windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
1020
1021 struct type *
1022 create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
1026 {
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (range_type);
1029
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
1051 else
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1065 TYPE_INDEX_TYPE (result_type) = range_type;
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1068
1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1070 if (TYPE_LENGTH (result_type) == 0)
1071 TYPE_TARGET_STUB (result_type) = 1;
1072
1073 return result_type;
1074 }
1075
1076 /* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079 struct type *
1080 create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083 {
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086 }
1087
1088 struct type *
1089 lookup_array_range_type (struct type *element_type,
1090 LONGEST low_bound, LONGEST high_bound)
1091 {
1092 struct gdbarch *gdbarch = get_type_arch (element_type);
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1096
1097 return create_array_type (NULL, element_type, range_type);
1098 }
1099
1100 /* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
1111
1112 struct type *
1113 create_string_type (struct type *result_type,
1114 struct type *string_char_type,
1115 struct type *range_type)
1116 {
1117 result_type = create_array_type (result_type,
1118 string_char_type,
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1121 return result_type;
1122 }
1123
1124 struct type *
1125 lookup_string_range_type (struct type *string_char_type,
1126 LONGEST low_bound, LONGEST high_bound)
1127 {
1128 struct type *result_type;
1129
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134 }
1135
1136 struct type *
1137 create_set_type (struct type *result_type, struct type *domain_type)
1138 {
1139 if (result_type == NULL)
1140 result_type = alloc_type_copy (domain_type);
1141
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1145
1146 if (!TYPE_STUB (domain_type))
1147 {
1148 LONGEST low_bound, high_bound, bit_length;
1149
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1155 if (low_bound >= 0)
1156 TYPE_UNSIGNED (result_type) = 1;
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
1160 return result_type;
1161 }
1162
1163 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166 void
1167 make_vector_type (struct type *array_type)
1168 {
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
1186 TYPE_VECTOR (array_type) = 1;
1187 }
1188
1189 struct type *
1190 init_vector_type (struct type *elt_type, int n)
1191 {
1192 struct type *array_type;
1193
1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1195 make_vector_type (array_type);
1196 return array_type;
1197 }
1198
1199 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205 struct type *
1206 internal_type_self_type (struct type *type)
1207 {
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224 }
1225
1226 /* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231 void
1232 set_type_self_type (struct type *type, struct type *self_type)
1233 {
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252 }
1253
1254 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
1260
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
1263 allocated. */
1264
1265 void
1266 smash_to_memberptr_type (struct type *type, struct type *self_type,
1267 struct type *to_type)
1268 {
1269 smash_type (type);
1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1271 TYPE_TARGET_TYPE (type) = to_type;
1272 set_type_self_type (type, self_type);
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1277 }
1278
1279 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285 void
1286 smash_to_methodptr_type (struct type *type, struct type *to_type)
1287 {
1288 smash_type (type);
1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1290 TYPE_TARGET_TYPE (type) = to_type;
1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1293 }
1294
1295 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1296 METHOD just means `function that gets an extra "this" argument'.
1297
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
1300 allocated. */
1301
1302 void
1303 smash_to_method_type (struct type *type, struct type *self_type,
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
1306 {
1307 smash_type (type);
1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
1309 TYPE_TARGET_TYPE (type) = to_type;
1310 set_type_self_type (type, self_type);
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
1314 TYPE_VARARGS (type) = 1;
1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1316 }
1317
1318 /* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
1321 const char *
1322 type_name_no_tag (const struct type *type)
1323 {
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
1330 return TYPE_NAME (type);
1331 }
1332
1333 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340 const char *
1341 type_name_no_tag_or_error (struct type *type)
1342 {
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
1358 }
1359
1360 /* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
1363
1364 struct type *
1365 lookup_typename (const struct language_defn *language,
1366 struct gdbarch *gdbarch, const char *name,
1367 const struct block *block, int noerr)
1368 {
1369 struct symbol *sym;
1370 struct type *type;
1371
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
1380 }
1381
1382 struct type *
1383 lookup_unsigned_typename (const struct language_defn *language,
1384 struct gdbarch *gdbarch, const char *name)
1385 {
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1391 }
1392
1393 struct type *
1394 lookup_signed_typename (const struct language_defn *language,
1395 struct gdbarch *gdbarch, const char *name)
1396 {
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
1404 if (t != NULL)
1405 return t;
1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1407 }
1408
1409 /* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412 struct type *
1413 lookup_struct (const char *name, const struct block *block)
1414 {
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1418
1419 if (sym == NULL)
1420 {
1421 error (_("No struct type named %s."), name);
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
1427 }
1428 return (SYMBOL_TYPE (sym));
1429 }
1430
1431 /* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434 struct type *
1435 lookup_union (const char *name, const struct block *block)
1436 {
1437 struct symbol *sym;
1438 struct type *t;
1439
1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1441
1442 if (sym == NULL)
1443 error (_("No union type named %s."), name);
1444
1445 t = SYMBOL_TYPE (sym);
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1448 return t;
1449
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
1453 }
1454
1455 /* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458 struct type *
1459 lookup_enum (const char *name, const struct block *block)
1460 {
1461 struct symbol *sym;
1462
1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1464 if (sym == NULL)
1465 {
1466 error (_("No enum type named %s."), name);
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
1472 }
1473 return (SYMBOL_TYPE (sym));
1474 }
1475
1476 /* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479 struct type *
1480 lookup_template_type (char *name, struct type *type,
1481 const struct block *block)
1482 {
1483 struct symbol *sym;
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1486
1487 strcpy (nam, name);
1488 strcat (nam, "<");
1489 strcat (nam, TYPE_NAME (type));
1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1491
1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1493
1494 if (sym == NULL)
1495 {
1496 error (_("No template type named %s."), name);
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
1502 }
1503 return (SYMBOL_TYPE (sym));
1504 }
1505
1506 /* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
1508
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518 struct type *
1519 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1520 {
1521 int i;
1522 char *type_name;
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
1535 {
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
1539 }
1540
1541 #if 0
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1545 foo; } bell;" Disabled by fnf. */
1546 {
1547 char *type_name;
1548
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
1551 return type;
1552 }
1553 #endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1558
1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
1568 if (subtype != NULL)
1569 return subtype;
1570 }
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
1589
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
1593 }
1594
1595 /* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598 void
1599 get_unsigned_type_max (struct type *type, ULONGEST *max)
1600 {
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610 }
1611
1612 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615 void
1616 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617 {
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627 }
1628
1629 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636 int
1637 internal_type_vptr_fieldno (struct type *type)
1638 {
1639 CHECK_TYPEDEF (type);
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645 }
1646
1647 /* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649 void
1650 set_type_vptr_fieldno (struct type *type, int fieldno)
1651 {
1652 CHECK_TYPEDEF (type);
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658 }
1659
1660 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663 struct type *
1664 internal_type_vptr_basetype (struct type *type)
1665 {
1666 CHECK_TYPEDEF (type);
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671 }
1672
1673 /* Set the value of cplus_stuff.vptr_basetype. */
1674
1675 void
1676 set_type_vptr_basetype (struct type *type, struct type *basetype)
1677 {
1678 CHECK_TYPEDEF (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684 }
1685
1686 /* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
1692 the type or one of its baseclasses is a stub type and we are
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
1695 virtual function table pointer, and vptr_fieldno will remain -1 and
1696 vptr_basetype will remain NULL or incomplete. */
1697
1698 int
1699 get_vptr_fieldno (struct type *type, struct type **basetypep)
1700 {
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
1717 {
1718 /* If the type comes from a different objfile we can't cache
1719 it, it may have a different lifetime. PR 2384 */
1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1721 {
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
1728 }
1729 }
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
1739 }
1740 }
1741
1742 static void
1743 stub_noname_complaint (void)
1744 {
1745 complaint (&symfile_complaints, _("stub type has NULL name"));
1746 }
1747
1748 /* Worker for is_dynamic_type. */
1749
1750 static int
1751 is_dynamic_type_internal (struct type *type, int top_level)
1752 {
1753 type = check_typedef (type);
1754
1755 /* We only want to recognize references at the outermost level. */
1756 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1757 type = check_typedef (TYPE_TARGET_TYPE (type));
1758
1759 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1760 dynamic, even if the type itself is statically defined.
1761 From a user's point of view, this may appear counter-intuitive;
1762 but it makes sense in this context, because the point is to determine
1763 whether any part of the type needs to be resolved before it can
1764 be exploited. */
1765 if (TYPE_DATA_LOCATION (type) != NULL
1766 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1767 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1768 return 1;
1769
1770 switch (TYPE_CODE (type))
1771 {
1772 case TYPE_CODE_RANGE:
1773 {
1774 /* A range type is obviously dynamic if it has at least one
1775 dynamic bound. But also consider the range type to be
1776 dynamic when its subtype is dynamic, even if the bounds
1777 of the range type are static. It allows us to assume that
1778 the subtype of a static range type is also static. */
1779 return (!has_static_range (TYPE_RANGE_DATA (type))
1780 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1781 }
1782
1783 case TYPE_CODE_ARRAY:
1784 {
1785 gdb_assert (TYPE_NFIELDS (type) == 1);
1786
1787 /* The array is dynamic if either the bounds are dynamic,
1788 or the elements it contains have a dynamic contents. */
1789 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1790 return 1;
1791 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1792 }
1793
1794 case TYPE_CODE_STRUCT:
1795 case TYPE_CODE_UNION:
1796 {
1797 int i;
1798
1799 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1800 if (!field_is_static (&TYPE_FIELD (type, i))
1801 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1802 return 1;
1803 }
1804 break;
1805 }
1806
1807 return 0;
1808 }
1809
1810 /* See gdbtypes.h. */
1811
1812 int
1813 is_dynamic_type (struct type *type)
1814 {
1815 return is_dynamic_type_internal (type, 1);
1816 }
1817
1818 static struct type *resolve_dynamic_type_internal
1819 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1820
1821 /* Given a dynamic range type (dyn_range_type) and a stack of
1822 struct property_addr_info elements, return a static version
1823 of that type. */
1824
1825 static struct type *
1826 resolve_dynamic_range (struct type *dyn_range_type,
1827 struct property_addr_info *addr_stack)
1828 {
1829 CORE_ADDR value;
1830 struct type *static_range_type, *static_target_type;
1831 const struct dynamic_prop *prop;
1832 const struct dwarf2_locexpr_baton *baton;
1833 struct dynamic_prop low_bound, high_bound;
1834
1835 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1836
1837 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1838 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1839 {
1840 low_bound.kind = PROP_CONST;
1841 low_bound.data.const_val = value;
1842 }
1843 else
1844 {
1845 low_bound.kind = PROP_UNDEFINED;
1846 low_bound.data.const_val = 0;
1847 }
1848
1849 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1850 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1851 {
1852 high_bound.kind = PROP_CONST;
1853 high_bound.data.const_val = value;
1854
1855 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1856 high_bound.data.const_val
1857 = low_bound.data.const_val + high_bound.data.const_val - 1;
1858 }
1859 else
1860 {
1861 high_bound.kind = PROP_UNDEFINED;
1862 high_bound.data.const_val = 0;
1863 }
1864
1865 static_target_type
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1867 addr_stack, 0);
1868 static_range_type = create_range_type (copy_type (dyn_range_type),
1869 static_target_type,
1870 &low_bound, &high_bound);
1871 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1872 return static_range_type;
1873 }
1874
1875 /* Resolves dynamic bound values of an array type TYPE to static ones.
1876 ADDR_STACK is a stack of struct property_addr_info to be used
1877 if needed during the dynamic resolution. */
1878
1879 static struct type *
1880 resolve_dynamic_array (struct type *type,
1881 struct property_addr_info *addr_stack)
1882 {
1883 CORE_ADDR value;
1884 struct type *elt_type;
1885 struct type *range_type;
1886 struct type *ary_dim;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1889
1890 elt_type = type;
1891 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1892 range_type = resolve_dynamic_range (range_type, addr_stack);
1893
1894 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1895
1896 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1897 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1898 else
1899 elt_type = TYPE_TARGET_TYPE (type);
1900
1901 return create_array_type (copy_type (type),
1902 elt_type,
1903 range_type);
1904 }
1905
1906 /* Resolve dynamic bounds of members of the union TYPE to static
1907 bounds. ADDR_STACK is a stack of struct property_addr_info
1908 to be used if needed during the dynamic resolution. */
1909
1910 static struct type *
1911 resolve_dynamic_union (struct type *type,
1912 struct property_addr_info *addr_stack)
1913 {
1914 struct type *resolved_type;
1915 int i;
1916 unsigned int max_len = 0;
1917
1918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1919
1920 resolved_type = copy_type (type);
1921 TYPE_FIELDS (resolved_type)
1922 = TYPE_ALLOC (resolved_type,
1923 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1924 memcpy (TYPE_FIELDS (resolved_type),
1925 TYPE_FIELDS (type),
1926 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1927 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1928 {
1929 struct type *t;
1930
1931 if (field_is_static (&TYPE_FIELD (type, i)))
1932 continue;
1933
1934 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1935 addr_stack, 0);
1936 TYPE_FIELD_TYPE (resolved_type, i) = t;
1937 if (TYPE_LENGTH (t) > max_len)
1938 max_len = TYPE_LENGTH (t);
1939 }
1940
1941 TYPE_LENGTH (resolved_type) = max_len;
1942 return resolved_type;
1943 }
1944
1945 /* Resolve dynamic bounds of members of the struct TYPE to static
1946 bounds. ADDR_STACK is a stack of struct property_addr_info to
1947 be used if needed during the dynamic resolution. */
1948
1949 static struct type *
1950 resolve_dynamic_struct (struct type *type,
1951 struct property_addr_info *addr_stack)
1952 {
1953 struct type *resolved_type;
1954 int i;
1955 unsigned resolved_type_bit_length = 0;
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1958 gdb_assert (TYPE_NFIELDS (type) > 0);
1959
1960 resolved_type = copy_type (type);
1961 TYPE_FIELDS (resolved_type)
1962 = TYPE_ALLOC (resolved_type,
1963 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1964 memcpy (TYPE_FIELDS (resolved_type),
1965 TYPE_FIELDS (type),
1966 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1967 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1968 {
1969 unsigned new_bit_length;
1970 struct property_addr_info pinfo;
1971
1972 if (field_is_static (&TYPE_FIELD (type, i)))
1973 continue;
1974
1975 /* As we know this field is not a static field, the field's
1976 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1977 this is the case, but only trigger a simple error rather
1978 than an internal error if that fails. While failing
1979 that verification indicates a bug in our code, the error
1980 is not severe enough to suggest to the user he stops
1981 his debugging session because of it. */
1982 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1983 error (_("Cannot determine struct field location"
1984 " (invalid location kind)"));
1985
1986 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1987 pinfo.addr = addr_stack->addr;
1988 pinfo.next = addr_stack;
1989
1990 TYPE_FIELD_TYPE (resolved_type, i)
1991 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1992 &pinfo, 0);
1993 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1994 == FIELD_LOC_KIND_BITPOS);
1995
1996 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1997 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1998 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1999 else
2000 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2001 * TARGET_CHAR_BIT);
2002
2003 /* Normally, we would use the position and size of the last field
2004 to determine the size of the enclosing structure. But GCC seems
2005 to be encoding the position of some fields incorrectly when
2006 the struct contains a dynamic field that is not placed last.
