DWARF: handle non-local references in nested functions
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
529 for (i = 0; i < nparams; ++i)
530 TYPE_FIELD_TYPE (fn, i) = param_types[i];
531
532 return fn;
533 }
534
535 /* Identify address space identifier by name --
536 return the integer flag defined in gdbtypes.h. */
537
538 int
539 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
540 {
541 int type_flags;
542
543 /* Check for known address space delimiters. */
544 if (!strcmp (space_identifier, "code"))
545 return TYPE_INSTANCE_FLAG_CODE_SPACE;
546 else if (!strcmp (space_identifier, "data"))
547 return TYPE_INSTANCE_FLAG_DATA_SPACE;
548 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
549 && gdbarch_address_class_name_to_type_flags (gdbarch,
550 space_identifier,
551 &type_flags))
552 return type_flags;
553 else
554 error (_("Unknown address space specifier: \"%s\""), space_identifier);
555 }
556
557 /* Identify address space identifier by integer flag as defined in
558 gdbtypes.h -- return the string version of the adress space name. */
559
560 const char *
561 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
562 {
563 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
564 return "code";
565 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
566 return "data";
567 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
568 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
569 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
570 else
571 return NULL;
572 }
573
574 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
575
576 If STORAGE is non-NULL, create the new type instance there.
577 STORAGE must be in the same obstack as TYPE. */
578
579 static struct type *
580 make_qualified_type (struct type *type, int new_flags,
581 struct type *storage)
582 {
583 struct type *ntype;
584
585 ntype = type;
586 do
587 {
588 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
589 return ntype;
590 ntype = TYPE_CHAIN (ntype);
591 }
592 while (ntype != type);
593
594 /* Create a new type instance. */
595 if (storage == NULL)
596 ntype = alloc_type_instance (type);
597 else
598 {
599 /* If STORAGE was provided, it had better be in the same objfile
600 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
601 if one objfile is freed and the other kept, we'd have
602 dangling pointers. */
603 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
604
605 ntype = storage;
606 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
607 TYPE_CHAIN (ntype) = ntype;
608 }
609
610 /* Pointers or references to the original type are not relevant to
611 the new type. */
612 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
613 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
614
615 /* Chain the new qualified type to the old type. */
616 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
617 TYPE_CHAIN (type) = ntype;
618
619 /* Now set the instance flags and return the new type. */
620 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
621
622 /* Set length of new type to that of the original type. */
623 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
624
625 return ntype;
626 }
627
628 /* Make an address-space-delimited variant of a type -- a type that
629 is identical to the one supplied except that it has an address
630 space attribute attached to it (such as "code" or "data").
631
632 The space attributes "code" and "data" are for Harvard
633 architectures. The address space attributes are for architectures
634 which have alternately sized pointers or pointers with alternate
635 representations. */
636
637 struct type *
638 make_type_with_address_space (struct type *type, int space_flag)
639 {
640 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
641 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
642 | TYPE_INSTANCE_FLAG_DATA_SPACE
643 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
644 | space_flag);
645
646 return make_qualified_type (type, new_flags, NULL);
647 }
648
649 /* Make a "c-v" variant of a type -- a type that is identical to the
650 one supplied except that it may have const or volatile attributes
651 CNST is a flag for setting the const attribute
652 VOLTL is a flag for setting the volatile attribute
653 TYPE is the base type whose variant we are creating.
654
655 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
656 storage to hold the new qualified type; *TYPEPTR and TYPE must be
657 in the same objfile. Otherwise, allocate fresh memory for the new
658 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
659 new type we construct. */
660
661 struct type *
662 make_cv_type (int cnst, int voltl,
663 struct type *type,
664 struct type **typeptr)
665 {
666 struct type *ntype; /* New type */
667
668 int new_flags = (TYPE_INSTANCE_FLAGS (type)
669 & ~(TYPE_INSTANCE_FLAG_CONST
670 | TYPE_INSTANCE_FLAG_VOLATILE));
671
672 if (cnst)
673 new_flags |= TYPE_INSTANCE_FLAG_CONST;
674
675 if (voltl)
676 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
677
678 if (typeptr && *typeptr != NULL)
679 {
680 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
681 a C-V variant chain that threads across objfiles: if one
682 objfile gets freed, then the other has a broken C-V chain.
683
684 This code used to try to copy over the main type from TYPE to
685 *TYPEPTR if they were in different objfiles, but that's
686 wrong, too: TYPE may have a field list or member function
687 lists, which refer to types of their own, etc. etc. The
688 whole shebang would need to be copied over recursively; you
689 can't have inter-objfile pointers. The only thing to do is
690 to leave stub types as stub types, and look them up afresh by
691 name each time you encounter them. */
692 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
693 }
694
695 ntype = make_qualified_type (type, new_flags,
696 typeptr ? *typeptr : NULL);
697
698 if (typeptr != NULL)
699 *typeptr = ntype;
700
701 return ntype;
702 }
703
704 /* Make a 'restrict'-qualified version of TYPE. */
705
706 struct type *
707 make_restrict_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 | TYPE_INSTANCE_FLAG_RESTRICT),
712 NULL);
713 }
714
715 /* Make a type without const, volatile, or restrict. */
716
717 struct type *
718 make_unqualified_type (struct type *type)
719 {
720 return make_qualified_type (type,
721 (TYPE_INSTANCE_FLAGS (type)
722 & ~(TYPE_INSTANCE_FLAG_CONST
723 | TYPE_INSTANCE_FLAG_VOLATILE
724 | TYPE_INSTANCE_FLAG_RESTRICT)),
725 NULL);
726 }
727
728 /* Make a '_Atomic'-qualified version of TYPE. */
729
730 struct type *
731 make_atomic_type (struct type *type)
732 {
733 return make_qualified_type (type,
734 (TYPE_INSTANCE_FLAGS (type)
735 | TYPE_INSTANCE_FLAG_ATOMIC),
736 NULL);
737 }
738
739 /* Replace the contents of ntype with the type *type. This changes the
740 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
741 the changes are propogated to all types in the TYPE_CHAIN.
742
743 In order to build recursive types, it's inevitable that we'll need
744 to update types in place --- but this sort of indiscriminate
745 smashing is ugly, and needs to be replaced with something more
746 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
747 clear if more steps are needed. */
748
749 void
750 replace_type (struct type *ntype, struct type *type)
751 {
752 struct type *chain;
753
754 /* These two types had better be in the same objfile. Otherwise,
755 the assignment of one type's main type structure to the other
756 will produce a type with references to objects (names; field
757 lists; etc.) allocated on an objfile other than its own. */
758 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
759
760 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
761
762 /* The type length is not a part of the main type. Update it for
763 each type on the variant chain. */
764 chain = ntype;
765 do
766 {
767 /* Assert that this element of the chain has no address-class bits
768 set in its flags. Such type variants might have type lengths
769 which are supposed to be different from the non-address-class
770 variants. This assertion shouldn't ever be triggered because
771 symbol readers which do construct address-class variants don't
772 call replace_type(). */
773 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
774
775 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
776 chain = TYPE_CHAIN (chain);
777 }
778 while (ntype != chain);
779
780 /* Assert that the two types have equivalent instance qualifiers.
781 This should be true for at least all of our debug readers. */
782 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
783 }
784
785 /* Implement direct support for MEMBER_TYPE in GNU C++.
786 May need to construct such a type if this is the first use.
787 The TYPE is the type of the member. The DOMAIN is the type
788 of the aggregate that the member belongs to. */
789
790 struct type *
791 lookup_memberptr_type (struct type *type, struct type *domain)
792 {
793 struct type *mtype;
794
795 mtype = alloc_type_copy (type);
796 smash_to_memberptr_type (mtype, domain, type);
797 return mtype;
798 }
799
800 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
801
802 struct type *
803 lookup_methodptr_type (struct type *to_type)
804 {
805 struct type *mtype;
806
807 mtype = alloc_type_copy (to_type);
808 smash_to_methodptr_type (mtype, to_type);
809 return mtype;
810 }
811
812 /* Allocate a stub method whose return type is TYPE. This apparently
813 happens for speed of symbol reading, since parsing out the
814 arguments to the method is cpu-intensive, the way we are doing it.
815 So, we will fill in arguments later. This always returns a fresh
816 type. */
817
818 struct type *
819 allocate_stub_method (struct type *type)
820 {
821 struct type *mtype;
822
823 mtype = alloc_type_copy (type);
824 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
825 TYPE_LENGTH (mtype) = 1;
826 TYPE_STUB (mtype) = 1;
827 TYPE_TARGET_TYPE (mtype) = type;
828 /* TYPE_SELF_TYPE (mtype) = unknown yet */
829 return mtype;
830 }
831
832 /* Create a range type with a dynamic range from LOW_BOUND to
833 HIGH_BOUND, inclusive. See create_range_type for further details. */
834
835 struct type *
836 create_range_type (struct type *result_type, struct type *index_type,
837 const struct dynamic_prop *low_bound,
838 const struct dynamic_prop *high_bound)
839 {
840 if (result_type == NULL)
841 result_type = alloc_type_copy (index_type);
842 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
843 TYPE_TARGET_TYPE (result_type) = index_type;
844 if (TYPE_STUB (index_type))
845 TYPE_TARGET_STUB (result_type) = 1;
846 else
847 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
848
849 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
850 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
851 TYPE_RANGE_DATA (result_type)->low = *low_bound;
852 TYPE_RANGE_DATA (result_type)->high = *high_bound;
853
854 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
855 TYPE_UNSIGNED (result_type) = 1;
856
857 /* Ada allows the declaration of range types whose upper bound is
858 less than the lower bound, so checking the lower bound is not
859 enough. Make sure we do not mark a range type whose upper bound
860 is negative as unsigned. */
861 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
862 TYPE_UNSIGNED (result_type) = 0;
863
864 return result_type;
865 }
866
867 /* Create a range type using either a blank type supplied in
868 RESULT_TYPE, or creating a new type, inheriting the objfile from
869 INDEX_TYPE.
870
871 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
872 to HIGH_BOUND, inclusive.
873
874 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
875 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
876
877 struct type *
878 create_static_range_type (struct type *result_type, struct type *index_type,
879 LONGEST low_bound, LONGEST high_bound)
880 {
881 struct dynamic_prop low, high;
882
883 low.kind = PROP_CONST;
884 low.data.const_val = low_bound;
885
886 high.kind = PROP_CONST;
887 high.data.const_val = high_bound;
888
889 result_type = create_range_type (result_type, index_type, &low, &high);
890
891 return result_type;
892 }
893
894 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
895 are static, otherwise returns 0. */
896
897 static int
898 has_static_range (const struct range_bounds *bounds)
899 {
900 return (bounds->low.kind == PROP_CONST
901 && bounds->high.kind == PROP_CONST);
902 }
903
904
905 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
906 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
907 bounds will fit in LONGEST), or -1 otherwise. */
908
909 int
910 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
911 {
912 type = check_typedef (type);
913 switch (TYPE_CODE (type))
914 {
915 case TYPE_CODE_RANGE:
916 *lowp = TYPE_LOW_BOUND (type);
917 *highp = TYPE_HIGH_BOUND (type);
918 return 1;
919 case TYPE_CODE_ENUM:
920 if (TYPE_NFIELDS (type) > 0)
921 {
922 /* The enums may not be sorted by value, so search all
923 entries. */
924 int i;
925
926 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
927 for (i = 0; i < TYPE_NFIELDS (type); i++)
928 {
929 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
930 *lowp = TYPE_FIELD_ENUMVAL (type, i);
931 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
932 *highp = TYPE_FIELD_ENUMVAL (type, i);
933 }
934
935 /* Set unsigned indicator if warranted. */
936 if (*lowp >= 0)
937 {
938 TYPE_UNSIGNED (type) = 1;
939 }
940 }
941 else
942 {
943 *lowp = 0;
944 *highp = -1;
945 }
946 return 0;
947 case TYPE_CODE_BOOL:
948 *lowp = 0;
949 *highp = 1;
950 return 0;
951 case TYPE_CODE_INT:
952 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
953 return -1;
954 if (!TYPE_UNSIGNED (type))
955 {
956 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
957 *highp = -*lowp - 1;
958 return 0;
959 }
960 /* ... fall through for unsigned ints ... */
961 case TYPE_CODE_CHAR:
962 *lowp = 0;
963 /* This round-about calculation is to avoid shifting by
964 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
965 if TYPE_LENGTH (type) == sizeof (LONGEST). */
966 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
967 *highp = (*highp - 1) | *highp;
968 return 0;
969 default:
970 return -1;
971 }
972 }
973
974 /* Assuming TYPE is a simple, non-empty array type, compute its upper
975 and lower bound. Save the low bound into LOW_BOUND if not NULL.
976 Save the high bound into HIGH_BOUND if not NULL.
977
978 Return 1 if the operation was successful. Return zero otherwise,
979 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
980
981 We now simply use get_discrete_bounds call to get the values
982 of the low and high bounds.
983 get_discrete_bounds can return three values:
984 1, meaning that index is a range,
985 0, meaning that index is a discrete type,
986 or -1 for failure. */
987
988 int
989 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
990 {
991 struct type *index = TYPE_INDEX_TYPE (type);
992 LONGEST low = 0;
993 LONGEST high = 0;
994 int res;
995
996 if (index == NULL)
997 return 0;
998
999 res = get_discrete_bounds (index, &low, &high);
1000 if (res == -1)
1001 return 0;
1002
1003 /* Check if the array bounds are undefined. */
1004 if (res == 1
1005 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1006 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1007 return 0;
1008
1009 if (low_bound)
1010 *low_bound = low;
1011
1012 if (high_bound)
1013 *high_bound = high;
1014
1015 return 1;
1016 }
1017
1018 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1019 representation of a value of this type, save the corresponding
1020 position number in POS.
1021
1022 Its differs from VAL only in the case of enumeration types. In
1023 this case, the position number of the value of the first listed
1024 enumeration literal is zero; the position number of the value of
1025 each subsequent enumeration literal is one more than that of its
1026 predecessor in the list.
1027
1028 Return 1 if the operation was successful. Return zero otherwise,
1029 in which case the value of POS is unmodified.
1030 */
1031
1032 int
1033 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1034 {
1035 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1036 {
1037 int i;
1038
1039 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1040 {
1041 if (val == TYPE_FIELD_ENUMVAL (type, i))
1042 {
1043 *pos = i;
1044 return 1;
1045 }
1046 }
1047 /* Invalid enumeration value. */
1048 return 0;
1049 }
1050 else
1051 {
1052 *pos = val;
1053 return 1;
1054 }
1055 }
1056
1057 /* Create an array type using either a blank type supplied in
1058 RESULT_TYPE, or creating a new type, inheriting the objfile from
1059 RANGE_TYPE.
1060
1061 Elements will be of type ELEMENT_TYPE, the indices will be of type
1062 RANGE_TYPE.
1063
1064 If BIT_STRIDE is not zero, build a packed array type whose element
1065 size is BIT_STRIDE. Otherwise, ignore this parameter.
1066
1067 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1068 sure it is TYPE_CODE_UNDEF before we bash it into an array
1069 type? */
1070
1071 struct type *
1072 create_array_type_with_stride (struct type *result_type,
1073 struct type *element_type,
1074 struct type *range_type,
1075 unsigned int bit_stride)
1076 {
1077 if (result_type == NULL)
1078 result_type = alloc_type_copy (range_type);
1079
1080 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1081 TYPE_TARGET_TYPE (result_type) = element_type;
1082 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1083 {
1084 LONGEST low_bound, high_bound;
1085
1086 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1087 low_bound = high_bound = 0;
1088 element_type = check_typedef (element_type);
1089 /* Be careful when setting the array length. Ada arrays can be
1090 empty arrays with the high_bound being smaller than the low_bound.
1091 In such cases, the array length should be zero. */
1092 if (high_bound < low_bound)
1093 TYPE_LENGTH (result_type) = 0;
1094 else if (bit_stride > 0)
1095 TYPE_LENGTH (result_type) =
1096 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1097 else
1098 TYPE_LENGTH (result_type) =
1099 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1100 }
1101 else
1102 {
1103 /* This type is dynamic and its length needs to be computed
1104 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1105 undefined by setting it to zero. Although we are not expected
1106 to trust TYPE_LENGTH in this case, setting the size to zero
1107 allows us to avoid allocating objects of random sizes in case
1108 we accidently do. */
1109 TYPE_LENGTH (result_type) = 0;
1110 }
1111
1112 TYPE_NFIELDS (result_type) = 1;
1113 TYPE_FIELDS (result_type) =
1114 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1115 TYPE_INDEX_TYPE (result_type) = range_type;
1116 if (bit_stride > 0)
1117 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1118
1119 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1120 if (TYPE_LENGTH (result_type) == 0)
1121 TYPE_TARGET_STUB (result_type) = 1;
1122
1123 return result_type;
1124 }
1125
1126 /* Same as create_array_type_with_stride but with no bit_stride
1127 (BIT_STRIDE = 0), thus building an unpacked array. */
1128
1129 struct type *
1130 create_array_type (struct type *result_type,
1131 struct type *element_type,
1132 struct type *range_type)
1133 {
1134 return create_array_type_with_stride (result_type, element_type,
1135 range_type, 0);
1136 }
1137
1138 struct type *
1139 lookup_array_range_type (struct type *element_type,
1140 LONGEST low_bound, LONGEST high_bound)
1141 {
1142 struct gdbarch *gdbarch = get_type_arch (element_type);
1143 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1144 struct type *range_type
1145 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1146
1147 return create_array_type (NULL, element_type, range_type);
1148 }
1149
1150 /* Create a string type using either a blank type supplied in
1151 RESULT_TYPE, or creating a new type. String types are similar
1152 enough to array of char types that we can use create_array_type to
1153 build the basic type and then bash it into a string type.
