b1e03d1643c512c2d65404286cf4b1534259d498
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static bool opaque_type_resolution = true;
120
121 /* See gdbtypes.h. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static bool strict_type_checking = true;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 struct gdbarch *arch;
236
237 if (TYPE_OBJFILE_OWNED (type))
238 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
239 else
240 arch = TYPE_OWNER (type).gdbarch;
241
242 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
243 a gdbarch, however, this is very rare, and even then, in most cases
244 that get_type_arch is called, we assume that a non-NULL value is
245 returned. */
246 gdb_assert (arch != NULL);
247 return arch;
248 }
249
250 /* See gdbtypes.h. */
251
252 struct type *
253 get_target_type (struct type *type)
254 {
255 if (type != NULL)
256 {
257 type = TYPE_TARGET_TYPE (type);
258 if (type != NULL)
259 type = check_typedef (type);
260 }
261
262 return type;
263 }
264
265 /* See gdbtypes.h. */
266
267 unsigned int
268 type_length_units (struct type *type)
269 {
270 struct gdbarch *arch = get_type_arch (type);
271 int unit_size = gdbarch_addressable_memory_unit_size (arch);
272
273 return TYPE_LENGTH (type) / unit_size;
274 }
275
276 /* Alloc a new type instance structure, fill it with some defaults,
277 and point it at OLDTYPE. Allocate the new type instance from the
278 same place as OLDTYPE. */
279
280 static struct type *
281 alloc_type_instance (struct type *oldtype)
282 {
283 struct type *type;
284
285 /* Allocate the structure. */
286
287 if (! TYPE_OBJFILE_OWNED (oldtype))
288 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
289 else
290 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
291 struct type);
292
293 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
294
295 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
296
297 return type;
298 }
299
300 /* Clear all remnants of the previous type at TYPE, in preparation for
301 replacing it with something else. Preserve owner information. */
302
303 static void
304 smash_type (struct type *type)
305 {
306 int objfile_owned = TYPE_OBJFILE_OWNED (type);
307 union type_owner owner = TYPE_OWNER (type);
308
309 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
310
311 /* Restore owner information. */
312 TYPE_OBJFILE_OWNED (type) = objfile_owned;
313 TYPE_OWNER (type) = owner;
314
315 /* For now, delete the rings. */
316 TYPE_CHAIN (type) = type;
317
318 /* For now, leave the pointer/reference types alone. */
319 }
320
321 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
322 to a pointer to memory where the pointer type should be stored.
323 If *TYPEPTR is zero, update it to point to the pointer type we return.
324 We allocate new memory if needed. */
325
326 struct type *
327 make_pointer_type (struct type *type, struct type **typeptr)
328 {
329 struct type *ntype; /* New type */
330 struct type *chain;
331
332 ntype = TYPE_POINTER_TYPE (type);
333
334 if (ntype)
335 {
336 if (typeptr == 0)
337 return ntype; /* Don't care about alloc,
338 and have new type. */
339 else if (*typeptr == 0)
340 {
341 *typeptr = ntype; /* Tracking alloc, and have new type. */
342 return ntype;
343 }
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
348 ntype = alloc_type_copy (type);
349 if (typeptr)
350 *typeptr = ntype;
351 }
352 else /* We have storage, but need to reset it. */
353 {
354 ntype = *typeptr;
355 chain = TYPE_CHAIN (ntype);
356 smash_type (ntype);
357 TYPE_CHAIN (ntype) = chain;
358 }
359
360 TYPE_TARGET_TYPE (ntype) = type;
361 TYPE_POINTER_TYPE (type) = ntype;
362
363 /* FIXME! Assumes the machine has only one representation for pointers! */
364
365 TYPE_LENGTH (ntype)
366 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
367 TYPE_CODE (ntype) = TYPE_CODE_PTR;
368
369 /* Mark pointers as unsigned. The target converts between pointers
370 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
371 gdbarch_address_to_pointer. */
372 TYPE_UNSIGNED (ntype) = 1;
373
374 /* Update the length of all the other variants of this type. */
375 chain = TYPE_CHAIN (ntype);
376 while (chain != ntype)
377 {
378 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
379 chain = TYPE_CHAIN (chain);
380 }
381
382 return ntype;
383 }
384
385 /* Given a type TYPE, return a type of pointers to that type.
386 May need to construct such a type if this is the first use. */
387
388 struct type *
389 lookup_pointer_type (struct type *type)
390 {
391 return make_pointer_type (type, (struct type **) 0);
392 }
393
394 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
395 points to a pointer to memory where the reference type should be
396 stored. If *TYPEPTR is zero, update it to point to the reference
397 type we return. We allocate new memory if needed. REFCODE denotes
398 the kind of reference type to lookup (lvalue or rvalue reference). */
399
400 struct type *
401 make_reference_type (struct type *type, struct type **typeptr,
402 enum type_code refcode)
403 {
404 struct type *ntype; /* New type */
405 struct type **reftype;
406 struct type *chain;
407
408 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
409
410 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
411 : TYPE_RVALUE_REFERENCE_TYPE (type));
412
413 if (ntype)
414 {
415 if (typeptr == 0)
416 return ntype; /* Don't care about alloc,
417 and have new type. */
418 else if (*typeptr == 0)
419 {
420 *typeptr = ntype; /* Tracking alloc, and have new type. */
421 return ntype;
422 }
423 }
424
425 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
426 {
427 ntype = alloc_type_copy (type);
428 if (typeptr)
429 *typeptr = ntype;
430 }
431 else /* We have storage, but need to reset it. */
432 {
433 ntype = *typeptr;
434 chain = TYPE_CHAIN (ntype);
435 smash_type (ntype);
436 TYPE_CHAIN (ntype) = chain;
437 }
438
439 TYPE_TARGET_TYPE (ntype) = type;
440 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
441 : &TYPE_RVALUE_REFERENCE_TYPE (type));
442
443 *reftype = ntype;
444
445 /* FIXME! Assume the machine has only one representation for
446 references, and that it matches the (only) representation for
447 pointers! */
448
449 TYPE_LENGTH (ntype) =
450 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
451 TYPE_CODE (ntype) = refcode;
452
453 *reftype = ntype;
454
455 /* Update the length of all the other variants of this type. */
456 chain = TYPE_CHAIN (ntype);
457 while (chain != ntype)
458 {
459 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
460 chain = TYPE_CHAIN (chain);
461 }
462
463 return ntype;
464 }
465
466 /* Same as above, but caller doesn't care about memory allocation
467 details. */
468
469 struct type *
470 lookup_reference_type (struct type *type, enum type_code refcode)
471 {
472 return make_reference_type (type, (struct type **) 0, refcode);
473 }
474
475 /* Lookup the lvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_lvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_REF);
481 }
482
483 /* Lookup the rvalue reference type for the type TYPE. */
484
485 struct type *
486 lookup_rvalue_reference_type (struct type *type)
487 {
488 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
489 }
490
491 /* Lookup a function type that returns type TYPE. TYPEPTR, if
492 nonzero, points to a pointer to memory where the function type
493 should be stored. If *TYPEPTR is zero, update it to point to the
494 function type we return. We allocate new memory if needed. */
495
496 struct type *
497 make_function_type (struct type *type, struct type **typeptr)
498 {
499 struct type *ntype; /* New type */
500
501 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
502 {
503 ntype = alloc_type_copy (type);
504 if (typeptr)
505 *typeptr = ntype;
506 }
507 else /* We have storage, but need to reset it. */
508 {
509 ntype = *typeptr;
510 smash_type (ntype);
511 }
512
513 TYPE_TARGET_TYPE (ntype) = type;
514
515 TYPE_LENGTH (ntype) = 1;
516 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
517
518 INIT_FUNC_SPECIFIC (ntype);
519
520 return ntype;
521 }
522
523 /* Given a type TYPE, return a type of functions that return that type.
524 May need to construct such a type if this is the first use. */
525
526 struct type *
527 lookup_function_type (struct type *type)
528 {
529 return make_function_type (type, (struct type **) 0);
530 }
531
532 /* Given a type TYPE and argument types, return the appropriate
533 function type. If the final type in PARAM_TYPES is NULL, make a
534 varargs function. */
535
536 struct type *
537 lookup_function_type_with_arguments (struct type *type,
538 int nparams,
539 struct type **param_types)
540 {
541 struct type *fn = make_function_type (type, (struct type **) 0);
542 int i;
543
544 if (nparams > 0)
545 {
546 if (param_types[nparams - 1] == NULL)
547 {
548 --nparams;
549 TYPE_VARARGS (fn) = 1;
550 }
551 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
552 == TYPE_CODE_VOID)
553 {
554 --nparams;
555 /* Caller should have ensured this. */
556 gdb_assert (nparams == 0);
557 TYPE_PROTOTYPED (fn) = 1;
558 }
559 else
560 TYPE_PROTOTYPED (fn) = 1;
561 }
562
563 TYPE_NFIELDS (fn) = nparams;
564 TYPE_FIELDS (fn)
565 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
566 for (i = 0; i < nparams; ++i)
567 TYPE_FIELD_TYPE (fn, i) = param_types[i];
568
569 return fn;
570 }
571
572 /* Identify address space identifier by name --
573 return the integer flag defined in gdbtypes.h. */
574
575 int
576 address_space_name_to_int (struct gdbarch *gdbarch,
577 const char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated)
904 && FIELD_EQ (bias));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound,
916 LONGEST bias)
917 {
918 /* The INDEX_TYPE should be a type capable of holding the upper and lower
919 bounds, as such a zero sized, or void type makes no sense. */
920 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
921 gdb_assert (TYPE_LENGTH (index_type) > 0);
922
923 if (result_type == NULL)
924 result_type = alloc_type_copy (index_type);
925 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
926 TYPE_TARGET_TYPE (result_type) = index_type;
927 if (TYPE_STUB (index_type))
928 TYPE_TARGET_STUB (result_type) = 1;
929 else
930 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
931
932 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
933 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
934 TYPE_RANGE_DATA (result_type)->low = *low_bound;
935 TYPE_RANGE_DATA (result_type)->high = *high_bound;
936 TYPE_RANGE_DATA (result_type)->bias = bias;
937
938 /* Initialize the stride to be a constant, the value will already be zero
939 thanks to the use of TYPE_ZALLOC above. */
940 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
941
942 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
943 TYPE_UNSIGNED (result_type) = 1;
944
945 /* Ada allows the declaration of range types whose upper bound is
946 less than the lower bound, so checking the lower bound is not
947 enough. Make sure we do not mark a range type whose upper bound
948 is negative as unsigned. */
949 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
950 TYPE_UNSIGNED (result_type) = 0;
951
952 return result_type;
953 }
954
955 /* See gdbtypes.h. */
956
957 struct type *
958 create_range_type_with_stride (struct type *result_type,
959 struct type *index_type,
960 const struct dynamic_prop *low_bound,
961 const struct dynamic_prop *high_bound,
962 LONGEST bias,
963 const struct dynamic_prop *stride,
964 bool byte_stride_p)
965 {
966 result_type = create_range_type (result_type, index_type, low_bound,
967 high_bound, bias);
968
969 gdb_assert (stride != nullptr);
970 TYPE_RANGE_DATA (result_type)->stride = *stride;
971 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
972
973 return result_type;
974 }
975
976
977
978 /* Create a range type using either a blank type supplied in
979 RESULT_TYPE, or creating a new type, inheriting the objfile from
980 INDEX_TYPE.
981
982 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
983 to HIGH_BOUND, inclusive.
984
985 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
986 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
987
988 struct type *
989 create_static_range_type (struct type *result_type, struct type *index_type,
990 LONGEST low_bound, LONGEST high_bound)
991 {
992 struct dynamic_prop low, high;
993
994 low.kind = PROP_CONST;
995 low.data.const_val = low_bound;
996
997 high.kind = PROP_CONST;
998 high.data.const_val = high_bound;
999
1000 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1001
1002 return result_type;
1003 }
1004
1005 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1006 are static, otherwise returns 0. */
1007
1008 static bool
1009 has_static_range (const struct range_bounds *bounds)
1010 {
1011 /* If the range doesn't have a defined stride then its stride field will
1012 be initialized to the constant 0. */
1013 return (bounds->low.kind == PROP_CONST
1014 && bounds->high.kind == PROP_CONST
1015 && bounds->stride.kind == PROP_CONST);
1016 }
1017
1018
1019 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1020 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1021 bounds will fit in LONGEST), or -1 otherwise. */
1022
1023 int
1024 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1025 {
1026 type = check_typedef (type);
1027 switch (TYPE_CODE (type))
1028 {
1029 case TYPE_CODE_RANGE:
1030 *lowp = TYPE_LOW_BOUND (type);
1031 *highp = TYPE_HIGH_BOUND (type);
1032 return 1;
1033 case TYPE_CODE_ENUM:
1034 if (TYPE_NFIELDS (type) > 0)
1035 {
1036 /* The enums may not be sorted by value, so search all
1037 entries. */
1038 int i;
1039
1040 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1041 for (i = 0; i < TYPE_NFIELDS (type); i++)
1042 {
1043 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1044 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1045 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1046 *highp = TYPE_FIELD_ENUMVAL (type, i);
1047 }
1048
1049 /* Set unsigned indicator if warranted. */
1050 if (*lowp >= 0)
1051 {
1052 TYPE_UNSIGNED (type) = 1;
1053 }
1054 }
1055 else
1056 {
1057 *lowp = 0;
1058 *highp = -1;
1059 }
1060 return 0;
1061 case TYPE_CODE_BOOL:
1062 *lowp = 0;
1063 *highp = 1;
1064 return 0;
1065 case TYPE_CODE_INT:
1066 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1067 return -1;
1068 if (!TYPE_UNSIGNED (type))
1069 {
1070 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1071 *highp = -*lowp - 1;
1072 return 0;
1073 }
1074 /* fall through */
1075 case TYPE_CODE_CHAR:
1076 *lowp = 0;
1077 /* This round-about calculation is to avoid shifting by
1078 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1079 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1080 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1081 *highp = (*highp - 1) | *highp;
1082 return 0;
1083 default:
1084 return -1;
1085 }
1086 }
1087
1088 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1089 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1090 Save the high bound into HIGH_BOUND if not NULL.
1091
1092 Return 1 if the operation was successful. Return zero otherwise,
1093 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1094
1095 We now simply use get_discrete_bounds call to get the values
1096 of the low and high bounds.
1097 get_discrete_bounds can return three values:
1098 1, meaning that index is a range,
1099 0, meaning that index is a discrete type,
1100 or -1 for failure. */
1101
1102 int
1103 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1104 {
1105 struct type *index = TYPE_INDEX_TYPE (type);
1106 LONGEST low = 0;
1107 LONGEST high = 0;
1108 int res;
1109
1110 if (index == NULL)
1111 return 0;
1112
1113 res = get_discrete_bounds (index, &low, &high);
1114 if (res == -1)
1115 return 0;
1116
1117 /* Check if the array bounds are undefined. */
1118 if (res == 1
1119 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1120 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1121 return 0;
1122
1123 if (low_bound)
1124 *low_bound = low;
1125
1126 if (high_bound)
1127 *high_bound = high;
1128
1129 return 1;
1130 }
1131
1132 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1133 representation of a value of this type, save the corresponding
1134 position number in POS.
1135
1136 Its differs from VAL only in the case of enumeration types. In
1137 this case, the position number of the value of the first listed
1138 enumeration literal is zero; the position number of the value of
1139 each subsequent enumeration literal is one more than that of its
1140 predecessor in the list.
1141
1142 Return 1 if the operation was successful. Return zero otherwise,
1143 in which case the value of POS is unmodified.
1144 */
1145
1146 int
1147 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1148 {
1149 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1150 {
1151 int i;
1152
1153 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1154 {
1155 if (val == TYPE_FIELD_ENUMVAL (type, i))
1156 {
1157 *pos = i;
1158 return 1;
1159 }
1160 }
1161 /* Invalid enumeration value. */
1162 return 0;
1163 }
1164 else
1165 {
1166 *pos = val;
1167 return 1;
1168 }
1169 }
1170
1171 /* Create an array type using either a blank type supplied in
1172 RESULT_TYPE, or creating a new type, inheriting the objfile from
1173 RANGE_TYPE.
1174
1175 Elements will be of type ELEMENT_TYPE, the indices will be of type
1176 RANGE_TYPE.
1177
1178 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1179 This byte stride property is added to the resulting array type
1180 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1181 argument can only be used to create types that are objfile-owned
1182 (see add_dyn_prop), meaning that either this function must be called
1183 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1184
1185 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1186 If BIT_STRIDE is not zero, build a packed array type whose element
1187 size is BIT_STRIDE. Otherwise, ignore this parameter.
1188
1189 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1190 sure it is TYPE_CODE_UNDEF before we bash it into an array
1191 type? */
1192
1193 struct type *
1194 create_array_type_with_stride (struct type *result_type,
1195 struct type *element_type,
1196 struct type *range_type,
1197 struct dynamic_prop *byte_stride_prop,
1198 unsigned int bit_stride)
1199 {
1200 if (byte_stride_prop != NULL
1201 && byte_stride_prop->kind == PROP_CONST)
1202 {
1203 /* The byte stride is actually not dynamic. Pretend we were
1204 called with bit_stride set instead of byte_stride_prop.
1205 This will give us the same result type, while avoiding
1206 the need to handle this as a special case. */
1207 bit_stride = byte_stride_prop->data.const_val * 8;
1208 byte_stride_prop = NULL;
1209 }
1210
1211 if (result_type == NULL)
1212 result_type = alloc_type_copy (range_type);
1213
1214 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1215 TYPE_TARGET_TYPE (result_type) = element_type;
1216 if (byte_stride_prop == NULL
1217 && has_static_range (TYPE_RANGE_DATA (range_type))
1218 && (!type_not_associated (result_type)
1219 && !type_not_allocated (result_type)))
1220 {
1221 LONGEST low_bound, high_bound;
1222 unsigned int stride;
1223
1224 /* If the array itself doesn't provide a stride value then take
1225 whatever stride the range provides. Don't update BIT_STRIDE as
1226 we don't want to place the stride value from the range into this
1227 arrays bit size field. */
1228 stride = bit_stride;
1229 if (stride == 0)
1230 stride = TYPE_BIT_STRIDE (range_type);
1231
1232 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1233 low_bound = high_bound = 0;
1234 element_type = check_typedef (element_type);
1235 /* Be careful when setting the array length. Ada arrays can be
1236 empty arrays with the high_bound being smaller than the low_bound.