2007 So we compute the struct size based on the field that has
2008 the highest position + size - probably the best we can do. */
2009 if (new_bit_length > resolved_type_bit_length)
2010 resolved_type_bit_length = new_bit_length;
2011 }
2012
2013 TYPE_LENGTH (resolved_type)
2014 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2015
2016 return resolved_type;
2017 }
2018
2019 /* Worker for resolved_dynamic_type. */
2020
2021 static struct type *
2022 resolve_dynamic_type_internal (struct type *type,
2023 struct property_addr_info *addr_stack,
2024 int top_level)
2025 {
2026 struct type *real_type = check_typedef (type);
2027 struct type *resolved_type = type;
2028 struct dynamic_prop *prop;
2029 CORE_ADDR value;
2030
2031 if (!is_dynamic_type_internal (real_type, top_level))
2032 return type;
2033
2034 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2035 {
2036 resolved_type = copy_type (type);
2037 TYPE_TARGET_TYPE (resolved_type)
2038 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2039 top_level);
2040 }
2041 else
2042 {
2043 /* Before trying to resolve TYPE, make sure it is not a stub. */
2044 type = real_type;
2045
2046 switch (TYPE_CODE (type))
2047 {
2048 case TYPE_CODE_REF:
2049 {
2050 struct property_addr_info pinfo;
2051
2052 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2053 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2054 pinfo.next = addr_stack;
2055
2056 resolved_type = copy_type (type);
2057 TYPE_TARGET_TYPE (resolved_type)
2058 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2059 &pinfo, top_level);
2060 break;
2061 }
2062
2063 case TYPE_CODE_ARRAY:
2064 resolved_type = resolve_dynamic_array (type, addr_stack);
2065 break;
2066
2067 case TYPE_CODE_RANGE:
2068 resolved_type = resolve_dynamic_range (type, addr_stack);
2069 break;
2070
2071 case TYPE_CODE_UNION:
2072 resolved_type = resolve_dynamic_union (type, addr_stack);
2073 break;
2074
2075 case TYPE_CODE_STRUCT:
2076 resolved_type = resolve_dynamic_struct (type, addr_stack);
2077 break;
2078 }
2079 }
2080
2081 /* Resolve data_location attribute. */
2082 prop = TYPE_DATA_LOCATION (resolved_type);
2083 if (prop != NULL && dwarf2_evaluate_property (prop, addr_stack, &value))
2084 {
2085 TYPE_DYN_PROP_ADDR (prop) = value;
2086 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2087 }
2088
2089 return resolved_type;
2090 }
2091
2092 /* See gdbtypes.h */
2093
2094 struct type *
2095 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2096 {
2097 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2098
2099 return resolve_dynamic_type_internal (type, &pinfo, 1);
2100 }
2101
2102 /* See gdbtypes.h */
2103
2104 struct dynamic_prop *
2105 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2106 {
2107 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2108
2109 while (node != NULL)
2110 {
2111 if (node->prop_kind == prop_kind)
2112 return &node->prop;
2113 node = node->next;
2114 }
2115 return NULL;
2116 }
2117
2118 /* See gdbtypes.h */
2119
2120 void
2121 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2122 struct type *type, struct objfile *objfile)
2123 {
2124 struct dynamic_prop_list *temp;
2125
2126 gdb_assert (TYPE_OBJFILE_OWNED (type));
2127
2128 temp = obstack_alloc (&objfile->objfile_obstack,
2129 sizeof (struct dynamic_prop_list));
2130 temp->prop_kind = prop_kind;
2131 temp->prop = prop;
2132 temp->next = TYPE_DYN_PROP_LIST (type);
2133
2134 TYPE_DYN_PROP_LIST (type) = temp;
2135 }
2136
2137
2138 /* Find the real type of TYPE. This function returns the real type,
2139 after removing all layers of typedefs, and completing opaque or stub
2140 types. Completion changes the TYPE argument, but stripping of
2141 typedefs does not.
2142
2143 Instance flags (e.g. const/volatile) are preserved as typedefs are
2144 stripped. If necessary a new qualified form of the underlying type
2145 is created.
2146
2147 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2148 not been computed and we're either in the middle of reading symbols, or
2149 there was no name for the typedef in the debug info.
2150
2151 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2152 QUITs in the symbol reading code can also throw.
2153 Thus this function can throw an exception.
2154
2155 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2156 the target type.
2157
2158 If this is a stubbed struct (i.e. declared as struct foo *), see if
2159 we can find a full definition in some other file. If so, copy this
2160 definition, so we can use it in future. There used to be a comment
2161 (but not any code) that if we don't find a full definition, we'd
2162 set a flag so we don't spend time in the future checking the same
2163 type. That would be a mistake, though--we might load in more
2164 symbols which contain a full definition for the type. */
2165
2166 struct type *
2167 check_typedef (struct type *type)
2168 {
2169 struct type *orig_type = type;
2170 /* While we're removing typedefs, we don't want to lose qualifiers.
2171 E.g., const/volatile. */
2172 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2173
2174 gdb_assert (type);
2175
2176 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2177 {
2178 if (!TYPE_TARGET_TYPE (type))
2179 {
2180 const char *name;
2181 struct symbol *sym;
2182
2183 /* It is dangerous to call lookup_symbol if we are currently
2184 reading a symtab. Infinite recursion is one danger. */
2185 if (currently_reading_symtab)
2186 return make_qualified_type (type, instance_flags, NULL);
2187
2188 name = type_name_no_tag (type);
2189 /* FIXME: shouldn't we separately check the TYPE_NAME and
2190 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2191 VAR_DOMAIN as appropriate? (this code was written before
2192 TYPE_NAME and TYPE_TAG_NAME were separate). */
2193 if (name == NULL)
2194 {
2195 stub_noname_complaint ();
2196 return make_qualified_type (type, instance_flags, NULL);
2197 }
2198 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2199 if (sym)
2200 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2201 else /* TYPE_CODE_UNDEF */
2202 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2203 }
2204 type = TYPE_TARGET_TYPE (type);
2205
2206 /* Preserve the instance flags as we traverse down the typedef chain.
2207
2208 Handling address spaces/classes is nasty, what do we do if there's a
2209 conflict?
2210 E.g., what if an outer typedef marks the type as class_1 and an inner
2211 typedef marks the type as class_2?
2212 This is the wrong place to do such error checking. We leave it to
2213 the code that created the typedef in the first place to flag the
2214 error. We just pick the outer address space (akin to letting the
2215 outer cast in a chain of casting win), instead of assuming
2216 "it can't happen". */
2217 {
2218 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2219 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2220 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2221 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2222
2223 /* Treat code vs data spaces and address classes separately. */
2224 if ((instance_flags & ALL_SPACES) != 0)
2225 new_instance_flags &= ~ALL_SPACES;
2226 if ((instance_flags & ALL_CLASSES) != 0)
2227 new_instance_flags &= ~ALL_CLASSES;
2228
2229 instance_flags |= new_instance_flags;
2230 }
2231 }
2232
2233 /* If this is a struct/class/union with no fields, then check
2234 whether a full definition exists somewhere else. This is for
2235 systems where a type definition with no fields is issued for such
2236 types, instead of identifying them as stub types in the first
2237 place. */
2238
2239 if (TYPE_IS_OPAQUE (type)
2240 && opaque_type_resolution
2241 && !currently_reading_symtab)
2242 {
2243 const char *name = type_name_no_tag (type);
2244 struct type *newtype;
2245
2246 if (name == NULL)
2247 {
2248 stub_noname_complaint ();
2249 return make_qualified_type (type, instance_flags, NULL);
2250 }
2251 newtype = lookup_transparent_type (name);
2252
2253 if (newtype)
2254 {
2255 /* If the resolved type and the stub are in the same
2256 objfile, then replace the stub type with the real deal.
2257 But if they're in separate objfiles, leave the stub
2258 alone; we'll just look up the transparent type every time
2259 we call check_typedef. We can't create pointers between
2260 types allocated to different objfiles, since they may
2261 have different lifetimes. Trying to copy NEWTYPE over to
2262 TYPE's objfile is pointless, too, since you'll have to
2263 move over any other types NEWTYPE refers to, which could
2264 be an unbounded amount of stuff. */
2265 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2266 type = make_qualified_type (newtype,
2267 TYPE_INSTANCE_FLAGS (type),
2268 type);
2269 else
2270 type = newtype;
2271 }
2272 }
2273 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2274 types. */
2275 else if (TYPE_STUB (type) && !currently_reading_symtab)
2276 {
2277 const char *name = type_name_no_tag (type);
2278 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2279 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2280 as appropriate? (this code was written before TYPE_NAME and
2281 TYPE_TAG_NAME were separate). */
2282 struct symbol *sym;
2283
2284 if (name == NULL)
2285 {
2286 stub_noname_complaint ();
2287 return make_qualified_type (type, instance_flags, NULL);
2288 }
2289 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2290 if (sym)
2291 {
2292 /* Same as above for opaque types, we can replace the stub
2293 with the complete type only if they are in the same
2294 objfile. */
2295 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2296 type = make_qualified_type (SYMBOL_TYPE (sym),
2297 TYPE_INSTANCE_FLAGS (type),
2298 type);
2299 else
2300 type = SYMBOL_TYPE (sym);
2301 }
2302 }
2303
2304 if (TYPE_TARGET_STUB (type))
2305 {
2306 struct type *range_type;
2307 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2308
2309 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2310 {
2311 /* Nothing we can do. */
2312 }
2313 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2314 {
2315 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2316 TYPE_TARGET_STUB (type) = 0;
2317 }
2318 }
2319
2320 type = make_qualified_type (type, instance_flags, NULL);
2321
2322 /* Cache TYPE_LENGTH for future use. */
2323 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2324
2325 return type;
2326 }
2327
2328 /* Parse a type expression in the string [P..P+LENGTH). If an error
2329 occurs, silently return a void type. */
2330
2331 static struct type *
2332 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2333 {
2334 struct ui_file *saved_gdb_stderr;
2335 struct type *type = NULL; /* Initialize to keep gcc happy. */
2336
2337 /* Suppress error messages. */
2338 saved_gdb_stderr = gdb_stderr;
2339 gdb_stderr = ui_file_new ();
2340
2341 /* Call parse_and_eval_type() without fear of longjmp()s. */
2342 TRY
2343 {
2344 type = parse_and_eval_type (p, length);
2345 }
2346 CATCH (except, RETURN_MASK_ERROR)
2347 {
2348 type = builtin_type (gdbarch)->builtin_void;
2349 }
2350 END_CATCH
2351
2352 /* Stop suppressing error messages. */
2353 ui_file_delete (gdb_stderr);
2354 gdb_stderr = saved_gdb_stderr;
2355
2356 return type;
2357 }
2358
2359 /* Ugly hack to convert method stubs into method types.
2360
2361 He ain't kiddin'. This demangles the name of the method into a
2362 string including argument types, parses out each argument type,
2363 generates a string casting a zero to that type, evaluates the
2364 string, and stuffs the resulting type into an argtype vector!!!