1154
1155 For fixed length strings, the range type contains 0 as the lower
1156 bound and the length of the string minus one as the upper bound.
1157
1158 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1159 sure it is TYPE_CODE_UNDEF before we bash it into a string
1160 type? */
1161
1162 struct type *
1163 create_string_type (struct type *result_type,
1164 struct type *string_char_type,
1165 struct type *range_type)
1166 {
1167 result_type = create_array_type (result_type,
1168 string_char_type,
1169 range_type);
1170 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1171 return result_type;
1172 }
1173
1174 struct type *
1175 lookup_string_range_type (struct type *string_char_type,
1176 LONGEST low_bound, LONGEST high_bound)
1177 {
1178 struct type *result_type;
1179
1180 result_type = lookup_array_range_type (string_char_type,
1181 low_bound, high_bound);
1182 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1183 return result_type;
1184 }
1185
1186 struct type *
1187 create_set_type (struct type *result_type, struct type *domain_type)
1188 {
1189 if (result_type == NULL)
1190 result_type = alloc_type_copy (domain_type);
1191
1192 TYPE_CODE (result_type) = TYPE_CODE_SET;
1193 TYPE_NFIELDS (result_type) = 1;
1194 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1195
1196 if (!TYPE_STUB (domain_type))
1197 {
1198 LONGEST low_bound, high_bound, bit_length;
1199
1200 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1201 low_bound = high_bound = 0;
1202 bit_length = high_bound - low_bound + 1;
1203 TYPE_LENGTH (result_type)
1204 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1205 if (low_bound >= 0)
1206 TYPE_UNSIGNED (result_type) = 1;
1207 }
1208 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1209
1210 return result_type;
1211 }
1212
1213 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1214 and any array types nested inside it. */
1215
1216 void
1217 make_vector_type (struct type *array_type)
1218 {
1219 struct type *inner_array, *elt_type;
1220 int flags;
1221
1222 /* Find the innermost array type, in case the array is
1223 multi-dimensional. */
1224 inner_array = array_type;
1225 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1226 inner_array = TYPE_TARGET_TYPE (inner_array);
1227
1228 elt_type = TYPE_TARGET_TYPE (inner_array);
1229 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1230 {
1231 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1232 elt_type = make_qualified_type (elt_type, flags, NULL);
1233 TYPE_TARGET_TYPE (inner_array) = elt_type;
1234 }
1235
1236 TYPE_VECTOR (array_type) = 1;
1237 }
1238
1239 struct type *
1240 init_vector_type (struct type *elt_type, int n)
1241 {
1242 struct type *array_type;
1243
1244 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1245 make_vector_type (array_type);
1246 return array_type;
1247 }
1248
1249 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1250 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1251 confusing. "self" is a common enough replacement for "this".
1252 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1253 TYPE_CODE_METHOD. */
1254
1255 struct type *
1256 internal_type_self_type (struct type *type)
1257 {
1258 switch (TYPE_CODE (type))
1259 {
1260 case TYPE_CODE_METHODPTR:
1261 case TYPE_CODE_MEMBERPTR:
1262 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1263 return NULL;
1264 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1265 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1266 case TYPE_CODE_METHOD:
1267 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1268 return NULL;
1269 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1270 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1271 default:
1272 gdb_assert_not_reached ("bad type");
1273 }
1274 }
1275
1276 /* Set the type of the class that TYPE belongs to.
1277 In c++ this is the class of "this".
1278 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1279 TYPE_CODE_METHOD. */
1280
1281 void
1282 set_type_self_type (struct type *type, struct type *self_type)
1283 {
1284 switch (TYPE_CODE (type))
1285 {
1286 case TYPE_CODE_METHODPTR:
1287 case TYPE_CODE_MEMBERPTR:
1288 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1289 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1290 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1291 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1292 break;
1293 case TYPE_CODE_METHOD:
1294 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1295 INIT_FUNC_SPECIFIC (type);
1296 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1297 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1298 break;
1299 default:
1300 gdb_assert_not_reached ("bad type");
1301 }
1302 }
1303
1304 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1305 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1306 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1307 TYPE doesn't include the offset (that's the value of the MEMBER
1308 itself), but does include the structure type into which it points
1309 (for some reason).
1310
1311 When "smashing" the type, we preserve the objfile that the old type
1312 pointed to, since we aren't changing where the type is actually
1313 allocated. */
1314
1315 void
1316 smash_to_memberptr_type (struct type *type, struct type *self_type,
1317 struct type *to_type)
1318 {
1319 smash_type (type);
1320 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1321 TYPE_TARGET_TYPE (type) = to_type;
1322 set_type_self_type (type, self_type);
1323 /* Assume that a data member pointer is the same size as a normal
1324 pointer. */
1325 TYPE_LENGTH (type)
1326 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1327 }
1328
1329 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1330
1331 When "smashing" the type, we preserve the objfile that the old type
1332 pointed to, since we aren't changing where the type is actually
1333 allocated. */
1334
1335 void
1336 smash_to_methodptr_type (struct type *type, struct type *to_type)
1337 {
1338 smash_type (type);
1339 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1340 TYPE_TARGET_TYPE (type) = to_type;
1341 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1342 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1343 }
1344
1345 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1346 METHOD just means `function that gets an extra "this" argument'.
1347
1348 When "smashing" the type, we preserve the objfile that the old type
1349 pointed to, since we aren't changing where the type is actually
1350 allocated. */
1351
1352 void
1353 smash_to_method_type (struct type *type, struct type *self_type,
1354 struct type *to_type, struct field *args,
1355 int nargs, int varargs)
1356 {
1357 smash_type (type);
1358 TYPE_CODE (type) = TYPE_CODE_METHOD;
1359 TYPE_TARGET_TYPE (type) = to_type;
1360 set_type_self_type (type, self_type);
1361 TYPE_FIELDS (type) = args;
1362 TYPE_NFIELDS (type) = nargs;
1363 if (varargs)
1364 TYPE_VARARGS (type) = 1;
1365 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1366 }
1367
1368 /* Return a typename for a struct/union/enum type without "struct ",
1369 "union ", or "enum ". If the type has a NULL name, return NULL. */
1370
1371 const char *
1372 type_name_no_tag (const struct type *type)
1373 {
1374 if (TYPE_TAG_NAME (type) != NULL)
1375 return TYPE_TAG_NAME (type);
1376
1377 /* Is there code which expects this to return the name if there is
1378 no tag name? My guess is that this is mainly used for C++ in
1379 cases where the two will always be the same. */
1380 return TYPE_NAME (type);
1381 }
1382
1383 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1384 Since GCC PR debug/47510 DWARF provides associated information to detect the
1385 anonymous class linkage name from its typedef.
1386
1387 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1388 apply it itself. */
1389
1390 const char *
1391 type_name_no_tag_or_error (struct type *type)
1392 {
1393 struct type *saved_type = type;
1394 const char *name;
1395 struct objfile *objfile;
1396
1397 type = check_typedef (type);
1398
1399 name = type_name_no_tag (type);
1400 if (name != NULL)
1401 return name;
1402
1403 name = type_name_no_tag (saved_type);
1404 objfile = TYPE_OBJFILE (saved_type);
1405 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1406 name ? name : "<anonymous>",
1407 objfile ? objfile_name (objfile) : "<arch>");
1408 }
1409
1410 /* Lookup a typedef or primitive type named NAME, visible in lexical
1411 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1412 suitably defined. */
1413
1414 struct type *
1415 lookup_typename (const struct language_defn *language,
1416 struct gdbarch *gdbarch, const char *name,
1417 const struct block *block, int noerr)
1418 {
1419 struct symbol *sym;
1420 struct type *type;
1421
1422 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1423 language->la_language, NULL).symbol;
1424 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1425 return SYMBOL_TYPE (sym);
1426
1427 if (noerr)
1428 return NULL;
1429 error (_("No type named %s."), name);
1430 }
1431
1432 struct type *
1433 lookup_unsigned_typename (const struct language_defn *language,
1434 struct gdbarch *gdbarch, const char *name)
1435 {
1436 char *uns = alloca (strlen (name) + 10);
1437
1438 strcpy (uns, "unsigned ");
1439 strcpy (uns + 9, name);
1440 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1441 }
1442
1443 struct type *
1444 lookup_signed_typename (const struct language_defn *language,
1445 struct gdbarch *gdbarch, const char *name)
1446 {
1447 struct type *t;
1448 char *uns = alloca (strlen (name) + 8);
1449
1450 strcpy (uns, "signed ");
1451 strcpy (uns + 7, name);
1452 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1453 /* If we don't find "signed FOO" just try again with plain "FOO". */
1454 if (t != NULL)
1455 return t;
1456 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1457 }
1458
1459 /* Lookup a structure type named "struct NAME",
1460 visible in lexical block BLOCK. */
1461
1462 struct type *
1463 lookup_struct (const char *name, const struct block *block)
1464 {
1465 struct symbol *sym;
1466
1467 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1468
1469 if (sym == NULL)
1470 {
1471 error (_("No struct type named %s."), name);
1472 }
1473 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1474 {
1475 error (_("This context has class, union or enum %s, not a struct."),
1476 name);
1477 }
1478 return (SYMBOL_TYPE (sym));
1479 }
1480
1481 /* Lookup a union type named "union NAME",
1482 visible in lexical block BLOCK. */
1483
1484 struct type *
1485 lookup_union (const char *name, const struct block *block)
1486 {
1487 struct symbol *sym;
1488 struct type *t;
1489
1490 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1491
1492 if (sym == NULL)
1493 error (_("No union type named %s."), name);
1494
1495 t = SYMBOL_TYPE (sym);
1496
1497 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1498 return t;
1499
1500 /* If we get here, it's not a union. */
1501 error (_("This context has class, struct or enum %s, not a union."),
1502 name);
1503 }
1504
1505 /* Lookup an enum type named "enum NAME",
1506 visible in lexical block BLOCK. */
1507
1508 struct type *
1509 lookup_enum (const char *name, const struct block *block)
1510 {
1511 struct symbol *sym;
1512
1513 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1514 if (sym == NULL)
1515 {
1516 error (_("No enum type named %s."), name);
1517 }
1518 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1519 {
1520 error (_("This context has class, struct or union %s, not an enum."),
1521 name);
1522 }
1523 return (SYMBOL_TYPE (sym));
1524 }
1525
1526 /* Lookup a template type named "template NAME<TYPE>",
1527 visible in lexical block BLOCK. */
1528
1529 struct type *
1530 lookup_template_type (char *name, struct type *type,
1531 const struct block *block)
1532 {
1533 struct symbol *sym;
1534 char *nam = (char *)
1535 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1536
1537 strcpy (nam, name);
1538 strcat (nam, "<");
1539 strcat (nam, TYPE_NAME (type));
1540 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1541
1542 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1543
1544 if (sym == NULL)
1545 {
1546 error (_("No template type named %s."), name);
1547 }
1548 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1549 {
1550 error (_("This context has class, union or enum %s, not a struct."),
1551 name);
1552 }
1553 return (SYMBOL_TYPE (sym));
1554 }
1555
1556 /* Given a type TYPE, lookup the type of the component of type named
1557 NAME.
1558
1559 TYPE can be either a struct or union, or a pointer or reference to
1560 a struct or union. If it is a pointer or reference, its target
1561 type is automatically used. Thus '.' and '->' are interchangable,
1562 as specified for the definitions of the expression element types
1563 STRUCTOP_STRUCT and STRUCTOP_PTR.
1564
1565 If NOERR is nonzero, return zero if NAME is not suitably defined.
1566 If NAME is the name of a baseclass type, return that type. */
1567
1568 struct type *
1569 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1570 {
1571 int i;
1572 char *type_name;
1573
1574 for (;;)
1575 {
1576 type = check_typedef (type);
1577 if (TYPE_CODE (type) != TYPE_CODE_PTR
1578 && TYPE_CODE (type) != TYPE_CODE_REF)
1579 break;
1580 type = TYPE_TARGET_TYPE (type);
1581 }
1582
1583 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1584 && TYPE_CODE (type) != TYPE_CODE_UNION)
1585 {
1586 type_name = type_to_string (type);
1587 make_cleanup (xfree, type_name);
1588 error (_("Type %s is not a structure or union type."), type_name);
1589 }
1590
1591 #if 0
1592 /* FIXME: This change put in by Michael seems incorrect for the case
1593 where the structure tag name is the same as the member name.
1594 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1595 foo; } bell;" Disabled by fnf. */
1596 {
1597 char *type_name;
1598
1599 type_name = type_name_no_tag (type);
1600 if (type_name != NULL && strcmp (type_name, name) == 0)
1601 return type;
1602 }
1603 #endif
1604
1605 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1606 {
1607 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1608
1609 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1610 {
1611 return TYPE_FIELD_TYPE (type, i);
1612 }
1613 else if (!t_field_name || *t_field_name == '\0')
1614 {
1615 struct type *subtype
1616 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1617
1618 if (subtype != NULL)
1619 return subtype;
1620 }
1621 }
1622
1623 /* OK, it's not in this class. Recursively check the baseclasses. */
1624 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1625 {
1626 struct type *t;
1627
1628 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1629 if (t != NULL)
1630 {
1631 return t;
1632 }
1633 }
1634
1635 if (noerr)
1636 {
1637 return NULL;
1638 }
1639
1640 type_name = type_to_string (type);
1641 make_cleanup (xfree, type_name);
1642 error (_("Type %s has no component named %s."), type_name, name);
1643 }
1644
1645 /* Store in *MAX the largest number representable by unsigned integer type
1646 TYPE. */
1647
1648 void
1649 get_unsigned_type_max (struct type *type, ULONGEST *max)
1650 {
1651 unsigned int n;
1652
1653 type = check_typedef (type);
1654 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1655 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1656
1657 /* Written this way to avoid overflow. */
1658 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1659 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1660 }
1661
1662 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1663 signed integer type TYPE. */
1664
1665 void
1666 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1667 {
1668 unsigned int n;
1669
1670 type = check_typedef (type);
1671 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1672 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1673
1674 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1675 *min = -((ULONGEST) 1 << (n - 1));
1676 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1677 }
1678
1679 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1680 cplus_stuff.vptr_fieldno.
1681
1682 cplus_stuff is initialized to cplus_struct_default which does not
1683 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1684 designated initializers). We cope with that here. */
1685
1686 int
1687 internal_type_vptr_fieldno (struct type *type)
1688 {
1689 type = check_typedef (type);
1690 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1691 || TYPE_CODE (type) == TYPE_CODE_UNION);
1692 if (!HAVE_CPLUS_STRUCT (type))
1693 return -1;
1694 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1695 }
1696
1697 /* Set the value of cplus_stuff.vptr_fieldno. */
1698
1699 void
1700 set_type_vptr_fieldno (struct type *type, int fieldno)
1701 {
1702 type = check_typedef (type);
1703 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1704 || TYPE_CODE (type) == TYPE_CODE_UNION);
1705 if (!HAVE_CPLUS_STRUCT (type))
1706 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1707 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1708 }
1709
1710 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1711 cplus_stuff.vptr_basetype. */
1712
1713 struct type *
1714 internal_type_vptr_basetype (struct type *type)
1715 {
1716 type = check_typedef (type);
1717 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1718 || TYPE_CODE (type) == TYPE_CODE_UNION);
1719 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1720 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1721 }
1722
1723 /* Set the value of cplus_stuff.vptr_basetype. */
1724
1725 void
1726 set_type_vptr_basetype (struct type *type, struct type *basetype)
1727 {
1728 type = check_typedef (type);
1729 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1730 || TYPE_CODE (type) == TYPE_CODE_UNION);
1731 if (!HAVE_CPLUS_STRUCT (type))
1732 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1733 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1734 }
1735
1736 /* Lookup the vptr basetype/fieldno values for TYPE.
1737 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1738 vptr_fieldno. Also, if found and basetype is from the same objfile,
1739 cache the results.