1237 In such cases, the array length should be zero. */
1238 if (high_bound < low_bound)
1239 TYPE_LENGTH (result_type) = 0;
1240 else if (stride > 0)
1241 TYPE_LENGTH (result_type) =
1242 (stride * (high_bound - low_bound + 1) + 7) / 8;
1243 else
1244 TYPE_LENGTH (result_type) =
1245 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1246 }
1247 else
1248 {
1249 /* This type is dynamic and its length needs to be computed
1250 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1251 undefined by setting it to zero. Although we are not expected
1252 to trust TYPE_LENGTH in this case, setting the size to zero
1253 allows us to avoid allocating objects of random sizes in case
1254 we accidently do. */
1255 TYPE_LENGTH (result_type) = 0;
1256 }
1257
1258 TYPE_NFIELDS (result_type) = 1;
1259 TYPE_FIELDS (result_type) =
1260 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1261 TYPE_INDEX_TYPE (result_type) = range_type;
1262 if (byte_stride_prop != NULL)
1263 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1264 else if (bit_stride > 0)
1265 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1266
1267 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1268 if (TYPE_LENGTH (result_type) == 0)
1269 TYPE_TARGET_STUB (result_type) = 1;
1270
1271 return result_type;
1272 }
1273
1274 /* Same as create_array_type_with_stride but with no bit_stride
1275 (BIT_STRIDE = 0), thus building an unpacked array. */
1276
1277 struct type *
1278 create_array_type (struct type *result_type,
1279 struct type *element_type,
1280 struct type *range_type)
1281 {
1282 return create_array_type_with_stride (result_type, element_type,
1283 range_type, NULL, 0);
1284 }
1285
1286 struct type *
1287 lookup_array_range_type (struct type *element_type,
1288 LONGEST low_bound, LONGEST high_bound)
1289 {
1290 struct type *index_type;
1291 struct type *range_type;
1292
1293 if (TYPE_OBJFILE_OWNED (element_type))
1294 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1295 else
1296 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1297 range_type = create_static_range_type (NULL, index_type,
1298 low_bound, high_bound);
1299
1300 return create_array_type (NULL, element_type, range_type);
1301 }
1302
1303 /* Create a string type using either a blank type supplied in
1304 RESULT_TYPE, or creating a new type. String types are similar
1305 enough to array of char types that we can use create_array_type to
1306 build the basic type and then bash it into a string type.
1307
1308 For fixed length strings, the range type contains 0 as the lower
1309 bound and the length of the string minus one as the upper bound.
1310
1311 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1312 sure it is TYPE_CODE_UNDEF before we bash it into a string
1313 type? */
1314
1315 struct type *
1316 create_string_type (struct type *result_type,
1317 struct type *string_char_type,
1318 struct type *range_type)
1319 {
1320 result_type = create_array_type (result_type,
1321 string_char_type,
1322 range_type);
1323 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1324 return result_type;
1325 }
1326
1327 struct type *
1328 lookup_string_range_type (struct type *string_char_type,
1329 LONGEST low_bound, LONGEST high_bound)
1330 {
1331 struct type *result_type;
1332
1333 result_type = lookup_array_range_type (string_char_type,
1334 low_bound, high_bound);
1335 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1336 return result_type;
1337 }
1338
1339 struct type *
1340 create_set_type (struct type *result_type, struct type *domain_type)
1341 {
1342 if (result_type == NULL)
1343 result_type = alloc_type_copy (domain_type);
1344
1345 TYPE_CODE (result_type) = TYPE_CODE_SET;
1346 TYPE_NFIELDS (result_type) = 1;
1347 TYPE_FIELDS (result_type)
1348 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1349
1350 if (!TYPE_STUB (domain_type))
1351 {
1352 LONGEST low_bound, high_bound, bit_length;
1353
1354 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1355 low_bound = high_bound = 0;
1356 bit_length = high_bound - low_bound + 1;
1357 TYPE_LENGTH (result_type)
1358 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1359 if (low_bound >= 0)
1360 TYPE_UNSIGNED (result_type) = 1;
1361 }
1362 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1363
1364 return result_type;
1365 }
1366
1367 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1368 and any array types nested inside it. */
1369
1370 void
1371 make_vector_type (struct type *array_type)
1372 {
1373 struct type *inner_array, *elt_type;
1374 int flags;
1375
1376 /* Find the innermost array type, in case the array is
1377 multi-dimensional. */
1378 inner_array = array_type;
1379 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1380 inner_array = TYPE_TARGET_TYPE (inner_array);
1381
1382 elt_type = TYPE_TARGET_TYPE (inner_array);
1383 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1384 {
1385 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1386 elt_type = make_qualified_type (elt_type, flags, NULL);
1387 TYPE_TARGET_TYPE (inner_array) = elt_type;
1388 }
1389
1390 TYPE_VECTOR (array_type) = 1;
1391 }
1392
1393 struct type *
1394 init_vector_type (struct type *elt_type, int n)
1395 {
1396 struct type *array_type;
1397
1398 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1399 make_vector_type (array_type);
1400 return array_type;
1401 }
1402
1403 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1404 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1405 confusing. "self" is a common enough replacement for "this".
1406 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1407 TYPE_CODE_METHOD. */
1408
1409 struct type *
1410 internal_type_self_type (struct type *type)
1411 {
1412 switch (TYPE_CODE (type))
1413 {
1414 case TYPE_CODE_METHODPTR:
1415 case TYPE_CODE_MEMBERPTR:
1416 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1417 return NULL;
1418 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1419 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1420 case TYPE_CODE_METHOD:
1421 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1422 return NULL;
1423 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1424 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1425 default:
1426 gdb_assert_not_reached ("bad type");
1427 }
1428 }
1429
1430 /* Set the type of the class that TYPE belongs to.
1431 In c++ this is the class of "this".
1432 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1433 TYPE_CODE_METHOD. */
1434
1435 void
1436 set_type_self_type (struct type *type, struct type *self_type)
1437 {
1438 switch (TYPE_CODE (type))
1439 {
1440 case TYPE_CODE_METHODPTR:
1441 case TYPE_CODE_MEMBERPTR:
1442 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1443 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1444 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1445 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1446 break;
1447 case TYPE_CODE_METHOD:
1448 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1449 INIT_FUNC_SPECIFIC (type);
1450 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1451 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1452 break;
1453 default:
1454 gdb_assert_not_reached ("bad type");
1455 }
1456 }
1457
1458 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1459 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1460 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1461 TYPE doesn't include the offset (that's the value of the MEMBER
1462 itself), but does include the structure type into which it points
1463 (for some reason).
1464
1465 When "smashing" the type, we preserve the objfile that the old type
1466 pointed to, since we aren't changing where the type is actually
1467 allocated. */
1468
1469 void
1470 smash_to_memberptr_type (struct type *type, struct type *self_type,
1471 struct type *to_type)
1472 {
1473 smash_type (type);
1474 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1475 TYPE_TARGET_TYPE (type) = to_type;
1476 set_type_self_type (type, self_type);
1477 /* Assume that a data member pointer is the same size as a normal
1478 pointer. */
1479 TYPE_LENGTH (type)
1480 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1481 }
1482
1483 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1484
1485 When "smashing" the type, we preserve the objfile that the old type
1486 pointed to, since we aren't changing where the type is actually
1487 allocated. */
1488
1489 void
1490 smash_to_methodptr_type (struct type *type, struct type *to_type)
1491 {
1492 smash_type (type);
1493 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1494 TYPE_TARGET_TYPE (type) = to_type;
1495 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1496 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1497 }
1498
1499 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1500 METHOD just means `function that gets an extra "this" argument'.
1501
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
1504 allocated. */
1505
1506 void
1507 smash_to_method_type (struct type *type, struct type *self_type,
1508 struct type *to_type, struct field *args,
1509 int nargs, int varargs)
1510 {
1511 smash_type (type);
1512 TYPE_CODE (type) = TYPE_CODE_METHOD;
1513 TYPE_TARGET_TYPE (type) = to_type;
1514 set_type_self_type (type, self_type);
1515 TYPE_FIELDS (type) = args;
1516 TYPE_NFIELDS (type) = nargs;
1517 if (varargs)
1518 TYPE_VARARGS (type) = 1;
1519 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1520 }
1521
1522 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1523 Since GCC PR debug/47510 DWARF provides associated information to detect the
1524 anonymous class linkage name from its typedef.
1525
1526 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1527 apply it itself. */
1528
1529 const char *
1530 type_name_or_error (struct type *type)
1531 {
1532 struct type *saved_type = type;
1533 const char *name;
1534 struct objfile *objfile;
1535
1536 type = check_typedef (type);
1537
1538 name = TYPE_NAME (type);
1539 if (name != NULL)
1540 return name;
1541
1542 name = TYPE_NAME (saved_type);
1543 objfile = TYPE_OBJFILE (saved_type);
1544 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1545 name ? name : "<anonymous>",
1546 objfile ? objfile_name (objfile) : "<arch>");
1547 }
1548
1549 /* Lookup a typedef or primitive type named NAME, visible in lexical
1550 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1551 suitably defined. */
1552
1553 struct type *
1554 lookup_typename (const struct language_defn *language,
1555 struct gdbarch *gdbarch, const char *name,
1556 const struct block *block, int noerr)
1557 {
1558 struct symbol *sym;
1559
1560 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1561 language->la_language, NULL).symbol;
1562 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1563 return SYMBOL_TYPE (sym);
1564
1565 if (noerr)
1566 return NULL;
1567 error (_("No type named %s."), name);
1568 }
1569
1570 struct type *
1571 lookup_unsigned_typename (const struct language_defn *language,
1572 struct gdbarch *gdbarch, const char *name)
1573 {
1574 char *uns = (char *) alloca (strlen (name) + 10);
1575
1576 strcpy (uns, "unsigned ");
1577 strcpy (uns + 9, name);
1578 return lookup_typename (language, gdbarch, uns, NULL, 0);
1579 }
1580
1581 struct type *
1582 lookup_signed_typename (const struct language_defn *language,
1583 struct gdbarch *gdbarch, const char *name)
1584 {
1585 struct type *t;
1586 char *uns = (char *) alloca (strlen (name) + 8);
1587
1588 strcpy (uns, "signed ");
1589 strcpy (uns + 7, name);
1590 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1591 /* If we don't find "signed FOO" just try again with plain "FOO". */
1592 if (t != NULL)
1593 return t;
1594 return lookup_typename (language, gdbarch, name, NULL, 0);
1595 }
1596
1597 /* Lookup a structure type named "struct NAME",
1598 visible in lexical block BLOCK. */
1599
1600 struct type *
1601 lookup_struct (const char *name, const struct block *block)
1602 {
1603 struct symbol *sym;
1604
1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1606
1607 if (sym == NULL)
1608 {
1609 error (_("No struct type named %s."), name);
1610 }
1611 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1612 {
1613 error (_("This context has class, union or enum %s, not a struct."),
1614 name);
1615 }
1616 return (SYMBOL_TYPE (sym));
1617 }
1618
1619 /* Lookup a union type named "union NAME",
1620 visible in lexical block BLOCK. */
1621
1622 struct type *
1623 lookup_union (const char *name, const struct block *block)
1624 {
1625 struct symbol *sym;
1626 struct type *t;
1627
1628 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1629
1630 if (sym == NULL)
1631 error (_("No union type named %s."), name);
1632
1633 t = SYMBOL_TYPE (sym);
1634
1635 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1636 return t;
1637
1638 /* If we get here, it's not a union. */
1639 error (_("This context has class, struct or enum %s, not a union."),
1640 name);
1641 }
1642
1643 /* Lookup an enum type named "enum NAME",
1644 visible in lexical block BLOCK. */
1645
1646 struct type *
1647 lookup_enum (const char *name, const struct block *block)
1648 {
1649 struct symbol *sym;
1650
1651 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1652 if (sym == NULL)
1653 {
1654 error (_("No enum type named %s."), name);
1655 }
1656 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1657 {
1658 error (_("This context has class, struct or union %s, not an enum."),
1659 name);
1660 }
1661 return (SYMBOL_TYPE (sym));
1662 }
1663
1664 /* Lookup a template type named "template NAME<TYPE>",
1665 visible in lexical block BLOCK. */
1666
1667 struct type *
1668 lookup_template_type (const char *name, struct type *type,
1669 const struct block *block)
1670 {
1671 struct symbol *sym;
1672 char *nam = (char *)
1673 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1674
1675 strcpy (nam, name);
1676 strcat (nam, "<");
1677 strcat (nam, TYPE_NAME (type));
1678 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1679
1680 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1681
1682 if (sym == NULL)
1683 {
1684 error (_("No template type named %s."), name);
1685 }
1686 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1687 {
1688 error (_("This context has class, union or enum %s, not a struct."),
1689 name);
1690 }
1691 return (SYMBOL_TYPE (sym));
1692 }
1693
1694 /* See gdbtypes.h. */
1695
1696 struct_elt
1697 lookup_struct_elt (struct type *type, const char *name, int noerr)
1698 {
1699 int i;
1700
1701 for (;;)
1702 {
1703 type = check_typedef (type);
1704 if (TYPE_CODE (type) != TYPE_CODE_PTR
1705 && TYPE_CODE (type) != TYPE_CODE_REF)
1706 break;
1707 type = TYPE_TARGET_TYPE (type);
1708 }
1709
1710 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1711 && TYPE_CODE (type) != TYPE_CODE_UNION)
1712 {
1713 std::string type_name = type_to_string (type);
1714 error (_("Type %s is not a structure or union type."),
1715 type_name.c_str ());
1716 }
1717
1718 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1719 {
1720 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1721
1722 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1723 {
1724 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1725 }
1726 else if (!t_field_name || *t_field_name == '\0')
1727 {
1728 struct_elt elt
1729 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1730 if (elt.field != NULL)
1731 {
1732 elt.offset += TYPE_FIELD_BITPOS (type, i);
1733 return elt;
1734 }
1735 }
1736 }
1737
1738 /* OK, it's not in this class. Recursively check the baseclasses. */
1739 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1740 {
1741 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1742 if (elt.field != NULL)
1743 return elt;
1744 }
1745
1746 if (noerr)
1747 return {nullptr, 0};
1748
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1751 }
1752
1753 /* See gdbtypes.h. */
1754
1755 struct type *
1756 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1757 {
1758 struct_elt elt = lookup_struct_elt (type, name, noerr);
1759 if (elt.field != NULL)
1760 return FIELD_TYPE (*elt.field);
1761 else
1762 return NULL;
1763 }
1764
1765 /* Store in *MAX the largest number representable by unsigned integer type
1766 TYPE. */
1767
1768 void
1769 get_unsigned_type_max (struct type *type, ULONGEST *max)
1770 {
1771 unsigned int n;
1772
1773 type = check_typedef (type);
1774 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1775 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1776
1777 /* Written this way to avoid overflow. */
1778 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1779 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1780 }
1781
1782 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1783 signed integer type TYPE. */
1784
1785 void
1786 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1787 {
1788 unsigned int n;
1789
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1792 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1793
1794 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1795 *min = -((ULONGEST) 1 << (n - 1));
1796 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1797 }
1798
1799 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1800 cplus_stuff.vptr_fieldno.
1801
1802 cplus_stuff is initialized to cplus_struct_default which does not
1803 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1804 designated initializers). We cope with that here. */
1805
1806 int
1807 internal_type_vptr_fieldno (struct type *type)
1808 {
1809 type = check_typedef (type);
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1811 || TYPE_CODE (type) == TYPE_CODE_UNION);
1812 if (!HAVE_CPLUS_STRUCT (type))
1813 return -1;
1814 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1815 }
1816
1817 /* Set the value of cplus_stuff.vptr_fieldno. */
1818
1819 void
1820 set_type_vptr_fieldno (struct type *type, int fieldno)
1821 {
1822 type = check_typedef (type);
1823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1824 || TYPE_CODE (type) == TYPE_CODE_UNION);
1825 if (!HAVE_CPLUS_STRUCT (type))
1826 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1827 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1828 }
1829
1830 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1831 cplus_stuff.vptr_basetype. */
1832
1833 struct type *
1834 internal_type_vptr_basetype (struct type *type)
1835 {
1836 type = check_typedef (type);
1837 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1838 || TYPE_CODE (type) == TYPE_CODE_UNION);
1839 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1840 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1841 }
1842
1843 /* Set the value of cplus_stuff.vptr_basetype. */
1844
1845 void
1846 set_type_vptr_basetype (struct type *type, struct type *basetype)
1847 {
1848 type = check_typedef (type);
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 if (!HAVE_CPLUS_STRUCT (type))
1852 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1853 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1854 }
1855
1856 /* Lookup the vptr basetype/fieldno values for TYPE.
1857 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1858 vptr_fieldno. Also, if found and basetype is from the same objfile,
1859 cache the results.
1860 If not found, return -1 and ignore BASETYPEP.
1861 Callers should be aware that in some cases (for example,
1862 the type or one of its baseclasses is a stub type and we are
1863 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1864 this function will not be able to find the
1865 virtual function table pointer, and vptr_fieldno will remain -1 and
1866 vptr_basetype will remain NULL or incomplete. */
1867
1868 int
1869 get_vptr_fieldno (struct type *type, struct type **basetypep)
1870 {
1871 type = check_typedef (type);
1872
1873 if (TYPE_VPTR_FIELDNO (type) < 0)
1874 {
1875 int i;
1876
1877 /* We must start at zero in case the first (and only) baseclass
1878 is virtual (and hence we cannot share the table pointer). */
1879 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1880 {
1881 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1882 int fieldno;
1883 struct type *basetype;
1884
1885 fieldno = get_vptr_fieldno (baseclass, &basetype);
1886 if (fieldno >= 0)
1887 {
1888 /* If the type comes from a different objfile we can't cache
1889 it, it may have a different lifetime. PR 2384 */
1890 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1891 {
1892 set_type_vptr_fieldno (type, fieldno);
1893 set_type_vptr_basetype (type, basetype);
1894 }
1895 if (basetypep)
1896 *basetypep = basetype;
1897 return fieldno;
1898 }
1899 }
1900
1901 /* Not found. */
1902 return -1;
1903 }
1904 else
1905 {
1906 if (basetypep)
1907 *basetypep = TYPE_VPTR_BASETYPE (type);
1908 return TYPE_VPTR_FIELDNO (type);
1909 }
1910 }
1911
1912 static void
1913 stub_noname_complaint (void)
1914 {
1915 complaint (_("stub type has NULL name"));
1916 }
1917
1918 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1919 attached to it, and that property has a non-constant value. */
1920
1921 static int
1922 array_type_has_dynamic_stride (struct type *type)
1923 {
1924 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1925
1926 return (prop != NULL && prop->kind != PROP_CONST);
1927 }
1928
1929 /* Worker for is_dynamic_type. */
1930
1931 static int
1932 is_dynamic_type_internal (struct type *type, int top_level)
1933 {
1934 type = check_typedef (type);
1935
1936 /* We only want to recognize references at the outermost level. */
1937 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1938 type = check_typedef (TYPE_TARGET_TYPE (type));
1939
1940 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1941 dynamic, even if the type itself is statically defined.