2365 Then it knows the type of the whole function (including argument
2366 types for overloading), which info used to be in the stab's but was
2367 removed to hack back the space required for them. */
2368
2369 static void
2370 check_stub_method (struct type *type, int method_id, int signature_id)
2371 {
2372 struct gdbarch *gdbarch = get_type_arch (type);
2373 struct fn_field *f;
2374 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2375 char *demangled_name = gdb_demangle (mangled_name,
2376 DMGL_PARAMS | DMGL_ANSI);
2377 char *argtypetext, *p;
2378 int depth = 0, argcount = 1;
2379 struct field *argtypes;
2380 struct type *mtype;
2381
2382 /* Make sure we got back a function string that we can use. */
2383 if (demangled_name)
2384 p = strchr (demangled_name, '(');
2385 else
2386 p = NULL;
2387
2388 if (demangled_name == NULL || p == NULL)
2389 error (_("Internal: Cannot demangle mangled name `%s'."),
2390 mangled_name);
2391
2392 /* Now, read in the parameters that define this type. */
2393 p += 1;
2394 argtypetext = p;
2395 while (*p)
2396 {
2397 if (*p == '(' || *p == '<')
2398 {
2399 depth += 1;
2400 }
2401 else if (*p == ')' || *p == '>')
2402 {
2403 depth -= 1;
2404 }
2405 else if (*p == ',' && depth == 0)
2406 {
2407 argcount += 1;
2408 }
2409
2410 p += 1;
2411 }
2412
2413 /* If we read one argument and it was ``void'', don't count it. */
2414 if (startswith (argtypetext, "(void)"))
2415 argcount -= 1;
2416
2417 /* We need one extra slot, for the THIS pointer. */
2418
2419 argtypes = (struct field *)
2420 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2421 p = argtypetext;
2422
2423 /* Add THIS pointer for non-static methods. */
2424 f = TYPE_FN_FIELDLIST1 (type, method_id);
2425 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2426 argcount = 0;
2427 else
2428 {
2429 argtypes[0].type = lookup_pointer_type (type);
2430 argcount = 1;
2431 }
2432
2433 if (*p != ')') /* () means no args, skip while. */
2434 {
2435 depth = 0;
2436 while (*p)
2437 {
2438 if (depth <= 0 && (*p == ',' || *p == ')'))
2439 {
2440 /* Avoid parsing of ellipsis, they will be handled below.
2441 Also avoid ``void'' as above. */
2442 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2443 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2444 {
2445 argtypes[argcount].type =
2446 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2447 argcount += 1;
2448 }
2449 argtypetext = p + 1;
2450 }
2451
2452 if (*p == '(' || *p == '<')
2453 {
2454 depth += 1;
2455 }
2456 else if (*p == ')' || *p == '>')
2457 {
2458 depth -= 1;
2459 }
2460
2461 p += 1;
2462 }
2463 }
2464
2465 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2466
2467 /* Now update the old "stub" type into a real type. */
2468 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2469 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2470 We want a method (TYPE_CODE_METHOD). */
2471 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2472 argtypes, argcount, p[-2] == '.');
2473 TYPE_STUB (mtype) = 0;
2474 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2475
2476 xfree (demangled_name);
2477 }
2478
2479 /* This is the external interface to check_stub_method, above. This
2480 function unstubs all of the signatures for TYPE's METHOD_ID method
2481 name. After calling this function TYPE_FN_FIELD_STUB will be
2482 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2483 correct.
2484
2485 This function unfortunately can not die until stabs do. */
2486
2487 void
2488 check_stub_method_group (struct type *type, int method_id)
2489 {
2490 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2491 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2492 int j, found_stub = 0;
2493
2494 for (j = 0; j < len; j++)
2495 if (TYPE_FN_FIELD_STUB (f, j))
2496 {
2497 found_stub = 1;
2498 check_stub_method (type, method_id, j);
2499 }
2500
2501 /* GNU v3 methods with incorrect names were corrected when we read
2502 in type information, because it was cheaper to do it then. The
2503 only GNU v2 methods with incorrect method names are operators and
2504 destructors; destructors were also corrected when we read in type
2505 information.
2506
2507 Therefore the only thing we need to handle here are v2 operator
2508 names. */
2509 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2510 {
2511 int ret;
2512 char dem_opname[256];
2513
2514 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2515 method_id),
2516 dem_opname, DMGL_ANSI);
2517 if (!ret)
2518 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2519 method_id),
2520 dem_opname, 0);
2521 if (ret)
2522 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2523 }
2524 }
2525
2526 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2527 const struct cplus_struct_type cplus_struct_default = { };
2528
2529 void
2530 allocate_cplus_struct_type (struct type *type)
2531 {
2532 if (HAVE_CPLUS_STRUCT (type))
2533 /* Structure was already allocated. Nothing more to do. */
2534 return;
2535
2536 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2537 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2538 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2539 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2540 set_type_vptr_fieldno (type, -1);
2541 }
2542
2543 const struct gnat_aux_type gnat_aux_default =
2544 { NULL };
2545
2546 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2547 and allocate the associated gnat-specific data. The gnat-specific
2548 data is also initialized to gnat_aux_default. */
2549
2550 void
2551 allocate_gnat_aux_type (struct type *type)
2552 {
2553 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2554 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2555 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2556 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2557 }
2558
2559 /* Helper function to initialize the standard scalar types.
2560
2561 If NAME is non-NULL, then it is used to initialize the type name.
2562 Note that NAME is not copied; it is required to have a lifetime at
2563 least as long as OBJFILE. */
2564
2565 struct type *
2566 init_type (enum type_code code, int length, int flags,
2567 const char *name, struct objfile *objfile)
2568 {
2569 struct type *type;
2570
2571 type = alloc_type (objfile);
2572 TYPE_CODE (type) = code;
2573 TYPE_LENGTH (type) = length;
2574
2575 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2576 if (flags & TYPE_FLAG_UNSIGNED)
2577 TYPE_UNSIGNED (type) = 1;
2578 if (flags & TYPE_FLAG_NOSIGN)
2579 TYPE_NOSIGN (type) = 1;
2580 if (flags & TYPE_FLAG_STUB)
2581 TYPE_STUB (type) = 1;
2582 if (flags & TYPE_FLAG_TARGET_STUB)
2583 TYPE_TARGET_STUB (type) = 1;
2584 if (flags & TYPE_FLAG_STATIC)
2585 TYPE_STATIC (type) = 1;
2586 if (flags & TYPE_FLAG_PROTOTYPED)
2587 TYPE_PROTOTYPED (type) = 1;
2588 if (flags & TYPE_FLAG_INCOMPLETE)
2589 TYPE_INCOMPLETE (type) = 1;
2590 if (flags & TYPE_FLAG_VARARGS)
2591 TYPE_VARARGS (type) = 1;
2592 if (flags & TYPE_FLAG_VECTOR)
2593 TYPE_VECTOR (type) = 1;
2594 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2595 TYPE_STUB_SUPPORTED (type) = 1;
2596 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2597 TYPE_FIXED_INSTANCE (type) = 1;
2598 if (flags & TYPE_FLAG_GNU_IFUNC)
2599 TYPE_GNU_IFUNC (type) = 1;
2600
2601 TYPE_NAME (type) = name;
2602
2603 /* C++ fancies. */
2604
2605 if (name && strcmp (name, "char") == 0)
2606 TYPE_NOSIGN (type) = 1;
2607
2608 switch (code)
2609 {
2610 case TYPE_CODE_STRUCT:
2611 case TYPE_CODE_UNION:
2612 case TYPE_CODE_NAMESPACE:
2613 INIT_CPLUS_SPECIFIC (type);
2614 break;
2615 case TYPE_CODE_FLT:
2616 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2617 break;
2618 case TYPE_CODE_FUNC:
2619 INIT_FUNC_SPECIFIC (type);
2620 break;
2621 }
2622 return type;
2623 }
2624 \f
2625 /* Queries on types. */
2626
2627 int
2628 can_dereference (struct type *t)
2629 {
2630 /* FIXME: Should we return true for references as well as
2631 pointers? */
2632 CHECK_TYPEDEF (t);
2633 return
2634 (t != NULL
2635 && TYPE_CODE (t) == TYPE_CODE_PTR
2636 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2637 }
2638
2639 int
2640 is_integral_type (struct type *t)
2641 {
2642 CHECK_TYPEDEF (t);
2643 return
2644 ((t != NULL)
2645 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2646 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2647 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2648 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2649 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2650 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2651 }
2652
2653 /* Return true if TYPE is scalar. */
2654
2655 static int
2656 is_scalar_type (struct type *type)
2657 {
2658 CHECK_TYPEDEF (type);
2659
2660 switch (TYPE_CODE (type))
2661 {
2662 case TYPE_CODE_ARRAY:
2663 case TYPE_CODE_STRUCT:
2664 case TYPE_CODE_UNION:
2665 case TYPE_CODE_SET:
2666 case TYPE_CODE_STRING:
2667 return 0;
2668 default:
2669 return 1;
2670 }
2671 }
2672
2673 /* Return true if T is scalar, or a composite type which in practice has
2674 the memory layout of a scalar type. E.g., an array or struct with only
2675 one scalar element inside it, or a union with only scalar elements. */
2676
2677 int
2678 is_scalar_type_recursive (struct type *t)
2679 {
2680 CHECK_TYPEDEF (t);
2681
2682 if (is_scalar_type (t))
2683 return 1;
2684 /* Are we dealing with an array or string of known dimensions? */
2685 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2686 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2687 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2688 {
2689 LONGEST low_bound, high_bound;
2690 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2691
2692 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2693
2694 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2695 }
2696 /* Are we dealing with a struct with one element? */
2697 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2698 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2699 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2700 {
2701 int i, n = TYPE_NFIELDS (t);
2702
2703 /* If all elements of the union are scalar, then the union is scalar. */
2704 for (i = 0; i < n; i++)
2705 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2706 return 0;
2707
2708 return 1;
2709 }
2710
2711 return 0;
2712 }
2713
2714 /* Return true is T is a class or a union. False otherwise. */
2715
2716 int
2717 class_or_union_p (const struct type *t)
2718 {
2719 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2720 || TYPE_CODE (t) == TYPE_CODE_UNION);
2721 }
2722
2723 /* A helper function which returns true if types A and B represent the
2724 "same" class type. This is true if the types have the same main
2725 type, or the same name. */
2726
2727 int
2728 class_types_same_p (const struct type *a, const struct type *b)
2729 {
2730 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2731 || (TYPE_NAME (a) && TYPE_NAME (b)
2732 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2733 }
2734
2735 /* If BASE is an ancestor of DCLASS return the distance between them.
2736 otherwise return -1;
2737 eg:
2738
2739 class A {};
2740 class B: public A {};
2741 class C: public B {};
2742 class D: C {};
2743
2744 distance_to_ancestor (A, A, 0) = 0
2745 distance_to_ancestor (A, B, 0) = 1
2746 distance_to_ancestor (A, C, 0) = 2
2747 distance_to_ancestor (A, D, 0) = 3
2748
2749 If PUBLIC is 1 then only public ancestors are considered,
2750 and the function returns the distance only if BASE is a public ancestor
2751 of DCLASS.
2752 Eg:
2753
2754 distance_to_ancestor (A, D, 1) = -1. */
2755
2756 static int
2757 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2758 {
2759 int i;
2760 int d;
2761
2762 CHECK_TYPEDEF (base);
2763 CHECK_TYPEDEF (dclass);
2764
2765 if (class_types_same_p (base, dclass))
2766 return 0;
2767
2768 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2769 {
2770 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2771 continue;
2772
2773 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2774 if (d >= 0)
2775 return 1 + d;
2776 }
2777
2778 return -1;
2779 }
2780
2781 /* Check whether BASE is an ancestor or base class or DCLASS
2782 Return 1 if so, and 0 if not.
2783 Note: If BASE and DCLASS are of the same type, this function
2784 will return 1. So for some class A, is_ancestor (A, A) will
2785 return 1. */
2786
2787 int
2788 is_ancestor (struct type *base, struct type *dclass)
2789 {
2790 return distance_to_ancestor (base, dclass, 0) >= 0;
2791 }
2792
2793 /* Like is_ancestor, but only returns true when BASE is a public
2794 ancestor of DCLASS. */
2795
2796 int
2797 is_public_ancestor (struct type *base, struct type *dclass)
2798 {
2799 return distance_to_ancestor (base, dclass, 1) >= 0;
2800 }
2801
2802 /* A helper function for is_unique_ancestor. */
2803
2804 static int
2805 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2806 int *offset,
2807 const gdb_byte *valaddr, int embedded_offset,
2808 CORE_ADDR address, struct value *val)
2809 {
2810 int i, count = 0;
2811
2812 CHECK_TYPEDEF (base);
2813 CHECK_TYPEDEF (dclass);
2814
2815 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2816 {
2817 struct type *iter;
2818 int this_offset;
2819
2820 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2821
2822 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2823 address, val);
2824
2825 if (class_types_same_p (base, iter))
2826 {
2827 /* If this is the first subclass, set *OFFSET and set count
2828 to 1. Otherwise, if this is at the same offset as
2829 previous instances, do nothing. Otherwise, increment
2830 count. */
2831 if (*offset == -1)
2832 {
2833 *offset = this_offset;
2834 count = 1;
2835 }
2836 else if (this_offset == *offset)
2837 {
2838 /* Nothing. */
2839 }
2840 else
2841 ++count;
2842 }
2843 else
2844 count += is_unique_ancestor_worker (base, iter, offset,
2845 valaddr,
2846 embedded_offset + this_offset,
2847 address, val);
2848 }
2849
2850 return count;
2851 }
2852
2853 /* Like is_ancestor, but only returns true if BASE is a unique base
2854 class of the type of VAL. */
2855
2856 int
2857 is_unique_ancestor (struct type *base, struct value *val)
2858 {
2859 int offset = -1;
2860
2861 return is_unique_ancestor_worker (base, value_type (val), &offset,
2862 value_contents_for_printing (val),
2863 value_embedded_offset (val),
2864 value_address (val), val) == 1;
2865 }
2866
2867 \f
2868 /* Overload resolution. */
2869
2870 /* Return the sum of the rank of A with the rank of B. */
2871
2872 struct rank
2873 sum_ranks (struct rank a, struct rank b)
2874 {
2875 struct rank c;
2876 c.rank = a.rank + b.rank;
2877 c.subrank = a.subrank + b.subrank;
2878 return c;
2879 }
2880
2881 /* Compare rank A and B and return:
2882 0 if a = b
2883 1 if a is better than b
2884 -1 if b is better than a. */
2885
2886 int
2887 compare_ranks (struct rank a, struct rank b)
2888 {
2889 if (a.rank == b.rank)
2890 {
2891 if (a.subrank == b.subrank)
2892 return 0;
2893 if (a.subrank < b.subrank)
2894 return 1;
2895 if (a.subrank > b.subrank)
2896 return -1;
2897 }
2898
2899 if (a.rank < b.rank)
2900 return 1;
2901
2902 /* a.rank > b.rank */
2903 return -1;
2904 }
2905
2906 /* Functions for overload resolution begin here. */
2907
2908 /* Compare two badness vectors A and B and return the result.