1740 If not found, return -1 and ignore BASETYPEP.
1741 Callers should be aware that in some cases (for example,
1742 the type or one of its baseclasses is a stub type and we are
1743 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1744 this function will not be able to find the
1745 virtual function table pointer, and vptr_fieldno will remain -1 and
1746 vptr_basetype will remain NULL or incomplete. */
1747
1748 int
1749 get_vptr_fieldno (struct type *type, struct type **basetypep)
1750 {
1751 type = check_typedef (type);
1752
1753 if (TYPE_VPTR_FIELDNO (type) < 0)
1754 {
1755 int i;
1756
1757 /* We must start at zero in case the first (and only) baseclass
1758 is virtual (and hence we cannot share the table pointer). */
1759 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1760 {
1761 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1762 int fieldno;
1763 struct type *basetype;
1764
1765 fieldno = get_vptr_fieldno (baseclass, &basetype);
1766 if (fieldno >= 0)
1767 {
1768 /* If the type comes from a different objfile we can't cache
1769 it, it may have a different lifetime. PR 2384 */
1770 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1771 {
1772 set_type_vptr_fieldno (type, fieldno);
1773 set_type_vptr_basetype (type, basetype);
1774 }
1775 if (basetypep)
1776 *basetypep = basetype;
1777 return fieldno;
1778 }
1779 }
1780
1781 /* Not found. */
1782 return -1;
1783 }
1784 else
1785 {
1786 if (basetypep)
1787 *basetypep = TYPE_VPTR_BASETYPE (type);
1788 return TYPE_VPTR_FIELDNO (type);
1789 }
1790 }
1791
1792 static void
1793 stub_noname_complaint (void)
1794 {
1795 complaint (&symfile_complaints, _("stub type has NULL name"));
1796 }
1797
1798 /* Worker for is_dynamic_type. */
1799
1800 static int
1801 is_dynamic_type_internal (struct type *type, int top_level)
1802 {
1803 type = check_typedef (type);
1804
1805 /* We only want to recognize references at the outermost level. */
1806 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1807 type = check_typedef (TYPE_TARGET_TYPE (type));
1808
1809 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1810 dynamic, even if the type itself is statically defined.
1811 From a user's point of view, this may appear counter-intuitive;
1812 but it makes sense in this context, because the point is to determine
1813 whether any part of the type needs to be resolved before it can
1814 be exploited. */
1815 if (TYPE_DATA_LOCATION (type) != NULL
1816 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1817 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1818 return 1;
1819
1820 switch (TYPE_CODE (type))
1821 {
1822 case TYPE_CODE_RANGE:
1823 {
1824 /* A range type is obviously dynamic if it has at least one
1825 dynamic bound. But also consider the range type to be
1826 dynamic when its subtype is dynamic, even if the bounds
1827 of the range type are static. It allows us to assume that
1828 the subtype of a static range type is also static. */
1829 return (!has_static_range (TYPE_RANGE_DATA (type))
1830 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1831 }
1832
1833 case TYPE_CODE_ARRAY:
1834 {
1835 gdb_assert (TYPE_NFIELDS (type) == 1);
1836
1837 /* The array is dynamic if either the bounds are dynamic,
1838 or the elements it contains have a dynamic contents. */
1839 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1840 return 1;
1841 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1842 }
1843
1844 case TYPE_CODE_STRUCT:
1845 case TYPE_CODE_UNION:
1846 {
1847 int i;
1848
1849 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1850 if (!field_is_static (&TYPE_FIELD (type, i))
1851 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1852 return 1;
1853 }
1854 break;
1855 }
1856
1857 return 0;
1858 }
1859
1860 /* See gdbtypes.h. */
1861
1862 int
1863 is_dynamic_type (struct type *type)
1864 {
1865 return is_dynamic_type_internal (type, 1);
1866 }
1867
1868 static struct type *resolve_dynamic_type_internal
1869 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1870
1871 /* Given a dynamic range type (dyn_range_type) and a stack of
1872 struct property_addr_info elements, return a static version
1873 of that type. */
1874
1875 static struct type *
1876 resolve_dynamic_range (struct type *dyn_range_type,
1877 struct property_addr_info *addr_stack)
1878 {
1879 CORE_ADDR value;
1880 struct type *static_range_type, *static_target_type;
1881 const struct dynamic_prop *prop;
1882 const struct dwarf2_locexpr_baton *baton;
1883 struct dynamic_prop low_bound, high_bound;
1884
1885 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1886
1887 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1888 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1889 {
1890 low_bound.kind = PROP_CONST;
1891 low_bound.data.const_val = value;
1892 }
1893 else
1894 {
1895 low_bound.kind = PROP_UNDEFINED;
1896 low_bound.data.const_val = 0;
1897 }
1898
1899 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1900 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1901 {
1902 high_bound.kind = PROP_CONST;
1903 high_bound.data.const_val = value;
1904
1905 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1906 high_bound.data.const_val
1907 = low_bound.data.const_val + high_bound.data.const_val - 1;
1908 }
1909 else
1910 {
1911 high_bound.kind = PROP_UNDEFINED;
1912 high_bound.data.const_val = 0;
1913 }
1914
1915 static_target_type
1916 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1917 addr_stack, 0);
1918 static_range_type = create_range_type (copy_type (dyn_range_type),
1919 static_target_type,
1920 &low_bound, &high_bound);
1921 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1922 return static_range_type;
1923 }
1924
1925 /* Resolves dynamic bound values of an array type TYPE to static ones.
1926 ADDR_STACK is a stack of struct property_addr_info to be used
1927 if needed during the dynamic resolution. */
1928
1929 static struct type *
1930 resolve_dynamic_array (struct type *type,
1931 struct property_addr_info *addr_stack)
1932 {
1933 CORE_ADDR value;
1934 struct type *elt_type;
1935 struct type *range_type;
1936 struct type *ary_dim;
1937
1938 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1939
1940 elt_type = type;
1941 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1942 range_type = resolve_dynamic_range (range_type, addr_stack);
1943
1944 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1945
1946 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1947 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1948 else
1949 elt_type = TYPE_TARGET_TYPE (type);
1950
1951 return create_array_type_with_stride (copy_type (type),
1952 elt_type, range_type,
1953 TYPE_FIELD_BITSIZE (type, 0));
1954 }
1955
1956 /* Resolve dynamic bounds of members of the union TYPE to static
1957 bounds. ADDR_STACK is a stack of struct property_addr_info
1958 to be used if needed during the dynamic resolution. */
1959
1960 static struct type *
1961 resolve_dynamic_union (struct type *type,
1962 struct property_addr_info *addr_stack)
1963 {
1964 struct type *resolved_type;
1965 int i;
1966 unsigned int max_len = 0;
1967
1968 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1969
1970 resolved_type = copy_type (type);
1971 TYPE_FIELDS (resolved_type)
1972 = TYPE_ALLOC (resolved_type,
1973 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1974 memcpy (TYPE_FIELDS (resolved_type),
1975 TYPE_FIELDS (type),
1976 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1977 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1978 {
1979 struct type *t;
1980
1981 if (field_is_static (&TYPE_FIELD (type, i)))
1982 continue;
1983
1984 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1985 addr_stack, 0);
1986 TYPE_FIELD_TYPE (resolved_type, i) = t;
1987 if (TYPE_LENGTH (t) > max_len)
1988 max_len = TYPE_LENGTH (t);
1989 }
1990
1991 TYPE_LENGTH (resolved_type) = max_len;
1992 return resolved_type;
1993 }
1994
1995 /* Resolve dynamic bounds of members of the struct TYPE to static
1996 bounds. ADDR_STACK is a stack of struct property_addr_info to
1997 be used if needed during the dynamic resolution. */
1998
1999 static struct type *
2000 resolve_dynamic_struct (struct type *type,
2001 struct property_addr_info *addr_stack)
2002 {
2003 struct type *resolved_type;
2004 int i;
2005 unsigned resolved_type_bit_length = 0;
2006
2007 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2008 gdb_assert (TYPE_NFIELDS (type) > 0);
2009
2010 resolved_type = copy_type (type);
2011 TYPE_FIELDS (resolved_type)
2012 = TYPE_ALLOC (resolved_type,
2013 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2014 memcpy (TYPE_FIELDS (resolved_type),
2015 TYPE_FIELDS (type),
2016 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2017 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2018 {
2019 unsigned new_bit_length;
2020 struct property_addr_info pinfo;
2021
2022 if (field_is_static (&TYPE_FIELD (type, i)))
2023 continue;
2024
2025 /* As we know this field is not a static field, the field's
2026 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2027 this is the case, but only trigger a simple error rather
2028 than an internal error if that fails. While failing
2029 that verification indicates a bug in our code, the error
2030 is not severe enough to suggest to the user he stops
2031 his debugging session because of it. */
2032 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2033 error (_("Cannot determine struct field location"
2034 " (invalid location kind)"));
2035
2036 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2037 pinfo.valaddr = addr_stack->valaddr;
2038 pinfo.addr = addr_stack->addr;
2039 pinfo.next = addr_stack;
2040
2041 TYPE_FIELD_TYPE (resolved_type, i)
2042 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2043 &pinfo, 0);
2044 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2045 == FIELD_LOC_KIND_BITPOS);
2046
2047 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2048 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2049 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2050 else
2051 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2052 * TARGET_CHAR_BIT);
2053
2054 /* Normally, we would use the position and size of the last field
2055 to determine the size of the enclosing structure. But GCC seems
2056 to be encoding the position of some fields incorrectly when
2057 the struct contains a dynamic field that is not placed last.
2058 So we compute the struct size based on the field that has
2059 the highest position + size - probably the best we can do. */
2060 if (new_bit_length > resolved_type_bit_length)
2061 resolved_type_bit_length = new_bit_length;
2062 }
2063
2064 TYPE_LENGTH (resolved_type)
2065 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2066
2067 /* The Ada language uses this field as a cache for static fixed types: reset
2068 it as RESOLVED_TYPE must have its own static fixed type. */
2069 TYPE_TARGET_TYPE (resolved_type) = NULL;
2070
2071 return resolved_type;
2072 }
2073
2074 /* Worker for resolved_dynamic_type. */
2075
2076 static struct type *
2077 resolve_dynamic_type_internal (struct type *type,
2078 struct property_addr_info *addr_stack,
2079 int top_level)
2080 {
2081 struct type *real_type = check_typedef (type);
2082 struct type *resolved_type = type;
2083 struct dynamic_prop *prop;
2084 CORE_ADDR value;
2085
2086 if (!is_dynamic_type_internal (real_type, top_level))
2087 return type;
2088
2089 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2090 {
2091 resolved_type = copy_type (type);
2092 TYPE_TARGET_TYPE (resolved_type)
2093 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2094 top_level);
2095 }
2096 else
2097 {
2098 /* Before trying to resolve TYPE, make sure it is not a stub. */
2099 type = real_type;
2100
2101 switch (TYPE_CODE (type))
2102 {
2103 case TYPE_CODE_REF:
2104 {
2105 struct property_addr_info pinfo;
2106
2107 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2108 pinfo.valaddr = NULL;
2109 if (addr_stack->valaddr != NULL)
2110 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2111 else
2112 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2113 pinfo.next = addr_stack;
2114
2115 resolved_type = copy_type (type);
2116 TYPE_TARGET_TYPE (resolved_type)
2117 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2118 &pinfo, top_level);
2119 break;
2120 }
2121
2122 case TYPE_CODE_ARRAY:
2123 resolved_type = resolve_dynamic_array (type, addr_stack);
2124 break;
2125
2126 case TYPE_CODE_RANGE:
2127 resolved_type = resolve_dynamic_range (type, addr_stack);
2128 break;
2129
2130 case TYPE_CODE_UNION:
2131 resolved_type = resolve_dynamic_union (type, addr_stack);
2132 break;
2133
2134 case TYPE_CODE_STRUCT:
2135 resolved_type = resolve_dynamic_struct (type, addr_stack);
2136 break;
2137 }
2138 }
2139
2140 /* Resolve data_location attribute. */
2141 prop = TYPE_DATA_LOCATION (resolved_type);
2142 if (prop != NULL
2143 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2144 {
2145 TYPE_DYN_PROP_ADDR (prop) = value;
2146 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2147 }
2148
2149 return resolved_type;
2150 }
2151
2152 /* See gdbtypes.h */
2153
2154 struct type *
2155 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2156 CORE_ADDR addr)
2157 {
2158 struct property_addr_info pinfo
2159 = {check_typedef (type), valaddr, addr, NULL};
2160
2161 return resolve_dynamic_type_internal (type, &pinfo, 1);
2162 }
2163
2164 /* See gdbtypes.h */
2165
2166 struct dynamic_prop *
2167 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2168 {
2169 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2170
2171 while (node != NULL)
2172 {
2173 if (node->prop_kind == prop_kind)
2174 return &node->prop;
2175 node = node->next;
2176 }
2177 return NULL;
2178 }
2179
2180 /* See gdbtypes.h */
2181
2182 void
2183 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2184 struct type *type, struct objfile *objfile)
2185 {
2186 struct dynamic_prop_list *temp;
2187
2188 gdb_assert (TYPE_OBJFILE_OWNED (type));
2189
2190 temp = obstack_alloc (&objfile->objfile_obstack,
2191 sizeof (struct dynamic_prop_list));
2192 temp->prop_kind = prop_kind;
2193 temp->prop = prop;
2194 temp->next = TYPE_DYN_PROP_LIST (type);
2195
2196 TYPE_DYN_PROP_LIST (type) = temp;
2197 }
2198
2199
2200 /* Find the real type of TYPE. This function returns the real type,
2201 after removing all layers of typedefs, and completing opaque or stub
2202 types. Completion changes the TYPE argument, but stripping of
2203 typedefs does not.
2204
2205 Instance flags (e.g. const/volatile) are preserved as typedefs are
2206 stripped. If necessary a new qualified form of the underlying type
2207 is created.
2208
2209 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2210 not been computed and we're either in the middle of reading symbols, or
2211 there was no name for the typedef in the debug info.
2212
2213 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2214 QUITs in the symbol reading code can also throw.
2215 Thus this function can throw an exception.
2216
2217 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2218 the target type.
2219
2220 If this is a stubbed struct (i.e. declared as struct foo *), see if
2221 we can find a full definition in some other file. If so, copy this
2222 definition, so we can use it in future. There used to be a comment
2223 (but not any code) that if we don't find a full definition, we'd
2224 set a flag so we don't spend time in the future checking the same
2225 type. That would be a mistake, though--we might load in more
2226 symbols which contain a full definition for the type. */
2227
2228 struct type *
2229 check_typedef (struct type *type)
2230 {
2231 struct type *orig_type = type;
2232 /* While we're removing typedefs, we don't want to lose qualifiers.
2233 E.g., const/volatile. */
2234 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2235
2236 gdb_assert (type);
2237
2238 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2239 {
2240 if (!TYPE_TARGET_TYPE (type))
2241 {
2242 const char *name;
2243 struct symbol *sym;
2244
2245 /* It is dangerous to call lookup_symbol if we are currently
2246 reading a symtab. Infinite recursion is one danger. */
2247 if (currently_reading_symtab)
2248 return make_qualified_type (type, instance_flags, NULL);
2249
2250 name = type_name_no_tag (type);
2251 /* FIXME: shouldn't we separately check the TYPE_NAME and
2252 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2253 VAR_DOMAIN as appropriate? (this code was written before
2254 TYPE_NAME and TYPE_TAG_NAME were separate). */
2255 if (name == NULL)
2256 {
2257 stub_noname_complaint ();
2258 return make_qualified_type (type, instance_flags, NULL);
2259 }
2260 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2261 if (sym)
2262 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2263 else /* TYPE_CODE_UNDEF */
2264 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2265 }
2266 type = TYPE_TARGET_TYPE (type);
2267
2268 /* Preserve the instance flags as we traverse down the typedef chain.
2269
2270 Handling address spaces/classes is nasty, what do we do if there's a
2271 conflict?
2272 E.g., what if an outer typedef marks the type as class_1 and an inner
2273 typedef marks the type as class_2?
2274 This is the wrong place to do such error checking. We leave it to
2275 the code that created the typedef in the first place to flag the
2276 error. We just pick the outer address space (akin to letting the
2277 outer cast in a chain of casting win), instead of assuming
2278 "it can't happen". */
2279 {
2280 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2281 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2282 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2283 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2284
2285 /* Treat code vs data spaces and address classes separately. */
2286 if ((instance_flags & ALL_SPACES) != 0)
2287 new_instance_flags &= ~ALL_SPACES;
2288 if ((instance_flags & ALL_CLASSES) != 0)
2289 new_instance_flags &= ~ALL_CLASSES;
2290
2291 instance_flags |= new_instance_flags;
2292 }
2293 }
2294
2295 /* If this is a struct/class/union with no fields, then check
2296 whether a full definition exists somewhere else. This is for
2297 systems where a type definition with no fields is issued for such
2298 types, instead of identifying them as stub types in the first
2299 place. */
2300
2301 if (TYPE_IS_OPAQUE (type)
2302 && opaque_type_resolution
2303 && !currently_reading_symtab)
2304 {
2305 const char *name = type_name_no_tag (type);
2306 struct type *newtype;
2307
2308 if (name == NULL)
2309 {
2310 stub_noname_complaint ();
2311 return make_qualified_type (type, instance_flags, NULL);
2312 }
2313 newtype = lookup_transparent_type (name);
2314
2315 if (newtype)
2316 {
2317 /* If the resolved type and the stub are in the same
2318 objfile, then replace the stub type with the real deal.
