Automatic Copyright Year update after running gdb/copyright.py
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include "f-lang.h"
43 #include <algorithm>
44 #include "gmp-utils.h"
45
46 /* Initialize BADNESS constants. */
47
48 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
49
50 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
51 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
52
53 const struct rank EXACT_MATCH_BADNESS = {0,0};
54
55 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
56 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
57 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
58 const struct rank CV_CONVERSION_BADNESS = {1, 0};
59 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
60 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
61 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
62 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
63 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
64 const struct rank BASE_CONVERSION_BADNESS = {2,0};
65 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
66 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
67 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
68 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
69 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
70
71 /* Floatformat pairs. */
72 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_half_big,
74 &floatformat_ieee_half_little
75 };
76 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_single_big,
78 &floatformat_ieee_single_little
79 };
80 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_little
83 };
84 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_ieee_double_big,
86 &floatformat_ieee_double_littlebyte_bigword
87 };
88 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_i387_ext,
90 &floatformat_i387_ext
91 };
92 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_m68881_ext,
94 &floatformat_m68881_ext
95 };
96 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_arm_ext_big,
98 &floatformat_arm_ext_littlebyte_bigword
99 };
100 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_spill_big,
102 &floatformat_ia64_spill_little
103 };
104 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_ia64_quad_big,
106 &floatformat_ia64_quad_little
107 };
108 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_f,
110 &floatformat_vax_f
111 };
112 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_vax_d,
114 &floatformat_vax_d
115 };
116 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
117 &floatformat_ibm_long_double_big,
118 &floatformat_ibm_long_double_little
119 };
120 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
121 &floatformat_bfloat16_big,
122 &floatformat_bfloat16_little
123 };
124
125 /* Should opaque types be resolved? */
126
127 static bool opaque_type_resolution = true;
128
129 /* See gdbtypes.h. */
130
131 unsigned int overload_debug = 0;
132
133 /* A flag to enable strict type checking. */
134
135 static bool strict_type_checking = true;
136
137 /* A function to show whether opaque types are resolved. */
138
139 static void
140 show_opaque_type_resolution (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c,
142 const char *value)
143 {
144 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
145 "(if set before loading symbols) is %s.\n"),
146 value);
147 }
148
149 /* A function to show whether C++ overload debugging is enabled. */
150
151 static void
152 show_overload_debug (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
156 value);
157 }
158
159 /* A function to show the status of strict type checking. */
160
161 static void
162 show_strict_type_checking (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
166 }
167
168 \f
169 /* Allocate a new OBJFILE-associated type structure and fill it
170 with some defaults. Space for the type structure is allocated
171 on the objfile's objfile_obstack. */
172
173 struct type *
174 alloc_type (struct objfile *objfile)
175 {
176 struct type *type;
177
178 gdb_assert (objfile != NULL);
179
180 /* Alloc the structure and start off with all fields zeroed. */
181 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
182 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
183 struct main_type);
184 OBJSTAT (objfile, n_types++);
185
186 type->set_owner (objfile);
187
188 /* Initialize the fields that might not be zero. */
189
190 type->set_code (TYPE_CODE_UNDEF);
191 TYPE_CHAIN (type) = type; /* Chain back to itself. */
192
193 return type;
194 }
195
196 /* Allocate a new GDBARCH-associated type structure and fill it
197 with some defaults. Space for the type structure is allocated
198 on the obstack associated with GDBARCH. */
199
200 struct type *
201 alloc_type_arch (struct gdbarch *gdbarch)
202 {
203 struct type *type;
204
205 gdb_assert (gdbarch != NULL);
206
207 /* Alloc the structure and start off with all fields zeroed. */
208
209 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
210 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
211
212 type->set_owner (gdbarch);
213
214 /* Initialize the fields that might not be zero. */
215
216 type->set_code (TYPE_CODE_UNDEF);
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220 }
221
222 /* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226 struct type *
227 alloc_type_copy (const struct type *type)
228 {
229 if (type->is_objfile_owned ())
230 return alloc_type (type->objfile_owner ());
231 else
232 return alloc_type_arch (type->arch_owner ());
233 }
234
235 /* See gdbtypes.h. */
236
237 gdbarch *
238 type::arch () const
239 {
240 struct gdbarch *arch;
241
242 if (this->is_objfile_owned ())
243 arch = this->objfile_owner ()->arch ();
244 else
245 arch = this->arch_owner ();
246
247 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
248 a gdbarch, however, this is very rare, and even then, in most cases
249 that type::arch is called, we assume that a non-NULL value is
250 returned. */
251 gdb_assert (arch != nullptr);
252 return arch;
253 }
254
255 /* See gdbtypes.h. */
256
257 struct type *
258 get_target_type (struct type *type)
259 {
260 if (type != NULL)
261 {
262 type = TYPE_TARGET_TYPE (type);
263 if (type != NULL)
264 type = check_typedef (type);
265 }
266
267 return type;
268 }
269
270 /* See gdbtypes.h. */
271
272 unsigned int
273 type_length_units (struct type *type)
274 {
275 int unit_size = gdbarch_addressable_memory_unit_size (type->arch ());
276
277 return TYPE_LENGTH (type) / unit_size;
278 }
279
280 /* Alloc a new type instance structure, fill it with some defaults,
281 and point it at OLDTYPE. Allocate the new type instance from the
282 same place as OLDTYPE. */
283
284 static struct type *
285 alloc_type_instance (struct type *oldtype)
286 {
287 struct type *type;
288
289 /* Allocate the structure. */
290
291 if (!oldtype->is_objfile_owned ())
292 type = GDBARCH_OBSTACK_ZALLOC (oldtype->arch_owner (), struct type);
293 else
294 type = OBSTACK_ZALLOC (&oldtype->objfile_owner ()->objfile_obstack,
295 struct type);
296
297 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
298
299 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
300
301 return type;
302 }
303
304 /* Clear all remnants of the previous type at TYPE, in preparation for
305 replacing it with something else. Preserve owner information. */
306
307 static void
308 smash_type (struct type *type)
309 {
310 bool objfile_owned = type->is_objfile_owned ();
311 objfile *objfile = type->objfile_owner ();
312 gdbarch *arch = type->arch_owner ();
313
314 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
315
316 /* Restore owner information. */
317 if (objfile_owned)
318 type->set_owner (objfile);
319 else
320 type->set_owner (arch);
321
322 /* For now, delete the rings. */
323 TYPE_CHAIN (type) = type;
324
325 /* For now, leave the pointer/reference types alone. */
326 }
327
328 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
329 to a pointer to memory where the pointer type should be stored.
330 If *TYPEPTR is zero, update it to point to the pointer type we return.
331 We allocate new memory if needed. */
332
333 struct type *
334 make_pointer_type (struct type *type, struct type **typeptr)
335 {
336 struct type *ntype; /* New type */
337 struct type *chain;
338
339 ntype = TYPE_POINTER_TYPE (type);
340
341 if (ntype)
342 {
343 if (typeptr == 0)
344 return ntype; /* Don't care about alloc,
345 and have new type. */
346 else if (*typeptr == 0)
347 {
348 *typeptr = ntype; /* Tracking alloc, and have new type. */
349 return ntype;
350 }
351 }
352
353 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
354 {
355 ntype = alloc_type_copy (type);
356 if (typeptr)
357 *typeptr = ntype;
358 }
359 else /* We have storage, but need to reset it. */
360 {
361 ntype = *typeptr;
362 chain = TYPE_CHAIN (ntype);
363 smash_type (ntype);
364 TYPE_CHAIN (ntype) = chain;
365 }
366
367 TYPE_TARGET_TYPE (ntype) = type;
368 TYPE_POINTER_TYPE (type) = ntype;
369
370 /* FIXME! Assumes the machine has only one representation for pointers! */
371
372 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT;
373 ntype->set_code (TYPE_CODE_PTR);
374
375 /* Mark pointers as unsigned. The target converts between pointers
376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
377 gdbarch_address_to_pointer. */
378 ntype->set_is_unsigned (true);
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389 }
390
391 /* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394 struct type *
395 lookup_pointer_type (struct type *type)
396 {
397 return make_pointer_type (type, (struct type **) 0);
398 }
399
400 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
405
406 struct type *
407 make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
409 {
410 struct type *ntype; /* New type */
411 struct type **reftype;
412 struct type *chain;
413
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
418
419 if (ntype)
420 {
421 if (typeptr == 0)
422 return ntype; /* Don't care about alloc,
423 and have new type. */
424 else if (*typeptr == 0)
425 {
426 *typeptr = ntype; /* Tracking alloc, and have new type. */
427 return ntype;
428 }
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
433 ntype = alloc_type_copy (type);
434 if (typeptr)
435 *typeptr = ntype;
436 }
437 else /* We have storage, but need to reset it. */
438 {
439 ntype = *typeptr;
440 chain = TYPE_CHAIN (ntype);
441 smash_type (ntype);
442 TYPE_CHAIN (ntype) = chain;
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
450
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
454
455 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT;
456 ntype->set_code (refcode);
457
458 *reftype = ntype;
459
460 /* Update the length of all the other variants of this type. */
461 chain = TYPE_CHAIN (ntype);
462 while (chain != ntype)
463 {
464 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
465 chain = TYPE_CHAIN (chain);
466 }
467
468 return ntype;
469 }
470
471 /* Same as above, but caller doesn't care about memory allocation
472 details. */
473
474 struct type *
475 lookup_reference_type (struct type *type, enum type_code refcode)
476 {
477 return make_reference_type (type, (struct type **) 0, refcode);
478 }
479
480 /* Lookup the lvalue reference type for the type TYPE. */
481
482 struct type *
483 lookup_lvalue_reference_type (struct type *type)
484 {
485 return lookup_reference_type (type, TYPE_CODE_REF);
486 }
487
488 /* Lookup the rvalue reference type for the type TYPE. */
489
490 struct type *
491 lookup_rvalue_reference_type (struct type *type)
492 {
493 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
494 }
495
496 /* Lookup a function type that returns type TYPE. TYPEPTR, if
497 nonzero, points to a pointer to memory where the function type
498 should be stored. If *TYPEPTR is zero, update it to point to the
499 function type we return. We allocate new memory if needed. */
500
501 struct type *
502 make_function_type (struct type *type, struct type **typeptr)
503 {
504 struct type *ntype; /* New type */
505
506 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
507 {
508 ntype = alloc_type_copy (type);
509 if (typeptr)
510 *typeptr = ntype;
511 }
512 else /* We have storage, but need to reset it. */
513 {
514 ntype = *typeptr;
515 smash_type (ntype);
516 }
517
518 TYPE_TARGET_TYPE (ntype) = type;
519
520 TYPE_LENGTH (ntype) = 1;
521 ntype->set_code (TYPE_CODE_FUNC);
522
523 INIT_FUNC_SPECIFIC (ntype);
524
525 return ntype;
526 }
527
528 /* Given a type TYPE, return a type of functions that return that type.
529 May need to construct such a type if this is the first use. */
530
531 struct type *
532 lookup_function_type (struct type *type)
533 {
534 return make_function_type (type, (struct type **) 0);
535 }
536
537 /* Given a type TYPE and argument types, return the appropriate
538 function type. If the final type in PARAM_TYPES is NULL, make a
539 varargs function. */
540
541 struct type *
542 lookup_function_type_with_arguments (struct type *type,
543 int nparams,
544 struct type **param_types)
545 {
546 struct type *fn = make_function_type (type, (struct type **) 0);
547 int i;
548
549 if (nparams > 0)
550 {
551 if (param_types[nparams - 1] == NULL)
552 {
553 --nparams;
554 fn->set_has_varargs (true);
555 }
556 else if (check_typedef (param_types[nparams - 1])->code ()
557 == TYPE_CODE_VOID)
558 {
559 --nparams;
560 /* Caller should have ensured this. */
561 gdb_assert (nparams == 0);
562 fn->set_is_prototyped (true);
563 }
564 else
565 fn->set_is_prototyped (true);
566 }
567
568 fn->set_num_fields (nparams);
569 fn->set_fields
570 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
571 for (i = 0; i < nparams; ++i)
572 fn->field (i).set_type (param_types[i]);
573
574 return fn;
575 }
576
577 /* Identify address space identifier by name -- return a
578 type_instance_flags. */
579
580 type_instance_flags
581 address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
582 const char *space_identifier)
583 {
584 type_instance_flags type_flags;
585
586 /* Check for known address space delimiters. */
587 if (!strcmp (space_identifier, "code"))
588 return TYPE_INSTANCE_FLAG_CODE_SPACE;
589 else if (!strcmp (space_identifier, "data"))
590 return TYPE_INSTANCE_FLAG_DATA_SPACE;
591 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
592 && gdbarch_address_class_name_to_type_flags (gdbarch,
593 space_identifier,
594 &type_flags))
595 return type_flags;
596 else
597 error (_("Unknown address space specifier: \"%s\""), space_identifier);
598 }
599
600 /* Identify address space identifier by type_instance_flags and return
601 the string version of the adress space name. */
602
603 const char *
604 address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
605 type_instance_flags space_flag)
606 {
607 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
608 return "code";
609 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
610 return "data";
611 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
612 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
613 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
614 else
615 return NULL;
616 }
617
618 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
619
620 If STORAGE is non-NULL, create the new type instance there.
621 STORAGE must be in the same obstack as TYPE. */
622
623 static struct type *
624 make_qualified_type (struct type *type, type_instance_flags new_flags,
625 struct type *storage)
626 {
627 struct type *ntype;
628
629 ntype = type;
630 do
631 {
632 if (ntype->instance_flags () == new_flags)
633 return ntype;
634 ntype = TYPE_CHAIN (ntype);
635 }
636 while (ntype != type);
637
638 /* Create a new type instance. */
639 if (storage == NULL)
640 ntype = alloc_type_instance (type);
641 else
642 {
643 /* If STORAGE was provided, it had better be in the same objfile
644 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
645 if one objfile is freed and the other kept, we'd have
646 dangling pointers. */
647 gdb_assert (type->objfile_owner () == storage->objfile_owner ());
648
649 ntype = storage;
650 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
651 TYPE_CHAIN (ntype) = ntype;
652 }
653
654 /* Pointers or references to the original type are not relevant to
655 the new type. */
656 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
657 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
658
659 /* Chain the new qualified type to the old type. */
660 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
661 TYPE_CHAIN (type) = ntype;
662
663 /* Now set the instance flags and return the new type. */
664 ntype->set_instance_flags (new_flags);
665
666 /* Set length of new type to that of the original type. */
667 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
668
669 return ntype;
670 }
671
672 /* Make an address-space-delimited variant of a type -- a type that
673 is identical to the one supplied except that it has an address
674 space attribute attached to it (such as "code" or "data").
675
676 The space attributes "code" and "data" are for Harvard
677 architectures. The address space attributes are for architectures
678 which have alternately sized pointers or pointers with alternate
679 representations. */
680
681 struct type *
682 make_type_with_address_space (struct type *type,
683 type_instance_flags space_flag)
684 {
685 type_instance_flags new_flags = ((type->instance_flags ()
686 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
687 | TYPE_INSTANCE_FLAG_DATA_SPACE
688 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
689 | space_flag);
690
691 return make_qualified_type (type, new_flags, NULL);
692 }
693
694 /* Make a "c-v" variant of a type -- a type that is identical to the
695 one supplied except that it may have const or volatile attributes
696 CNST is a flag for setting the const attribute
697 VOLTL is a flag for setting the volatile attribute
698 TYPE is the base type whose variant we are creating.
699
700 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
701 storage to hold the new qualified type; *TYPEPTR and TYPE must be
702 in the same objfile. Otherwise, allocate fresh memory for the new
703 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
704 new type we construct. */
705
706 struct type *
707 make_cv_type (int cnst, int voltl,
708 struct type *type,
709 struct type **typeptr)
710 {
711 struct type *ntype; /* New type */
712
713 type_instance_flags new_flags = (type->instance_flags ()
714 & ~(TYPE_INSTANCE_FLAG_CONST
715 | TYPE_INSTANCE_FLAG_VOLATILE));
716
717 if (cnst)
718 new_flags |= TYPE_INSTANCE_FLAG_CONST;
719
720 if (voltl)
721 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
722
723 if (typeptr && *typeptr != NULL)
724 {
725 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
726 a C-V variant chain that threads across objfiles: if one
727 objfile gets freed, then the other has a broken C-V chain.
728
729 This code used to try to copy over the main type from TYPE to
730 *TYPEPTR if they were in different objfiles, but that's
731 wrong, too: TYPE may have a field list or member function
732 lists, which refer to types of their own, etc. etc. The
733 whole shebang would need to be copied over recursively; you
734 can't have inter-objfile pointers. The only thing to do is
735 to leave stub types as stub types, and look them up afresh by
736 name each time you encounter them. */
737 gdb_assert ((*typeptr)->objfile_owner () == type->objfile_owner ());
738 }
739
740 ntype = make_qualified_type (type, new_flags,
741 typeptr ? *typeptr : NULL);
742
743 if (typeptr != NULL)
744 *typeptr = ntype;
745
746 return ntype;
747 }
748
749 /* Make a 'restrict'-qualified version of TYPE. */
750
751 struct type *
752 make_restrict_type (struct type *type)
753 {
754 return make_qualified_type (type,
755 (type->instance_flags ()
756 | TYPE_INSTANCE_FLAG_RESTRICT),
757 NULL);
758 }
759
760 /* Make a type without const, volatile, or restrict. */
761
762 struct type *
763 make_unqualified_type (struct type *type)
764 {
765 return make_qualified_type (type,
766 (type->instance_flags ()
767 & ~(TYPE_INSTANCE_FLAG_CONST
768 | TYPE_INSTANCE_FLAG_VOLATILE
769 | TYPE_INSTANCE_FLAG_RESTRICT)),
770 NULL);
771 }
772
773 /* Make a '_Atomic'-qualified version of TYPE. */
774
775 struct type *
776 make_atomic_type (struct type *type)
777 {
778 return make_qualified_type (type,
779 (type->instance_flags ()
780 | TYPE_INSTANCE_FLAG_ATOMIC),
781 NULL);
782 }
783
784 /* Replace the contents of ntype with the type *type. This changes the
785 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
786 the changes are propogated to all types in the TYPE_CHAIN.
