Fix (most) OpenBSD link errors
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static bool opaque_type_resolution = true;
120
121 /* See gdbtypes.h. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static bool strict_type_checking = true;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 struct gdbarch *arch;
236
237 if (TYPE_OBJFILE_OWNED (type))
238 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
239 else
240 arch = TYPE_OWNER (type).gdbarch;
241
242 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
243 a gdbarch, however, this is very rare, and even then, in most cases
244 that get_type_arch is called, we assume that a non-NULL value is
245 returned. */
246 gdb_assert (arch != NULL);
247 return arch;
248 }
249
250 /* See gdbtypes.h. */
251
252 struct type *
253 get_target_type (struct type *type)
254 {
255 if (type != NULL)
256 {
257 type = TYPE_TARGET_TYPE (type);
258 if (type != NULL)
259 type = check_typedef (type);
260 }
261
262 return type;
263 }
264
265 /* See gdbtypes.h. */
266
267 unsigned int
268 type_length_units (struct type *type)
269 {
270 struct gdbarch *arch = get_type_arch (type);
271 int unit_size = gdbarch_addressable_memory_unit_size (arch);
272
273 return TYPE_LENGTH (type) / unit_size;
274 }
275
276 /* Alloc a new type instance structure, fill it with some defaults,
277 and point it at OLDTYPE. Allocate the new type instance from the
278 same place as OLDTYPE. */
279
280 static struct type *
281 alloc_type_instance (struct type *oldtype)
282 {
283 struct type *type;
284
285 /* Allocate the structure. */
286
287 if (! TYPE_OBJFILE_OWNED (oldtype))
288 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
289 else
290 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
291 struct type);
292
293 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
294
295 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
296
297 return type;
298 }
299
300 /* Clear all remnants of the previous type at TYPE, in preparation for
301 replacing it with something else. Preserve owner information. */
302
303 static void
304 smash_type (struct type *type)
305 {
306 int objfile_owned = TYPE_OBJFILE_OWNED (type);
307 union type_owner owner = TYPE_OWNER (type);
308
309 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
310
311 /* Restore owner information. */
312 TYPE_OBJFILE_OWNED (type) = objfile_owned;
313 TYPE_OWNER (type) = owner;
314
315 /* For now, delete the rings. */
316 TYPE_CHAIN (type) = type;
317
318 /* For now, leave the pointer/reference types alone. */
319 }
320
321 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
322 to a pointer to memory where the pointer type should be stored.
323 If *TYPEPTR is zero, update it to point to the pointer type we return.
324 We allocate new memory if needed. */
325
326 struct type *
327 make_pointer_type (struct type *type, struct type **typeptr)
328 {
329 struct type *ntype; /* New type */
330 struct type *chain;
331
332 ntype = TYPE_POINTER_TYPE (type);
333
334 if (ntype)
335 {
336 if (typeptr == 0)
337 return ntype; /* Don't care about alloc,
338 and have new type. */
339 else if (*typeptr == 0)
340 {
341 *typeptr = ntype; /* Tracking alloc, and have new type. */
342 return ntype;
343 }
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
348 ntype = alloc_type_copy (type);
349 if (typeptr)
350 *typeptr = ntype;
351 }
352 else /* We have storage, but need to reset it. */
353 {
354 ntype = *typeptr;
355 chain = TYPE_CHAIN (ntype);
356 smash_type (ntype);
357 TYPE_CHAIN (ntype) = chain;
358 }
359
360 TYPE_TARGET_TYPE (ntype) = type;
361 TYPE_POINTER_TYPE (type) = ntype;
362
363 /* FIXME! Assumes the machine has only one representation for pointers! */
364
365 TYPE_LENGTH (ntype)
366 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
367 TYPE_CODE (ntype) = TYPE_CODE_PTR;
368
369 /* Mark pointers as unsigned. The target converts between pointers
370 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
371 gdbarch_address_to_pointer. */
372 TYPE_UNSIGNED (ntype) = 1;
373
374 /* Update the length of all the other variants of this type. */
375 chain = TYPE_CHAIN (ntype);
376 while (chain != ntype)
377 {
378 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
379 chain = TYPE_CHAIN (chain);
380 }
381
382 return ntype;
383 }
384
385 /* Given a type TYPE, return a type of pointers to that type.
386 May need to construct such a type if this is the first use. */
387
388 struct type *
389 lookup_pointer_type (struct type *type)
390 {
391 return make_pointer_type (type, (struct type **) 0);
392 }
393
394 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
395 points to a pointer to memory where the reference type should be
396 stored. If *TYPEPTR is zero, update it to point to the reference
397 type we return. We allocate new memory if needed. REFCODE denotes
398 the kind of reference type to lookup (lvalue or rvalue reference). */
399
400 struct type *
401 make_reference_type (struct type *type, struct type **typeptr,
402 enum type_code refcode)
403 {
404 struct type *ntype; /* New type */
405 struct type **reftype;
406 struct type *chain;
407
408 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
409
410 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
411 : TYPE_RVALUE_REFERENCE_TYPE (type));
412
413 if (ntype)
414 {
415 if (typeptr == 0)
416 return ntype; /* Don't care about alloc,
417 and have new type. */
418 else if (*typeptr == 0)
419 {
420 *typeptr = ntype; /* Tracking alloc, and have new type. */
421 return ntype;
422 }
423 }
424
425 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
426 {
427 ntype = alloc_type_copy (type);
428 if (typeptr)
429 *typeptr = ntype;
430 }
431 else /* We have storage, but need to reset it. */
432 {
433 ntype = *typeptr;
434 chain = TYPE_CHAIN (ntype);
435 smash_type (ntype);
436 TYPE_CHAIN (ntype) = chain;
437 }
438
439 TYPE_TARGET_TYPE (ntype) = type;
440 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
441 : &TYPE_RVALUE_REFERENCE_TYPE (type));
442
443 *reftype = ntype;
444
445 /* FIXME! Assume the machine has only one representation for
446 references, and that it matches the (only) representation for
447 pointers! */
448
449 TYPE_LENGTH (ntype) =
450 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
451 TYPE_CODE (ntype) = refcode;
452
453 *reftype = ntype;
454
455 /* Update the length of all the other variants of this type. */
456 chain = TYPE_CHAIN (ntype);
457 while (chain != ntype)
458 {
459 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
460 chain = TYPE_CHAIN (chain);
461 }
462
463 return ntype;
464 }
465
466 /* Same as above, but caller doesn't care about memory allocation
467 details. */
468
469 struct type *
470 lookup_reference_type (struct type *type, enum type_code refcode)
471 {
472 return make_reference_type (type, (struct type **) 0, refcode);
473 }
474
475 /* Lookup the lvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_lvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_REF);
481 }
482
483 /* Lookup the rvalue reference type for the type TYPE. */
484
485 struct type *
486 lookup_rvalue_reference_type (struct type *type)
487 {
488 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
489 }
490
491 /* Lookup a function type that returns type TYPE. TYPEPTR, if
492 nonzero, points to a pointer to memory where the function type
493 should be stored. If *TYPEPTR is zero, update it to point to the
494 function type we return. We allocate new memory if needed. */
495
496 struct type *
497 make_function_type (struct type *type, struct type **typeptr)
498 {
499 struct type *ntype; /* New type */
500
501 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
502 {
503 ntype = alloc_type_copy (type);
504 if (typeptr)
505 *typeptr = ntype;
506 }
507 else /* We have storage, but need to reset it. */
508 {
509 ntype = *typeptr;
510 smash_type (ntype);
511 }
512
513 TYPE_TARGET_TYPE (ntype) = type;
514
515 TYPE_LENGTH (ntype) = 1;
516 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
517
518 INIT_FUNC_SPECIFIC (ntype);
519
520 return ntype;
521 }
522
523 /* Given a type TYPE, return a type of functions that return that type.
524 May need to construct such a type if this is the first use. */
525
526 struct type *
527 lookup_function_type (struct type *type)
528 {
529 return make_function_type (type, (struct type **) 0);
530 }
531
532 /* Given a type TYPE and argument types, return the appropriate
533 function type. If the final type in PARAM_TYPES is NULL, make a
534 varargs function. */
535
536 struct type *
537 lookup_function_type_with_arguments (struct type *type,
538 int nparams,
539 struct type **param_types)
540 {
541 struct type *fn = make_function_type (type, (struct type **) 0);
542 int i;
543
544 if (nparams > 0)
545 {
546 if (param_types[nparams - 1] == NULL)
547 {
548 --nparams;
549 TYPE_VARARGS (fn) = 1;
550 }
551 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
552 == TYPE_CODE_VOID)
553 {
554 --nparams;
555 /* Caller should have ensured this. */
556 gdb_assert (nparams == 0);
557 TYPE_PROTOTYPED (fn) = 1;
558 }
559 else
560 TYPE_PROTOTYPED (fn) = 1;
561 }
562
563 TYPE_NFIELDS (fn) = nparams;
564 TYPE_FIELDS (fn)
565 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
566 for (i = 0; i < nparams; ++i)
567 TYPE_FIELD_TYPE (fn, i) = param_types[i];
568
569 return fn;
570 }
571
572 /* Identify address space identifier by name --
573 return the integer flag defined in gdbtypes.h. */
574
575 int
576 address_space_name_to_int (struct gdbarch *gdbarch,
577 const char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated)
904 && FIELD_EQ (bias));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound,
916 LONGEST bias)
917 {
918 /* The INDEX_TYPE should be a type capable of holding the upper and lower
919 bounds, as such a zero sized, or void type makes no sense. */
920 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
921 gdb_assert (TYPE_LENGTH (index_type) > 0);
922
923 if (result_type == NULL)
924 result_type = alloc_type_copy (index_type);
925 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
926 TYPE_TARGET_TYPE (result_type) = index_type;
927 if (TYPE_STUB (index_type))
928 TYPE_TARGET_STUB (result_type) = 1;
929 else
930 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
931
932 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
933 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
934 TYPE_RANGE_DATA (result_type)->low = *low_bound;
935 TYPE_RANGE_DATA (result_type)->high = *high_bound;
936 TYPE_RANGE_DATA (result_type)->bias = bias;
937
938 /* Initialize the stride to be a constant, the value will already be zero
939 thanks to the use of TYPE_ZALLOC above. */
940 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
941
942 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
943 TYPE_UNSIGNED (result_type) = 1;
944
945 /* Ada allows the declaration of range types whose upper bound is
946 less than the lower bound, so checking the lower bound is not
947 enough. Make sure we do not mark a range type whose upper bound
948 is negative as unsigned. */
949 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
950 TYPE_UNSIGNED (result_type) = 0;
951
952 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
953 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
954
955 return result_type;
956 }
957
958 /* See gdbtypes.h. */
959
960 struct type *
961 create_range_type_with_stride (struct type *result_type,
962 struct type *index_type,
963 const struct dynamic_prop *low_bound,
964 const struct dynamic_prop *high_bound,
965 LONGEST bias,
966 const struct dynamic_prop *stride,
967 bool byte_stride_p)
968 {
969 result_type = create_range_type (result_type, index_type, low_bound,
970 high_bound, bias);
971
972 gdb_assert (stride != nullptr);
973 TYPE_RANGE_DATA (result_type)->stride = *stride;
974 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
975
976 return result_type;
977 }
978
979
980
981 /* Create a range type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 INDEX_TYPE.
984
985 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
986 to HIGH_BOUND, inclusive.
987
988 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
989 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
990
991 struct type *
992 create_static_range_type (struct type *result_type, struct type *index_type,
993 LONGEST low_bound, LONGEST high_bound)
994 {
995 struct dynamic_prop low, high;
996
997 low.kind = PROP_CONST;
998 low.data.const_val = low_bound;
999
1000 high.kind = PROP_CONST;
1001 high.data.const_val = high_bound;
1002
1003 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1004
1005 return result_type;
1006 }
1007
1008 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1009 are static, otherwise returns 0. */
1010
1011 static bool
1012 has_static_range (const struct range_bounds *bounds)
1013 {
1014 /* If the range doesn't have a defined stride then its stride field will
1015 be initialized to the constant 0. */
1016 return (bounds->low.kind == PROP_CONST
1017 && bounds->high.kind == PROP_CONST
1018 && bounds->stride.kind == PROP_CONST);
1019 }
1020
1021
1022 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1023 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1024 bounds will fit in LONGEST), or -1 otherwise. */
1025
1026 int
1027 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1028 {
1029 type = check_typedef (type);
1030 switch (TYPE_CODE (type))
1031 {
1032 case TYPE_CODE_RANGE:
1033 *lowp = TYPE_LOW_BOUND (type);
1034 *highp = TYPE_HIGH_BOUND (type);
1035 return 1;
1036 case TYPE_CODE_ENUM:
1037 if (TYPE_NFIELDS (type) > 0)
1038 {
1039 /* The enums may not be sorted by value, so search all
1040 entries. */
1041 int i;
1042
1043 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1044 for (i = 0; i < TYPE_NFIELDS (type); i++)
1045 {
1046 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1047 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1048 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1049 *highp = TYPE_FIELD_ENUMVAL (type, i);
1050 }
1051
1052 /* Set unsigned indicator if warranted. */
1053 if (*lowp >= 0)
1054 {
1055 TYPE_UNSIGNED (type) = 1;
1056 }
1057 }
1058 else
1059 {
1060 *lowp = 0;
1061 *highp = -1;
1062 }
1063 return 0;
1064 case TYPE_CODE_BOOL:
1065 *lowp = 0;
1066 *highp = 1;
1067 return 0;
1068 case TYPE_CODE_INT:
1069 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1070 return -1;
1071 if (!TYPE_UNSIGNED (type))
1072 {
1073 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1074 *highp = -*lowp - 1;
1075 return 0;
1076 }
1077 /* fall through */
1078 case TYPE_CODE_CHAR:
1079 *lowp = 0;
1080 /* This round-about calculation is to avoid shifting by
1081 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1082 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1083 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1084 *highp = (*highp - 1) | *highp;
1085 return 0;
1086 default:
1087 return -1;
1088 }
1089 }
1090
1091 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1092 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1093 Save the high bound into HIGH_BOUND if not NULL.
1094
1095 Return 1 if the operation was successful. Return zero otherwise,
1096 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1097
1098 We now simply use get_discrete_bounds call to get the values
1099 of the low and high bounds.
1100 get_discrete_bounds can return three values:
1101 1, meaning that index is a range,
1102 0, meaning that index is a discrete type,
1103 or -1 for failure. */
1104
1105 int
1106 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1107 {
1108 struct type *index = TYPE_INDEX_TYPE (type);
1109 LONGEST low = 0;
1110 LONGEST high = 0;
1111 int res;
1112
1113 if (index == NULL)
1114 return 0;
1115
1116 res = get_discrete_bounds (index, &low, &high);
1117 if (res == -1)
1118 return 0;
1119
1120 /* Check if the array bounds are undefined. */
1121 if (res == 1
1122 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1123 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1124 return 0;
1125
1126 if (low_bound)
1127 *low_bound = low;
1128
1129 if (high_bound)
1130 *high_bound = high;
1131
1132 return 1;
1133 }
1134
1135 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1136 representation of a value of this type, save the corresponding
1137 position number in POS.
1138
1139 Its differs from VAL only in the case of enumeration types. In
1140 this case, the position number of the value of the first listed
1141 enumeration literal is zero; the position number of the value of
1142 each subsequent enumeration literal is one more than that of its
1143 predecessor in the list.
1144
1145 Return 1 if the operation was successful. Return zero otherwise,
1146 in which case the value of POS is unmodified.
1147 */
1148
1149 int
1150 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1151 {
1152 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1153 {
1154 int i;
1155
1156 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1157 {
1158 if (val == TYPE_FIELD_ENUMVAL (type, i))
1159 {
1160 *pos = i;
1161 return 1;
1162 }
1163 }
1164 /* Invalid enumeration value. */
1165 return 0;
1166 }
1167 else
1168 {
1169 *pos = val;
1170 return 1;
1171 }
1172 }
1173
1174 /* Create an array type using either a blank type supplied in
1175 RESULT_TYPE, or creating a new type, inheriting the objfile from
1176 RANGE_TYPE.
1177
1178 Elements will be of type ELEMENT_TYPE, the indices will be of type
1179 RANGE_TYPE.
1180
1181 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1182 This byte stride property is added to the resulting array type
1183 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1184 argument can only be used to create types that are objfile-owned
1185 (see add_dyn_prop), meaning that either this function must be called
1186 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1187
1188 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1189 If BIT_STRIDE is not zero, build a packed array type whose element
1190 size is BIT_STRIDE. Otherwise, ignore this parameter.
1191
1192 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1193 sure it is TYPE_CODE_UNDEF before we bash it into an array
1194 type? */
1195
1196 struct type *
1197 create_array_type_with_stride (struct type *result_type,
1198 struct type *element_type,
1199 struct type *range_type,
1200 struct dynamic_prop *byte_stride_prop,
1201 unsigned int bit_stride)
1202 {
1203 if (byte_stride_prop != NULL
1204 && byte_stride_prop->kind == PROP_CONST)
1205 {
1206 /* The byte stride is actually not dynamic. Pretend we were
1207 called with bit_stride set instead of byte_stride_prop.
1208 This will give us the same result type, while avoiding
1209 the need to handle this as a special case. */
1210 bit_stride = byte_stride_prop->data.const_val * 8;
1211 byte_stride_prop = NULL;
1212 }
1213
1214 if (result_type == NULL)
1215 result_type = alloc_type_copy (range_type);
1216
1217 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1218 TYPE_TARGET_TYPE (result_type) = element_type;
1219 if (byte_stride_prop == NULL
1220 && has_static_range (TYPE_RANGE_DATA (range_type))
1221 && (!type_not_associated (result_type)
1222 && !type_not_allocated (result_type)))
1223 {
1224 LONGEST low_bound, high_bound;
1225 unsigned int stride;
1226
1227 /* If the array itself doesn't provide a stride value then take
1228 whatever stride the range provides. Don't update BIT_STRIDE as
1229 we don't want to place the stride value from the range into this
1230 arrays bit size field. */
1231 stride = bit_stride;
1232 if (stride == 0)
1233 stride = TYPE_BIT_STRIDE (range_type);
1234
1235 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1236 low_bound = high_bound = 0;
1237 element_type = check_typedef (element_type);
1238 /* Be careful when setting the array length. Ada arrays can be
1239 empty arrays with the high_bound being smaller than the low_bound.