2319 But if they're in separate objfiles, leave the stub
2320 alone; we'll just look up the transparent type every time
2321 we call check_typedef. We can't create pointers between
2322 types allocated to different objfiles, since they may
2323 have different lifetimes. Trying to copy NEWTYPE over to
2324 TYPE's objfile is pointless, too, since you'll have to
2325 move over any other types NEWTYPE refers to, which could
2326 be an unbounded amount of stuff. */
2327 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2328 type = make_qualified_type (newtype,
2329 TYPE_INSTANCE_FLAGS (type),
2330 type);
2331 else
2332 type = newtype;
2333 }
2334 }
2335 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2336 types. */
2337 else if (TYPE_STUB (type) && !currently_reading_symtab)
2338 {
2339 const char *name = type_name_no_tag (type);
2340 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2341 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2342 as appropriate? (this code was written before TYPE_NAME and
2343 TYPE_TAG_NAME were separate). */
2344 struct symbol *sym;
2345
2346 if (name == NULL)
2347 {
2348 stub_noname_complaint ();
2349 return make_qualified_type (type, instance_flags, NULL);
2350 }
2351 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2352 if (sym)
2353 {
2354 /* Same as above for opaque types, we can replace the stub
2355 with the complete type only if they are in the same
2356 objfile. */
2357 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2358 type = make_qualified_type (SYMBOL_TYPE (sym),
2359 TYPE_INSTANCE_FLAGS (type),
2360 type);
2361 else
2362 type = SYMBOL_TYPE (sym);
2363 }
2364 }
2365
2366 if (TYPE_TARGET_STUB (type))
2367 {
2368 struct type *range_type;
2369 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2370
2371 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2372 {
2373 /* Nothing we can do. */
2374 }
2375 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2376 {
2377 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2378 TYPE_TARGET_STUB (type) = 0;
2379 }
2380 }
2381
2382 type = make_qualified_type (type, instance_flags, NULL);
2383
2384 /* Cache TYPE_LENGTH for future use. */
2385 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2386
2387 return type;
2388 }
2389
2390 /* Parse a type expression in the string [P..P+LENGTH). If an error
2391 occurs, silently return a void type. */
2392
2393 static struct type *
2394 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2395 {
2396 struct ui_file *saved_gdb_stderr;
2397 struct type *type = NULL; /* Initialize to keep gcc happy. */
2398
2399 /* Suppress error messages. */
2400 saved_gdb_stderr = gdb_stderr;
2401 gdb_stderr = ui_file_new ();
2402
2403 /* Call parse_and_eval_type() without fear of longjmp()s. */
2404 TRY
2405 {
2406 type = parse_and_eval_type (p, length);
2407 }
2408 CATCH (except, RETURN_MASK_ERROR)
2409 {
2410 type = builtin_type (gdbarch)->builtin_void;
2411 }
2412 END_CATCH
2413
2414 /* Stop suppressing error messages. */
2415 ui_file_delete (gdb_stderr);
2416 gdb_stderr = saved_gdb_stderr;
2417
2418 return type;
2419 }
2420
2421 /* Ugly hack to convert method stubs into method types.
2422
2423 He ain't kiddin'. This demangles the name of the method into a
2424 string including argument types, parses out each argument type,
2425 generates a string casting a zero to that type, evaluates the
2426 string, and stuffs the resulting type into an argtype vector!!!
2427 Then it knows the type of the whole function (including argument
2428 types for overloading), which info used to be in the stab's but was
2429 removed to hack back the space required for them. */
2430
2431 static void
2432 check_stub_method (struct type *type, int method_id, int signature_id)
2433 {
2434 struct gdbarch *gdbarch = get_type_arch (type);
2435 struct fn_field *f;
2436 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2437 char *demangled_name = gdb_demangle (mangled_name,
2438 DMGL_PARAMS | DMGL_ANSI);
2439 char *argtypetext, *p;
2440 int depth = 0, argcount = 1;
2441 struct field *argtypes;
2442 struct type *mtype;
2443
2444 /* Make sure we got back a function string that we can use. */
2445 if (demangled_name)
2446 p = strchr (demangled_name, '(');
2447 else
2448 p = NULL;
2449
2450 if (demangled_name == NULL || p == NULL)
2451 error (_("Internal: Cannot demangle mangled name `%s'."),
2452 mangled_name);
2453
2454 /* Now, read in the parameters that define this type. */
2455 p += 1;
2456 argtypetext = p;
2457 while (*p)
2458 {
2459 if (*p == '(' || *p == '<')
2460 {
2461 depth += 1;
2462 }
2463 else if (*p == ')' || *p == '>')
2464 {
2465 depth -= 1;
2466 }
2467 else if (*p == ',' && depth == 0)
2468 {
2469 argcount += 1;
2470 }
2471
2472 p += 1;
2473 }
2474
2475 /* If we read one argument and it was ``void'', don't count it. */
2476 if (startswith (argtypetext, "(void)"))
2477 argcount -= 1;
2478
2479 /* We need one extra slot, for the THIS pointer. */
2480
2481 argtypes = (struct field *)
2482 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2483 p = argtypetext;
2484
2485 /* Add THIS pointer for non-static methods. */
2486 f = TYPE_FN_FIELDLIST1 (type, method_id);
2487 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2488 argcount = 0;
2489 else
2490 {
2491 argtypes[0].type = lookup_pointer_type (type);
2492 argcount = 1;
2493 }
2494
2495 if (*p != ')') /* () means no args, skip while. */
2496 {
2497 depth = 0;
2498 while (*p)
2499 {
2500 if (depth <= 0 && (*p == ',' || *p == ')'))
2501 {
2502 /* Avoid parsing of ellipsis, they will be handled below.
2503 Also avoid ``void'' as above. */
2504 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2505 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2506 {
2507 argtypes[argcount].type =
2508 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2509 argcount += 1;
2510 }
2511 argtypetext = p + 1;
2512 }
2513
2514 if (*p == '(' || *p == '<')
2515 {
2516 depth += 1;
2517 }
2518 else if (*p == ')' || *p == '>')
2519 {
2520 depth -= 1;
2521 }
2522
2523 p += 1;
2524 }
2525 }
2526
2527 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2528
2529 /* Now update the old "stub" type into a real type. */
2530 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2531 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2532 We want a method (TYPE_CODE_METHOD). */
2533 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2534 argtypes, argcount, p[-2] == '.');
2535 TYPE_STUB (mtype) = 0;
2536 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2537
2538 xfree (demangled_name);
2539 }
2540
2541 /* This is the external interface to check_stub_method, above. This
2542 function unstubs all of the signatures for TYPE's METHOD_ID method
2543 name. After calling this function TYPE_FN_FIELD_STUB will be
2544 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2545 correct.
2546
2547 This function unfortunately can not die until stabs do. */
2548
2549 void
2550 check_stub_method_group (struct type *type, int method_id)
2551 {
2552 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2553 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2554 int j, found_stub = 0;
2555
2556 for (j = 0; j < len; j++)
2557 if (TYPE_FN_FIELD_STUB (f, j))
2558 {
2559 found_stub = 1;
2560 check_stub_method (type, method_id, j);
2561 }
2562
2563 /* GNU v3 methods with incorrect names were corrected when we read
2564 in type information, because it was cheaper to do it then. The
2565 only GNU v2 methods with incorrect method names are operators and
2566 destructors; destructors were also corrected when we read in type
2567 information.
2568
2569 Therefore the only thing we need to handle here are v2 operator
2570 names. */
2571 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2572 {
2573 int ret;
2574 char dem_opname[256];
2575
2576 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2577 method_id),
2578 dem_opname, DMGL_ANSI);
2579 if (!ret)
2580 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2581 method_id),
2582 dem_opname, 0);
2583 if (ret)
2584 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2585 }
2586 }
2587
2588 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2589 const struct cplus_struct_type cplus_struct_default = { };
2590
2591 void
2592 allocate_cplus_struct_type (struct type *type)
2593 {
2594 if (HAVE_CPLUS_STRUCT (type))
2595 /* Structure was already allocated. Nothing more to do. */
2596 return;
2597
2598 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2599 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2600 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2601 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2602 set_type_vptr_fieldno (type, -1);
2603 }
2604
2605 const struct gnat_aux_type gnat_aux_default =
2606 { NULL };
2607
2608 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2609 and allocate the associated gnat-specific data. The gnat-specific
2610 data is also initialized to gnat_aux_default. */
2611
2612 void
2613 allocate_gnat_aux_type (struct type *type)
2614 {
2615 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2616 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2617 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2618 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2619 }
2620
2621 /* Helper function to initialize the standard scalar types.
2622
2623 If NAME is non-NULL, then it is used to initialize the type name.
2624 Note that NAME is not copied; it is required to have a lifetime at
2625 least as long as OBJFILE. */
2626
2627 struct type *
2628 init_type (enum type_code code, int length, int flags,
2629 const char *name, struct objfile *objfile)
2630 {
2631 struct type *type;
2632
2633 type = alloc_type (objfile);
2634 TYPE_CODE (type) = code;
2635 TYPE_LENGTH (type) = length;
2636
2637 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2638 if (flags & TYPE_FLAG_UNSIGNED)
2639 TYPE_UNSIGNED (type) = 1;
2640 if (flags & TYPE_FLAG_NOSIGN)
2641 TYPE_NOSIGN (type) = 1;
2642 if (flags & TYPE_FLAG_STUB)
2643 TYPE_STUB (type) = 1;
2644 if (flags & TYPE_FLAG_TARGET_STUB)
2645 TYPE_TARGET_STUB (type) = 1;
2646 if (flags & TYPE_FLAG_STATIC)
2647 TYPE_STATIC (type) = 1;
2648 if (flags & TYPE_FLAG_PROTOTYPED)
2649 TYPE_PROTOTYPED (type) = 1;
2650 if (flags & TYPE_FLAG_INCOMPLETE)
2651 TYPE_INCOMPLETE (type) = 1;
2652 if (flags & TYPE_FLAG_VARARGS)
2653 TYPE_VARARGS (type) = 1;
2654 if (flags & TYPE_FLAG_VECTOR)
2655 TYPE_VECTOR (type) = 1;
2656 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2657 TYPE_STUB_SUPPORTED (type) = 1;
2658 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2659 TYPE_FIXED_INSTANCE (type) = 1;
2660 if (flags & TYPE_FLAG_GNU_IFUNC)
2661 TYPE_GNU_IFUNC (type) = 1;
2662
2663 TYPE_NAME (type) = name;
2664
2665 /* C++ fancies. */
2666
2667 if (name && strcmp (name, "char") == 0)
2668 TYPE_NOSIGN (type) = 1;
2669
2670 switch (code)
2671 {
2672 case TYPE_CODE_STRUCT:
2673 case TYPE_CODE_UNION:
2674 case TYPE_CODE_NAMESPACE:
2675 INIT_CPLUS_SPECIFIC (type);
2676 break;
2677 case TYPE_CODE_FLT:
2678 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2679 break;
2680 case TYPE_CODE_FUNC:
2681 INIT_FUNC_SPECIFIC (type);
2682 break;
2683 }
2684 return type;
2685 }
2686 \f
2687 /* Queries on types. */
2688
2689 int
2690 can_dereference (struct type *t)
2691 {
2692 /* FIXME: Should we return true for references as well as
2693 pointers? */
2694 t = check_typedef (t);
2695 return
2696 (t != NULL
2697 && TYPE_CODE (t) == TYPE_CODE_PTR
2698 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2699 }
2700
2701 int
2702 is_integral_type (struct type *t)
2703 {
2704 t = check_typedef (t);
2705 return
2706 ((t != NULL)
2707 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2708 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2709 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2710 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2711 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2712 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2713 }
2714
2715 /* Return true if TYPE is scalar. */
2716
2717 static int
2718 is_scalar_type (struct type *type)
2719 {
2720 type = check_typedef (type);
2721
2722 switch (TYPE_CODE (type))
2723 {
2724 case TYPE_CODE_ARRAY:
2725 case TYPE_CODE_STRUCT:
2726 case TYPE_CODE_UNION:
2727 case TYPE_CODE_SET:
2728 case TYPE_CODE_STRING:
2729 return 0;
2730 default:
2731 return 1;
2732 }
2733 }
2734
2735 /* Return true if T is scalar, or a composite type which in practice has
2736 the memory layout of a scalar type. E.g., an array or struct with only
2737 one scalar element inside it, or a union with only scalar elements. */
2738
2739 int
2740 is_scalar_type_recursive (struct type *t)
2741 {
2742 t = check_typedef (t);
2743
2744 if (is_scalar_type (t))
2745 return 1;
2746 /* Are we dealing with an array or string of known dimensions? */
2747 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2748 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2749 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2750 {
2751 LONGEST low_bound, high_bound;
2752 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2753
2754 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2755
2756 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2757 }
2758 /* Are we dealing with a struct with one element? */
2759 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2760 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2761 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2762 {
2763 int i, n = TYPE_NFIELDS (t);
2764
2765 /* If all elements of the union are scalar, then the union is scalar. */
2766 for (i = 0; i < n; i++)
2767 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2768 return 0;
2769
2770 return 1;
2771 }
2772
2773 return 0;
2774 }
2775
2776 /* Return true is T is a class or a union. False otherwise. */
2777
2778 int
2779 class_or_union_p (const struct type *t)
2780 {
2781 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2782 || TYPE_CODE (t) == TYPE_CODE_UNION);
2783 }
2784
2785 /* A helper function which returns true if types A and B represent the
2786 "same" class type. This is true if the types have the same main
2787 type, or the same name. */
2788
2789 int
2790 class_types_same_p (const struct type *a, const struct type *b)
2791 {
2792 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2793 || (TYPE_NAME (a) && TYPE_NAME (b)
2794 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2795 }
2796
2797 /* If BASE is an ancestor of DCLASS return the distance between them.
2798 otherwise return -1;
2799 eg:
2800
2801 class A {};
2802 class B: public A {};
2803 class C: public B {};
2804 class D: C {};
2805
2806 distance_to_ancestor (A, A, 0) = 0
2807 distance_to_ancestor (A, B, 0) = 1
2808 distance_to_ancestor (A, C, 0) = 2
2809 distance_to_ancestor (A, D, 0) = 3
2810
2811 If PUBLIC is 1 then only public ancestors are considered,
2812 and the function returns the distance only if BASE is a public ancestor
2813 of DCLASS.
2814 Eg:
2815
2816 distance_to_ancestor (A, D, 1) = -1. */
2817
2818 static int
2819 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2820 {
2821 int i;
2822 int d;
2823
2824 base = check_typedef (base);
2825 dclass = check_typedef (dclass);
2826
2827 if (class_types_same_p (base, dclass))
2828 return 0;
2829
2830 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2831 {
2832 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2833 continue;
2834
2835 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2836 if (d >= 0)
2837 return 1 + d;
2838 }
2839
2840 return -1;
2841 }
2842
2843 /* Check whether BASE is an ancestor or base class or DCLASS
2844 Return 1 if so, and 0 if not.
2845 Note: If BASE and DCLASS are of the same type, this function
2846 will return 1. So for some class A, is_ancestor (A, A) will
2847 return 1. */
2848
2849 int
2850 is_ancestor (struct type *base, struct type *dclass)
2851 {
2852 return distance_to_ancestor (base, dclass, 0) >= 0;
2853 }
2854
2855 /* Like is_ancestor, but only returns true when BASE is a public
2856 ancestor of DCLASS. */
2857
2858 int
2859 is_public_ancestor (struct type *base, struct type *dclass)
2860 {
2861 return distance_to_ancestor (base, dclass, 1) >= 0;
2862 }
2863
2864 /* A helper function for is_unique_ancestor. */
2865
2866 static int
2867 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2868 int *offset,
2869 const gdb_byte *valaddr, int embedded_offset,
2870 CORE_ADDR address, struct value *val)
2871 {
2872 int i, count = 0;
2873
2874 base = check_typedef (base);
2875 dclass = check_typedef (dclass);
2876
2877 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2878 {
2879 struct type *iter;
2880 int this_offset;
2881
2882 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2883
2884 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2885 address, val);
2886
2887 if (class_types_same_p (base, iter))
2888 {
2889 /* If this is the first subclass, set *OFFSET and set count
2890 to 1. Otherwise, if this is at the same offset as
2891 previous instances, do nothing. Otherwise, increment
2892 count. */
2893 if (*offset == -1)
2894 {
2895 *offset = this_offset;
2896 count = 1;
2897 }
2898 else if (this_offset == *offset)
2899 {
2900 /* Nothing. */
2901 }
2902 else
2903 ++count;
2904 }
2905 else
2906 count += is_unique_ancestor_worker (base, iter, offset,
2907 valaddr,
2908 embedded_offset + this_offset,
2909 address, val);
2910 }
2911
2912 return count;
2913 }
2914
2915 /* Like is_ancestor, but only returns true if BASE is a unique base
2916 class of the type of VAL. */
2917
2918 int
2919 is_unique_ancestor (struct type *base, struct value *val)
2920 {
2921 int offset = -1;
2922
2923 return is_unique_ancestor_worker (base, value_type (val), &offset,
2924 value_contents_for_printing (val),
2925 value_embedded_offset (val),
2926 value_address (val), val) == 1;
2927 }
2928
2929 \f
2930 /* Overload resolution. */
2931
2932 /* Return the sum of the rank of A with the rank of B. */
2933
2934 struct rank
2935 sum_ranks (struct rank a, struct rank b)
2936 {
2937 struct rank c;
2938 c.rank = a.rank + b.rank;
2939 c.subrank = a.subrank + b.subrank;
2940 return c;
2941 }
2942
2943 /* Compare rank A and B and return:
2944 0 if a = b
2945 1 if a is better than b
2946 -1 if b is better than a. */
2947
2948 int
2949 compare_ranks (struct rank a, struct rank b)
2950 {
2951 if (a.rank == b.rank)
2952 {
2953 if (a.subrank == b.subrank)
2954 return 0;
2955 if (a.subrank < b.subrank)
2956 return 1;
2957 if (a.subrank > b.subrank)
2958 return -1;
2959 }
2960
2961 if (a.rank < b.rank)
2962 return 1;
2963
2964 /* a.rank > b.rank */
2965 return -1;
2966 }
2967
2968 /* Functions for overload resolution begin here. */
2969
2970 /* Compare two badness vectors A and B and return the result.