787
788 In order to build recursive types, it's inevitable that we'll need
789 to update types in place --- but this sort of indiscriminate
790 smashing is ugly, and needs to be replaced with something more
791 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
792 clear if more steps are needed. */
793
794 void
795 replace_type (struct type *ntype, struct type *type)
796 {
797 struct type *chain;
798
799 /* These two types had better be in the same objfile. Otherwise,
800 the assignment of one type's main type structure to the other
801 will produce a type with references to objects (names; field
802 lists; etc.) allocated on an objfile other than its own. */
803 gdb_assert (ntype->objfile_owner () == type->objfile_owner ());
804
805 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
806
807 /* The type length is not a part of the main type. Update it for
808 each type on the variant chain. */
809 chain = ntype;
810 do
811 {
812 /* Assert that this element of the chain has no address-class bits
813 set in its flags. Such type variants might have type lengths
814 which are supposed to be different from the non-address-class
815 variants. This assertion shouldn't ever be triggered because
816 symbol readers which do construct address-class variants don't
817 call replace_type(). */
818 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
819
820 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
821 chain = TYPE_CHAIN (chain);
822 }
823 while (ntype != chain);
824
825 /* Assert that the two types have equivalent instance qualifiers.
826 This should be true for at least all of our debug readers. */
827 gdb_assert (ntype->instance_flags () == type->instance_flags ());
828 }
829
830 /* Implement direct support for MEMBER_TYPE in GNU C++.
831 May need to construct such a type if this is the first use.
832 The TYPE is the type of the member. The DOMAIN is the type
833 of the aggregate that the member belongs to. */
834
835 struct type *
836 lookup_memberptr_type (struct type *type, struct type *domain)
837 {
838 struct type *mtype;
839
840 mtype = alloc_type_copy (type);
841 smash_to_memberptr_type (mtype, domain, type);
842 return mtype;
843 }
844
845 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
846
847 struct type *
848 lookup_methodptr_type (struct type *to_type)
849 {
850 struct type *mtype;
851
852 mtype = alloc_type_copy (to_type);
853 smash_to_methodptr_type (mtype, to_type);
854 return mtype;
855 }
856
857 /* Allocate a stub method whose return type is TYPE. This apparently
858 happens for speed of symbol reading, since parsing out the
859 arguments to the method is cpu-intensive, the way we are doing it.
860 So, we will fill in arguments later. This always returns a fresh
861 type. */
862
863 struct type *
864 allocate_stub_method (struct type *type)
865 {
866 struct type *mtype;
867
868 mtype = alloc_type_copy (type);
869 mtype->set_code (TYPE_CODE_METHOD);
870 TYPE_LENGTH (mtype) = 1;
871 mtype->set_is_stub (true);
872 TYPE_TARGET_TYPE (mtype) = type;
873 /* TYPE_SELF_TYPE (mtype) = unknown yet */
874 return mtype;
875 }
876
877 /* See gdbtypes.h. */
878
879 bool
880 operator== (const dynamic_prop &l, const dynamic_prop &r)
881 {
882 if (l.kind () != r.kind ())
883 return false;
884
885 switch (l.kind ())
886 {
887 case PROP_UNDEFINED:
888 return true;
889 case PROP_CONST:
890 return l.const_val () == r.const_val ();
891 case PROP_ADDR_OFFSET:
892 case PROP_LOCEXPR:
893 case PROP_LOCLIST:
894 return l.baton () == r.baton ();
895 case PROP_VARIANT_PARTS:
896 return l.variant_parts () == r.variant_parts ();
897 case PROP_TYPE:
898 return l.original_type () == r.original_type ();
899 }
900
901 gdb_assert_not_reached ("unhandled dynamic_prop kind");
902 }
903
904 /* See gdbtypes.h. */
905
906 bool
907 operator== (const range_bounds &l, const range_bounds &r)
908 {
909 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
910
911 return (FIELD_EQ (low)
912 && FIELD_EQ (high)
913 && FIELD_EQ (flag_upper_bound_is_count)
914 && FIELD_EQ (flag_bound_evaluated)
915 && FIELD_EQ (bias));
916
917 #undef FIELD_EQ
918 }
919
920 /* Create a range type with a dynamic range from LOW_BOUND to
921 HIGH_BOUND, inclusive. See create_range_type for further details. */
922
923 struct type *
924 create_range_type (struct type *result_type, struct type *index_type,
925 const struct dynamic_prop *low_bound,
926 const struct dynamic_prop *high_bound,
927 LONGEST bias)
928 {
929 /* The INDEX_TYPE should be a type capable of holding the upper and lower
930 bounds, as such a zero sized, or void type makes no sense. */
931 gdb_assert (index_type->code () != TYPE_CODE_VOID);
932 gdb_assert (TYPE_LENGTH (index_type) > 0);
933
934 if (result_type == NULL)
935 result_type = alloc_type_copy (index_type);
936 result_type->set_code (TYPE_CODE_RANGE);
937 TYPE_TARGET_TYPE (result_type) = index_type;
938 if (index_type->is_stub ())
939 result_type->set_target_is_stub (true);
940 else
941 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
942
943 range_bounds *bounds
944 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
945 bounds->low = *low_bound;
946 bounds->high = *high_bound;
947 bounds->bias = bias;
948 bounds->stride.set_const_val (0);
949
950 result_type->set_bounds (bounds);
951
952 if (index_type->code () == TYPE_CODE_FIXED_POINT)
953 result_type->set_is_unsigned (index_type->is_unsigned ());
954 /* Note that the signed-ness of a range type can't simply be copied
955 from the underlying type. Consider a case where the underlying
956 type is 'int', but the range type can hold 0..65535, and where
957 the range is further specified to fit into 16 bits. In this
958 case, if we copy the underlying type's sign, then reading some
959 range values will cause an unwanted sign extension. So, we have
960 some heuristics here instead. */
961 else if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
962 result_type->set_is_unsigned (true);
963 /* Ada allows the declaration of range types whose upper bound is
964 less than the lower bound, so checking the lower bound is not
965 enough. Make sure we do not mark a range type whose upper bound
966 is negative as unsigned. */
967 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
968 result_type->set_is_unsigned (false);
969
970 result_type->set_endianity_is_not_default
971 (index_type->endianity_is_not_default ());
972
973 return result_type;
974 }
975
976 /* See gdbtypes.h. */
977
978 struct type *
979 create_range_type_with_stride (struct type *result_type,
980 struct type *index_type,
981 const struct dynamic_prop *low_bound,
982 const struct dynamic_prop *high_bound,
983 LONGEST bias,
984 const struct dynamic_prop *stride,
985 bool byte_stride_p)
986 {
987 result_type = create_range_type (result_type, index_type, low_bound,
988 high_bound, bias);
989
990 gdb_assert (stride != nullptr);
991 result_type->bounds ()->stride = *stride;
992 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
993
994 return result_type;
995 }
996
997
998
999 /* Create a range type using either a blank type supplied in
1000 RESULT_TYPE, or creating a new type, inheriting the objfile from
1001 INDEX_TYPE.
1002
1003 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
1004 to HIGH_BOUND, inclusive.
1005
1006 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1007 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1008
1009 struct type *
1010 create_static_range_type (struct type *result_type, struct type *index_type,
1011 LONGEST low_bound, LONGEST high_bound)
1012 {
1013 struct dynamic_prop low, high;
1014
1015 low.set_const_val (low_bound);
1016 high.set_const_val (high_bound);
1017
1018 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1019
1020 return result_type;
1021 }
1022
1023 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1024 are static, otherwise returns 0. */
1025
1026 static bool
1027 has_static_range (const struct range_bounds *bounds)
1028 {
1029 /* If the range doesn't have a defined stride then its stride field will
1030 be initialized to the constant 0. */
1031 return (bounds->low.kind () == PROP_CONST
1032 && bounds->high.kind () == PROP_CONST
1033 && bounds->stride.kind () == PROP_CONST);
1034 }
1035
1036 /* See gdbtypes.h. */
1037
1038 gdb::optional<LONGEST>
1039 get_discrete_low_bound (struct type *type)
1040 {
1041 type = check_typedef (type);
1042 switch (type->code ())
1043 {
1044 case TYPE_CODE_RANGE:
1045 {
1046 /* This function only works for ranges with a constant low bound. */
1047 if (type->bounds ()->low.kind () != PROP_CONST)
1048 return {};
1049
1050 LONGEST low = type->bounds ()->low.const_val ();
1051
1052 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1053 {
1054 gdb::optional<LONGEST> low_pos
1055 = discrete_position (TYPE_TARGET_TYPE (type), low);
1056
1057 if (low_pos.has_value ())
1058 low = *low_pos;
1059 }
1060
1061 return low;
1062 }
1063
1064 case TYPE_CODE_ENUM:
1065 {
1066 if (type->num_fields () > 0)
1067 {
1068 /* The enums may not be sorted by value, so search all
1069 entries. */
1070 LONGEST low = TYPE_FIELD_ENUMVAL (type, 0);
1071
1072 for (int i = 0; i < type->num_fields (); i++)
1073 {
1074 if (TYPE_FIELD_ENUMVAL (type, i) < low)
1075 low = TYPE_FIELD_ENUMVAL (type, i);
1076 }
1077
1078 /* Set unsigned indicator if warranted. */
1079 if (low >= 0)
1080 type->set_is_unsigned (true);
1081
1082 return low;
1083 }
1084 else
1085 return 0;
1086 }
1087
1088 case TYPE_CODE_BOOL:
1089 return 0;
1090
1091 case TYPE_CODE_INT:
1092 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1093 return {};
1094
1095 if (!type->is_unsigned ())
1096 return -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1097
1098 /* fall through */
1099 case TYPE_CODE_CHAR:
1100 return 0;
1101
1102 default:
1103 return {};
1104 }
1105 }
1106
1107 /* See gdbtypes.h. */
1108
1109 gdb::optional<LONGEST>
1110 get_discrete_high_bound (struct type *type)
1111 {
1112 type = check_typedef (type);
1113 switch (type->code ())
1114 {
1115 case TYPE_CODE_RANGE:
1116 {
1117 /* This function only works for ranges with a constant high bound. */
1118 if (type->bounds ()->high.kind () != PROP_CONST)
1119 return {};
1120
1121 LONGEST high = type->bounds ()->high.const_val ();
1122
1123 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1124 {
1125 gdb::optional<LONGEST> high_pos
1126 = discrete_position (TYPE_TARGET_TYPE (type), high);
1127
1128 if (high_pos.has_value ())
1129 high = *high_pos;
1130 }
1131
1132 return high;
1133 }
1134
1135 case TYPE_CODE_ENUM:
1136 {
1137 if (type->num_fields () > 0)
1138 {
1139 /* The enums may not be sorted by value, so search all
1140 entries. */
1141 LONGEST high = TYPE_FIELD_ENUMVAL (type, 0);
1142
1143 for (int i = 0; i < type->num_fields (); i++)
1144 {
1145 if (TYPE_FIELD_ENUMVAL (type, i) > high)
1146 high = TYPE_FIELD_ENUMVAL (type, i);
1147 }
1148
1149 return high;
1150 }
1151 else
1152 return -1;
1153 }
1154
1155 case TYPE_CODE_BOOL:
1156 return 1;
1157
1158 case TYPE_CODE_INT:
1159 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1160 return {};
1161
1162 if (!type->is_unsigned ())
1163 {
1164 LONGEST low = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1165 return -low - 1;
1166 }
1167
1168 /* fall through */
1169 case TYPE_CODE_CHAR:
1170 {
1171 /* This round-about calculation is to avoid shifting by
1172 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1173 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1174 LONGEST high = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1175 return (high - 1) | high;
1176 }
1177
1178 default:
1179 return {};
1180 }
1181 }
1182
1183 /* See gdbtypes.h. */
1184
1185 bool
1186 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1187 {
1188 gdb::optional<LONGEST> low = get_discrete_low_bound (type);
1189 if (!low.has_value ())
1190 return false;
1191
1192 gdb::optional<LONGEST> high = get_discrete_high_bound (type);
1193 if (!high.has_value ())
1194 return false;
1195
1196 *lowp = *low;
1197 *highp = *high;
1198
1199 return true;
1200 }
1201
1202 /* See gdbtypes.h */
1203
1204 bool
1205 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1206 {
1207 struct type *index = type->index_type ();
1208 LONGEST low = 0;
1209 LONGEST high = 0;
1210
1211 if (index == NULL)
1212 return false;
1213
1214 if (!get_discrete_bounds (index, &low, &high))
1215 return false;
1216
1217 if (low_bound)
1218 *low_bound = low;
1219
1220 if (high_bound)
1221 *high_bound = high;
1222
1223 return true;
1224 }
1225
1226 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1227 representation of a value of this type, save the corresponding
1228 position number in POS.
1229
1230 Its differs from VAL only in the case of enumeration types. In
1231 this case, the position number of the value of the first listed
1232 enumeration literal is zero; the position number of the value of
1233 each subsequent enumeration literal is one more than that of its
1234 predecessor in the list.
1235
1236 Return 1 if the operation was successful. Return zero otherwise,
1237 in which case the value of POS is unmodified.
1238 */
1239
1240 gdb::optional<LONGEST>
1241 discrete_position (struct type *type, LONGEST val)
1242 {
1243 if (type->code () == TYPE_CODE_RANGE)
1244 type = TYPE_TARGET_TYPE (type);
1245
1246 if (type->code () == TYPE_CODE_ENUM)
1247 {
1248 int i;
1249
1250 for (i = 0; i < type->num_fields (); i += 1)
1251 {
1252 if (val == TYPE_FIELD_ENUMVAL (type, i))
1253 return i;
1254 }
1255
1256 /* Invalid enumeration value. */
1257 return {};
1258 }
1259 else
1260 return val;
1261 }
1262
1263 /* If the array TYPE has static bounds calculate and update its
1264 size, then return true. Otherwise return false and leave TYPE
1265 unchanged. */
1266
1267 static bool
1268 update_static_array_size (struct type *type)
1269 {
1270 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1271
1272 struct type *range_type = type->index_type ();
1273
1274 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1275 && has_static_range (range_type->bounds ())
1276 && (!type_not_associated (type)
1277 && !type_not_allocated (type)))
1278 {
1279 LONGEST low_bound, high_bound;
1280 int stride;
1281 struct type *element_type;
1282
1283 /* If the array itself doesn't provide a stride value then take
1284 whatever stride the range provides. Don't update BIT_STRIDE as
1285 we don't want to place the stride value from the range into this
1286 arrays bit size field. */
1287 stride = TYPE_FIELD_BITSIZE (type, 0);
1288 if (stride == 0)
1289 stride = range_type->bit_stride ();
1290
1291 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1292 low_bound = high_bound = 0;
1293
1294 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1295 /* Be careful when setting the array length. Ada arrays can be
1296 empty arrays with the high_bound being smaller than the low_bound.
1297 In such cases, the array length should be zero. */
1298 if (high_bound < low_bound)
1299 TYPE_LENGTH (type) = 0;
1300 else if (stride != 0)
1301 {
1302 /* Ensure that the type length is always positive, even in the
1303 case where (for example in Fortran) we have a negative
1304 stride. It is possible to have a single element array with a
1305 negative stride in Fortran (this doesn't mean anything
1306 special, it's still just a single element array) so do
1307 consider that case when touching this code. */
1308 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1309 TYPE_LENGTH (type)
1310 = ((std::abs (stride) * element_count) + 7) / 8;
1311 }
1312 else
1313 TYPE_LENGTH (type) =
1314 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1315
1316 /* If this array's element is itself an array with a bit stride,
1317 then we want to update this array's bit stride to reflect the
1318 size of the sub-array. Otherwise, we'll end up using the
1319 wrong size when trying to find elements of the outer
1320 array. */
1321 if (element_type->code () == TYPE_CODE_ARRAY
1322 && TYPE_LENGTH (element_type) != 0
1323 && TYPE_FIELD_BITSIZE (element_type, 0) != 0
1324 && get_array_bounds (element_type, &low_bound, &high_bound)
1325 && high_bound >= low_bound)
1326 TYPE_FIELD_BITSIZE (type, 0)
1327 = ((high_bound - low_bound + 1)
1328 * TYPE_FIELD_BITSIZE (element_type, 0));
1329
1330 return true;
1331 }
1332
1333 return false;
1334 }
1335
1336 /* Create an array type using either a blank type supplied in
1337 RESULT_TYPE, or creating a new type, inheriting the objfile from
1338 RANGE_TYPE.
1339
1340 Elements will be of type ELEMENT_TYPE, the indices will be of type
1341 RANGE_TYPE.
1342
1343 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1344 This byte stride property is added to the resulting array type
1345 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1346 argument can only be used to create types that are objfile-owned
1347 (see add_dyn_prop), meaning that either this function must be called
1348 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1349
1350 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1351 If BIT_STRIDE is not zero, build a packed array type whose element
1352 size is BIT_STRIDE. Otherwise, ignore this parameter.
1353
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into an array
1356 type? */
1357
1358 struct type *
1359 create_array_type_with_stride (struct type *result_type,
1360 struct type *element_type,
1361 struct type *range_type,
1362 struct dynamic_prop *byte_stride_prop,
1363 unsigned int bit_stride)
1364 {
1365 if (byte_stride_prop != NULL
1366 && byte_stride_prop->kind () == PROP_CONST)
1367 {
1368 /* The byte stride is actually not dynamic. Pretend we were
1369 called with bit_stride set instead of byte_stride_prop.