1240 In such cases, the array length should be zero. */
1241 if (high_bound < low_bound)
1242 TYPE_LENGTH (result_type) = 0;
1243 else if (stride > 0)
1244 TYPE_LENGTH (result_type) =
1245 (stride * (high_bound - low_bound + 1) + 7) / 8;
1246 else
1247 TYPE_LENGTH (result_type) =
1248 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1249 }
1250 else
1251 {
1252 /* This type is dynamic and its length needs to be computed
1253 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1254 undefined by setting it to zero. Although we are not expected
1255 to trust TYPE_LENGTH in this case, setting the size to zero
1256 allows us to avoid allocating objects of random sizes in case
1257 we accidently do. */
1258 TYPE_LENGTH (result_type) = 0;
1259 }
1260
1261 TYPE_NFIELDS (result_type) = 1;
1262 TYPE_FIELDS (result_type) =
1263 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1264 TYPE_INDEX_TYPE (result_type) = range_type;
1265 if (byte_stride_prop != NULL)
1266 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1267 else if (bit_stride > 0)
1268 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1269
1270 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1271 if (TYPE_LENGTH (result_type) == 0)
1272 TYPE_TARGET_STUB (result_type) = 1;
1273
1274 return result_type;
1275 }
1276
1277 /* Same as create_array_type_with_stride but with no bit_stride
1278 (BIT_STRIDE = 0), thus building an unpacked array. */
1279
1280 struct type *
1281 create_array_type (struct type *result_type,
1282 struct type *element_type,
1283 struct type *range_type)
1284 {
1285 return create_array_type_with_stride (result_type, element_type,
1286 range_type, NULL, 0);
1287 }
1288
1289 struct type *
1290 lookup_array_range_type (struct type *element_type,
1291 LONGEST low_bound, LONGEST high_bound)
1292 {
1293 struct type *index_type;
1294 struct type *range_type;
1295
1296 if (TYPE_OBJFILE_OWNED (element_type))
1297 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1298 else
1299 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1300 range_type = create_static_range_type (NULL, index_type,
1301 low_bound, high_bound);
1302
1303 return create_array_type (NULL, element_type, range_type);
1304 }
1305
1306 /* Create a string type using either a blank type supplied in
1307 RESULT_TYPE, or creating a new type. String types are similar
1308 enough to array of char types that we can use create_array_type to
1309 build the basic type and then bash it into a string type.
1310
1311 For fixed length strings, the range type contains 0 as the lower
1312 bound and the length of the string minus one as the upper bound.
1313
1314 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1315 sure it is TYPE_CODE_UNDEF before we bash it into a string
1316 type? */
1317
1318 struct type *
1319 create_string_type (struct type *result_type,
1320 struct type *string_char_type,
1321 struct type *range_type)
1322 {
1323 result_type = create_array_type (result_type,
1324 string_char_type,
1325 range_type);
1326 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1327 return result_type;
1328 }
1329
1330 struct type *
1331 lookup_string_range_type (struct type *string_char_type,
1332 LONGEST low_bound, LONGEST high_bound)
1333 {
1334 struct type *result_type;
1335
1336 result_type = lookup_array_range_type (string_char_type,
1337 low_bound, high_bound);
1338 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1339 return result_type;
1340 }
1341
1342 struct type *
1343 create_set_type (struct type *result_type, struct type *domain_type)
1344 {
1345 if (result_type == NULL)
1346 result_type = alloc_type_copy (domain_type);
1347
1348 TYPE_CODE (result_type) = TYPE_CODE_SET;
1349 TYPE_NFIELDS (result_type) = 1;
1350 TYPE_FIELDS (result_type)
1351 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1352
1353 if (!TYPE_STUB (domain_type))
1354 {
1355 LONGEST low_bound, high_bound, bit_length;
1356
1357 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1358 low_bound = high_bound = 0;
1359 bit_length = high_bound - low_bound + 1;
1360 TYPE_LENGTH (result_type)
1361 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1362 if (low_bound >= 0)
1363 TYPE_UNSIGNED (result_type) = 1;
1364 }
1365 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1366
1367 return result_type;
1368 }
1369
1370 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1371 and any array types nested inside it. */
1372
1373 void
1374 make_vector_type (struct type *array_type)
1375 {
1376 struct type *inner_array, *elt_type;
1377 int flags;
1378
1379 /* Find the innermost array type, in case the array is
1380 multi-dimensional. */
1381 inner_array = array_type;
1382 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1383 inner_array = TYPE_TARGET_TYPE (inner_array);
1384
1385 elt_type = TYPE_TARGET_TYPE (inner_array);
1386 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1387 {
1388 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1389 elt_type = make_qualified_type (elt_type, flags, NULL);
1390 TYPE_TARGET_TYPE (inner_array) = elt_type;
1391 }
1392
1393 TYPE_VECTOR (array_type) = 1;
1394 }
1395
1396 struct type *
1397 init_vector_type (struct type *elt_type, int n)
1398 {
1399 struct type *array_type;
1400
1401 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1402 make_vector_type (array_type);
1403 return array_type;
1404 }
1405
1406 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1407 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1408 confusing. "self" is a common enough replacement for "this".
1409 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1410 TYPE_CODE_METHOD. */
1411
1412 struct type *
1413 internal_type_self_type (struct type *type)
1414 {
1415 switch (TYPE_CODE (type))
1416 {
1417 case TYPE_CODE_METHODPTR:
1418 case TYPE_CODE_MEMBERPTR:
1419 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1420 return NULL;
1421 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1422 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1423 case TYPE_CODE_METHOD:
1424 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1425 return NULL;
1426 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1427 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1428 default:
1429 gdb_assert_not_reached ("bad type");
1430 }
1431 }
1432
1433 /* Set the type of the class that TYPE belongs to.
1434 In c++ this is the class of "this".
1435 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1436 TYPE_CODE_METHOD. */
1437
1438 void
1439 set_type_self_type (struct type *type, struct type *self_type)
1440 {
1441 switch (TYPE_CODE (type))
1442 {
1443 case TYPE_CODE_METHODPTR:
1444 case TYPE_CODE_MEMBERPTR:
1445 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1446 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1447 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1448 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1449 break;
1450 case TYPE_CODE_METHOD:
1451 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1452 INIT_FUNC_SPECIFIC (type);
1453 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1454 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1455 break;
1456 default:
1457 gdb_assert_not_reached ("bad type");
1458 }
1459 }
1460
1461 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1462 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1463 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1464 TYPE doesn't include the offset (that's the value of the MEMBER
1465 itself), but does include the structure type into which it points
1466 (for some reason).
1467
1468 When "smashing" the type, we preserve the objfile that the old type
1469 pointed to, since we aren't changing where the type is actually
1470 allocated. */
1471
1472 void
1473 smash_to_memberptr_type (struct type *type, struct type *self_type,
1474 struct type *to_type)
1475 {
1476 smash_type (type);
1477 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1478 TYPE_TARGET_TYPE (type) = to_type;
1479 set_type_self_type (type, self_type);
1480 /* Assume that a data member pointer is the same size as a normal
1481 pointer. */
1482 TYPE_LENGTH (type)
1483 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1484 }
1485
1486 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1487
1488 When "smashing" the type, we preserve the objfile that the old type
1489 pointed to, since we aren't changing where the type is actually
1490 allocated. */
1491
1492 void
1493 smash_to_methodptr_type (struct type *type, struct type *to_type)
1494 {
1495 smash_type (type);
1496 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1497 TYPE_TARGET_TYPE (type) = to_type;
1498 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1499 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1500 }
1501
1502 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1503 METHOD just means `function that gets an extra "this" argument'.
1504
1505 When "smashing" the type, we preserve the objfile that the old type
1506 pointed to, since we aren't changing where the type is actually
1507 allocated. */
1508
1509 void
1510 smash_to_method_type (struct type *type, struct type *self_type,
1511 struct type *to_type, struct field *args,
1512 int nargs, int varargs)
1513 {
1514 smash_type (type);
1515 TYPE_CODE (type) = TYPE_CODE_METHOD;
1516 TYPE_TARGET_TYPE (type) = to_type;
1517 set_type_self_type (type, self_type);
1518 TYPE_FIELDS (type) = args;
1519 TYPE_NFIELDS (type) = nargs;
1520 if (varargs)
1521 TYPE_VARARGS (type) = 1;
1522 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1523 }
1524
1525 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1526 Since GCC PR debug/47510 DWARF provides associated information to detect the
1527 anonymous class linkage name from its typedef.
1528
1529 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1530 apply it itself. */
1531
1532 const char *
1533 type_name_or_error (struct type *type)
1534 {
1535 struct type *saved_type = type;
1536 const char *name;
1537 struct objfile *objfile;
1538
1539 type = check_typedef (type);
1540
1541 name = TYPE_NAME (type);
1542 if (name != NULL)
1543 return name;
1544
1545 name = TYPE_NAME (saved_type);
1546 objfile = TYPE_OBJFILE (saved_type);
1547 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1548 name ? name : "<anonymous>",
1549 objfile ? objfile_name (objfile) : "<arch>");
1550 }
1551
1552 /* Lookup a typedef or primitive type named NAME, visible in lexical
1553 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1554 suitably defined. */
1555
1556 struct type *
1557 lookup_typename (const struct language_defn *language,
1558 struct gdbarch *gdbarch, const char *name,
1559 const struct block *block, int noerr)
1560 {
1561 struct symbol *sym;
1562
1563 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1564 language->la_language, NULL).symbol;
1565 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1566 return SYMBOL_TYPE (sym);
1567
1568 if (noerr)
1569 return NULL;
1570 error (_("No type named %s."), name);
1571 }
1572
1573 struct type *
1574 lookup_unsigned_typename (const struct language_defn *language,
1575 struct gdbarch *gdbarch, const char *name)
1576 {
1577 char *uns = (char *) alloca (strlen (name) + 10);
1578
1579 strcpy (uns, "unsigned ");
1580 strcpy (uns + 9, name);
1581 return lookup_typename (language, gdbarch, uns, NULL, 0);
1582 }
1583
1584 struct type *
1585 lookup_signed_typename (const struct language_defn *language,
1586 struct gdbarch *gdbarch, const char *name)
1587 {
1588 struct type *t;
1589 char *uns = (char *) alloca (strlen (name) + 8);
1590
1591 strcpy (uns, "signed ");
1592 strcpy (uns + 7, name);
1593 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1594 /* If we don't find "signed FOO" just try again with plain "FOO". */
1595 if (t != NULL)
1596 return t;
1597 return lookup_typename (language, gdbarch, name, NULL, 0);
1598 }
1599
1600 /* Lookup a structure type named "struct NAME",
1601 visible in lexical block BLOCK. */
1602
1603 struct type *
1604 lookup_struct (const char *name, const struct block *block)
1605 {
1606 struct symbol *sym;
1607
1608 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1609
1610 if (sym == NULL)
1611 {
1612 error (_("No struct type named %s."), name);
1613 }
1614 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1615 {
1616 error (_("This context has class, union or enum %s, not a struct."),
1617 name);
1618 }
1619 return (SYMBOL_TYPE (sym));
1620 }
1621
1622 /* Lookup a union type named "union NAME",
1623 visible in lexical block BLOCK. */
1624
1625 struct type *
1626 lookup_union (const char *name, const struct block *block)
1627 {
1628 struct symbol *sym;
1629 struct type *t;
1630
1631 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1632
1633 if (sym == NULL)
1634 error (_("No union type named %s."), name);
1635
1636 t = SYMBOL_TYPE (sym);
1637
1638 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1639 return t;
1640
1641 /* If we get here, it's not a union. */
1642 error (_("This context has class, struct or enum %s, not a union."),
1643 name);
1644 }
1645
1646 /* Lookup an enum type named "enum NAME",
1647 visible in lexical block BLOCK. */
1648
1649 struct type *
1650 lookup_enum (const char *name, const struct block *block)
1651 {
1652 struct symbol *sym;
1653
1654 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1655 if (sym == NULL)
1656 {
1657 error (_("No enum type named %s."), name);
1658 }
1659 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1660 {
1661 error (_("This context has class, struct or union %s, not an enum."),
1662 name);
1663 }
1664 return (SYMBOL_TYPE (sym));
1665 }
1666
1667 /* Lookup a template type named "template NAME<TYPE>",
1668 visible in lexical block BLOCK. */
1669
1670 struct type *
1671 lookup_template_type (const char *name, struct type *type,
1672 const struct block *block)
1673 {
1674 struct symbol *sym;
1675 char *nam = (char *)
1676 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1677
1678 strcpy (nam, name);
1679 strcat (nam, "<");
1680 strcat (nam, TYPE_NAME (type));
1681 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1682
1683 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1684
1685 if (sym == NULL)
1686 {
1687 error (_("No template type named %s."), name);
1688 }
1689 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1690 {
1691 error (_("This context has class, union or enum %s, not a struct."),
1692 name);
1693 }
1694 return (SYMBOL_TYPE (sym));
1695 }
1696
1697 /* See gdbtypes.h. */
1698
1699 struct_elt
1700 lookup_struct_elt (struct type *type, const char *name, int noerr)
1701 {
1702 int i;
1703
1704 for (;;)
1705 {
1706 type = check_typedef (type);
1707 if (TYPE_CODE (type) != TYPE_CODE_PTR
1708 && TYPE_CODE (type) != TYPE_CODE_REF)
1709 break;
1710 type = TYPE_TARGET_TYPE (type);
1711 }
1712
1713 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1714 && TYPE_CODE (type) != TYPE_CODE_UNION)
1715 {
1716 std::string type_name = type_to_string (type);
1717 error (_("Type %s is not a structure or union type."),
1718 type_name.c_str ());
1719 }
1720
1721 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1722 {
1723 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1724
1725 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1726 {
1727 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1728 }
1729 else if (!t_field_name || *t_field_name == '\0')
1730 {
1731 struct_elt elt
1732 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1733 if (elt.field != NULL)
1734 {
1735 elt.offset += TYPE_FIELD_BITPOS (type, i);
1736 return elt;
1737 }
1738 }
1739 }
1740
1741 /* OK, it's not in this class. Recursively check the baseclasses. */
1742 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1743 {
1744 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1745 if (elt.field != NULL)
1746 return elt;
1747 }
1748
1749 if (noerr)
1750 return {nullptr, 0};
1751
1752 std::string type_name = type_to_string (type);
1753 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1754 }
1755
1756 /* See gdbtypes.h. */
1757
1758 struct type *
1759 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1760 {
1761 struct_elt elt = lookup_struct_elt (type, name, noerr);
1762 if (elt.field != NULL)
1763 return FIELD_TYPE (*elt.field);
1764 else
1765 return NULL;
1766 }
1767
1768 /* Store in *MAX the largest number representable by unsigned integer type
1769 TYPE. */
1770
1771 void
1772 get_unsigned_type_max (struct type *type, ULONGEST *max)
1773 {
1774 unsigned int n;
1775
1776 type = check_typedef (type);
1777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1778 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1779
1780 /* Written this way to avoid overflow. */
1781 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1782 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1783 }
1784
1785 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1786 signed integer type TYPE. */
1787
1788 void
1789 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1790 {
1791 unsigned int n;
1792
1793 type = check_typedef (type);
1794 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1795 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1796
1797 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1798 *min = -((ULONGEST) 1 << (n - 1));
1799 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1800 }
1801
1802 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1803 cplus_stuff.vptr_fieldno.
1804
1805 cplus_stuff is initialized to cplus_struct_default which does not
1806 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1807 designated initializers). We cope with that here. */
1808
1809 int
1810 internal_type_vptr_fieldno (struct type *type)
1811 {
1812 type = check_typedef (type);
1813 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1814 || TYPE_CODE (type) == TYPE_CODE_UNION);
1815 if (!HAVE_CPLUS_STRUCT (type))
1816 return -1;
1817 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1818 }
1819
1820 /* Set the value of cplus_stuff.vptr_fieldno. */
1821
1822 void
1823 set_type_vptr_fieldno (struct type *type, int fieldno)
1824 {
1825 type = check_typedef (type);
1826 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1827 || TYPE_CODE (type) == TYPE_CODE_UNION);
1828 if (!HAVE_CPLUS_STRUCT (type))
1829 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1830 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1831 }
1832
1833 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1834 cplus_stuff.vptr_basetype. */
1835
1836 struct type *
1837 internal_type_vptr_basetype (struct type *type)
1838 {
1839 type = check_typedef (type);
1840 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1841 || TYPE_CODE (type) == TYPE_CODE_UNION);
1842 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1843 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1844 }
1845
1846 /* Set the value of cplus_stuff.vptr_basetype. */
1847
1848 void
1849 set_type_vptr_basetype (struct type *type, struct type *basetype)
1850 {
1851 type = check_typedef (type);
1852 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1853 || TYPE_CODE (type) == TYPE_CODE_UNION);
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1856 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1857 }
1858
1859 /* Lookup the vptr basetype/fieldno values for TYPE.
1860 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1861 vptr_fieldno. Also, if found and basetype is from the same objfile,
1862 cache the results.
1863 If not found, return -1 and ignore BASETYPEP.
1864 Callers should be aware that in some cases (for example,
1865 the type or one of its baseclasses is a stub type and we are
1866 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1867 this function will not be able to find the
1868 virtual function table pointer, and vptr_fieldno will remain -1 and
1869 vptr_basetype will remain NULL or incomplete. */
1870
1871 int
1872 get_vptr_fieldno (struct type *type, struct type **basetypep)
1873 {
1874 type = check_typedef (type);
1875
1876 if (TYPE_VPTR_FIELDNO (type) < 0)
1877 {
1878 int i;
1879
1880 /* We must start at zero in case the first (and only) baseclass
1881 is virtual (and hence we cannot share the table pointer). */
1882 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1883 {
1884 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1885 int fieldno;
1886 struct type *basetype;
1887
1888 fieldno = get_vptr_fieldno (baseclass, &basetype);
1889 if (fieldno >= 0)
1890 {
1891 /* If the type comes from a different objfile we can't cache
1892 it, it may have a different lifetime. PR 2384 */
1893 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1894 {
1895 set_type_vptr_fieldno (type, fieldno);
1896 set_type_vptr_basetype (type, basetype);
1897 }
1898 if (basetypep)
1899 *basetypep = basetype;
1900 return fieldno;
1901 }
1902 }
1903
1904 /* Not found. */
1905 return -1;
1906 }
1907 else
1908 {
1909 if (basetypep)
1910 *basetypep = TYPE_VPTR_BASETYPE (type);
1911 return TYPE_VPTR_FIELDNO (type);
1912 }
1913 }
1914
1915 static void
1916 stub_noname_complaint (void)
1917 {
1918 complaint (_("stub type has NULL name"));
1919 }
1920
1921 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1922 attached to it, and that property has a non-constant value. */
1923
1924 static int
1925 array_type_has_dynamic_stride (struct type *type)
1926 {
1927 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1928
1929 return (prop != NULL && prop->kind != PROP_CONST);
1930 }
1931
1932 /* Worker for is_dynamic_type. */
1933
1934 static int
1935 is_dynamic_type_internal (struct type *type, int top_level)
1936 {
1937 type = check_typedef (type);
1938
1939 /* We only want to recognize references at the outermost level. */
1940 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1941 type = check_typedef (TYPE_TARGET_TYPE (type));
1942
1943 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1944 dynamic, even if the type itself is statically defined.
