED (type))
4662 {
4663 puts_filtered (" TYPE_UNSIGNED");
4664 }
4665 if (TYPE_NOSIGN (type))
4666 {
4667 puts_filtered (" TYPE_NOSIGN");
4668 }
4669 if (TYPE_STUB (type))
4670 {
4671 puts_filtered (" TYPE_STUB");
4672 }
4673 if (TYPE_TARGET_STUB (type))
4674 {
4675 puts_filtered (" TYPE_TARGET_STUB");
4676 }
4677 if (TYPE_PROTOTYPED (type))
4678 {
4679 puts_filtered (" TYPE_PROTOTYPED");
4680 }
4681 if (TYPE_INCOMPLETE (type))
4682 {
4683 puts_filtered (" TYPE_INCOMPLETE");
4684 }
4685 if (TYPE_VARARGS (type))
4686 {
4687 puts_filtered (" TYPE_VARARGS");
4688 }
4689 /* This is used for things like AltiVec registers on ppc. Gcc emits
4690 an attribute for the array type, which tells whether or not we
4691 have a vector, instead of a regular array. */
4692 if (TYPE_VECTOR (type))
4693 {
4694 puts_filtered (" TYPE_VECTOR");
4695 }
4696 if (TYPE_FIXED_INSTANCE (type))
4697 {
4698 puts_filtered (" TYPE_FIXED_INSTANCE");
4699 }
4700 if (TYPE_STUB_SUPPORTED (type))
4701 {
4702 puts_filtered (" TYPE_STUB_SUPPORTED");
4703 }
4704 if (TYPE_NOTTEXT (type))
4705 {
4706 puts_filtered (" TYPE_NOTTEXT");
4707 }
4708 puts_filtered ("\n");
4709 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4710 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4711 puts_filtered ("\n");
4712 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4713 {
4714 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4715 printfi_filtered (spaces + 2,
4716 "[%d] enumval %s type ",
4717 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4718 else
4719 printfi_filtered (spaces + 2,
4720 "[%d] bitpos %s bitsize %d type ",
4721 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4722 TYPE_FIELD_BITSIZE (type, idx));
4723 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4724 printf_filtered (" name '%s' (",
4725 TYPE_FIELD_NAME (type, idx) != NULL
4726 ? TYPE_FIELD_NAME (type, idx)
4727 : "<NULL>");
4728 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4729 printf_filtered (")\n");
4730 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4731 {
4732 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4733 }
4734 }
4735 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4736 {
4737 printfi_filtered (spaces, "low %s%s high %s%s\n",
4738 plongest (TYPE_LOW_BOUND (type)),
4739 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4740 plongest (TYPE_HIGH_BOUND (type)),
4741 TYPE_HIGH_BOUND_UNDEFINED (type)
4742 ? " (undefined)" : "");
4743 }
4744
4745 switch (TYPE_SPECIFIC_FIELD (type))
4746 {
4747 case TYPE_SPECIFIC_CPLUS_STUFF:
4748 printfi_filtered (spaces, "cplus_stuff ");
4749 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4750 gdb_stdout);
4751 puts_filtered ("\n");
4752 print_cplus_stuff (type, spaces);
4753 break;
4754
4755 case TYPE_SPECIFIC_GNAT_STUFF:
4756 printfi_filtered (spaces, "gnat_stuff ");
4757 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4758 puts_filtered ("\n");
4759 print_gnat_stuff (type, spaces);
4760 break;
4761
4762 case TYPE_SPECIFIC_FLOATFORMAT:
4763 printfi_filtered (spaces, "floatformat ");
4764 if (TYPE_FLOATFORMAT (type) == NULL
4765 || TYPE_FLOATFORMAT (type)->name == NULL)
4766 puts_filtered ("(null)");
4767 else
4768 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4769 puts_filtered ("\n");
4770 break;
4771
4772 case TYPE_SPECIFIC_FUNC:
4773 printfi_filtered (spaces, "calling_convention %d\n",
4774 TYPE_CALLING_CONVENTION (type));
4775 /* tail_call_list is not printed. */
4776 break;
4777
4778 case TYPE_SPECIFIC_SELF_TYPE:
4779 printfi_filtered (spaces, "self_type ");