1370 This will give us the same result type, while avoiding
1371 the need to handle this as a special case. */
1372 bit_stride = byte_stride_prop->const_val () * 8;
1373 byte_stride_prop = NULL;
1374 }
1375
1376 if (result_type == NULL)
1377 result_type = alloc_type_copy (range_type);
1378
1379 result_type->set_code (TYPE_CODE_ARRAY);
1380 TYPE_TARGET_TYPE (result_type) = element_type;
1381
1382 result_type->set_num_fields (1);
1383 result_type->set_fields
1384 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1385 result_type->set_index_type (range_type);
1386 if (byte_stride_prop != NULL)
1387 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1388 else if (bit_stride > 0)
1389 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1390
1391 if (!update_static_array_size (result_type))
1392 {
1393 /* This type is dynamic and its length needs to be computed
1394 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1395 undefined by setting it to zero. Although we are not expected
1396 to trust TYPE_LENGTH in this case, setting the size to zero
1397 allows us to avoid allocating objects of random sizes in case
1398 we accidently do. */
1399 TYPE_LENGTH (result_type) = 0;
1400 }
1401
1402 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1403 if (TYPE_LENGTH (result_type) == 0)
1404 result_type->set_target_is_stub (true);
1405
1406 return result_type;
1407 }
1408
1409 /* Same as create_array_type_with_stride but with no bit_stride
1410 (BIT_STRIDE = 0), thus building an unpacked array. */
1411
1412 struct type *
1413 create_array_type (struct type *result_type,
1414 struct type *element_type,
1415 struct type *range_type)
1416 {
1417 return create_array_type_with_stride (result_type, element_type,
1418 range_type, NULL, 0);
1419 }
1420
1421 struct type *
1422 lookup_array_range_type (struct type *element_type,
1423 LONGEST low_bound, LONGEST high_bound)
1424 {
1425 struct type *index_type;
1426 struct type *range_type;
1427
1428 if (element_type->is_objfile_owned ())
1429 index_type = objfile_type (element_type->objfile_owner ())->builtin_int;
1430 else
1431 index_type = builtin_type (element_type->arch_owner ())->builtin_int;
1432
1433 range_type = create_static_range_type (NULL, index_type,
1434 low_bound, high_bound);
1435
1436 return create_array_type (NULL, element_type, range_type);
1437 }
1438
1439 /* Create a string type using either a blank type supplied in
1440 RESULT_TYPE, or creating a new type. String types are similar
1441 enough to array of char types that we can use create_array_type to
1442 build the basic type and then bash it into a string type.
1443
1444 For fixed length strings, the range type contains 0 as the lower
1445 bound and the length of the string minus one as the upper bound.
1446
1447 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1448 sure it is TYPE_CODE_UNDEF before we bash it into a string
1449 type? */
1450
1451 struct type *
1452 create_string_type (struct type *result_type,
1453 struct type *string_char_type,
1454 struct type *range_type)
1455 {
1456 result_type = create_array_type (result_type,
1457 string_char_type,
1458 range_type);
1459 result_type->set_code (TYPE_CODE_STRING);
1460 return result_type;
1461 }
1462
1463 struct type *
1464 lookup_string_range_type (struct type *string_char_type,
1465 LONGEST low_bound, LONGEST high_bound)
1466 {
1467 struct type *result_type;
1468
1469 result_type = lookup_array_range_type (string_char_type,
1470 low_bound, high_bound);
1471 result_type->set_code (TYPE_CODE_STRING);
1472 return result_type;
1473 }
1474
1475 struct type *
1476 create_set_type (struct type *result_type, struct type *domain_type)
1477 {
1478 if (result_type == NULL)
1479 result_type = alloc_type_copy (domain_type);
1480
1481 result_type->set_code (TYPE_CODE_SET);
1482 result_type->set_num_fields (1);
1483 result_type->set_fields
1484 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1485
1486 if (!domain_type->is_stub ())
1487 {
1488 LONGEST low_bound, high_bound, bit_length;
1489
1490 if (!get_discrete_bounds (domain_type, &low_bound, &high_bound))
1491 low_bound = high_bound = 0;
1492
1493 bit_length = high_bound - low_bound + 1;
1494 TYPE_LENGTH (result_type)
1495 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1496 if (low_bound >= 0)
1497 result_type->set_is_unsigned (true);
1498 }
1499 result_type->field (0).set_type (domain_type);
1500
1501 return result_type;
1502 }
1503
1504 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1505 and any array types nested inside it. */
1506
1507 void
1508 make_vector_type (struct type *array_type)
1509 {
1510 struct type *inner_array, *elt_type;
1511
1512 /* Find the innermost array type, in case the array is
1513 multi-dimensional. */
1514 inner_array = array_type;
1515 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1516 inner_array = TYPE_TARGET_TYPE (inner_array);
1517
1518 elt_type = TYPE_TARGET_TYPE (inner_array);
1519 if (elt_type->code () == TYPE_CODE_INT)
1520 {
1521 type_instance_flags flags
1522 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1523 elt_type = make_qualified_type (elt_type, flags, NULL);
1524 TYPE_TARGET_TYPE (inner_array) = elt_type;
1525 }
1526
1527 array_type->set_is_vector (true);
1528 }
1529
1530 struct type *
1531 init_vector_type (struct type *elt_type, int n)
1532 {
1533 struct type *array_type;
1534
1535 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1536 make_vector_type (array_type);
1537 return array_type;
1538 }
1539
1540 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1541 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1542 confusing. "self" is a common enough replacement for "this".
1543 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1544 TYPE_CODE_METHOD. */
1545
1546 struct type *
1547 internal_type_self_type (struct type *type)
1548 {
1549 switch (type->code ())
1550 {
1551 case TYPE_CODE_METHODPTR:
1552 case TYPE_CODE_MEMBERPTR:
1553 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1554 return NULL;
1555 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1556 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1557 case TYPE_CODE_METHOD:
1558 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1559 return NULL;
1560 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1561 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1562 default:
1563 gdb_assert_not_reached ("bad type");
1564 }
1565 }
1566
1567 /* Set the type of the class that TYPE belongs to.
1568 In c++ this is the class of "this".
1569 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1570 TYPE_CODE_METHOD. */
1571
1572 void
1573 set_type_self_type (struct type *type, struct type *self_type)
1574 {
1575 switch (type->code ())
1576 {
1577 case TYPE_CODE_METHODPTR:
1578 case TYPE_CODE_MEMBERPTR:
1579 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1580 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1581 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1582 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1583 break;
1584 case TYPE_CODE_METHOD:
1585 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1586 INIT_FUNC_SPECIFIC (type);
1587 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1588 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1589 break;
1590 default:
1591 gdb_assert_not_reached ("bad type");
1592 }
1593 }
1594
1595 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1596 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1597 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1598 TYPE doesn't include the offset (that's the value of the MEMBER
1599 itself), but does include the structure type into which it points
1600 (for some reason).
1601
1602 When "smashing" the type, we preserve the objfile that the old type
1603 pointed to, since we aren't changing where the type is actually
1604 allocated. */
1605
1606 void
1607 smash_to_memberptr_type (struct type *type, struct type *self_type,
1608 struct type *to_type)
1609 {
1610 smash_type (type);
1611 type->set_code (TYPE_CODE_MEMBERPTR);
1612 TYPE_TARGET_TYPE (type) = to_type;
1613 set_type_self_type (type, self_type);
1614 /* Assume that a data member pointer is the same size as a normal
1615 pointer. */
1616 TYPE_LENGTH (type) = gdbarch_ptr_bit (to_type->arch ()) / TARGET_CHAR_BIT;
1617 }
1618
1619 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1620
1621 When "smashing" the type, we preserve the objfile that the old type
1622 pointed to, since we aren't changing where the type is actually
1623 allocated. */
1624
1625 void
1626 smash_to_methodptr_type (struct type *type, struct type *to_type)
1627 {
1628 smash_type (type);
1629 type->set_code (TYPE_CODE_METHODPTR);
1630 TYPE_TARGET_TYPE (type) = to_type;
1631 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1632 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1633 }
1634
1635 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1636 METHOD just means `function that gets an extra "this" argument'.
1637
1638 When "smashing" the type, we preserve the objfile that the old type
1639 pointed to, since we aren't changing where the type is actually
1640 allocated. */
1641
1642 void
1643 smash_to_method_type (struct type *type, struct type *self_type,
1644 struct type *to_type, struct field *args,
1645 int nargs, int varargs)
1646 {
1647 smash_type (type);
1648 type->set_code (TYPE_CODE_METHOD);
1649 TYPE_TARGET_TYPE (type) = to_type;
1650 set_type_self_type (type, self_type);
1651 type->set_fields (args);
1652 type->set_num_fields (nargs);
1653 if (varargs)
1654 type->set_has_varargs (true);
1655 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1656 }
1657
1658 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1659 Since GCC PR debug/47510 DWARF provides associated information to detect the
1660 anonymous class linkage name from its typedef.
1661
1662 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1663 apply it itself. */
1664
1665 const char *
1666 type_name_or_error (struct type *type)
1667 {
1668 struct type *saved_type = type;
1669 const char *name;
1670 struct objfile *objfile;
1671
1672 type = check_typedef (type);
1673
1674 name = type->name ();
1675 if (name != NULL)
1676 return name;
1677
1678 name = saved_type->name ();
1679 objfile = saved_type->objfile_owner ();
1680 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1681 name ? name : "<anonymous>",
1682 objfile ? objfile_name (objfile) : "<arch>");
1683 }
1684
1685 /* Lookup a typedef or primitive type named NAME, visible in lexical
1686 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1687 suitably defined. */
1688
1689 struct type *
1690 lookup_typename (const struct language_defn *language,
1691 const char *name,
1692 const struct block *block, int noerr)
1693 {
1694 struct symbol *sym;
1695
1696 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1697 language->la_language, NULL).symbol;
1698 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1699 return SYMBOL_TYPE (sym);
1700
1701 if (noerr)
1702 return NULL;
1703 error (_("No type named %s."), name);
1704 }
1705
1706 struct type *
1707 lookup_unsigned_typename (const struct language_defn *language,
1708 const char *name)
1709 {
1710 char *uns = (char *) alloca (strlen (name) + 10);
1711
1712 strcpy (uns, "unsigned ");
1713 strcpy (uns + 9, name);
1714 return lookup_typename (language, uns, NULL, 0);
1715 }
1716
1717 struct type *
1718 lookup_signed_typename (const struct language_defn *language, const char *name)
1719 {
1720 struct type *t;
1721 char *uns = (char *) alloca (strlen (name) + 8);
1722
1723 strcpy (uns, "signed ");
1724 strcpy (uns + 7, name);
1725 t = lookup_typename (language, uns, NULL, 1);
1726 /* If we don't find "signed FOO" just try again with plain "FOO". */
1727 if (t != NULL)
1728 return t;
1729 return lookup_typename (language, name, NULL, 0);
1730 }
1731
1732 /* Lookup a structure type named "struct NAME",
1733 visible in lexical block BLOCK. */
1734
1735 struct type *
1736 lookup_struct (const char *name, const struct block *block)
1737 {
1738 struct symbol *sym;
1739
1740 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1741
1742 if (sym == NULL)
1743 {
1744 error (_("No struct type named %s."), name);
1745 }
1746 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1747 {
1748 error (_("This context has class, union or enum %s, not a struct."),
1749 name);
1750 }
1751 return (SYMBOL_TYPE (sym));
1752 }
1753
1754 /* Lookup a union type named "union NAME",
1755 visible in lexical block BLOCK. */
1756
1757 struct type *
1758 lookup_union (const char *name, const struct block *block)
1759 {
1760 struct symbol *sym;
1761 struct type *t;
1762
1763 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1764
1765 if (sym == NULL)
1766 error (_("No union type named %s."), name);
1767
1768 t = SYMBOL_TYPE (sym);
1769
1770 if (t->code () == TYPE_CODE_UNION)
1771 return t;
1772
1773 /* If we get here, it's not a union. */
1774 error (_("This context has class, struct or enum %s, not a union."),
1775 name);
1776 }
1777
1778 /* Lookup an enum type named "enum NAME",
1779 visible in lexical block BLOCK. */
1780
1781 struct type *
1782 lookup_enum (const char *name, const struct block *block)
1783 {
1784 struct symbol *sym;
1785
1786 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1787 if (sym == NULL)
1788 {
1789 error (_("No enum type named %s."), name);
1790 }
1791 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1792 {
1793 error (_("This context has class, struct or union %s, not an enum."),
1794 name);
1795 }
1796 return (SYMBOL_TYPE (sym));
1797 }
1798
1799 /* Lookup a template type named "template NAME<TYPE>",
1800 visible in lexical block BLOCK. */
1801
1802 struct type *
1803 lookup_template_type (const char *name, struct type *type,
1804 const struct block *block)
1805 {
1806 struct symbol *sym;
1807 char *nam = (char *)
1808 alloca (strlen (name) + strlen (type->name ()) + 4);
1809
1810 strcpy (nam, name);
1811 strcat (nam, "<");
1812 strcat (nam, type->name ());
1813 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1814
1815 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1816
1817 if (sym == NULL)
1818 {
1819 error (_("No template type named %s."), name);
1820 }
1821 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1822 {
1823 error (_("This context has class, union or enum %s, not a struct."),
1824 name);
1825 }
1826 return (SYMBOL_TYPE (sym));
1827 }
1828
1829 /* See gdbtypes.h. */
1830
1831 struct_elt
1832 lookup_struct_elt (struct type *type, const char *name, int noerr)
1833 {
1834 int i;
1835
1836 for (;;)
1837 {
1838 type = check_typedef (type);
1839 if (type->code () != TYPE_CODE_PTR
1840 && type->code () != TYPE_CODE_REF)
1841 break;
1842 type = TYPE_TARGET_TYPE (type);
1843 }
1844
1845 if (type->code () != TYPE_CODE_STRUCT
1846 && type->code () != TYPE_CODE_UNION)
1847 {
1848 std::string type_name = type_to_string (type);
1849 error (_("Type %s is not a structure or union type."),
1850 type_name.c_str ());
1851 }
1852
1853 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1854 {
1855 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1856
1857 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1858 {
1859 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1860 }
1861 else if (!t_field_name || *t_field_name == '\0')
1862 {
1863 struct_elt elt
1864 = lookup_struct_elt (type->field (i).type (), name, 1);
1865 if (elt.field != NULL)
1866 {
1867 elt.offset += TYPE_FIELD_BITPOS (type, i);
1868 return elt;
1869 }
1870 }
1871 }
1872
1873 /* OK, it's not in this class. Recursively check the baseclasses. */
1874 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1875 {
1876 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1877 if (elt.field != NULL)
1878 return elt;
1879 }
1880
1881 if (noerr)
1882 return {nullptr, 0};
1883
1884 std::string type_name = type_to_string (type);
1885 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1886 }
1887
1888 /* See gdbtypes.h. */
1889
1890 struct type *
1891 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1892 {
1893 struct_elt elt = lookup_struct_elt (type, name, noerr);
1894 if (elt.field != NULL)
1895 return elt.field->type ();
1896 else
1897 return NULL;
1898 }
1899
1900 /* Store in *MAX the largest number representable by unsigned integer type
1901 TYPE. */
1902
1903 void
1904 get_unsigned_type_max (struct type *type, ULONGEST *max)
1905 {
1906 unsigned int n;
1907
1908 type = check_typedef (type);
1909 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1910 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1911
1912 /* Written this way to avoid overflow. */
1913 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1914 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1915 }
1916
1917 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1918 signed integer type TYPE. */
1919
1920 void
1921 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1922 {
1923 unsigned int n;
1924
1925 type = check_typedef (type);
1926 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1927 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1928
1929 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1930 *min = -((ULONGEST) 1 << (n - 1));
1931 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1932 }
1933
1934 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1935 cplus_stuff.vptr_fieldno.
1936
1937 cplus_stuff is initialized to cplus_struct_default which does not
1938 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1939 designated initializers). We cope with that here. */
1940
1941 int
1942 internal_type_vptr_fieldno (struct type *type)
1943 {
1944 type = check_typedef (type);
1945 gdb_assert (type->code () == TYPE_CODE_STRUCT
1946 || type->code () == TYPE_CODE_UNION);
1947 if (!HAVE_CPLUS_STRUCT (type))
1948 return -1;
1949 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1950 }
1951
1952 /* Set the value of cplus_stuff.vptr_fieldno. */
1953
1954 void
1955 set_type_vptr_fieldno (struct type *type, int fieldno)
1956 {
1957 type = check_typedef (type);
1958 gdb_assert (type->code () == TYPE_CODE_STRUCT
1959 || type->code () == TYPE_CODE_UNION);
1960 if (!HAVE_CPLUS_STRUCT (type))
1961 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1962 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1963 }
1964
1965 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1966 cplus_stuff.vptr_basetype. */
1967
1968 struct type *
1969 internal_type_vptr_basetype (struct type *type)
1970 {
1971 type = check_typedef (type);
1972 gdb_assert (type->code () == TYPE_CODE_STRUCT
1973 || type->code () == TYPE_CODE_UNION);
1974 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1975 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1976 }
1977
1978 /* Set the value of cplus_stuff.vptr_basetype. */
1979
1980 void
1981 set_type_vptr_basetype (struct type *type, struct type *basetype)
1982 {
1983 type = check_typedef (type);
1984 gdb_assert (type->code () == TYPE_CODE_STRUCT
1985 || type->code () == TYPE_CODE_UNION);
1986 if (!HAVE_CPLUS_STRUCT (type))
1987 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1988 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1989 }
1990
1991 /* Lookup the vptr basetype/fieldno values for TYPE.
1992 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1993 vptr_fieldno. Also, if found and basetype is from the same objfile,
1994 cache the results.