2909 0 => A and B are identical
2910 1 => A and B are incomparable
2911 2 => A is better than B
2912 3 => A is worse than B */
2913
2914 int
2915 compare_badness (struct badness_vector *a, struct badness_vector *b)
2916 {
2917 int i;
2918 int tmp;
2919 short found_pos = 0; /* any positives in c? */
2920 short found_neg = 0; /* any negatives in c? */
2921
2922 /* differing lengths => incomparable */
2923 if (a->length != b->length)
2924 return 1;
2925
2926 /* Subtract b from a */
2927 for (i = 0; i < a->length; i++)
2928 {
2929 tmp = compare_ranks (b->rank[i], a->rank[i]);
2930 if (tmp > 0)
2931 found_pos = 1;
2932 else if (tmp < 0)
2933 found_neg = 1;
2934 }
2935
2936 if (found_pos)
2937 {
2938 if (found_neg)
2939 return 1; /* incomparable */
2940 else
2941 return 3; /* A > B */
2942 }
2943 else
2944 /* no positives */
2945 {
2946 if (found_neg)
2947 return 2; /* A < B */
2948 else
2949 return 0; /* A == B */
2950 }
2951 }
2952
2953 /* Rank a function by comparing its parameter types (PARMS, length
2954 NPARMS), to the types of an argument list (ARGS, length NARGS).
2955 Return a pointer to a badness vector. This has NARGS + 1
2956 entries. */
2957
2958 struct badness_vector *
2959 rank_function (struct type **parms, int nparms,
2960 struct value **args, int nargs)
2961 {
2962 int i;
2963 struct badness_vector *bv;
2964 int min_len = nparms < nargs ? nparms : nargs;
2965
2966 bv = xmalloc (sizeof (struct badness_vector));
2967 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2968 bv->rank = XNEWVEC (struct rank, nargs + 1);
2969
2970 /* First compare the lengths of the supplied lists.
2971 If there is a mismatch, set it to a high value. */
2972
2973 /* pai/1997-06-03 FIXME: when we have debug info about default
2974 arguments and ellipsis parameter lists, we should consider those
2975 and rank the length-match more finely. */
2976
2977 LENGTH_MATCH (bv) = (nargs != nparms)
2978 ? LENGTH_MISMATCH_BADNESS
2979 : EXACT_MATCH_BADNESS;
2980
2981 /* Now rank all the parameters of the candidate function. */
2982 for (i = 1; i <= min_len; i++)
2983 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2984 args[i - 1]);
2985
2986 /* If more arguments than parameters, add dummy entries. */
2987 for (i = min_len + 1; i <= nargs; i++)
2988 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2989
2990 return bv;
2991 }
2992
2993 /* Compare the names of two integer types, assuming that any sign
2994 qualifiers have been checked already. We do it this way because
2995 there may be an "int" in the name of one of the types. */
2996
2997 static int
2998 integer_types_same_name_p (const char *first, const char *second)
2999 {
3000 int first_p, second_p;
3001
3002 /* If both are shorts, return 1; if neither is a short, keep
3003 checking. */
3004 first_p = (strstr (first, "short") != NULL);
3005 second_p = (strstr (second, "short") != NULL);
3006 if (first_p && second_p)
3007 return 1;
3008 if (first_p || second_p)
3009 return 0;
3010
3011 /* Likewise for long. */
3012 first_p = (strstr (first, "long") != NULL);
3013 second_p = (strstr (second, "long") != NULL);
3014 if (first_p && second_p)
3015 return 1;
3016 if (first_p || second_p)
3017 return 0;
3018
3019 /* Likewise for char. */
3020 first_p = (strstr (first, "char") != NULL);
3021 second_p = (strstr (second, "char") != NULL);
3022 if (first_p && second_p)
3023 return 1;
3024 if (first_p || second_p)
3025 return 0;
3026
3027 /* They must both be ints. */
3028 return 1;
3029 }
3030
3031 /* Compares type A to type B returns 1 if the represent the same type
3032 0 otherwise. */
3033
3034 int
3035 types_equal (struct type *a, struct type *b)
3036 {
3037 /* Identical type pointers. */
3038 /* However, this still doesn't catch all cases of same type for b
3039 and a. The reason is that builtin types are different from
3040 the same ones constructed from the object. */
3041 if (a == b)
3042 return 1;
3043
3044 /* Resolve typedefs */
3045 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3046 a = check_typedef (a);
3047 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3048 b = check_typedef (b);
3049
3050 /* If after resolving typedefs a and b are not of the same type
3051 code then they are not equal. */
3052 if (TYPE_CODE (a) != TYPE_CODE (b))
3053 return 0;
3054
3055 /* If a and b are both pointers types or both reference types then
3056 they are equal of the same type iff the objects they refer to are
3057 of the same type. */
3058 if (TYPE_CODE (a) == TYPE_CODE_PTR
3059 || TYPE_CODE (a) == TYPE_CODE_REF)
3060 return types_equal (TYPE_TARGET_TYPE (a),
3061 TYPE_TARGET_TYPE (b));
3062
3063 /* Well, damnit, if the names are exactly the same, I'll say they
3064 are exactly the same. This happens when we generate method
3065 stubs. The types won't point to the same address, but they
3066 really are the same. */
3067
3068 if (TYPE_NAME (a) && TYPE_NAME (b)
3069 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3070 return 1;
3071
3072 /* Check if identical after resolving typedefs. */
3073 if (a == b)
3074 return 1;
3075
3076 /* Two function types are equal if their argument and return types
3077 are equal. */
3078 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3079 {
3080 int i;
3081
3082 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3083 return 0;
3084
3085 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3086 return 0;
3087
3088 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3089 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3090 return 0;
3091
3092 return 1;
3093 }
3094
3095 return 0;
3096 }
3097 \f
3098 /* Deep comparison of types. */
3099
3100 /* An entry in the type-equality bcache. */
3101
3102 typedef struct type_equality_entry
3103 {
3104 struct type *type1, *type2;
3105 } type_equality_entry_d;
3106
3107 DEF_VEC_O (type_equality_entry_d);
3108
3109 /* A helper function to compare two strings. Returns 1 if they are
3110 the same, 0 otherwise. Handles NULLs properly. */
3111
3112 static int
3113 compare_maybe_null_strings (const char *s, const char *t)
3114 {
3115 if (s == NULL && t != NULL)
3116 return 0;
3117 else if (s != NULL && t == NULL)
3118 return 0;
3119 else if (s == NULL && t== NULL)
3120 return 1;
3121 return strcmp (s, t) == 0;
3122 }
3123
3124 /* A helper function for check_types_worklist that checks two types for
3125 "deep" equality. Returns non-zero if the types are considered the
3126 same, zero otherwise. */
3127
3128 static int
3129 check_types_equal (struct type *type1, struct type *type2,
3130 VEC (type_equality_entry_d) **worklist)
3131 {
3132 CHECK_TYPEDEF (type1);
3133 CHECK_TYPEDEF (type2);
3134
3135 if (type1 == type2)
3136 return 1;
3137
3138 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3139 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3140 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3141 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3142 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3143 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3144 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3145 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3146 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3147 return 0;
3148
3149 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3150 TYPE_TAG_NAME (type2)))
3151 return 0;
3152 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3153 return 0;
3154
3155 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3156 {
3157 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3158 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3159 return 0;
3160 }
3161 else
3162 {
3163 int i;
3164
3165 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3166 {
3167 const struct field *field1 = &TYPE_FIELD (type1, i);
3168 const struct field *field2 = &TYPE_FIELD (type2, i);
3169 struct type_equality_entry entry;
3170
3171 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3172 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3173 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3174 return 0;
3175 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3176 FIELD_NAME (*field2)))
3177 return 0;
3178 switch (FIELD_LOC_KIND (*field1))
3179 {
3180 case FIELD_LOC_KIND_BITPOS:
3181 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3182 return 0;
3183 break;
3184 case FIELD_LOC_KIND_ENUMVAL:
3185 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3186 return 0;
3187 break;
3188 case FIELD_LOC_KIND_PHYSADDR:
3189 if (FIELD_STATIC_PHYSADDR (*field1)
3190 != FIELD_STATIC_PHYSADDR (*field2))
3191 return 0;
3192 break;
3193 case FIELD_LOC_KIND_PHYSNAME:
3194 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3195 FIELD_STATIC_PHYSNAME (*field2)))
3196 return 0;
3197 break;
3198 case FIELD_LOC_KIND_DWARF_BLOCK:
3199 {
3200 struct dwarf2_locexpr_baton *block1, *block2;
3201
3202 block1 = FIELD_DWARF_BLOCK (*field1);
3203 block2 = FIELD_DWARF_BLOCK (*field2);
3204 if (block1->per_cu != block2->per_cu
3205 || block1->size != block2->size
3206 || memcmp (block1->data, block2->data, block1->size) != 0)
3207 return 0;
3208 }
3209 break;
3210 default:
3211 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3212 "%d by check_types_equal"),
3213 FIELD_LOC_KIND (*field1));
3214 }
3215
3216 entry.type1 = FIELD_TYPE (*field1);
3217 entry.type2 = FIELD_TYPE (*field2);
3218 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3219 }
3220 }
3221
3222 if (TYPE_TARGET_TYPE (type1) != NULL)
3223 {
3224 struct type_equality_entry entry;
3225
3226 if (TYPE_TARGET_TYPE (type2) == NULL)
3227 return 0;
3228
3229 entry.type1 = TYPE_TARGET_TYPE (type1);
3230 entry.type2 = TYPE_TARGET_TYPE (type2);
3231 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3232 }
3233 else if (TYPE_TARGET_TYPE (type2) != NULL)
3234 return 0;
3235
3236 return 1;
3237 }
3238
3239 /* Check types on a worklist for equality. Returns zero if any pair
3240 is not equal, non-zero if they are all considered equal. */
3241
3242 static int
3243 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3244 struct bcache *cache)
3245 {
3246 while (!VEC_empty (type_equality_entry_d, *worklist))
3247 {
3248 struct type_equality_entry entry;
3249 int added;
3250
3251 entry = *VEC_last (type_equality_entry_d, *worklist);
3252 VEC_pop (type_equality_entry_d, *worklist);
3253
3254 /* If the type pair has already been visited, we know it is
3255 ok. */
3256 bcache_full (&entry, sizeof (entry), cache, &added);
3257 if (!added)
3258 continue;
3259
3260 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3261 return 0;
3262 }
3263
3264 return 1;
3265 }
3266
3267 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3268 "deep comparison". Otherwise return zero. */
3269
3270 int
3271 types_deeply_equal (struct type *type1, struct type *type2)
3272 {
3273 struct gdb_exception except = exception_none;
3274 int result = 0;
3275 struct bcache *cache;
3276 VEC (type_equality_entry_d) *worklist = NULL;
3277 struct type_equality_entry entry;
3278
3279 gdb_assert (type1 != NULL && type2 != NULL);
3280
3281 /* Early exit for the simple case. */
3282 if (type1 == type2)
3283 return 1;
3284
3285 cache = bcache_xmalloc (NULL, NULL);
3286
3287 entry.type1 = type1;
3288 entry.type2 = type2;
3289 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3290
3291 /* check_types_worklist calls several nested helper functions, some
3292 of which can raise a GDB exception, so we just check and rethrow
3293 here. If there is a GDB exception, a comparison is not capable
3294 (or trusted), so exit. */
3295 TRY
3296 {
3297 result = check_types_worklist (&worklist, cache);
3298 }
3299 CATCH (ex, RETURN_MASK_ALL)
3300 {
3301 except = ex;
3302 }
3303 END_CATCH
3304
3305 bcache_xfree (cache);
3306 VEC_free (type_equality_entry_d, worklist);
3307
3308 /* Rethrow if there was a problem. */
3309 if (except.reason < 0)
3310 throw_exception (except);
3311
3312 return result;
3313 }
3314 \f
3315 /* Compare one type (PARM) for compatibility with another (ARG).
3316 * PARM is intended to be the parameter type of a function; and
3317 * ARG is the supplied argument's type. This function tests if
3318 * the latter can be converted to the former.
3319 * VALUE is the argument's value or NULL if none (or called recursively)
3320 *
3321 * Return 0 if they are identical types;
3322 * Otherwise, return an integer which corresponds to how compatible
3323 * PARM is to ARG. The higher the return value, the worse the match.