4780 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4781 puts_filtered ("\n");
4782 break;
4783 }
4784
4785 if (spaces == 0)
4786 obstack_free (&dont_print_type_obstack, NULL);
4787 }
4788 \f
4789 /* Trivial helpers for the libiberty hash table, for mapping one
4790 type to another. */
4791
4792 struct type_pair : public allocate_on_obstack
4793 {
4794 type_pair (struct type *old_, struct type *newobj_)
4795 : old (old_), newobj (newobj_)
4796 {}
4797
4798 struct type * const old, * const newobj;
4799 };
4800
4801 static hashval_t
4802 type_pair_hash (const void *item)
4803 {
4804 const struct type_pair *pair = (const struct type_pair *) item;
4805
4806 return htab_hash_pointer (pair->old);
4807 }
4808
4809 static int
4810 type_pair_eq (const void *item_lhs, const void *item_rhs)
4811 {
4812 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4813 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4814
4815 return lhs->old == rhs->old;
4816 }
4817
4818 /* Allocate the hash table used by copy_type_recursive to walk
4819 types without duplicates. We use OBJFILE's obstack, because
4820 OBJFILE is about to be deleted. */
4821
4822 htab_t
4823 create_copied_types_hash (struct objfile *objfile)
4824 {
4825 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4826 NULL, &objfile->objfile_obstack,
4827 hashtab_obstack_allocate,
4828 dummy_obstack_deallocate);
4829 }
4830
4831 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4832
4833 static struct dynamic_prop_list *
4834 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4835 struct dynamic_prop_list *list)
4836 {
4837 struct dynamic_prop_list *copy = list;
4838 struct dynamic_prop_list **node_ptr = &copy;
4839
4840 while (*node_ptr != NULL)
4841 {
4842 struct dynamic_prop_list *node_copy;
4843
4844 node_copy = ((struct dynamic_prop_list *)
4845 obstack_copy (objfile_obstack, *node_ptr,
4846 sizeof (struct dynamic_prop_list)));
4847 node_copy->prop = (*node_ptr)->prop;
4848 *node_ptr = node_copy;
4849
4850 node_ptr = &node_copy->next;
4851 }
4852
4853 return copy;
4854 }
4855
4856 /* Recursively copy (deep copy) TYPE, if it is associated with
4857 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4858 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4859 it is not associated with OBJFILE. */
4860
4861 struct type *
4862 copy_type_recursive (struct objfile *objfile,
4863 struct type *type,
4864 htab_t copied_types)
4865 {
4866 void **slot;
4867 struct type *new_type;
4868
4869 if (! TYPE_OBJFILE_OWNED (type))
4870 return type;
4871
4872 /* This type shouldn't be pointing to any types in other objfiles;
4873 if it did, the type might disappear unexpectedly. */
4874 gdb_assert (TYPE_OBJFILE (type) == objfile);
4875
4876 struct type_pair pair (type, nullptr);
4877
4878 slot = htab_find_slot (copied_types, &pair, INSERT);
4879 if (*slot != NULL)
4880 return ((struct type_pair *) *slot)->newobj;
4881
4882 new_type = alloc_type_arch (get_type_arch (type));
4883
4884 /* We must add the new type to the hash table immediately, in case
4885 we encounter this type again during a recursive call below. */
4886 struct type_pair *stored
4887 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4888
4889 *slot = stored;
4890
4891 /* Copy the common fields of types. For the main type, we simply
4892 copy the entire thing and then update specific fields as needed. */
4893 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4894 TYPE_OBJFILE_OWNED (new_type) = 0;
4895 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4896
4897 if (TYPE_NAME (type))
4898 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4899