1945 From a user's point of view, this may appear counter-intuitive;
1946 but it makes sense in this context, because the point is to determine
1947 whether any part of the type needs to be resolved before it can
1948 be exploited. */
1949 if (TYPE_DATA_LOCATION (type) != NULL
1950 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1951 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1952 return 1;
1953
1954 if (TYPE_ASSOCIATED_PROP (type))
1955 return 1;
1956
1957 if (TYPE_ALLOCATED_PROP (type))
1958 return 1;
1959
1960 switch (TYPE_CODE (type))
1961 {
1962 case TYPE_CODE_RANGE:
1963 {
1964 /* A range type is obviously dynamic if it has at least one
1965 dynamic bound. But also consider the range type to be
1966 dynamic when its subtype is dynamic, even if the bounds
1967 of the range type are static. It allows us to assume that
1968 the subtype of a static range type is also static. */
1969 return (!has_static_range (TYPE_RANGE_DATA (type))
1970 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1971 }
1972
1973 case TYPE_CODE_STRING:
1974 /* Strings are very much like an array of characters, and can be
1975 treated as one here. */
1976 case TYPE_CODE_ARRAY:
1977 {
1978 gdb_assert (TYPE_NFIELDS (type) == 1);
1979
1980 /* The array is dynamic if either the bounds are dynamic... */
1981 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1982 return 1;
1983 /* ... or the elements it contains have a dynamic contents... */
1984 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1985 return 1;
1986 /* ... or if it has a dynamic stride... */
1987 if (array_type_has_dynamic_stride (type))
1988 return 1;
1989 return 0;
1990 }
1991
1992 case TYPE_CODE_STRUCT:
1993 case TYPE_CODE_UNION:
1994 {
1995 int i;
1996
1997 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1998 if (!field_is_static (&TYPE_FIELD (type, i))
1999 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2000 return 1;
2001 }
2002 break;
2003 }
2004
2005 return 0;
2006 }
2007
2008 /* See gdbtypes.h. */
2009
2010 int
2011 is_dynamic_type (struct type *type)
2012 {
2013 return is_dynamic_type_internal (type, 1);
2014 }
2015
2016 static struct type *resolve_dynamic_type_internal
2017 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2018
2019 /* Given a dynamic range type (dyn_range_type) and a stack of
2020 struct property_addr_info elements, return a static version
2021 of that type. */
2022
2023 static struct type *
2024 resolve_dynamic_range (struct type *dyn_range_type,
2025 struct property_addr_info *addr_stack)
2026 {
2027 CORE_ADDR value;
2028 struct type *static_range_type, *static_target_type;
2029 const struct dynamic_prop *prop;
2030 struct dynamic_prop low_bound, high_bound, stride;
2031
2032 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2033
2034 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2035 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2036 {
2037 low_bound.kind = PROP_CONST;
2038 low_bound.data.const_val = value;
2039 }
2040 else
2041 {
2042 low_bound.kind = PROP_UNDEFINED;
2043 low_bound.data.const_val = 0;
2044 }
2045
2046 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2047 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2048 {
2049 high_bound.kind = PROP_CONST;
2050 high_bound.data.const_val = value;
2051
2052 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2053 high_bound.data.const_val
2054 = low_bound.data.const_val + high_bound.data.const_val - 1;
2055 }
2056 else
2057 {
2058 high_bound.kind = PROP_UNDEFINED;
2059 high_bound.data.const_val = 0;
2060 }
2061
2062 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2063 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2064 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2065 {
2066 stride.kind = PROP_CONST;
2067 stride.data.const_val = value;
2068
2069 /* If we have a bit stride that is not an exact number of bytes then
2070 I really don't think this is going to work with current GDB, the
2071 array indexing code in GDB seems to be pretty heavily tied to byte
2072 offsets right now. Assuming 8 bits in a byte. */
2073 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2074 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2075 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2076 error (_("bit strides that are not a multiple of the byte size "
2077 "are currently not supported"));
2078 }
2079 else
2080 {
2081 stride.kind = PROP_UNDEFINED;
2082 stride.data.const_val = 0;
2083 byte_stride_p = true;
2084 }
2085
2086 static_target_type
2087 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2088 addr_stack, 0);
2089 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2090 static_range_type = create_range_type_with_stride
2091 (copy_type (dyn_range_type), static_target_type,
2092 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2093 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2094 return static_range_type;
2095 }
2096
2097 /* Resolves dynamic bound values of an array or string type TYPE to static
2098 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2099 needed during the dynamic resolution. */
2100
2101 static struct type *
2102 resolve_dynamic_array_or_string (struct type *type,
2103 struct property_addr_info *addr_stack)
2104 {
2105 CORE_ADDR value;
2106 struct type *elt_type;
2107 struct type *range_type;
2108 struct type *ary_dim;
2109 struct dynamic_prop *prop;
2110 unsigned int bit_stride = 0;
2111
2112 /* For dynamic type resolution strings can be treated like arrays of
2113 characters. */
2114 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2115 || TYPE_CODE (type) == TYPE_CODE_STRING);
2116
2117 type = copy_type (type);
2118
2119 elt_type = type;
2120 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2121 range_type = resolve_dynamic_range (range_type, addr_stack);
2122
2123 /* Resolve allocated/associated here before creating a new array type, which
2124 will update the length of the array accordingly. */
2125 prop = TYPE_ALLOCATED_PROP (type);
2126 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2127 {
2128 TYPE_DYN_PROP_ADDR (prop) = value;
2129 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2130 }
2131 prop = TYPE_ASSOCIATED_PROP (type);
2132 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2133 {
2134 TYPE_DYN_PROP_ADDR (prop) = value;
2135 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2136 }
2137
2138 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2139
2140 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2141 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2142 else
2143 elt_type = TYPE_TARGET_TYPE (type);
2144
2145 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2146 if (prop != NULL)
2147 {
2148 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2149 {
2150 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2151 bit_stride = (unsigned int) (value * 8);
2152 }
2153 else
2154 {
2155 /* Could be a bug in our code, but it could also happen
2156 if the DWARF info is not correct. Issue a warning,
2157 and assume no byte/bit stride (leave bit_stride = 0). */
2158 warning (_("cannot determine array stride for type %s"),
2159 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2160 }
2161 }
2162 else
2163 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2164
2165 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2166 bit_stride);
2167 }
2168
2169 /* Resolve dynamic bounds of members of the union TYPE to static
2170 bounds. ADDR_STACK is a stack of struct property_addr_info
2171 to be used if needed during the dynamic resolution. */
2172
2173 static struct type *
2174 resolve_dynamic_union (struct type *type,
2175 struct property_addr_info *addr_stack)
2176 {
2177 struct type *resolved_type;
2178 int i;
2179 unsigned int max_len = 0;
2180
2181 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2182
2183 resolved_type = copy_type (type);
2184 TYPE_FIELDS (resolved_type)
2185 = (struct field *) TYPE_ALLOC (resolved_type,
2186 TYPE_NFIELDS (resolved_type)
2187 * sizeof (struct field));
2188 memcpy (TYPE_FIELDS (resolved_type),
2189 TYPE_FIELDS (type),
2190 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2191 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2192 {
2193 struct type *t;
2194
2195 if (field_is_static (&TYPE_FIELD (type, i)))
2196 continue;
2197
2198 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2199 addr_stack, 0);
2200 TYPE_FIELD_TYPE (resolved_type, i) = t;
2201 if (TYPE_LENGTH (t) > max_len)
2202 max_len = TYPE_LENGTH (t);
2203 }
2204
2205 TYPE_LENGTH (resolved_type) = max_len;
2206 return resolved_type;
2207 }
2208
2209 /* Resolve dynamic bounds of members of the struct TYPE to static
2210 bounds. ADDR_STACK is a stack of struct property_addr_info to
2211 be used if needed during the dynamic resolution. */
2212
2213 static struct type *
2214 resolve_dynamic_struct (struct type *type,
2215 struct property_addr_info *addr_stack)
2216 {
2217 struct type *resolved_type;
2218 int i;
2219 unsigned resolved_type_bit_length = 0;
2220
2221 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2222 gdb_assert (TYPE_NFIELDS (type) > 0);
2223
2224 resolved_type = copy_type (type);
2225 TYPE_FIELDS (resolved_type)
2226 = (struct field *) TYPE_ALLOC (resolved_type,
2227 TYPE_NFIELDS (resolved_type)
2228 * sizeof (struct field));
2229 memcpy (TYPE_FIELDS (resolved_type),
2230 TYPE_FIELDS (type),
2231 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2232 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2233 {
2234 unsigned new_bit_length;
2235 struct property_addr_info pinfo;
2236
2237 if (field_is_static (&TYPE_FIELD (type, i)))
2238 continue;
2239
2240 /* As we know this field is not a static field, the field's
2241 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2242 this is the case, but only trigger a simple error rather
2243 than an internal error if that fails. While failing
2244 that verification indicates a bug in our code, the error
2245 is not severe enough to suggest to the user he stops
2246 his debugging session because of it. */
2247 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2248 error (_("Cannot determine struct field location"
2249 " (invalid location kind)"));
2250
2251 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2252 pinfo.valaddr = addr_stack->valaddr;
2253 pinfo.addr
2254 = (addr_stack->addr
2255 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2256 pinfo.next = addr_stack;
2257
2258 TYPE_FIELD_TYPE (resolved_type, i)
2259 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2260 &pinfo, 0);
2261 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2262 == FIELD_LOC_KIND_BITPOS);
2263
2264 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2265 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2266 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2267 else
2268 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2269 * TARGET_CHAR_BIT);
2270
2271 /* Normally, we would use the position and size of the last field
2272 to determine the size of the enclosing structure. But GCC seems
2273 to be encoding the position of some fields incorrectly when
2274 the struct contains a dynamic field that is not placed last.
2275 So we compute the struct size based on the field that has
2276 the highest position + size - probably the best we can do. */
2277 if (new_bit_length > resolved_type_bit_length)
2278 resolved_type_bit_length = new_bit_length;
2279 }
2280
2281 /* The length of a type won't change for fortran, but it does for C and Ada.
2282 For fortran the size of dynamic fields might change over time but not the
2283 type length of the structure. If we adapt it, we run into problems
2284 when calculating the element offset for arrays of structs. */
2285 if (current_language->la_language != language_fortran)
2286 TYPE_LENGTH (resolved_type)
2287 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2288
2289 /* The Ada language uses this field as a cache for static fixed types: reset
2290 it as RESOLVED_TYPE must have its own static fixed type. */
2291 TYPE_TARGET_TYPE (resolved_type) = NULL;
2292
2293 return resolved_type;
2294 }
2295
2296 /* Worker for resolved_dynamic_type. */
2297
2298 static struct type *
2299 resolve_dynamic_type_internal (struct type *type,
2300 struct property_addr_info *addr_stack,
2301 int top_level)
2302 {
2303 struct type *real_type = check_typedef (type);
2304 struct type *resolved_type = type;
2305 struct dynamic_prop *prop;
2306 CORE_ADDR value;
2307
2308 if (!is_dynamic_type_internal (real_type, top_level))
2309 return type;
2310
2311 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2312 {
2313 resolved_type = copy_type (type);
2314 TYPE_TARGET_TYPE (resolved_type)
2315 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2316 top_level);
2317 }
2318 else
2319 {
2320 /* Before trying to resolve TYPE, make sure it is not a stub. */
2321 type = real_type;
2322
2323 switch (TYPE_CODE (type))
2324 {
2325 case TYPE_CODE_REF:
2326 {
2327 struct property_addr_info pinfo;
2328
2329 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2330 pinfo.valaddr = NULL;
2331 if (addr_stack->valaddr != NULL)
2332 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2333 else
2334 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2335 pinfo.next = addr_stack;
2336
2337 resolved_type = copy_type (type);
2338 TYPE_TARGET_TYPE (resolved_type)
2339 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2340 &pinfo, top_level);
2341 break;
2342 }
2343
2344 case TYPE_CODE_STRING:
2345 /* Strings are very much like an array of characters, and can be
2346 treated as one here. */
2347 case TYPE_CODE_ARRAY:
2348 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2349 break;
2350
2351 case TYPE_CODE_RANGE:
2352 resolved_type = resolve_dynamic_range (type, addr_stack);
2353 break;
2354
2355 case TYPE_CODE_UNION:
2356 resolved_type = resolve_dynamic_union (type, addr_stack);
2357 break;
2358
2359 case TYPE_CODE_STRUCT:
2360 resolved_type = resolve_dynamic_struct (type, addr_stack);
2361 break;
2362 }
2363 }
2364
2365 /* Resolve data_location attribute. */
2366 prop = TYPE_DATA_LOCATION (resolved_type);
2367 if (prop != NULL
2368 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2369 {
2370 TYPE_DYN_PROP_ADDR (prop) = value;
2371 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2372 }
2373
2374 return resolved_type;
2375 }
2376
2377 /* See gdbtypes.h */
2378
2379 struct type *
2380 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2381 CORE_ADDR addr)
2382 {
2383 struct property_addr_info pinfo
2384 = {check_typedef (type), valaddr, addr, NULL};
2385
2386 return resolve_dynamic_type_internal (type, &pinfo, 1);
2387 }
2388
2389 /* See gdbtypes.h */
2390
2391 struct dynamic_prop *
2392 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2393 {
2394 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2395
2396 while (node != NULL)
2397 {
2398 if (node->prop_kind == prop_kind)
2399 return &node->prop;
2400 node = node->next;
2401 }
2402 return NULL;
2403 }
2404
2405 /* See gdbtypes.h */
2406
2407 void
2408 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2409 struct type *type)
2410 {
2411 struct dynamic_prop_list *temp;
2412
2413 gdb_assert (TYPE_OBJFILE_OWNED (type));
2414
2415 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2416 struct dynamic_prop_list);
2417 temp->prop_kind = prop_kind;
2418 temp->prop = prop;
2419 temp->next = TYPE_DYN_PROP_LIST (type);
2420
2421 TYPE_DYN_PROP_LIST (type) = temp;
2422 }
2423
2424 /* Remove dynamic property from TYPE in case it exists. */
2425
2426 void
2427 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2428 struct type *type)
2429 {
2430 struct dynamic_prop_list *prev_node, *curr_node;
2431
2432 curr_node = TYPE_DYN_PROP_LIST (type);
2433 prev_node = NULL;
2434
2435 while (NULL != curr_node)
2436 {
2437 if (curr_node->prop_kind == prop_kind)
2438 {
2439 /* Update the linked list but don't free anything.
2440 The property was allocated on objstack and it is not known
2441 if we are on top of it. Nevertheless, everything is released
2442 when the complete objstack is freed. */
2443 if (NULL == prev_node)
2444 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2445 else
2446 prev_node->next = curr_node->next;
2447
2448 return;
2449 }
2450
2451 prev_node = curr_node;
2452 curr_node = curr_node->next;
2453 }
2454 }
2455
2456 /* Find the real type of TYPE. This function returns the real type,
2457 after removing all layers of typedefs, and completing opaque or stub
2458 types. Completion changes the TYPE argument, but stripping of
2459 typedefs does not.
2460
2461 Instance flags (e.g. const/volatile) are preserved as typedefs are
2462 stripped. If necessary a new qualified form of the underlying type
2463 is created.
2464
2465 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2466 not been computed and we're either in the middle of reading symbols, or
2467 there was no name for the typedef in the debug info.
2468
2469 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2470 QUITs in the symbol reading code can also throw.
2471 Thus this function can throw an exception.
2472
2473 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2474 the target type.
2475
2476 If this is a stubbed struct (i.e. declared as struct foo *), see if
2477 we can find a full definition in some other file. If so, copy this
2478 definition, so we can use it in future. There used to be a comment
2479 (but not any code) that if we don't find a full definition, we'd
2480 set a flag so we don't spend time in the future checking the same
2481 type. That would be a mistake, though--we might load in more
2482 symbols which contain a full definition for the type. */
2483
2484 struct type *
2485 check_typedef (struct type *type)
2486 {
2487 struct type *orig_type = type;
2488 /* While we're removing typedefs, we don't want to lose qualifiers.
2489 E.g., const/volatile. */
2490 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2491
2492 gdb_assert (type);
2493
2494 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2495 {
2496 if (!TYPE_TARGET_TYPE (type))
2497 {
2498 const char *name;
2499 struct symbol *sym;
2500
2501 /* It is dangerous to call lookup_symbol if we are currently
2502 reading a symtab. Infinite recursion is one danger. */
2503 if (currently_reading_symtab)
2504 return make_qualified_type (type, instance_flags, NULL);
2505
2506 name = TYPE_NAME (type);
2507 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2508 VAR_DOMAIN as appropriate? */
2509 if (name == NULL)
2510 {
2511 stub_noname_complaint ();
2512 return make_qualified_type (type, instance_flags, NULL);
2513 }
2514 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2515 if (sym)
2516 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2517 else /* TYPE_CODE_UNDEF */
2518 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2519 }
2520 type = TYPE_TARGET_TYPE (type);
2521
2522 /* Preserve the instance flags as we traverse down the typedef chain.
2523
2524 Handling address spaces/classes is nasty, what do we do if there's a
2525 conflict?
2526 E.g., what if an outer typedef marks the type as class_1 and an inner
2527 typedef marks the type as class_2?