3324 * Generally the "bad" conversions are all uniformly assigned a 100. */
3325
3326 struct rank
3327 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3328 {
3329 struct rank rank = {0,0};
3330
3331 if (types_equal (parm, arg))
3332 return EXACT_MATCH_BADNESS;
3333
3334 /* Resolve typedefs */
3335 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3336 parm = check_typedef (parm);
3337 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3338 arg = check_typedef (arg);
3339
3340 /* See through references, since we can almost make non-references
3341 references. */
3342 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3343 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3344 REFERENCE_CONVERSION_BADNESS));
3345 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3346 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3347 REFERENCE_CONVERSION_BADNESS));
3348 if (overload_debug)
3349 /* Debugging only. */
3350 fprintf_filtered (gdb_stderr,
3351 "------ Arg is %s [%d], parm is %s [%d]\n",
3352 TYPE_NAME (arg), TYPE_CODE (arg),
3353 TYPE_NAME (parm), TYPE_CODE (parm));
3354
3355 /* x -> y means arg of type x being supplied for parameter of type y. */
3356
3357 switch (TYPE_CODE (parm))
3358 {
3359 case TYPE_CODE_PTR:
3360 switch (TYPE_CODE (arg))
3361 {
3362 case TYPE_CODE_PTR:
3363
3364 /* Allowed pointer conversions are:
3365 (a) pointer to void-pointer conversion. */
3366 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3367 return VOID_PTR_CONVERSION_BADNESS;
3368
3369 /* (b) pointer to ancestor-pointer conversion. */
3370 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3371 TYPE_TARGET_TYPE (arg),
3372 0);
3373 if (rank.subrank >= 0)
3374 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3375
3376 return INCOMPATIBLE_TYPE_BADNESS;
3377 case TYPE_CODE_ARRAY:
3378 if (types_equal (TYPE_TARGET_TYPE (parm),
3379 TYPE_TARGET_TYPE (arg)))
3380 return EXACT_MATCH_BADNESS;
3381 return INCOMPATIBLE_TYPE_BADNESS;
3382 case TYPE_CODE_FUNC:
3383 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3384 case TYPE_CODE_INT:
3385 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3386 {
3387 if (value_as_long (value) == 0)
3388 {
3389 /* Null pointer conversion: allow it to be cast to a pointer.
3390 [4.10.1 of C++ standard draft n3290] */
3391 return NULL_POINTER_CONVERSION_BADNESS;
3392 }
3393 else
3394 {
3395 /* If type checking is disabled, allow the conversion. */
3396 if (!strict_type_checking)
3397 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3398 }
3399 }
3400 /* fall through */
3401 case TYPE_CODE_ENUM:
3402 case TYPE_CODE_FLAGS:
3403 case TYPE_CODE_CHAR:
3404 case TYPE_CODE_RANGE:
3405 case TYPE_CODE_BOOL:
3406 default:
3407 return INCOMPATIBLE_TYPE_BADNESS;
3408 }
3409 case TYPE_CODE_ARRAY:
3410 switch (TYPE_CODE (arg))
3411 {
3412 case TYPE_CODE_PTR:
3413 case TYPE_CODE_ARRAY:
3414 return rank_one_type (TYPE_TARGET_TYPE (parm),
3415 TYPE_TARGET_TYPE (arg), NULL);
3416 default:
3417 return INCOMPATIBLE_TYPE_BADNESS;
3418 }
3419 case TYPE_CODE_FUNC:
3420 switch (TYPE_CODE (arg))
3421 {
3422 case TYPE_CODE_PTR: /* funcptr -> func */
3423 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3424 default:
3425 return INCOMPATIBLE_TYPE_BADNESS;
3426 }
3427 case TYPE_CODE_INT:
3428 switch (TYPE_CODE (arg))
3429 {
3430 case TYPE_CODE_INT:
3431 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3432 {
3433 /* Deal with signed, unsigned, and plain chars and
3434 signed and unsigned ints. */
3435 if (TYPE_NOSIGN (parm))
3436 {
3437 /* This case only for character types. */
3438 if (TYPE_NOSIGN (arg))
3439 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3440 else /* signed/unsigned char -> plain char */
3441 return INTEGER_CONVERSION_BADNESS;
3442 }
3443 else if (TYPE_UNSIGNED (parm))
3444 {
3445 if (TYPE_UNSIGNED (arg))
3446 {
3447 /* unsigned int -> unsigned int, or
3448 unsigned long -> unsigned long */
3449 if (integer_types_same_name_p (TYPE_NAME (parm),
3450 TYPE_NAME (arg)))
3451 return EXACT_MATCH_BADNESS;
3452 else if (integer_types_same_name_p (TYPE_NAME (arg),
3453 "int")
3454 && integer_types_same_name_p (TYPE_NAME (parm),
3455 "long"))
3456 /* unsigned int -> unsigned long */
3457 return INTEGER_PROMOTION_BADNESS;
3458 else
3459 /* unsigned long -> unsigned int */
3460 return INTEGER_CONVERSION_BADNESS;
3461 }
3462 else
3463 {
3464 if (integer_types_same_name_p (TYPE_NAME (arg),
3465 "long")
3466 && integer_types_same_name_p (TYPE_NAME (parm),
3467 "int"))
3468 /* signed long -> unsigned int */
3469 return INTEGER_CONVERSION_BADNESS;
3470 else
3471 /* signed int/long -> unsigned int/long */
3472 return INTEGER_CONVERSION_BADNESS;
3473 }
3474 }
3475 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3476 {
3477 if (integer_types_same_name_p (TYPE_NAME (parm),
3478 TYPE_NAME (arg)))
3479 return EXACT_MATCH_BADNESS;
3480 else if (integer_types_same_name_p (TYPE_NAME (arg),
3481 "int")
3482 && integer_types_same_name_p (TYPE_NAME (parm),
3483 "long"))
3484 return INTEGER_PROMOTION_BADNESS;
3485 else
3486 return INTEGER_CONVERSION_BADNESS;
3487 }
3488 else
3489 return INTEGER_CONVERSION_BADNESS;
3490 }
3491 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3492 return INTEGER_PROMOTION_BADNESS;
3493 else
3494 return INTEGER_CONVERSION_BADNESS;
3495 case TYPE_CODE_ENUM:
3496 case TYPE_CODE_FLAGS:
3497 case TYPE_CODE_CHAR:
3498 case TYPE_CODE_RANGE:
3499 case TYPE_CODE_BOOL:
3500 if (TYPE_DECLARED_CLASS (arg))
3501 return INCOMPATIBLE_TYPE_BADNESS;
3502 return INTEGER_PROMOTION_BADNESS;
3503 case TYPE_CODE_FLT:
3504 return INT_FLOAT_CONVERSION_BADNESS;
3505 case TYPE_CODE_PTR:
3506 return NS_POINTER_CONVERSION_BADNESS;
3507 default:
3508 return INCOMPATIBLE_TYPE_BADNESS;
3509 }
3510 break;
3511 case TYPE_CODE_ENUM:
3512 switch (TYPE_CODE (arg))
3513 {
3514 case TYPE_CODE_INT:
3515 case TYPE_CODE_CHAR:
3516 case TYPE_CODE_RANGE:
3517 case TYPE_CODE_BOOL:
3518 case TYPE_CODE_ENUM:
3519 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3520 return INCOMPATIBLE_TYPE_BADNESS;
3521 return INTEGER_CONVERSION_BADNESS;
3522 case TYPE_CODE_FLT:
3523 return INT_FLOAT_CONVERSION_BADNESS;
3524 default:
3525 return INCOMPATIBLE_TYPE_BADNESS;
3526 }
3527 break;
3528 case TYPE_CODE_CHAR:
3529 switch (TYPE_CODE (arg))
3530 {
3531 case TYPE_CODE_RANGE:
3532 case TYPE_CODE_BOOL:
3533 case TYPE_CODE_ENUM:
3534 if (TYPE_DECLARED_CLASS (arg))
3535 return INCOMPATIBLE_TYPE_BADNESS;
3536 return INTEGER_CONVERSION_BADNESS;
3537 case TYPE_CODE_FLT:
3538 return INT_FLOAT_CONVERSION_BADNESS;
3539 case TYPE_CODE_INT:
3540 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3541 return INTEGER_CONVERSION_BADNESS;
3542 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3543 return INTEGER_PROMOTION_BADNESS;
3544 /* >>> !! else fall through !! <<< */
3545 case TYPE_CODE_CHAR:
3546 /* Deal with signed, unsigned, and plain chars for C++ and
3547 with int cases falling through from previous case. */
3548 if (TYPE_NOSIGN (parm))
3549 {
3550 if (TYPE_NOSIGN (arg))
3551 return EXACT_MATCH_BADNESS;
3552 else
3553 return INTEGER_CONVERSION_BADNESS;
3554 }
3555 else if (TYPE_UNSIGNED (parm))
3556 {
3557 if (TYPE_UNSIGNED (arg))
3558 return EXACT_MATCH_BADNESS;
3559 else
3560 return INTEGER_PROMOTION_BADNESS;
3561 }
3562 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3563 return EXACT_MATCH_BADNESS;
3564 else
3565 return INTEGER_CONVERSION_BADNESS;
3566 default:
3567 return INCOMPATIBLE_TYPE_BADNESS;
3568 }
3569 break;
3570 case TYPE_CODE_RANGE:
3571 switch (TYPE_CODE (arg))
3572 {
3573 case TYPE_CODE_INT:
3574 case TYPE_CODE_CHAR:
3575 case TYPE_CODE_RANGE:
3576 case TYPE_CODE_BOOL:
3577 case TYPE_CODE_ENUM:
3578 return INTEGER_CONVERSION_BADNESS;
3579 case TYPE_CODE_FLT:
3580 return INT_FLOAT_CONVERSION_BADNESS;
3581 default:
3582 return INCOMPATIBLE_TYPE_BADNESS;
3583 }
3584 break;
3585 case TYPE_CODE_BOOL:
3586 switch (TYPE_CODE (arg))
3587 {
3588 /* n3290 draft, section 4.12.1 (conv.bool):
3589
3590 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3591 pointer to member type can be converted to a prvalue of type
3592 bool. A zero value, null pointer value, or null member pointer
3593 value is converted to false; any other value is converted to
3594 true. A prvalue of type std::nullptr_t can be converted to a
3595 prvalue of type bool; the resulting value is false." */
3596 case TYPE_CODE_INT:
3597 case TYPE_CODE_CHAR:
3598 case TYPE_CODE_ENUM:
3599 case TYPE_CODE_FLT:
3600 case TYPE_CODE_MEMBERPTR:
3601 case TYPE_CODE_PTR:
3602 return BOOL_CONVERSION_BADNESS;
3603 case TYPE_CODE_RANGE:
3604 return INCOMPATIBLE_TYPE_BADNESS;
3605 case TYPE_CODE_BOOL:
3606 return EXACT_MATCH_BADNESS;
3607 default:
3608 return INCOMPATIBLE_TYPE_BADNESS;
3609 }
3610 break;
3611 case TYPE_CODE_FLT:
3612 switch (TYPE_CODE (arg))
3613 {
3614 case TYPE_CODE_FLT:
3615 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3616 return FLOAT_PROMOTION_BADNESS;
3617 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3618 return EXACT_MATCH_BADNESS;
3619 else
3620 return FLOAT_CONVERSION_BADNESS;
3621 case TYPE_CODE_INT:
3622 case TYPE_CODE_BOOL:
3623 case TYPE_CODE_ENUM:
3624 case TYPE_CODE_RANGE:
3625 case TYPE_CODE_CHAR:
3626 return INT_FLOAT_CONVERSION_BADNESS;
3627 default:
3628 return INCOMPATIBLE_TYPE_BADNESS;
3629 }
3630 break;
3631 case TYPE_CODE_COMPLEX:
3632 switch (TYPE_CODE (arg))
3633 { /* Strictly not needed for C++, but... */
3634 case TYPE_CODE_FLT:
3635 return FLOAT_PROMOTION_BADNESS;
3636 case TYPE_CODE_COMPLEX:
3637 return EXACT_MATCH_BADNESS;
3638 default:
3639 return INCOMPATIBLE_TYPE_BADNESS;
3640 }
3641 break;
3642 case TYPE_CODE_STRUCT:
3643 switch (TYPE_CODE (arg))
3644 {
3645 case TYPE_CODE_STRUCT:
3646 /* Check for derivation */
3647 rank.subrank = distance_to_ancestor (parm, arg, 0);
3648 if (rank.subrank >= 0)
3649 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3650 /* else fall through */
3651 default:
3652 return INCOMPATIBLE_TYPE_BADNESS;
3653 }
3654 break;
3655 case TYPE_CODE_UNION:
3656 switch (TYPE_CODE (arg))
3657 {
3658 case TYPE_CODE_UNION:
3659 default:
3660 return INCOMPATIBLE_TYPE_BADNESS;
3661 }
3662 break;
3663 case TYPE_CODE_MEMBERPTR:
3664 switch (TYPE_CODE (arg))
3665 {
3666 default:
3667 return INCOMPATIBLE_TYPE_BADNESS;
3668 }
3669 break;
3670 case TYPE_CODE_METHOD:
3671 switch (TYPE_CODE (arg))
3672 {
3673
3674 default:
3675 return INCOMPATIBLE_TYPE_BADNESS;
3676 }
3677 break;
3678 case TYPE_CODE_REF:
3679 switch (TYPE_CODE (arg))
3680 {
3681
3682 default:
3683 return INCOMPATIBLE_TYPE_BADNESS;
3684 }
3685
3686 break;
3687 case TYPE_CODE_SET:
3688 switch (TYPE_CODE (arg))
3689 {
3690 /* Not in C++ */
3691 case TYPE_CODE_SET:
3692 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3693 TYPE_FIELD_TYPE (arg, 0), NULL);
3694 default:
3695 return INCOMPATIBLE_TYPE_BADNESS;
3696 }
3697 break;
3698 case TYPE_CODE_VOID:
3699 default:
3700 return INCOMPATIBLE_TYPE_BADNESS;
3701 } /* switch (TYPE_CODE (arg)) */
3702 }
3703
3704 /* End of functions for overload resolution. */
3705 \f
3706 /* Routines to pretty-print types. */
3707
3708 static void
3709 print_bit_vector (B_TYPE *bits, int nbits)
3710 {
3711 int bitno;
3712
3713 for (bitno = 0; bitno < nbits; bitno++)
3714 {
3715 if ((bitno % 8) == 0)
3716 {
3717 puts_filtered (" ");
3718 }
3719 if (B_TST (bits, bitno))
3720 printf_filtered (("1"));
3721 else
3722 printf_filtered (("0"));
3723 }
3724 }
3725
3726 /* Note the first arg should be the "this" pointer, we may not want to
3727 include it since we may get into a infinitely recursive
3728 situation. */
3729
3730 static void
3731 print_args (struct field *args, int nargs, int spaces)
3732 {
3733 if (args != NULL)
3734 {
3735 int i;
3736
3737 for (i = 0; i < nargs; i++)
3738 {
3739 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3740 args[i].name != NULL ? args[i].name : "<NULL>");
3741 recursive_dump_type (args[i].type, spaces + 2);
3742 }
3743 }
3744 }
3745
3746 int
3747 field_is_static (struct field *f)
3748 {
3749 /* "static" fields are the fields whose location is not relative
3750 to the address of the enclosing struct. It would be nice to
3751 have a dedicated flag that would be set for static fields when
3752 the type is being created. But in practice, checking the field
3753 loc_kind should give us an accurate answer. */
3754 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3755 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3756 }
3757
3758 static void
3759 dump_fn_fieldlists (struct type *type, int spaces)
3760 {
3761 int method_idx;
3762 int overload_idx;
3763 struct fn_field *f;
3764
3765 printfi_filtered (spaces, "fn_fieldlists ");
3766 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3767 printf_filtered ("\n");
3768 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3769 {
3770 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3771 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3772 method_idx,
3773 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3774 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3775 gdb_stdout);