4900 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4901 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4902
4903 /* Copy the fields. */
4904 if (TYPE_NFIELDS (type))
4905 {
4906 int i, nfields;
4907
4908 nfields = TYPE_NFIELDS (type);
4909 TYPE_FIELDS (new_type) = (struct field *)
4910 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4911 for (i = 0; i < nfields; i++)
4912 {
4913 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4914 TYPE_FIELD_ARTIFICIAL (type, i);
4915 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4916 if (TYPE_FIELD_TYPE (type, i))
4917 TYPE_FIELD_TYPE (new_type, i)
4918 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4919 copied_types);
4920 if (TYPE_FIELD_NAME (type, i))
4921 TYPE_FIELD_NAME (new_type, i) =
4922 xstrdup (TYPE_FIELD_NAME (type, i));
4923 switch (TYPE_FIELD_LOC_KIND (type, i))
4924 {
4925 case FIELD_LOC_KIND_BITPOS:
4926 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4927 TYPE_FIELD_BITPOS (type, i));
4928 break;
4929 case FIELD_LOC_KIND_ENUMVAL:
4930 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4931 TYPE_FIELD_ENUMVAL (type, i));
4932 break;
4933 case FIELD_LOC_KIND_PHYSADDR:
4934 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4935 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4936 break;
4937 case FIELD_LOC_KIND_PHYSNAME:
4938 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4939 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4940 i)));
4941 break;
4942 default:
4943 internal_error (__FILE__, __LINE__,
4944 _("Unexpected type field location kind: %d"),
4945 TYPE_FIELD_LOC_KIND (type, i));
4946 }
4947 }
4948 }
4949
4950 /* For range types, copy the bounds information. */
4951 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4952 {
4953 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4954 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4955 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4956 }
4957
4958 if (TYPE_DYN_PROP_LIST (type) != NULL)
4959 TYPE_DYN_PROP_LIST (new_type)
4960 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4961 TYPE_DYN_PROP_LIST (type));
4962
4963
4964 /* Copy pointers to other types. */
4965 if (TYPE_TARGET_TYPE (type))
4966 TYPE_TARGET_TYPE (new_type) =
4967 copy_type_recursive (objfile,
4968 TYPE_TARGET_TYPE (type),
4969 copied_types);
4970
4971 /* Maybe copy the type_specific bits.
4972
4973 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4974 base classes and methods. There's no fundamental reason why we
4975 can't, but at the moment it is not needed. */
4976
4977 switch (TYPE_SPECIFIC_FIELD (type))
4978 {
4979 case TYPE_SPECIFIC_NONE:
4980 break;
4981 case TYPE_SPECIFIC_FUNC:
4982 INIT_FUNC_SPECIFIC (new_type);
4983 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4984 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4985 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4986 break;
4987 case TYPE_SPECIFIC_FLOATFORMAT:
4988 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4989 break;
4990 case TYPE_SPECIFIC_CPLUS_STUFF:
4991 INIT_CPLUS_SPECIFIC (new_type);
4992 break;
4993 case TYPE_SPECIFIC_GNAT_STUFF:
4994 INIT_GNAT_SPECIFIC (new_type);
4995 break;
4996 case TYPE_SPECIFIC_SELF_TYPE:
4997 set_type_self_type (new_type,
4998 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4999 copied_types));
5000 break;
5001 default:
5002 gdb_assert_not_reached ("bad type_specific_kind");
5003 }
5004
5005 return new_type;
5006 }
5007
5008 /* Make a copy of the given TYPE, except that the pointer & reference
5009 types are not preserved.