1942 From a user's point of view, this may appear counter-intuitive;
1943 but it makes sense in this context, because the point is to determine
1944 whether any part of the type needs to be resolved before it can
1945 be exploited. */
1946 if (TYPE_DATA_LOCATION (type) != NULL
1947 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1948 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1949 return 1;
1950
1951 if (TYPE_ASSOCIATED_PROP (type))
1952 return 1;
1953
1954 if (TYPE_ALLOCATED_PROP (type))
1955 return 1;
1956
1957 switch (TYPE_CODE (type))
1958 {
1959 case TYPE_CODE_RANGE:
1960 {
1961 /* A range type is obviously dynamic if it has at least one
1962 dynamic bound. But also consider the range type to be
1963 dynamic when its subtype is dynamic, even if the bounds
1964 of the range type are static. It allows us to assume that
1965 the subtype of a static range type is also static. */
1966 return (!has_static_range (TYPE_RANGE_DATA (type))
1967 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1968 }
1969
1970 case TYPE_CODE_ARRAY:
1971 {
1972 gdb_assert (TYPE_NFIELDS (type) == 1);
1973
1974 /* The array is dynamic if either the bounds are dynamic... */
1975 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1976 return 1;
1977 /* ... or the elements it contains have a dynamic contents... */
1978 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1979 return 1;
1980 /* ... or if it has a dynamic stride... */
1981 if (array_type_has_dynamic_stride (type))
1982 return 1;
1983 return 0;
1984 }
1985
1986 case TYPE_CODE_STRUCT:
1987 case TYPE_CODE_UNION:
1988 {
1989 int i;
1990
1991 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1992 if (!field_is_static (&TYPE_FIELD (type, i))
1993 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1994 return 1;
1995 }
1996 break;
1997 }
1998
1999 return 0;
2000 }
2001
2002 /* See gdbtypes.h. */
2003
2004 int
2005 is_dynamic_type (struct type *type)
2006 {
2007 return is_dynamic_type_internal (type, 1);
2008 }
2009
2010 static struct type *resolve_dynamic_type_internal
2011 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2012
2013 /* Given a dynamic range type (dyn_range_type) and a stack of
2014 struct property_addr_info elements, return a static version
2015 of that type. */
2016
2017 static struct type *
2018 resolve_dynamic_range (struct type *dyn_range_type,
2019 struct property_addr_info *addr_stack)
2020 {
2021 CORE_ADDR value;
2022 struct type *static_range_type, *static_target_type;
2023 const struct dynamic_prop *prop;
2024 struct dynamic_prop low_bound, high_bound, stride;
2025
2026 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2027
2028 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2029 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2030 {
2031 low_bound.kind = PROP_CONST;
2032 low_bound.data.const_val = value;
2033 }
2034 else
2035 {
2036 low_bound.kind = PROP_UNDEFINED;
2037 low_bound.data.const_val = 0;
2038 }
2039
2040 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2041 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2042 {
2043 high_bound.kind = PROP_CONST;
2044 high_bound.data.const_val = value;
2045
2046 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2047 high_bound.data.const_val
2048 = low_bound.data.const_val + high_bound.data.const_val - 1;
2049 }
2050 else
2051 {
2052 high_bound.kind = PROP_UNDEFINED;
2053 high_bound.data.const_val = 0;
2054 }
2055
2056 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2057 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2058 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2059 {
2060 stride.kind = PROP_CONST;
2061 stride.data.const_val = value;
2062
2063 /* If we have a bit stride that is not an exact number of bytes then
2064 I really don't think this is going to work with current GDB, the
2065 array indexing code in GDB seems to be pretty heavily tied to byte
2066 offsets right now. Assuming 8 bits in a byte. */
2067 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2068 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2069 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2070 error (_("bit strides that are not a multiple of the byte size "
2071 "are currently not supported"));
2072 }
2073 else
2074 {
2075 stride.kind = PROP_UNDEFINED;
2076 stride.data.const_val = 0;
2077 byte_stride_p = true;
2078 }
2079
2080 static_target_type
2081 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2082 addr_stack, 0);
2083 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2084 static_range_type = create_range_type_with_stride
2085 (copy_type (dyn_range_type), static_target_type,
2086 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2087 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2088 return static_range_type;
2089 }
2090
2091 /* Resolves dynamic bound values of an array type TYPE to static ones.
2092 ADDR_STACK is a stack of struct property_addr_info to be used
2093 if needed during the dynamic resolution. */
2094
2095 static struct type *
2096 resolve_dynamic_array (struct type *type,
2097 struct property_addr_info *addr_stack)
2098 {
2099 CORE_ADDR value;
2100 struct type *elt_type;
2101 struct type *range_type;
2102 struct type *ary_dim;
2103 struct dynamic_prop *prop;
2104 unsigned int bit_stride = 0;
2105
2106 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2107
2108 type = copy_type (type);
2109
2110 elt_type = type;
2111 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2112 range_type = resolve_dynamic_range (range_type, addr_stack);
2113
2114 /* Resolve allocated/associated here before creating a new array type, which
2115 will update the length of the array accordingly. */
2116 prop = TYPE_ALLOCATED_PROP (type);
2117 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2118 {
2119 TYPE_DYN_PROP_ADDR (prop) = value;
2120 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2121 }
2122 prop = TYPE_ASSOCIATED_PROP (type);
2123 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2124 {
2125 TYPE_DYN_PROP_ADDR (prop) = value;
2126 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2127 }
2128
2129 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2130
2131 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2132 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2133 else
2134 elt_type = TYPE_TARGET_TYPE (type);
2135
2136 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2137 if (prop != NULL)
2138 {
2139 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2140 {
2141 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2142 bit_stride = (unsigned int) (value * 8);
2143 }
2144 else
2145 {
2146 /* Could be a bug in our code, but it could also happen
2147 if the DWARF info is not correct. Issue a warning,
2148 and assume no byte/bit stride (leave bit_stride = 0). */
2149 warning (_("cannot determine array stride for type %s"),
2150 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2151 }
2152 }
2153 else
2154 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2155
2156 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2157 bit_stride);
2158 }
2159
2160 /* Resolve dynamic bounds of members of the union TYPE to static
2161 bounds. ADDR_STACK is a stack of struct property_addr_info
2162 to be used if needed during the dynamic resolution. */
2163
2164 static struct type *
2165 resolve_dynamic_union (struct type *type,
2166 struct property_addr_info *addr_stack)
2167 {
2168 struct type *resolved_type;
2169 int i;
2170 unsigned int max_len = 0;
2171
2172 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2173
2174 resolved_type = copy_type (type);
2175 TYPE_FIELDS (resolved_type)
2176 = (struct field *) TYPE_ALLOC (resolved_type,
2177 TYPE_NFIELDS (resolved_type)
2178 * sizeof (struct field));
2179 memcpy (TYPE_FIELDS (resolved_type),
2180 TYPE_FIELDS (type),
2181 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2182 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2183 {
2184 struct type *t;
2185
2186 if (field_is_static (&TYPE_FIELD (type, i)))
2187 continue;
2188
2189 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2190 addr_stack, 0);
2191 TYPE_FIELD_TYPE (resolved_type, i) = t;
2192 if (TYPE_LENGTH (t) > max_len)
2193 max_len = TYPE_LENGTH (t);
2194 }
2195
2196 TYPE_LENGTH (resolved_type) = max_len;
2197 return resolved_type;
2198 }
2199
2200 /* Resolve dynamic bounds of members of the struct TYPE to static
2201 bounds. ADDR_STACK is a stack of struct property_addr_info to
2202 be used if needed during the dynamic resolution. */
2203
2204 static struct type *
2205 resolve_dynamic_struct (struct type *type,
2206 struct property_addr_info *addr_stack)
2207 {
2208 struct type *resolved_type;
2209 int i;
2210 unsigned resolved_type_bit_length = 0;
2211
2212 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2213 gdb_assert (TYPE_NFIELDS (type) > 0);
2214
2215 resolved_type = copy_type (type);
2216 TYPE_FIELDS (resolved_type)
2217 = (struct field *) TYPE_ALLOC (resolved_type,
2218 TYPE_NFIELDS (resolved_type)
2219 * sizeof (struct field));
2220 memcpy (TYPE_FIELDS (resolved_type),
2221 TYPE_FIELDS (type),
2222 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2223 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2224 {
2225 unsigned new_bit_length;
2226 struct property_addr_info pinfo;
2227
2228 if (field_is_static (&TYPE_FIELD (type, i)))
2229 continue;
2230
2231 /* As we know this field is not a static field, the field's
2232 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2233 this is the case, but only trigger a simple error rather
2234 than an internal error if that fails. While failing
2235 that verification indicates a bug in our code, the error
2236 is not severe enough to suggest to the user he stops
2237 his debugging session because of it. */
2238 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2239 error (_("Cannot determine struct field location"
2240 " (invalid location kind)"));
2241
2242 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2243 pinfo.valaddr = addr_stack->valaddr;
2244 pinfo.addr
2245 = (addr_stack->addr
2246 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2247 pinfo.next = addr_stack;
2248
2249 TYPE_FIELD_TYPE (resolved_type, i)
2250 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2251 &pinfo, 0);
2252 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2253 == FIELD_LOC_KIND_BITPOS);
2254
2255 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2256 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2257 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2258 else
2259 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2260 * TARGET_CHAR_BIT);
2261
2262 /* Normally, we would use the position and size of the last field
2263 to determine the size of the enclosing structure. But GCC seems
2264 to be encoding the position of some fields incorrectly when
2265 the struct contains a dynamic field that is not placed last.
2266 So we compute the struct size based on the field that has
2267 the highest position + size - probably the best we can do. */
2268 if (new_bit_length > resolved_type_bit_length)
2269 resolved_type_bit_length = new_bit_length;
2270 }
2271
2272 /* The length of a type won't change for fortran, but it does for C and Ada.
2273 For fortran the size of dynamic fields might change over time but not the
2274 type length of the structure. If we adapt it, we run into problems
2275 when calculating the element offset for arrays of structs. */
2276 if (current_language->la_language != language_fortran)
2277 TYPE_LENGTH (resolved_type)
2278 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2279
2280 /* The Ada language uses this field as a cache for static fixed types: reset
2281 it as RESOLVED_TYPE must have its own static fixed type. */
2282 TYPE_TARGET_TYPE (resolved_type) = NULL;
2283
2284 return resolved_type;
2285 }
2286
2287 /* Worker for resolved_dynamic_type. */
2288
2289 static struct type *
2290 resolve_dynamic_type_internal (struct type *type,
2291 struct property_addr_info *addr_stack,
2292 int top_level)
2293 {
2294 struct type *real_type = check_typedef (type);
2295 struct type *resolved_type = type;
2296 struct dynamic_prop *prop;
2297 CORE_ADDR value;
2298
2299 if (!is_dynamic_type_internal (real_type, top_level))
2300 return type;
2301
2302 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2303 {
2304 resolved_type = copy_type (type);
2305 TYPE_TARGET_TYPE (resolved_type)
2306 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2307 top_level);
2308 }
2309 else
2310 {
2311 /* Before trying to resolve TYPE, make sure it is not a stub. */
2312 type = real_type;
2313
2314 switch (TYPE_CODE (type))
2315 {
2316 case TYPE_CODE_REF:
2317 {
2318 struct property_addr_info pinfo;
2319
2320 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2321 pinfo.valaddr = NULL;
2322 if (addr_stack->valaddr != NULL)
2323 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2324 else
2325 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2326 pinfo.next = addr_stack;
2327
2328 resolved_type = copy_type (type);
2329 TYPE_TARGET_TYPE (resolved_type)
2330 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2331 &pinfo, top_level);
2332 break;
2333 }
2334
2335 case TYPE_CODE_ARRAY:
2336 resolved_type = resolve_dynamic_array (type, addr_stack);
2337 break;
2338
2339 case TYPE_CODE_RANGE:
2340 resolved_type = resolve_dynamic_range (type, addr_stack);
2341 break;
2342
2343 case TYPE_CODE_UNION:
2344 resolved_type = resolve_dynamic_union (type, addr_stack);
2345 break;
2346
2347 case TYPE_CODE_STRUCT:
2348 resolved_type = resolve_dynamic_struct (type, addr_stack);
2349 break;
2350 }
2351 }
2352
2353 /* Resolve data_location attribute. */
2354 prop = TYPE_DATA_LOCATION (resolved_type);
2355 if (prop != NULL
2356 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2357 {
2358 TYPE_DYN_PROP_ADDR (prop) = value;
2359 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2360 }
2361
2362 return resolved_type;
2363 }
2364
2365 /* See gdbtypes.h */
2366
2367 struct type *
2368 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2369 CORE_ADDR addr)
2370 {
2371 struct property_addr_info pinfo
2372 = {check_typedef (type), valaddr, addr, NULL};
2373
2374 return resolve_dynamic_type_internal (type, &pinfo, 1);
2375 }
2376
2377 /* See gdbtypes.h */
2378
2379 struct dynamic_prop *
2380 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2381 {
2382 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2383
2384 while (node != NULL)
2385 {
2386 if (node->prop_kind == prop_kind)
2387 return &node->prop;
2388 node = node->next;
2389 }
2390 return NULL;
2391 }
2392
2393 /* See gdbtypes.h */
2394
2395 void
2396 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2397 struct type *type)
2398 {
2399 struct dynamic_prop_list *temp;
2400
2401 gdb_assert (TYPE_OBJFILE_OWNED (type));
2402
2403 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2404 struct dynamic_prop_list);
2405 temp->prop_kind = prop_kind;
2406 temp->prop = prop;
2407 temp->next = TYPE_DYN_PROP_LIST (type);
2408
2409 TYPE_DYN_PROP_LIST (type) = temp;
2410 }
2411
2412 /* Remove dynamic property from TYPE in case it exists. */
2413
2414 void
2415 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2416 struct type *type)
2417 {
2418 struct dynamic_prop_list *prev_node, *curr_node;
2419
2420 curr_node = TYPE_DYN_PROP_LIST (type);
2421 prev_node = NULL;
2422
2423 while (NULL != curr_node)
2424 {
2425 if (curr_node->prop_kind == prop_kind)
2426 {
2427 /* Update the linked list but don't free anything.
2428 The property was allocated on objstack and it is not known
2429 if we are on top of it. Nevertheless, everything is released
2430 when the complete objstack is freed. */
2431 if (NULL == prev_node)
2432 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2433 else
2434 prev_node->next = curr_node->next;
2435
2436 return;
2437 }
2438
2439 prev_node = curr_node;
2440 curr_node = curr_node->next;
2441 }
2442 }
2443
2444 /* Find the real type of TYPE. This function returns the real type,
2445 after removing all layers of typedefs, and completing opaque or stub
2446 types. Completion changes the TYPE argument, but stripping of
2447 typedefs does not.
2448
2449 Instance flags (e.g. const/volatile) are preserved as typedefs are
2450 stripped. If necessary a new qualified form of the underlying type
2451 is created.
2452
2453 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2454 not been computed and we're either in the middle of reading symbols, or
2455 there was no name for the typedef in the debug info.
2456
2457 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2458 QUITs in the symbol reading code can also throw.
2459 Thus this function can throw an exception.
2460
2461 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2462 the target type.
2463
2464 If this is a stubbed struct (i.e. declared as struct foo *), see if
2465 we can find a full definition in some other file. If so, copy this
2466 definition, so we can use it in future. There used to be a comment
2467 (but not any code) that if we don't find a full definition, we'd
2468 set a flag so we don't spend time in the future checking the same
2469 type. That would be a mistake, though--we might load in more
2470 symbols which contain a full definition for the type. */
2471
2472 struct type *
2473 check_typedef (struct type *type)
2474 {
2475 struct type *orig_type = type;
2476 /* While we're removing typedefs, we don't want to lose qualifiers.
2477 E.g., const/volatile. */
2478 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2479
2480 gdb_assert (type);
2481
2482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2483 {
2484 if (!TYPE_TARGET_TYPE (type))
2485 {
2486 const char *name;
2487 struct symbol *sym;
2488
2489 /* It is dangerous to call lookup_symbol if we are currently
2490 reading a symtab. Infinite recursion is one danger. */
2491 if (currently_reading_symtab)
2492 return make_qualified_type (type, instance_flags, NULL);
2493
2494 name = TYPE_NAME (type);
2495 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2496 VAR_DOMAIN as appropriate? */
2497 if (name == NULL)
2498 {
2499 stub_noname_complaint ();
2500 return make_qualified_type (type, instance_flags, NULL);
2501 }
2502 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2503 if (sym)
2504 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2505 else /* TYPE_CODE_UNDEF */
2506 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2507 }
2508 type = TYPE_TARGET_TYPE (type);
2509
2510 /* Preserve the instance flags as we traverse down the typedef chain.
2511
2512 Handling address spaces/classes is nasty, what do we do if there's a
2513 conflict?
2514 E.g., what if an outer typedef marks the type as class_1 and an inner
2515 typedef marks the type as class_2?
2516 This is the wrong place to do such error checking. We leave it to
2517 the code that created the typedef in the first place to flag the
2518 error. We just pick the outer address space (akin to letting the
2519 outer cast in a chain of casting win), instead of assuming
2520 "it can't happen". */
2521 {
2522 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2523 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2524 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2525 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2526
2527 /* Treat code vs data spaces and address classes separately. */
2528 if ((instance_flags & ALL_SPACES) != 0)
2529 new_instance_flags &= ~ALL_SPACES;
2530 if ((instance_flags & ALL_CLASSES) != 0)
2531 new_instance_flags &= ~ALL_CLASSES;
2532
2533 instance_flags |= new_instance_flags;
2534 }
2535 }
2536
2537 /* If this is a struct/class/union with no fields, then check
2538 whether a full definition exists somewhere else. This is for
2539 systems where a type definition with no fields is issued for such
2540 types, instead of identifying them as stub types in the first
2541 place. */
2542
2543 if (TYPE_IS_OPAQUE (type)
2544 && opaque_type_resolution
2545 && !currently_reading_symtab)
2546 {
2547 const char *name = TYPE_NAME (type);
2548 struct type *newtype;
2549
2550 if (name == NULL)
2551 {
2552 stub_noname_complaint ();
2553 return make_qualified_type (type, instance_flags, NULL);
2554 }
2555 newtype = lookup_transparent_type (name);
2556
2557 if (newtype)
2558 {
2559 /* If the resolved type and the stub are in the same
2560 objfile, then replace the stub type with the real deal.