3776 printf_filtered (_(") length %d\n"),
3777 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3778 for (overload_idx = 0;
3779 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3780 overload_idx++)
3781 {
3782 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3783 overload_idx,
3784 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3785 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3786 gdb_stdout);
3787 printf_filtered (")\n");
3788 printfi_filtered (spaces + 8, "type ");
3789 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3790 gdb_stdout);
3791 printf_filtered ("\n");
3792
3793 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3794 spaces + 8 + 2);
3795
3796 printfi_filtered (spaces + 8, "args ");
3797 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3798 gdb_stdout);
3799 printf_filtered ("\n");
3800 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3801 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3802 spaces + 8 + 2);
3803 printfi_filtered (spaces + 8, "fcontext ");
3804 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3805 gdb_stdout);
3806 printf_filtered ("\n");
3807
3808 printfi_filtered (spaces + 8, "is_const %d\n",
3809 TYPE_FN_FIELD_CONST (f, overload_idx));
3810 printfi_filtered (spaces + 8, "is_volatile %d\n",
3811 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3812 printfi_filtered (spaces + 8, "is_private %d\n",
3813 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3814 printfi_filtered (spaces + 8, "is_protected %d\n",
3815 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3816 printfi_filtered (spaces + 8, "is_stub %d\n",
3817 TYPE_FN_FIELD_STUB (f, overload_idx));
3818 printfi_filtered (spaces + 8, "voffset %u\n",
3819 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3820 }
3821 }
3822 }
3823
3824 static void
3825 print_cplus_stuff (struct type *type, int spaces)
3826 {
3827 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3828 printfi_filtered (spaces, "vptr_basetype ");
3829 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3830 puts_filtered ("\n");
3831 if (TYPE_VPTR_BASETYPE (type) != NULL)
3832 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3833
3834 printfi_filtered (spaces, "n_baseclasses %d\n",
3835 TYPE_N_BASECLASSES (type));
3836 printfi_filtered (spaces, "nfn_fields %d\n",
3837 TYPE_NFN_FIELDS (type));
3838 if (TYPE_N_BASECLASSES (type) > 0)
3839 {
3840 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3841 TYPE_N_BASECLASSES (type));
3842 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3843 gdb_stdout);
3844 printf_filtered (")");
3845
3846 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3847 TYPE_N_BASECLASSES (type));
3848 puts_filtered ("\n");
3849 }
3850 if (TYPE_NFIELDS (type) > 0)
3851 {
3852 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3853 {
3854 printfi_filtered (spaces,
3855 "private_field_bits (%d bits at *",
3856 TYPE_NFIELDS (type));
3857 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3858 gdb_stdout);
3859 printf_filtered (")");
3860 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3861 TYPE_NFIELDS (type));
3862 puts_filtered ("\n");
3863 }
3864 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3865 {
3866 printfi_filtered (spaces,
3867 "protected_field_bits (%d bits at *",
3868 TYPE_NFIELDS (type));
3869 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3870 gdb_stdout);
3871 printf_filtered (")");
3872 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3873 TYPE_NFIELDS (type));
3874 puts_filtered ("\n");
3875 }
3876 }
3877 if (TYPE_NFN_FIELDS (type) > 0)
3878 {
3879 dump_fn_fieldlists (type, spaces);
3880 }
3881 }
3882
3883 /* Print the contents of the TYPE's type_specific union, assuming that
3884 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3885
3886 static void
3887 print_gnat_stuff (struct type *type, int spaces)
3888 {
3889 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3890
3891 recursive_dump_type (descriptive_type, spaces + 2);
3892 }
3893
3894 static struct obstack dont_print_type_obstack;
3895
3896 void
3897 recursive_dump_type (struct type *type, int spaces)
3898 {
3899 int idx;
3900
3901 if (spaces == 0)
3902 obstack_begin (&dont_print_type_obstack, 0);
3903
3904 if (TYPE_NFIELDS (type) > 0
3905 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3906 {
3907 struct type **first_dont_print
3908 = (struct type **) obstack_base (&dont_print_type_obstack);
3909
3910 int i = (struct type **)
3911 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3912
3913 while (--i >= 0)
3914 {
3915 if (type == first_dont_print[i])
3916 {
3917 printfi_filtered (spaces, "type node ");
3918 gdb_print_host_address (type, gdb_stdout);
3919 printf_filtered (_(" <same as already seen type>\n"));
3920 return;
3921 }
3922 }
3923
3924 obstack_ptr_grow (&dont_print_type_obstack, type);
3925 }
3926
3927 printfi_filtered (spaces, "type node ");
3928 gdb_print_host_address (type, gdb_stdout);
3929 printf_filtered ("\n");
3930 printfi_filtered (spaces, "name '%s' (",
3931 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3932 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3933 printf_filtered (")\n");
3934 printfi_filtered (spaces, "tagname '%s' (",
3935 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3936 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3937 printf_filtered (")\n");
3938 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3939 switch (TYPE_CODE (type))
3940 {
3941 case TYPE_CODE_UNDEF:
3942 printf_filtered ("(TYPE_CODE_UNDEF)");
3943 break;
3944 case TYPE_CODE_PTR:
3945 printf_filtered ("(TYPE_CODE_PTR)");
3946 break;
3947 case TYPE_CODE_ARRAY:
3948 printf_filtered ("(TYPE_CODE_ARRAY)");
3949 break;
3950 case TYPE_CODE_STRUCT:
3951 printf_filtered ("(TYPE_CODE_STRUCT)");
3952 break;
3953 case TYPE_CODE_UNION:
3954 printf_filtered ("(TYPE_CODE_UNION)");
3955 break;
3956 case TYPE_CODE_ENUM:
3957 printf_filtered ("(TYPE_CODE_ENUM)");
3958 break;
3959 case TYPE_CODE_FLAGS:
3960 printf_filtered ("(TYPE_CODE_FLAGS)");
3961 break;
3962 case TYPE_CODE_FUNC:
3963 printf_filtered ("(TYPE_CODE_FUNC)");
3964 break;
3965 case TYPE_CODE_INT:
3966 printf_filtered ("(TYPE_CODE_INT)");
3967 break;
3968 case TYPE_CODE_FLT:
3969 printf_filtered ("(TYPE_CODE_FLT)");
3970 break;
3971 case TYPE_CODE_VOID:
3972 printf_filtered ("(TYPE_CODE_VOID)");
3973 break;
3974 case TYPE_CODE_SET:
3975 printf_filtered ("(TYPE_CODE_SET)");
3976 break;
3977 case TYPE_CODE_RANGE:
3978 printf_filtered ("(TYPE_CODE_RANGE)");
3979 break;
3980 case TYPE_CODE_STRING:
3981 printf_filtered ("(TYPE_CODE_STRING)");
3982 break;
3983 case TYPE_CODE_ERROR:
3984 printf_filtered ("(TYPE_CODE_ERROR)");
3985 break;
3986 case TYPE_CODE_MEMBERPTR:
3987 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3988 break;
3989 case TYPE_CODE_METHODPTR:
3990 printf_filtered ("(TYPE_CODE_METHODPTR)");
3991 break;
3992 case TYPE_CODE_METHOD:
3993 printf_filtered ("(TYPE_CODE_METHOD)");
3994 break;
3995 case TYPE_CODE_REF:
3996 printf_filtered ("(TYPE_CODE_REF)");
3997 break;
3998 case TYPE_CODE_CHAR:
3999 printf_filtered ("(TYPE_CODE_CHAR)");
4000 break;
4001 case TYPE_CODE_BOOL:
4002 printf_filtered ("(TYPE_CODE_BOOL)");
4003 break;
4004 case TYPE_CODE_COMPLEX:
4005 printf_filtered ("(TYPE_CODE_COMPLEX)");
4006 break;
4007 case TYPE_CODE_TYPEDEF:
4008 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4009 break;
4010 case TYPE_CODE_NAMESPACE:
4011 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4012 break;
4013 default:
4014 printf_filtered ("(UNKNOWN TYPE CODE)");
4015 break;
4016 }
4017 puts_filtered ("\n");
4018 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4019 if (TYPE_OBJFILE_OWNED (type))
4020 {
4021 printfi_filtered (spaces, "objfile ");
4022 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4023 }
4024 else
4025 {
4026 printfi_filtered (spaces, "gdbarch ");
4027 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4028 }
4029 printf_filtered ("\n");
4030 printfi_filtered (spaces, "target_type ");
4031 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4032 printf_filtered ("\n");
4033 if (TYPE_TARGET_TYPE (type) != NULL)
4034 {
4035 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4036 }
4037 printfi_filtered (spaces, "pointer_type ");
4038 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4039 printf_filtered ("\n");
4040 printfi_filtered (spaces, "reference_type ");
4041 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4042 printf_filtered ("\n");
4043 printfi_filtered (spaces, "type_chain ");
4044 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4045 printf_filtered ("\n");
4046 printfi_filtered (spaces, "instance_flags 0x%x",
4047 TYPE_INSTANCE_FLAGS (type));
4048 if (TYPE_CONST (type))
4049 {
4050 puts_filtered (" TYPE_FLAG_CONST");
4051 }
4052 if (TYPE_VOLATILE (type))
4053 {
4054 puts_filtered (" TYPE_FLAG_VOLATILE");
4055 }
4056 if (TYPE_CODE_SPACE (type))
4057 {
4058 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4059 }
4060 if (TYPE_DATA_SPACE (type))
4061 {
4062 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4063 }
4064 if (TYPE_ADDRESS_CLASS_1 (type))
4065 {
4066 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4067 }
4068 if (TYPE_ADDRESS_CLASS_2 (type))
4069 {
4070 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4071 }
4072 if (TYPE_RESTRICT (type))
4073 {
4074 puts_filtered (" TYPE_FLAG_RESTRICT");
4075 }
4076 if (TYPE_ATOMIC (type))
4077 {
4078 puts_filtered (" TYPE_FLAG_ATOMIC");
4079 }
4080 puts_filtered ("\n");
4081
4082 printfi_filtered (spaces, "flags");
4083 if (TYPE_UNSIGNED (type))
4084 {
4085 puts_filtered (" TYPE_FLAG_UNSIGNED");
4086 }
4087 if (TYPE_NOSIGN (type))
4088 {
4089 puts_filtered (" TYPE_FLAG_NOSIGN");
4090 }
4091 if (TYPE_STUB (type))
4092 {
4093 puts_filtered (" TYPE_FLAG_STUB");
4094 }
4095 if (TYPE_TARGET_STUB (type))
4096 {
4097 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4098 }
4099 if (TYPE_STATIC (type))
4100 {
4101 puts_filtered (" TYPE_FLAG_STATIC");
4102 }
4103 if (TYPE_PROTOTYPED (type))
4104 {
4105 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4106 }
4107 if (TYPE_INCOMPLETE (type))
4108 {
4109 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4110 }
4111 if (TYPE_VARARGS (type))
4112 {
4113 puts_filtered (" TYPE_FLAG_VARARGS");
4114 }
4115 /* This is used for things like AltiVec registers on ppc. Gcc emits
4116 an attribute for the array type, which tells whether or not we
4117 have a vector, instead of a regular array. */
4118 if (TYPE_VECTOR (type))
4119 {
4120 puts_filtered (" TYPE_FLAG_VECTOR");
4121 }
4122 if (TYPE_FIXED_INSTANCE (type))
4123 {
4124 puts_filtered (" TYPE_FIXED_INSTANCE");
4125 }
4126 if (TYPE_STUB_SUPPORTED (type))
4127 {
4128 puts_filtered (" TYPE_STUB_SUPPORTED");
4129 }
4130 if (TYPE_NOTTEXT (type))
4131 {
4132 puts_filtered (" TYPE_NOTTEXT");
4133 }
4134 puts_filtered ("\n");
4135 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4136 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4137 puts_filtered ("\n");
4138 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4139 {
4140 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4141 printfi_filtered (spaces + 2,
4142 "[%d] enumval %s type ",
4143 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4144 else
4145 printfi_filtered (spaces + 2,
4146 "[%d] bitpos %d bitsize %d type ",
4147 idx, TYPE_FIELD_BITPOS (type, idx),
4148 TYPE_FIELD_BITSIZE (type, idx));
4149 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4150 printf_filtered (" name '%s' (",
4151 TYPE_FIELD_NAME (type, idx) != NULL
4152 ? TYPE_FIELD_NAME (type, idx)
4153 : "<NULL>");
4154 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4155 printf_filtered (")\n");
4156 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4157 {
4158 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4159 }
4160 }
4161 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4162 {
4163 printfi_filtered (spaces, "low %s%s high %s%s\n",
4164 plongest (TYPE_LOW_BOUND (type)),
4165 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4166 plongest (TYPE_HIGH_BOUND (type)),
4167 TYPE_HIGH_BOUND_UNDEFINED (type)
4168 ? " (undefined)" : "");
4169 }
4170
4171 switch (TYPE_SPECIFIC_FIELD (type))
4172 {
4173 case TYPE_SPECIFIC_CPLUS_STUFF:
4174 printfi_filtered (spaces, "cplus_stuff ");
4175 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4176 gdb_stdout);
4177 puts_filtered ("\n");
4178 print_cplus_stuff (type, spaces);
4179 break;
4180
4181 case TYPE_SPECIFIC_GNAT_STUFF:
4182 printfi_filtered (spaces, "gnat_stuff ");
4183 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4184 puts_filtered ("\n");
4185 print_gnat_stuff (type, spaces);
4186 break;
4187
4188 case TYPE_SPECIFIC_FLOATFORMAT:
4189 printfi_filtered (spaces, "floatformat ");
4190 if (TYPE_FLOATFORMAT (type) == NULL)
4191 puts_filtered ("(null)");
4192 else
4193 {
4194 puts_filtered ("{ ");
4195 if (TYPE_FLOATFORMAT (type)[0] == NULL
4196 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4197 puts_filtered ("(null)");
4198 else
4199 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4200