2528 This is the wrong place to do such error checking. We leave it to
2529 the code that created the typedef in the first place to flag the
2530 error. We just pick the outer address space (akin to letting the
2531 outer cast in a chain of casting win), instead of assuming
2532 "it can't happen". */
2533 {
2534 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2535 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2536 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2537 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2538
2539 /* Treat code vs data spaces and address classes separately. */
2540 if ((instance_flags & ALL_SPACES) != 0)
2541 new_instance_flags &= ~ALL_SPACES;
2542 if ((instance_flags & ALL_CLASSES) != 0)
2543 new_instance_flags &= ~ALL_CLASSES;
2544
2545 instance_flags |= new_instance_flags;
2546 }
2547 }
2548
2549 /* If this is a struct/class/union with no fields, then check
2550 whether a full definition exists somewhere else. This is for
2551 systems where a type definition with no fields is issued for such
2552 types, instead of identifying them as stub types in the first
2553 place. */
2554
2555 if (TYPE_IS_OPAQUE (type)
2556 && opaque_type_resolution
2557 && !currently_reading_symtab)
2558 {
2559 const char *name = TYPE_NAME (type);
2560 struct type *newtype;
2561
2562 if (name == NULL)
2563 {
2564 stub_noname_complaint ();
2565 return make_qualified_type (type, instance_flags, NULL);
2566 }
2567 newtype = lookup_transparent_type (name);
2568
2569 if (newtype)
2570 {
2571 /* If the resolved type and the stub are in the same
2572 objfile, then replace the stub type with the real deal.
2573 But if they're in separate objfiles, leave the stub
2574 alone; we'll just look up the transparent type every time
2575 we call check_typedef. We can't create pointers between
2576 types allocated to different objfiles, since they may
2577 have different lifetimes. Trying to copy NEWTYPE over to
2578 TYPE's objfile is pointless, too, since you'll have to
2579 move over any other types NEWTYPE refers to, which could
2580 be an unbounded amount of stuff. */
2581 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2582 type = make_qualified_type (newtype,
2583 TYPE_INSTANCE_FLAGS (type),
2584 type);
2585 else
2586 type = newtype;
2587 }
2588 }
2589 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2590 types. */
2591 else if (TYPE_STUB (type) && !currently_reading_symtab)
2592 {
2593 const char *name = TYPE_NAME (type);
2594 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2595 as appropriate? */
2596 struct symbol *sym;
2597
2598 if (name == NULL)
2599 {
2600 stub_noname_complaint ();
2601 return make_qualified_type (type, instance_flags, NULL);
2602 }
2603 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2604 if (sym)
2605 {
2606 /* Same as above for opaque types, we can replace the stub
2607 with the complete type only if they are in the same
2608 objfile. */
2609 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2610 type = make_qualified_type (SYMBOL_TYPE (sym),
2611 TYPE_INSTANCE_FLAGS (type),
2612 type);
2613 else
2614 type = SYMBOL_TYPE (sym);
2615 }
2616 }
2617
2618 if (TYPE_TARGET_STUB (type))
2619 {
2620 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2621
2622 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2623 {
2624 /* Nothing we can do. */
2625 }
2626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2627 {
2628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2629 TYPE_TARGET_STUB (type) = 0;
2630 }
2631 }
2632
2633 type = make_qualified_type (type, instance_flags, NULL);
2634
2635 /* Cache TYPE_LENGTH for future use. */
2636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2637
2638 return type;
2639 }
2640
2641 /* Parse a type expression in the string [P..P+LENGTH). If an error
2642 occurs, silently return a void type. */
2643
2644 static struct type *
2645 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2646 {
2647 struct ui_file *saved_gdb_stderr;
2648 struct type *type = NULL; /* Initialize to keep gcc happy. */
2649
2650 /* Suppress error messages. */
2651 saved_gdb_stderr = gdb_stderr;
2652 gdb_stderr = &null_stream;
2653
2654 /* Call parse_and_eval_type() without fear of longjmp()s. */
2655 try
2656 {
2657 type = parse_and_eval_type (p, length);
2658 }
2659 catch (const gdb_exception_error &except)
2660 {
2661 type = builtin_type (gdbarch)->builtin_void;
2662 }
2663
2664 /* Stop suppressing error messages. */
2665 gdb_stderr = saved_gdb_stderr;
2666
2667 return type;
2668 }
2669
2670 /* Ugly hack to convert method stubs into method types.
2671
2672 He ain't kiddin'. This demangles the name of the method into a
2673 string including argument types, parses out each argument type,
2674 generates a string casting a zero to that type, evaluates the
2675 string, and stuffs the resulting type into an argtype vector!!!
2676 Then it knows the type of the whole function (including argument
2677 types for overloading), which info used to be in the stab's but was
2678 removed to hack back the space required for them. */
2679
2680 static void
2681 check_stub_method (struct type *type, int method_id, int signature_id)
2682 {
2683 struct gdbarch *gdbarch = get_type_arch (type);
2684 struct fn_field *f;
2685 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2686 char *demangled_name = gdb_demangle (mangled_name,
2687 DMGL_PARAMS | DMGL_ANSI);
2688 char *argtypetext, *p;
2689 int depth = 0, argcount = 1;
2690 struct field *argtypes;
2691 struct type *mtype;
2692
2693 /* Make sure we got back a function string that we can use. */
2694 if (demangled_name)
2695 p = strchr (demangled_name, '(');
2696 else
2697 p = NULL;
2698
2699 if (demangled_name == NULL || p == NULL)
2700 error (_("Internal: Cannot demangle mangled name `%s'."),
2701 mangled_name);
2702
2703 /* Now, read in the parameters that define this type. */
2704 p += 1;
2705 argtypetext = p;
2706 while (*p)
2707 {
2708 if (*p == '(' || *p == '<')
2709 {
2710 depth += 1;
2711 }
2712 else if (*p == ')' || *p == '>')
2713 {
2714 depth -= 1;
2715 }
2716 else if (*p == ',' && depth == 0)
2717 {
2718 argcount += 1;
2719 }
2720
2721 p += 1;
2722 }
2723
2724 /* If we read one argument and it was ``void'', don't count it. */
2725 if (startswith (argtypetext, "(void)"))
2726 argcount -= 1;
2727
2728 /* We need one extra slot, for the THIS pointer. */
2729
2730 argtypes = (struct field *)
2731 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2732 p = argtypetext;
2733
2734 /* Add THIS pointer for non-static methods. */
2735 f = TYPE_FN_FIELDLIST1 (type, method_id);
2736 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2737 argcount = 0;
2738 else
2739 {
2740 argtypes[0].type = lookup_pointer_type (type);
2741 argcount = 1;
2742 }
2743
2744 if (*p != ')') /* () means no args, skip while. */
2745 {
2746 depth = 0;
2747 while (*p)
2748 {
2749 if (depth <= 0 && (*p == ',' || *p == ')'))
2750 {
2751 /* Avoid parsing of ellipsis, they will be handled below.
2752 Also avoid ``void'' as above. */
2753 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2754 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2755 {
2756 argtypes[argcount].type =
2757 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2758 argcount += 1;
2759 }
2760 argtypetext = p + 1;
2761 }
2762
2763 if (*p == '(' || *p == '<')
2764 {
2765 depth += 1;
2766 }
2767 else if (*p == ')' || *p == '>')
2768 {
2769 depth -= 1;
2770 }
2771
2772 p += 1;
2773 }
2774 }
2775
2776 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2777
2778 /* Now update the old "stub" type into a real type. */
2779 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2780 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2781 We want a method (TYPE_CODE_METHOD). */
2782 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2783 argtypes, argcount, p[-2] == '.');
2784 TYPE_STUB (mtype) = 0;
2785 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2786
2787 xfree (demangled_name);
2788 }
2789
2790 /* This is the external interface to check_stub_method, above. This
2791 function unstubs all of the signatures for TYPE's METHOD_ID method
2792 name. After calling this function TYPE_FN_FIELD_STUB will be
2793 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2794 correct.
2795
2796 This function unfortunately can not die until stabs do. */
2797
2798 void
2799 check_stub_method_group (struct type *type, int method_id)
2800 {
2801 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2802 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2803
2804 for (int j = 0; j < len; j++)
2805 {
2806 if (TYPE_FN_FIELD_STUB (f, j))
2807 check_stub_method (type, method_id, j);
2808 }
2809 }
2810
2811 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2812 const struct cplus_struct_type cplus_struct_default = { };
2813
2814 void
2815 allocate_cplus_struct_type (struct type *type)
2816 {
2817 if (HAVE_CPLUS_STRUCT (type))
2818 /* Structure was already allocated. Nothing more to do. */
2819 return;
2820
2821 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2822 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2823 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2824 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2825 set_type_vptr_fieldno (type, -1);
2826 }
2827
2828 const struct gnat_aux_type gnat_aux_default =
2829 { NULL };
2830
2831 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2832 and allocate the associated gnat-specific data. The gnat-specific
2833 data is also initialized to gnat_aux_default. */
2834
2835 void
2836 allocate_gnat_aux_type (struct type *type)
2837 {
2838 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2839 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2840 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2841 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2842 }
2843
2844 /* Helper function to initialize a newly allocated type. Set type code
2845 to CODE and initialize the type-specific fields accordingly. */
2846
2847 static void
2848 set_type_code (struct type *type, enum type_code code)
2849 {
2850 TYPE_CODE (type) = code;
2851
2852 switch (code)
2853 {
2854 case TYPE_CODE_STRUCT:
2855 case TYPE_CODE_UNION:
2856 case TYPE_CODE_NAMESPACE:
2857 INIT_CPLUS_SPECIFIC (type);
2858 break;
2859 case TYPE_CODE_FLT:
2860 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2861 break;
2862 case TYPE_CODE_FUNC:
2863 INIT_FUNC_SPECIFIC (type);
2864 break;
2865 }
2866 }
2867
2868 /* Helper function to verify floating-point format and size.
2869 BIT is the type size in bits; if BIT equals -1, the size is
2870 determined by the floatformat. Returns size to be used. */
2871
2872 static int
2873 verify_floatformat (int bit, const struct floatformat *floatformat)
2874 {
2875 gdb_assert (floatformat != NULL);
2876
2877 if (bit == -1)
2878 bit = floatformat->totalsize;
2879
2880 gdb_assert (bit >= 0);
2881 gdb_assert (bit >= floatformat->totalsize);
2882
2883 return bit;
2884 }
2885
2886 /* Return the floating-point format for a floating-point variable of
2887 type TYPE. */
2888
2889 const struct floatformat *
2890 floatformat_from_type (const struct type *type)
2891 {
2892 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2893 gdb_assert (TYPE_FLOATFORMAT (type));
2894 return TYPE_FLOATFORMAT (type);
2895 }
2896
2897 /* Helper function to initialize the standard scalar types.
2898
2899 If NAME is non-NULL, then it is used to initialize the type name.
2900 Note that NAME is not copied; it is required to have a lifetime at
2901 least as long as OBJFILE. */
2902
2903 struct type *
2904 init_type (struct objfile *objfile, enum type_code code, int bit,
2905 const char *name)
2906 {
2907 struct type *type;
2908
2909 type = alloc_type (objfile);
2910 set_type_code (type, code);
2911 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2912 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2913 TYPE_NAME (type) = name;
2914
2915 return type;
2916 }
2917
2918 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2919 to use with variables that have no debug info. NAME is the type
2920 name. */
2921
2922 static struct type *
2923 init_nodebug_var_type (struct objfile *objfile, const char *name)
2924 {
2925 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2926 }
2927
2928 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2929 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2930 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2931
2932 struct type *
2933 init_integer_type (struct objfile *objfile,
2934 int bit, int unsigned_p, const char *name)
2935 {
2936 struct type *t;
2937
2938 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2939 if (unsigned_p)
2940 TYPE_UNSIGNED (t) = 1;
2941
2942 return t;
2943 }
2944
2945 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2946 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2947 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2948
2949 struct type *
2950 init_character_type (struct objfile *objfile,
2951 int bit, int unsigned_p, const char *name)
2952 {
2953 struct type *t;
2954
2955 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2956 if (unsigned_p)
2957 TYPE_UNSIGNED (t) = 1;
2958
2959 return t;
2960 }
2961
2962 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2963 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2964 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2965
2966 struct type *
2967 init_boolean_type (struct objfile *objfile,
2968 int bit, int unsigned_p, const char *name)
2969 {
2970 struct type *t;
2971
2972 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2973 if (unsigned_p)
2974 TYPE_UNSIGNED (t) = 1;
2975
2976 return t;
2977 }
2978
2979 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2980 BIT is the type size in bits; if BIT equals -1, the size is
2981 determined by the floatformat. NAME is the type name. Set the
2982 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
2983 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
2984 order of the objfile's architecture is used. */
2985
2986 struct type *
2987 init_float_type (struct objfile *objfile,
2988 int bit, const char *name,
2989 const struct floatformat **floatformats,
2990 enum bfd_endian byte_order)
2991 {
2992 if (byte_order == BFD_ENDIAN_UNKNOWN)
2993 {
2994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2995 byte_order = gdbarch_byte_order (gdbarch);
2996 }
2997 const struct floatformat *fmt = floatformats[byte_order];
2998 struct type *t;
2999
3000 bit = verify_floatformat (bit, fmt);
3001 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3002 TYPE_FLOATFORMAT (t) = fmt;
3003
3004 return t;
3005 }
3006
3007 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3008 BIT is the type size in bits. NAME is the type name. */
3009
3010 struct type *
3011 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3012 {
3013 struct type *t;
3014
3015 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3016 return t;
3017 }
3018
3019 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3020 NAME is the type name. TARGET_TYPE is the component float type. */
3021
3022 struct type *
3023 init_complex_type (struct objfile *objfile,
3024 const char *name, struct type *target_type)
3025 {
3026 struct type *t;
3027
3028 t = init_type (objfile, TYPE_CODE_COMPLEX,
3029 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
3030 TYPE_TARGET_TYPE (t) = target_type;
3031 return t;
3032 }
3033
3034 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3035 BIT is the pointer type size in bits. NAME is the type name.
3036 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3037 TYPE_UNSIGNED flag. */
3038
3039 struct type *
3040 init_pointer_type (struct objfile *objfile,
3041 int bit, const char *name, struct type *target_type)
3042 {
3043 struct type *t;
3044
3045 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3046 TYPE_TARGET_TYPE (t) = target_type;
3047 TYPE_UNSIGNED (t) = 1;
3048 return t;
3049 }
3050
3051 /* See gdbtypes.h. */
3052
3053 unsigned
3054 type_raw_align (struct type *type)
3055 {
3056 if (type->align_log2 != 0)
3057 return 1 << (type->align_log2 - 1);
3058 return 0;
3059 }
3060
3061 /* See gdbtypes.h. */
3062
3063 unsigned
3064 type_align (struct type *type)
3065 {
3066 /* Check alignment provided in the debug information. */
3067 unsigned raw_align = type_raw_align (type);
3068 if (raw_align != 0)
3069 return raw_align;
3070
3071 /* Allow the architecture to provide an alignment. */
3072 struct gdbarch *arch = get_type_arch (type);
3073 ULONGEST align = gdbarch_type_align (arch, type);
3074 if (align != 0)
3075 return align;
3076
3077 switch (TYPE_CODE (type))
3078 {
3079 case TYPE_CODE_PTR:
3080 case TYPE_CODE_FUNC:
3081 case TYPE_CODE_FLAGS:
3082 case TYPE_CODE_INT:
3083 case TYPE_CODE_RANGE:
3084 case TYPE_CODE_FLT:
3085 case TYPE_CODE_ENUM:
3086 case TYPE_CODE_REF:
3087 case TYPE_CODE_RVALUE_REF:
3088 case TYPE_CODE_CHAR:
3089 case TYPE_CODE_BOOL:
3090 case TYPE_CODE_DECFLOAT:
3091 case TYPE_CODE_METHODPTR:
3092 case TYPE_CODE_MEMBERPTR:
3093 align = type_length_units (check_typedef (type));
3094 break;
3095
3096 case TYPE_CODE_ARRAY:
3097 case TYPE_CODE_COMPLEX:
3098 case TYPE_CODE_TYPEDEF:
3099 align = type_align (TYPE_TARGET_TYPE (type));
3100 break;
3101
3102 case TYPE_CODE_STRUCT:
3103 case TYPE_CODE_UNION:
3104 {
3105 int number_of_non_static_fields = 0;
3106 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3107 {
3108 if (!field_is_static (&TYPE_FIELD (type, i)))
3109 {
3110 number_of_non_static_fields++;
3111 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3112 if (f_align == 0)
3113 {
3114 /* Don't pretend we know something we don't. */
3115 align = 0;
3116 break;
3117 }
3118 if (f_align > align)
3119 align = f_align;
3120 }
3121 }
3122 /* A struct with no fields, or with only static fields has an
3123 alignment of 1. */
3124 if (number_of_non_static_fields == 0)
3125 align = 1;
3126 }
3127 break;
3128
3129 case TYPE_CODE_SET:
3130 case TYPE_CODE_STRING:
3131 /* Not sure what to do here, and these can't appear in C or C++
3132 anyway. */
3133 break;
3134
3135 case TYPE_CODE_VOID:
3136 align = 1;
3137 break;
3138
3139 case TYPE_CODE_ERROR:
3140 case TYPE_CODE_METHOD:
3141 default:
3142 break;
3143 }
3144
3145 if ((align & (align - 1)) != 0)
3146 {
3147 /* Not a power of 2, so pass. */
3148 align = 0;
3149 }
3150
3151 return align;
3152 }
3153
3154 /* See gdbtypes.h. */
3155
3156 bool
3157 set_type_align (struct type *type, ULONGEST align)
3158 {
3159 /* Must be a power of 2. Zero is ok. */
3160 gdb_assert ((align & (align - 1)) == 0);
3161
3162 unsigned result = 0;
3163 while (align != 0)
3164 {
3165 ++result;
3166 align >>= 1;
3167 }
3168
3169 if (result >= (1 << TYPE_ALIGN_BITS))
3170 return false;
3171
3172 type->align_log2 = result;
3173 return true;
3174 }
3175
3176 \f
3177 /* Queries on types. */
3178
3179 int
3180 can_dereference (struct type *t)
3181 {
3182 /* FIXME: Should we return true for references as well as
3183 pointers? */
3184 t = check_typedef (t);
3185 return
3186 (t != NULL
3187 && TYPE_CODE (t) == TYPE_CODE_PTR
3188 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3189 }
3190
3191 int
3192 is_integral_type (struct type *t)
3193 {
3194 t = check_typedef (t);
3195 return
3196 ((t != NULL)
3197 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3198 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3199 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3200 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3201 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3202 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3203 }
3204
3205 int
3206 is_floating_type (struct type *t)
3207 {
3208 t = check_typedef (t);
3209 return
3210 ((t != NULL)
3211 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3212 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3213 }
3214
3215 /* Return true if TYPE is scalar. */
3216
3217 int
3218 is_scalar_type (struct type *type)
3219 {
3220 type = check_typedef (type);
3221
3222 switch (TYPE_CODE (type))
3223 {
3224 case TYPE_CODE_ARRAY:
3225 case TYPE_CODE_STRUCT:
3226 case TYPE_CODE_UNION:
3227 case TYPE_CODE_SET:
3228 case TYPE_CODE_STRING:
3229 return 0;
3230 default:
3231 return 1;
3232 }
3233 }
3234
3235 /* Return true if T is scalar, or a composite type which in practice has
3236 the memory layout of a scalar type. E.g., an array or struct with only
3237 one scalar element inside it, or a union with only scalar elements. */
3238
3239 int
3240 is_scalar_type_recursive (struct type *t)
3241 {
3242 t = check_typedef (t);
3243
3244 if (is_scalar_type (t))
3245 return 1;
3246 /* Are we dealing with an array or string of known dimensions? */
3247 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3248 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3249 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3250 {
3251 LONGEST low_bound, high_bound;
3252 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3253
3254 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3255
3256 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3257 }
3258 /* Are we dealing with a struct with one element? */
3259 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3260 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3261 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3262 {
3263 int i, n = TYPE_NFIELDS (t);
3264
3265 /* If all elements of the union are scalar, then the union is scalar. */
3266 for (i = 0; i < n; i++)
3267 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3268 return 0;
3269
3270 return 1;
3271 }
3272
3273 return 0;
3274 }
3275
3276 /* Return true is T is a class or a union. False otherwise. */
3277
3278 int
3279 class_or_union_p (const struct type *t)
3280 {
3281 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3282 || TYPE_CODE (t) == TYPE_CODE_UNION);
3283 }
3284
3285 /* A helper function which returns true if types A and B represent the
3286 "same" class type. This is true if the types have the same main
3287 type, or the same name. */
3288
3289 int
3290 class_types_same_p (const struct type *a, const struct type *b)
3291 {
3292 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3293 || (TYPE_NAME (a) && TYPE_NAME (b)
3294 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3295 }
3296
3297 /* If BASE is an ancestor of DCLASS return the distance between them.