2561 But if they're in separate objfiles, leave the stub
2562 alone; we'll just look up the transparent type every time
2563 we call check_typedef. We can't create pointers between
2564 types allocated to different objfiles, since they may
2565 have different lifetimes. Trying to copy NEWTYPE over to
2566 TYPE's objfile is pointless, too, since you'll have to
2567 move over any other types NEWTYPE refers to, which could
2568 be an unbounded amount of stuff. */
2569 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2570 type = make_qualified_type (newtype,
2571 TYPE_INSTANCE_FLAGS (type),
2572 type);
2573 else
2574 type = newtype;
2575 }
2576 }
2577 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2578 types. */
2579 else if (TYPE_STUB (type) && !currently_reading_symtab)
2580 {
2581 const char *name = TYPE_NAME (type);
2582 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2583 as appropriate? */
2584 struct symbol *sym;
2585
2586 if (name == NULL)
2587 {
2588 stub_noname_complaint ();
2589 return make_qualified_type (type, instance_flags, NULL);
2590 }
2591 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2592 if (sym)
2593 {
2594 /* Same as above for opaque types, we can replace the stub
2595 with the complete type only if they are in the same
2596 objfile. */
2597 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2598 type = make_qualified_type (SYMBOL_TYPE (sym),
2599 TYPE_INSTANCE_FLAGS (type),
2600 type);
2601 else
2602 type = SYMBOL_TYPE (sym);
2603 }
2604 }
2605
2606 if (TYPE_TARGET_STUB (type))
2607 {
2608 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2609
2610 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2611 {
2612 /* Nothing we can do. */
2613 }
2614 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2615 {
2616 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2617 TYPE_TARGET_STUB (type) = 0;
2618 }
2619 }
2620
2621 type = make_qualified_type (type, instance_flags, NULL);
2622
2623 /* Cache TYPE_LENGTH for future use. */
2624 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2625
2626 return type;
2627 }
2628
2629 /* Parse a type expression in the string [P..P+LENGTH). If an error
2630 occurs, silently return a void type. */
2631
2632 static struct type *
2633 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2634 {
2635 struct ui_file *saved_gdb_stderr;
2636 struct type *type = NULL; /* Initialize to keep gcc happy. */
2637
2638 /* Suppress error messages. */
2639 saved_gdb_stderr = gdb_stderr;
2640 gdb_stderr = &null_stream;
2641
2642 /* Call parse_and_eval_type() without fear of longjmp()s. */
2643 try
2644 {
2645 type = parse_and_eval_type (p, length);
2646 }
2647 catch (const gdb_exception_error &except)
2648 {
2649 type = builtin_type (gdbarch)->builtin_void;
2650 }
2651
2652 /* Stop suppressing error messages. */
2653 gdb_stderr = saved_gdb_stderr;
2654
2655 return type;
2656 }
2657
2658 /* Ugly hack to convert method stubs into method types.
2659
2660 He ain't kiddin'. This demangles the name of the method into a
2661 string including argument types, parses out each argument type,
2662 generates a string casting a zero to that type, evaluates the
2663 string, and stuffs the resulting type into an argtype vector!!!
2664 Then it knows the type of the whole function (including argument
2665 types for overloading), which info used to be in the stab's but was
2666 removed to hack back the space required for them. */
2667
2668 static void
2669 check_stub_method (struct type *type, int method_id, int signature_id)
2670 {
2671 struct gdbarch *gdbarch = get_type_arch (type);
2672 struct fn_field *f;
2673 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2674 char *demangled_name = gdb_demangle (mangled_name,
2675 DMGL_PARAMS | DMGL_ANSI);
2676 char *argtypetext, *p;
2677 int depth = 0, argcount = 1;
2678 struct field *argtypes;
2679 struct type *mtype;
2680
2681 /* Make sure we got back a function string that we can use. */
2682 if (demangled_name)
2683 p = strchr (demangled_name, '(');
2684 else
2685 p = NULL;
2686
2687 if (demangled_name == NULL || p == NULL)
2688 error (_("Internal: Cannot demangle mangled name `%s'."),
2689 mangled_name);
2690
2691 /* Now, read in the parameters that define this type. */
2692 p += 1;
2693 argtypetext = p;
2694 while (*p)
2695 {
2696 if (*p == '(' || *p == '<')
2697 {
2698 depth += 1;
2699 }
2700 else if (*p == ')' || *p == '>')
2701 {
2702 depth -= 1;
2703 }
2704 else if (*p == ',' && depth == 0)
2705 {
2706 argcount += 1;
2707 }
2708
2709 p += 1;
2710 }
2711
2712 /* If we read one argument and it was ``void'', don't count it. */
2713 if (startswith (argtypetext, "(void)"))
2714 argcount -= 1;
2715
2716 /* We need one extra slot, for the THIS pointer. */
2717
2718 argtypes = (struct field *)
2719 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2720 p = argtypetext;
2721
2722 /* Add THIS pointer for non-static methods. */
2723 f = TYPE_FN_FIELDLIST1 (type, method_id);
2724 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2725 argcount = 0;
2726 else
2727 {
2728 argtypes[0].type = lookup_pointer_type (type);
2729 argcount = 1;
2730 }
2731
2732 if (*p != ')') /* () means no args, skip while. */
2733 {
2734 depth = 0;
2735 while (*p)
2736 {
2737 if (depth <= 0 && (*p == ',' || *p == ')'))
2738 {
2739 /* Avoid parsing of ellipsis, they will be handled below.
2740 Also avoid ``void'' as above. */
2741 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2742 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2743 {
2744 argtypes[argcount].type =
2745 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2746 argcount += 1;
2747 }
2748 argtypetext = p + 1;
2749 }
2750
2751 if (*p == '(' || *p == '<')
2752 {
2753 depth += 1;
2754 }
2755 else if (*p == ')' || *p == '>')
2756 {
2757 depth -= 1;
2758 }
2759
2760 p += 1;
2761 }
2762 }
2763
2764 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2765
2766 /* Now update the old "stub" type into a real type. */
2767 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2768 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2769 We want a method (TYPE_CODE_METHOD). */
2770 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2771 argtypes, argcount, p[-2] == '.');
2772 TYPE_STUB (mtype) = 0;
2773 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2774
2775 xfree (demangled_name);
2776 }
2777
2778 /* This is the external interface to check_stub_method, above. This
2779 function unstubs all of the signatures for TYPE's METHOD_ID method
2780 name. After calling this function TYPE_FN_FIELD_STUB will be
2781 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2782 correct.
2783
2784 This function unfortunately can not die until stabs do. */
2785
2786 void
2787 check_stub_method_group (struct type *type, int method_id)
2788 {
2789 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2790 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2791
2792 for (int j = 0; j < len; j++)
2793 {
2794 if (TYPE_FN_FIELD_STUB (f, j))
2795 check_stub_method (type, method_id, j);
2796 }
2797 }
2798
2799 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2800 const struct cplus_struct_type cplus_struct_default = { };
2801
2802 void
2803 allocate_cplus_struct_type (struct type *type)
2804 {
2805 if (HAVE_CPLUS_STRUCT (type))
2806 /* Structure was already allocated. Nothing more to do. */
2807 return;
2808
2809 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2810 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2811 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2812 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2813 set_type_vptr_fieldno (type, -1);
2814 }
2815
2816 const struct gnat_aux_type gnat_aux_default =
2817 { NULL };
2818
2819 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2820 and allocate the associated gnat-specific data. The gnat-specific
2821 data is also initialized to gnat_aux_default. */
2822
2823 void
2824 allocate_gnat_aux_type (struct type *type)
2825 {
2826 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2827 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2828 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2829 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2830 }
2831
2832 /* Helper function to initialize a newly allocated type. Set type code
2833 to CODE and initialize the type-specific fields accordingly. */
2834
2835 static void
2836 set_type_code (struct type *type, enum type_code code)
2837 {
2838 TYPE_CODE (type) = code;
2839
2840 switch (code)
2841 {
2842 case TYPE_CODE_STRUCT:
2843 case TYPE_CODE_UNION:
2844 case TYPE_CODE_NAMESPACE:
2845 INIT_CPLUS_SPECIFIC (type);
2846 break;
2847 case TYPE_CODE_FLT:
2848 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2849 break;
2850 case TYPE_CODE_FUNC:
2851 INIT_FUNC_SPECIFIC (type);
2852 break;
2853 }
2854 }
2855
2856 /* Helper function to verify floating-point format and size.
2857 BIT is the type size in bits; if BIT equals -1, the size is
2858 determined by the floatformat. Returns size to be used. */
2859
2860 static int
2861 verify_floatformat (int bit, const struct floatformat *floatformat)
2862 {
2863 gdb_assert (floatformat != NULL);
2864
2865 if (bit == -1)
2866 bit = floatformat->totalsize;
2867
2868 gdb_assert (bit >= 0);
2869 gdb_assert (bit >= floatformat->totalsize);
2870
2871 return bit;
2872 }
2873
2874 /* Return the floating-point format for a floating-point variable of
2875 type TYPE. */
2876
2877 const struct floatformat *
2878 floatformat_from_type (const struct type *type)
2879 {
2880 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2881 gdb_assert (TYPE_FLOATFORMAT (type));
2882 return TYPE_FLOATFORMAT (type);
2883 }
2884
2885 /* Helper function to initialize the standard scalar types.
2886
2887 If NAME is non-NULL, then it is used to initialize the type name.
2888 Note that NAME is not copied; it is required to have a lifetime at
2889 least as long as OBJFILE. */
2890
2891 struct type *
2892 init_type (struct objfile *objfile, enum type_code code, int bit,
2893 const char *name)
2894 {
2895 struct type *type;
2896
2897 type = alloc_type (objfile);
2898 set_type_code (type, code);
2899 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2900 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2901 TYPE_NAME (type) = name;
2902
2903 return type;
2904 }
2905
2906 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2907 to use with variables that have no debug info. NAME is the type
2908 name. */
2909
2910 static struct type *
2911 init_nodebug_var_type (struct objfile *objfile, const char *name)
2912 {
2913 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2914 }
2915
2916 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2917 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2918 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2919
2920 struct type *
2921 init_integer_type (struct objfile *objfile,
2922 int bit, int unsigned_p, const char *name)
2923 {
2924 struct type *t;
2925
2926 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2927 if (unsigned_p)
2928 TYPE_UNSIGNED (t) = 1;
2929
2930 return t;
2931 }
2932
2933 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2934 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2935 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2936
2937 struct type *
2938 init_character_type (struct objfile *objfile,
2939 int bit, int unsigned_p, const char *name)
2940 {
2941 struct type *t;
2942
2943 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2944 if (unsigned_p)
2945 TYPE_UNSIGNED (t) = 1;
2946
2947 return t;
2948 }
2949
2950 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2951 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2952 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2953
2954 struct type *
2955 init_boolean_type (struct objfile *objfile,
2956 int bit, int unsigned_p, const char *name)
2957 {
2958 struct type *t;
2959
2960 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2961 if (unsigned_p)
2962 TYPE_UNSIGNED (t) = 1;
2963
2964 return t;
2965 }
2966
2967 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2968 BIT is the type size in bits; if BIT equals -1, the size is
2969 determined by the floatformat. NAME is the type name. Set the
2970 TYPE_FLOATFORMAT from FLOATFORMATS. */
2971
2972 struct type *
2973 init_float_type (struct objfile *objfile,
2974 int bit, const char *name,
2975 const struct floatformat **floatformats)
2976 {
2977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2978 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2979 struct type *t;
2980
2981 bit = verify_floatformat (bit, fmt);
2982 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2983 TYPE_FLOATFORMAT (t) = fmt;
2984
2985 return t;
2986 }
2987
2988 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2989 BIT is the type size in bits. NAME is the type name. */
2990
2991 struct type *
2992 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2993 {
2994 struct type *t;
2995
2996 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2997 return t;
2998 }
2999
3000 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3001 NAME is the type name. TARGET_TYPE is the component float type. */
3002
3003 struct type *
3004 init_complex_type (struct objfile *objfile,
3005 const char *name, struct type *target_type)
3006 {
3007 struct type *t;
3008
3009 t = init_type (objfile, TYPE_CODE_COMPLEX,
3010 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
3011 TYPE_TARGET_TYPE (t) = target_type;
3012 return t;
3013 }
3014
3015 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3016 BIT is the pointer type size in bits. NAME is the type name.
3017 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3018 TYPE_UNSIGNED flag. */
3019
3020 struct type *
3021 init_pointer_type (struct objfile *objfile,
3022 int bit, const char *name, struct type *target_type)
3023 {
3024 struct type *t;
3025
3026 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3027 TYPE_TARGET_TYPE (t) = target_type;
3028 TYPE_UNSIGNED (t) = 1;
3029 return t;
3030 }
3031
3032 /* See gdbtypes.h. */
3033
3034 unsigned
3035 type_raw_align (struct type *type)
3036 {
3037 if (type->align_log2 != 0)
3038 return 1 << (type->align_log2 - 1);
3039 return 0;
3040 }
3041
3042 /* See gdbtypes.h. */
3043
3044 unsigned
3045 type_align (struct type *type)
3046 {
3047 /* Check alignment provided in the debug information. */
3048 unsigned raw_align = type_raw_align (type);
3049 if (raw_align != 0)
3050 return raw_align;
3051
3052 /* Allow the architecture to provide an alignment. */
3053 struct gdbarch *arch = get_type_arch (type);
3054 ULONGEST align = gdbarch_type_align (arch, type);
3055 if (align != 0)
3056 return align;
3057
3058 switch (TYPE_CODE (type))
3059 {
3060 case TYPE_CODE_PTR:
3061 case TYPE_CODE_FUNC:
3062 case TYPE_CODE_FLAGS:
3063 case TYPE_CODE_INT:
3064 case TYPE_CODE_RANGE:
3065 case TYPE_CODE_FLT:
3066 case TYPE_CODE_ENUM:
3067 case TYPE_CODE_REF:
3068 case TYPE_CODE_RVALUE_REF:
3069 case TYPE_CODE_CHAR:
3070 case TYPE_CODE_BOOL:
3071 case TYPE_CODE_DECFLOAT:
3072 case TYPE_CODE_METHODPTR:
3073 case TYPE_CODE_MEMBERPTR:
3074 align = type_length_units (check_typedef (type));
3075 break;
3076
3077 case TYPE_CODE_ARRAY:
3078 case TYPE_CODE_COMPLEX:
3079 case TYPE_CODE_TYPEDEF:
3080 align = type_align (TYPE_TARGET_TYPE (type));
3081 break;
3082
3083 case TYPE_CODE_STRUCT:
3084 case TYPE_CODE_UNION:
3085 {
3086 int number_of_non_static_fields = 0;
3087 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3088 {
3089 if (!field_is_static (&TYPE_FIELD (type, i)))
3090 {
3091 number_of_non_static_fields++;
3092 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3093 if (f_align == 0)
3094 {
3095 /* Don't pretend we know something we don't. */
3096 align = 0;
3097 break;
3098 }
3099 if (f_align > align)
3100 align = f_align;
3101 }
3102 }
3103 /* A struct with no fields, or with only static fields has an
3104 alignment of 1. */
3105 if (number_of_non_static_fields == 0)
3106 align = 1;
3107 }
3108 break;
3109
3110 case TYPE_CODE_SET:
3111 case TYPE_CODE_STRING:
3112 /* Not sure what to do here, and these can't appear in C or C++
3113 anyway. */
3114 break;
3115
3116 case TYPE_CODE_VOID:
3117 align = 1;
3118 break;
3119
3120 case TYPE_CODE_ERROR:
3121 case TYPE_CODE_METHOD:
3122 default:
3123 break;
3124 }
3125
3126 if ((align & (align - 1)) != 0)
3127 {
3128 /* Not a power of 2, so pass. */
3129 align = 0;
3130 }
3131
3132 return align;
3133 }
3134
3135 /* See gdbtypes.h. */
3136
3137 bool
3138 set_type_align (struct type *type, ULONGEST align)
3139 {
3140 /* Must be a power of 2. Zero is ok. */
3141 gdb_assert ((align & (align - 1)) == 0);
3142
3143 unsigned result = 0;
3144 while (align != 0)
3145 {
3146 ++result;
3147 align >>= 1;
3148 }
3149
3150 if (result >= (1 << TYPE_ALIGN_BITS))
3151 return false;
3152
3153 type->align_log2 = result;
3154 return true;
3155 }
3156
3157 \f
3158 /* Queries on types. */
3159
3160 int
3161 can_dereference (struct type *t)
3162 {
3163 /* FIXME: Should we return true for references as well as
3164 pointers? */
3165 t = check_typedef (t);
3166 return
3167 (t != NULL
3168 && TYPE_CODE (t) == TYPE_CODE_PTR
3169 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3170 }
3171
3172 int
3173 is_integral_type (struct type *t)
3174 {
3175 t = check_typedef (t);
3176 return
3177 ((t != NULL)
3178 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3179 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3180 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3181 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3182 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3183 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3184 }
3185
3186 int
3187 is_floating_type (struct type *t)
3188 {
3189 t = check_typedef (t);
3190 return
3191 ((t != NULL)
3192 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3193 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3194 }
3195
3196 /* Return true if TYPE is scalar. */
3197
3198 int
3199 is_scalar_type (struct type *type)
3200 {
3201 type = check_typedef (type);
3202
3203 switch (TYPE_CODE (type))
3204 {
3205 case TYPE_CODE_ARRAY:
3206 case TYPE_CODE_STRUCT:
3207 case TYPE_CODE_UNION:
3208 case TYPE_CODE_SET:
3209 case TYPE_CODE_STRING:
3210 return 0;
3211 default:
3212 return 1;
3213 }
3214 }
3215
3216 /* Return true if T is scalar, or a composite type which in practice has
3217 the memory layout of a scalar type. E.g., an array or struct with only
3218 one scalar element inside it, or a union with only scalar elements. */
3219
3220 int
3221 is_scalar_type_recursive (struct type *t)
3222 {
3223 t = check_typedef (t);
3224
3225 if (is_scalar_type (t))
3226 return 1;
3227 /* Are we dealing with an array or string of known dimensions? */
3228 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3229 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3230 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3231 {
3232 LONGEST low_bound, high_bound;
3233 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3234
3235 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3236
3237 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3238 }
3239 /* Are we dealing with a struct with one element? */
3240 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3241 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3242 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3243 {
3244 int i, n = TYPE_NFIELDS (t);
3245
3246 /* If all elements of the union are scalar, then the union is scalar. */
3247 for (i = 0; i < n; i++)
3248 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3249 return 0;
3250
3251 return 1;
3252 }
3253
3254 return 0;
3255 }
3256
3257 /* Return true is T is a class or a union. False otherwise. */
3258
3259 int
3260 class_or_union_p (const struct type *t)
3261 {
3262 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3263 || TYPE_CODE (t) == TYPE_CODE_UNION);
3264 }
3265
3266 /* A helper function which returns true if types A and B represent the
3267 "same" class type. This is true if the types have the same main
3268 type, or the same name. */
3269
3270 int
3271 class_types_same_p (const struct type *a, const struct type *b)
3272 {
3273 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3274 || (TYPE_NAME (a) && TYPE_NAME (b)
3275 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3276 }
3277
3278 /* If BASE is an ancestor of DCLASS return the distance between them.