2971 0 => A and B are identical
2972 1 => A and B are incomparable
2973 2 => A is better than B
2974 3 => A is worse than B */
2975
2976 int
2977 compare_badness (struct badness_vector *a, struct badness_vector *b)
2978 {
2979 int i;
2980 int tmp;
2981 short found_pos = 0; /* any positives in c? */
2982 short found_neg = 0; /* any negatives in c? */
2983
2984 /* differing lengths => incomparable */
2985 if (a->length != b->length)
2986 return 1;
2987
2988 /* Subtract b from a */
2989 for (i = 0; i < a->length; i++)
2990 {
2991 tmp = compare_ranks (b->rank[i], a->rank[i]);
2992 if (tmp > 0)
2993 found_pos = 1;
2994 else if (tmp < 0)
2995 found_neg = 1;
2996 }
2997
2998 if (found_pos)
2999 {
3000 if (found_neg)
3001 return 1; /* incomparable */
3002 else
3003 return 3; /* A > B */
3004 }
3005 else
3006 /* no positives */
3007 {
3008 if (found_neg)
3009 return 2; /* A < B */
3010 else
3011 return 0; /* A == B */
3012 }
3013 }
3014
3015 /* Rank a function by comparing its parameter types (PARMS, length
3016 NPARMS), to the types of an argument list (ARGS, length NARGS).
3017 Return a pointer to a badness vector. This has NARGS + 1
3018 entries. */
3019
3020 struct badness_vector *
3021 rank_function (struct type **parms, int nparms,
3022 struct value **args, int nargs)
3023 {
3024 int i;
3025 struct badness_vector *bv;
3026 int min_len = nparms < nargs ? nparms : nargs;
3027
3028 bv = xmalloc (sizeof (struct badness_vector));
3029 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3030 bv->rank = XNEWVEC (struct rank, nargs + 1);
3031
3032 /* First compare the lengths of the supplied lists.
3033 If there is a mismatch, set it to a high value. */
3034
3035 /* pai/1997-06-03 FIXME: when we have debug info about default
3036 arguments and ellipsis parameter lists, we should consider those
3037 and rank the length-match more finely. */
3038
3039 LENGTH_MATCH (bv) = (nargs != nparms)
3040 ? LENGTH_MISMATCH_BADNESS
3041 : EXACT_MATCH_BADNESS;
3042
3043 /* Now rank all the parameters of the candidate function. */
3044 for (i = 1; i <= min_len; i++)
3045 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3046 args[i - 1]);
3047
3048 /* If more arguments than parameters, add dummy entries. */
3049 for (i = min_len + 1; i <= nargs; i++)
3050 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3051
3052 return bv;
3053 }
3054
3055 /* Compare the names of two integer types, assuming that any sign
3056 qualifiers have been checked already. We do it this way because
3057 there may be an "int" in the name of one of the types. */
3058
3059 static int
3060 integer_types_same_name_p (const char *first, const char *second)
3061 {
3062 int first_p, second_p;
3063
3064 /* If both are shorts, return 1; if neither is a short, keep
3065 checking. */
3066 first_p = (strstr (first, "short") != NULL);
3067 second_p = (strstr (second, "short") != NULL);
3068 if (first_p && second_p)
3069 return 1;
3070 if (first_p || second_p)
3071 return 0;
3072
3073 /* Likewise for long. */
3074 first_p = (strstr (first, "long") != NULL);
3075 second_p = (strstr (second, "long") != NULL);
3076 if (first_p && second_p)
3077 return 1;
3078 if (first_p || second_p)
3079 return 0;
3080
3081 /* Likewise for char. */
3082 first_p = (strstr (first, "char") != NULL);
3083 second_p = (strstr (second, "char") != NULL);
3084 if (first_p && second_p)
3085 return 1;
3086 if (first_p || second_p)
3087 return 0;
3088
3089 /* They must both be ints. */
3090 return 1;
3091 }
3092
3093 /* Compares type A to type B returns 1 if the represent the same type
3094 0 otherwise. */
3095
3096 int
3097 types_equal (struct type *a, struct type *b)
3098 {
3099 /* Identical type pointers. */
3100 /* However, this still doesn't catch all cases of same type for b
3101 and a. The reason is that builtin types are different from
3102 the same ones constructed from the object. */
3103 if (a == b)
3104 return 1;
3105
3106 /* Resolve typedefs */
3107 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3108 a = check_typedef (a);
3109 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3110 b = check_typedef (b);
3111
3112 /* If after resolving typedefs a and b are not of the same type
3113 code then they are not equal. */
3114 if (TYPE_CODE (a) != TYPE_CODE (b))
3115 return 0;
3116
3117 /* If a and b are both pointers types or both reference types then
3118 they are equal of the same type iff the objects they refer to are
3119 of the same type. */
3120 if (TYPE_CODE (a) == TYPE_CODE_PTR
3121 || TYPE_CODE (a) == TYPE_CODE_REF)
3122 return types_equal (TYPE_TARGET_TYPE (a),
3123 TYPE_TARGET_TYPE (b));
3124
3125 /* Well, damnit, if the names are exactly the same, I'll say they
3126 are exactly the same. This happens when we generate method
3127 stubs. The types won't point to the same address, but they
3128 really are the same. */
3129
3130 if (TYPE_NAME (a) && TYPE_NAME (b)
3131 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3132 return 1;
3133
3134 /* Check if identical after resolving typedefs. */
3135 if (a == b)
3136 return 1;
3137
3138 /* Two function types are equal if their argument and return types
3139 are equal. */
3140 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3141 {
3142 int i;
3143
3144 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3145 return 0;
3146
3147 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3148 return 0;
3149
3150 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3151 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3152 return 0;
3153
3154 return 1;
3155 }
3156
3157 return 0;
3158 }
3159 \f
3160 /* Deep comparison of types. */
3161
3162 /* An entry in the type-equality bcache. */
3163
3164 typedef struct type_equality_entry
3165 {
3166 struct type *type1, *type2;
3167 } type_equality_entry_d;
3168
3169 DEF_VEC_O (type_equality_entry_d);
3170
3171 /* A helper function to compare two strings. Returns 1 if they are
3172 the same, 0 otherwise. Handles NULLs properly. */
3173
3174 static int
3175 compare_maybe_null_strings (const char *s, const char *t)
3176 {
3177 if (s == NULL && t != NULL)
3178 return 0;
3179 else if (s != NULL && t == NULL)
3180 return 0;
3181 else if (s == NULL && t== NULL)
3182 return 1;
3183 return strcmp (s, t) == 0;
3184 }
3185
3186 /* A helper function for check_types_worklist that checks two types for
3187 "deep" equality. Returns non-zero if the types are considered the
3188 same, zero otherwise. */
3189
3190 static int
3191 check_types_equal (struct type *type1, struct type *type2,
3192 VEC (type_equality_entry_d) **worklist)
3193 {
3194 type1 = check_typedef (type1);
3195 type2 = check_typedef (type2);
3196
3197 if (type1 == type2)
3198 return 1;
3199
3200 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3201 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3202 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3203 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3204 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3205 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3206 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3207 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3208 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3209 return 0;
3210
3211 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3212 TYPE_TAG_NAME (type2)))
3213 return 0;
3214 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3215 return 0;
3216
3217 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3218 {
3219 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3220 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3221 return 0;
3222 }
3223 else
3224 {
3225 int i;
3226
3227 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3228 {
3229 const struct field *field1 = &TYPE_FIELD (type1, i);
3230 const struct field *field2 = &TYPE_FIELD (type2, i);
3231 struct type_equality_entry entry;
3232
3233 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3234 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3235 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3236 return 0;
3237 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3238 FIELD_NAME (*field2)))
3239 return 0;
3240 switch (FIELD_LOC_KIND (*field1))
3241 {
3242 case FIELD_LOC_KIND_BITPOS:
3243 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3244 return 0;
3245 break;
3246 case FIELD_LOC_KIND_ENUMVAL:
3247 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3248 return 0;
3249 break;
3250 case FIELD_LOC_KIND_PHYSADDR:
3251 if (FIELD_STATIC_PHYSADDR (*field1)
3252 != FIELD_STATIC_PHYSADDR (*field2))
3253 return 0;
3254 break;
3255 case FIELD_LOC_KIND_PHYSNAME:
3256 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3257 FIELD_STATIC_PHYSNAME (*field2)))
3258 return 0;
3259 break;
3260 case FIELD_LOC_KIND_DWARF_BLOCK:
3261 {
3262 struct dwarf2_locexpr_baton *block1, *block2;
3263
3264 block1 = FIELD_DWARF_BLOCK (*field1);
3265 block2 = FIELD_DWARF_BLOCK (*field2);
3266 if (block1->per_cu != block2->per_cu
3267 || block1->size != block2->size
3268 || memcmp (block1->data, block2->data, block1->size) != 0)
3269 return 0;
3270 }
3271 break;
3272 default:
3273 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3274 "%d by check_types_equal"),
3275 FIELD_LOC_KIND (*field1));
3276 }
3277
3278 entry.type1 = FIELD_TYPE (*field1);
3279 entry.type2 = FIELD_TYPE (*field2);
3280 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3281 }
3282 }
3283
3284 if (TYPE_TARGET_TYPE (type1) != NULL)
3285 {
3286 struct type_equality_entry entry;
3287
3288 if (TYPE_TARGET_TYPE (type2) == NULL)
3289 return 0;
3290
3291 entry.type1 = TYPE_TARGET_TYPE (type1);
3292 entry.type2 = TYPE_TARGET_TYPE (type2);
3293 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3294 }
3295 else if (TYPE_TARGET_TYPE (type2) != NULL)
3296 return 0;
3297
3298 return 1;
3299 }
3300
3301 /* Check types on a worklist for equality. Returns zero if any pair
3302 is not equal, non-zero if they are all considered equal. */
3303
3304 static int
3305 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3306 struct bcache *cache)
3307 {
3308 while (!VEC_empty (type_equality_entry_d, *worklist))
3309 {
3310 struct type_equality_entry entry;
3311 int added;
3312
3313 entry = *VEC_last (type_equality_entry_d, *worklist);
3314 VEC_pop (type_equality_entry_d, *worklist);
3315
3316 /* If the type pair has already been visited, we know it is
3317 ok. */
3318 bcache_full (&entry, sizeof (entry), cache, &added);
3319 if (!added)
3320 continue;
3321
3322 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3323 return 0;
3324 }
3325
3326 return 1;
3327 }
3328
3329 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3330 "deep comparison". Otherwise return zero. */
3331
3332 int
3333 types_deeply_equal (struct type *type1, struct type *type2)
3334 {
3335 struct gdb_exception except = exception_none;
3336 int result = 0;
3337 struct bcache *cache;
3338 VEC (type_equality_entry_d) *worklist = NULL;
3339 struct type_equality_entry entry;
3340
3341 gdb_assert (type1 != NULL && type2 != NULL);
3342
3343 /* Early exit for the simple case. */
3344 if (type1 == type2)
3345 return 1;
3346
3347 cache = bcache_xmalloc (NULL, NULL);
3348
3349 entry.type1 = type1;
3350 entry.type2 = type2;
3351 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3352
3353 /* check_types_worklist calls several nested helper functions, some
3354 of which can raise a GDB exception, so we just check and rethrow
3355 here. If there is a GDB exception, a comparison is not capable
3356 (or trusted), so exit. */
3357 TRY
3358 {
3359 result = check_types_worklist (&worklist, cache);
3360 }
3361 CATCH (ex, RETURN_MASK_ALL)
3362 {
3363 except = ex;
3364 }
3365 END_CATCH
3366
3367 bcache_xfree (cache);
3368 VEC_free (type_equality_entry_d, worklist);
3369
3370 /* Rethrow if there was a problem. */
3371 if (except.reason < 0)
3372 throw_exception (except);
3373
3374 return result;
3375 }
3376 \f
3377 /* Compare one type (PARM) for compatibility with another (ARG).
3378 * PARM is intended to be the parameter type of a function; and
3379 * ARG is the supplied argument's type. This function tests if
3380 * the latter can be converted to the former.
3381 * VALUE is the argument's value or NULL if none (or called recursively)
3382 *
3383 * Return 0 if they are identical types;
3384 * Otherwise, return an integer which corresponds to how compatible
3385 * PARM is to ARG. The higher the return value, the worse the match.
3386 * Generally the "bad" conversions are all uniformly assigned a 100. */
3387
3388 struct rank
3389 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3390 {
3391 struct rank rank = {0,0};
3392
3393 if (types_equal (parm, arg))
3394 return EXACT_MATCH_BADNESS;
3395
3396 /* Resolve typedefs */
3397 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3398 parm = check_typedef (parm);
3399 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3400 arg = check_typedef (arg);
3401
3402 /* See through references, since we can almost make non-references
3403 references. */
3404 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3405 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3406 REFERENCE_CONVERSION_BADNESS));
3407 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3408 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3409 REFERENCE_CONVERSION_BADNESS));
3410 if (overload_debug)
3411 /* Debugging only. */
3412 fprintf_filtered (gdb_stderr,
3413 "------ Arg is %s [%d], parm is %s [%d]\n",
3414 TYPE_NAME (arg), TYPE_CODE (arg),
3415 TYPE_NAME (parm), TYPE_CODE (parm));
3416
3417 /* x -> y means arg of type x being supplied for parameter of type y. */
3418
3419 switch (TYPE_CODE (parm))
3420 {
3421 case TYPE_CODE_PTR:
3422 switch (TYPE_CODE (arg))
3423 {
3424 case TYPE_CODE_PTR:
3425
3426 /* Allowed pointer conversions are:
3427 (a) pointer to void-pointer conversion. */
3428 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3429 return VOID_PTR_CONVERSION_BADNESS;
3430
3431 /* (b) pointer to ancestor-pointer conversion. */
3432 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3433 TYPE_TARGET_TYPE (arg),
3434 0);
3435 if (rank.subrank >= 0)
3436 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3437
3438 return INCOMPATIBLE_TYPE_BADNESS;
3439 case TYPE_CODE_ARRAY:
3440 if (types_equal (TYPE_TARGET_TYPE (parm),
3441 TYPE_TARGET_TYPE (arg)))
3442 return EXACT_MATCH_BADNESS;
3443 return INCOMPATIBLE_TYPE_BADNESS;
3444 case TYPE_CODE_FUNC:
3445 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3446 case TYPE_CODE_INT:
3447 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3448 {
3449 if (value_as_long (value) == 0)
3450 {
3451 /* Null pointer conversion: allow it to be cast to a pointer.