1995 If not found, return -1 and ignore BASETYPEP.
1996 Callers should be aware that in some cases (for example,
1997 the type or one of its baseclasses is a stub type and we are
1998 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1999 this function will not be able to find the
2000 virtual function table pointer, and vptr_fieldno will remain -1 and
2001 vptr_basetype will remain NULL or incomplete. */
2002
2003 int
2004 get_vptr_fieldno (struct type *type, struct type **basetypep)
2005 {
2006 type = check_typedef (type);
2007
2008 if (TYPE_VPTR_FIELDNO (type) < 0)
2009 {
2010 int i;
2011
2012 /* We must start at zero in case the first (and only) baseclass
2013 is virtual (and hence we cannot share the table pointer). */
2014 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2015 {
2016 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2017 int fieldno;
2018 struct type *basetype;
2019
2020 fieldno = get_vptr_fieldno (baseclass, &basetype);
2021 if (fieldno >= 0)
2022 {
2023 /* If the type comes from a different objfile we can't cache
2024 it, it may have a different lifetime. PR 2384 */
2025 if (type->objfile_owner () == basetype->objfile_owner ())
2026 {
2027 set_type_vptr_fieldno (type, fieldno);
2028 set_type_vptr_basetype (type, basetype);
2029 }
2030 if (basetypep)
2031 *basetypep = basetype;
2032 return fieldno;
2033 }
2034 }
2035
2036 /* Not found. */
2037 return -1;
2038 }
2039 else
2040 {
2041 if (basetypep)
2042 *basetypep = TYPE_VPTR_BASETYPE (type);
2043 return TYPE_VPTR_FIELDNO (type);
2044 }
2045 }
2046
2047 static void
2048 stub_noname_complaint (void)
2049 {
2050 complaint (_("stub type has NULL name"));
2051 }
2052
2053 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
2054 attached to it, and that property has a non-constant value. */
2055
2056 static int
2057 array_type_has_dynamic_stride (struct type *type)
2058 {
2059 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2060
2061 return (prop != NULL && prop->kind () != PROP_CONST);
2062 }
2063
2064 /* Worker for is_dynamic_type. */
2065
2066 static int
2067 is_dynamic_type_internal (struct type *type, int top_level)
2068 {
2069 type = check_typedef (type);
2070
2071 /* We only want to recognize references at the outermost level. */
2072 if (top_level && type->code () == TYPE_CODE_REF)
2073 type = check_typedef (TYPE_TARGET_TYPE (type));
2074
2075 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
2076 dynamic, even if the type itself is statically defined.
2077 From a user's point of view, this may appear counter-intuitive;
2078 but it makes sense in this context, because the point is to determine
2079 whether any part of the type needs to be resolved before it can
2080 be exploited. */
2081 if (TYPE_DATA_LOCATION (type) != NULL
2082 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
2083 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
2084 return 1;
2085
2086 if (TYPE_ASSOCIATED_PROP (type))
2087 return 1;
2088
2089 if (TYPE_ALLOCATED_PROP (type))
2090 return 1;
2091
2092 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2093 if (prop != nullptr && prop->kind () != PROP_TYPE)
2094 return 1;
2095
2096 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2097 return 1;
2098
2099 switch (type->code ())
2100 {
2101 case TYPE_CODE_RANGE:
2102 {
2103 /* A range type is obviously dynamic if it has at least one
2104 dynamic bound. But also consider the range type to be
2105 dynamic when its subtype is dynamic, even if the bounds
2106 of the range type are static. It allows us to assume that
2107 the subtype of a static range type is also static. */
2108 return (!has_static_range (type->bounds ())
2109 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2110 }
2111
2112 case TYPE_CODE_STRING:
2113 /* Strings are very much like an array of characters, and can be
2114 treated as one here. */
2115 case TYPE_CODE_ARRAY:
2116 {
2117 gdb_assert (type->num_fields () == 1);
2118
2119 /* The array is dynamic if either the bounds are dynamic... */
2120 if (is_dynamic_type_internal (type->index_type (), 0))
2121 return 1;
2122 /* ... or the elements it contains have a dynamic contents... */
2123 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2124 return 1;
2125 /* ... or if it has a dynamic stride... */
2126 if (array_type_has_dynamic_stride (type))
2127 return 1;
2128 return 0;
2129 }
2130
2131 case TYPE_CODE_STRUCT:
2132 case TYPE_CODE_UNION:
2133 {
2134 int i;
2135
2136 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2137
2138 for (i = 0; i < type->num_fields (); ++i)
2139 {
2140 /* Static fields can be ignored here. */
2141 if (field_is_static (&type->field (i)))
2142 continue;
2143 /* If the field has dynamic type, then so does TYPE. */
2144 if (is_dynamic_type_internal (type->field (i).type (), 0))
2145 return 1;
2146 /* If the field is at a fixed offset, then it is not
2147 dynamic. */
2148 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2149 continue;
2150 /* Do not consider C++ virtual base types to be dynamic
2151 due to the field's offset being dynamic; these are
2152 handled via other means. */
2153 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2154 continue;
2155 return 1;
2156 }
2157 }
2158 break;
2159 }
2160
2161 return 0;
2162 }
2163
2164 /* See gdbtypes.h. */
2165
2166 int
2167 is_dynamic_type (struct type *type)
2168 {
2169 return is_dynamic_type_internal (type, 1);
2170 }
2171
2172 static struct type *resolve_dynamic_type_internal
2173 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2174
2175 /* Given a dynamic range type (dyn_range_type) and a stack of
2176 struct property_addr_info elements, return a static version
2177 of that type.
2178
2179 When RESOLVE_P is true then the returned static range is created by
2180 actually evaluating any dynamic properties within the range type, while
2181 when RESOLVE_P is false the returned static range has all of the bounds
2182 and stride information set to undefined. The RESOLVE_P set to false
2183 case will be used when evaluating a dynamic array that is not
2184 allocated, or not associated, i.e. the bounds information might not be
2185 initialized yet. */
2186
2187 static struct type *
2188 resolve_dynamic_range (struct type *dyn_range_type,
2189 struct property_addr_info *addr_stack,
2190 bool resolve_p = true)
2191 {
2192 CORE_ADDR value;
2193 struct type *static_range_type, *static_target_type;
2194 struct dynamic_prop low_bound, high_bound, stride;
2195
2196 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2197
2198 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2199 if (resolve_p && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2200 low_bound.set_const_val (value);
2201 else
2202 low_bound.set_undefined ();
2203
2204 prop = &dyn_range_type->bounds ()->high;
2205 if (resolve_p && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2206 {
2207 high_bound.set_const_val (value);
2208
2209 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2210 high_bound.set_const_val
2211 (low_bound.const_val () + high_bound.const_val () - 1);
2212 }
2213 else
2214 high_bound.set_undefined ();
2215
2216 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2217 prop = &dyn_range_type->bounds ()->stride;
2218 if (resolve_p && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2219 {
2220 stride.set_const_val (value);
2221
2222 /* If we have a bit stride that is not an exact number of bytes then
2223 I really don't think this is going to work with current GDB, the
2224 array indexing code in GDB seems to be pretty heavily tied to byte
2225 offsets right now. Assuming 8 bits in a byte. */
2226 struct gdbarch *gdbarch = dyn_range_type->arch ();
2227 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2228 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2229 error (_("bit strides that are not a multiple of the byte size "
2230 "are currently not supported"));
2231 }
2232 else
2233 {
2234 stride.set_undefined ();
2235 byte_stride_p = true;
2236 }
2237
2238 static_target_type
2239 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2240 addr_stack, 0);
2241 LONGEST bias = dyn_range_type->bounds ()->bias;
2242 static_range_type = create_range_type_with_stride
2243 (copy_type (dyn_range_type), static_target_type,
2244 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2245 static_range_type->bounds ()->flag_bound_evaluated = 1;
2246 return static_range_type;
2247 }
2248
2249 /* Resolves dynamic bound values of an array or string type TYPE to static
2250 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2251 needed during the dynamic resolution.
2252
2253 When RESOLVE_P is true then the dynamic properties of TYPE are
2254 evaluated, otherwise the dynamic properties of TYPE are not evaluated,
2255 instead we assume the array is not allocated/associated yet. */
2256
2257 static struct type *
2258 resolve_dynamic_array_or_string (struct type *type,
2259 struct property_addr_info *addr_stack,
2260 bool resolve_p = true)
2261 {
2262 CORE_ADDR value;
2263 struct type *elt_type;
2264 struct type *range_type;
2265 struct type *ary_dim;
2266 struct dynamic_prop *prop;
2267 unsigned int bit_stride = 0;
2268
2269 /* For dynamic type resolution strings can be treated like arrays of
2270 characters. */
2271 gdb_assert (type->code () == TYPE_CODE_ARRAY
2272 || type->code () == TYPE_CODE_STRING);
2273
2274 type = copy_type (type);
2275
2276 /* Resolve the allocated and associated properties before doing anything
2277 else. If an array is not allocated or not associated then (at least
2278 for Fortran) there is no guarantee that the data to define the upper
2279 bound, lower bound, or stride will be correct. If RESOLVE_P is
2280 already false at this point then this is not the first dimension of
2281 the array and a more outer dimension has already marked this array as
2282 not allocated/associated, as such we just ignore this property. This
2283 is fine as GDB only checks the allocated/associated on the outer most
2284 dimension of the array. */
2285 prop = TYPE_ALLOCATED_PROP (type);
2286 if (prop != NULL && resolve_p
2287 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2288 {
2289 prop->set_const_val (value);
2290 if (value == 0)
2291 resolve_p = false;
2292 }
2293
2294 prop = TYPE_ASSOCIATED_PROP (type);
2295 if (prop != NULL && resolve_p
2296 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2297 {
2298 prop->set_const_val (value);
2299 if (value == 0)
2300 resolve_p = false;
2301 }
2302
2303 range_type = check_typedef (type->index_type ());
2304 range_type = resolve_dynamic_range (range_type, addr_stack, resolve_p);
2305
2306 ary_dim = check_typedef (TYPE_TARGET_TYPE (type));
2307 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2308 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack, resolve_p);
2309 else
2310 elt_type = TYPE_TARGET_TYPE (type);
2311
2312 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2313 if (prop != NULL && resolve_p)
2314 {
2315 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2316 {
2317 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2318 bit_stride = (unsigned int) (value * 8);
2319 }
2320 else
2321 {
2322 /* Could be a bug in our code, but it could also happen
2323 if the DWARF info is not correct. Issue a warning,
2324 and assume no byte/bit stride (leave bit_stride = 0). */
2325 warning (_("cannot determine array stride for type %s"),
2326 type->name () ? type->name () : "<no name>");
2327 }
2328 }
2329 else
2330 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2331
2332 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2333 bit_stride);
2334 }
2335
2336 /* Resolve dynamic bounds of members of the union TYPE to static
2337 bounds. ADDR_STACK is a stack of struct property_addr_info
2338 to be used if needed during the dynamic resolution. */
2339
2340 static struct type *
2341 resolve_dynamic_union (struct type *type,
2342 struct property_addr_info *addr_stack)
2343 {
2344 struct type *resolved_type;
2345 int i;
2346 unsigned int max_len = 0;
2347
2348 gdb_assert (type->code () == TYPE_CODE_UNION);
2349
2350 resolved_type = copy_type (type);
2351 resolved_type->set_fields
2352 ((struct field *)
2353 TYPE_ALLOC (resolved_type,
2354 resolved_type->num_fields () * sizeof (struct field)));
2355 memcpy (resolved_type->fields (),
2356 type->fields (),
2357 resolved_type->num_fields () * sizeof (struct field));
2358 for (i = 0; i < resolved_type->num_fields (); ++i)
2359 {
2360 struct type *t;
2361
2362 if (field_is_static (&type->field (i)))
2363 continue;
2364
2365 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2366 addr_stack, 0);
2367 resolved_type->field (i).set_type (t);
2368
2369 struct type *real_type = check_typedef (t);
2370 if (TYPE_LENGTH (real_type) > max_len)
2371 max_len = TYPE_LENGTH (real_type);
2372 }
2373
2374 TYPE_LENGTH (resolved_type) = max_len;
2375 return resolved_type;
2376 }
2377
2378 /* See gdbtypes.h. */
2379
2380 bool
2381 variant::matches (ULONGEST value, bool is_unsigned) const
2382 {
2383 for (const discriminant_range &range : discriminants)
2384 if (range.contains (value, is_unsigned))
2385 return true;
2386 return false;
2387 }
2388
2389 static void
2390 compute_variant_fields_inner (struct type *type,
2391 struct property_addr_info *addr_stack,
2392 const variant_part &part,
2393 std::vector<bool> &flags);
2394
2395 /* A helper function to determine which variant fields will be active.
2396 This handles both the variant's direct fields, and any variant
2397 parts embedded in this variant. TYPE is the type we're examining.
2398 ADDR_STACK holds information about the concrete object. VARIANT is
2399 the current variant to be handled. FLAGS is where the results are
2400 stored -- this function sets the Nth element in FLAGS if the
2401 corresponding field is enabled. ENABLED is whether this variant is
2402 enabled or not. */
2403
2404 static void
2405 compute_variant_fields_recurse (struct type *type,
2406 struct property_addr_info *addr_stack,
2407 const variant &variant,
2408 std::vector<bool> &flags,
2409 bool enabled)
2410 {
2411 for (int field = variant.first_field; field < variant.last_field; ++field)
2412 flags[field] = enabled;
2413
2414 for (const variant_part &new_part : variant.parts)
2415 {
2416 if (enabled)
2417 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2418 else
2419 {
2420 for (const auto &sub_variant : new_part.variants)
2421 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2422 flags, enabled);
2423 }
2424 }
2425 }
2426
2427 /* A helper function to determine which variant fields will be active.
2428 This evaluates the discriminant, decides which variant (if any) is
2429 active, and then updates FLAGS to reflect which fields should be
2430 available. TYPE is the type we're examining. ADDR_STACK holds
2431 information about the concrete object. VARIANT is the current
2432 variant to be handled. FLAGS is where the results are stored --
2433 this function sets the Nth element in FLAGS if the corresponding
2434 field is enabled. */
2435
2436 static void
2437 compute_variant_fields_inner (struct type *type,
2438 struct property_addr_info *addr_stack,
2439 const variant_part &part,
2440 std::vector<bool> &flags)
2441 {
2442 /* Evaluate the discriminant. */
2443 gdb::optional<ULONGEST> discr_value;
2444 if (part.discriminant_index != -1)
2445 {
2446 int idx = part.discriminant_index;
2447
2448 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2449 error (_("Cannot determine struct field location"
2450 " (invalid location kind)"));
2451
2452 if (addr_stack->valaddr.data () != NULL)
2453 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2454 idx);
2455 else
2456 {
2457 CORE_ADDR addr = (addr_stack->addr
2458 + (TYPE_FIELD_BITPOS (type, idx)
2459 / TARGET_CHAR_BIT));
2460
2461 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2462 LONGEST size = bitsize / 8;
2463 if (size == 0)
2464 size = TYPE_LENGTH (type->field (idx).type ());
2465
2466 gdb_byte bits[sizeof (ULONGEST)];
2467 read_memory (addr, bits, size);
2468
2469 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2470 % TARGET_CHAR_BIT);
2471
2472 discr_value = unpack_bits_as_long (type->field (idx).type (),
2473 bits, bitpos, bitsize);
2474 }
2475 }
2476
2477 /* Go through each variant and see which applies. */
2478 const variant *default_variant = nullptr;
2479 const variant *applied_variant = nullptr;
2480 for (const auto &variant : part.variants)
2481 {
2482 if (variant.is_default ())
2483 default_variant = &variant;
2484 else if (discr_value.has_value ()
2485 && variant.matches (*discr_value, part.is_unsigned))
2486 {
2487 applied_variant = &variant;
2488 break;
2489 }
2490 }
2491 if (applied_variant == nullptr)
2492 applied_variant = default_variant;
2493
2494 for (const auto &variant : part.variants)
2495 compute_variant_fields_recurse (type, addr_stack, variant,
2496 flags, applied_variant == &variant);
2497 }
2498
2499 /* Determine which variant fields are available in TYPE. The enabled
2500 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2501 about the concrete object. PARTS describes the top-level variant
2502 parts for this type. */
2503
2504 static void
2505 compute_variant_fields (struct type *type,
2506 struct type *resolved_type,
2507 struct property_addr_info *addr_stack,
2508 const gdb::array_view<variant_part> &parts)
2509 {
2510 /* Assume all fields are included by default. */
2511 std::vector<bool> flags (resolved_type->num_fields (), true);
2512
2513 /* Now disable fields based on the variants that control them. */
2514 for (const auto &part : parts)
2515 compute_variant_fields_inner (type, addr_stack, part, flags);
2516
2517 resolved_type->set_num_fields
2518 (std::count (flags.begin (), flags.end (), true));
2519 resolved_type->set_fields
2520 ((struct field *)
2521 TYPE_ALLOC (resolved_type,
2522 resolved_type->num_fields () * sizeof (struct field)));
2523
2524 int out = 0;
2525 for (int i = 0; i < type->num_fields (); ++i)
2526 {
2527 if (!flags[i])
2528 continue;
2529
2530 resolved_type->field (out) = type->field (i);
2531 ++out;
2532 }
2533 }
2534
2535 /* Resolve dynamic bounds of members of the struct TYPE to static
2536 bounds. ADDR_STACK is a stack of struct property_addr_info to
2537 be used if needed during the dynamic resolution. */
2538
2539 static struct type *
2540 resolve_dynamic_struct (struct type *type,
2541 struct property_addr_info *addr_stack)
2542 {
2543 struct type *resolved_type;
2544 int i;
2545 unsigned resolved_type_bit_length = 0;
2546
2547 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2548
2549 resolved_type = copy_type (type);
2550
2551 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2552 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2553 {
2554 compute_variant_fields (type, resolved_type, addr_stack,
2555 *variant_prop->variant_parts ());
2556 /* We want to leave the property attached, so that the Rust code
2557 can tell whether the type was originally an enum. */
2558 variant_prop->set_original_type (type);
2559 }
2560 else
2561 {
2562 resolved_type->set_fields
2563 ((struct field *)
2564 TYPE_ALLOC (resolved_type,
2565 resolved_type->num_fields () * sizeof (struct field)));
2566 if (type->num_fields () > 0)
2567 memcpy (resolved_type->fields (),
2568 type->fields (),
2569 resolved_type->num_fields () * sizeof (struct field));
2570 }
2571
2572 for (i = 0; i < resolved_type->num_fields (); ++i)
2573 {
2574 unsigned new_bit_length;
2575 struct property_addr_info pinfo;
2576
2577 if (field_is_static (&resolved_type->field (i)))
2578 continue;
2579
2580 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2581 {
2582 struct dwarf2_property_baton baton;
2583 baton.property_type
2584 = lookup_pointer_type (resolved_type->field (i).type ());
2585 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2586
2587 struct dynamic_prop prop;
2588 prop.set_locexpr (&baton);
2589
2590 CORE_ADDR addr;
2591 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2592 true))
2593 SET_FIELD_BITPOS (resolved_type->field (i),
2594 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2595 }
2596
2597 /* As we know this field is not a static field, the field's
2598 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2599 this is the case, but only trigger a simple error rather
2600 than an internal error if that fails. While failing
2601 that verification indicates a bug in our code, the error
2602 is not severe enough to suggest to the user he stops
2603 his debugging session because of it. */
2604 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2605 error (_("Cannot determine struct field location"
2606 " (invalid location kind)"));
2607
2608 pinfo.type = check_typedef (resolved_type->field (i).type ());
2609 pinfo.valaddr = addr_stack->valaddr;
2610 pinfo.addr
2611 = (addr_stack->addr
2612 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2613 pinfo.next = addr_stack;
2614
2615 resolved_type->field (i).set_type
2616 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2617 &pinfo, 0));
2618 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2619 == FIELD_LOC_KIND_BITPOS);
2620
2621 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2622 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2623 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2624 else
2625 {
2626 struct type *real_type
2627 = check_typedef (resolved_type->field (i).type ());
2628
2629 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2630 }
2631
2632 /* Normally, we would use the position and size of the last field
2633 to determine the size of the enclosing structure. But GCC seems
2634 to be encoding the position of some fields incorrectly when
2635 the struct contains a dynamic field that is not placed last.