3279 otherwise return -1;
3280 eg:
3281
3282 class A {};
3283 class B: public A {};
3284 class C: public B {};
3285 class D: C {};
3286
3287 distance_to_ancestor (A, A, 0) = 0
3288 distance_to_ancestor (A, B, 0) = 1
3289 distance_to_ancestor (A, C, 0) = 2
3290 distance_to_ancestor (A, D, 0) = 3
3291
3292 If PUBLIC is 1 then only public ancestors are considered,
3293 and the function returns the distance only if BASE is a public ancestor
3294 of DCLASS.
3295 Eg:
3296
3297 distance_to_ancestor (A, D, 1) = -1. */
3298
3299 static int
3300 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3301 {
3302 int i;
3303 int d;
3304
3305 base = check_typedef (base);
3306 dclass = check_typedef (dclass);
3307
3308 if (class_types_same_p (base, dclass))
3309 return 0;
3310
3311 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3312 {
3313 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3314 continue;
3315
3316 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3317 if (d >= 0)
3318 return 1 + d;
3319 }
3320
3321 return -1;
3322 }
3323
3324 /* Check whether BASE is an ancestor or base class or DCLASS
3325 Return 1 if so, and 0 if not.
3326 Note: If BASE and DCLASS are of the same type, this function
3327 will return 1. So for some class A, is_ancestor (A, A) will
3328 return 1. */
3329
3330 int
3331 is_ancestor (struct type *base, struct type *dclass)
3332 {
3333 return distance_to_ancestor (base, dclass, 0) >= 0;
3334 }
3335
3336 /* Like is_ancestor, but only returns true when BASE is a public
3337 ancestor of DCLASS. */
3338
3339 int
3340 is_public_ancestor (struct type *base, struct type *dclass)
3341 {
3342 return distance_to_ancestor (base, dclass, 1) >= 0;
3343 }
3344
3345 /* A helper function for is_unique_ancestor. */
3346
3347 static int
3348 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3349 int *offset,
3350 const gdb_byte *valaddr, int embedded_offset,
3351 CORE_ADDR address, struct value *val)
3352 {
3353 int i, count = 0;
3354
3355 base = check_typedef (base);
3356 dclass = check_typedef (dclass);
3357
3358 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3359 {
3360 struct type *iter;
3361 int this_offset;
3362
3363 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3364
3365 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3366 address, val);
3367
3368 if (class_types_same_p (base, iter))
3369 {
3370 /* If this is the first subclass, set *OFFSET and set count
3371 to 1. Otherwise, if this is at the same offset as
3372 previous instances, do nothing. Otherwise, increment
3373 count. */
3374 if (*offset == -1)
3375 {
3376 *offset = this_offset;
3377 count = 1;
3378 }
3379 else if (this_offset == *offset)
3380 {
3381 /* Nothing. */
3382 }
3383 else
3384 ++count;
3385 }
3386 else
3387 count += is_unique_ancestor_worker (base, iter, offset,
3388 valaddr,
3389 embedded_offset + this_offset,
3390 address, val);
3391 }
3392
3393 return count;
3394 }
3395
3396 /* Like is_ancestor, but only returns true if BASE is a unique base
3397 class of the type of VAL. */
3398
3399 int
3400 is_unique_ancestor (struct type *base, struct value *val)
3401 {
3402 int offset = -1;
3403
3404 return is_unique_ancestor_worker (base, value_type (val), &offset,
3405 value_contents_for_printing (val),
3406 value_embedded_offset (val),
3407 value_address (val), val) == 1;
3408 }
3409
3410 \f
3411 /* Overload resolution. */
3412
3413 /* Return the sum of the rank of A with the rank of B. */
3414
3415 struct rank
3416 sum_ranks (struct rank a, struct rank b)
3417 {
3418 struct rank c;
3419 c.rank = a.rank + b.rank;
3420 c.subrank = a.subrank + b.subrank;
3421 return c;
3422 }
3423
3424 /* Compare rank A and B and return:
3425 0 if a = b
3426 1 if a is better than b
3427 -1 if b is better than a. */
3428
3429 int
3430 compare_ranks (struct rank a, struct rank b)
3431 {
3432 if (a.rank == b.rank)
3433 {
3434 if (a.subrank == b.subrank)
3435 return 0;
3436 if (a.subrank < b.subrank)
3437 return 1;
3438 if (a.subrank > b.subrank)
3439 return -1;
3440 }
3441
3442 if (a.rank < b.rank)
3443 return 1;
3444
3445 /* a.rank > b.rank */
3446 return -1;
3447 }
3448
3449 /* Functions for overload resolution begin here. */
3450
3451 /* Compare two badness vectors A and B and return the result.
3452 0 => A and B are identical
3453 1 => A and B are incomparable
3454 2 => A is better than B
3455 3 => A is worse than B */
3456
3457 int
3458 compare_badness (const badness_vector &a, const badness_vector &b)
3459 {
3460 int i;
3461 int tmp;
3462 short found_pos = 0; /* any positives in c? */
3463 short found_neg = 0; /* any negatives in c? */
3464
3465 /* differing sizes => incomparable */
3466 if (a.size () != b.size ())
3467 return 1;
3468
3469 /* Subtract b from a */
3470 for (i = 0; i < a.size (); i++)
3471 {
3472 tmp = compare_ranks (b[i], a[i]);
3473 if (tmp > 0)
3474 found_pos = 1;
3475 else if (tmp < 0)
3476 found_neg = 1;
3477 }
3478
3479 if (found_pos)
3480 {
3481 if (found_neg)
3482 return 1; /* incomparable */
3483 else
3484 return 3; /* A > B */
3485 }
3486 else
3487 /* no positives */
3488 {
3489 if (found_neg)
3490 return 2; /* A < B */
3491 else
3492 return 0; /* A == B */
3493 }
3494 }
3495
3496 /* Rank a function by comparing its parameter types (PARMS), to the
3497 types of an argument list (ARGS). Return the badness vector. This
3498 has ARGS.size() + 1 entries. */
3499
3500 badness_vector
3501 rank_function (gdb::array_view<type *> parms,
3502 gdb::array_view<value *> args)
3503 {
3504 /* add 1 for the length-match rank. */
3505 badness_vector bv;
3506 bv.reserve (1 + args.size ());
3507
3508 /* First compare the lengths of the supplied lists.
3509 If there is a mismatch, set it to a high value. */
3510
3511 /* pai/1997-06-03 FIXME: when we have debug info about default
3512 arguments and ellipsis parameter lists, we should consider those
3513 and rank the length-match more finely. */
3514
3515 bv.push_back ((args.size () != parms.size ())
3516 ? LENGTH_MISMATCH_BADNESS
3517 : EXACT_MATCH_BADNESS);
3518
3519 /* Now rank all the parameters of the candidate function. */
3520 size_t min_len = std::min (parms.size (), args.size ());
3521
3522 for (size_t i = 0; i < min_len; i++)
3523 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3524 args[i]));
3525
3526 /* If more arguments than parameters, add dummy entries. */
3527 for (size_t i = min_len; i < args.size (); i++)
3528 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3529
3530 return bv;
3531 }
3532
3533 /* Compare the names of two integer types, assuming that any sign
3534 qualifiers have been checked already. We do it this way because
3535 there may be an "int" in the name of one of the types. */
3536
3537 static int
3538 integer_types_same_name_p (const char *first, const char *second)
3539 {
3540 int first_p, second_p;
3541
3542 /* If both are shorts, return 1; if neither is a short, keep
3543 checking. */
3544 first_p = (strstr (first, "short") != NULL);
3545 second_p = (strstr (second, "short") != NULL);
3546 if (first_p && second_p)
3547 return 1;
3548 if (first_p || second_p)
3549 return 0;
3550
3551 /* Likewise for long. */
3552 first_p = (strstr (first, "long") != NULL);
3553 second_p = (strstr (second, "long") != NULL);
3554 if (first_p && second_p)
3555 return 1;
3556 if (first_p || second_p)
3557 return 0;
3558
3559 /* Likewise for char. */
3560 first_p = (strstr (first, "char") != NULL);
3561 second_p = (strstr (second, "char") != NULL);
3562 if (first_p && second_p)
3563 return 1;
3564 if (first_p || second_p)
3565 return 0;
3566
3567 /* They must both be ints. */
3568 return 1;
3569 }
3570
3571 /* Compares type A to type B. Returns true if they represent the same
3572 type, false otherwise. */
3573
3574 bool
3575 types_equal (struct type *a, struct type *b)
3576 {
3577 /* Identical type pointers. */
3578 /* However, this still doesn't catch all cases of same type for b
3579 and a. The reason is that builtin types are different from
3580 the same ones constructed from the object. */
3581 if (a == b)
3582 return true;
3583
3584 /* Resolve typedefs */
3585 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3586 a = check_typedef (a);
3587 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3588 b = check_typedef (b);
3589
3590 /* If after resolving typedefs a and b are not of the same type
3591 code then they are not equal. */
3592 if (TYPE_CODE (a) != TYPE_CODE (b))
3593 return false;
3594
3595 /* If a and b are both pointers types or both reference types then
3596 they are equal of the same type iff the objects they refer to are
3597 of the same type. */
3598 if (TYPE_CODE (a) == TYPE_CODE_PTR
3599 || TYPE_CODE (a) == TYPE_CODE_REF)
3600 return types_equal (TYPE_TARGET_TYPE (a),
3601 TYPE_TARGET_TYPE (b));
3602
3603 /* Well, damnit, if the names are exactly the same, I'll say they
3604 are exactly the same. This happens when we generate method
3605 stubs. The types won't point to the same address, but they
3606 really are the same. */
3607
3608 if (TYPE_NAME (a) && TYPE_NAME (b)
3609 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3610 return true;
3611
3612 /* Check if identical after resolving typedefs. */
3613 if (a == b)
3614 return true;
3615
3616 /* Two function types are equal if their argument and return types
3617 are equal. */
3618 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3619 {
3620 int i;
3621
3622 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3623 return false;
3624
3625 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3626 return false;
3627
3628 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3629 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3630 return false;
3631
3632 return true;
3633 }
3634
3635 return false;
3636 }
3637 \f
3638 /* Deep comparison of types. */
3639
3640 /* An entry in the type-equality bcache. */
3641
3642 struct type_equality_entry
3643 {
3644 type_equality_entry (struct type *t1, struct type *t2)
3645 : type1 (t1),
3646 type2 (t2)
3647 {
3648 }
3649
3650 struct type *type1, *type2;
3651 };
3652
3653 /* A helper function to compare two strings. Returns true if they are
3654 the same, false otherwise. Handles NULLs properly. */
3655
3656 static bool
3657 compare_maybe_null_strings (const char *s, const char *t)
3658 {
3659 if (s == NULL || t == NULL)
3660 return s == t;
3661 return strcmp (s, t) == 0;
3662 }
3663
3664 /* A helper function for check_types_worklist that checks two types for
3665 "deep" equality. Returns true if the types are considered the
3666 same, false otherwise. */
3667
3668 static bool
3669 check_types_equal (struct type *type1, struct type *type2,
3670 std::vector<type_equality_entry> *worklist)
3671 {
3672 type1 = check_typedef (type1);
3673 type2 = check_typedef (type2);
3674
3675 if (type1 == type2)
3676 return true;
3677
3678 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3679 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3680 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3681 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3682 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3683 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3684 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3685 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3686 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3687 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3688 return false;
3689
3690 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3691 return false;
3692 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3693 return false;
3694
3695 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3696 {
3697 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3698 return false;
3699 }
3700 else
3701 {
3702 int i;
3703
3704 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3705 {
3706 const struct field *field1 = &TYPE_FIELD (type1, i);
3707 const struct field *field2 = &TYPE_FIELD (type2, i);
3708
3709 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3710 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3711 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3712 return false;
3713 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3714 FIELD_NAME (*field2)))
3715 return false;
3716 switch (FIELD_LOC_KIND (*field1))
3717 {
3718 case FIELD_LOC_KIND_BITPOS:
3719 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3720 return false;
3721 break;
3722 case FIELD_LOC_KIND_ENUMVAL:
3723 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3724 return false;
3725 break;
3726 case FIELD_LOC_KIND_PHYSADDR:
3727 if (FIELD_STATIC_PHYSADDR (*field1)
3728 != FIELD_STATIC_PHYSADDR (*field2))
3729 return false;
3730 break;
3731 case FIELD_LOC_KIND_PHYSNAME:
3732 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3733 FIELD_STATIC_PHYSNAME (*field2)))
3734 return false;
3735 break;
3736 case FIELD_LOC_KIND_DWARF_BLOCK:
3737 {
3738 struct dwarf2_locexpr_baton *block1, *block2;
3739
3740 block1 = FIELD_DWARF_BLOCK (*field1);
3741 block2 = FIELD_DWARF_BLOCK (*field2);
3742 if (block1->per_cu != block2->per_cu
3743 || block1->size != block2->size
3744 || memcmp (block1->data, block2->data, block1->size) != 0)
3745 return false;
3746 }
3747 break;
3748 default:
3749 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3750 "%d by check_types_equal"),
3751 FIELD_LOC_KIND (*field1));
3752 }
3753
3754 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3755 }
3756 }
3757
3758 if (TYPE_TARGET_TYPE (type1) != NULL)
3759 {
3760 if (TYPE_TARGET_TYPE (type2) == NULL)
3761 return false;
3762
3763 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3764 TYPE_TARGET_TYPE (type2));
3765 }
3766 else if (TYPE_TARGET_TYPE (type2) != NULL)
3767 return false;
3768
3769 return true;
3770 }
3771
3772 /* Check types on a worklist for equality. Returns false if any pair
3773 is not equal, true if they are all considered equal. */
3774
3775 static bool
3776 check_types_worklist (std::vector<type_equality_entry> *worklist,
3777 struct bcache *cache)
3778 {
3779 while (!worklist->empty ())
3780 {
3781 int added;
3782
3783 struct type_equality_entry entry = std::move (worklist->back ());
3784 worklist->pop_back ();
3785
3786 /* If the type pair has already been visited, we know it is
3787 ok. */
3788 cache->insert (&entry, sizeof (entry), &added);
3789 if (!added)
3790 continue;
3791
3792 if (!check_types_equal (entry.type1, entry.type2, worklist))
3793 return false;
3794 }
3795
3796 return true;
3797 }
3798
3799 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3800 "deep comparison". Otherwise return false. */
3801
3802 bool
3803 types_deeply_equal (struct type *type1, struct type *type2)
3804 {
3805 std::vector<type_equality_entry> worklist;
3806
3807 gdb_assert (type1 != NULL && type2 != NULL);
3808
3809 /* Early exit for the simple case. */
3810 if (type1 == type2)
3811 return true;
3812
3813 struct bcache cache (nullptr, nullptr);
3814 worklist.emplace_back (type1, type2);
3815 return check_types_worklist (&worklist, &cache);
3816 }
3817
3818 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3819 Otherwise return one. */
3820
3821 int
3822 type_not_allocated (const struct type *type)
3823 {
3824 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3825
3826 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3827 && !TYPE_DYN_PROP_ADDR (prop));
3828 }
3829
3830 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3831 Otherwise return one. */
3832
3833 int
3834 type_not_associated (const struct type *type)
3835 {
3836 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3837
3838 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3839 && !TYPE_DYN_PROP_ADDR (prop));
3840 }
3841
3842 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3843
3844 static struct rank
3845 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3846 {
3847 struct rank rank = {0,0};
3848
3849 switch (TYPE_CODE (arg))
3850 {
3851 case TYPE_CODE_PTR:
3852
3853 /* Allowed pointer conversions are:
3854 (a) pointer to void-pointer conversion. */
3855 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3856 return VOID_PTR_CONVERSION_BADNESS;
3857
3858 /* (b) pointer to ancestor-pointer conversion. */
3859 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3860 TYPE_TARGET_TYPE (arg),
3861 0);
3862 if (rank.subrank >= 0)
3863 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3864
3865 return INCOMPATIBLE_TYPE_BADNESS;
3866 case TYPE_CODE_ARRAY:
3867 {
3868 struct type *t1 = TYPE_TARGET_TYPE (parm);
3869 struct type *t2 = TYPE_TARGET_TYPE (arg);
3870
3871 if (types_equal (t1, t2))
3872 {
3873 /* Make sure they are CV equal. */
3874 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3875 rank.subrank |= CV_CONVERSION_CONST;
3876 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3877 rank.subrank |= CV_CONVERSION_VOLATILE;
3878 if (rank.subrank != 0)
3879 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3880 return EXACT_MATCH_BADNESS;
3881 }
3882 return INCOMPATIBLE_TYPE_BADNESS;
3883 }
3884 case TYPE_CODE_FUNC:
3885 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3886 case TYPE_CODE_INT:
3887 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3888 {
3889 if (value_as_long (value) == 0)
3890 {
3891 /* Null pointer conversion: allow it to be cast to a pointer.