3452 [4.10.1 of C++ standard draft n3290] */
3453 return NULL_POINTER_CONVERSION_BADNESS;
3454 }
3455 else
3456 {
3457 /* If type checking is disabled, allow the conversion. */
3458 if (!strict_type_checking)
3459 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3460 }
3461 }
3462 /* fall through */
3463 case TYPE_CODE_ENUM:
3464 case TYPE_CODE_FLAGS:
3465 case TYPE_CODE_CHAR:
3466 case TYPE_CODE_RANGE:
3467 case TYPE_CODE_BOOL:
3468 default:
3469 return INCOMPATIBLE_TYPE_BADNESS;
3470 }
3471 case TYPE_CODE_ARRAY:
3472 switch (TYPE_CODE (arg))
3473 {
3474 case TYPE_CODE_PTR:
3475 case TYPE_CODE_ARRAY:
3476 return rank_one_type (TYPE_TARGET_TYPE (parm),
3477 TYPE_TARGET_TYPE (arg), NULL);
3478 default:
3479 return INCOMPATIBLE_TYPE_BADNESS;
3480 }
3481 case TYPE_CODE_FUNC:
3482 switch (TYPE_CODE (arg))
3483 {
3484 case TYPE_CODE_PTR: /* funcptr -> func */
3485 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3486 default:
3487 return INCOMPATIBLE_TYPE_BADNESS;
3488 }
3489 case TYPE_CODE_INT:
3490 switch (TYPE_CODE (arg))
3491 {
3492 case TYPE_CODE_INT:
3493 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3494 {
3495 /* Deal with signed, unsigned, and plain chars and
3496 signed and unsigned ints. */
3497 if (TYPE_NOSIGN (parm))
3498 {
3499 /* This case only for character types. */
3500 if (TYPE_NOSIGN (arg))
3501 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3502 else /* signed/unsigned char -> plain char */
3503 return INTEGER_CONVERSION_BADNESS;
3504 }
3505 else if (TYPE_UNSIGNED (parm))
3506 {
3507 if (TYPE_UNSIGNED (arg))
3508 {
3509 /* unsigned int -> unsigned int, or
3510 unsigned long -> unsigned long */
3511 if (integer_types_same_name_p (TYPE_NAME (parm),
3512 TYPE_NAME (arg)))
3513 return EXACT_MATCH_BADNESS;
3514 else if (integer_types_same_name_p (TYPE_NAME (arg),
3515 "int")
3516 && integer_types_same_name_p (TYPE_NAME (parm),
3517 "long"))
3518 /* unsigned int -> unsigned long */
3519 return INTEGER_PROMOTION_BADNESS;
3520 else
3521 /* unsigned long -> unsigned int */
3522 return INTEGER_CONVERSION_BADNESS;
3523 }
3524 else
3525 {
3526 if (integer_types_same_name_p (TYPE_NAME (arg),
3527 "long")
3528 && integer_types_same_name_p (TYPE_NAME (parm),
3529 "int"))
3530 /* signed long -> unsigned int */
3531 return INTEGER_CONVERSION_BADNESS;
3532 else
3533 /* signed int/long -> unsigned int/long */
3534 return INTEGER_CONVERSION_BADNESS;
3535 }
3536 }
3537 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3538 {
3539 if (integer_types_same_name_p (TYPE_NAME (parm),
3540 TYPE_NAME (arg)))
3541 return EXACT_MATCH_BADNESS;
3542 else if (integer_types_same_name_p (TYPE_NAME (arg),
3543 "int")
3544 && integer_types_same_name_p (TYPE_NAME (parm),
3545 "long"))
3546 return INTEGER_PROMOTION_BADNESS;
3547 else
3548 return INTEGER_CONVERSION_BADNESS;
3549 }
3550 else
3551 return INTEGER_CONVERSION_BADNESS;
3552 }
3553 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3554 return INTEGER_PROMOTION_BADNESS;
3555 else
3556 return INTEGER_CONVERSION_BADNESS;
3557 case TYPE_CODE_ENUM:
3558 case TYPE_CODE_FLAGS:
3559 case TYPE_CODE_CHAR:
3560 case TYPE_CODE_RANGE:
3561 case TYPE_CODE_BOOL:
3562 if (TYPE_DECLARED_CLASS (arg))
3563 return INCOMPATIBLE_TYPE_BADNESS;
3564 return INTEGER_PROMOTION_BADNESS;
3565 case TYPE_CODE_FLT:
3566 return INT_FLOAT_CONVERSION_BADNESS;
3567 case TYPE_CODE_PTR:
3568 return NS_POINTER_CONVERSION_BADNESS;
3569 default:
3570 return INCOMPATIBLE_TYPE_BADNESS;
3571 }
3572 break;
3573 case TYPE_CODE_ENUM:
3574 switch (TYPE_CODE (arg))
3575 {
3576 case TYPE_CODE_INT:
3577 case TYPE_CODE_CHAR:
3578 case TYPE_CODE_RANGE:
3579 case TYPE_CODE_BOOL:
3580 case TYPE_CODE_ENUM:
3581 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3582 return INCOMPATIBLE_TYPE_BADNESS;
3583 return INTEGER_CONVERSION_BADNESS;
3584 case TYPE_CODE_FLT:
3585 return INT_FLOAT_CONVERSION_BADNESS;
3586 default:
3587 return INCOMPATIBLE_TYPE_BADNESS;
3588 }
3589 break;
3590 case TYPE_CODE_CHAR:
3591 switch (TYPE_CODE (arg))
3592 {
3593 case TYPE_CODE_RANGE:
3594 case TYPE_CODE_BOOL:
3595 case TYPE_CODE_ENUM:
3596 if (TYPE_DECLARED_CLASS (arg))
3597 return INCOMPATIBLE_TYPE_BADNESS;
3598 return INTEGER_CONVERSION_BADNESS;
3599 case TYPE_CODE_FLT:
3600 return INT_FLOAT_CONVERSION_BADNESS;
3601 case TYPE_CODE_INT:
3602 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3603 return INTEGER_CONVERSION_BADNESS;
3604 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3605 return INTEGER_PROMOTION_BADNESS;
3606 /* >>> !! else fall through !! <<< */
3607 case TYPE_CODE_CHAR:
3608 /* Deal with signed, unsigned, and plain chars for C++ and
3609 with int cases falling through from previous case. */
3610 if (TYPE_NOSIGN (parm))
3611 {
3612 if (TYPE_NOSIGN (arg))
3613 return EXACT_MATCH_BADNESS;
3614 else
3615 return INTEGER_CONVERSION_BADNESS;
3616 }
3617 else if (TYPE_UNSIGNED (parm))
3618 {
3619 if (TYPE_UNSIGNED (arg))
3620 return EXACT_MATCH_BADNESS;
3621 else
3622 return INTEGER_PROMOTION_BADNESS;
3623 }
3624 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3625 return EXACT_MATCH_BADNESS;
3626 else
3627 return INTEGER_CONVERSION_BADNESS;
3628 default:
3629 return INCOMPATIBLE_TYPE_BADNESS;
3630 }
3631 break;
3632 case TYPE_CODE_RANGE:
3633 switch (TYPE_CODE (arg))
3634 {
3635 case TYPE_CODE_INT:
3636 case TYPE_CODE_CHAR:
3637 case TYPE_CODE_RANGE:
3638 case TYPE_CODE_BOOL:
3639 case TYPE_CODE_ENUM:
3640 return INTEGER_CONVERSION_BADNESS;
3641 case TYPE_CODE_FLT:
3642 return INT_FLOAT_CONVERSION_BADNESS;
3643 default:
3644 return INCOMPATIBLE_TYPE_BADNESS;
3645 }
3646 break;
3647 case TYPE_CODE_BOOL:
3648 switch (TYPE_CODE (arg))
3649 {
3650 /* n3290 draft, section 4.12.1 (conv.bool):
3651
3652 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3653 pointer to member type can be converted to a prvalue of type
3654 bool. A zero value, null pointer value, or null member pointer
3655 value is converted to false; any other value is converted to
3656 true. A prvalue of type std::nullptr_t can be converted to a
3657 prvalue of type bool; the resulting value is false." */
3658 case TYPE_CODE_INT:
3659 case TYPE_CODE_CHAR:
3660 case TYPE_CODE_ENUM:
3661 case TYPE_CODE_FLT:
3662 case TYPE_CODE_MEMBERPTR:
3663 case TYPE_CODE_PTR:
3664 return BOOL_CONVERSION_BADNESS;
3665 case TYPE_CODE_RANGE:
3666 return INCOMPATIBLE_TYPE_BADNESS;
3667 case TYPE_CODE_BOOL:
3668 return EXACT_MATCH_BADNESS;
3669 default:
3670 return INCOMPATIBLE_TYPE_BADNESS;
3671 }
3672 break;
3673 case TYPE_CODE_FLT:
3674 switch (TYPE_CODE (arg))
3675 {
3676 case TYPE_CODE_FLT:
3677 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3678 return FLOAT_PROMOTION_BADNESS;
3679 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3680 return EXACT_MATCH_BADNESS;
3681 else
3682 return FLOAT_CONVERSION_BADNESS;
3683 case TYPE_CODE_INT:
3684 case TYPE_CODE_BOOL:
3685 case TYPE_CODE_ENUM:
3686 case TYPE_CODE_RANGE:
3687 case TYPE_CODE_CHAR:
3688 return INT_FLOAT_CONVERSION_BADNESS;
3689 default:
3690 return INCOMPATIBLE_TYPE_BADNESS;
3691 }
3692 break;
3693 case TYPE_CODE_COMPLEX:
3694 switch (TYPE_CODE (arg))
3695 { /* Strictly not needed for C++, but... */
3696 case TYPE_CODE_FLT:
3697 return FLOAT_PROMOTION_BADNESS;
3698 case TYPE_CODE_COMPLEX:
3699 return EXACT_MATCH_BADNESS;
3700 default:
3701 return INCOMPATIBLE_TYPE_BADNESS;
3702 }
3703 break;
3704 case TYPE_CODE_STRUCT:
3705 switch (TYPE_CODE (arg))
3706 {
3707 case TYPE_CODE_STRUCT:
3708 /* Check for derivation */
3709 rank.subrank = distance_to_ancestor (parm, arg, 0);
3710 if (rank.subrank >= 0)
3711 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3712 /* else fall through */
3713 default:
3714 return INCOMPATIBLE_TYPE_BADNESS;
3715 }
3716 break;
3717 case TYPE_CODE_UNION:
3718 switch (TYPE_CODE (arg))
3719 {
3720 case TYPE_CODE_UNION:
3721 default:
3722 return INCOMPATIBLE_TYPE_BADNESS;
3723 }
3724 break;
3725 case TYPE_CODE_MEMBERPTR:
3726 switch (TYPE_CODE (arg))
3727 {
3728 default:
3729 return INCOMPATIBLE_TYPE_BADNESS;
3730 }
3731 break;
3732 case TYPE_CODE_METHOD:
3733 switch (TYPE_CODE (arg))
3734 {
3735
3736 default:
3737 return INCOMPATIBLE_TYPE_BADNESS;
3738 }
3739 break;
3740 case TYPE_CODE_REF:
3741 switch (TYPE_CODE (arg))
3742 {
3743
3744 default:
3745 return INCOMPATIBLE_TYPE_BADNESS;
3746 }
3747
3748 break;
3749 case TYPE_CODE_SET:
3750 switch (TYPE_CODE (arg))
3751 {
3752 /* Not in C++ */
3753 case TYPE_CODE_SET:
3754 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3755 TYPE_FIELD_TYPE (arg, 0), NULL);
3756 default:
3757 return INCOMPATIBLE_TYPE_BADNESS;
3758 }
3759 break;
3760 case TYPE_CODE_VOID:
3761 default:
3762 return INCOMPATIBLE_TYPE_BADNESS;
3763 } /* switch (TYPE_CODE (arg)) */
3764 }
3765
3766 /* End of functions for overload resolution. */
3767 \f
3768 /* Routines to pretty-print types. */
3769
3770 static void
3771 print_bit_vector (B_TYPE *bits, int nbits)
3772 {
3773 int bitno;
3774
3775 for (bitno = 0; bitno < nbits; bitno++)
3776 {
3777 if ((bitno % 8) == 0)
3778 {
3779 puts_filtered (" ");
3780 }
3781 if (B_TST (bits, bitno))
3782 printf_filtered (("1"));
3783 else
3784 printf_filtered (("0"));
3785 }
3786 }
3787
3788 /* Note the first arg should be the "this" pointer, we may not want to
3789 include it since we may get into a infinitely recursive
3790 situation. */
3791
3792 static void
3793 print_args (struct field *args, int nargs, int spaces)
3794 {
3795 if (args != NULL)
3796 {
3797 int i;
3798
3799 for (i = 0; i < nargs; i++)
3800 {
3801 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3802 args[i].name != NULL ? args[i].name : "<NULL>");
3803 recursive_dump_type (args[i].type, spaces + 2);
3804 }
3805 }
3806 }
3807
3808 int
3809 field_is_static (struct field *f)
3810 {
3811 /* "static" fields are the fields whose location is not relative
3812 to the address of the enclosing struct. It would be nice to
3813 have a dedicated flag that would be set for static fields when
3814 the type is being created. But in practice, checking the field
3815 loc_kind should give us an accurate answer. */
3816 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3817 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3818 }
3819
3820 static void
3821 dump_fn_fieldlists (struct type *type, int spaces)
3822 {
3823 int method_idx;
3824 int overload_idx;
3825 struct fn_field *f;
3826
3827 printfi_filtered (spaces, "fn_fieldlists ");
3828 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3829 printf_filtered ("\n");
3830 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3831 {
3832 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3833 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3834 method_idx,
3835 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3836 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3837 gdb_stdout);
3838 printf_filtered (_(") length %d\n"),
3839 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3840 for (overload_idx = 0;
3841 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3842 overload_idx++)
3843 {
3844 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3845 overload_idx,
3846 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3847 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3848 gdb_stdout);
3849 printf_filtered (")\n");
3850 printfi_filtered (spaces + 8, "type ");
3851 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3852 gdb_stdout);
3853 printf_filtered ("\n");
3854
3855 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3856 spaces + 8 + 2);
3857
3858 printfi_filtered (spaces + 8, "args ");
3859 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3860 gdb_stdout);
3861 printf_filtered ("\n");
3862 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3863 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3864 spaces + 8 + 2);
3865 printfi_filtered (spaces + 8, "fcontext ");
3866 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3867 gdb_stdout);
3868 printf_filtered ("\n");
3869
3870 printfi_filtered (spaces + 8, "is_const %d\n",
3871 TYPE_FN_FIELD_CONST (f, overload_idx));
3872 printfi_filtered (spaces + 8, "is_volatile %d\n",
3873 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3874 printfi_filtered (spaces + 8, "is_private %d\n",
3875 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3876 printfi_filtered (spaces + 8, "is_protected %d\n",
3877 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3878 printfi_filtered (spaces + 8, "is_stub %d\n",
3879 TYPE_FN_FIELD_STUB (f, overload_idx));
3880 printfi_filtered (spaces + 8, "voffset %u\n",
3881 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3882 }
3883 }
3884 }
3885
3886 static void
3887 print_cplus_stuff (struct type *type, int spaces)
3888 {
3889 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3890 printfi_filtered (spaces, "vptr_basetype ");
3891 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3892 puts_filtered ("\n");
3893 if (TYPE_VPTR_BASETYPE (type) != NULL)
3894 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3895
3896 printfi_filtered (spaces, "n_baseclasses %d\n",
3897 TYPE_N_BASECLASSES (type));
3898 printfi_filtered (spaces, "nfn_fields %d\n",
3899 TYPE_NFN_FIELDS (type));
3900 if (TYPE_N_BASECLASSES (type) > 0)
3901 {
3902 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3903 TYPE_N_BASECLASSES (type));
3904 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3905 gdb_stdout);
3906 printf_filtered (")");
3907
3908 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3909 TYPE_N_BASECLASSES (type));
3910 puts_filtered ("\n");
3911 }
3912 if (TYPE_NFIELDS (type) > 0)
3913 {
3914 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3915 {
3916 printfi_filtered (spaces,
3917 "private_field_bits (%d bits at *",
3918 TYPE_NFIELDS (type));
3919 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3920 gdb_stdout);
3921 printf_filtered (")");
3922 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3923 TYPE_NFIELDS (type));
3924 puts_filtered ("\n");
3925 }
3926 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3927 {
3928 printfi_filtered (spaces,
3929 "protected_field_bits (%d bits at *",
3930 TYPE_NFIELDS (type));
3931 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3932 gdb_stdout);
3933 printf_filtered (")");
3934 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3935 TYPE_NFIELDS (type));
3936 puts_filtered ("\n");
3937 }
3938 }
3939 if (TYPE_NFN_FIELDS (type) > 0)
3940 {
3941 dump_fn_fieldlists (type, spaces);
3942 }
3943 }
3944
3945 /* Print the contents of the TYPE's type_specific union, assuming that
3946 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3947
3948 static void
3949 print_gnat_stuff (struct type *type, int spaces)
3950 {
3951 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3952
3953 if (descriptive_type == NULL)
3954 printfi_filtered (spaces + 2, "no descriptive type\n");
3955 else
3956 {
3957 printfi_filtered (spaces + 2, "descriptive type\n");
3958 recursive_dump_type (descriptive_type, spaces + 4);
3959 }
3960 }
3961
3962 static struct obstack dont_print_type_obstack;
3963
3964 void
3965 recursive_dump_type (struct type *type, int spaces)
3966 {
3967 int idx;
3968
3969 if (spaces == 0)
3970 obstack_begin (&dont_print_type_obstack, 0);
3971
3972 if (TYPE_NFIELDS (type) > 0
3973 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3974 {
3975 struct type **first_dont_print
3976 = (struct type **) obstack_base (&dont_print_type_obstack);
3977
3978 int i = (struct type **)
3979 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3980
3981 while (--i >= 0)
3982 {
3983 if (type == first_dont_print[i])
3984 {
3985 printfi_filtered (spaces, "type node ");
3986 gdb_print_host_address (type, gdb_stdout);
3987 printf_filtered (_(" <same as already seen type>\n"));
3988 return;
3989 }
3990 }
3991
3992 obstack_ptr_grow (&dont_print_type_obstack, type);