3298 otherwise return -1;
3299 eg:
3300
3301 class A {};
3302 class B: public A {};
3303 class C: public B {};
3304 class D: C {};
3305
3306 distance_to_ancestor (A, A, 0) = 0
3307 distance_to_ancestor (A, B, 0) = 1
3308 distance_to_ancestor (A, C, 0) = 2
3309 distance_to_ancestor (A, D, 0) = 3
3310
3311 If PUBLIC is 1 then only public ancestors are considered,
3312 and the function returns the distance only if BASE is a public ancestor
3313 of DCLASS.
3314 Eg:
3315
3316 distance_to_ancestor (A, D, 1) = -1. */
3317
3318 static int
3319 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3320 {
3321 int i;
3322 int d;
3323
3324 base = check_typedef (base);
3325 dclass = check_typedef (dclass);
3326
3327 if (class_types_same_p (base, dclass))
3328 return 0;
3329
3330 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3331 {
3332 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3333 continue;
3334
3335 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3336 if (d >= 0)
3337 return 1 + d;
3338 }
3339
3340 return -1;
3341 }
3342
3343 /* Check whether BASE is an ancestor or base class or DCLASS
3344 Return 1 if so, and 0 if not.
3345 Note: If BASE and DCLASS are of the same type, this function
3346 will return 1. So for some class A, is_ancestor (A, A) will
3347 return 1. */
3348
3349 int
3350 is_ancestor (struct type *base, struct type *dclass)
3351 {
3352 return distance_to_ancestor (base, dclass, 0) >= 0;
3353 }
3354
3355 /* Like is_ancestor, but only returns true when BASE is a public
3356 ancestor of DCLASS. */
3357
3358 int
3359 is_public_ancestor (struct type *base, struct type *dclass)
3360 {
3361 return distance_to_ancestor (base, dclass, 1) >= 0;
3362 }
3363
3364 /* A helper function for is_unique_ancestor. */
3365
3366 static int
3367 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3368 int *offset,
3369 const gdb_byte *valaddr, int embedded_offset,
3370 CORE_ADDR address, struct value *val)
3371 {
3372 int i, count = 0;
3373
3374 base = check_typedef (base);
3375 dclass = check_typedef (dclass);
3376
3377 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3378 {
3379 struct type *iter;
3380 int this_offset;
3381
3382 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3383
3384 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3385 address, val);
3386
3387 if (class_types_same_p (base, iter))
3388 {
3389 /* If this is the first subclass, set *OFFSET and set count
3390 to 1. Otherwise, if this is at the same offset as
3391 previous instances, do nothing. Otherwise, increment
3392 count. */
3393 if (*offset == -1)
3394 {
3395 *offset = this_offset;
3396 count = 1;
3397 }
3398 else if (this_offset == *offset)
3399 {
3400 /* Nothing. */
3401 }
3402 else
3403 ++count;
3404 }
3405 else
3406 count += is_unique_ancestor_worker (base, iter, offset,
3407 valaddr,
3408 embedded_offset + this_offset,
3409 address, val);
3410 }
3411
3412 return count;
3413 }
3414
3415 /* Like is_ancestor, but only returns true if BASE is a unique base
3416 class of the type of VAL. */
3417
3418 int
3419 is_unique_ancestor (struct type *base, struct value *val)
3420 {
3421 int offset = -1;
3422
3423 return is_unique_ancestor_worker (base, value_type (val), &offset,
3424 value_contents_for_printing (val),
3425 value_embedded_offset (val),
3426 value_address (val), val) == 1;
3427 }
3428
3429 /* See gdbtypes.h. */
3430
3431 enum bfd_endian
3432 type_byte_order (const struct type *type)
3433 {
3434 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3435 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3436 {
3437 if (byteorder == BFD_ENDIAN_BIG)
3438 return BFD_ENDIAN_LITTLE;
3439 else
3440 {
3441 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3442 return BFD_ENDIAN_BIG;
3443 }
3444 }
3445
3446 return byteorder;
3447 }
3448
3449 \f
3450 /* Overload resolution. */
3451
3452 /* Return the sum of the rank of A with the rank of B. */
3453
3454 struct rank
3455 sum_ranks (struct rank a, struct rank b)
3456 {
3457 struct rank c;
3458 c.rank = a.rank + b.rank;
3459 c.subrank = a.subrank + b.subrank;
3460 return c;
3461 }
3462
3463 /* Compare rank A and B and return:
3464 0 if a = b
3465 1 if a is better than b
3466 -1 if b is better than a. */
3467
3468 int
3469 compare_ranks (struct rank a, struct rank b)
3470 {
3471 if (a.rank == b.rank)
3472 {
3473 if (a.subrank == b.subrank)
3474 return 0;
3475 if (a.subrank < b.subrank)
3476 return 1;
3477 if (a.subrank > b.subrank)
3478 return -1;
3479 }
3480
3481 if (a.rank < b.rank)
3482 return 1;
3483
3484 /* a.rank > b.rank */
3485 return -1;
3486 }
3487
3488 /* Functions for overload resolution begin here. */
3489
3490 /* Compare two badness vectors A and B and return the result.
3491 0 => A and B are identical
3492 1 => A and B are incomparable
3493 2 => A is better than B
3494 3 => A is worse than B */
3495
3496 int
3497 compare_badness (const badness_vector &a, const badness_vector &b)
3498 {
3499 int i;
3500 int tmp;
3501 short found_pos = 0; /* any positives in c? */
3502 short found_neg = 0; /* any negatives in c? */
3503
3504 /* differing sizes => incomparable */
3505 if (a.size () != b.size ())
3506 return 1;
3507
3508 /* Subtract b from a */
3509 for (i = 0; i < a.size (); i++)
3510 {
3511 tmp = compare_ranks (b[i], a[i]);
3512 if (tmp > 0)
3513 found_pos = 1;
3514 else if (tmp < 0)
3515 found_neg = 1;
3516 }
3517
3518 if (found_pos)
3519 {
3520 if (found_neg)
3521 return 1; /* incomparable */
3522 else
3523 return 3; /* A > B */
3524 }
3525 else
3526 /* no positives */
3527 {
3528 if (found_neg)
3529 return 2; /* A < B */
3530 else
3531 return 0; /* A == B */
3532 }
3533 }
3534
3535 /* Rank a function by comparing its parameter types (PARMS), to the
3536 types of an argument list (ARGS). Return the badness vector. This
3537 has ARGS.size() + 1 entries. */
3538
3539 badness_vector
3540 rank_function (gdb::array_view<type *> parms,
3541 gdb::array_view<value *> args)
3542 {
3543 /* add 1 for the length-match rank. */
3544 badness_vector bv;
3545 bv.reserve (1 + args.size ());
3546
3547 /* First compare the lengths of the supplied lists.
3548 If there is a mismatch, set it to a high value. */
3549
3550 /* pai/1997-06-03 FIXME: when we have debug info about default
3551 arguments and ellipsis parameter lists, we should consider those
3552 and rank the length-match more finely. */
3553
3554 bv.push_back ((args.size () != parms.size ())
3555 ? LENGTH_MISMATCH_BADNESS
3556 : EXACT_MATCH_BADNESS);
3557
3558 /* Now rank all the parameters of the candidate function. */
3559 size_t min_len = std::min (parms.size (), args.size ());
3560
3561 for (size_t i = 0; i < min_len; i++)
3562 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3563 args[i]));
3564
3565 /* If more arguments than parameters, add dummy entries. */
3566 for (size_t i = min_len; i < args.size (); i++)
3567 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3568
3569 return bv;
3570 }
3571
3572 /* Compare the names of two integer types, assuming that any sign
3573 qualifiers have been checked already. We do it this way because
3574 there may be an "int" in the name of one of the types. */
3575
3576 static int
3577 integer_types_same_name_p (const char *first, const char *second)
3578 {
3579 int first_p, second_p;
3580
3581 /* If both are shorts, return 1; if neither is a short, keep
3582 checking. */
3583 first_p = (strstr (first, "short") != NULL);
3584 second_p = (strstr (second, "short") != NULL);
3585 if (first_p && second_p)
3586 return 1;
3587 if (first_p || second_p)
3588 return 0;
3589
3590 /* Likewise for long. */
3591 first_p = (strstr (first, "long") != NULL);
3592 second_p = (strstr (second, "long") != NULL);
3593 if (first_p && second_p)
3594 return 1;
3595 if (first_p || second_p)
3596 return 0;
3597
3598 /* Likewise for char. */
3599 first_p = (strstr (first, "char") != NULL);
3600 second_p = (strstr (second, "char") != NULL);
3601 if (first_p && second_p)
3602 return 1;
3603 if (first_p || second_p)
3604 return 0;
3605
3606 /* They must both be ints. */
3607 return 1;
3608 }
3609
3610 /* Compares type A to type B. Returns true if they represent the same
3611 type, false otherwise. */
3612
3613 bool
3614 types_equal (struct type *a, struct type *b)
3615 {
3616 /* Identical type pointers. */
3617 /* However, this still doesn't catch all cases of same type for b
3618 and a. The reason is that builtin types are different from
3619 the same ones constructed from the object. */
3620 if (a == b)
3621 return true;
3622
3623 /* Resolve typedefs */
3624 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3625 a = check_typedef (a);
3626 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3627 b = check_typedef (b);
3628
3629 /* If after resolving typedefs a and b are not of the same type
3630 code then they are not equal. */
3631 if (TYPE_CODE (a) != TYPE_CODE (b))
3632 return false;
3633
3634 /* If a and b are both pointers types or both reference types then
3635 they are equal of the same type iff the objects they refer to are
3636 of the same type. */
3637 if (TYPE_CODE (a) == TYPE_CODE_PTR
3638 || TYPE_CODE (a) == TYPE_CODE_REF)
3639 return types_equal (TYPE_TARGET_TYPE (a),
3640 TYPE_TARGET_TYPE (b));
3641
3642 /* Well, damnit, if the names are exactly the same, I'll say they
3643 are exactly the same. This happens when we generate method
3644 stubs. The types won't point to the same address, but they
3645 really are the same. */
3646
3647 if (TYPE_NAME (a) && TYPE_NAME (b)
3648 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3649 return true;
3650
3651 /* Check if identical after resolving typedefs. */
3652 if (a == b)
3653 return true;
3654
3655 /* Two function types are equal if their argument and return types
3656 are equal. */
3657 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3658 {
3659 int i;
3660
3661 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3662 return false;
3663
3664 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3665 return false;
3666
3667 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3668 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3669 return false;
3670
3671 return true;
3672 }
3673
3674 return false;
3675 }
3676 \f
3677 /* Deep comparison of types. */
3678
3679 /* An entry in the type-equality bcache. */
3680
3681 struct type_equality_entry
3682 {
3683 type_equality_entry (struct type *t1, struct type *t2)
3684 : type1 (t1),
3685 type2 (t2)
3686 {
3687 }
3688
3689 struct type *type1, *type2;
3690 };
3691
3692 /* A helper function to compare two strings. Returns true if they are
3693 the same, false otherwise. Handles NULLs properly. */
3694
3695 static bool
3696 compare_maybe_null_strings (const char *s, const char *t)
3697 {
3698 if (s == NULL || t == NULL)
3699 return s == t;
3700 return strcmp (s, t) == 0;
3701 }
3702
3703 /* A helper function for check_types_worklist that checks two types for
3704 "deep" equality. Returns true if the types are considered the
3705 same, false otherwise. */
3706
3707 static bool
3708 check_types_equal (struct type *type1, struct type *type2,
3709 std::vector<type_equality_entry> *worklist)
3710 {
3711 type1 = check_typedef (type1);
3712 type2 = check_typedef (type2);
3713
3714 if (type1 == type2)
3715 return true;
3716
3717 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3718 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3719 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3720 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3721 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3722 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3723 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3724 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3725 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3726 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3727 return false;
3728
3729 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3730 return false;
3731 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3732 return false;
3733
3734 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3735 {
3736 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3737 return false;
3738 }
3739 else
3740 {
3741 int i;
3742
3743 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3744 {
3745 const struct field *field1 = &TYPE_FIELD (type1, i);
3746 const struct field *field2 = &TYPE_FIELD (type2, i);
3747
3748 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3749 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3750 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3751 return false;
3752 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3753 FIELD_NAME (*field2)))
3754 return false;
3755 switch (FIELD_LOC_KIND (*field1))
3756 {
3757 case FIELD_LOC_KIND_BITPOS:
3758 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3759 return false;
3760 break;
3761 case FIELD_LOC_KIND_ENUMVAL:
3762 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3763 return false;
3764 break;
3765 case FIELD_LOC_KIND_PHYSADDR:
3766 if (FIELD_STATIC_PHYSADDR (*field1)
3767 != FIELD_STATIC_PHYSADDR (*field2))
3768 return false;
3769 break;
3770 case FIELD_LOC_KIND_PHYSNAME:
3771 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3772 FIELD_STATIC_PHYSNAME (*field2)))
3773 return false;
3774 break;
3775 case FIELD_LOC_KIND_DWARF_BLOCK:
3776 {
3777 struct dwarf2_locexpr_baton *block1, *block2;
3778
3779 block1 = FIELD_DWARF_BLOCK (*field1);
3780 block2 = FIELD_DWARF_BLOCK (*field2);
3781 if (block1->per_cu != block2->per_cu
3782 || block1->size != block2->size
3783 || memcmp (block1->data, block2->data, block1->size) != 0)
3784 return false;
3785 }
3786 break;
3787 default:
3788 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3789 "%d by check_types_equal"),
3790 FIELD_LOC_KIND (*field1));
3791 }
3792
3793 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3794 }
3795 }
3796
3797 if (TYPE_TARGET_TYPE (type1) != NULL)
3798 {
3799 if (TYPE_TARGET_TYPE (type2) == NULL)
3800 return false;
3801
3802 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3803 TYPE_TARGET_TYPE (type2));
3804 }
3805 else if (TYPE_TARGET_TYPE (type2) != NULL)
3806 return false;
3807
3808 return true;
3809 }
3810
3811 /* Check types on a worklist for equality. Returns false if any pair
3812 is not equal, true if they are all considered equal. */
3813
3814 static bool
3815 check_types_worklist (std::vector<type_equality_entry> *worklist,
3816 struct bcache *cache)
3817 {
3818 while (!worklist->empty ())
3819 {
3820 int added;
3821
3822 struct type_equality_entry entry = std::move (worklist->back ());
3823 worklist->pop_back ();
3824
3825 /* If the type pair has already been visited, we know it is
3826 ok. */
3827 cache->insert (&entry, sizeof (entry), &added);
3828 if (!added)
3829 continue;
3830
3831 if (!check_types_equal (entry.type1, entry.type2, worklist))
3832 return false;
3833 }
3834
3835 return true;
3836 }
3837
3838 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3839 "deep comparison". Otherwise return false. */
3840
3841 bool
3842 types_deeply_equal (struct type *type1, struct type *type2)
3843 {
3844 std::vector<type_equality_entry> worklist;
3845
3846 gdb_assert (type1 != NULL && type2 != NULL);
3847
3848 /* Early exit for the simple case. */
3849 if (type1 == type2)
3850 return true;
3851
3852 struct bcache cache (nullptr, nullptr);
3853 worklist.emplace_back (type1, type2);
3854 return check_types_worklist (&worklist, &cache);
3855 }
3856
3857 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3858 Otherwise return one. */
3859
3860 int
3861 type_not_allocated (const struct type *type)
3862 {
3863 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3864
3865 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3866 && !TYPE_DYN_PROP_ADDR (prop));
3867 }
3868
3869 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3870 Otherwise return one. */
3871
3872 int
3873 type_not_associated (const struct type *type)
3874 {
3875 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3876
3877 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3878 && !TYPE_DYN_PROP_ADDR (prop));
3879 }
3880
3881 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3882
3883 static struct rank
3884 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3885 {
3886 struct rank rank = {0,0};
3887
3888 switch (TYPE_CODE (arg))
3889 {
3890 case TYPE_CODE_PTR:
3891
3892 /* Allowed pointer conversions are:
3893 (a) pointer to void-pointer conversion. */
3894 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3895 return VOID_PTR_CONVERSION_BADNESS;
3896
3897 /* (b) pointer to ancestor-pointer conversion. */
3898 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3899 TYPE_TARGET_TYPE (arg),
3900 0);
3901 if (rank.subrank >= 0)
3902 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3903
3904 return INCOMPATIBLE_TYPE_BADNESS;
3905 case TYPE_CODE_ARRAY:
3906 {
3907 struct type *t1 = TYPE_TARGET_TYPE (parm);
3908 struct type *t2 = TYPE_TARGET_TYPE (arg);
3909
3910 if (types_equal (t1, t2))
3911 {
3912 /* Make sure they are CV equal. */
3913 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3914 rank.subrank |= CV_CONVERSION_CONST;
3915 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3916 rank.subrank |= CV_CONVERSION_VOLATILE;
3917 if (rank.subrank != 0)
3918 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3919 return EXACT_MATCH_BADNESS;
3920 }
3921 return INCOMPATIBLE_TYPE_BADNESS;
3922 }
3923 case TYPE_CODE_FUNC:
3924 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3925 case TYPE_CODE_INT:
3926 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3927 {
3928 if (value_as_long (value) == 0)
3929 {
3930 /* Null pointer conversion: allow it to be cast to a pointer.