2636 So we compute the struct size based on the field that has
2637 the highest position + size - probably the best we can do. */
2638 if (new_bit_length > resolved_type_bit_length)
2639 resolved_type_bit_length = new_bit_length;
2640 }
2641
2642 /* The length of a type won't change for fortran, but it does for C and Ada.
2643 For fortran the size of dynamic fields might change over time but not the
2644 type length of the structure. If we adapt it, we run into problems
2645 when calculating the element offset for arrays of structs. */
2646 if (current_language->la_language != language_fortran)
2647 TYPE_LENGTH (resolved_type)
2648 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2649
2650 /* The Ada language uses this field as a cache for static fixed types: reset
2651 it as RESOLVED_TYPE must have its own static fixed type. */
2652 TYPE_TARGET_TYPE (resolved_type) = NULL;
2653
2654 return resolved_type;
2655 }
2656
2657 /* Worker for resolved_dynamic_type. */
2658
2659 static struct type *
2660 resolve_dynamic_type_internal (struct type *type,
2661 struct property_addr_info *addr_stack,
2662 int top_level)
2663 {
2664 struct type *real_type = check_typedef (type);
2665 struct type *resolved_type = nullptr;
2666 struct dynamic_prop *prop;
2667 CORE_ADDR value;
2668
2669 if (!is_dynamic_type_internal (real_type, top_level))
2670 return type;
2671
2672 gdb::optional<CORE_ADDR> type_length;
2673 prop = TYPE_DYNAMIC_LENGTH (type);
2674 if (prop != NULL
2675 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2676 type_length = value;
2677
2678 if (type->code () == TYPE_CODE_TYPEDEF)
2679 {
2680 resolved_type = copy_type (type);
2681 TYPE_TARGET_TYPE (resolved_type)
2682 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2683 top_level);
2684 }
2685 else
2686 {
2687 /* Before trying to resolve TYPE, make sure it is not a stub. */
2688 type = real_type;
2689
2690 switch (type->code ())
2691 {
2692 case TYPE_CODE_REF:
2693 {
2694 struct property_addr_info pinfo;
2695
2696 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2697 pinfo.valaddr = {};
2698 if (addr_stack->valaddr.data () != NULL)
2699 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2700 type);
2701 else
2702 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2703 pinfo.next = addr_stack;
2704
2705 resolved_type = copy_type (type);
2706 TYPE_TARGET_TYPE (resolved_type)
2707 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2708 &pinfo, top_level);
2709 break;
2710 }
2711
2712 case TYPE_CODE_STRING:
2713 /* Strings are very much like an array of characters, and can be
2714 treated as one here. */
2715 case TYPE_CODE_ARRAY:
2716 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2717 break;
2718
2719 case TYPE_CODE_RANGE:
2720 resolved_type = resolve_dynamic_range (type, addr_stack);
2721 break;
2722
2723 case TYPE_CODE_UNION:
2724 resolved_type = resolve_dynamic_union (type, addr_stack);
2725 break;
2726
2727 case TYPE_CODE_STRUCT:
2728 resolved_type = resolve_dynamic_struct (type, addr_stack);
2729 break;
2730 }
2731 }
2732
2733 if (resolved_type == nullptr)
2734 return type;
2735
2736 if (type_length.has_value ())
2737 {
2738 TYPE_LENGTH (resolved_type) = *type_length;
2739 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2740 }
2741
2742 /* Resolve data_location attribute. */
2743 prop = TYPE_DATA_LOCATION (resolved_type);
2744 if (prop != NULL
2745 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2746 {
2747 /* Start of Fortran hack. See comment in f-lang.h for what is going
2748 on here.*/
2749 if (current_language->la_language == language_fortran
2750 && resolved_type->code () == TYPE_CODE_ARRAY)
2751 value = fortran_adjust_dynamic_array_base_address_hack (resolved_type,
2752 value);
2753 /* End of Fortran hack. */
2754 prop->set_const_val (value);
2755 }
2756
2757 return resolved_type;
2758 }
2759
2760 /* See gdbtypes.h */
2761
2762 struct type *
2763 resolve_dynamic_type (struct type *type,
2764 gdb::array_view<const gdb_byte> valaddr,
2765 CORE_ADDR addr)
2766 {
2767 struct property_addr_info pinfo
2768 = {check_typedef (type), valaddr, addr, NULL};
2769
2770 return resolve_dynamic_type_internal (type, &pinfo, 1);
2771 }
2772
2773 /* See gdbtypes.h */
2774
2775 dynamic_prop *
2776 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2777 {
2778 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2779
2780 while (node != NULL)
2781 {
2782 if (node->prop_kind == prop_kind)
2783 return &node->prop;
2784 node = node->next;
2785 }
2786 return NULL;
2787 }
2788
2789 /* See gdbtypes.h */
2790
2791 void
2792 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2793 {
2794 struct dynamic_prop_list *temp;
2795
2796 gdb_assert (this->is_objfile_owned ());
2797
2798 temp = XOBNEW (&this->objfile_owner ()->objfile_obstack,
2799 struct dynamic_prop_list);
2800 temp->prop_kind = prop_kind;
2801 temp->prop = prop;
2802 temp->next = this->main_type->dyn_prop_list;
2803
2804 this->main_type->dyn_prop_list = temp;
2805 }
2806
2807 /* See gdbtypes.h. */
2808
2809 void
2810 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2811 {
2812 struct dynamic_prop_list *prev_node, *curr_node;
2813
2814 curr_node = this->main_type->dyn_prop_list;
2815 prev_node = NULL;
2816
2817 while (NULL != curr_node)
2818 {
2819 if (curr_node->prop_kind == kind)
2820 {
2821 /* Update the linked list but don't free anything.
2822 The property was allocated on objstack and it is not known
2823 if we are on top of it. Nevertheless, everything is released
2824 when the complete objstack is freed. */
2825 if (NULL == prev_node)
2826 this->main_type->dyn_prop_list = curr_node->next;
2827 else
2828 prev_node->next = curr_node->next;
2829
2830 return;
2831 }
2832
2833 prev_node = curr_node;
2834 curr_node = curr_node->next;
2835 }
2836 }
2837
2838 /* Find the real type of TYPE. This function returns the real type,
2839 after removing all layers of typedefs, and completing opaque or stub
2840 types. Completion changes the TYPE argument, but stripping of
2841 typedefs does not.
2842
2843 Instance flags (e.g. const/volatile) are preserved as typedefs are
2844 stripped. If necessary a new qualified form of the underlying type
2845 is created.
2846
2847 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2848 not been computed and we're either in the middle of reading symbols, or
2849 there was no name for the typedef in the debug info.
2850
2851 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2852 QUITs in the symbol reading code can also throw.
2853 Thus this function can throw an exception.
2854
2855 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2856 the target type.
2857
2858 If this is a stubbed struct (i.e. declared as struct foo *), see if
2859 we can find a full definition in some other file. If so, copy this
2860 definition, so we can use it in future. There used to be a comment
2861 (but not any code) that if we don't find a full definition, we'd
2862 set a flag so we don't spend time in the future checking the same
2863 type. That would be a mistake, though--we might load in more
2864 symbols which contain a full definition for the type. */
2865
2866 struct type *
2867 check_typedef (struct type *type)
2868 {
2869 struct type *orig_type = type;
2870
2871 gdb_assert (type);
2872
2873 /* While we're removing typedefs, we don't want to lose qualifiers.
2874 E.g., const/volatile. */
2875 type_instance_flags instance_flags = type->instance_flags ();
2876
2877 while (type->code () == TYPE_CODE_TYPEDEF)
2878 {
2879 if (!TYPE_TARGET_TYPE (type))
2880 {
2881 const char *name;
2882 struct symbol *sym;
2883
2884 /* It is dangerous to call lookup_symbol if we are currently
2885 reading a symtab. Infinite recursion is one danger. */
2886 if (currently_reading_symtab)
2887 return make_qualified_type (type, instance_flags, NULL);
2888
2889 name = type->name ();
2890 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2891 VAR_DOMAIN as appropriate? */
2892 if (name == NULL)
2893 {
2894 stub_noname_complaint ();
2895 return make_qualified_type (type, instance_flags, NULL);
2896 }
2897 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2898 if (sym)
2899 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2900 else /* TYPE_CODE_UNDEF */
2901 TYPE_TARGET_TYPE (type) = alloc_type_arch (type->arch ());
2902 }
2903 type = TYPE_TARGET_TYPE (type);
2904
2905 /* Preserve the instance flags as we traverse down the typedef chain.
2906
2907 Handling address spaces/classes is nasty, what do we do if there's a
2908 conflict?
2909 E.g., what if an outer typedef marks the type as class_1 and an inner
2910 typedef marks the type as class_2?
2911 This is the wrong place to do such error checking. We leave it to
2912 the code that created the typedef in the first place to flag the
2913 error. We just pick the outer address space (akin to letting the
2914 outer cast in a chain of casting win), instead of assuming
2915 "it can't happen". */
2916 {
2917 const type_instance_flags ALL_SPACES
2918 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2919 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2920 const type_instance_flags ALL_CLASSES
2921 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2922
2923 type_instance_flags new_instance_flags = type->instance_flags ();
2924
2925 /* Treat code vs data spaces and address classes separately. */
2926 if ((instance_flags & ALL_SPACES) != 0)
2927 new_instance_flags &= ~ALL_SPACES;
2928 if ((instance_flags & ALL_CLASSES) != 0)
2929 new_instance_flags &= ~ALL_CLASSES;
2930
2931 instance_flags |= new_instance_flags;
2932 }
2933 }
2934
2935 /* If this is a struct/class/union with no fields, then check
2936 whether a full definition exists somewhere else. This is for
2937 systems where a type definition with no fields is issued for such
2938 types, instead of identifying them as stub types in the first
2939 place. */
2940
2941 if (TYPE_IS_OPAQUE (type)
2942 && opaque_type_resolution
2943 && !currently_reading_symtab)
2944 {
2945 const char *name = type->name ();
2946 struct type *newtype;
2947
2948 if (name == NULL)
2949 {
2950 stub_noname_complaint ();
2951 return make_qualified_type (type, instance_flags, NULL);
2952 }
2953 newtype = lookup_transparent_type (name);
2954
2955 if (newtype)
2956 {
2957 /* If the resolved type and the stub are in the same
2958 objfile, then replace the stub type with the real deal.
2959 But if they're in separate objfiles, leave the stub
2960 alone; we'll just look up the transparent type every time
2961 we call check_typedef. We can't create pointers between
2962 types allocated to different objfiles, since they may
2963 have different lifetimes. Trying to copy NEWTYPE over to
2964 TYPE's objfile is pointless, too, since you'll have to
2965 move over any other types NEWTYPE refers to, which could
2966 be an unbounded amount of stuff. */
2967 if (newtype->objfile_owner () == type->objfile_owner ())
2968 type = make_qualified_type (newtype, type->instance_flags (), type);
2969 else
2970 type = newtype;
2971 }
2972 }
2973 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2974 types. */
2975 else if (type->is_stub () && !currently_reading_symtab)
2976 {
2977 const char *name = type->name ();
2978 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2979 as appropriate? */
2980 struct symbol *sym;
2981
2982 if (name == NULL)
2983 {
2984 stub_noname_complaint ();
2985 return make_qualified_type (type, instance_flags, NULL);
2986 }
2987 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2988 if (sym)
2989 {
2990 /* Same as above for opaque types, we can replace the stub
2991 with the complete type only if they are in the same
2992 objfile. */
2993 if (SYMBOL_TYPE (sym)->objfile_owner () == type->objfile_owner ())
2994 type = make_qualified_type (SYMBOL_TYPE (sym),
2995 type->instance_flags (), type);
2996 else
2997 type = SYMBOL_TYPE (sym);
2998 }
2999 }
3000
3001 if (type->target_is_stub ())
3002 {
3003 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
3004
3005 if (target_type->is_stub () || target_type->target_is_stub ())
3006 {
3007 /* Nothing we can do. */
3008 }
3009 else if (type->code () == TYPE_CODE_RANGE)
3010 {
3011 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
3012 type->set_target_is_stub (false);
3013 }
3014 else if (type->code () == TYPE_CODE_ARRAY
3015 && update_static_array_size (type))
3016 type->set_target_is_stub (false);
3017 }
3018
3019 type = make_qualified_type (type, instance_flags, NULL);
3020
3021 /* Cache TYPE_LENGTH for future use. */
3022 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
3023
3024 return type;
3025 }
3026
3027 /* Parse a type expression in the string [P..P+LENGTH). If an error
3028 occurs, silently return a void type. */
3029
3030 static struct type *
3031 safe_parse_type (struct gdbarch *gdbarch, const char *p, int length)
3032 {
3033 struct ui_file *saved_gdb_stderr;
3034 struct type *type = NULL; /* Initialize to keep gcc happy. */
3035
3036 /* Suppress error messages. */
3037 saved_gdb_stderr = gdb_stderr;
3038 gdb_stderr = &null_stream;
3039
3040 /* Call parse_and_eval_type() without fear of longjmp()s. */
3041 try
3042 {
3043 type = parse_and_eval_type (p, length);
3044 }
3045 catch (const gdb_exception_error &except)
3046 {
3047 type = builtin_type (gdbarch)->builtin_void;
3048 }
3049
3050 /* Stop suppressing error messages. */
3051 gdb_stderr = saved_gdb_stderr;
3052
3053 return type;
3054 }
3055
3056 /* Ugly hack to convert method stubs into method types.
3057
3058 He ain't kiddin'. This demangles the name of the method into a
3059 string including argument types, parses out each argument type,
3060 generates a string casting a zero to that type, evaluates the
3061 string, and stuffs the resulting type into an argtype vector!!!
3062 Then it knows the type of the whole function (including argument
3063 types for overloading), which info used to be in the stab's but was
3064 removed to hack back the space required for them. */
3065
3066 static void
3067 check_stub_method (struct type *type, int method_id, int signature_id)
3068 {
3069 struct gdbarch *gdbarch = type->arch ();
3070 struct fn_field *f;
3071 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
3072 char *demangled_name = gdb_demangle (mangled_name,
3073 DMGL_PARAMS | DMGL_ANSI);
3074 char *argtypetext, *p;
3075 int depth = 0, argcount = 1;
3076 struct field *argtypes;
3077 struct type *mtype;
3078
3079 /* Make sure we got back a function string that we can use. */
3080 if (demangled_name)
3081 p = strchr (demangled_name, '(');
3082 else
3083 p = NULL;
3084
3085 if (demangled_name == NULL || p == NULL)
3086 error (_("Internal: Cannot demangle mangled name `%s'."),
3087 mangled_name);
3088
3089 /* Now, read in the parameters that define this type. */
3090 p += 1;
3091 argtypetext = p;
3092 while (*p)
3093 {
3094 if (*p == '(' || *p == '<')
3095 {
3096 depth += 1;
3097 }
3098 else if (*p == ')' || *p == '>')
3099 {
3100 depth -= 1;
3101 }
3102 else if (*p == ',' && depth == 0)
3103 {
3104 argcount += 1;
3105 }
3106
3107 p += 1;
3108 }
3109
3110 /* If we read one argument and it was ``void'', don't count it. */
3111 if (startswith (argtypetext, "(void)"))
3112 argcount -= 1;
3113
3114 /* We need one extra slot, for the THIS pointer. */
3115
3116 argtypes = (struct field *)
3117 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
3118 p = argtypetext;
3119
3120 /* Add THIS pointer for non-static methods. */
3121 f = TYPE_FN_FIELDLIST1 (type, method_id);
3122 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3123 argcount = 0;
3124 else
3125 {
3126 argtypes[0].set_type (lookup_pointer_type (type));
3127 argcount = 1;
3128 }
3129
3130 if (*p != ')') /* () means no args, skip while. */
3131 {
3132 depth = 0;
3133 while (*p)
3134 {
3135 if (depth <= 0 && (*p == ',' || *p == ')'))
3136 {
3137 /* Avoid parsing of ellipsis, they will be handled below.
3138 Also avoid ``void'' as above. */
3139 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3140 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3141 {
3142 argtypes[argcount].set_type
3143 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3144 argcount += 1;
3145 }
3146 argtypetext = p + 1;
3147 }
3148
3149 if (*p == '(' || *p == '<')
3150 {
3151 depth += 1;
3152 }
3153 else if (*p == ')' || *p == '>')
3154 {
3155 depth -= 1;
3156 }
3157
3158 p += 1;
3159 }
3160 }
3161
3162 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3163
3164 /* Now update the old "stub" type into a real type. */
3165 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3166 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3167 We want a method (TYPE_CODE_METHOD). */
3168 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3169 argtypes, argcount, p[-2] == '.');
3170 mtype->set_is_stub (false);
3171 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3172
3173 xfree (demangled_name);
3174 }
3175
3176 /* This is the external interface to check_stub_method, above. This
3177 function unstubs all of the signatures for TYPE's METHOD_ID method
3178 name. After calling this function TYPE_FN_FIELD_STUB will be
3179 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3180 correct.