3892 [4.10.1 of C++ standard draft n3290] */
3893 return NULL_POINTER_CONVERSION_BADNESS;
3894 }
3895 else
3896 {
3897 /* If type checking is disabled, allow the conversion. */
3898 if (!strict_type_checking)
3899 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3900 }
3901 }
3902 /* fall through */
3903 case TYPE_CODE_ENUM:
3904 case TYPE_CODE_FLAGS:
3905 case TYPE_CODE_CHAR:
3906 case TYPE_CODE_RANGE:
3907 case TYPE_CODE_BOOL:
3908 default:
3909 return INCOMPATIBLE_TYPE_BADNESS;
3910 }
3911 }
3912
3913 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3914
3915 static struct rank
3916 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3917 {
3918 switch (TYPE_CODE (arg))
3919 {
3920 case TYPE_CODE_PTR:
3921 case TYPE_CODE_ARRAY:
3922 return rank_one_type (TYPE_TARGET_TYPE (parm),
3923 TYPE_TARGET_TYPE (arg), NULL);
3924 default:
3925 return INCOMPATIBLE_TYPE_BADNESS;
3926 }
3927 }
3928
3929 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3930
3931 static struct rank
3932 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3933 {
3934 switch (TYPE_CODE (arg))
3935 {
3936 case TYPE_CODE_PTR: /* funcptr -> func */
3937 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3938 default:
3939 return INCOMPATIBLE_TYPE_BADNESS;
3940 }
3941 }
3942
3943 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3944
3945 static struct rank
3946 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3947 {
3948 switch (TYPE_CODE (arg))
3949 {
3950 case TYPE_CODE_INT:
3951 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3952 {
3953 /* Deal with signed, unsigned, and plain chars and
3954 signed and unsigned ints. */
3955 if (TYPE_NOSIGN (parm))
3956 {
3957 /* This case only for character types. */
3958 if (TYPE_NOSIGN (arg))
3959 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3960 else /* signed/unsigned char -> plain char */
3961 return INTEGER_CONVERSION_BADNESS;
3962 }
3963 else if (TYPE_UNSIGNED (parm))
3964 {
3965 if (TYPE_UNSIGNED (arg))
3966 {
3967 /* unsigned int -> unsigned int, or
3968 unsigned long -> unsigned long */
3969 if (integer_types_same_name_p (TYPE_NAME (parm),
3970 TYPE_NAME (arg)))
3971 return EXACT_MATCH_BADNESS;
3972 else if (integer_types_same_name_p (TYPE_NAME (arg),
3973 "int")
3974 && integer_types_same_name_p (TYPE_NAME (parm),
3975 "long"))
3976 /* unsigned int -> unsigned long */
3977 return INTEGER_PROMOTION_BADNESS;
3978 else
3979 /* unsigned long -> unsigned int */
3980 return INTEGER_CONVERSION_BADNESS;
3981 }
3982 else
3983 {
3984 if (integer_types_same_name_p (TYPE_NAME (arg),
3985 "long")
3986 && integer_types_same_name_p (TYPE_NAME (parm),
3987 "int"))
3988 /* signed long -> unsigned int */
3989 return INTEGER_CONVERSION_BADNESS;
3990 else
3991 /* signed int/long -> unsigned int/long */
3992 return INTEGER_CONVERSION_BADNESS;
3993 }
3994 }
3995 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3996 {
3997 if (integer_types_same_name_p (TYPE_NAME (parm),
3998 TYPE_NAME (arg)))
3999 return EXACT_MATCH_BADNESS;
4000 else if (integer_types_same_name_p (TYPE_NAME (arg),
4001 "int")
4002 && integer_types_same_name_p (TYPE_NAME (parm),
4003 "long"))
4004 return INTEGER_PROMOTION_BADNESS;
4005 else
4006 return INTEGER_CONVERSION_BADNESS;
4007 }
4008 else
4009 return INTEGER_CONVERSION_BADNESS;
4010 }
4011 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4012 return INTEGER_PROMOTION_BADNESS;
4013 else
4014 return INTEGER_CONVERSION_BADNESS;
4015 case TYPE_CODE_ENUM:
4016 case TYPE_CODE_FLAGS:
4017 case TYPE_CODE_CHAR:
4018 case TYPE_CODE_RANGE:
4019 case TYPE_CODE_BOOL:
4020 if (TYPE_DECLARED_CLASS (arg))
4021 return INCOMPATIBLE_TYPE_BADNESS;
4022 return INTEGER_PROMOTION_BADNESS;
4023 case TYPE_CODE_FLT:
4024 return INT_FLOAT_CONVERSION_BADNESS;
4025 case TYPE_CODE_PTR:
4026 return NS_POINTER_CONVERSION_BADNESS;
4027 default:
4028 return INCOMPATIBLE_TYPE_BADNESS;
4029 }
4030 }
4031
4032 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4033
4034 static struct rank
4035 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4036 {
4037 switch (TYPE_CODE (arg))
4038 {
4039 case TYPE_CODE_INT:
4040 case TYPE_CODE_CHAR:
4041 case TYPE_CODE_RANGE:
4042 case TYPE_CODE_BOOL:
4043 case TYPE_CODE_ENUM:
4044 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4045 return INCOMPATIBLE_TYPE_BADNESS;
4046 return INTEGER_CONVERSION_BADNESS;
4047 case TYPE_CODE_FLT:
4048 return INT_FLOAT_CONVERSION_BADNESS;
4049 default:
4050 return INCOMPATIBLE_TYPE_BADNESS;
4051 }
4052 }
4053
4054 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4055
4056 static struct rank
4057 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4058 {
4059 switch (TYPE_CODE (arg))
4060 {
4061 case TYPE_CODE_RANGE:
4062 case TYPE_CODE_BOOL:
4063 case TYPE_CODE_ENUM:
4064 if (TYPE_DECLARED_CLASS (arg))
4065 return INCOMPATIBLE_TYPE_BADNESS;
4066 return INTEGER_CONVERSION_BADNESS;
4067 case TYPE_CODE_FLT:
4068 return INT_FLOAT_CONVERSION_BADNESS;
4069 case TYPE_CODE_INT:
4070 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4071 return INTEGER_CONVERSION_BADNESS;
4072 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4073 return INTEGER_PROMOTION_BADNESS;
4074 /* fall through */
4075 case TYPE_CODE_CHAR:
4076 /* Deal with signed, unsigned, and plain chars for C++ and
4077 with int cases falling through from previous case. */
4078 if (TYPE_NOSIGN (parm))
4079 {
4080 if (TYPE_NOSIGN (arg))
4081 return EXACT_MATCH_BADNESS;
4082 else
4083 return INTEGER_CONVERSION_BADNESS;
4084 }
4085 else if (TYPE_UNSIGNED (parm))
4086 {
4087 if (TYPE_UNSIGNED (arg))
4088 return EXACT_MATCH_BADNESS;
4089 else
4090 return INTEGER_PROMOTION_BADNESS;
4091 }
4092 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4093 return EXACT_MATCH_BADNESS;
4094 else
4095 return INTEGER_CONVERSION_BADNESS;
4096 default:
4097 return INCOMPATIBLE_TYPE_BADNESS;
4098 }
4099 }
4100
4101 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4102
4103 static struct rank
4104 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4105 {
4106 switch (TYPE_CODE (arg))
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_CHAR:
4110 case TYPE_CODE_RANGE:
4111 case TYPE_CODE_BOOL:
4112 case TYPE_CODE_ENUM:
4113 return INTEGER_CONVERSION_BADNESS;
4114 case TYPE_CODE_FLT:
4115 return INT_FLOAT_CONVERSION_BADNESS;
4116 default:
4117 return INCOMPATIBLE_TYPE_BADNESS;
4118 }
4119 }
4120
4121 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4122
4123 static struct rank
4124 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4125 {
4126 switch (TYPE_CODE (arg))
4127 {
4128 /* n3290 draft, section 4.12.1 (conv.bool):
4129
4130 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4131 pointer to member type can be converted to a prvalue of type
4132 bool. A zero value, null pointer value, or null member pointer
4133 value is converted to false; any other value is converted to
4134 true. A prvalue of type std::nullptr_t can be converted to a
4135 prvalue of type bool; the resulting value is false." */
4136 case TYPE_CODE_INT:
4137 case TYPE_CODE_CHAR:
4138 case TYPE_CODE_ENUM:
4139 case TYPE_CODE_FLT:
4140 case TYPE_CODE_MEMBERPTR:
4141 case TYPE_CODE_PTR:
4142 return BOOL_CONVERSION_BADNESS;
4143 case TYPE_CODE_RANGE:
4144 return INCOMPATIBLE_TYPE_BADNESS;
4145 case TYPE_CODE_BOOL:
4146 return EXACT_MATCH_BADNESS;
4147 default:
4148 return INCOMPATIBLE_TYPE_BADNESS;
4149 }
4150 }
4151
4152 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4153
4154 static struct rank
4155 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4156 {
4157 switch (TYPE_CODE (arg))
4158 {
4159 case TYPE_CODE_FLT:
4160 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4161 return FLOAT_PROMOTION_BADNESS;
4162 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4163 return EXACT_MATCH_BADNESS;
4164 else
4165 return FLOAT_CONVERSION_BADNESS;
4166 case TYPE_CODE_INT:
4167 case TYPE_CODE_BOOL:
4168 case TYPE_CODE_ENUM:
4169 case TYPE_CODE_RANGE:
4170 case TYPE_CODE_CHAR:
4171 return INT_FLOAT_CONVERSION_BADNESS;
4172 default:
4173 return INCOMPATIBLE_TYPE_BADNESS;
4174 }
4175 }
4176
4177 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4178
4179 static struct rank
4180 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4181 {
4182 switch (TYPE_CODE (arg))
4183 { /* Strictly not needed for C++, but... */
4184 case TYPE_CODE_FLT:
4185 return FLOAT_PROMOTION_BADNESS;
4186 case TYPE_CODE_COMPLEX:
4187 return EXACT_MATCH_BADNESS;
4188 default:
4189 return INCOMPATIBLE_TYPE_BADNESS;
4190 }
4191 }
4192
4193 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4194
4195 static struct rank
4196 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4197 {
4198 struct rank rank = {0, 0};
4199
4200 switch (TYPE_CODE (arg))
4201 {
4202 case TYPE_CODE_STRUCT:
4203 /* Check for derivation */
4204 rank.subrank = distance_to_ancestor (parm, arg, 0);
4205 if (rank.subrank >= 0)
4206 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4207 /* fall through */
4208 default:
4209 return INCOMPATIBLE_TYPE_BADNESS;
4210 }
4211 }
4212
4213 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4214
4215 static struct rank
4216 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4217 {
4218 switch (TYPE_CODE (arg))
4219 {
4220 /* Not in C++ */
4221 case TYPE_CODE_SET:
4222 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4223 TYPE_FIELD_TYPE (arg, 0), NULL);
4224 default:
4225 return INCOMPATIBLE_TYPE_BADNESS;
4226 }
4227 }
4228
4229 /* Compare one type (PARM) for compatibility with another (ARG).
4230 * PARM is intended to be the parameter type of a function; and
4231 * ARG is the supplied argument's type. This function tests if
4232 * the latter can be converted to the former.
4233 * VALUE is the argument's value or NULL if none (or called recursively)
4234 *
4235 * Return 0 if they are identical types;
4236 * Otherwise, return an integer which corresponds to how compatible
4237 * PARM is to ARG. The higher the return value, the worse the match.
4238 * Generally the "bad" conversions are all uniformly assigned a 100. */
4239
4240 struct rank
4241 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4242 {
4243 struct rank rank = {0,0};
4244
4245 /* Resolve typedefs */
4246 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4247 parm = check_typedef (parm);
4248 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4249 arg = check_typedef (arg);
4250
4251 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4252 {
4253 if (VALUE_LVAL (value) == not_lval)
4254 {
4255 /* Rvalues should preferably bind to rvalue references or const
4256 lvalue references. */
4257 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4258 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4259 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4260 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4261 else
4262 return INCOMPATIBLE_TYPE_BADNESS;
4263 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4264 }
4265 else
4266 {
4267 /* Lvalues should prefer lvalue overloads. */
4268 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4269 {
4270 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4271 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4272 }
4273 }
4274 }
4275
4276 if (types_equal (parm, arg))
4277 {
4278 struct type *t1 = parm;
4279 struct type *t2 = arg;
4280
4281 /* For pointers and references, compare target type. */
4282 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4283 {
4284 t1 = TYPE_TARGET_TYPE (parm);
4285 t2 = TYPE_TARGET_TYPE (arg);
4286 }
4287
4288 /* Make sure they are CV equal, too. */
4289 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4290 rank.subrank |= CV_CONVERSION_CONST;
4291 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4292 rank.subrank |= CV_CONVERSION_VOLATILE;
4293 if (rank.subrank != 0)
4294 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4295 return EXACT_MATCH_BADNESS;
4296 }
4297
4298 /* See through references, since we can almost make non-references
4299 references. */
4300
4301 if (TYPE_IS_REFERENCE (arg))
4302 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4303 REFERENCE_CONVERSION_BADNESS));
4304 if (TYPE_IS_REFERENCE (parm))
4305 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4306 REFERENCE_CONVERSION_BADNESS));
4307 if (overload_debug)
4308 /* Debugging only. */
4309 fprintf_filtered (gdb_stderr,
4310 "------ Arg is %s [%d], parm is %s [%d]\n",
4311 TYPE_NAME (arg), TYPE_CODE (arg),
4312 TYPE_NAME (parm), TYPE_CODE (parm));
4313
4314 /* x -> y means arg of type x being supplied for parameter of type y. */
4315
4316 switch (TYPE_CODE (parm))
4317 {
4318 case TYPE_CODE_PTR:
4319 return rank_one_type_parm_ptr (parm, arg, value);
4320 case TYPE_CODE_ARRAY:
4321 return rank_one_type_parm_array (parm, arg, value);
4322 case TYPE_CODE_FUNC:
4323 return rank_one_type_parm_func (parm, arg, value);
4324 case TYPE_CODE_INT:
4325 return rank_one_type_parm_int (parm, arg, value);
4326 case TYPE_CODE_ENUM:
4327 return rank_one_type_parm_enum (parm, arg, value);
4328 case TYPE_CODE_CHAR:
4329 return rank_one_type_parm_char (parm, arg, value);
4330 case TYPE_CODE_RANGE:
4331 return rank_one_type_parm_range (parm, arg, value);
4332 case TYPE_CODE_BOOL:
4333 return rank_one_type_parm_bool (parm, arg, value);
4334 case TYPE_CODE_FLT:
4335 return rank_one_type_parm_float (parm, arg, value);
4336 case TYPE_CODE_COMPLEX:
4337 return rank_one_type_parm_complex (parm, arg, value);
4338 case TYPE_CODE_STRUCT:
4339 return rank_one_type_parm_struct (parm, arg, value);
4340 case TYPE_CODE_SET:
4341 return rank_one_type_parm_set (parm, arg, value);
4342 default:
4343 return INCOMPATIBLE_TYPE_BADNESS;
4344 } /* switch (TYPE_CODE (arg)) */
4345 }
4346
4347 /* End of functions for overload resolution. */
4348 \f
4349 /* Routines to pretty-print types. */
4350
4351 static void
4352 print_bit_vector (B_TYPE *bits, int nbits)
4353 {
4354 int bitno;
4355
4356 for (bitno = 0; bitno < nbits; bitno++)
4357 {
4358 if ((bitno % 8) == 0)
4359 {
4360 puts_filtered (" ");
4361 }
4362 if (B_TST (bits, bitno))
4363 printf_filtered (("1"));
4364 else
4365 printf_filtered (("0"));
4366 }
4367 }
4368
4369 /* Note the first arg should be the "this" pointer, we may not want to
4370 include it since we may get into a infinitely recursive
4371 situation. */
4372
4373 static void
4374 print_args (struct field *args, int nargs, int spaces)
4375 {
4376 if (args != NULL)
4377 {
4378 int i;
4379
4380 for (i = 0; i < nargs; i++)
4381 {
4382 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4383 args[i].name != NULL ? args[i].name : "<NULL>");
4384 recursive_dump_type (args[i].type, spaces + 2);
4385 }
4386 }
4387 }
4388
4389 int
4390 field_is_static (struct field *f)
4391 {
4392 /* "static" fields are the fields whose location is not relative
4393 to the address of the enclosing struct. It would be nice to
4394 have a dedicated flag that would be set for static fields when
4395 the type is being created. But in practice, checking the field
4396 loc_kind should give us an accurate answer. */
4397 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4398 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4399 }
4400
4401 static void
4402 dump_fn_fieldlists (struct type *type, int spaces)
4403 {
4404 int method_idx;
4405 int overload_idx;
4406 struct fn_field *f;
4407
4408 printfi_filtered (spaces, "fn_fieldlists ");
4409 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4410 printf_filtered ("\n");
4411 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4412 {
4413 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4414 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4415 method_idx,
4416 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4417 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4418 gdb_stdout);
4419 printf_filtered (_(") length %d\n"),
4420 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4421 for (overload_idx = 0;
4422 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4423 overload_idx++)
4424 {
4425 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4426 overload_idx,
4427 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4428 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4429 gdb_stdout);
4430 printf_filtered (")\n");
4431 printfi_filtered (spaces + 8, "type ");
4432 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4433 gdb_stdout);
4434 printf_filtered ("\n");
4435
4436 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4437 spaces + 8 + 2);
4438
4439 printfi_filtered (spaces + 8, "args ");
4440 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4441 gdb_stdout);
4442 printf_filtered ("\n");
4443 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4444 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4445 spaces + 8 + 2);
4446 printfi_filtered (spaces + 8, "fcontext ");
4447 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4448 gdb_stdout);
4449 printf_filtered ("\n");
4450
4451 printfi_filtered (spaces + 8, "is_const %d\n",
4452 TYPE_FN_FIELD_CONST (f, overload_idx));
4453 printfi_filtered (spaces + 8, "is_volatile %d\n",
4454 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4455 printfi_filtered (spaces + 8, "is_private %d\n",
4456 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4457 printfi_filtered (spaces + 8, "is_protected %d\n",
4458 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4459 printfi_filtered (spaces + 8, "is_stub %d\n",
4460 TYPE_FN_FIELD_STUB (f, overload_idx));
4461 printfi_filtered (spaces + 8, "voffset %u\n",