3931 [4.10.1 of C++ standard draft n3290] */
3932 return NULL_POINTER_CONVERSION_BADNESS;
3933 }
3934 else
3935 {
3936 /* If type checking is disabled, allow the conversion. */
3937 if (!strict_type_checking)
3938 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3939 }
3940 }
3941 /* fall through */
3942 case TYPE_CODE_ENUM:
3943 case TYPE_CODE_FLAGS:
3944 case TYPE_CODE_CHAR:
3945 case TYPE_CODE_RANGE:
3946 case TYPE_CODE_BOOL:
3947 default:
3948 return INCOMPATIBLE_TYPE_BADNESS;
3949 }
3950 }
3951
3952 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3953
3954 static struct rank
3955 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3956 {
3957 switch (TYPE_CODE (arg))
3958 {
3959 case TYPE_CODE_PTR:
3960 case TYPE_CODE_ARRAY:
3961 return rank_one_type (TYPE_TARGET_TYPE (parm),
3962 TYPE_TARGET_TYPE (arg), NULL);
3963 default:
3964 return INCOMPATIBLE_TYPE_BADNESS;
3965 }
3966 }
3967
3968 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3969
3970 static struct rank
3971 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3972 {
3973 switch (TYPE_CODE (arg))
3974 {
3975 case TYPE_CODE_PTR: /* funcptr -> func */
3976 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3977 default:
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 }
3980 }
3981
3982 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3983
3984 static struct rank
3985 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3986 {
3987 switch (TYPE_CODE (arg))
3988 {
3989 case TYPE_CODE_INT:
3990 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3991 {
3992 /* Deal with signed, unsigned, and plain chars and
3993 signed and unsigned ints. */
3994 if (TYPE_NOSIGN (parm))
3995 {
3996 /* This case only for character types. */
3997 if (TYPE_NOSIGN (arg))
3998 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3999 else /* signed/unsigned char -> plain char */
4000 return INTEGER_CONVERSION_BADNESS;
4001 }
4002 else if (TYPE_UNSIGNED (parm))
4003 {
4004 if (TYPE_UNSIGNED (arg))
4005 {
4006 /* unsigned int -> unsigned int, or
4007 unsigned long -> unsigned long */
4008 if (integer_types_same_name_p (TYPE_NAME (parm),
4009 TYPE_NAME (arg)))
4010 return EXACT_MATCH_BADNESS;
4011 else if (integer_types_same_name_p (TYPE_NAME (arg),
4012 "int")
4013 && integer_types_same_name_p (TYPE_NAME (parm),
4014 "long"))
4015 /* unsigned int -> unsigned long */
4016 return INTEGER_PROMOTION_BADNESS;
4017 else
4018 /* unsigned long -> unsigned int */
4019 return INTEGER_CONVERSION_BADNESS;
4020 }
4021 else
4022 {
4023 if (integer_types_same_name_p (TYPE_NAME (arg),
4024 "long")
4025 && integer_types_same_name_p (TYPE_NAME (parm),
4026 "int"))
4027 /* signed long -> unsigned int */
4028 return INTEGER_CONVERSION_BADNESS;
4029 else
4030 /* signed int/long -> unsigned int/long */
4031 return INTEGER_CONVERSION_BADNESS;
4032 }
4033 }
4034 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4035 {
4036 if (integer_types_same_name_p (TYPE_NAME (parm),
4037 TYPE_NAME (arg)))
4038 return EXACT_MATCH_BADNESS;
4039 else if (integer_types_same_name_p (TYPE_NAME (arg),
4040 "int")
4041 && integer_types_same_name_p (TYPE_NAME (parm),
4042 "long"))
4043 return INTEGER_PROMOTION_BADNESS;
4044 else
4045 return INTEGER_CONVERSION_BADNESS;
4046 }
4047 else
4048 return INTEGER_CONVERSION_BADNESS;
4049 }
4050 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4051 return INTEGER_PROMOTION_BADNESS;
4052 else
4053 return INTEGER_CONVERSION_BADNESS;
4054 case TYPE_CODE_ENUM:
4055 case TYPE_CODE_FLAGS:
4056 case TYPE_CODE_CHAR:
4057 case TYPE_CODE_RANGE:
4058 case TYPE_CODE_BOOL:
4059 if (TYPE_DECLARED_CLASS (arg))
4060 return INCOMPATIBLE_TYPE_BADNESS;
4061 return INTEGER_PROMOTION_BADNESS;
4062 case TYPE_CODE_FLT:
4063 return INT_FLOAT_CONVERSION_BADNESS;
4064 case TYPE_CODE_PTR:
4065 return NS_POINTER_CONVERSION_BADNESS;
4066 default:
4067 return INCOMPATIBLE_TYPE_BADNESS;
4068 }
4069 }
4070
4071 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4072
4073 static struct rank
4074 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4075 {
4076 switch (TYPE_CODE (arg))
4077 {
4078 case TYPE_CODE_INT:
4079 case TYPE_CODE_CHAR:
4080 case TYPE_CODE_RANGE:
4081 case TYPE_CODE_BOOL:
4082 case TYPE_CODE_ENUM:
4083 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4084 return INCOMPATIBLE_TYPE_BADNESS;
4085 return INTEGER_CONVERSION_BADNESS;
4086 case TYPE_CODE_FLT:
4087 return INT_FLOAT_CONVERSION_BADNESS;
4088 default:
4089 return INCOMPATIBLE_TYPE_BADNESS;
4090 }
4091 }
4092
4093 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4094
4095 static struct rank
4096 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4097 {
4098 switch (TYPE_CODE (arg))
4099 {
4100 case TYPE_CODE_RANGE:
4101 case TYPE_CODE_BOOL:
4102 case TYPE_CODE_ENUM:
4103 if (TYPE_DECLARED_CLASS (arg))
4104 return INCOMPATIBLE_TYPE_BADNESS;
4105 return INTEGER_CONVERSION_BADNESS;
4106 case TYPE_CODE_FLT:
4107 return INT_FLOAT_CONVERSION_BADNESS;
4108 case TYPE_CODE_INT:
4109 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4110 return INTEGER_CONVERSION_BADNESS;
4111 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4112 return INTEGER_PROMOTION_BADNESS;
4113 /* fall through */
4114 case TYPE_CODE_CHAR:
4115 /* Deal with signed, unsigned, and plain chars for C++ and
4116 with int cases falling through from previous case. */
4117 if (TYPE_NOSIGN (parm))
4118 {
4119 if (TYPE_NOSIGN (arg))
4120 return EXACT_MATCH_BADNESS;
4121 else
4122 return INTEGER_CONVERSION_BADNESS;
4123 }
4124 else if (TYPE_UNSIGNED (parm))
4125 {
4126 if (TYPE_UNSIGNED (arg))
4127 return EXACT_MATCH_BADNESS;
4128 else
4129 return INTEGER_PROMOTION_BADNESS;
4130 }
4131 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4132 return EXACT_MATCH_BADNESS;
4133 else
4134 return INTEGER_CONVERSION_BADNESS;
4135 default:
4136 return INCOMPATIBLE_TYPE_BADNESS;
4137 }
4138 }
4139
4140 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4141
4142 static struct rank
4143 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4144 {
4145 switch (TYPE_CODE (arg))
4146 {
4147 case TYPE_CODE_INT:
4148 case TYPE_CODE_CHAR:
4149 case TYPE_CODE_RANGE:
4150 case TYPE_CODE_BOOL:
4151 case TYPE_CODE_ENUM:
4152 return INTEGER_CONVERSION_BADNESS;
4153 case TYPE_CODE_FLT:
4154 return INT_FLOAT_CONVERSION_BADNESS;
4155 default:
4156 return INCOMPATIBLE_TYPE_BADNESS;
4157 }
4158 }
4159
4160 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4161
4162 static struct rank
4163 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4164 {
4165 switch (TYPE_CODE (arg))
4166 {
4167 /* n3290 draft, section 4.12.1 (conv.bool):
4168
4169 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4170 pointer to member type can be converted to a prvalue of type
4171 bool. A zero value, null pointer value, or null member pointer
4172 value is converted to false; any other value is converted to
4173 true. A prvalue of type std::nullptr_t can be converted to a
4174 prvalue of type bool; the resulting value is false." */
4175 case TYPE_CODE_INT:
4176 case TYPE_CODE_CHAR:
4177 case TYPE_CODE_ENUM:
4178 case TYPE_CODE_FLT:
4179 case TYPE_CODE_MEMBERPTR:
4180 case TYPE_CODE_PTR:
4181 return BOOL_CONVERSION_BADNESS;
4182 case TYPE_CODE_RANGE:
4183 return INCOMPATIBLE_TYPE_BADNESS;
4184 case TYPE_CODE_BOOL:
4185 return EXACT_MATCH_BADNESS;
4186 default:
4187 return INCOMPATIBLE_TYPE_BADNESS;
4188 }
4189 }
4190
4191 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4192
4193 static struct rank
4194 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4195 {
4196 switch (TYPE_CODE (arg))
4197 {
4198 case TYPE_CODE_FLT:
4199 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4200 return FLOAT_PROMOTION_BADNESS;
4201 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4202 return EXACT_MATCH_BADNESS;
4203 else
4204 return FLOAT_CONVERSION_BADNESS;
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_BOOL:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_RANGE:
4209 case TYPE_CODE_CHAR:
4210 return INT_FLOAT_CONVERSION_BADNESS;
4211 default:
4212 return INCOMPATIBLE_TYPE_BADNESS;
4213 }
4214 }
4215
4216 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4217
4218 static struct rank
4219 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4220 {
4221 switch (TYPE_CODE (arg))
4222 { /* Strictly not needed for C++, but... */
4223 case TYPE_CODE_FLT:
4224 return FLOAT_PROMOTION_BADNESS;
4225 case TYPE_CODE_COMPLEX:
4226 return EXACT_MATCH_BADNESS;
4227 default:
4228 return INCOMPATIBLE_TYPE_BADNESS;
4229 }
4230 }
4231
4232 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4233
4234 static struct rank
4235 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4236 {
4237 struct rank rank = {0, 0};
4238
4239 switch (TYPE_CODE (arg))
4240 {
4241 case TYPE_CODE_STRUCT:
4242 /* Check for derivation */
4243 rank.subrank = distance_to_ancestor (parm, arg, 0);
4244 if (rank.subrank >= 0)
4245 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4246 /* fall through */
4247 default:
4248 return INCOMPATIBLE_TYPE_BADNESS;
4249 }
4250 }
4251
4252 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4253
4254 static struct rank
4255 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4256 {
4257 switch (TYPE_CODE (arg))
4258 {
4259 /* Not in C++ */
4260 case TYPE_CODE_SET:
4261 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4262 TYPE_FIELD_TYPE (arg, 0), NULL);
4263 default:
4264 return INCOMPATIBLE_TYPE_BADNESS;
4265 }
4266 }
4267
4268 /* Compare one type (PARM) for compatibility with another (ARG).
4269 * PARM is intended to be the parameter type of a function; and
4270 * ARG is the supplied argument's type. This function tests if
4271 * the latter can be converted to the former.
4272 * VALUE is the argument's value or NULL if none (or called recursively)
4273 *
4274 * Return 0 if they are identical types;
4275 * Otherwise, return an integer which corresponds to how compatible
4276 * PARM is to ARG. The higher the return value, the worse the match.
4277 * Generally the "bad" conversions are all uniformly assigned a 100. */
4278
4279 struct rank
4280 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4281 {
4282 struct rank rank = {0,0};
4283
4284 /* Resolve typedefs */
4285 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4286 parm = check_typedef (parm);
4287 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4288 arg = check_typedef (arg);
4289
4290 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4291 {
4292 if (VALUE_LVAL (value) == not_lval)
4293 {
4294 /* Rvalues should preferably bind to rvalue references or const
4295 lvalue references. */
4296 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4297 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4298 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4299 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4300 else
4301 return INCOMPATIBLE_TYPE_BADNESS;
4302 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4303 }
4304 else
4305 {
4306 /* Lvalues should prefer lvalue overloads. */
4307 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4308 {
4309 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4310 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4311 }
4312 }
4313 }
4314
4315 if (types_equal (parm, arg))
4316 {
4317 struct type *t1 = parm;
4318 struct type *t2 = arg;
4319
4320 /* For pointers and references, compare target type. */
4321 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4322 {
4323 t1 = TYPE_TARGET_TYPE (parm);
4324 t2 = TYPE_TARGET_TYPE (arg);
4325 }
4326
4327 /* Make sure they are CV equal, too. */
4328 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4329 rank.subrank |= CV_CONVERSION_CONST;
4330 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4331 rank.subrank |= CV_CONVERSION_VOLATILE;
4332 if (rank.subrank != 0)
4333 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4334 return EXACT_MATCH_BADNESS;
4335 }
4336
4337 /* See through references, since we can almost make non-references
4338 references. */
4339
4340 if (TYPE_IS_REFERENCE (arg))
4341 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4342 REFERENCE_CONVERSION_BADNESS));
4343 if (TYPE_IS_REFERENCE (parm))
4344 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4345 REFERENCE_CONVERSION_BADNESS));
4346 if (overload_debug)
4347 /* Debugging only. */
4348 fprintf_filtered (gdb_stderr,
4349 "------ Arg is %s [%d], parm is %s [%d]\n",
4350 TYPE_NAME (arg), TYPE_CODE (arg),
4351 TYPE_NAME (parm), TYPE_CODE (parm));
4352
4353 /* x -> y means arg of type x being supplied for parameter of type y. */
4354
4355 switch (TYPE_CODE (parm))
4356 {
4357 case TYPE_CODE_PTR:
4358 return rank_one_type_parm_ptr (parm, arg, value);
4359 case TYPE_CODE_ARRAY:
4360 return rank_one_type_parm_array (parm, arg, value);
4361 case TYPE_CODE_FUNC:
4362 return rank_one_type_parm_func (parm, arg, value);
4363 case TYPE_CODE_INT:
4364 return rank_one_type_parm_int (parm, arg, value);
4365 case TYPE_CODE_ENUM:
4366 return rank_one_type_parm_enum (parm, arg, value);
4367 case TYPE_CODE_CHAR:
4368 return rank_one_type_parm_char (parm, arg, value);
4369 case TYPE_CODE_RANGE:
4370 return rank_one_type_parm_range (parm, arg, value);
4371 case TYPE_CODE_BOOL:
4372 return rank_one_type_parm_bool (parm, arg, value);
4373 case TYPE_CODE_FLT:
4374 return rank_one_type_parm_float (parm, arg, value);
4375 case TYPE_CODE_COMPLEX:
4376 return rank_one_type_parm_complex (parm, arg, value);
4377 case TYPE_CODE_STRUCT:
4378 return rank_one_type_parm_struct (parm, arg, value);
4379 case TYPE_CODE_SET:
4380 return rank_one_type_parm_set (parm, arg, value);
4381 default:
4382 return INCOMPATIBLE_TYPE_BADNESS;
4383 } /* switch (TYPE_CODE (arg)) */
4384 }
4385
4386 /* End of functions for overload resolution. */
4387 \f
4388 /* Routines to pretty-print types. */
4389
4390 static void
4391 print_bit_vector (B_TYPE *bits, int nbits)
4392 {
4393 int bitno;
4394
4395 for (bitno = 0; bitno < nbits; bitno++)
4396 {
4397 if ((bitno % 8) == 0)
4398 {
4399 puts_filtered (" ");
4400 }
4401 if (B_TST (bits, bitno))
4402 printf_filtered (("1"));
4403 else
4404 printf_filtered (("0"));
4405 }
4406 }
4407
4408 /* Note the first arg should be the "this" pointer, we may not want to
4409 include it since we may get into a infinitely recursive
4410 situation. */
4411
4412 static void
4413 print_args (struct field *args, int nargs, int spaces)
4414 {
4415 if (args != NULL)
4416 {
4417 int i;
4418
4419 for (i = 0; i < nargs; i++)
4420 {
4421 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4422 args[i].name != NULL ? args[i].name : "<NULL>");
4423 recursive_dump_type (args[i].type, spaces + 2);
4424 }
4425 }
4426 }
4427
4428 int
4429 field_is_static (struct field *f)
4430 {
4431 /* "static" fields are the fields whose location is not relative
4432 to the address of the enclosing struct. It would be nice to
4433 have a dedicated flag that would be set for static fields when
4434 the type is being created. But in practice, checking the field
4435 loc_kind should give us an accurate answer. */
4436 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4437 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4438 }
4439
4440 static void
4441 dump_fn_fieldlists (struct type *type, int spaces)
4442 {
4443 int method_idx;
4444 int overload_idx;
4445 struct fn_field *f;
4446
4447 printfi_filtered (spaces, "fn_fieldlists ");
4448 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4449 printf_filtered ("\n");
4450 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4451 {
4452 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4453 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4454 method_idx,
4455 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4456 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4457 gdb_stdout);
4458 printf_filtered (_(") length %d\n"),
4459 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4460 for (overload_idx = 0;
4461 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4462 overload_idx++)
4463 {
4464 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4465 overload_idx,
4466 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4467 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4468 gdb_stdout);
4469 printf_filtered (")\n");
4470 printfi_filtered (spaces + 8, "type ");
4471 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4472 gdb_stdout);
4473 printf_filtered ("\n");
4474
4475 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4476 spaces + 8 + 2);
4477
4478 printfi_filtered (spaces + 8, "args ");
4479 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4480 gdb_stdout);
4481 printf_filtered ("\n");
4482 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4483 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4484 spaces + 8 + 2);
4485 printfi_filtered (spaces + 8, "fcontext ");
4486 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4487 gdb_stdout);
4488 printf_filtered ("\n");
4489
4490 printfi_filtered (spaces + 8, "is_const %d\n",
4491 TYPE_FN_FIELD_CONST (f, overload_idx));
4492 printfi_filtered (spaces + 8, "is_volatile %d\n",
4493 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4494 printfi_filtered (spaces + 8, "is_private %d\n",
4495 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4496 printfi_filtered (spaces + 8, "is_protected %d\n",
4497 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4498 printfi_filtered (spaces + 8, "is_stub %d\n",
4499 TYPE_FN_FIELD_STUB (f, overload_idx));