3993 }
3994
3995 printfi_filtered (spaces, "type node ");
3996 gdb_print_host_address (type, gdb_stdout);
3997 printf_filtered ("\n");
3998 printfi_filtered (spaces, "name '%s' (",
3999 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4000 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4001 printf_filtered (")\n");
4002 printfi_filtered (spaces, "tagname '%s' (",
4003 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4004 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4005 printf_filtered (")\n");
4006 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4007 switch (TYPE_CODE (type))
4008 {
4009 case TYPE_CODE_UNDEF:
4010 printf_filtered ("(TYPE_CODE_UNDEF)");
4011 break;
4012 case TYPE_CODE_PTR:
4013 printf_filtered ("(TYPE_CODE_PTR)");
4014 break;
4015 case TYPE_CODE_ARRAY:
4016 printf_filtered ("(TYPE_CODE_ARRAY)");
4017 break;
4018 case TYPE_CODE_STRUCT:
4019 printf_filtered ("(TYPE_CODE_STRUCT)");
4020 break;
4021 case TYPE_CODE_UNION:
4022 printf_filtered ("(TYPE_CODE_UNION)");
4023 break;
4024 case TYPE_CODE_ENUM:
4025 printf_filtered ("(TYPE_CODE_ENUM)");
4026 break;
4027 case TYPE_CODE_FLAGS:
4028 printf_filtered ("(TYPE_CODE_FLAGS)");
4029 break;
4030 case TYPE_CODE_FUNC:
4031 printf_filtered ("(TYPE_CODE_FUNC)");
4032 break;
4033 case TYPE_CODE_INT:
4034 printf_filtered ("(TYPE_CODE_INT)");
4035 break;
4036 case TYPE_CODE_FLT:
4037 printf_filtered ("(TYPE_CODE_FLT)");
4038 break;
4039 case TYPE_CODE_VOID:
4040 printf_filtered ("(TYPE_CODE_VOID)");
4041 break;
4042 case TYPE_CODE_SET:
4043 printf_filtered ("(TYPE_CODE_SET)");
4044 break;
4045 case TYPE_CODE_RANGE:
4046 printf_filtered ("(TYPE_CODE_RANGE)");
4047 break;
4048 case TYPE_CODE_STRING:
4049 printf_filtered ("(TYPE_CODE_STRING)");
4050 break;
4051 case TYPE_CODE_ERROR:
4052 printf_filtered ("(TYPE_CODE_ERROR)");
4053 break;
4054 case TYPE_CODE_MEMBERPTR:
4055 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4056 break;
4057 case TYPE_CODE_METHODPTR:
4058 printf_filtered ("(TYPE_CODE_METHODPTR)");
4059 break;
4060 case TYPE_CODE_METHOD:
4061 printf_filtered ("(TYPE_CODE_METHOD)");
4062 break;
4063 case TYPE_CODE_REF:
4064 printf_filtered ("(TYPE_CODE_REF)");
4065 break;
4066 case TYPE_CODE_CHAR:
4067 printf_filtered ("(TYPE_CODE_CHAR)");
4068 break;
4069 case TYPE_CODE_BOOL:
4070 printf_filtered ("(TYPE_CODE_BOOL)");
4071 break;
4072 case TYPE_CODE_COMPLEX:
4073 printf_filtered ("(TYPE_CODE_COMPLEX)");
4074 break;
4075 case TYPE_CODE_TYPEDEF:
4076 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4077 break;
4078 case TYPE_CODE_NAMESPACE:
4079 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4080 break;
4081 default:
4082 printf_filtered ("(UNKNOWN TYPE CODE)");
4083 break;
4084 }
4085 puts_filtered ("\n");
4086 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4087 if (TYPE_OBJFILE_OWNED (type))
4088 {
4089 printfi_filtered (spaces, "objfile ");
4090 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4091 }
4092 else
4093 {
4094 printfi_filtered (spaces, "gdbarch ");
4095 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4096 }
4097 printf_filtered ("\n");
4098 printfi_filtered (spaces, "target_type ");
4099 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4100 printf_filtered ("\n");
4101 if (TYPE_TARGET_TYPE (type) != NULL)
4102 {
4103 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4104 }
4105 printfi_filtered (spaces, "pointer_type ");
4106 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4107 printf_filtered ("\n");
4108 printfi_filtered (spaces, "reference_type ");
4109 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4110 printf_filtered ("\n");
4111 printfi_filtered (spaces, "type_chain ");
4112 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4113 printf_filtered ("\n");
4114 printfi_filtered (spaces, "instance_flags 0x%x",
4115 TYPE_INSTANCE_FLAGS (type));
4116 if (TYPE_CONST (type))
4117 {
4118 puts_filtered (" TYPE_FLAG_CONST");
4119 }
4120 if (TYPE_VOLATILE (type))
4121 {
4122 puts_filtered (" TYPE_FLAG_VOLATILE");
4123 }
4124 if (TYPE_CODE_SPACE (type))
4125 {
4126 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4127 }
4128 if (TYPE_DATA_SPACE (type))
4129 {
4130 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4131 }
4132 if (TYPE_ADDRESS_CLASS_1 (type))
4133 {
4134 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4135 }
4136 if (TYPE_ADDRESS_CLASS_2 (type))
4137 {
4138 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4139 }
4140 if (TYPE_RESTRICT (type))
4141 {
4142 puts_filtered (" TYPE_FLAG_RESTRICT");
4143 }
4144 if (TYPE_ATOMIC (type))
4145 {
4146 puts_filtered (" TYPE_FLAG_ATOMIC");
4147 }
4148 puts_filtered ("\n");
4149
4150 printfi_filtered (spaces, "flags");
4151 if (TYPE_UNSIGNED (type))
4152 {
4153 puts_filtered (" TYPE_FLAG_UNSIGNED");
4154 }
4155 if (TYPE_NOSIGN (type))
4156 {
4157 puts_filtered (" TYPE_FLAG_NOSIGN");
4158 }
4159 if (TYPE_STUB (type))
4160 {
4161 puts_filtered (" TYPE_FLAG_STUB");
4162 }
4163 if (TYPE_TARGET_STUB (type))
4164 {
4165 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4166 }
4167 if (TYPE_STATIC (type))
4168 {
4169 puts_filtered (" TYPE_FLAG_STATIC");
4170 }
4171 if (TYPE_PROTOTYPED (type))
4172 {
4173 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4174 }
4175 if (TYPE_INCOMPLETE (type))
4176 {
4177 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4178 }
4179 if (TYPE_VARARGS (type))
4180 {
4181 puts_filtered (" TYPE_FLAG_VARARGS");
4182 }
4183 /* This is used for things like AltiVec registers on ppc. Gcc emits
4184 an attribute for the array type, which tells whether or not we
4185 have a vector, instead of a regular array. */
4186 if (TYPE_VECTOR (type))
4187 {
4188 puts_filtered (" TYPE_FLAG_VECTOR");
4189 }
4190 if (TYPE_FIXED_INSTANCE (type))
4191 {
4192 puts_filtered (" TYPE_FIXED_INSTANCE");
4193 }
4194 if (TYPE_STUB_SUPPORTED (type))
4195 {
4196 puts_filtered (" TYPE_STUB_SUPPORTED");
4197 }
4198 if (TYPE_NOTTEXT (type))
4199 {
4200 puts_filtered (" TYPE_NOTTEXT");
4201 }
4202 puts_filtered ("\n");
4203 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4204 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4205 puts_filtered ("\n");
4206 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4207 {
4208 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4209 printfi_filtered (spaces + 2,
4210 "[%d] enumval %s type ",
4211 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4212 else
4213 printfi_filtered (spaces + 2,
4214 "[%d] bitpos %d bitsize %d type ",
4215 idx, TYPE_FIELD_BITPOS (type, idx),
4216 TYPE_FIELD_BITSIZE (type, idx));
4217 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4218 printf_filtered (" name '%s' (",
4219 TYPE_FIELD_NAME (type, idx) != NULL
4220 ? TYPE_FIELD_NAME (type, idx)
4221 : "<NULL>");
4222 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4223 printf_filtered (")\n");
4224 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4225 {
4226 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4227 }
4228 }
4229 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4230 {
4231 printfi_filtered (spaces, "low %s%s high %s%s\n",
4232 plongest (TYPE_LOW_BOUND (type)),
4233 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4234 plongest (TYPE_HIGH_BOUND (type)),
4235 TYPE_HIGH_BOUND_UNDEFINED (type)
4236 ? " (undefined)" : "");
4237 }
4238
4239 switch (TYPE_SPECIFIC_FIELD (type))
4240 {
4241 case TYPE_SPECIFIC_CPLUS_STUFF:
4242 printfi_filtered (spaces, "cplus_stuff ");
4243 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4244 gdb_stdout);
4245 puts_filtered ("\n");
4246 print_cplus_stuff (type, spaces);
4247 break;
4248
4249 case TYPE_SPECIFIC_GNAT_STUFF:
4250 printfi_filtered (spaces, "gnat_stuff ");
4251 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4252 puts_filtered ("\n");
4253 print_gnat_stuff (type, spaces);
4254 break;
4255
4256 case TYPE_SPECIFIC_FLOATFORMAT:
4257 printfi_filtered (spaces, "floatformat ");
4258 if (TYPE_FLOATFORMAT (type) == NULL)
4259 puts_filtered ("(null)");
4260 else
4261 {
4262 puts_filtered ("{ ");
4263 if (TYPE_FLOATFORMAT (type)[0] == NULL
4264 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4265 puts_filtered ("(null)");
4266 else
4267 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4268
4269 puts_filtered (", ");
4270 if (TYPE_FLOATFORMAT (type)[1] == NULL
4271 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4272 puts_filtered ("(null)");
4273 else
4274 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4275
4276 puts_filtered (" }");
4277 }
4278 puts_filtered ("\n");
4279 break;
4280
4281 case TYPE_SPECIFIC_FUNC:
4282 printfi_filtered (spaces, "calling_convention %d\n",
4283 TYPE_CALLING_CONVENTION (type));
4284 /* tail_call_list is not printed. */
4285 break;
4286
4287 case TYPE_SPECIFIC_SELF_TYPE:
4288 printfi_filtered (spaces, "self_type ");
4289 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4290 puts_filtered ("\n");
4291 break;
4292 }
4293
4294 if (spaces == 0)
4295 obstack_free (&dont_print_type_obstack, NULL);
4296 }
4297 \f
4298 /* Trivial helpers for the libiberty hash table, for mapping one
4299 type to another. */
4300
4301 struct type_pair
4302 {
4303 struct type *old, *newobj;
4304 };
4305
4306 static hashval_t
4307 type_pair_hash (const void *item)
4308 {
4309 const struct type_pair *pair = item;
4310
4311 return htab_hash_pointer (pair->old);
4312 }
4313
4314 static int
4315 type_pair_eq (const void *item_lhs, const void *item_rhs)
4316 {
4317 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4318
4319 return lhs->old == rhs->old;
4320 }
4321
4322 /* Allocate the hash table used by copy_type_recursive to walk
4323 types without duplicates. We use OBJFILE's obstack, because
4324 OBJFILE is about to be deleted. */
4325
4326 htab_t
4327 create_copied_types_hash (struct objfile *objfile)
4328 {
4329 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4330 NULL, &objfile->objfile_obstack,
4331 hashtab_obstack_allocate,
4332 dummy_obstack_deallocate);
4333 }
4334
4335 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4336
4337 static struct dynamic_prop_list *
4338 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4339 struct dynamic_prop_list *list)
4340 {
4341 struct dynamic_prop_list *copy = list;
4342 struct dynamic_prop_list **node_ptr = &copy;
4343
4344 while (*node_ptr != NULL)
4345 {
4346 struct dynamic_prop_list *node_copy;
4347
4348 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4349 sizeof (struct dynamic_prop_list));
4350 node_copy->prop = (*node_ptr)->prop;
4351 *node_ptr = node_copy;
4352
4353 node_ptr = &node_copy->next;
4354 }
4355
4356 return copy;
4357 }
4358
4359 /* Recursively copy (deep copy) TYPE, if it is associated with
4360 OBJFILE. Return a new type allocated using malloc, a saved type if
4361 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4362 not associated with OBJFILE. */
4363
4364 struct type *
4365 copy_type_recursive (struct objfile *objfile,
4366 struct type *type,
4367 htab_t copied_types)
4368 {
4369 struct type_pair *stored, pair;
4370 void **slot;
4371 struct type *new_type;
4372
4373 if (! TYPE_OBJFILE_OWNED (type))
4374 return type;
4375
4376 /* This type shouldn't be pointing to any types in other objfiles;
4377 if it did, the type might disappear unexpectedly. */
4378 gdb_assert (TYPE_OBJFILE (type) == objfile);
4379
4380 pair.old = type;
4381 slot = htab_find_slot (copied_types, &pair, INSERT);
4382 if (*slot != NULL)
4383 return ((struct type_pair *) *slot)->newobj;
4384
4385 new_type = alloc_type_arch (get_type_arch (type));
4386
4387 /* We must add the new type to the hash table immediately, in case
4388 we encounter this type again during a recursive call below. */
4389 stored
4390 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4391 stored->old = type;
4392 stored->newobj = new_type;
4393 *slot = stored;
4394
4395 /* Copy the common fields of types. For the main type, we simply
4396 copy the entire thing and then update specific fields as needed. */
4397 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4398 TYPE_OBJFILE_OWNED (new_type) = 0;
4399 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4400
4401 if (TYPE_NAME (type))
4402 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4403 if (TYPE_TAG_NAME (type))
4404 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4405
4406 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4407 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4408
4409 /* Copy the fields. */
4410 if (TYPE_NFIELDS (type))
4411 {
4412 int i, nfields;
4413
4414 nfields = TYPE_NFIELDS (type);
4415 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4416 for (i = 0; i < nfields; i++)
4417 {
4418 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4419 TYPE_FIELD_ARTIFICIAL (type, i);
4420 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4421 if (TYPE_FIELD_TYPE (type, i))
4422 TYPE_FIELD_TYPE (new_type, i)
4423 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4424 copied_types);
4425 if (TYPE_FIELD_NAME (type, i))
4426 TYPE_FIELD_NAME (new_type, i) =
4427 xstrdup (TYPE_FIELD_NAME (type, i));
4428 switch (TYPE_FIELD_LOC_KIND (type, i))
4429 {
4430 case FIELD_LOC_KIND_BITPOS:
4431 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4432 TYPE_FIELD_BITPOS (type, i));
4433 break;
4434 case FIELD_LOC_KIND_ENUMVAL:
4435 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4436 TYPE_FIELD_ENUMVAL (type, i));
4437 break;
4438 case FIELD_LOC_KIND_PHYSADDR:
4439 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4440 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4441 break;
4442 case FIELD_LOC_KIND_PHYSNAME:
4443 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4444 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4445 i)));
4446 break;
4447 default:
4448 internal_error (__FILE__, __LINE__,
4449 _("Unexpected type field location kind: %d"),
4450 TYPE_FIELD_LOC_KIND (type, i));
4451 }
4452 }
4453 }
4454
4455 /* For range types, copy the bounds information. */
4456 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4457 {
4458 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4459 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4460 }
4461
4462 if (TYPE_DYN_PROP_LIST (type) != NULL)
4463 TYPE_DYN_PROP_LIST (new_type)
4464 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4465 TYPE_DYN_PROP_LIST (type));
4466
4467
4468 /* Copy pointers to other types. */
4469 if (TYPE_TARGET_TYPE (type))
4470 TYPE_TARGET_TYPE (new_type) =
4471 copy_type_recursive (objfile,
4472 TYPE_TARGET_TYPE (type),
4473 copied_types);
4474
4475 /* Maybe copy the type_specific bits.
4476
4477 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4478 base classes and methods. There's no fundamental reason why we
4479 can't, but at the moment it is not needed. */
4480
4481 switch (TYPE_SPECIFIC_FIELD (type))
4482 {
4483 case TYPE_SPECIFIC_NONE:
4484 break;
4485 case TYPE_SPECIFIC_FUNC:
4486 INIT_FUNC_SPECIFIC (new_type);
4487 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4488 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4489 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4490 break;
4491 case TYPE_SPECIFIC_FLOATFORMAT:
4492 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4493 break;
4494 case TYPE_SPECIFIC_CPLUS_STUFF:
4495 INIT_CPLUS_SPECIFIC (new_type);
4496 break;
4497 case TYPE_SPECIFIC_GNAT_STUFF:
4498 INIT_GNAT_SPECIFIC (new_type);
4499 break;
4500 case TYPE_SPECIFIC_SELF_TYPE:
4501 set_type_self_type (new_type,
4502 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4503 copied_types));
4504 break;
4505 default:
4506 gdb_assert_not_reached ("bad type_specific_kind");
4507 }
4508
4509 return new_type;
4510 }
4511
4512 /* Make a copy of the given TYPE, except that the pointer & reference
4513 types are not preserved.