4201 puts_filtered (", ");
4202 if (TYPE_FLOATFORMAT (type)[1] == NULL
4203 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4204 puts_filtered ("(null)");
4205 else
4206 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4207
4208 puts_filtered (" }");
4209 }
4210 puts_filtered ("\n");
4211 break;
4212
4213 case TYPE_SPECIFIC_FUNC:
4214 printfi_filtered (spaces, "calling_convention %d\n",
4215 TYPE_CALLING_CONVENTION (type));
4216 /* tail_call_list is not printed. */
4217 break;
4218
4219 case TYPE_SPECIFIC_SELF_TYPE:
4220 printfi_filtered (spaces, "self_type ");
4221 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4222 puts_filtered ("\n");
4223 break;
4224 }
4225
4226 if (spaces == 0)
4227 obstack_free (&dont_print_type_obstack, NULL);
4228 }
4229 \f
4230 /* Trivial helpers for the libiberty hash table, for mapping one
4231 type to another. */
4232
4233 struct type_pair
4234 {
4235 struct type *old, *newobj;
4236 };
4237
4238 static hashval_t
4239 type_pair_hash (const void *item)
4240 {
4241 const struct type_pair *pair = item;
4242
4243 return htab_hash_pointer (pair->old);
4244 }
4245
4246 static int
4247 type_pair_eq (const void *item_lhs, const void *item_rhs)
4248 {
4249 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4250
4251 return lhs->old == rhs->old;
4252 }
4253
4254 /* Allocate the hash table used by copy_type_recursive to walk
4255 types without duplicates. We use OBJFILE's obstack, because
4256 OBJFILE is about to be deleted. */
4257
4258 htab_t
4259 create_copied_types_hash (struct objfile *objfile)
4260 {
4261 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4262 NULL, &objfile->objfile_obstack,
4263 hashtab_obstack_allocate,
4264 dummy_obstack_deallocate);
4265 }
4266
4267 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4268
4269 static struct dynamic_prop_list *
4270 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4271 struct dynamic_prop_list *list)
4272 {
4273 struct dynamic_prop_list *copy = list;
4274 struct dynamic_prop_list **node_ptr = &copy;
4275
4276 while (*node_ptr != NULL)
4277 {
4278 struct dynamic_prop_list *node_copy;
4279
4280 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4281 sizeof (struct dynamic_prop_list));
4282 node_copy->prop = (*node_ptr)->prop;
4283 *node_ptr = node_copy;
4284
4285 node_ptr = &node_copy->next;
4286 }
4287
4288 return copy;
4289 }
4290
4291 /* Recursively copy (deep copy) TYPE, if it is associated with
4292 OBJFILE. Return a new type allocated using malloc, a saved type if
4293 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4294 not associated with OBJFILE. */
4295
4296 struct type *
4297 copy_type_recursive (struct objfile *objfile,
4298 struct type *type,
4299 htab_t copied_types)
4300 {
4301 struct type_pair *stored, pair;
4302 void **slot;
4303 struct type *new_type;
4304
4305 if (! TYPE_OBJFILE_OWNED (type))
4306 return type;
4307
4308 /* This type shouldn't be pointing to any types in other objfiles;
4309 if it did, the type might disappear unexpectedly. */
4310 gdb_assert (TYPE_OBJFILE (type) == objfile);
4311
4312 pair.old = type;
4313 slot = htab_find_slot (copied_types, &pair, INSERT);
4314 if (*slot != NULL)
4315 return ((struct type_pair *) *slot)->newobj;
4316
4317 new_type = alloc_type_arch (get_type_arch (type));
4318
4319 /* We must add the new type to the hash table immediately, in case
4320 we encounter this type again during a recursive call below. */
4321 stored
4322 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4323 stored->old = type;
4324 stored->newobj = new_type;
4325 *slot = stored;
4326
4327 /* Copy the common fields of types. For the main type, we simply
4328 copy the entire thing and then update specific fields as needed. */
4329 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4330 TYPE_OBJFILE_OWNED (new_type) = 0;
4331 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4332
4333 if (TYPE_NAME (type))
4334 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4335 if (TYPE_TAG_NAME (type))
4336 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4337
4338 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4339 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4340
4341 /* Copy the fields. */
4342 if (TYPE_NFIELDS (type))
4343 {
4344 int i, nfields;
4345
4346 nfields = TYPE_NFIELDS (type);
4347 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4348 for (i = 0; i < nfields; i++)
4349 {
4350 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4351 TYPE_FIELD_ARTIFICIAL (type, i);
4352 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4353 if (TYPE_FIELD_TYPE (type, i))
4354 TYPE_FIELD_TYPE (new_type, i)
4355 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4356 copied_types);
4357 if (TYPE_FIELD_NAME (type, i))
4358 TYPE_FIELD_NAME (new_type, i) =
4359 xstrdup (TYPE_FIELD_NAME (type, i));
4360 switch (TYPE_FIELD_LOC_KIND (type, i))
4361 {
4362 case FIELD_LOC_KIND_BITPOS:
4363 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4364 TYPE_FIELD_BITPOS (type, i));
4365 break;
4366 case FIELD_LOC_KIND_ENUMVAL:
4367 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4368 TYPE_FIELD_ENUMVAL (type, i));
4369 break;
4370 case FIELD_LOC_KIND_PHYSADDR:
4371 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4372 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4373 break;
4374 case FIELD_LOC_KIND_PHYSNAME:
4375 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4376 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4377 i)));
4378 break;
4379 default:
4380 internal_error (__FILE__, __LINE__,
4381 _("Unexpected type field location kind: %d"),
4382 TYPE_FIELD_LOC_KIND (type, i));
4383 }
4384 }
4385 }
4386
4387 /* For range types, copy the bounds information. */
4388 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4389 {
4390 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4391 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4392 }
4393
4394 if (TYPE_DYN_PROP_LIST (type) != NULL)
4395 TYPE_DYN_PROP_LIST (new_type)
4396 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4397 TYPE_DYN_PROP_LIST (type));
4398
4399
4400 /* Copy pointers to other types. */
4401 if (TYPE_TARGET_TYPE (type))
4402 TYPE_TARGET_TYPE (new_type) =
4403 copy_type_recursive (objfile,
4404 TYPE_TARGET_TYPE (type),
4405 copied_types);
4406
4407 /* Maybe copy the type_specific bits.
4408
4409 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4410 base classes and methods. There's no fundamental reason why we
4411 can't, but at the moment it is not needed. */
4412
4413 switch (TYPE_SPECIFIC_FIELD (type))
4414 {
4415 case TYPE_SPECIFIC_NONE:
4416 break;
4417 case TYPE_SPECIFIC_FUNC:
4418 INIT_FUNC_SPECIFIC (new_type);
4419 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4420 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4421 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4422 break;
4423 case TYPE_SPECIFIC_FLOATFORMAT:
4424 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4425 break;
4426 case TYPE_SPECIFIC_CPLUS_STUFF:
4427 INIT_CPLUS_SPECIFIC (new_type);
4428 break;
4429 case TYPE_SPECIFIC_GNAT_STUFF:
4430 INIT_GNAT_SPECIFIC (new_type);
4431 break;
4432 case TYPE_SPECIFIC_SELF_TYPE:
4433 set_type_self_type (new_type,
4434 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4435 copied_types));
4436 break;
4437 default:
4438 gdb_assert_not_reached ("bad type_specific_kind");
4439 }
4440
4441 return new_type;
4442 }
4443
4444 /* Make a copy of the given TYPE, except that the pointer & reference
4445 types are not preserved.
4446
4447 This function assumes that the given type has an associated objfile.
4448 This objfile is used to allocate the new type. */
4449
4450 struct type *
4451 copy_type (const struct type *type)
4452 {
4453 struct type *new_type;
4454
4455 gdb_assert (TYPE_OBJFILE_OWNED (type));
4456
4457 new_type = alloc_type_copy (type);
4458 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4459 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4460 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4461 sizeof (struct main_type));
4462 if (TYPE_DYN_PROP_LIST (type) != NULL)
4463 TYPE_DYN_PROP_LIST (new_type)
4464 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4465 TYPE_DYN_PROP_LIST (type));
4466
4467 return new_type;
4468 }
4469 \f
4470 /* Helper functions to initialize architecture-specific types. */
4471
4472 /* Allocate a type structure associated with GDBARCH and set its
4473 CODE, LENGTH, and NAME fields. */
4474
4475 struct type *
4476 arch_type (struct gdbarch *gdbarch,
4477 enum type_code code, int length, char *name)
4478 {
4479 struct type *type;
4480
4481 type = alloc_type_arch (gdbarch);
4482 TYPE_CODE (type) = code;
4483 TYPE_LENGTH (type) = length;
4484
4485 if (name)
4486 TYPE_NAME (type) = xstrdup (name);
4487
4488 return type;
4489 }
4490
4491 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4492 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4493 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4494
4495 struct type *
4496 arch_integer_type (struct gdbarch *gdbarch,
4497 int bit, int unsigned_p, char *name)
4498 {
4499 struct type *t;
4500
4501 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4502 if (unsigned_p)
4503 TYPE_UNSIGNED (t) = 1;
4504 if (name && strcmp (name, "char") == 0)
4505 TYPE_NOSIGN (t) = 1;
4506
4507 return t;
4508 }
4509
4510 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4511 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4512 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4513
4514 struct type *
4515 arch_character_type (struct gdbarch *gdbarch,
4516 int bit, int unsigned_p, char *name)
4517 {
4518 struct type *t;
4519
4520 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4521 if (unsigned_p)
4522 TYPE_UNSIGNED (t) = 1;
4523
4524 return t;
4525 }
4526
4527 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4528 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4529 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4530
4531 struct type *
4532 arch_boolean_type (struct gdbarch *gdbarch,
4533 int bit, int unsigned_p, char *name)
4534 {
4535 struct type *t;
4536
4537 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4538 if (unsigned_p)
4539 TYPE_UNSIGNED (t) = 1;
4540
4541 return t;
4542 }
4543
4544 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4545 BIT is the type size in bits; if BIT equals -1, the size is
4546 determined by the floatformat. NAME is the type name. Set the
4547 TYPE_FLOATFORMAT from FLOATFORMATS. */
4548
4549 struct type *
4550 arch_float_type (struct gdbarch *gdbarch,
4551 int bit, char *name, const struct floatformat **floatformats)
4552 {
4553 struct type *t;
4554
4555 if (bit == -1)
4556 {
4557 gdb_assert (floatformats != NULL);
4558 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4559 bit = floatformats[0]->totalsize;
4560 }
4561 gdb_assert (bit >= 0);
4562
4563 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4564 TYPE_FLOATFORMAT (t) = floatformats;
4565 return t;
4566 }
4567
4568 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4569 NAME is the type name. TARGET_TYPE is the component float type. */
4570
4571 struct type *
4572 arch_complex_type (struct gdbarch *gdbarch,
4573 char *name, struct type *target_type)
4574 {
4575 struct type *t;
4576
4577 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4578 2 * TYPE_LENGTH (target_type), name);
4579 TYPE_TARGET_TYPE (t) = target_type;
4580 return t;
4581 }
4582
4583 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4584 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4585
4586 struct type *
4587 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4588 {
4589 int nfields = length * TARGET_CHAR_BIT;
4590 struct type *type;
4591
4592 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4593 TYPE_UNSIGNED (type) = 1;
4594 TYPE_NFIELDS (type) = nfields;
4595 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4596
4597 return type;
4598 }
4599
4600 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4601 position BITPOS is called NAME. */
4602
4603 void
4604 append_flags_type_flag (struct type *type, int bitpos, char *name)
4605 {
4606 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4607 gdb_assert (bitpos < TYPE_NFIELDS (type));
4608 gdb_assert (bitpos >= 0);
4609
4610 if (name)
4611 {
4612 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4613 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4614 }
4615 else
4616 {
4617 /* Don't show this field to the user. */
4618 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4619 }
4620 }
4621
4622 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4623 specified by CODE) associated with GDBARCH. NAME is the type name. */
4624
4625 struct type *
4626 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4627 {
4628 struct type *t;
4629
4630 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4631 t = arch_type (gdbarch, code, 0, NULL);
4632 TYPE_TAG_NAME (t) = name;
4633 INIT_CPLUS_SPECIFIC (t);
4634 return t;
4635 }
4636
4637 /* Add new field with name NAME and type FIELD to composite type T.