4462 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4463 }
4464 }
4465 }
4466
4467 static void
4468 print_cplus_stuff (struct type *type, int spaces)
4469 {
4470 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4471 printfi_filtered (spaces, "vptr_basetype ");
4472 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4473 puts_filtered ("\n");
4474 if (TYPE_VPTR_BASETYPE (type) != NULL)
4475 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4476
4477 printfi_filtered (spaces, "n_baseclasses %d\n",
4478 TYPE_N_BASECLASSES (type));
4479 printfi_filtered (spaces, "nfn_fields %d\n",
4480 TYPE_NFN_FIELDS (type));
4481 if (TYPE_N_BASECLASSES (type) > 0)
4482 {
4483 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4484 TYPE_N_BASECLASSES (type));
4485 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4486 gdb_stdout);
4487 printf_filtered (")");
4488
4489 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4490 TYPE_N_BASECLASSES (type));
4491 puts_filtered ("\n");
4492 }
4493 if (TYPE_NFIELDS (type) > 0)
4494 {
4495 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4496 {
4497 printfi_filtered (spaces,
4498 "private_field_bits (%d bits at *",
4499 TYPE_NFIELDS (type));
4500 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4501 gdb_stdout);
4502 printf_filtered (")");
4503 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4504 TYPE_NFIELDS (type));
4505 puts_filtered ("\n");
4506 }
4507 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4508 {
4509 printfi_filtered (spaces,
4510 "protected_field_bits (%d bits at *",
4511 TYPE_NFIELDS (type));
4512 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4513 gdb_stdout);
4514 printf_filtered (")");
4515 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4516 TYPE_NFIELDS (type));
4517 puts_filtered ("\n");
4518 }
4519 }
4520 if (TYPE_NFN_FIELDS (type) > 0)
4521 {
4522 dump_fn_fieldlists (type, spaces);
4523 }
4524 }
4525
4526 /* Print the contents of the TYPE's type_specific union, assuming that
4527 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4528
4529 static void
4530 print_gnat_stuff (struct type *type, int spaces)
4531 {
4532 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4533
4534 if (descriptive_type == NULL)
4535 printfi_filtered (spaces + 2, "no descriptive type\n");
4536 else
4537 {
4538 printfi_filtered (spaces + 2, "descriptive type\n");
4539 recursive_dump_type (descriptive_type, spaces + 4);
4540 }
4541 }
4542
4543 static struct obstack dont_print_type_obstack;
4544
4545 void
4546 recursive_dump_type (struct type *type, int spaces)
4547 {
4548 int idx;
4549
4550 if (spaces == 0)
4551 obstack_begin (&dont_print_type_obstack, 0);
4552
4553 if (TYPE_NFIELDS (type) > 0
4554 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4555 {
4556 struct type **first_dont_print
4557 = (struct type **) obstack_base (&dont_print_type_obstack);
4558
4559 int i = (struct type **)
4560 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4561
4562 while (--i >= 0)
4563 {
4564 if (type == first_dont_print[i])
4565 {
4566 printfi_filtered (spaces, "type node ");
4567 gdb_print_host_address (type, gdb_stdout);
4568 printf_filtered (_(" <same as already seen type>\n"));
4569 return;
4570 }
4571 }
4572
4573 obstack_ptr_grow (&dont_print_type_obstack, type);
4574 }
4575
4576 printfi_filtered (spaces, "type node ");
4577 gdb_print_host_address (type, gdb_stdout);
4578 printf_filtered ("\n");
4579 printfi_filtered (spaces, "name '%s' (",
4580 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4581 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4582 printf_filtered (")\n");
4583 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4584 switch (TYPE_CODE (type))
4585 {
4586 case TYPE_CODE_UNDEF:
4587 printf_filtered ("(TYPE_CODE_UNDEF)");
4588 break;
4589 case TYPE_CODE_PTR:
4590 printf_filtered ("(TYPE_CODE_PTR)");
4591 break;
4592 case TYPE_CODE_ARRAY:
4593 printf_filtered ("(TYPE_CODE_ARRAY)");
4594 break;
4595 case TYPE_CODE_STRUCT:
4596 printf_filtered ("(TYPE_CODE_STRUCT)");
4597 break;
4598 case TYPE_CODE_UNION:
4599 printf_filtered ("(TYPE_CODE_UNION)");
4600 break;
4601 case TYPE_CODE_ENUM:
4602 printf_filtered ("(TYPE_CODE_ENUM)");
4603 break;
4604 case TYPE_CODE_FLAGS:
4605 printf_filtered ("(TYPE_CODE_FLAGS)");
4606 break;
4607 case TYPE_CODE_FUNC:
4608 printf_filtered ("(TYPE_CODE_FUNC)");
4609 break;
4610 case TYPE_CODE_INT:
4611 printf_filtered ("(TYPE_CODE_INT)");
4612 break;
4613 case TYPE_CODE_FLT:
4614 printf_filtered ("(TYPE_CODE_FLT)");
4615 break;
4616 case TYPE_CODE_VOID:
4617 printf_filtered ("(TYPE_CODE_VOID)");
4618 break;
4619 case TYPE_CODE_SET:
4620 printf_filtered ("(TYPE_CODE_SET)");
4621 break;
4622 case TYPE_CODE_RANGE:
4623 printf_filtered ("(TYPE_CODE_RANGE)");
4624 break;
4625 case TYPE_CODE_STRING:
4626 printf_filtered ("(TYPE_CODE_STRING)");
4627 break;
4628 case TYPE_CODE_ERROR:
4629 printf_filtered ("(TYPE_CODE_ERROR)");
4630 break;
4631 case TYPE_CODE_MEMBERPTR:
4632 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4633 break;
4634 case TYPE_CODE_METHODPTR:
4635 printf_filtered ("(TYPE_CODE_METHODPTR)");
4636 break;
4637 case TYPE_CODE_METHOD:
4638 printf_filtered ("(TYPE_CODE_METHOD)");
4639 break;
4640 case TYPE_CODE_REF:
4641 printf_filtered ("(TYPE_CODE_REF)");
4642 break;
4643 case TYPE_CODE_CHAR:
4644 printf_filtered ("(TYPE_CODE_CHAR)");
4645 break;
4646 case TYPE_CODE_BOOL:
4647 printf_filtered ("(TYPE_CODE_BOOL)");
4648 break;
4649 case TYPE_CODE_COMPLEX:
4650 printf_filtered ("(TYPE_CODE_COMPLEX)");
4651 break;
4652 case TYPE_CODE_TYPEDEF:
4653 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4654 break;
4655 case TYPE_CODE_NAMESPACE:
4656 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4657 break;
4658 default:
4659 printf_filtered ("(UNKNOWN TYPE CODE)");
4660 break;
4661 }
4662 puts_filtered ("\n");
4663 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4664 if (TYPE_OBJFILE_OWNED (type))
4665 {
4666 printfi_filtered (spaces, "objfile ");
4667 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4668 }
4669 else
4670 {
4671 printfi_filtered (spaces, "gdbarch ");
4672 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4673 }
4674 printf_filtered ("\n");
4675 printfi_filtered (spaces, "target_type ");
4676 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4677 printf_filtered ("\n");
4678 if (TYPE_TARGET_TYPE (type) != NULL)
4679 {
4680 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4681 }
4682 printfi_filtered (spaces, "pointer_type ");
4683 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4684 printf_filtered ("\n");
4685 printfi_filtered (spaces, "reference_type ");
4686 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4687 printf_filtered ("\n");
4688 printfi_filtered (spaces, "type_chain ");
4689 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4690 printf_filtered ("\n");
4691 printfi_filtered (spaces, "instance_flags 0x%x",
4692 TYPE_INSTANCE_FLAGS (type));
4693 if (TYPE_CONST (type))
4694 {
4695 puts_filtered (" TYPE_CONST");
4696 }
4697 if (TYPE_VOLATILE (type))
4698 {
4699 puts_filtered (" TYPE_VOLATILE");
4700 }
4701 if (TYPE_CODE_SPACE (type))
4702 {
4703 puts_filtered (" TYPE_CODE_SPACE");
4704 }
4705 if (TYPE_DATA_SPACE (type))
4706 {
4707 puts_filtered (" TYPE_DATA_SPACE");
4708 }
4709 if (TYPE_ADDRESS_CLASS_1 (type))
4710 {
4711 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4712 }
4713 if (TYPE_ADDRESS_CLASS_2 (type))
4714 {
4715 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4716 }
4717 if (TYPE_RESTRICT (type))
4718 {
4719 puts_filtered (" TYPE_RESTRICT");
4720 }
4721 if (TYPE_ATOMIC (type))
4722 {
4723 puts_filtered (" TYPE_ATOMIC");
4724 }
4725 puts_filtered ("\n");
4726
4727 printfi_filtered (spaces, "flags");
4728 if (TYPE_UNSIGNED (type))
4729 {
4730 puts_filtered (" TYPE_UNSIGNED");
4731 }
4732 if (TYPE_NOSIGN (type))
4733 {
4734 puts_filtered (" TYPE_NOSIGN");
4735 }
4736 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4737 {
4738 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4739 }
4740 if (TYPE_STUB (type))
4741 {
4742 puts_filtered (" TYPE_STUB");
4743 }
4744 if (TYPE_TARGET_STUB (type))
4745 {
4746 puts_filtered (" TYPE_TARGET_STUB");
4747 }
4748 if (TYPE_PROTOTYPED (type))
4749 {
4750 puts_filtered (" TYPE_PROTOTYPED");
4751 }
4752 if (TYPE_INCOMPLETE (type))
4753 {
4754 puts_filtered (" TYPE_INCOMPLETE");
4755 }
4756 if (TYPE_VARARGS (type))
4757 {
4758 puts_filtered (" TYPE_VARARGS");
4759 }
4760 /* This is used for things like AltiVec registers on ppc. Gcc emits
4761 an attribute for the array type, which tells whether or not we
4762 have a vector, instead of a regular array. */
4763 if (TYPE_VECTOR (type))
4764 {
4765 puts_filtered (" TYPE_VECTOR");
4766 }
4767 if (TYPE_FIXED_INSTANCE (type))
4768 {
4769 puts_filtered (" TYPE_FIXED_INSTANCE");
4770 }
4771 if (TYPE_STUB_SUPPORTED (type))
4772 {
4773 puts_filtered (" TYPE_STUB_SUPPORTED");
4774 }
4775 if (TYPE_NOTTEXT (type))
4776 {
4777 puts_filtered (" TYPE_NOTTEXT");
4778 }
4779 puts_filtered ("\n");
4780 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4781 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4782 puts_filtered ("\n");
4783 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4784 {
4785 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4786 printfi_filtered (spaces + 2,
4787 "[%d] enumval %s type ",
4788 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4789 else
4790 printfi_filtered (spaces + 2,
4791 "[%d] bitpos %s bitsize %d type ",
4792 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4793 TYPE_FIELD_BITSIZE (type, idx));
4794 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4795 printf_filtered (" name '%s' (",
4796 TYPE_FIELD_NAME (type, idx) != NULL
4797 ? TYPE_FIELD_NAME (type, idx)
4798 : "<NULL>");
4799 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4800 printf_filtered (")\n");
4801 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4802 {
4803 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4804 }
4805 }
4806 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4807 {
4808 printfi_filtered (spaces, "low %s%s high %s%s\n",
4809 plongest (TYPE_LOW_BOUND (type)),
4810 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4811 plongest (TYPE_HIGH_BOUND (type)),
4812 TYPE_HIGH_BOUND_UNDEFINED (type)
4813 ? " (undefined)" : "");
4814 }
4815
4816 switch (TYPE_SPECIFIC_FIELD (type))
4817 {
4818 case TYPE_SPECIFIC_CPLUS_STUFF:
4819 printfi_filtered (spaces, "cplus_stuff ");
4820 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4821 gdb_stdout);
4822 puts_filtered ("\n");
4823 print_cplus_stuff (type, spaces);
4824 break;
4825
4826 case TYPE_SPECIFIC_GNAT_STUFF:
4827 printfi_filtered (spaces, "gnat_stuff ");
4828 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4829 puts_filtered ("\n");
4830 print_gnat_stuff (type, spaces);
4831 break;
4832
4833 case TYPE_SPECIFIC_FLOATFORMAT:
4834 printfi_filtered (spaces, "floatformat ");
4835 if (TYPE_FLOATFORMAT (type) == NULL
4836 || TYPE_FLOATFORMAT (type)->name == NULL)
4837 puts_filtered ("(null)");
4838 else
4839 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4840 puts_filtered ("\n");
4841 break;
4842
4843 case TYPE_SPECIFIC_FUNC:
4844 printfi_filtered (spaces, "calling_convention %d\n",
4845 TYPE_CALLING_CONVENTION (type));
4846 /* tail_call_list is not printed. */
4847 break;
4848
4849 case TYPE_SPECIFIC_SELF_TYPE:
4850 printfi_filtered (spaces, "self_type ");
4851 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4852 puts_filtered ("\n");
4853 break;
4854 }
4855
4856 if (spaces == 0)
4857 obstack_free (&dont_print_type_obstack, NULL);
4858 }
4859 \f
4860 /* Trivial helpers for the libiberty hash table, for mapping one
4861 type to another. */
4862
4863 struct type_pair : public allocate_on_obstack
4864 {
4865 type_pair (struct type *old_, struct type *newobj_)
4866 : old (old_), newobj (newobj_)
4867 {}
4868
4869 struct type * const old, * const newobj;
4870 };
4871
4872 static hashval_t
4873 type_pair_hash (const void *item)
4874 {
4875 const struct type_pair *pair = (const struct type_pair *) item;
4876
4877 return htab_hash_pointer (pair->old);
4878 }
4879
4880 static int
4881 type_pair_eq (const void *item_lhs, const void *item_rhs)
4882 {
4883 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4884 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4885
4886 return lhs->old == rhs->old;
4887 }
4888
4889 /* Allocate the hash table used by copy_type_recursive to walk
4890 types without duplicates. We use OBJFILE's obstack, because
4891 OBJFILE is about to be deleted. */
4892
4893 htab_t
4894 create_copied_types_hash (struct objfile *objfile)
4895 {
4896 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4897 NULL, &objfile->objfile_obstack,
4898 hashtab_obstack_allocate,
4899 dummy_obstack_deallocate);
4900 }
4901
4902 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4903
4904 static struct dynamic_prop_list *
4905 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4906 struct dynamic_prop_list *list)
4907 {
4908 struct dynamic_prop_list *copy = list;
4909 struct dynamic_prop_list **node_ptr = &copy;
4910
4911 while (*node_ptr != NULL)
4912 {
4913 struct dynamic_prop_list *node_copy;
4914
4915 node_copy = ((struct dynamic_prop_list *)
4916 obstack_copy (objfile_obstack, *node_ptr,
4917 sizeof (struct dynamic_prop_list)));
4918 node_copy->prop = (*node_ptr)->prop;
4919 *node_ptr = node_copy;
4920
4921 node_ptr = &node_copy->next;
4922 }
4923
4924 return copy;
4925 }
4926
4927 /* Recursively copy (deep copy) TYPE, if it is associated with
4928 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4929 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4930 it is not associated with OBJFILE. */
4931
4932 struct type *
4933 copy_type_recursive (struct objfile *objfile,
4934 struct type *type,
4935 htab_t copied_types)
4936 {
4937 void **slot;
4938 struct type *new_type;
4939
4940 if (! TYPE_OBJFILE_OWNED (type))
4941 return type;
4942
4943 /* This type shouldn't be pointing to any types in other objfiles;
4944 if it did, the type might disappear unexpectedly. */
4945 gdb_assert (TYPE_OBJFILE (type) == objfile);
4946
4947 struct type_pair pair (type, nullptr);
4948
4949 slot = htab_find_slot (copied_types, &pair, INSERT);
4950 if (*slot != NULL)
4951 return ((struct type_pair *) *slot)->newobj;
4952
4953 new_type = alloc_type_arch (get_type_arch (type));
4954
4955 /* We must add the new type to the hash table immediately, in case
4956 we encounter this type again during a recursive call below. */
4957 struct type_pair *stored
4958 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4959
4960 *slot = stored;
4961
4962 /* Copy the common fields of types. For the main type, we simply
4963 copy the entire thing and then update specific fields as needed. */
4964 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4965 TYPE_OBJFILE_OWNED (new_type) = 0;
4966 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4967
4968 if (TYPE_NAME (type))
4969 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4970
4971 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4972 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4973
4974 /* Copy the fields. */
4975 if (TYPE_NFIELDS (type))
4976 {
4977 int i, nfields;
4978
4979 nfields = TYPE_NFIELDS (type);
4980 TYPE_FIELDS (new_type) = (struct field *)
4981 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4982 for (i = 0; i < nfields; i++)
4983 {
4984 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4985 TYPE_FIELD_ARTIFICIAL (type, i);
4986 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4987 if (TYPE_FIELD_TYPE (type, i))
4988 TYPE_FIELD_TYPE (new_type, i)
4989 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4990 copied_types);
4991 if (TYPE_FIELD_NAME (type, i))
4992 TYPE_FIELD_NAME (new_type, i) =
4993 xstrdup (TYPE_FIELD_NAME (type, i));
4994 switch (TYPE_FIELD_LOC_KIND (type, i))
4995 {
4996 case FIELD_LOC_KIND_BITPOS:
4997 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4998 TYPE_FIELD_BITPOS (type, i));
4999 break;
5000 case FIELD_LOC_KIND_ENUMVAL:
5001 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5002 TYPE_FIELD_ENUMVAL (type, i));
5003 break;
5004 case FIELD_LOC_KIND_PHYSADDR:
5005 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5006 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5007 break;
5008 case FIELD_LOC_KIND_PHYSNAME:
5009 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5010 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5011 i)));
5012 break;
5013 default:
5014 internal_error (__FILE__, __LINE__,
5015 _("Unexpected type field location kind: %d"),
5016 TYPE_FIELD_LOC_KIND (type, i));
5017 }
5018 }
5019 }
5020
5021 /* For range types, copy the bounds information. */
5022 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5023 {
5024 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5025 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5026 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5027 }
5028
5029 if (TYPE_DYN_PROP_LIST (type) != NULL)
5030 TYPE_DYN_PROP_LIST (new_type)
5031 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5032 TYPE_DYN_PROP_LIST (type));
5033
5034
5035 /* Copy pointers to other types. */
5036 if (TYPE_TARGET_TYPE (type))
5037 TYPE_TARGET_TYPE (new_type) =
5038 copy_type_recursive (objfile,
5039 TYPE_TARGET_TYPE (type),
5040 copied_types);
5041
5042 /* Maybe copy the type_specific bits.