3181
3182 This function unfortunately can not die until stabs do. */
3183
3184 void
3185 check_stub_method_group (struct type *type, int method_id)
3186 {
3187 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3188 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3189
3190 for (int j = 0; j < len; j++)
3191 {
3192 if (TYPE_FN_FIELD_STUB (f, j))
3193 check_stub_method (type, method_id, j);
3194 }
3195 }
3196
3197 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3198 const struct cplus_struct_type cplus_struct_default = { };
3199
3200 void
3201 allocate_cplus_struct_type (struct type *type)
3202 {
3203 if (HAVE_CPLUS_STRUCT (type))
3204 /* Structure was already allocated. Nothing more to do. */
3205 return;
3206
3207 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3208 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3209 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3210 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3211 set_type_vptr_fieldno (type, -1);
3212 }
3213
3214 const struct gnat_aux_type gnat_aux_default =
3215 { NULL };
3216
3217 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3218 and allocate the associated gnat-specific data. The gnat-specific
3219 data is also initialized to gnat_aux_default. */
3220
3221 void
3222 allocate_gnat_aux_type (struct type *type)
3223 {
3224 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3225 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3226 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3227 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3228 }
3229
3230 /* Helper function to initialize a newly allocated type. Set type code
3231 to CODE and initialize the type-specific fields accordingly. */
3232
3233 static void
3234 set_type_code (struct type *type, enum type_code code)
3235 {
3236 type->set_code (code);
3237
3238 switch (code)
3239 {
3240 case TYPE_CODE_STRUCT:
3241 case TYPE_CODE_UNION:
3242 case TYPE_CODE_NAMESPACE:
3243 INIT_CPLUS_SPECIFIC (type);
3244 break;
3245 case TYPE_CODE_FLT:
3246 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3247 break;
3248 case TYPE_CODE_FUNC:
3249 INIT_FUNC_SPECIFIC (type);
3250 break;
3251 case TYPE_CODE_FIXED_POINT:
3252 INIT_FIXED_POINT_SPECIFIC (type);
3253 break;
3254 }
3255 }
3256
3257 /* Helper function to verify floating-point format and size.
3258 BIT is the type size in bits; if BIT equals -1, the size is
3259 determined by the floatformat. Returns size to be used. */
3260
3261 static int
3262 verify_floatformat (int bit, const struct floatformat *floatformat)
3263 {
3264 gdb_assert (floatformat != NULL);
3265
3266 if (bit == -1)
3267 bit = floatformat->totalsize;
3268
3269 gdb_assert (bit >= 0);
3270 gdb_assert (bit >= floatformat->totalsize);
3271
3272 return bit;
3273 }
3274
3275 /* Return the floating-point format for a floating-point variable of
3276 type TYPE. */
3277
3278 const struct floatformat *
3279 floatformat_from_type (const struct type *type)
3280 {
3281 gdb_assert (type->code () == TYPE_CODE_FLT);
3282 gdb_assert (TYPE_FLOATFORMAT (type));
3283 return TYPE_FLOATFORMAT (type);
3284 }
3285
3286 /* Helper function to initialize the standard scalar types.
3287
3288 If NAME is non-NULL, then it is used to initialize the type name.
3289 Note that NAME is not copied; it is required to have a lifetime at
3290 least as long as OBJFILE. */
3291
3292 struct type *
3293 init_type (struct objfile *objfile, enum type_code code, int bit,
3294 const char *name)
3295 {
3296 struct type *type;
3297
3298 type = alloc_type (objfile);
3299 set_type_code (type, code);
3300 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3301 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3302 type->set_name (name);
3303
3304 return type;
3305 }
3306
3307 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3308 to use with variables that have no debug info. NAME is the type
3309 name. */
3310
3311 static struct type *
3312 init_nodebug_var_type (struct objfile *objfile, const char *name)
3313 {
3314 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3315 }
3316
3317 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3318 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3319 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3320
3321 struct type *
3322 init_integer_type (struct objfile *objfile,
3323 int bit, int unsigned_p, const char *name)
3324 {
3325 struct type *t;
3326
3327 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3328 if (unsigned_p)
3329 t->set_is_unsigned (true);
3330
3331 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3332 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3333 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3334
3335 return t;
3336 }
3337
3338 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3339 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3340 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3341
3342 struct type *
3343 init_character_type (struct objfile *objfile,
3344 int bit, int unsigned_p, const char *name)
3345 {
3346 struct type *t;
3347
3348 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3349 if (unsigned_p)
3350 t->set_is_unsigned (true);
3351
3352 return t;
3353 }
3354
3355 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3356 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3357 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3358
3359 struct type *
3360 init_boolean_type (struct objfile *objfile,
3361 int bit, int unsigned_p, const char *name)
3362 {
3363 struct type *t;
3364
3365 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3366 if (unsigned_p)
3367 t->set_is_unsigned (true);
3368
3369 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3370 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3371 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3372
3373 return t;
3374 }
3375
3376 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3377 BIT is the type size in bits; if BIT equals -1, the size is
3378 determined by the floatformat. NAME is the type name. Set the
3379 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3380 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3381 order of the objfile's architecture is used. */
3382
3383 struct type *
3384 init_float_type (struct objfile *objfile,
3385 int bit, const char *name,
3386 const struct floatformat **floatformats,
3387 enum bfd_endian byte_order)
3388 {
3389 if (byte_order == BFD_ENDIAN_UNKNOWN)
3390 {
3391 struct gdbarch *gdbarch = objfile->arch ();
3392 byte_order = gdbarch_byte_order (gdbarch);
3393 }
3394 const struct floatformat *fmt = floatformats[byte_order];
3395 struct type *t;
3396
3397 bit = verify_floatformat (bit, fmt);
3398 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3399 TYPE_FLOATFORMAT (t) = fmt;
3400
3401 return t;
3402 }
3403
3404 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3405 BIT is the type size in bits. NAME is the type name. */
3406
3407 struct type *
3408 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3409 {
3410 struct type *t;
3411
3412 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3413 return t;
3414 }
3415
3416 /* Return true if init_complex_type can be called with TARGET_TYPE. */
3417
3418 bool
3419 can_create_complex_type (struct type *target_type)
3420 {
3421 return (target_type->code () == TYPE_CODE_INT
3422 || target_type->code () == TYPE_CODE_FLT);
3423 }
3424
3425 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3426 name. TARGET_TYPE is the component type. */
3427
3428 struct type *
3429 init_complex_type (const char *name, struct type *target_type)
3430 {
3431 struct type *t;
3432
3433 gdb_assert (can_create_complex_type (target_type));
3434
3435 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3436 {
3437 if (name == nullptr && target_type->name () != nullptr)
3438 {
3439 char *new_name
3440 = (char *) TYPE_ALLOC (target_type,
3441 strlen (target_type->name ())
3442 + strlen ("_Complex ") + 1);
3443 strcpy (new_name, "_Complex ");
3444 strcat (new_name, target_type->name ());
3445 name = new_name;
3446 }
3447
3448 t = alloc_type_copy (target_type);
3449 set_type_code (t, TYPE_CODE_COMPLEX);
3450 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3451 t->set_name (name);
3452
3453 TYPE_TARGET_TYPE (t) = target_type;
3454 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3455 }
3456
3457 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3458 }
3459
3460 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3461 BIT is the pointer type size in bits. NAME is the type name.
3462 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3463 TYPE_UNSIGNED flag. */
3464
3465 struct type *
3466 init_pointer_type (struct objfile *objfile,
3467 int bit, const char *name, struct type *target_type)
3468 {
3469 struct type *t;
3470
3471 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3472 TYPE_TARGET_TYPE (t) = target_type;
3473 t->set_is_unsigned (true);
3474 return t;
3475 }
3476
3477 /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE.
3478 BIT is the pointer type size in bits.
3479 UNSIGNED_P should be nonzero if the type is unsigned.
3480 NAME is the type name. */
3481
3482 struct type *
3483 init_fixed_point_type (struct objfile *objfile,
3484 int bit, int unsigned_p, const char *name)
3485 {
3486 struct type *t;
3487
3488 t = init_type (objfile, TYPE_CODE_FIXED_POINT, bit, name);
3489 if (unsigned_p)
3490 t->set_is_unsigned (true);
3491
3492 return t;
3493 }
3494
3495 /* See gdbtypes.h. */
3496
3497 unsigned
3498 type_raw_align (struct type *type)
3499 {
3500 if (type->align_log2 != 0)
3501 return 1 << (type->align_log2 - 1);
3502 return 0;
3503 }
3504
3505 /* See gdbtypes.h. */
3506
3507 unsigned
3508 type_align (struct type *type)
3509 {
3510 /* Check alignment provided in the debug information. */
3511 unsigned raw_align = type_raw_align (type);
3512 if (raw_align != 0)
3513 return raw_align;
3514
3515 /* Allow the architecture to provide an alignment. */
3516 ULONGEST align = gdbarch_type_align (type->arch (), type);
3517 if (align != 0)
3518 return align;
3519
3520 switch (type->code ())
3521 {
3522 case TYPE_CODE_PTR:
3523 case TYPE_CODE_FUNC:
3524 case TYPE_CODE_FLAGS:
3525 case TYPE_CODE_INT:
3526 case TYPE_CODE_RANGE:
3527 case TYPE_CODE_FLT:
3528 case TYPE_CODE_ENUM:
3529 case TYPE_CODE_REF:
3530 case TYPE_CODE_RVALUE_REF:
3531 case TYPE_CODE_CHAR:
3532 case TYPE_CODE_BOOL:
3533 case TYPE_CODE_DECFLOAT:
3534 case TYPE_CODE_METHODPTR:
3535 case TYPE_CODE_MEMBERPTR:
3536 align = type_length_units (check_typedef (type));
3537 break;
3538
3539 case TYPE_CODE_ARRAY:
3540 case TYPE_CODE_COMPLEX:
3541 case TYPE_CODE_TYPEDEF:
3542 align = type_align (TYPE_TARGET_TYPE (type));
3543 break;
3544
3545 case TYPE_CODE_STRUCT:
3546 case TYPE_CODE_UNION:
3547 {
3548 int number_of_non_static_fields = 0;
3549 for (unsigned i = 0; i < type->num_fields (); ++i)
3550 {
3551 if (!field_is_static (&type->field (i)))
3552 {
3553 number_of_non_static_fields++;
3554 ULONGEST f_align = type_align (type->field (i).type ());
3555 if (f_align == 0)
3556 {
3557 /* Don't pretend we know something we don't. */
3558 align = 0;
3559 break;
3560 }
3561 if (f_align > align)
3562 align = f_align;
3563 }
3564 }
3565 /* A struct with no fields, or with only static fields has an
3566 alignment of 1. */
3567 if (number_of_non_static_fields == 0)
3568 align = 1;
3569 }
3570 break;
3571
3572 case TYPE_CODE_SET:
3573 case TYPE_CODE_STRING:
3574 /* Not sure what to do here, and these can't appear in C or C++
3575 anyway. */
3576 break;
3577
3578 case TYPE_CODE_VOID:
3579 align = 1;
3580 break;
3581
3582 case TYPE_CODE_ERROR:
3583 case TYPE_CODE_METHOD:
3584 default:
3585 break;
3586 }
3587
3588 if ((align & (align - 1)) != 0)
3589 {
3590 /* Not a power of 2, so pass. */
3591 align = 0;
3592 }
3593
3594 return align;
3595 }
3596
3597 /* See gdbtypes.h. */
3598
3599 bool
3600 set_type_align (struct type *type, ULONGEST align)
3601 {
3602 /* Must be a power of 2. Zero is ok. */
3603 gdb_assert ((align & (align - 1)) == 0);
3604
3605 unsigned result = 0;
3606 while (align != 0)
3607 {
3608 ++result;
3609 align >>= 1;
3610 }
3611
3612 if (result >= (1 << TYPE_ALIGN_BITS))
3613 return false;
3614
3615 type->align_log2 = result;
3616 return true;
3617 }
3618
3619 \f
3620 /* Queries on types. */
3621
3622 int
3623 can_dereference (struct type *t)
3624 {
3625 /* FIXME: Should we return true for references as well as
3626 pointers? */
3627 t = check_typedef (t);
3628 return
3629 (t != NULL
3630 && t->code () == TYPE_CODE_PTR
3631 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3632 }
3633
3634 int
3635 is_integral_type (struct type *t)
3636 {
3637 t = check_typedef (t);
3638 return
3639 ((t != NULL)
3640 && !is_fixed_point_type (t)
3641 && ((t->code () == TYPE_CODE_INT)
3642 || (t->code () == TYPE_CODE_ENUM)
3643 || (t->code () == TYPE_CODE_FLAGS)
3644 || (t->code () == TYPE_CODE_CHAR)
3645 || (t->code () == TYPE_CODE_RANGE)
3646 || (t->code () == TYPE_CODE_BOOL)));
3647 }
3648
3649 int
3650 is_floating_type (struct type *t)
3651 {
3652 t = check_typedef (t);
3653 return
3654 ((t != NULL)
3655 && ((t->code () == TYPE_CODE_FLT)
3656 || (t->code () == TYPE_CODE_DECFLOAT)));
3657 }
3658
3659 /* Return true if TYPE is scalar. */
3660
3661 int
3662 is_scalar_type (struct type *type)
3663 {
3664 type = check_typedef (type);
3665
3666 if (is_fixed_point_type (type))
3667 return 0; /* Implemented as a scalar, but more like a floating point. */
3668
3669 switch (type->code ())
3670 {
3671 case TYPE_CODE_ARRAY:
3672 case TYPE_CODE_STRUCT:
3673 case TYPE_CODE_UNION:
3674 case TYPE_CODE_SET:
3675 case TYPE_CODE_STRING:
3676 return 0;
3677 default:
3678 return 1;
3679 }
3680 }
3681
3682 /* Return true if T is scalar, or a composite type which in practice has
3683 the memory layout of a scalar type. E.g., an array or struct with only
3684 one scalar element inside it, or a union with only scalar elements. */
3685
3686 int
3687 is_scalar_type_recursive (struct type *t)
3688 {
3689 t = check_typedef (t);
3690
3691 if (is_scalar_type (t))
3692 return 1;
3693 /* Are we dealing with an array or string of known dimensions? */
3694 else if ((t->code () == TYPE_CODE_ARRAY
3695 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3696 && t->index_type ()->code () == TYPE_CODE_RANGE)
3697 {
3698 LONGEST low_bound, high_bound;
3699 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3700
3701 if (get_discrete_bounds (t->index_type (), &low_bound, &high_bound))
3702 return (high_bound == low_bound
3703 && is_scalar_type_recursive (elt_type));
3704 else
3705 return 0;
3706 }
3707 /* Are we dealing with a struct with one element? */
3708 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3709 return is_scalar_type_recursive (t->field (0).type ());
3710 else if (t->code () == TYPE_CODE_UNION)
3711 {
3712 int i, n = t->num_fields ();
3713
3714 /* If all elements of the union are scalar, then the union is scalar. */
3715 for (i = 0; i < n; i++)
3716 if (!is_scalar_type_recursive (t->field (i).type ()))
3717 return 0;
3718
3719 return 1;
3720 }
3721
3722 return 0;
3723 }
3724
3725 /* Return true is T is a class or a union. False otherwise. */
3726
3727 int
3728 class_or_union_p (const struct type *t)
3729 {
3730 return (t->code () == TYPE_CODE_STRUCT
3731 || t->code () == TYPE_CODE_UNION);
3732 }
3733
3734 /* A helper function which returns true if types A and B represent the
3735 "same" class type. This is true if the types have the same main
3736 type, or the same name. */
3737
3738 int
3739 class_types_same_p (const struct type *a, const struct type *b)
3740 {
3741 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3742 || (a->name () && b->name ()
3743 && !strcmp (a->name (), b->name ())));
3744 }
3745
3746 /* If BASE is an ancestor of DCLASS return the distance between them.
3747 otherwise return -1;
3748 eg:
3749
3750 class A {};
3751 class B: public A {};
3752 class C: public B {};
3753 class D: C {};
3754
3755 distance_to_ancestor (A, A, 0) = 0
3756 distance_to_ancestor (A, B, 0) = 1
3757 distance_to_ancestor (A, C, 0) = 2
3758 distance_to_ancestor (A, D, 0) = 3
3759
3760 If PUBLIC is 1 then only public ancestors are considered,
3761 and the function returns the distance only if BASE is a public ancestor
3762 of DCLASS.