5010
5011 This function assumes that the given type has an associated objfile.
5012 This objfile is used to allocate the new type. */
5013
5014 struct type *
5015 copy_type (const struct type *type)
5016 {
5017 struct type *new_type;
5018
5019 gdb_assert (TYPE_OBJFILE_OWNED (type));
5020
5021 new_type = alloc_type_copy (type);
5022 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5023 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5024 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5025 sizeof (struct main_type));
5026 if (TYPE_DYN_PROP_LIST (type) != NULL)
5027 TYPE_DYN_PROP_LIST (new_type)
5028 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5029 TYPE_DYN_PROP_LIST (type));
5030
5031 return new_type;
5032 }
5033 \f
5034 /* Helper functions to initialize architecture-specific types. */
5035
5036 /* Allocate a type structure associated with GDBARCH and set its
5037 CODE, LENGTH, and NAME fields. */
5038
5039 struct type *
5040 arch_type (struct gdbarch *gdbarch,
5041 enum type_code code, int bit, const char *name)
5042 {
5043 struct type *type;
5044
5045 type = alloc_type_arch (gdbarch);
5046 set_type_code (type, code);
5047 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5048 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5049
5050 if (name)
5051 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5052
5053 return type;
5054 }
5055
5056 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5057 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5058 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5059
5060 struct type *
5061 arch_integer_type (struct gdbarch *gdbarch,
5062 int bit, int unsigned_p, const char *name)
5063 {
5064 struct type *t;
5065
5066 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5067 if (unsigned_p)
5068 TYPE_UNSIGNED (t) = 1;
5069
5070 return t;
5071 }
5072
5073 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5074 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5075 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5076
5077 struct type *
5078 arch_character_type (struct gdbarch *gdbarch,
5079 int bit, int unsigned_p, const char *name)
5080 {
5081 struct type *t;
5082
5083 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5084 if (unsigned_p)
5085 TYPE_UNSIGNED (t) = 1;
5086
5087 return t;
5088 }
5089
5090 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5091 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5092 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5093
5094 struct type *
5095 arch_boolean_type (struct gdbarch *gdbarch,
5096 int bit, int unsigned_p, const char *name)
5097 {
5098 struct type *t;
5099
5100 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5101 if (unsigned_p)
5102 TYPE_UNSIGNED (t) = 1;
5103
5104 return t;
5105 }
5106
5107 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5108 BIT is the type size in bits; if BIT equals -1, the size is
5109 determined by the floatformat. NAME is the type name. Set the
5110 TYPE_FLOATFORMAT from FLOATFORMATS. */
5111
5112 struct type *
5113 arch_float_type (struct gdbarch *gdbarch,
5114 int bit, const char *name,
5115 const struct floatformat **floatformats)
5116 {
5117 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5118 struct type *t;
5119
5120 bit = verify_floatformat (bit, fmt);
5121 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5122 TYPE_FLOATFORMAT (t) = fmt;
5123
5124 return t;
5125 }
5126
5127 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5128 BIT is the type size in bits. NAME is the type name. */
5129
5130 struct type *
5131 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5132 {
5133 struct type *t;
5134
5135 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5136 return t;
5137 }
5138
5139 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5140 NAME is the type name. TARGET_TYPE is the component float type. */
5141
5142 struct type *
5143 arch_complex_type (struct gdbarch *gdbarch,
5144 const char *name, struct type *target_type)
5145 {
5146 struct type *t;
5147
5148 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5149 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5150 TYPE_TARGET_TYPE (t) = target_type;
5151 return t;
5152 }
5153
5154 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5155 BIT is the pointer type size in bits. NAME is the type name.
5156 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5157 TYPE_UNSIGNED flag. */
5158
5159 struct type *
5160 arch_pointer_type (struct gdbarch *gdbarch,
5161 int bit, const char *name, struct type *target_type)
5162 {
5163 struct type *t;
5164
5165 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5166 TYPE_TARGET_TYPE (t) = target_type;
5167 TYPE_UNSIGNED (t) = 1;
5168 return t;
5169 }
5170
5171 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5172 NAME is the type name. BIT is the size of the flag word in bits. */
5173
5174 struct type *
5175 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5176 {
5177 struct type *type;
5178
5179 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5180 TYPE_UNSIGNED (type) = 1;
5181 TYPE_NFIELDS (type) = 0;
5182 /* Pre-allocate enough space assuming every field is one bit. */
5183 TYPE_FIELDS (type)
5184 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5185
5186 return type;
5187 }
5188
5189 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5190 position BITPOS is called NAME. Pass NAME as "" for fields that
5191 should not be printed. */
5192
5193 void
5194 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5195 struct type *field_type, const char *name)
5196 {
5197 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5198 int field_nr = TYPE_NFIELDS (type);
5199
5200 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5201 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5202 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5203 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5204 gdb_assert (name != NULL);
5205
5206 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5207 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5208 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5209 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5210 ++TYPE_NFIELDS (type);
5211 }
5212
5213 /* Special version of append_flags_type_field to add a flag field.