4514
4515 This function assumes that the given type has an associated objfile.
4516 This objfile is used to allocate the new type. */
4517
4518 struct type *
4519 copy_type (const struct type *type)
4520 {
4521 struct type *new_type;
4522
4523 gdb_assert (TYPE_OBJFILE_OWNED (type));
4524
4525 new_type = alloc_type_copy (type);
4526 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4527 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4528 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4529 sizeof (struct main_type));
4530 if (TYPE_DYN_PROP_LIST (type) != NULL)
4531 TYPE_DYN_PROP_LIST (new_type)
4532 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4533 TYPE_DYN_PROP_LIST (type));
4534
4535 return new_type;
4536 }
4537 \f
4538 /* Helper functions to initialize architecture-specific types. */
4539
4540 /* Allocate a type structure associated with GDBARCH and set its
4541 CODE, LENGTH, and NAME fields. */
4542
4543 struct type *
4544 arch_type (struct gdbarch *gdbarch,
4545 enum type_code code, int length, char *name)
4546 {
4547 struct type *type;
4548
4549 type = alloc_type_arch (gdbarch);
4550 TYPE_CODE (type) = code;
4551 TYPE_LENGTH (type) = length;
4552
4553 if (name)
4554 TYPE_NAME (type) = xstrdup (name);
4555
4556 return type;
4557 }
4558
4559 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4560 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4561 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4562
4563 struct type *
4564 arch_integer_type (struct gdbarch *gdbarch,
4565 int bit, int unsigned_p, char *name)
4566 {
4567 struct type *t;
4568
4569 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4570 if (unsigned_p)
4571 TYPE_UNSIGNED (t) = 1;
4572 if (name && strcmp (name, "char") == 0)
4573 TYPE_NOSIGN (t) = 1;
4574
4575 return t;
4576 }
4577
4578 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4579 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4580 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4581
4582 struct type *
4583 arch_character_type (struct gdbarch *gdbarch,
4584 int bit, int unsigned_p, char *name)
4585 {
4586 struct type *t;
4587
4588 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4589 if (unsigned_p)
4590 TYPE_UNSIGNED (t) = 1;
4591
4592 return t;
4593 }
4594
4595 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4596 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4597 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4598
4599 struct type *
4600 arch_boolean_type (struct gdbarch *gdbarch,
4601 int bit, int unsigned_p, char *name)
4602 {
4603 struct type *t;
4604
4605 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4606 if (unsigned_p)
4607 TYPE_UNSIGNED (t) = 1;
4608
4609 return t;
4610 }
4611
4612 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4613 BIT is the type size in bits; if BIT equals -1, the size is
4614 determined by the floatformat. NAME is the type name. Set the
4615 TYPE_FLOATFORMAT from FLOATFORMATS. */
4616
4617 struct type *
4618 arch_float_type (struct gdbarch *gdbarch,
4619 int bit, char *name, const struct floatformat **floatformats)
4620 {
4621 struct type *t;
4622
4623 if (bit == -1)
4624 {
4625 gdb_assert (floatformats != NULL);
4626 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4627 bit = floatformats[0]->totalsize;
4628 }
4629 gdb_assert (bit >= 0);
4630
4631 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4632 TYPE_FLOATFORMAT (t) = floatformats;
4633 return t;
4634 }
4635
4636 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4637 NAME is the type name. TARGET_TYPE is the component float type. */
4638
4639 struct type *
4640 arch_complex_type (struct gdbarch *gdbarch,
4641 char *name, struct type *target_type)
4642 {
4643 struct type *t;
4644
4645 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4646 2 * TYPE_LENGTH (target_type), name);
4647 TYPE_TARGET_TYPE (t) = target_type;
4648 return t;
4649 }
4650
4651 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4652 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4653
4654 struct type *
4655 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4656 {
4657 int nfields = length * TARGET_CHAR_BIT;
4658 struct type *type;
4659
4660 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4661 TYPE_UNSIGNED (type) = 1;
4662 TYPE_NFIELDS (type) = nfields;
4663 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4664
4665 return type;
4666 }
4667
4668 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4669 position BITPOS is called NAME. */
4670
4671 void
4672 append_flags_type_flag (struct type *type, int bitpos, char *name)
4673 {
4674 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4675 gdb_assert (bitpos < TYPE_NFIELDS (type));
4676 gdb_assert (bitpos >= 0);
4677
4678 if (name)
4679 {
4680 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4681 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4682 }
4683 else
4684 {
4685 /* Don't show this field to the user. */
4686 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4687 }
4688 }
4689
4690 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4691 specified by CODE) associated with GDBARCH. NAME is the type name. */
4692
4693 struct type *
4694 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4695 {
4696 struct type *t;
4697
4698 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4699 t = arch_type (gdbarch, code, 0, NULL);
4700 TYPE_TAG_NAME (t) = name;
4701 INIT_CPLUS_SPECIFIC (t);
4702 return t;
4703 }
4704
4705 /* Add new field with name NAME and type FIELD to composite type T.
4706 Do not set the field's position or adjust the type's length;
4707 the caller should do so. Return the new field. */
4708
4709 struct field *
4710 append_composite_type_field_raw (struct type *t, char *name,
4711 struct type *field)
4712 {
4713 struct field *f;
4714
4715 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4716 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4717 sizeof (struct field) * TYPE_NFIELDS (t));
4718 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4719 memset (f, 0, sizeof f[0]);
4720 FIELD_TYPE (f[0]) = field;
4721 FIELD_NAME (f[0]) = name;
4722 return f;
4723 }
4724
4725 /* Add new field with name NAME and type FIELD to composite type T.
4726 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4727
4728 void
4729 append_composite_type_field_aligned (struct type *t, char *name,
4730 struct type *field, int alignment)
4731 {
4732 struct field *f = append_composite_type_field_raw (t, name, field);
4733
4734 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4735 {
4736 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4737 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4738 }
4739 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4740 {
4741 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4742 if (TYPE_NFIELDS (t) > 1)
4743 {
4744 SET_FIELD_BITPOS (f[0],
4745 (FIELD_BITPOS (f[-1])
4746 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4747 * TARGET_CHAR_BIT)));
4748
4749 if (alignment)
4750 {
4751 int left;
4752
4753 alignment *= TARGET_CHAR_BIT;
4754 left = FIELD_BITPOS (f[0]) % alignment;
4755
4756 if (left)
4757 {
4758 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4759 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4760 }
4761 }
4762 }
4763 }
4764 }
4765
4766 /* Add new field with name NAME and type FIELD to composite type T. */
4767
4768 void
4769 append_composite_type_field (struct type *t, char *name,
4770 struct type *field)
4771 {
4772 append_composite_type_field_aligned (t, name, field, 0);
4773 }
4774
4775 static struct gdbarch_data *gdbtypes_data;
4776
4777 const struct builtin_type *
4778 builtin_type (struct gdbarch *gdbarch)
4779 {
4780 return gdbarch_data (gdbarch, gdbtypes_data);
4781 }
4782
4783 static void *
4784 gdbtypes_post_init (struct gdbarch *gdbarch)
4785 {
4786 struct builtin_type *builtin_type
4787 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4788
4789 /* Basic types. */
4790 builtin_type->builtin_void
4791 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4792 builtin_type->builtin_char
4793 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4794 !gdbarch_char_signed (gdbarch), "char");
4795 builtin_type->builtin_signed_char
4796 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4797 0, "signed char");
4798 builtin_type->builtin_unsigned_char
4799 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4800 1, "unsigned char");
4801 builtin_type->builtin_short
4802 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4803 0, "short");
4804 builtin_type->builtin_unsigned_short
4805 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4806 1, "unsigned short");
4807 builtin_type->builtin_int
4808 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4809 0, "int");
4810 builtin_type->builtin_unsigned_int
4811 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4812 1, "unsigned int");
4813 builtin_type->builtin_long
4814 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4815 0, "long");
4816 builtin_type->builtin_unsigned_long
4817 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4818 1, "unsigned long");
4819 builtin_type->builtin_long_long
4820 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4821 0, "long long");
4822 builtin_type->builtin_unsigned_long_long
4823 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4824 1, "unsigned long long");
4825 builtin_type->builtin_float
4826 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4827 "float", gdbarch_float_format (gdbarch));
4828 builtin_type->builtin_double
4829 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4830 "double", gdbarch_double_format (gdbarch));
4831 builtin_type->builtin_long_double
4832 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4833 "long double", gdbarch_long_double_format (gdbarch));
4834 builtin_type->builtin_complex
4835 = arch_complex_type (gdbarch, "complex",
4836 builtin_type->builtin_float);
4837 builtin_type->builtin_double_complex
4838 = arch_complex_type (gdbarch, "double complex",
4839 builtin_type->builtin_double);
4840 builtin_type->builtin_string
4841 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4842 builtin_type->builtin_bool
4843 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4844
4845 /* The following three are about decimal floating point types, which
4846 are 32-bits, 64-bits and 128-bits respectively. */
4847 builtin_type->builtin_decfloat
4848 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4849 builtin_type->builtin_decdouble
4850 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4851 builtin_type->builtin_declong
4852 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4853
4854 /* "True" character types. */
4855 builtin_type->builtin_true_char
4856 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4857 builtin_type->builtin_true_unsigned_char
4858 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4859
4860 /* Fixed-size integer types. */
4861 builtin_type->builtin_int0
4862 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4863 builtin_type->builtin_int8
4864 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4865 builtin_type->builtin_uint8
4866 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4867 builtin_type->builtin_int16
4868 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4869 builtin_type->builtin_uint16
4870 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4871 builtin_type->builtin_int32
4872 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4873 builtin_type->builtin_uint32
4874 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4875 builtin_type->builtin_int64
4876 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4877 builtin_type->builtin_uint64
4878 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4879 builtin_type->builtin_int128
4880 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4881 builtin_type->builtin_uint128
4882 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4883 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4884 TYPE_INSTANCE_FLAG_NOTTEXT;
4885 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4886 TYPE_INSTANCE_FLAG_NOTTEXT;
4887
4888 /* Wide character types. */
4889 builtin_type->builtin_char16
4890 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4891 builtin_type->builtin_char32
4892 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4893
4894
4895 /* Default data/code pointer types. */
4896 builtin_type->builtin_data_ptr
4897 = lookup_pointer_type (builtin_type->builtin_void);
4898 builtin_type->builtin_func_ptr
4899 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4900 builtin_type->builtin_func_func
4901 = lookup_function_type (builtin_type->builtin_func_ptr);
4902
4903 /* This type represents a GDB internal function. */
4904 builtin_type->internal_fn
4905 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4906 "<internal function>");
4907
4908 /* This type represents an xmethod. */
4909 builtin_type->xmethod
4910 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4911
4912 return builtin_type;
4913 }
4914
4915 /* This set of objfile-based types is intended to be used by symbol
4916 readers as basic types. */
4917
4918 static const struct objfile_data *objfile_type_data;
4919
4920 const struct objfile_type *
4921 objfile_type (struct objfile *objfile)
4922 {
4923 struct gdbarch *gdbarch;
4924 struct objfile_type *objfile_type
4925 = objfile_data (objfile, objfile_type_data);
4926
4927 if (objfile_type)
4928 return objfile_type;
4929
4930 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4931 1, struct objfile_type);
4932
4933 /* Use the objfile architecture to determine basic type properties. */
4934 gdbarch = get_objfile_arch (objfile);
4935
4936 /* Basic types. */
4937 objfile_type->builtin_void
4938 = init_type (TYPE_CODE_VOID, 1,
4939 0,
4940 "void", objfile);
4941
4942 objfile_type->builtin_char
4943 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4944 (TYPE_FLAG_NOSIGN
4945 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4946 "char", objfile);
4947 objfile_type->builtin_signed_char
4948 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4949 0,
4950 "signed char", objfile);
4951 objfile_type->builtin_unsigned_char
4952 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4953 TYPE_FLAG_UNSIGNED,
4954 "unsigned char", objfile);
4955 objfile_type->builtin_short
4956 = init_type (TYPE_CODE_INT,
4957 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4958 0, "short", objfile);
4959 objfile_type->builtin_unsigned_short
4960 = init_type (TYPE_CODE_INT,
4961 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4962 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4963 objfile_type->builtin_int
4964 = init_type (TYPE_CODE_INT,
4965 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4966 0, "int", objfile);
4967 objfile_type->builtin_unsigned_int
4968 = init_type (TYPE_CODE_INT,
4969 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4970 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4971 objfile_type->builtin_long
4972 = init_type (TYPE_CODE_INT,
4973 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4974 0, "long", objfile);
4975 objfile_type->builtin_unsigned_long
4976 = init_type (TYPE_CODE_INT,
4977 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4978 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4979 objfile_type->builtin_long_long
4980 = init_type (TYPE_CODE_INT,
4981 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4982 0, "long long", objfile);
4983 objfile_type->builtin_unsigned_long_long
4984 = init_type (TYPE_CODE_INT,
4985 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4986 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4987
4988 objfile_type->builtin_float
4989 = init_type (TYPE_CODE_FLT,
4990 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4991 0, "float", objfile);
4992 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4993 = gdbarch_float_format (gdbarch);
4994 objfile_type->builtin_double
4995 = init_type (TYPE_CODE_FLT,
4996 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4997 0, "double", objfile);
4998 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4999 = gdbarch_double_format (gdbarch);
5000 objfile_type->builtin_long_double
5001 = init_type (TYPE_CODE_FLT,
5002 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
5003 0, "long double", objfile);
5004 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
5005 = gdbarch_long_double_format (gdbarch);
5006
5007 /* This type represents a type that was unrecognized in symbol read-in. */
5008 objfile_type->builtin_error
5009 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
5010
5011 /* The following set of types is used for symbols with no
5012 debug information. */
5013 objfile_type->nodebug_text_symbol
5014 = init_type (TYPE_CODE_FUNC, 1, 0,
5015 "<text variable, no debug info>", objfile);
5016 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5017 = objfile_type->builtin_int;
5018 objfile_type->nodebug_text_gnu_ifunc_symbol
5019 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
5020 "<text gnu-indirect-function variable, no debug info>",
5021 objfile);
5022 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5023 = objfile_type->nodebug_text_symbol;
5024 objfile_type->nodebug_got_plt_symbol
5025 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
5026 "<text from jump slot in .got.plt, no debug info>",
5027 objfile);
5028 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
5029 = objfile_type->nodebug_text_symbol;
5030 objfile_type->nodebug_data_symbol
5031 = init_type (TYPE_CODE_INT,
5032 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5033 "<data variable, no debug info>", objfile);
5034 objfile_type->nodebug_unknown_symbol
5035 = init_type (TYPE_CODE_INT, 1, 0,
5036 "<variable (not text or data), no debug info>", objfile);
5037 objfile_type->nodebug_tls_symbol
5038 = init_type (TYPE_CODE_INT,
5039 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5040 "<thread local variable, no debug info>", objfile);
5041
5042 /* NOTE: on some targets, addresses and pointers are not necessarily
5043 the same.
5044
5045 The upshot is:
5046 - gdb's `struct type' always describes the target's
5047 representation.
5048 - gdb's `struct value' objects should always hold values in
5049 target form.
5050 - gdb's CORE_ADDR values are addresses in the unified virtual
5051 address space that the assembler and linker work with. Thus,
5052 since target_read_memory takes a CORE_ADDR as an argument, it
5053 can access any memory on the target, even if the processor has
5054 separate code and data address spaces.
5055
5056 In this context, objfile_type->builtin_core_addr is a bit odd:
5057 it's a target type for a value the target will never see. It's
5058 only used to hold the values of (typeless) linker symbols, which
5059 are indeed in the unified virtual address space. */
5060
5061 objfile_type->builtin_core_addr
5062 = init_type (TYPE_CODE_INT,
5063 gdbarch_addr_bit (gdbarch) / 8,
5064 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
5065
5066 set_objfile_data (objfile, objfile_type_data, objfile_type);
5067 return objfile_type;
5068 }
5069
5070 extern initialize_file_ftype _initialize_gdbtypes;
5071
5072 void
5073 _initialize_gdbtypes (void)
5074 {
5075 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5076 objfile_type_data = register_objfile_data ();
5077
5078 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5079 _("Set debugging of C++ overloading."),
5080 _("Show debugging of C++ overloading."),
5081 _("When enabled, ranking of the "
5082 "functions is displayed."),
5083 NULL,
5084 show_overload_debug,
5085 &setdebuglist, &showdebuglist);
5086
5087 /* Add user knob for controlling resolution of opaque types. */
5088 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5089 &opaque_type_resolution,
5090 _("Set resolution of opaque struct/class/union"
5091 " types (if set before loading symbols)."),
5092 _("Show resolution of opaque struct/class/union"
5093 " types (if set before loading symbols)."),
5094 NULL, NULL,
5095 show_opaque_type_resolution,
5096 &setlist, &showlist);
5097
5098 /* Add an option to permit non-strict type checking. */
5099 add_setshow_boolean_cmd ("type", class_support,
5100 &strict_type_checking,
5101 _("Set strict type checking."),
5102 _("Show strict type checking."),
5103 NULL, NULL,
5104 show_strict_type_checking,
5105 &setchecklist, &showchecklist);
5106 }
This page took 0.203436 seconds and 4 git commands to generate.