4500 printfi_filtered (spaces + 8, "voffset %u\n",
4501 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4502 }
4503 }
4504 }
4505
4506 static void
4507 print_cplus_stuff (struct type *type, int spaces)
4508 {
4509 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4510 printfi_filtered (spaces, "vptr_basetype ");
4511 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4512 puts_filtered ("\n");
4513 if (TYPE_VPTR_BASETYPE (type) != NULL)
4514 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4515
4516 printfi_filtered (spaces, "n_baseclasses %d\n",
4517 TYPE_N_BASECLASSES (type));
4518 printfi_filtered (spaces, "nfn_fields %d\n",
4519 TYPE_NFN_FIELDS (type));
4520 if (TYPE_N_BASECLASSES (type) > 0)
4521 {
4522 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4523 TYPE_N_BASECLASSES (type));
4524 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4525 gdb_stdout);
4526 printf_filtered (")");
4527
4528 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4529 TYPE_N_BASECLASSES (type));
4530 puts_filtered ("\n");
4531 }
4532 if (TYPE_NFIELDS (type) > 0)
4533 {
4534 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4535 {
4536 printfi_filtered (spaces,
4537 "private_field_bits (%d bits at *",
4538 TYPE_NFIELDS (type));
4539 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4540 gdb_stdout);
4541 printf_filtered (")");
4542 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4543 TYPE_NFIELDS (type));
4544 puts_filtered ("\n");
4545 }
4546 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4547 {
4548 printfi_filtered (spaces,
4549 "protected_field_bits (%d bits at *",
4550 TYPE_NFIELDS (type));
4551 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4552 gdb_stdout);
4553 printf_filtered (")");
4554 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4555 TYPE_NFIELDS (type));
4556 puts_filtered ("\n");
4557 }
4558 }
4559 if (TYPE_NFN_FIELDS (type) > 0)
4560 {
4561 dump_fn_fieldlists (type, spaces);
4562 }
4563 }
4564
4565 /* Print the contents of the TYPE's type_specific union, assuming that
4566 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4567
4568 static void
4569 print_gnat_stuff (struct type *type, int spaces)
4570 {
4571 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4572
4573 if (descriptive_type == NULL)
4574 printfi_filtered (spaces + 2, "no descriptive type\n");
4575 else
4576 {
4577 printfi_filtered (spaces + 2, "descriptive type\n");
4578 recursive_dump_type (descriptive_type, spaces + 4);
4579 }
4580 }
4581
4582 static struct obstack dont_print_type_obstack;
4583
4584 void
4585 recursive_dump_type (struct type *type, int spaces)
4586 {
4587 int idx;
4588
4589 if (spaces == 0)
4590 obstack_begin (&dont_print_type_obstack, 0);
4591
4592 if (TYPE_NFIELDS (type) > 0
4593 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4594 {
4595 struct type **first_dont_print
4596 = (struct type **) obstack_base (&dont_print_type_obstack);
4597
4598 int i = (struct type **)
4599 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4600
4601 while (--i >= 0)
4602 {
4603 if (type == first_dont_print[i])
4604 {
4605 printfi_filtered (spaces, "type node ");
4606 gdb_print_host_address (type, gdb_stdout);
4607 printf_filtered (_(" <same as already seen type>\n"));
4608 return;
4609 }
4610 }
4611
4612 obstack_ptr_grow (&dont_print_type_obstack, type);
4613 }
4614
4615 printfi_filtered (spaces, "type node ");
4616 gdb_print_host_address (type, gdb_stdout);
4617 printf_filtered ("\n");
4618 printfi_filtered (spaces, "name '%s' (",
4619 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4620 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4621 printf_filtered (")\n");
4622 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4623 switch (TYPE_CODE (type))
4624 {
4625 case TYPE_CODE_UNDEF:
4626 printf_filtered ("(TYPE_CODE_UNDEF)");
4627 break;
4628 case TYPE_CODE_PTR:
4629 printf_filtered ("(TYPE_CODE_PTR)");
4630 break;
4631 case TYPE_CODE_ARRAY:
4632 printf_filtered ("(TYPE_CODE_ARRAY)");
4633 break;
4634 case TYPE_CODE_STRUCT:
4635 printf_filtered ("(TYPE_CODE_STRUCT)");
4636 break;
4637 case TYPE_CODE_UNION:
4638 printf_filtered ("(TYPE_CODE_UNION)");
4639 break;
4640 case TYPE_CODE_ENUM:
4641 printf_filtered ("(TYPE_CODE_ENUM)");
4642 break;
4643 case TYPE_CODE_FLAGS:
4644 printf_filtered ("(TYPE_CODE_FLAGS)");
4645 break;
4646 case TYPE_CODE_FUNC:
4647 printf_filtered ("(TYPE_CODE_FUNC)");
4648 break;
4649 case TYPE_CODE_INT:
4650 printf_filtered ("(TYPE_CODE_INT)");
4651 break;
4652 case TYPE_CODE_FLT:
4653 printf_filtered ("(TYPE_CODE_FLT)");
4654 break;
4655 case TYPE_CODE_VOID:
4656 printf_filtered ("(TYPE_CODE_VOID)");
4657 break;
4658 case TYPE_CODE_SET:
4659 printf_filtered ("(TYPE_CODE_SET)");
4660 break;
4661 case TYPE_CODE_RANGE:
4662 printf_filtered ("(TYPE_CODE_RANGE)");
4663 break;
4664 case TYPE_CODE_STRING:
4665 printf_filtered ("(TYPE_CODE_STRING)");
4666 break;
4667 case TYPE_CODE_ERROR:
4668 printf_filtered ("(TYPE_CODE_ERROR)");
4669 break;
4670 case TYPE_CODE_MEMBERPTR:
4671 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4672 break;
4673 case TYPE_CODE_METHODPTR:
4674 printf_filtered ("(TYPE_CODE_METHODPTR)");
4675 break;
4676 case TYPE_CODE_METHOD:
4677 printf_filtered ("(TYPE_CODE_METHOD)");
4678 break;
4679 case TYPE_CODE_REF:
4680 printf_filtered ("(TYPE_CODE_REF)");
4681 break;
4682 case TYPE_CODE_CHAR:
4683 printf_filtered ("(TYPE_CODE_CHAR)");
4684 break;
4685 case TYPE_CODE_BOOL:
4686 printf_filtered ("(TYPE_CODE_BOOL)");
4687 break;
4688 case TYPE_CODE_COMPLEX:
4689 printf_filtered ("(TYPE_CODE_COMPLEX)");
4690 break;
4691 case TYPE_CODE_TYPEDEF:
4692 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4693 break;
4694 case TYPE_CODE_NAMESPACE:
4695 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4696 break;
4697 default:
4698 printf_filtered ("(UNKNOWN TYPE CODE)");
4699 break;
4700 }
4701 puts_filtered ("\n");
4702 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4703 if (TYPE_OBJFILE_OWNED (type))
4704 {
4705 printfi_filtered (spaces, "objfile ");
4706 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4707 }
4708 else
4709 {
4710 printfi_filtered (spaces, "gdbarch ");
4711 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4712 }
4713 printf_filtered ("\n");
4714 printfi_filtered (spaces, "target_type ");
4715 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4716 printf_filtered ("\n");
4717 if (TYPE_TARGET_TYPE (type) != NULL)
4718 {
4719 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4720 }
4721 printfi_filtered (spaces, "pointer_type ");
4722 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4723 printf_filtered ("\n");
4724 printfi_filtered (spaces, "reference_type ");
4725 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4726 printf_filtered ("\n");
4727 printfi_filtered (spaces, "type_chain ");
4728 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4729 printf_filtered ("\n");
4730 printfi_filtered (spaces, "instance_flags 0x%x",
4731 TYPE_INSTANCE_FLAGS (type));
4732 if (TYPE_CONST (type))
4733 {
4734 puts_filtered (" TYPE_CONST");
4735 }
4736 if (TYPE_VOLATILE (type))
4737 {
4738 puts_filtered (" TYPE_VOLATILE");
4739 }
4740 if (TYPE_CODE_SPACE (type))
4741 {
4742 puts_filtered (" TYPE_CODE_SPACE");
4743 }
4744 if (TYPE_DATA_SPACE (type))
4745 {
4746 puts_filtered (" TYPE_DATA_SPACE");
4747 }
4748 if (TYPE_ADDRESS_CLASS_1 (type))
4749 {
4750 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4751 }
4752 if (TYPE_ADDRESS_CLASS_2 (type))
4753 {
4754 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4755 }
4756 if (TYPE_RESTRICT (type))
4757 {
4758 puts_filtered (" TYPE_RESTRICT");
4759 }
4760 if (TYPE_ATOMIC (type))
4761 {
4762 puts_filtered (" TYPE_ATOMIC");
4763 }
4764 puts_filtered ("\n");
4765
4766 printfi_filtered (spaces, "flags");
4767 if (TYPE_UNSIGNED (type))
4768 {
4769 puts_filtered (" TYPE_UNSIGNED");
4770 }
4771 if (TYPE_NOSIGN (type))
4772 {
4773 puts_filtered (" TYPE_NOSIGN");
4774 }
4775 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4776 {
4777 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4778 }
4779 if (TYPE_STUB (type))
4780 {
4781 puts_filtered (" TYPE_STUB");
4782 }
4783 if (TYPE_TARGET_STUB (type))
4784 {
4785 puts_filtered (" TYPE_TARGET_STUB");
4786 }
4787 if (TYPE_PROTOTYPED (type))
4788 {
4789 puts_filtered (" TYPE_PROTOTYPED");
4790 }
4791 if (TYPE_INCOMPLETE (type))
4792 {
4793 puts_filtered (" TYPE_INCOMPLETE");
4794 }
4795 if (TYPE_VARARGS (type))
4796 {
4797 puts_filtered (" TYPE_VARARGS");
4798 }
4799 /* This is used for things like AltiVec registers on ppc. Gcc emits
4800 an attribute for the array type, which tells whether or not we
4801 have a vector, instead of a regular array. */
4802 if (TYPE_VECTOR (type))
4803 {
4804 puts_filtered (" TYPE_VECTOR");
4805 }
4806 if (TYPE_FIXED_INSTANCE (type))
4807 {
4808 puts_filtered (" TYPE_FIXED_INSTANCE");
4809 }
4810 if (TYPE_STUB_SUPPORTED (type))
4811 {
4812 puts_filtered (" TYPE_STUB_SUPPORTED");
4813 }
4814 if (TYPE_NOTTEXT (type))
4815 {
4816 puts_filtered (" TYPE_NOTTEXT");
4817 }
4818 puts_filtered ("\n");
4819 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4820 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4821 puts_filtered ("\n");
4822 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4823 {
4824 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4825 printfi_filtered (spaces + 2,
4826 "[%d] enumval %s type ",
4827 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4828 else
4829 printfi_filtered (spaces + 2,
4830 "[%d] bitpos %s bitsize %d type ",
4831 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4832 TYPE_FIELD_BITSIZE (type, idx));
4833 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4834 printf_filtered (" name '%s' (",
4835 TYPE_FIELD_NAME (type, idx) != NULL
4836 ? TYPE_FIELD_NAME (type, idx)
4837 : "<NULL>");
4838 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4839 printf_filtered (")\n");
4840 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4841 {
4842 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4843 }
4844 }
4845 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4846 {
4847 printfi_filtered (spaces, "low %s%s high %s%s\n",
4848 plongest (TYPE_LOW_BOUND (type)),
4849 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4850 plongest (TYPE_HIGH_BOUND (type)),
4851 TYPE_HIGH_BOUND_UNDEFINED (type)
4852 ? " (undefined)" : "");
4853 }
4854
4855 switch (TYPE_SPECIFIC_FIELD (type))
4856 {
4857 case TYPE_SPECIFIC_CPLUS_STUFF:
4858 printfi_filtered (spaces, "cplus_stuff ");
4859 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4860 gdb_stdout);
4861 puts_filtered ("\n");
4862 print_cplus_stuff (type, spaces);
4863 break;
4864
4865 case TYPE_SPECIFIC_GNAT_STUFF:
4866 printfi_filtered (spaces, "gnat_stuff ");
4867 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4868 puts_filtered ("\n");
4869 print_gnat_stuff (type, spaces);
4870 break;
4871
4872 case TYPE_SPECIFIC_FLOATFORMAT:
4873 printfi_filtered (spaces, "floatformat ");
4874 if (TYPE_FLOATFORMAT (type) == NULL
4875 || TYPE_FLOATFORMAT (type)->name == NULL)
4876 puts_filtered ("(null)");
4877 else
4878 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4879 puts_filtered ("\n");
4880 break;
4881
4882 case TYPE_SPECIFIC_FUNC:
4883 printfi_filtered (spaces, "calling_convention %d\n",
4884 TYPE_CALLING_CONVENTION (type));
4885 /* tail_call_list is not printed. */
4886 break;
4887
4888 case TYPE_SPECIFIC_SELF_TYPE:
4889 printfi_filtered (spaces, "self_type ");
4890 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4891 puts_filtered ("\n");
4892 break;
4893 }
4894
4895 if (spaces == 0)
4896 obstack_free (&dont_print_type_obstack, NULL);
4897 }
4898 \f
4899 /* Trivial helpers for the libiberty hash table, for mapping one
4900 type to another. */
4901
4902 struct type_pair : public allocate_on_obstack
4903 {
4904 type_pair (struct type *old_, struct type *newobj_)
4905 : old (old_), newobj (newobj_)
4906 {}
4907
4908 struct type * const old, * const newobj;
4909 };
4910
4911 static hashval_t
4912 type_pair_hash (const void *item)
4913 {
4914 const struct type_pair *pair = (const struct type_pair *) item;
4915
4916 return htab_hash_pointer (pair->old);
4917 }
4918
4919 static int
4920 type_pair_eq (const void *item_lhs, const void *item_rhs)
4921 {
4922 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4923 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4924
4925 return lhs->old == rhs->old;
4926 }
4927
4928 /* Allocate the hash table used by copy_type_recursive to walk
4929 types without duplicates. We use OBJFILE's obstack, because
4930 OBJFILE is about to be deleted. */
4931
4932 htab_t
4933 create_copied_types_hash (struct objfile *objfile)
4934 {
4935 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4936 NULL, &objfile->objfile_obstack,
4937 hashtab_obstack_allocate,
4938 dummy_obstack_deallocate);
4939 }
4940
4941 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4942
4943 static struct dynamic_prop_list *
4944 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4945 struct dynamic_prop_list *list)
4946 {
4947 struct dynamic_prop_list *copy = list;
4948 struct dynamic_prop_list **node_ptr = &copy;
4949
4950 while (*node_ptr != NULL)
4951 {
4952 struct dynamic_prop_list *node_copy;
4953
4954 node_copy = ((struct dynamic_prop_list *)
4955 obstack_copy (objfile_obstack, *node_ptr,
4956 sizeof (struct dynamic_prop_list)));
4957 node_copy->prop = (*node_ptr)->prop;
4958 *node_ptr = node_copy;
4959
4960 node_ptr = &node_copy->next;
4961 }
4962
4963 return copy;
4964 }
4965
4966 /* Recursively copy (deep copy) TYPE, if it is associated with
4967 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4968 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4969 it is not associated with OBJFILE. */
4970
4971 struct type *
4972 copy_type_recursive (struct objfile *objfile,
4973 struct type *type,
4974 htab_t copied_types)
4975 {
4976 void **slot;
4977 struct type *new_type;
4978
4979 if (! TYPE_OBJFILE_OWNED (type))
4980 return type;
4981
4982 /* This type shouldn't be pointing to any types in other objfiles;
4983 if it did, the type might disappear unexpectedly. */
4984 gdb_assert (TYPE_OBJFILE (type) == objfile);
4985
4986 struct type_pair pair (type, nullptr);
4987
4988 slot = htab_find_slot (copied_types, &pair, INSERT);
4989 if (*slot != NULL)
4990 return ((struct type_pair *) *slot)->newobj;
4991
4992 new_type = alloc_type_arch (get_type_arch (type));
4993
4994 /* We must add the new type to the hash table immediately, in case
4995 we encounter this type again during a recursive call below. */
4996 struct type_pair *stored
4997 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4998
4999 *slot = stored;
5000
5001 /* Copy the common fields of types. For the main type, we simply
5002 copy the entire thing and then update specific fields as needed. */
5003 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5004 TYPE_OBJFILE_OWNED (new_type) = 0;
5005 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5006
5007 if (TYPE_NAME (type))
5008 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5009
5010 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5011 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5012
5013 /* Copy the fields. */
5014 if (TYPE_NFIELDS (type))
5015 {
5016 int i, nfields;
5017
5018 nfields = TYPE_NFIELDS (type);
5019 TYPE_FIELDS (new_type) = (struct field *)
5020 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5021 for (i = 0; i < nfields; i++)
5022 {
5023 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5024 TYPE_FIELD_ARTIFICIAL (type, i);
5025 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5026 if (TYPE_FIELD_TYPE (type, i))
5027 TYPE_FIELD_TYPE (new_type, i)
5028 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5029 copied_types);
5030 if (TYPE_FIELD_NAME (type, i))
5031 TYPE_FIELD_NAME (new_type, i) =
5032 xstrdup (TYPE_FIELD_NAME (type, i));
5033 switch (TYPE_FIELD_LOC_KIND (type, i))
5034 {
5035 case FIELD_LOC_KIND_BITPOS:
5036 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5037 TYPE_FIELD_BITPOS (type, i));
5038 break;
5039 case FIELD_LOC_KIND_ENUMVAL:
5040 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5041 TYPE_FIELD_ENUMVAL (type, i));
5042 break;
5043 case FIELD_LOC_KIND_PHYSADDR:
5044 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5045 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5046 break;
5047 case FIELD_LOC_KIND_PHYSNAME:
5048 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5049 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5050 i)));
5051 break;
5052 default:
5053 internal_error (__FILE__, __LINE__,
5054 _("Unexpected type field location kind: %d"),
5055 TYPE_FIELD_LOC_KIND (type, i));
5056 }
5057 }
5058 }
5059
5060 /* For range types, copy the bounds information. */
5061 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5062 {
5063 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5064 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5065 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5066 }
5067
5068 if (TYPE_DYN_PROP_LIST (type) != NULL)
5069 TYPE_DYN_PROP_LIST (new_type)
5070 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5071 TYPE_DYN_PROP_LIST (type));
5072
5073
5074 /* Copy pointers to other types. */
5075 if (TYPE_TARGET_TYPE (type))
5076 TYPE_TARGET_TYPE (new_type) =
5077 copy_type_recursive (objfile,
5078 TYPE_TARGET_TYPE (type),
5079 copied_types);
5080
5081 /* Maybe copy the type_specific bits.