5214 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5215 position BITPOS is called NAME. */
5216
5217 void
5218 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5219 {
5220 struct gdbarch *gdbarch = get_type_arch (type);
5221
5222 append_flags_type_field (type, bitpos, 1,
5223 builtin_type (gdbarch)->builtin_bool,
5224 name);
5225 }
5226
5227 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5228 specified by CODE) associated with GDBARCH. NAME is the type name. */
5229
5230 struct type *
5231 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5232 enum type_code code)
5233 {
5234 struct type *t;
5235
5236 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5237 t = arch_type (gdbarch, code, 0, NULL);
5238 TYPE_NAME (t) = name;
5239 INIT_CPLUS_SPECIFIC (t);
5240 return t;
5241 }
5242
5243 /* Add new field with name NAME and type FIELD to composite type T.
5244 Do not set the field's position or adjust the type's length;
5245 the caller should do so. Return the new field. */
5246
5247 struct field *
5248 append_composite_type_field_raw (struct type *t, const char *name,
5249 struct type *field)
5250 {
5251 struct field *f;
5252
5253 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5254 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5255 TYPE_NFIELDS (t));
5256 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5257 memset (f, 0, sizeof f[0]);
5258 FIELD_TYPE (f[0]) = field;
5259 FIELD_NAME (f[0]) = name;
5260 return f;
5261 }
5262
5263 /* Add new field with name NAME and type FIELD to composite type T.
5264 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5265
5266 void
5267 append_composite_type_field_aligned (struct type *t, const char *name,
5268 struct type *field, int alignment)
5269 {
5270 struct field *f = append_composite_type_field_raw (t, name, field);
5271
5272 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5273 {
5274 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5275 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5276 }
5277 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5278 {
5279 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5280 if (TYPE_NFIELDS (t) > 1)
5281 {
5282 SET_FIELD_BITPOS (f[0],
5283 (FIELD_BITPOS (f[-1])
5284 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5285 * TARGET_CHAR_BIT)));
5286
5287 if (alignment)
5288 {
5289 int left;
5290
5291 alignment *= TARGET_CHAR_BIT;
5292 left = FIELD_BITPOS (f[0]) % alignment;
5293
5294 if (left)
5295 {
5296 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5297 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5298 }
5299 }
5300 }
5301 }
5302 }
5303
5304 /* Add new field with name NAME and type FIELD to composite type T. */
5305
5306 void
5307 append_composite_type_field (struct type *t, const char *name,
5308 struct type *field)
5309 {
5310 append_composite_type_field_aligned (t, name, field, 0);
5311 }
5312
5313 static struct gdbarch_data *gdbtypes_data;
5314
5315 const struct builtin_type *
5316 builtin_type (struct gdbarch *gdbarch)
5317 {
5318 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5319 }
5320
5321 static void *
5322 gdbtypes_post_init (struct gdbarch *gdbarch)
5323 {
5324 struct builtin_type *builtin_type
5325 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5326
5327 /* Basic types. */
5328 builtin_type->builtin_void
5329 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5330 builtin_type->builtin_char
5331 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5332 !gdbarch_char_signed (gdbarch), "char");
5333 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5334 builtin_type->builtin_signed_char
5335 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5336 0, "signed char");
5337 builtin_type->builtin_unsigned_char
5338 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5339 1, "unsigned char");
5340 builtin_type->builtin_short
5341 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5342 0, "short");
5343 builtin_type->builtin_unsigned_short
5344 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5345 1, "unsigned short");
5346 builtin_type->builtin_int
5347 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5348 0, "int");
5349 builtin_type->builtin_unsigned_int
5350 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5351 1, "unsigned int");
5352 builtin_type->builtin_long
5353 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5354 0, "long");
5355 builtin_type->builtin_unsigned_long
5356 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5357 1, "unsigned long");
5358 builtin_type->builtin_long_long
5359 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5360 0, "long long");
5361 builtin_type->builtin_unsigned_long_long
5362 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5363 1, "unsigned long long");
5364 builtin_type->builtin_half
5365 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5366 "half", gdbarch_half_format (gdbarch));
5367 builtin_type->builtin_float