3763 Eg:
3764
3765 distance_to_ancestor (A, D, 1) = -1. */
3766
3767 static int
3768 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3769 {
3770 int i;
3771 int d;
3772
3773 base = check_typedef (base);
3774 dclass = check_typedef (dclass);
3775
3776 if (class_types_same_p (base, dclass))
3777 return 0;
3778
3779 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3780 {
3781 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3782 continue;
3783
3784 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3785 if (d >= 0)
3786 return 1 + d;
3787 }
3788
3789 return -1;
3790 }
3791
3792 /* Check whether BASE is an ancestor or base class or DCLASS
3793 Return 1 if so, and 0 if not.
3794 Note: If BASE and DCLASS are of the same type, this function
3795 will return 1. So for some class A, is_ancestor (A, A) will
3796 return 1. */
3797
3798 int
3799 is_ancestor (struct type *base, struct type *dclass)
3800 {
3801 return distance_to_ancestor (base, dclass, 0) >= 0;
3802 }
3803
3804 /* Like is_ancestor, but only returns true when BASE is a public
3805 ancestor of DCLASS. */
3806
3807 int
3808 is_public_ancestor (struct type *base, struct type *dclass)
3809 {
3810 return distance_to_ancestor (base, dclass, 1) >= 0;
3811 }
3812
3813 /* A helper function for is_unique_ancestor. */
3814
3815 static int
3816 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3817 int *offset,
3818 const gdb_byte *valaddr, int embedded_offset,
3819 CORE_ADDR address, struct value *val)
3820 {
3821 int i, count = 0;
3822
3823 base = check_typedef (base);
3824 dclass = check_typedef (dclass);
3825
3826 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3827 {
3828 struct type *iter;
3829 int this_offset;
3830
3831 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3832
3833 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3834 address, val);
3835
3836 if (class_types_same_p (base, iter))
3837 {
3838 /* If this is the first subclass, set *OFFSET and set count
3839 to 1. Otherwise, if this is at the same offset as
3840 previous instances, do nothing. Otherwise, increment
3841 count. */
3842 if (*offset == -1)
3843 {
3844 *offset = this_offset;
3845 count = 1;
3846 }
3847 else if (this_offset == *offset)
3848 {
3849 /* Nothing. */
3850 }
3851 else
3852 ++count;
3853 }
3854 else
3855 count += is_unique_ancestor_worker (base, iter, offset,
3856 valaddr,
3857 embedded_offset + this_offset,
3858 address, val);
3859 }
3860
3861 return count;
3862 }
3863
3864 /* Like is_ancestor, but only returns true if BASE is a unique base
3865 class of the type of VAL. */
3866
3867 int
3868 is_unique_ancestor (struct type *base, struct value *val)
3869 {
3870 int offset = -1;
3871
3872 return is_unique_ancestor_worker (base, value_type (val), &offset,
3873 value_contents_for_printing (val),
3874 value_embedded_offset (val),
3875 value_address (val), val) == 1;
3876 }
3877
3878 /* See gdbtypes.h. */
3879
3880 enum bfd_endian
3881 type_byte_order (const struct type *type)
3882 {
3883 bfd_endian byteorder = gdbarch_byte_order (type->arch ());
3884 if (type->endianity_is_not_default ())
3885 {
3886 if (byteorder == BFD_ENDIAN_BIG)
3887 return BFD_ENDIAN_LITTLE;
3888 else
3889 {
3890 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3891 return BFD_ENDIAN_BIG;
3892 }
3893 }
3894
3895 return byteorder;
3896 }
3897
3898 \f
3899 /* Overload resolution. */
3900
3901 /* Return the sum of the rank of A with the rank of B. */
3902
3903 struct rank
3904 sum_ranks (struct rank a, struct rank b)
3905 {
3906 struct rank c;
3907 c.rank = a.rank + b.rank;
3908 c.subrank = a.subrank + b.subrank;
3909 return c;
3910 }
3911
3912 /* Compare rank A and B and return:
3913 0 if a = b
3914 1 if a is better than b
3915 -1 if b is better than a. */
3916
3917 int
3918 compare_ranks (struct rank a, struct rank b)
3919 {
3920 if (a.rank == b.rank)
3921 {
3922 if (a.subrank == b.subrank)
3923 return 0;
3924 if (a.subrank < b.subrank)
3925 return 1;
3926 if (a.subrank > b.subrank)
3927 return -1;
3928 }
3929
3930 if (a.rank < b.rank)
3931 return 1;
3932
3933 /* a.rank > b.rank */
3934 return -1;
3935 }
3936
3937 /* Functions for overload resolution begin here. */
3938
3939 /* Compare two badness vectors A and B and return the result.
3940 0 => A and B are identical
3941 1 => A and B are incomparable
3942 2 => A is better than B
3943 3 => A is worse than B */
3944
3945 int
3946 compare_badness (const badness_vector &a, const badness_vector &b)
3947 {
3948 int i;
3949 int tmp;
3950 short found_pos = 0; /* any positives in c? */
3951 short found_neg = 0; /* any negatives in c? */
3952
3953 /* differing sizes => incomparable */
3954 if (a.size () != b.size ())
3955 return 1;
3956
3957 /* Subtract b from a */
3958 for (i = 0; i < a.size (); i++)
3959 {
3960 tmp = compare_ranks (b[i], a[i]);
3961 if (tmp > 0)
3962 found_pos = 1;
3963 else if (tmp < 0)
3964 found_neg = 1;
3965 }
3966
3967 if (found_pos)
3968 {
3969 if (found_neg)
3970 return 1; /* incomparable */
3971 else
3972 return 3; /* A > B */
3973 }
3974 else
3975 /* no positives */
3976 {
3977 if (found_neg)
3978 return 2; /* A < B */
3979 else
3980 return 0; /* A == B */
3981 }
3982 }
3983
3984 /* Rank a function by comparing its parameter types (PARMS), to the
3985 types of an argument list (ARGS). Return the badness vector. This
3986 has ARGS.size() + 1 entries. */
3987
3988 badness_vector
3989 rank_function (gdb::array_view<type *> parms,
3990 gdb::array_view<value *> args)
3991 {
3992 /* add 1 for the length-match rank. */
3993 badness_vector bv;
3994 bv.reserve (1 + args.size ());
3995
3996 /* First compare the lengths of the supplied lists.
3997 If there is a mismatch, set it to a high value. */
3998
3999 /* pai/1997-06-03 FIXME: when we have debug info about default
4000 arguments and ellipsis parameter lists, we should consider those
4001 and rank the length-match more finely. */
4002
4003 bv.push_back ((args.size () != parms.size ())
4004 ? LENGTH_MISMATCH_BADNESS
4005 : EXACT_MATCH_BADNESS);
4006
4007 /* Now rank all the parameters of the candidate function. */
4008 size_t min_len = std::min (parms.size (), args.size ());
4009
4010 for (size_t i = 0; i < min_len; i++)
4011 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
4012 args[i]));
4013
4014 /* If more arguments than parameters, add dummy entries. */
4015 for (size_t i = min_len; i < args.size (); i++)
4016 bv.push_back (TOO_FEW_PARAMS_BADNESS);
4017
4018 return bv;
4019 }
4020
4021 /* Compare the names of two integer types, assuming that any sign
4022 qualifiers have been checked already. We do it this way because
4023 there may be an "int" in the name of one of the types. */
4024
4025 static int
4026 integer_types_same_name_p (const char *first, const char *second)
4027 {
4028 int first_p, second_p;
4029
4030 /* If both are shorts, return 1; if neither is a short, keep
4031 checking. */
4032 first_p = (strstr (first, "short") != NULL);
4033 second_p = (strstr (second, "short") != NULL);
4034 if (first_p && second_p)
4035 return 1;
4036 if (first_p || second_p)
4037 return 0;
4038
4039 /* Likewise for long. */
4040 first_p = (strstr (first, "long") != NULL);
4041 second_p = (strstr (second, "long") != NULL);
4042 if (first_p && second_p)
4043 return 1;
4044 if (first_p || second_p)
4045 return 0;
4046
4047 /* Likewise for char. */
4048 first_p = (strstr (first, "char") != NULL);
4049 second_p = (strstr (second, "char") != NULL);
4050 if (first_p && second_p)
4051 return 1;
4052 if (first_p || second_p)
4053 return 0;
4054
4055 /* They must both be ints. */
4056 return 1;
4057 }
4058
4059 /* Compares type A to type B. Returns true if they represent the same
4060 type, false otherwise. */
4061
4062 bool
4063 types_equal (struct type *a, struct type *b)
4064 {
4065 /* Identical type pointers. */
4066 /* However, this still doesn't catch all cases of same type for b
4067 and a. The reason is that builtin types are different from
4068 the same ones constructed from the object. */
4069 if (a == b)
4070 return true;
4071
4072 /* Resolve typedefs */
4073 if (a->code () == TYPE_CODE_TYPEDEF)
4074 a = check_typedef (a);
4075 if (b->code () == TYPE_CODE_TYPEDEF)
4076 b = check_typedef (b);
4077
4078 /* Check if identical after resolving typedefs. */
4079 if (a == b)
4080 return true;
4081
4082 /* If after resolving typedefs a and b are not of the same type
4083 code then they are not equal. */
4084 if (a->code () != b->code ())
4085 return false;
4086
4087 /* If a and b are both pointers types or both reference types then
4088 they are equal of the same type iff the objects they refer to are
4089 of the same type. */
4090 if (a->code () == TYPE_CODE_PTR
4091 || a->code () == TYPE_CODE_REF)
4092 return types_equal (TYPE_TARGET_TYPE (a),
4093 TYPE_TARGET_TYPE (b));
4094
4095 /* Well, damnit, if the names are exactly the same, I'll say they
4096 are exactly the same. This happens when we generate method
4097 stubs. The types won't point to the same address, but they
4098 really are the same. */
4099
4100 if (a->name () && b->name ()
4101 && strcmp (a->name (), b->name ()) == 0)
4102 return true;
4103
4104 /* Two function types are equal if their argument and return types
4105 are equal. */
4106 if (a->code () == TYPE_CODE_FUNC)
4107 {
4108 int i;
4109
4110 if (a->num_fields () != b->num_fields ())
4111 return false;
4112
4113 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
4114 return false;
4115
4116 for (i = 0; i < a->num_fields (); ++i)
4117 if (!types_equal (a->field (i).type (), b->field (i).type ()))
4118 return false;
4119
4120 return true;
4121 }
4122
4123 return false;
4124 }
4125 \f
4126 /* Deep comparison of types. */
4127
4128 /* An entry in the type-equality bcache. */
4129
4130 struct type_equality_entry
4131 {
4132 type_equality_entry (struct type *t1, struct type *t2)
4133 : type1 (t1),
4134 type2 (t2)
4135 {
4136 }
4137
4138 struct type *type1, *type2;
4139 };
4140
4141 /* A helper function to compare two strings. Returns true if they are
4142 the same, false otherwise. Handles NULLs properly. */
4143
4144 static bool
4145 compare_maybe_null_strings (const char *s, const char *t)
4146 {
4147 if (s == NULL || t == NULL)
4148 return s == t;
4149 return strcmp (s, t) == 0;
4150 }
4151
4152 /* A helper function for check_types_worklist that checks two types for
4153 "deep" equality. Returns true if the types are considered the
4154 same, false otherwise. */
4155
4156 static bool
4157 check_types_equal (struct type *type1, struct type *type2,
4158 std::vector<type_equality_entry> *worklist)
4159 {
4160 type1 = check_typedef (type1);
4161 type2 = check_typedef (type2);
4162
4163 if (type1 == type2)
4164 return true;
4165
4166 if (type1->code () != type2->code ()
4167 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4168 || type1->is_unsigned () != type2->is_unsigned ()
4169 || type1->has_no_signedness () != type2->has_no_signedness ()
4170 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
4171 || type1->has_varargs () != type2->has_varargs ()
4172 || type1->is_vector () != type2->is_vector ()
4173 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4174 || type1->instance_flags () != type2->instance_flags ()
4175 || type1->num_fields () != type2->num_fields ())
4176 return false;
4177
4178 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4179 return false;
4180 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4181 return false;
4182
4183 if (type1->code () == TYPE_CODE_RANGE)
4184 {
4185 if (*type1->bounds () != *type2->bounds ())
4186 return false;
4187 }
4188 else
4189 {
4190 int i;
4191
4192 for (i = 0; i < type1->num_fields (); ++i)
4193 {
4194 const struct field *field1 = &type1->field (i);
4195 const struct field *field2 = &type2->field (i);
4196
4197 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4198 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4199 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4200 return false;
4201 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4202 FIELD_NAME (*field2)))
4203 return false;
4204 switch (FIELD_LOC_KIND (*field1))
4205 {
4206 case FIELD_LOC_KIND_BITPOS:
4207 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4208 return false;
4209 break;
4210 case FIELD_LOC_KIND_ENUMVAL:
4211 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4212 return false;
4213 /* Don't compare types of enum fields, because they don't
4214 have a type. */
4215 continue;
4216 case FIELD_LOC_KIND_PHYSADDR:
4217 if (FIELD_STATIC_PHYSADDR (*field1)
4218 != FIELD_STATIC_PHYSADDR (*field2))
4219 return false;
4220 break;
4221 case FIELD_LOC_KIND_PHYSNAME:
4222 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4223 FIELD_STATIC_PHYSNAME (*field2)))
4224 return false;
4225 break;
4226 case FIELD_LOC_KIND_DWARF_BLOCK:
4227 {
4228 struct dwarf2_locexpr_baton *block1, *block2;
4229
4230 block1 = FIELD_DWARF_BLOCK (*field1);
4231 block2 = FIELD_DWARF_BLOCK (*field2);
4232 if (block1->per_cu != block2->per_cu
4233 || block1->size != block2->size
4234 || memcmp (block1->data, block2->data, block1->size) != 0)
4235 return false;
4236 }
4237 break;
4238 default:
4239 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4240 "%d by check_types_equal"),
4241 FIELD_LOC_KIND (*field1));
4242 }
4243
4244 worklist->emplace_back (field1->type (), field2->type ());
4245 }
4246 }
4247
4248 if (TYPE_TARGET_TYPE (type1) != NULL)
4249 {
4250 if (TYPE_TARGET_TYPE (type2) == NULL)
4251 return false;
4252
4253 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4254 TYPE_TARGET_TYPE (type2));
4255 }
4256 else if (TYPE_TARGET_TYPE (type2) != NULL)
4257 return false;
4258
4259 return true;
4260 }
4261
4262 /* Check types on a worklist for equality. Returns false if any pair
4263 is not equal, true if they are all considered equal. */
4264
4265 static bool
4266 check_types_worklist (std::vector<type_equality_entry> *worklist,
4267 gdb::bcache *cache)
4268 {
4269 while (!worklist->empty ())
4270 {
4271 bool added;
4272
4273 struct type_equality_entry entry = std::move (worklist->back ());
4274 worklist->pop_back ();
4275
4276 /* If the type pair has already been visited, we know it is
4277 ok. */
4278 cache->insert (&entry, sizeof (entry), &added);
4279 if (!added)
4280 continue;
4281
4282 if (!check_types_equal (entry.type1, entry.type2, worklist))
4283 return false;
4284 }
4285
4286 return true;
4287 }
4288
4289 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4290 "deep comparison". Otherwise return false. */
4291
4292 bool
4293 types_deeply_equal (struct type *type1, struct type *type2)
4294 {
4295 std::vector<type_equality_entry> worklist;
4296
4297 gdb_assert (type1 != NULL && type2 != NULL);
4298
4299 /* Early exit for the simple case. */
4300 if (type1 == type2)
4301 return true;
4302
4303 gdb::bcache cache;
4304 worklist.emplace_back (type1, type2);
4305 return check_types_worklist (&worklist, &cache);
4306 }
4307
4308 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4309 Otherwise return one. */
4310
4311 int
4312 type_not_allocated (const struct type *type)
4313 {
4314 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4315
4316 return (prop != nullptr && prop->kind () == PROP_CONST
4317 && prop->const_val () == 0);
4318 }
4319
4320 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4321 Otherwise return one. */
4322
4323 int
4324 type_not_associated (const struct type *type)
4325 {
4326 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4327
4328 return (prop != nullptr && prop->kind () == PROP_CONST
4329 && prop->const_val () == 0);
4330 }
4331
4332 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4333
4334 static struct rank
4335 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4336 {
4337 struct rank rank = {0,0};
4338
4339 switch (arg->code ())
4340 {
4341 case TYPE_CODE_PTR:
4342
4343 /* Allowed pointer conversions are:
4344 (a) pointer to void-pointer conversion. */
4345 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4346 return VOID_PTR_CONVERSION_BADNESS;
4347
4348 /* (b) pointer to ancestor-pointer conversion. */
4349 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4350 TYPE_TARGET_TYPE (arg),
4351 0);
4352 if (rank.subrank >= 0)
4353 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4354
4355 return INCOMPATIBLE_TYPE_BADNESS;
4356 case TYPE_CODE_ARRAY:
4357 {
4358 struct type *t1 = TYPE_TARGET_TYPE (parm);
4359 struct type *t2 = TYPE_TARGET_TYPE (arg);
4360
4361 if (types_equal (t1, t2))
4362 {
4363 /* Make sure they are CV equal. */
4364 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4365 rank.subrank |= CV_CONVERSION_CONST;
4366 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4367 rank.subrank |= CV_CONVERSION_VOLATILE;
4368 if (rank.subrank != 0)
4369 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4370 return EXACT_MATCH_BADNESS;
4371 }
4372 return INCOMPATIBLE_TYPE_BADNESS;
4373 }
4374 case TYPE_CODE_FUNC:
4375 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4376 case TYPE_CODE_INT:
4377 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4378 {
4379 if (value_as_long (value) == 0)
4380 {
4381 /* Null pointer conversion: allow it to be cast to a pointer.