5082
5083 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5084 base classes and methods. There's no fundamental reason why we
5085 can't, but at the moment it is not needed. */
5086
5087 switch (TYPE_SPECIFIC_FIELD (type))
5088 {
5089 case TYPE_SPECIFIC_NONE:
5090 break;
5091 case TYPE_SPECIFIC_FUNC:
5092 INIT_FUNC_SPECIFIC (new_type);
5093 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5094 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5095 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5096 break;
5097 case TYPE_SPECIFIC_FLOATFORMAT:
5098 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5099 break;
5100 case TYPE_SPECIFIC_CPLUS_STUFF:
5101 INIT_CPLUS_SPECIFIC (new_type);
5102 break;
5103 case TYPE_SPECIFIC_GNAT_STUFF:
5104 INIT_GNAT_SPECIFIC (new_type);
5105 break;
5106 case TYPE_SPECIFIC_SELF_TYPE:
5107 set_type_self_type (new_type,
5108 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5109 copied_types));
5110 break;
5111 default:
5112 gdb_assert_not_reached ("bad type_specific_kind");
5113 }
5114
5115 return new_type;
5116 }
5117
5118 /* Make a copy of the given TYPE, except that the pointer & reference
5119 types are not preserved.
5120
5121 This function assumes that the given type has an associated objfile.
5122 This objfile is used to allocate the new type. */
5123
5124 struct type *
5125 copy_type (const struct type *type)
5126 {
5127 struct type *new_type;
5128
5129 gdb_assert (TYPE_OBJFILE_OWNED (type));
5130
5131 new_type = alloc_type_copy (type);
5132 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5133 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5134 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5135 sizeof (struct main_type));
5136 if (TYPE_DYN_PROP_LIST (type) != NULL)
5137 TYPE_DYN_PROP_LIST (new_type)
5138 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5139 TYPE_DYN_PROP_LIST (type));
5140
5141 return new_type;
5142 }
5143 \f
5144 /* Helper functions to initialize architecture-specific types. */
5145
5146 /* Allocate a type structure associated with GDBARCH and set its
5147 CODE, LENGTH, and NAME fields. */
5148
5149 struct type *
5150 arch_type (struct gdbarch *gdbarch,
5151 enum type_code code, int bit, const char *name)
5152 {
5153 struct type *type;
5154
5155 type = alloc_type_arch (gdbarch);
5156 set_type_code (type, code);
5157 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5158 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5159
5160 if (name)
5161 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5162
5163 return type;
5164 }
5165
5166 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5167 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5168 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5169
5170 struct type *
5171 arch_integer_type (struct gdbarch *gdbarch,
5172 int bit, int unsigned_p, const char *name)
5173 {
5174 struct type *t;
5175
5176 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5177 if (unsigned_p)
5178 TYPE_UNSIGNED (t) = 1;
5179
5180 return t;
5181 }
5182
5183 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5184 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5185 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5186
5187 struct type *
5188 arch_character_type (struct gdbarch *gdbarch,
5189 int bit, int unsigned_p, const char *name)
5190 {
5191 struct type *t;
5192
5193 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5194 if (unsigned_p)
5195 TYPE_UNSIGNED (t) = 1;
5196
5197 return t;
5198 }
5199
5200 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5201 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5202 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5203
5204 struct type *
5205 arch_boolean_type (struct gdbarch *gdbarch,
5206 int bit, int unsigned_p, const char *name)
5207 {
5208 struct type *t;
5209
5210 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5211 if (unsigned_p)
5212 TYPE_UNSIGNED (t) = 1;
5213
5214 return t;
5215 }
5216
5217 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5218 BIT is the type size in bits; if BIT equals -1, the size is
5219 determined by the floatformat. NAME is the type name. Set the
5220 TYPE_FLOATFORMAT from FLOATFORMATS. */
5221
5222 struct type *
5223 arch_float_type (struct gdbarch *gdbarch,
5224 int bit, const char *name,
5225 const struct floatformat **floatformats)
5226 {
5227 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5228 struct type *t;
5229
5230 bit = verify_floatformat (bit, fmt);
5231 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5232 TYPE_FLOATFORMAT (t) = fmt;
5233
5234 return t;
5235 }
5236
5237 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5238 BIT is the type size in bits. NAME is the type name. */
5239
5240 struct type *
5241 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5242 {
5243 struct type *t;
5244
5245 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5246 return t;
5247 }
5248
5249 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5250 NAME is the type name. TARGET_TYPE is the component float type. */
5251
5252 struct type *
5253 arch_complex_type (struct gdbarch *gdbarch,
5254 const char *name, struct type *target_type)
5255 {
5256 struct type *t;
5257
5258 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5259 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5260 TYPE_TARGET_TYPE (t) = target_type;
5261 return t;
5262 }
5263
5264 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5265 BIT is the pointer type size in bits. NAME is the type name.
5266 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5267 TYPE_UNSIGNED flag. */
5268
5269 struct type *
5270 arch_pointer_type (struct gdbarch *gdbarch,
5271 int bit, const char *name, struct type *target_type)
5272 {
5273 struct type *t;
5274
5275 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5276 TYPE_TARGET_TYPE (t) = target_type;
5277 TYPE_UNSIGNED (t) = 1;
5278 return t;
5279 }
5280
5281 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5282 NAME is the type name. BIT is the size of the flag word in bits. */
5283
5284 struct type *
5285 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5286 {
5287 struct type *type;
5288
5289 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5290 TYPE_UNSIGNED (type) = 1;
5291 TYPE_NFIELDS (type) = 0;
5292 /* Pre-allocate enough space assuming every field is one bit. */
5293 TYPE_FIELDS (type)
5294 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5295
5296 return type;
5297 }
5298
5299 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5300 position BITPOS is called NAME. Pass NAME as "" for fields that
5301 should not be printed. */
5302
5303 void
5304 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5305 struct type *field_type, const char *name)
5306 {
5307 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5308 int field_nr = TYPE_NFIELDS (type);
5309
5310 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5311 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5312 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5313 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5314 gdb_assert (name != NULL);
5315
5316 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5317 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5318 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5319 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5320 ++TYPE_NFIELDS (type);
5321 }
5322
5323 /* Special version of append_flags_type_field to add a flag field.
5324 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5325 position BITPOS is called NAME. */
5326
5327 void
5328 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5329 {
5330 struct gdbarch *gdbarch = get_type_arch (type);
5331
5332 append_flags_type_field (type, bitpos, 1,
5333 builtin_type (gdbarch)->builtin_bool,
5334 name);
5335 }
5336
5337 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5338 specified by CODE) associated with GDBARCH. NAME is the type name. */
5339
5340 struct type *
5341 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5342 enum type_code code)
5343 {
5344 struct type *t;
5345
5346 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5347 t = arch_type (gdbarch, code, 0, NULL);
5348 TYPE_NAME (t) = name;
5349 INIT_CPLUS_SPECIFIC (t);
5350 return t;
5351 }
5352
5353 /* Add new field with name NAME and type FIELD to composite type T.
5354 Do not set the field's position or adjust the type's length;
5355 the caller should do so. Return the new field. */
5356
5357 struct field *
5358 append_composite_type_field_raw (struct type *t, const char *name,
5359 struct type *field)
5360 {
5361 struct field *f;
5362
5363 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5364 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5365 TYPE_NFIELDS (t));
5366 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5367 memset (f, 0, sizeof f[0]);
5368 FIELD_TYPE (f[0]) = field;
5369 FIELD_NAME (f[0]) = name;
5370 return f;
5371 }
5372
5373 /* Add new field with name NAME and type FIELD to composite type T.
5374 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5375
5376 void
5377 append_composite_type_field_aligned (struct type *t, const char *name,
5378 struct type *field, int alignment)
5379 {
5380 struct field *f = append_composite_type_field_raw (t, name, field);
5381
5382 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5383 {
5384 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5385 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5386 }
5387 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5388 {
5389 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5390 if (TYPE_NFIELDS (t) > 1)
5391 {
5392 SET_FIELD_BITPOS (f[0],
5393 (FIELD_BITPOS (f[-1])
5394 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5395 * TARGET_CHAR_BIT)));
5396
5397 if (alignment)
5398 {
5399 int left;
5400
5401 alignment *= TARGET_CHAR_BIT;
5402 left = FIELD_BITPOS (f[0]) % alignment;
5403
5404 if (left)
5405 {
5406 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5407 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5408 }
5409 }
5410 }
5411 }
5412 }
5413
5414 /* Add new field with name NAME and type FIELD to composite type T. */
5415
5416 void
5417 append_composite_type_field (struct type *t, const char *name,
5418 struct type *field)
5419 {
5420 append_composite_type_field_aligned (t, name, field, 0);
5421 }
5422
5423 static struct gdbarch_data *gdbtypes_data;
5424
5425 const struct builtin_type *
5426 builtin_type (struct gdbarch *gdbarch)
5427 {
5428 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5429 }
5430
5431 static void *
5432 gdbtypes_post_init (struct gdbarch *gdbarch)
5433 {
5434 struct builtin_type *builtin_type
5435 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5436
5437 /* Basic types. */
5438 builtin_type->builtin_void
5439 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5440 builtin_type->builtin_char
5441 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5442 !gdbarch_char_signed (gdbarch), "char");
5443 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5444 builtin_type->builtin_signed_char
5445 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5446 0, "signed char");
5447 builtin_type->builtin_unsigned_char
5448 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5449 1, "unsigned char");
5450 builtin_type->builtin_short
5451 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5452 0, "short");
5453 builtin_type->builtin_unsigned_short
5454 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5455 1, "unsigned short");
5456 builtin_type->builtin_int
5457 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5458 0, "int");
5459 builtin_type->builtin_unsigned_int
5460 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5461 1, "unsigned int");
5462 builtin_type->builtin_long
5463 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5464 0, "long");
5465 builtin_type->builtin_unsigned_long
5466 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5467 1, "unsigned long");
5468 builtin_type->builtin_long_long
5469 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5470 0, "long long");
5471 builtin_type->builtin_unsigned_long_long
5472 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5473 1, "unsigned long long");
5474 builtin_type->builtin_half
5475 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5476 "half", gdbarch_half_format (gdbarch));
5477 builtin_type->builtin_float
5478 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5479 "float", gdbarch_float_format (gdbarch));
5480 builtin_type->builtin_double
5481 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5482 "double", gdbarch_double_format (gdbarch));
5483 builtin_type->builtin_long_double
5484 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5485 "long double", gdbarch_long_double_format (gdbarch));
5486 builtin_type->builtin_complex
5487 = arch_complex_type (gdbarch, "complex",
5488 builtin_type->builtin_float);
5489 builtin_type->builtin_double_complex
5490 = arch_complex_type (gdbarch, "double complex",
5491 builtin_type->builtin_double);
5492 builtin_type->builtin_string
5493 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5494 builtin_type->builtin_bool
5495 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5496
5497 /* The following three are about decimal floating point types, which
5498 are 32-bits, 64-bits and 128-bits respectively. */
5499 builtin_type->builtin_decfloat
5500 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5501 builtin_type->builtin_decdouble
5502 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5503 builtin_type->builtin_declong
5504 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5505
5506 /* "True" character types. */
5507 builtin_type->builtin_true_char
5508 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5509 builtin_type->builtin_true_unsigned_char
5510 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5511
5512 /* Fixed-size integer types. */
5513 builtin_type->builtin_int0
5514 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5515 builtin_type->builtin_int8
5516 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5517 builtin_type->builtin_uint8
5518 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5519 builtin_type->builtin_int16
5520 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5521 builtin_type->builtin_uint16
5522 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5523 builtin_type->builtin_int24
5524 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5525 builtin_type->builtin_uint24
5526 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5527 builtin_type->builtin_int32
5528 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5529 builtin_type->builtin_uint32
5530 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5531 builtin_type->builtin_int64
5532 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5533 builtin_type->builtin_uint64
5534 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5535 builtin_type->builtin_int128
5536 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5537 builtin_type->builtin_uint128
5538 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5539 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5540 TYPE_INSTANCE_FLAG_NOTTEXT;
5541 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5542 TYPE_INSTANCE_FLAG_NOTTEXT;
5543
5544 /* Wide character types. */
5545 builtin_type->builtin_char16
5546 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5547 builtin_type->builtin_char32
5548 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5549 builtin_type->builtin_wchar
5550 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5551 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5552
5553 /* Default data/code pointer types. */
5554 builtin_type->builtin_data_ptr
5555 = lookup_pointer_type (builtin_type->builtin_void);
5556 builtin_type->builtin_func_ptr
5557 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5558 builtin_type->builtin_func_func
5559 = lookup_function_type (builtin_type->builtin_func_ptr);
5560
5561 /* This type represents a GDB internal function. */
5562 builtin_type->internal_fn
5563 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5564 "<internal function>");
5565
5566 /* This type represents an xmethod. */
5567 builtin_type->xmethod
5568 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5569
5570 return builtin_type;
5571 }
5572
5573 /* This set of objfile-based types is intended to be used by symbol
5574 readers as basic types. */
5575
5576 static const struct objfile_key<struct objfile_type,
5577 gdb::noop_deleter<struct objfile_type>>
5578 objfile_type_data;
5579
5580 const struct objfile_type *
5581 objfile_type (struct objfile *objfile)
5582 {
5583 struct gdbarch *gdbarch;
5584 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5585
5586 if (objfile_type)
5587 return objfile_type;
5588
5589 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5590 1, struct objfile_type);
5591
5592 /* Use the objfile architecture to determine basic type properties. */
5593 gdbarch = get_objfile_arch (objfile);
5594
5595 /* Basic types. */
5596 objfile_type->builtin_void
5597 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5598 objfile_type->builtin_char
5599 = init_integer_type (objfile, TARGET_CHAR_BIT,
5600 !gdbarch_char_signed (gdbarch), "char");
5601 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5602 objfile_type->builtin_signed_char
5603 = init_integer_type (objfile, TARGET_CHAR_BIT,
5604 0, "signed char");
5605 objfile_type->builtin_unsigned_char
5606 = init_integer_type (objfile, TARGET_CHAR_BIT,
5607 1, "unsigned char");
5608 objfile_type->builtin_short
5609 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5610 0, "short");
5611 objfile_type->builtin_unsigned_short
5612 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5613 1, "unsigned short");
5614 objfile_type->builtin_int
5615 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5616 0, "int");
5617 objfile_type->builtin_unsigned_int
5618 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5619 1, "unsigned int");
5620 objfile_type->builtin_long
5621 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5622 0, "long");
5623 objfile_type->builtin_unsigned_long
5624 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5625 1, "unsigned long");
5626 objfile_type->builtin_long_long
5627 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5628 0, "long long");
5629 objfile_type->builtin_unsigned_long_long
5630 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5631 1, "unsigned long long");
5632 objfile_type->builtin_float
5633 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5634 "float", gdbarch_float_format (gdbarch));
5635 objfile_type->builtin_double
5636 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5637 "double", gdbarch_double_format (gdbarch));
5638 objfile_type->builtin_long_double
5639 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5640 "long double", gdbarch_long_double_format (gdbarch));
5641
5642 /* This type represents a type that was unrecognized in symbol read-in. */
5643 objfile_type->builtin_error
5644 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5645
5646 /* The following set of types is used for symbols with no
5647 debug information. */
5648 objfile_type->nodebug_text_symbol
5649 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5650 "<text variable, no debug info>");
5651 objfile_type->nodebug_text_gnu_ifunc_symbol
5652 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5653 "<text gnu-indirect-function variable, no debug info>");
5654 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5655 objfile_type->nodebug_got_plt_symbol
5656 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5657 "<text from jump slot in .got.plt, no debug info>",
5658 objfile_type->nodebug_text_symbol);
5659 objfile_type->nodebug_data_symbol
5660 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5661 objfile_type->nodebug_unknown_symbol
5662 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5663 objfile_type->nodebug_tls_symbol
5664 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5665
5666 /* NOTE: on some targets, addresses and pointers are not necessarily
5667 the same.
5668
5669 The upshot is:
5670 - gdb's `struct type' always describes the target's
5671 representation.
5672 - gdb's `struct value' objects should always hold values in
5673 target form.
5674 - gdb's CORE_ADDR values are addresses in the unified virtual
5675 address space that the assembler and linker work with. Thus,
5676 since target_read_memory takes a CORE_ADDR as an argument, it
5677 can access any memory on the target, even if the processor has
5678 separate code and data address spaces.
5679
5680 In this context, objfile_type->builtin_core_addr is a bit odd:
5681 it's a target type for a value the target will never see. It's
5682 only used to hold the values of (typeless) linker symbols, which
5683 are indeed in the unified virtual address space. */
5684
5685 objfile_type->builtin_core_addr
5686 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5687 "__CORE_ADDR");
5688
5689 objfile_type_data.set (objfile, objfile_type);
5690 return objfile_type;
5691 }
5692
5693 void
5694 _initialize_gdbtypes (void)
5695 {
5696 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5697
5698 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5699 _("Set debugging of C++ overloading."),
5700 _("Show debugging of C++ overloading."),
5701 _("When enabled, ranking of the "
5702 "functions is displayed."),
5703 NULL,
5704 show_overload_debug,
5705 &setdebuglist, &showdebuglist);
5706
5707 /* Add user knob for controlling resolution of opaque types. */
5708 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5709 &opaque_type_resolution,
5710 _("Set resolution of opaque struct/class/union"
5711 " types (if set before loading symbols)."),
5712 _("Show resolution of opaque struct/class/union"
5713 " types (if set before loading symbols)."),
5714 NULL, NULL,
5715 show_opaque_type_resolution,
5716 &setlist, &showlist);
5717
5718 /* Add an option to permit non-strict type checking. */
5719 add_setshow_boolean_cmd ("type", class_support,
5720 &strict_type_checking,
5721 _("Set strict type checking."),
5722 _("Show strict type checking."),
5723 NULL, NULL,
5724 show_strict_type_checking,
5725 &setchecklist, &showchecklist);
5726 }
This page took 0.147616 seconds and 4 git commands to generate.