5368 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5369 "float", gdbarch_float_format (gdbarch));
5370 builtin_type->builtin_double
5371 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5372 "double", gdbarch_double_format (gdbarch));
5373 builtin_type->builtin_long_double
5374 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5375 "long double", gdbarch_long_double_format (gdbarch));
5376 builtin_type->builtin_complex
5377 = arch_complex_type (gdbarch, "complex",
5378 builtin_type->builtin_float);
5379 builtin_type->builtin_double_complex
5380 = arch_complex_type (gdbarch, "double complex",
5381 builtin_type->builtin_double);
5382 builtin_type->builtin_string
5383 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5384 builtin_type->builtin_bool
5385 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5386
5387 /* The following three are about decimal floating point types, which
5388 are 32-bits, 64-bits and 128-bits respectively. */
5389 builtin_type->builtin_decfloat
5390 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5391 builtin_type->builtin_decdouble
5392 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5393 builtin_type->builtin_declong
5394 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5395
5396 /* "True" character types. */
5397 builtin_type->builtin_true_char
5398 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5399 builtin_type->builtin_true_unsigned_char
5400 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5401
5402 /* Fixed-size integer types. */
5403 builtin_type->builtin_int0
5404 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5405 builtin_type->builtin_int8
5406 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5407 builtin_type->builtin_uint8
5408 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5409 builtin_type->builtin_int16
5410 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5411 builtin_type->builtin_uint16
5412 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5413 builtin_type->builtin_int24
5414 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5415 builtin_type->builtin_uint24
5416 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5417 builtin_type->builtin_int32
5418 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5419 builtin_type->builtin_uint32
5420 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5421 builtin_type->builtin_int64
5422 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5423 builtin_type->builtin_uint64
5424 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5425 builtin_type->builtin_int128
5426 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5427 builtin_type->builtin_uint128
5428 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5429 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5430 TYPE_INSTANCE_FLAG_NOTTEXT;
5431 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5432 TYPE_INSTANCE_FLAG_NOTTEXT;
5433
5434 /* Wide character types. */
5435 builtin_type->builtin_char16
5436 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5437 builtin_type->builtin_char32
5438 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5439 builtin_type->builtin_wchar
5440 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5441 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5442
5443 /* Default data/code pointer types. */
5444 builtin_type->builtin_data_ptr
5445 = lookup_pointer_type (builtin_type->builtin_void);
5446 builtin_type->builtin_func_ptr
5447 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5448 builtin_type->builtin_func_func
5449 = lookup_function_type (builtin_type->builtin_func_ptr);
5450
5451 /* This type represents a GDB internal function. */
5452 builtin_type->internal_fn
5453 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5454 "<internal function>");
5455
5456 /* This type represents an xmethod. */
5457 builtin_type->xmethod
5458 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5459
5460 return builtin_type;
5461 }
5462
5463 /* This set of objfile-based types is intended to be used by symbol
5464 readers as basic types. */
5465
5466 static const struct objfile_key<struct objfile_type,
5467 gdb::noop_deleter<struct objfile_type>>
5468 objfile_type_data;
5469
5470 const struct objfile_type *
5471 objfile_type (struct objfile *objfile)
5472 {
5473 struct gdbarch *gdbarch;
5474 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5475
5476 if (objfile_type)
5477 return objfile_type;
5478
5479 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5480 1, struct objfile_type);
5481
5482 /* Use the objfile architecture to determine basic type properties. */
5483 gdbarch = get_objfile_arch (objfile);
5484
5485 /* Basic types. */
5486 objfile_type->builtin_void
5487 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5488 objfile_type->builtin_char
5489 = init_integer_type (objfile, TARGET_CHAR_BIT,
5490 !gdbarch_char_signed (gdbarch), "char");
5491 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5492 objfile_type->builtin_signed_char