5043
5044 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5045 base classes and methods. There's no fundamental reason why we
5046 can't, but at the moment it is not needed. */
5047
5048 switch (TYPE_SPECIFIC_FIELD (type))
5049 {
5050 case TYPE_SPECIFIC_NONE:
5051 break;
5052 case TYPE_SPECIFIC_FUNC:
5053 INIT_FUNC_SPECIFIC (new_type);
5054 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5055 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5056 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5057 break;
5058 case TYPE_SPECIFIC_FLOATFORMAT:
5059 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5060 break;
5061 case TYPE_SPECIFIC_CPLUS_STUFF:
5062 INIT_CPLUS_SPECIFIC (new_type);
5063 break;
5064 case TYPE_SPECIFIC_GNAT_STUFF:
5065 INIT_GNAT_SPECIFIC (new_type);
5066 break;
5067 case TYPE_SPECIFIC_SELF_TYPE:
5068 set_type_self_type (new_type,
5069 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5070 copied_types));
5071 break;
5072 default:
5073 gdb_assert_not_reached ("bad type_specific_kind");
5074 }
5075
5076 return new_type;
5077 }
5078
5079 /* Make a copy of the given TYPE, except that the pointer & reference
5080 types are not preserved.
5081
5082 This function assumes that the given type has an associated objfile.
5083 This objfile is used to allocate the new type. */
5084
5085 struct type *
5086 copy_type (const struct type *type)
5087 {
5088 struct type *new_type;
5089
5090 gdb_assert (TYPE_OBJFILE_OWNED (type));
5091
5092 new_type = alloc_type_copy (type);
5093 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5094 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5095 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5096 sizeof (struct main_type));
5097 if (TYPE_DYN_PROP_LIST (type) != NULL)
5098 TYPE_DYN_PROP_LIST (new_type)
5099 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5100 TYPE_DYN_PROP_LIST (type));
5101
5102 return new_type;
5103 }
5104 \f
5105 /* Helper functions to initialize architecture-specific types. */
5106
5107 /* Allocate a type structure associated with GDBARCH and set its
5108 CODE, LENGTH, and NAME fields. */
5109
5110 struct type *
5111 arch_type (struct gdbarch *gdbarch,
5112 enum type_code code, int bit, const char *name)
5113 {
5114 struct type *type;
5115
5116 type = alloc_type_arch (gdbarch);
5117 set_type_code (type, code);
5118 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5119 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5120
5121 if (name)
5122 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5123
5124 return type;
5125 }
5126
5127 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5128 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5129 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5130
5131 struct type *
5132 arch_integer_type (struct gdbarch *gdbarch,
5133 int bit, int unsigned_p, const char *name)
5134 {
5135 struct type *t;
5136
5137 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5138 if (unsigned_p)
5139 TYPE_UNSIGNED (t) = 1;
5140
5141 return t;
5142 }
5143
5144 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5145 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5146 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5147
5148 struct type *
5149 arch_character_type (struct gdbarch *gdbarch,
5150 int bit, int unsigned_p, const char *name)
5151 {
5152 struct type *t;
5153
5154 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5155 if (unsigned_p)
5156 TYPE_UNSIGNED (t) = 1;
5157
5158 return t;
5159 }
5160
5161 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5162 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5163 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5164
5165 struct type *
5166 arch_boolean_type (struct gdbarch *gdbarch,
5167 int bit, int unsigned_p, const char *name)
5168 {
5169 struct type *t;
5170
5171 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5172 if (unsigned_p)
5173 TYPE_UNSIGNED (t) = 1;
5174
5175 return t;
5176 }
5177
5178 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5179 BIT is the type size in bits; if BIT equals -1, the size is
5180 determined by the floatformat. NAME is the type name. Set the
5181 TYPE_FLOATFORMAT from FLOATFORMATS. */
5182
5183 struct type *
5184 arch_float_type (struct gdbarch *gdbarch,
5185 int bit, const char *name,
5186 const struct floatformat **floatformats)
5187 {
5188 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5189 struct type *t;
5190
5191 bit = verify_floatformat (bit, fmt);
5192 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5193 TYPE_FLOATFORMAT (t) = fmt;
5194
5195 return t;
5196 }
5197
5198 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5199 BIT is the type size in bits. NAME is the type name. */
5200
5201 struct type *
5202 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5203 {
5204 struct type *t;
5205
5206 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5207 return t;
5208 }
5209
5210 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5211 NAME is the type name. TARGET_TYPE is the component float type. */
5212
5213 struct type *
5214 arch_complex_type (struct gdbarch *gdbarch,
5215 const char *name, struct type *target_type)
5216 {
5217 struct type *t;
5218
5219 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5220 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5221 TYPE_TARGET_TYPE (t) = target_type;
5222 return t;
5223 }
5224
5225 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5226 BIT is the pointer type size in bits. NAME is the type name.
5227 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5228 TYPE_UNSIGNED flag. */
5229
5230 struct type *
5231 arch_pointer_type (struct gdbarch *gdbarch,
5232 int bit, const char *name, struct type *target_type)
5233 {
5234 struct type *t;
5235
5236 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5237 TYPE_TARGET_TYPE (t) = target_type;
5238 TYPE_UNSIGNED (t) = 1;
5239 return t;
5240 }
5241
5242 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5243 NAME is the type name. BIT is the size of the flag word in bits. */
5244
5245 struct type *
5246 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5247 {
5248 struct type *type;
5249
5250 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5251 TYPE_UNSIGNED (type) = 1;
5252 TYPE_NFIELDS (type) = 0;
5253 /* Pre-allocate enough space assuming every field is one bit. */
5254 TYPE_FIELDS (type)
5255 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5256
5257 return type;
5258 }
5259
5260 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5261 position BITPOS is called NAME. Pass NAME as "" for fields that
5262 should not be printed. */
5263
5264 void
5265 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5266 struct type *field_type, const char *name)
5267 {
5268 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5269 int field_nr = TYPE_NFIELDS (type);
5270
5271 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5272 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5273 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5274 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5275 gdb_assert (name != NULL);
5276
5277 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5278 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5279 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5280 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5281 ++TYPE_NFIELDS (type);
5282 }
5283
5284 /* Special version of append_flags_type_field to add a flag field.
5285 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5286 position BITPOS is called NAME. */
5287
5288 void
5289 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5290 {
5291 struct gdbarch *gdbarch = get_type_arch (type);
5292
5293 append_flags_type_field (type, bitpos, 1,
5294 builtin_type (gdbarch)->builtin_bool,
5295 name);
5296 }
5297
5298 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5299 specified by CODE) associated with GDBARCH. NAME is the type name. */
5300
5301 struct type *
5302 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5303 enum type_code code)
5304 {
5305 struct type *t;
5306
5307 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5308 t = arch_type (gdbarch, code, 0, NULL);
5309 TYPE_NAME (t) = name;
5310 INIT_CPLUS_SPECIFIC (t);
5311 return t;
5312 }
5313
5314 /* Add new field with name NAME and type FIELD to composite type T.
5315 Do not set the field's position or adjust the type's length;
5316 the caller should do so. Return the new field. */
5317
5318 struct field *
5319 append_composite_type_field_raw (struct type *t, const char *name,
5320 struct type *field)
5321 {
5322 struct field *f;
5323
5324 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5325 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5326 TYPE_NFIELDS (t));
5327 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5328 memset (f, 0, sizeof f[0]);
5329 FIELD_TYPE (f[0]) = field;
5330 FIELD_NAME (f[0]) = name;
5331 return f;
5332 }
5333
5334 /* Add new field with name NAME and type FIELD to composite type T.
5335 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5336
5337 void
5338 append_composite_type_field_aligned (struct type *t, const char *name,
5339 struct type *field, int alignment)
5340 {
5341 struct field *f = append_composite_type_field_raw (t, name, field);
5342
5343 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5344 {
5345 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5346 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5347 }
5348 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5349 {
5350 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5351 if (TYPE_NFIELDS (t) > 1)
5352 {
5353 SET_FIELD_BITPOS (f[0],
5354 (FIELD_BITPOS (f[-1])
5355 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5356 * TARGET_CHAR_BIT)));
5357
5358 if (alignment)
5359 {
5360 int left;
5361
5362 alignment *= TARGET_CHAR_BIT;
5363 left = FIELD_BITPOS (f[0]) % alignment;
5364
5365 if (left)
5366 {
5367 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5368 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5369 }
5370 }
5371 }
5372 }
5373 }
5374
5375 /* Add new field with name NAME and type FIELD to composite type T. */
5376
5377 void
5378 append_composite_type_field (struct type *t, const char *name,
5379 struct type *field)
5380 {
5381 append_composite_type_field_aligned (t, name, field, 0);
5382 }
5383
5384 static struct gdbarch_data *gdbtypes_data;
5385
5386 const struct builtin_type *
5387 builtin_type (struct gdbarch *gdbarch)
5388 {
5389 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5390 }
5391
5392 static void *
5393 gdbtypes_post_init (struct gdbarch *gdbarch)
5394 {
5395 struct builtin_type *builtin_type
5396 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5397
5398 /* Basic types. */
5399 builtin_type->builtin_void
5400 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5401 builtin_type->builtin_char
5402 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5403 !gdbarch_char_signed (gdbarch), "char");
5404 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5405 builtin_type->builtin_signed_char
5406 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5407 0, "signed char");
5408 builtin_type->builtin_unsigned_char
5409 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5410 1, "unsigned char");
5411 builtin_type->builtin_short
5412 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5413 0, "short");
5414 builtin_type->builtin_unsigned_short
5415 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5416 1, "unsigned short");
5417 builtin_type->builtin_int
5418 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5419 0, "int");
5420 builtin_type->builtin_unsigned_int
5421 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5422 1, "unsigned int");
5423 builtin_type->builtin_long
5424 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5425 0, "long");
5426 builtin_type->builtin_unsigned_long
5427 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5428 1, "unsigned long");
5429 builtin_type->builtin_long_long
5430 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5431 0, "long long");
5432 builtin_type->builtin_unsigned_long_long
5433 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5434 1, "unsigned long long");
5435 builtin_type->builtin_half
5436 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5437 "half", gdbarch_half_format (gdbarch));
5438 builtin_type->builtin_float
5439 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5440 "float", gdbarch_float_format (gdbarch));
5441 builtin_type->builtin_double
5442 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5443 "double", gdbarch_double_format (gdbarch));
5444 builtin_type->builtin_long_double
5445 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5446 "long double", gdbarch_long_double_format (gdbarch));
5447 builtin_type->builtin_complex
5448 = arch_complex_type (gdbarch, "complex",
5449 builtin_type->builtin_float);
5450 builtin_type->builtin_double_complex
5451 = arch_complex_type (gdbarch, "double complex",
5452 builtin_type->builtin_double);
5453 builtin_type->builtin_string
5454 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5455 builtin_type->builtin_bool
5456 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5457
5458 /* The following three are about decimal floating point types, which
5459 are 32-bits, 64-bits and 128-bits respectively. */
5460 builtin_type->builtin_decfloat
5461 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5462 builtin_type->builtin_decdouble
5463 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5464 builtin_type->builtin_declong
5465 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5466
5467 /* "True" character types. */
5468 builtin_type->builtin_true_char
5469 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5470 builtin_type->builtin_true_unsigned_char
5471 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5472
5473 /* Fixed-size integer types. */
5474 builtin_type->builtin_int0
5475 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5476 builtin_type->builtin_int8
5477 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5478 builtin_type->builtin_uint8
5479 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5480 builtin_type->builtin_int16
5481 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5482 builtin_type->builtin_uint16
5483 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5484 builtin_type->builtin_int24
5485 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5486 builtin_type->builtin_uint24
5487 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5488 builtin_type->builtin_int32
5489 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5490 builtin_type->builtin_uint32
5491 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5492 builtin_type->builtin_int64
5493 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5494 builtin_type->builtin_uint64
5495 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5496 builtin_type->builtin_int128
5497 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5498 builtin_type->builtin_uint128
5499 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5500 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5501 TYPE_INSTANCE_FLAG_NOTTEXT;
5502 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5503 TYPE_INSTANCE_FLAG_NOTTEXT;
5504
5505 /* Wide character types. */
5506 builtin_type->builtin_char16
5507 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5508 builtin_type->builtin_char32
5509 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5510 builtin_type->builtin_wchar
5511 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5512 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5513
5514 /* Default data/code pointer types. */
5515 builtin_type->builtin_data_ptr
5516 = lookup_pointer_type (builtin_type->builtin_void);
5517 builtin_type->builtin_func_ptr
5518 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5519 builtin_type->builtin_func_func
5520 = lookup_function_type (builtin_type->builtin_func_ptr);
5521
5522 /* This type represents a GDB internal function. */
5523 builtin_type->internal_fn
5524 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5525 "<internal function>");
5526
5527 /* This type represents an xmethod. */
5528 builtin_type->xmethod
5529 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5530
5531 return builtin_type;
5532 }
5533
5534 /* This set of objfile-based types is intended to be used by symbol
5535 readers as basic types. */
5536
5537 static const struct objfile_key<struct objfile_type,
5538 gdb::noop_deleter<struct objfile_type>>
5539 objfile_type_data;
5540
5541 const struct objfile_type *
5542 objfile_type (struct objfile *objfile)
5543 {
5544 struct gdbarch *gdbarch;
5545 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5546
5547 if (objfile_type)
5548 return objfile_type;
5549
5550 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5551 1, struct objfile_type);
5552
5553 /* Use the objfile architecture to determine basic type properties. */
5554 gdbarch = get_objfile_arch (objfile);
5555
5556 /* Basic types. */
5557 objfile_type->builtin_void
5558 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5559 objfile_type->builtin_char
5560 = init_integer_type (objfile, TARGET_CHAR_BIT,
5561 !gdbarch_char_signed (gdbarch), "char");
5562 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5563 objfile_type->builtin_signed_char
5564 = init_integer_type (objfile, TARGET_CHAR_BIT,
5565 0, "signed char");
5566 objfile_type->builtin_unsigned_char
5567 = init_integer_type (objfile, TARGET_CHAR_BIT,
5568 1, "unsigned char");
5569 objfile_type->builtin_short
5570 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5571 0, "short");
5572 objfile_type->builtin_unsigned_short
5573 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5574 1, "unsigned short");
5575 objfile_type->builtin_int
5576 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5577 0, "int");
5578 objfile_type->builtin_unsigned_int
5579 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5580 1, "unsigned int");
5581 objfile_type->builtin_long
5582 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5583 0, "long");
5584 objfile_type->builtin_unsigned_long
5585 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5586 1, "unsigned long");
5587 objfile_type->builtin_long_long
5588 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5589 0, "long long");
5590 objfile_type->builtin_unsigned_long_long
5591 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5592 1, "unsigned long long");
5593 objfile_type->builtin_float
5594 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5595 "float", gdbarch_float_format (gdbarch));
5596 objfile_type->builtin_double
5597 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5598 "double", gdbarch_double_format (gdbarch));
5599 objfile_type->builtin_long_double
5600 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5601 "long double", gdbarch_long_double_format (gdbarch));
5602
5603 /* This type represents a type that was unrecognized in symbol read-in. */
5604 objfile_type->builtin_error
5605 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5606
5607 /* The following set of types is used for symbols with no
5608 debug information. */
5609 objfile_type->nodebug_text_symbol
5610 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5611 "<text variable, no debug info>");
5612 objfile_type->nodebug_text_gnu_ifunc_symbol
5613 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5614 "<text gnu-indirect-function variable, no debug info>");
5615 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5616 objfile_type->nodebug_got_plt_symbol
5617 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5618 "<text from jump slot in .got.plt, no debug info>",
5619 objfile_type->nodebug_text_symbol);
5620 objfile_type->nodebug_data_symbol
5621 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5622 objfile_type->nodebug_unknown_symbol
5623 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5624 objfile_type->nodebug_tls_symbol
5625 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5626
5627 /* NOTE: on some targets, addresses and pointers are not necessarily
5628 the same.
5629
5630 The upshot is:
5631 - gdb's `struct type' always describes the target's
5632 representation.
5633 - gdb's `struct value' objects should always hold values in
5634 target form.
5635 - gdb's CORE_ADDR values are addresses in the unified virtual
5636 address space that the assembler and linker work with. Thus,
5637 since target_read_memory takes a CORE_ADDR as an argument, it
5638 can access any memory on the target, even if the processor has
5639 separate code and data address spaces.
5640
5641 In this context, objfile_type->builtin_core_addr is a bit odd:
5642 it's a target type for a value the target will never see. It's
5643 only used to hold the values of (typeless) linker symbols, which
5644 are indeed in the unified virtual address space. */
5645
5646 objfile_type->builtin_core_addr
5647 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5648 "__CORE_ADDR");
5649
5650 objfile_type_data.set (objfile, objfile_type);
5651 return objfile_type;
5652 }
5653
5654 void
5655 _initialize_gdbtypes (void)
5656 {
5657 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5658
5659 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5660 _("Set debugging of C++ overloading."),
5661 _("Show debugging of C++ overloading."),
5662 _("When enabled, ranking of the "
5663 "functions is displayed."),
5664 NULL,
5665 show_overload_debug,
5666 &setdebuglist, &showdebuglist);
5667
5668 /* Add user knob for controlling resolution of opaque types. */
5669 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5670 &opaque_type_resolution,
5671 _("Set resolution of opaque struct/class/union"
5672 " types (if set before loading symbols)."),
5673 _("Show resolution of opaque struct/class/union"
5674 " types (if set before loading symbols)."),
5675 NULL, NULL,
5676 show_opaque_type_resolution,
5677 &setlist, &showlist);
5678
5679 /* Add an option to permit non-strict type checking. */
5680 add_setshow_boolean_cmd ("type", class_support,
5681 &strict_type_checking,
5682 _("Set strict type checking."),
5683 _("Show strict type checking."),
5684 NULL, NULL,
5685 show_strict_type_checking,
5686 &setchecklist, &showchecklist);
5687 }
5688
5689 /* See gdbtypes.h. */
5690 enum bfd_endian
5691 type_byte_order (const struct type *type)
5692 {
5693 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
5694 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5695 {
5696 if (byteorder == BFD_ENDIAN_BIG)
5697 return BFD_ENDIAN_LITTLE;
5698 else if (byteorder == BFD_ENDIAN_LITTLE)
5699 return BFD_ENDIAN_BIG;
5700 else
5701 return BFD_ENDIAN_UNKNOWN;
5702 }
5703
5704 return byteorder;
5705 }
This page took 0.145115 seconds and 3 git commands to generate.