4638 Do not set the field's position or adjust the type's length;
4639 the caller should do so. Return the new field. */
4640
4641 struct field *
4642 append_composite_type_field_raw (struct type *t, char *name,
4643 struct type *field)
4644 {
4645 struct field *f;
4646
4647 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4648 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4649 sizeof (struct field) * TYPE_NFIELDS (t));
4650 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4651 memset (f, 0, sizeof f[0]);
4652 FIELD_TYPE (f[0]) = field;
4653 FIELD_NAME (f[0]) = name;
4654 return f;
4655 }
4656
4657 /* Add new field with name NAME and type FIELD to composite type T.
4658 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4659
4660 void
4661 append_composite_type_field_aligned (struct type *t, char *name,
4662 struct type *field, int alignment)
4663 {
4664 struct field *f = append_composite_type_field_raw (t, name, field);
4665
4666 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4667 {
4668 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4669 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4670 }
4671 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4672 {
4673 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4674 if (TYPE_NFIELDS (t) > 1)
4675 {
4676 SET_FIELD_BITPOS (f[0],
4677 (FIELD_BITPOS (f[-1])
4678 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4679 * TARGET_CHAR_BIT)));
4680
4681 if (alignment)
4682 {
4683 int left;
4684
4685 alignment *= TARGET_CHAR_BIT;
4686 left = FIELD_BITPOS (f[0]) % alignment;
4687
4688 if (left)
4689 {
4690 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4691 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4692 }
4693 }
4694 }
4695 }
4696 }
4697
4698 /* Add new field with name NAME and type FIELD to composite type T. */
4699
4700 void
4701 append_composite_type_field (struct type *t, char *name,
4702 struct type *field)
4703 {
4704 append_composite_type_field_aligned (t, name, field, 0);
4705 }
4706
4707 static struct gdbarch_data *gdbtypes_data;
4708
4709 const struct builtin_type *
4710 builtin_type (struct gdbarch *gdbarch)
4711 {
4712 return gdbarch_data (gdbarch, gdbtypes_data);
4713 }
4714
4715 static void *
4716 gdbtypes_post_init (struct gdbarch *gdbarch)
4717 {
4718 struct builtin_type *builtin_type
4719 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4720
4721 /* Basic types. */
4722 builtin_type->builtin_void
4723 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4724 builtin_type->builtin_char
4725 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4726 !gdbarch_char_signed (gdbarch), "char");
4727 builtin_type->builtin_signed_char
4728 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4729 0, "signed char");
4730 builtin_type->builtin_unsigned_char
4731 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4732 1, "unsigned char");
4733 builtin_type->builtin_short
4734 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4735 0, "short");
4736 builtin_type->builtin_unsigned_short
4737 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4738 1, "unsigned short");
4739 builtin_type->builtin_int
4740 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4741 0, "int");
4742 builtin_type->builtin_unsigned_int
4743 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4744 1, "unsigned int");
4745 builtin_type->builtin_long
4746 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4747 0, "long");
4748 builtin_type->builtin_unsigned_long
4749 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4750 1, "unsigned long");
4751 builtin_type->builtin_long_long
4752 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4753 0, "long long");
4754 builtin_type->builtin_unsigned_long_long
4755 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4756 1, "unsigned long long");
4757 builtin_type->builtin_float
4758 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4759 "float", gdbarch_float_format (gdbarch));
4760 builtin_type->builtin_double
4761 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4762 "double", gdbarch_double_format (gdbarch));
4763 builtin_type->builtin_long_double
4764 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4765 "long double", gdbarch_long_double_format (gdbarch));
4766 builtin_type->builtin_complex
4767 = arch_complex_type (gdbarch, "complex",
4768 builtin_type->builtin_float);
4769 builtin_type->builtin_double_complex
4770 = arch_complex_type (gdbarch, "double complex",
4771 builtin_type->builtin_double);
4772 builtin_type->builtin_string
4773 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4774 builtin_type->builtin_bool
4775 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4776
4777 /* The following three are about decimal floating point types, which
4778 are 32-bits, 64-bits and 128-bits respectively. */
4779 builtin_type->builtin_decfloat
4780 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4781 builtin_type->builtin_decdouble
4782 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4783 builtin_type->builtin_declong
4784 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4785
4786 /* "True" character types. */
4787 builtin_type->builtin_true_char
4788 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4789 builtin_type->builtin_true_unsigned_char
4790 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4791
4792 /* Fixed-size integer types. */
4793 builtin_type->builtin_int0
4794 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4795 builtin_type->builtin_int8
4796 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4797 builtin_type->builtin_uint8
4798 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4799 builtin_type->builtin_int16
4800 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4801 builtin_type->builtin_uint16
4802 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4803 builtin_type->builtin_int32
4804 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4805 builtin_type->builtin_uint32
4806 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4807 builtin_type->builtin_int64
4808 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4809 builtin_type->builtin_uint64
4810 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4811 builtin_type->builtin_int128
4812 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4813 builtin_type->builtin_uint128
4814 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4815 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4816 TYPE_INSTANCE_FLAG_NOTTEXT;
4817 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4818 TYPE_INSTANCE_FLAG_NOTTEXT;
4819
4820 /* Wide character types. */
4821 builtin_type->builtin_char16
4822 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4823 builtin_type->builtin_char32
4824 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4825
4826
4827 /* Default data/code pointer types. */
4828 builtin_type->builtin_data_ptr
4829 = lookup_pointer_type (builtin_type->builtin_void);
4830 builtin_type->builtin_func_ptr
4831 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4832 builtin_type->builtin_func_func
4833 = lookup_function_type (builtin_type->builtin_func_ptr);
4834
4835 /* This type represents a GDB internal function. */
4836 builtin_type->internal_fn
4837 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4838 "<internal function>");
4839
4840 /* This type represents an xmethod. */
4841 builtin_type->xmethod
4842 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4843
4844 return builtin_type;
4845 }
4846
4847 /* This set of objfile-based types is intended to be used by symbol
4848 readers as basic types. */
4849
4850 static const struct objfile_data *objfile_type_data;
4851
4852 const struct objfile_type *
4853 objfile_type (struct objfile *objfile)
4854 {
4855 struct gdbarch *gdbarch;
4856 struct objfile_type *objfile_type
4857 = objfile_data (objfile, objfile_type_data);
4858
4859 if (objfile_type)
4860 return objfile_type;
4861
4862 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4863 1, struct objfile_type);
4864
4865 /* Use the objfile architecture to determine basic type properties. */
4866 gdbarch = get_objfile_arch (objfile);
4867
4868 /* Basic types. */
4869 objfile_type->builtin_void
4870 = init_type (TYPE_CODE_VOID, 1,
4871 0,
4872 "void", objfile);
4873
4874 objfile_type->builtin_char
4875 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4876 (TYPE_FLAG_NOSIGN
4877 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4878 "char", objfile);
4879 objfile_type->builtin_signed_char
4880 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4881 0,
4882 "signed char", objfile);
4883 objfile_type->builtin_unsigned_char
4884 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4885 TYPE_FLAG_UNSIGNED,
4886 "unsigned char", objfile);
4887 objfile_type->builtin_short
4888 = init_type (TYPE_CODE_INT,
4889 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4890 0, "short", objfile);
4891 objfile_type->builtin_unsigned_short
4892 = init_type (TYPE_CODE_INT,
4893 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4894 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4895 objfile_type->builtin_int
4896 = init_type (TYPE_CODE_INT,
4897 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4898 0, "int", objfile);
4899 objfile_type->builtin_unsigned_int
4900 = init_type (TYPE_CODE_INT,
4901 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4902 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4903 objfile_type->builtin_long
4904 = init_type (TYPE_CODE_INT,
4905 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4906 0, "long", objfile);
4907 objfile_type->builtin_unsigned_long
4908 = init_type (TYPE_CODE_INT,
4909 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4910 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4911 objfile_type->builtin_long_long
4912 = init_type (TYPE_CODE_INT,
4913 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4914 0, "long long", objfile);
4915 objfile_type->builtin_unsigned_long_long
4916 = init_type (TYPE_CODE_INT,
4917 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4918 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4919
4920 objfile_type->builtin_float
4921 = init_type (TYPE_CODE_FLT,
4922 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4923 0, "float", objfile);
4924 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4925 = gdbarch_float_format (gdbarch);
4926 objfile_type->builtin_double
4927 = init_type (TYPE_CODE_FLT,
4928 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4929 0, "double", objfile);
4930 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4931 = gdbarch_double_format (gdbarch);
4932 objfile_type->builtin_long_double
4933 = init_type (TYPE_CODE_FLT,
4934 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4935 0, "long double", objfile);
4936 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4937 = gdbarch_long_double_format (gdbarch);
4938
4939 /* This type represents a type that was unrecognized in symbol read-in. */
4940 objfile_type->builtin_error
4941 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4942
4943 /* The following set of types is used for symbols with no
4944 debug information. */
4945 objfile_type->nodebug_text_symbol
4946 = init_type (TYPE_CODE_FUNC, 1, 0,
4947 "<text variable, no debug info>", objfile);
4948 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4949 = objfile_type->builtin_int;
4950 objfile_type->nodebug_text_gnu_ifunc_symbol
4951 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4952 "<text gnu-indirect-function variable, no debug info>",
4953 objfile);
4954 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4955 = objfile_type->nodebug_text_symbol;
4956 objfile_type->nodebug_got_plt_symbol
4957 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4958 "<text from jump slot in .got.plt, no debug info>",
4959 objfile);
4960 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4961 = objfile_type->nodebug_text_symbol;
4962 objfile_type->nodebug_data_symbol
4963 = init_type (TYPE_CODE_INT,
4964 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4965 "<data variable, no debug info>", objfile);
4966 objfile_type->nodebug_unknown_symbol
4967 = init_type (TYPE_CODE_INT, 1, 0,
4968 "<variable (not text or data), no debug info>", objfile);
4969 objfile_type->nodebug_tls_symbol
4970 = init_type (TYPE_CODE_INT,
4971 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4972 "<thread local variable, no debug info>", objfile);
4973
4974 /* NOTE: on some targets, addresses and pointers are not necessarily
4975 the same.
4976
4977 The upshot is:
4978 - gdb's `struct type' always describes the target's
4979 representation.
4980 - gdb's `struct value' objects should always hold values in
4981 target form.
4982 - gdb's CORE_ADDR values are addresses in the unified virtual
4983 address space that the assembler and linker work with. Thus,
4984 since target_read_memory takes a CORE_ADDR as an argument, it
4985 can access any memory on the target, even if the processor has
4986 separate code and data address spaces.
4987
4988 In this context, objfile_type->builtin_core_addr is a bit odd:
4989 it's a target type for a value the target will never see. It's
4990 only used to hold the values of (typeless) linker symbols, which
4991 are indeed in the unified virtual address space. */
4992
4993 objfile_type->builtin_core_addr
4994 = init_type (TYPE_CODE_INT,
4995 gdbarch_addr_bit (gdbarch) / 8,
4996 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4997
4998 set_objfile_data (objfile, objfile_type_data, objfile_type);
4999 return objfile_type;
5000 }
5001
5002 extern initialize_file_ftype _initialize_gdbtypes;
5003
5004 void
5005 _initialize_gdbtypes (void)
5006 {
5007 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5008 objfile_type_data = register_objfile_data ();
5009
5010 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5011 _("Set debugging of C++ overloading."),
5012 _("Show debugging of C++ overloading."),
5013 _("When enabled, ranking of the "
5014 "functions is displayed."),
5015 NULL,
5016 show_overload_debug,
5017 &setdebuglist, &showdebuglist);
5018
5019 /* Add user knob for controlling resolution of opaque types. */
5020 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5021 &opaque_type_resolution,
5022 _("Set resolution of opaque struct/class/union"
5023 " types (if set before loading symbols)."),
5024 _("Show resolution of opaque struct/class/union"
5025 " types (if set before loading symbols)."),
5026 NULL, NULL,
5027 show_opaque_type_resolution,
5028 &setlist, &showlist);
5029
5030 /* Add an option to permit non-strict type checking. */
5031 add_setshow_boolean_cmd ("type", class_support,
5032 &strict_type_checking,
5033 _("Set strict type checking."),
5034 _("Show strict type checking."),
5035 NULL, NULL,
5036 show_strict_type_checking,
5037 &setchecklist, &showchecklist);
5038 }
This page took 0.233927 seconds and 4 git commands to generate.