5493 = init_integer_type (objfile, TARGET_CHAR_BIT,
5494 0, "signed char");
5495 objfile_type->builtin_unsigned_char
5496 = init_integer_type (objfile, TARGET_CHAR_BIT,
5497 1, "unsigned char");
5498 objfile_type->builtin_short
5499 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5500 0, "short");
5501 objfile_type->builtin_unsigned_short
5502 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5503 1, "unsigned short");
5504 objfile_type->builtin_int
5505 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5506 0, "int");
5507 objfile_type->builtin_unsigned_int
5508 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5509 1, "unsigned int");
5510 objfile_type->builtin_long
5511 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5512 0, "long");
5513 objfile_type->builtin_unsigned_long
5514 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5515 1, "unsigned long");
5516 objfile_type->builtin_long_long
5517 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5518 0, "long long");
5519 objfile_type->builtin_unsigned_long_long
5520 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5521 1, "unsigned long long");
5522 objfile_type->builtin_float
5523 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5524 "float", gdbarch_float_format (gdbarch));
5525 objfile_type->builtin_double
5526 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5527 "double", gdbarch_double_format (gdbarch));
5528 objfile_type->builtin_long_double
5529 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5530 "long double", gdbarch_long_double_format (gdbarch));
5531
5532 /* This type represents a type that was unrecognized in symbol read-in. */
5533 objfile_type->builtin_error
5534 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5535
5536 /* The following set of types is used for symbols with no
5537 debug information. */
5538 objfile_type->nodebug_text_symbol
5539 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5540 "<text variable, no debug info>");
5541 objfile_type->nodebug_text_gnu_ifunc_symbol
5542 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5543 "<text gnu-indirect-function variable, no debug info>");
5544 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5545 objfile_type->nodebug_got_plt_symbol
5546 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5547 "<text from jump slot in .got.plt, no debug info>",
5548 objfile_type->nodebug_text_symbol);
5549 objfile_type->nodebug_data_symbol
5550 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5551 objfile_type->nodebug_unknown_symbol
5552 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5553 objfile_type->nodebug_tls_symbol
5554 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5555
5556 /* NOTE: on some targets, addresses and pointers are not necessarily
5557 the same.
5558
5559 The upshot is:
5560 - gdb's `struct type' always describes the target's
5561 representation.
5562 - gdb's `struct value' objects should always hold values in
5563 target form.
5564 - gdb's CORE_ADDR values are addresses in the unified virtual
5565 address space that the assembler and linker work with. Thus,
5566 since target_read_memory takes a CORE_ADDR as an argument, it
5567 can access any memory on the target, even if the processor has
5568 separate code and data address spaces.
5569
5570 In this context, objfile_type->builtin_core_addr is a bit odd:
5571 it's a target type for a value the target will never see. It's
5572 only used to hold the values of (typeless) linker symbols, which
5573 are indeed in the unified virtual address space. */
5574
5575 objfile_type->builtin_core_addr
5576 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5577 "__CORE_ADDR");
5578
5579 objfile_type_data.set (objfile, objfile_type);
5580 return objfile_type;
5581 }
5582
5583 void
5584 _initialize_gdbtypes (void)
5585 {
5586 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5587
5588 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5589 _("Set debugging of C++ overloading."),
5590 _("Show debugging of C++ overloading."),
5591 _("When enabled, ranking of the "
5592 "functions is displayed."),
5593 NULL,
5594 show_overload_debug,
5595 &setdebuglist, &showdebuglist);
5596
5597 /* Add user knob for controlling resolution of opaque types. */
5598 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5599 &opaque_type_resolution,
5600 _("Set resolution of opaque struct/class/union"
5601 " types (if set before loading symbols)."),
5602 _("Show resolution of opaque struct/class/union"
5603 " types (if set before loading symbols)."),
5604 NULL, NULL,
5605 show_opaque_type_resolution,
5606 &setlist, &showlist);
5607
5608 /* Add an option to permit non-strict type checking. */
5609 add_setshow_boolean_cmd ("type", class_support,
5610 &strict_type_checking,
5611 _("Set strict type checking."),
5612 _("Show strict type checking."),
5613 NULL, NULL,
5614 show_strict_type_checking,
5615 &setchecklist, &showchecklist);
5616 }
This page took 0.143589 seconds and 4 git commands to generate.