4382 [4.10.1 of C++ standard draft n3290] */
4383 return NULL_POINTER_CONVERSION_BADNESS;
4384 }
4385 else
4386 {
4387 /* If type checking is disabled, allow the conversion. */
4388 if (!strict_type_checking)
4389 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4390 }
4391 }
4392 /* fall through */
4393 case TYPE_CODE_ENUM:
4394 case TYPE_CODE_FLAGS:
4395 case TYPE_CODE_CHAR:
4396 case TYPE_CODE_RANGE:
4397 case TYPE_CODE_BOOL:
4398 default:
4399 return INCOMPATIBLE_TYPE_BADNESS;
4400 }
4401 }
4402
4403 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4404
4405 static struct rank
4406 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4407 {
4408 switch (arg->code ())
4409 {
4410 case TYPE_CODE_PTR:
4411 case TYPE_CODE_ARRAY:
4412 return rank_one_type (TYPE_TARGET_TYPE (parm),
4413 TYPE_TARGET_TYPE (arg), NULL);
4414 default:
4415 return INCOMPATIBLE_TYPE_BADNESS;
4416 }
4417 }
4418
4419 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4420
4421 static struct rank
4422 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4423 {
4424 switch (arg->code ())
4425 {
4426 case TYPE_CODE_PTR: /* funcptr -> func */
4427 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4428 default:
4429 return INCOMPATIBLE_TYPE_BADNESS;
4430 }
4431 }
4432
4433 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4434
4435 static struct rank
4436 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4437 {
4438 switch (arg->code ())
4439 {
4440 case TYPE_CODE_INT:
4441 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4442 {
4443 /* Deal with signed, unsigned, and plain chars and
4444 signed and unsigned ints. */
4445 if (parm->has_no_signedness ())
4446 {
4447 /* This case only for character types. */
4448 if (arg->has_no_signedness ())
4449 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4450 else /* signed/unsigned char -> plain char */
4451 return INTEGER_CONVERSION_BADNESS;
4452 }
4453 else if (parm->is_unsigned ())
4454 {
4455 if (arg->is_unsigned ())
4456 {
4457 /* unsigned int -> unsigned int, or
4458 unsigned long -> unsigned long */
4459 if (integer_types_same_name_p (parm->name (),
4460 arg->name ()))
4461 return EXACT_MATCH_BADNESS;
4462 else if (integer_types_same_name_p (arg->name (),
4463 "int")
4464 && integer_types_same_name_p (parm->name (),
4465 "long"))
4466 /* unsigned int -> unsigned long */
4467 return INTEGER_PROMOTION_BADNESS;
4468 else
4469 /* unsigned long -> unsigned int */
4470 return INTEGER_CONVERSION_BADNESS;
4471 }
4472 else
4473 {
4474 if (integer_types_same_name_p (arg->name (),
4475 "long")
4476 && integer_types_same_name_p (parm->name (),
4477 "int"))
4478 /* signed long -> unsigned int */
4479 return INTEGER_CONVERSION_BADNESS;
4480 else
4481 /* signed int/long -> unsigned int/long */
4482 return INTEGER_CONVERSION_BADNESS;
4483 }
4484 }
4485 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4486 {
4487 if (integer_types_same_name_p (parm->name (),
4488 arg->name ()))
4489 return EXACT_MATCH_BADNESS;
4490 else if (integer_types_same_name_p (arg->name (),
4491 "int")
4492 && integer_types_same_name_p (parm->name (),
4493 "long"))
4494 return INTEGER_PROMOTION_BADNESS;
4495 else
4496 return INTEGER_CONVERSION_BADNESS;
4497 }
4498 else
4499 return INTEGER_CONVERSION_BADNESS;
4500 }
4501 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4502 return INTEGER_PROMOTION_BADNESS;
4503 else
4504 return INTEGER_CONVERSION_BADNESS;
4505 case TYPE_CODE_ENUM:
4506 case TYPE_CODE_FLAGS:
4507 case TYPE_CODE_CHAR:
4508 case TYPE_CODE_RANGE:
4509 case TYPE_CODE_BOOL:
4510 if (arg->is_declared_class ())
4511 return INCOMPATIBLE_TYPE_BADNESS;
4512 return INTEGER_PROMOTION_BADNESS;
4513 case TYPE_CODE_FLT:
4514 return INT_FLOAT_CONVERSION_BADNESS;
4515 case TYPE_CODE_PTR:
4516 return NS_POINTER_CONVERSION_BADNESS;
4517 default:
4518 return INCOMPATIBLE_TYPE_BADNESS;
4519 }
4520 }
4521
4522 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4523
4524 static struct rank
4525 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4526 {
4527 switch (arg->code ())
4528 {
4529 case TYPE_CODE_INT:
4530 case TYPE_CODE_CHAR:
4531 case TYPE_CODE_RANGE:
4532 case TYPE_CODE_BOOL:
4533 case TYPE_CODE_ENUM:
4534 if (parm->is_declared_class () || arg->is_declared_class ())
4535 return INCOMPATIBLE_TYPE_BADNESS;
4536 return INTEGER_CONVERSION_BADNESS;
4537 case TYPE_CODE_FLT:
4538 return INT_FLOAT_CONVERSION_BADNESS;
4539 default:
4540 return INCOMPATIBLE_TYPE_BADNESS;
4541 }
4542 }
4543
4544 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4545
4546 static struct rank
4547 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4548 {
4549 switch (arg->code ())
4550 {
4551 case TYPE_CODE_RANGE:
4552 case TYPE_CODE_BOOL:
4553 case TYPE_CODE_ENUM:
4554 if (arg->is_declared_class ())
4555 return INCOMPATIBLE_TYPE_BADNESS;
4556 return INTEGER_CONVERSION_BADNESS;
4557 case TYPE_CODE_FLT:
4558 return INT_FLOAT_CONVERSION_BADNESS;
4559 case TYPE_CODE_INT:
4560 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4561 return INTEGER_CONVERSION_BADNESS;
4562 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4563 return INTEGER_PROMOTION_BADNESS;
4564 /* fall through */
4565 case TYPE_CODE_CHAR:
4566 /* Deal with signed, unsigned, and plain chars for C++ and
4567 with int cases falling through from previous case. */
4568 if (parm->has_no_signedness ())
4569 {
4570 if (arg->has_no_signedness ())
4571 return EXACT_MATCH_BADNESS;
4572 else
4573 return INTEGER_CONVERSION_BADNESS;
4574 }
4575 else if (parm->is_unsigned ())
4576 {
4577 if (arg->is_unsigned ())
4578 return EXACT_MATCH_BADNESS;
4579 else
4580 return INTEGER_PROMOTION_BADNESS;
4581 }
4582 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4583 return EXACT_MATCH_BADNESS;
4584 else
4585 return INTEGER_CONVERSION_BADNESS;
4586 default:
4587 return INCOMPATIBLE_TYPE_BADNESS;
4588 }
4589 }
4590
4591 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4592
4593 static struct rank
4594 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4595 {
4596 switch (arg->code ())
4597 {
4598 case TYPE_CODE_INT:
4599 case TYPE_CODE_CHAR:
4600 case TYPE_CODE_RANGE:
4601 case TYPE_CODE_BOOL:
4602 case TYPE_CODE_ENUM:
4603 return INTEGER_CONVERSION_BADNESS;
4604 case TYPE_CODE_FLT:
4605 return INT_FLOAT_CONVERSION_BADNESS;
4606 default:
4607 return INCOMPATIBLE_TYPE_BADNESS;
4608 }
4609 }
4610
4611 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4612
4613 static struct rank
4614 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4615 {
4616 switch (arg->code ())
4617 {
4618 /* n3290 draft, section 4.12.1 (conv.bool):
4619
4620 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4621 pointer to member type can be converted to a prvalue of type
4622 bool. A zero value, null pointer value, or null member pointer
4623 value is converted to false; any other value is converted to
4624 true. A prvalue of type std::nullptr_t can be converted to a
4625 prvalue of type bool; the resulting value is false." */
4626 case TYPE_CODE_INT:
4627 case TYPE_CODE_CHAR:
4628 case TYPE_CODE_ENUM:
4629 case TYPE_CODE_FLT:
4630 case TYPE_CODE_MEMBERPTR:
4631 case TYPE_CODE_PTR:
4632 return BOOL_CONVERSION_BADNESS;
4633 case TYPE_CODE_RANGE:
4634 return INCOMPATIBLE_TYPE_BADNESS;
4635 case TYPE_CODE_BOOL:
4636 return EXACT_MATCH_BADNESS;
4637 default:
4638 return INCOMPATIBLE_TYPE_BADNESS;
4639 }
4640 }
4641
4642 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4643
4644 static struct rank
4645 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4646 {
4647 switch (arg->code ())
4648 {
4649 case TYPE_CODE_FLT:
4650 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4651 return FLOAT_PROMOTION_BADNESS;
4652 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4653 return EXACT_MATCH_BADNESS;
4654 else
4655 return FLOAT_CONVERSION_BADNESS;
4656 case TYPE_CODE_INT:
4657 case TYPE_CODE_BOOL:
4658 case TYPE_CODE_ENUM:
4659 case TYPE_CODE_RANGE:
4660 case TYPE_CODE_CHAR:
4661 return INT_FLOAT_CONVERSION_BADNESS;
4662 default:
4663 return INCOMPATIBLE_TYPE_BADNESS;
4664 }
4665 }
4666
4667 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4668
4669 static struct rank
4670 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4671 {
4672 switch (arg->code ())
4673 { /* Strictly not needed for C++, but... */
4674 case TYPE_CODE_FLT:
4675 return FLOAT_PROMOTION_BADNESS;
4676 case TYPE_CODE_COMPLEX:
4677 return EXACT_MATCH_BADNESS;
4678 default:
4679 return INCOMPATIBLE_TYPE_BADNESS;
4680 }
4681 }
4682
4683 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4684
4685 static struct rank
4686 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4687 {
4688 struct rank rank = {0, 0};
4689
4690 switch (arg->code ())
4691 {
4692 case TYPE_CODE_STRUCT:
4693 /* Check for derivation */
4694 rank.subrank = distance_to_ancestor (parm, arg, 0);
4695 if (rank.subrank >= 0)
4696 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4697 /* fall through */
4698 default:
4699 return INCOMPATIBLE_TYPE_BADNESS;
4700 }
4701 }
4702
4703 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4704
4705 static struct rank
4706 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4707 {
4708 switch (arg->code ())
4709 {
4710 /* Not in C++ */
4711 case TYPE_CODE_SET:
4712 return rank_one_type (parm->field (0).type (),
4713 arg->field (0).type (), NULL);
4714 default:
4715 return INCOMPATIBLE_TYPE_BADNESS;
4716 }
4717 }
4718
4719 /* Compare one type (PARM) for compatibility with another (ARG).
4720 * PARM is intended to be the parameter type of a function; and
4721 * ARG is the supplied argument's type. This function tests if
4722 * the latter can be converted to the former.
4723 * VALUE is the argument's value or NULL if none (or called recursively)
4724 *
4725 * Return 0 if they are identical types;
4726 * Otherwise, return an integer which corresponds to how compatible
4727 * PARM is to ARG. The higher the return value, the worse the match.
4728 * Generally the "bad" conversions are all uniformly assigned a 100. */
4729
4730 struct rank
4731 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4732 {
4733 struct rank rank = {0,0};
4734
4735 /* Resolve typedefs */
4736 if (parm->code () == TYPE_CODE_TYPEDEF)
4737 parm = check_typedef (parm);
4738 if (arg->code () == TYPE_CODE_TYPEDEF)
4739 arg = check_typedef (arg);
4740
4741 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4742 {
4743 if (VALUE_LVAL (value) == not_lval)
4744 {
4745 /* Rvalues should preferably bind to rvalue references or const
4746 lvalue references. */
4747 if (parm->code () == TYPE_CODE_RVALUE_REF)
4748 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4749 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4750 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4751 else
4752 return INCOMPATIBLE_TYPE_BADNESS;
4753 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4754 }
4755 else
4756 {
4757 /* It's illegal to pass an lvalue as an rvalue. */
4758 if (parm->code () == TYPE_CODE_RVALUE_REF)
4759 return INCOMPATIBLE_TYPE_BADNESS;
4760 }
4761 }
4762
4763 if (types_equal (parm, arg))
4764 {
4765 struct type *t1 = parm;
4766 struct type *t2 = arg;
4767
4768 /* For pointers and references, compare target type. */
4769 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4770 {
4771 t1 = TYPE_TARGET_TYPE (parm);
4772 t2 = TYPE_TARGET_TYPE (arg);
4773 }
4774
4775 /* Make sure they are CV equal, too. */
4776 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4777 rank.subrank |= CV_CONVERSION_CONST;
4778 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4779 rank.subrank |= CV_CONVERSION_VOLATILE;
4780 if (rank.subrank != 0)
4781 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4782 return EXACT_MATCH_BADNESS;
4783 }
4784
4785 /* See through references, since we can almost make non-references
4786 references. */
4787
4788 if (TYPE_IS_REFERENCE (arg))
4789 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4790 REFERENCE_SEE_THROUGH_BADNESS));
4791 if (TYPE_IS_REFERENCE (parm))
4792 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4793 REFERENCE_SEE_THROUGH_BADNESS));
4794 if (overload_debug)
4795 {
4796 /* Debugging only. */
4797 fprintf_filtered (gdb_stderr,
4798 "------ Arg is %s [%d], parm is %s [%d]\n",
4799 arg->name (), arg->code (),
4800 parm->name (), parm->code ());
4801 }
4802
4803 /* x -> y means arg of type x being supplied for parameter of type y. */
4804
4805 switch (parm->code ())
4806 {
4807 case TYPE_CODE_PTR:
4808 return rank_one_type_parm_ptr (parm, arg, value);
4809 case TYPE_CODE_ARRAY:
4810 return rank_one_type_parm_array (parm, arg, value);
4811 case TYPE_CODE_FUNC:
4812 return rank_one_type_parm_func (parm, arg, value);
4813 case TYPE_CODE_INT:
4814 return rank_one_type_parm_int (parm, arg, value);
4815 case TYPE_CODE_ENUM:
4816 return rank_one_type_parm_enum (parm, arg, value);
4817 case TYPE_CODE_CHAR:
4818 return rank_one_type_parm_char (parm, arg, value);
4819 case TYPE_CODE_RANGE:
4820 return rank_one_type_parm_range (parm, arg, value);
4821 case TYPE_CODE_BOOL:
4822 return rank_one_type_parm_bool (parm, arg, value);
4823 case TYPE_CODE_FLT:
4824 return rank_one_type_parm_float (parm, arg, value);
4825 case TYPE_CODE_COMPLEX:
4826 return rank_one_type_parm_complex (parm, arg, value);
4827 case TYPE_CODE_STRUCT:
4828 return rank_one_type_parm_struct (parm, arg, value);
4829 case TYPE_CODE_SET:
4830 return rank_one_type_parm_set (parm, arg, value);
4831 default:
4832 return INCOMPATIBLE_TYPE_BADNESS;
4833 } /* switch (arg->code ()) */
4834 }
4835
4836 /* End of functions for overload resolution. */
4837 \f
4838 /* Routines to pretty-print types. */
4839
4840 static void
4841 print_bit_vector (B_TYPE *bits, int nbits)
4842 {
4843 int bitno;
4844
4845 for (bitno = 0; bitno < nbits; bitno++)
4846 {
4847 if ((bitno % 8) == 0)
4848 {
4849 puts_filtered (" ");
4850 }
4851 if (B_TST (bits, bitno))
4852 printf_filtered (("1"));
4853 else
4854 printf_filtered (("0"));
4855 }
4856 }
4857
4858 /* Note the first arg should be the "this" pointer, we may not want to
4859 include it since we may get into a infinitely recursive
4860 situation. */
4861
4862 static void
4863 print_args (struct field *args, int nargs, int spaces)
4864 {
4865 if (args != NULL)
4866 {
4867 int i;
4868
4869 for (i = 0; i < nargs; i++)
4870 {
4871 printf_filtered ("%*s[%d] name '%s'\n", spaces, "", i,
4872 args[i].name != NULL ? args[i].name : "<NULL>");
4873 recursive_dump_type (args[i].type (), spaces + 2);
4874 }
4875 }
4876 }
4877
4878 int
4879 field_is_static (struct field *f)
4880 {
4881 /* "static" fields are the fields whose location is not relative
4882 to the address of the enclosing struct. It would be nice to
4883 have a dedicated flag that would be set for static fields when
4884 the type is being created. But in practice, checking the field
4885 loc_kind should give us an accurate answer. */
4886 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4887 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4888 }
4889
4890 static void
4891 dump_fn_fieldlists (struct type *type, int spaces)
4892 {
4893 int method_idx;
4894 int overload_idx;
4895 struct fn_field *f;
4896
4897 printf_filtered ("%*sfn_fieldlists ", spaces, "");
4898 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4899 printf_filtered ("\n");
4900 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4901 {
4902 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4903 printf_filtered ("%*s[%d] name '%s' (", spaces + 2, "",
4904 method_idx,
4905 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4906 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4907 gdb_stdout);
4908 printf_filtered (_(") length %d\n"),
4909 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4910 for (overload_idx = 0;
4911 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4912 overload_idx++)
4913 {
4914 printf_filtered ("%*s[%d] physname '%s' (",
4915 spaces + 4, "", overload_idx,
4916 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4917 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4918 gdb_stdout);
4919 printf_filtered (")\n");
4920 printf_filtered ("%*stype ", spaces + 8, "");
4921 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4922 gdb_stdout);
4923 printf_filtered ("\n");
4924
4925 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4926 spaces + 8 + 2);
4927
4928 printf_filtered ("%*sargs ", spaces + 8, "");
4929 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4930 gdb_stdout);
4931 printf_filtered ("\n");
4932 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4933 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4934 spaces + 8 + 2);
4935 printf_filtered ("%*sfcontext ", spaces + 8, "");
4936 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4937 gdb_stdout);
4938 printf_filtered ("\n");
4939
4940 printf_filtered ("%*sis_const %d\n", spaces + 8, "",
4941 TYPE_FN_FIELD_CONST (f, overload_idx));
4942 printf_filtered ("%*sis_volatile %d\n", spaces + 8, "",
4943 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4944 printf_filtered ("%*sis_private %d\n", spaces + 8, "",
4945 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4946 printf_filtered ("%*sis_protected %d\n", spaces + 8, "",
4947 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4948 printf_filtered ("%*sis_stub %d\n", spaces + 8, "",
4949 TYPE_FN_FIELD_STUB (f, overload_idx));
4950 printf_filtered ("%*sdefaulted %d\n", spaces + 8, "",
4951 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4952 printf_filtered ("%*sis_deleted %d\n", spaces + 8, "",
4953 TYPE_FN_FIELD_DELETED (f, overload_idx));
4954 printf_filtered ("%*svoffset %u\n", spaces + 8, "",
4955 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4956 }
4957 }
4958 }
4959
4960 static void
4961 print_cplus_stuff (struct type *type, int spaces)
4962 {
4963 printf_filtered ("%*svptr_fieldno %d\n", spaces, "",
4964 TYPE_VPTR_FIELDNO (type));
4965 printf_filtered ("%*svptr_basetype ", spaces, "");
4966 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4967 puts_filtered ("\n");
4968 if (TYPE_VPTR_BASETYPE (type) != NULL)
4969 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4970
4971 printf_filtered ("%*sn_baseclasses %d\n", spaces, "",
4972 TYPE_N_BASECLASSES (type));
4973 printf_filtered ("%*snfn_fields %d\n", spaces, "",
4974 TYPE_NFN_FIELDS (type));
4975 if (TYPE_N_BASECLASSES (type) > 0)
4976 {
4977 printf_filtered ("%*svirtual_field_bits (%d bits at *",
4978 spaces, "", TYPE_N_BASECLASSES (type));
4979 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4980 gdb_stdout);
4981 printf_filtered (")");
4982
4983 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4984 TYPE_N_BASECLASSES (type));
4985 puts_filtered ("\n");
4986 }
4987 if (type->num_fields () > 0)
4988 {
4989 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4990 {
4991 printf_filtered ("%*sprivate_field_bits (%d bits at *",
4992 spaces, "", type->num_fields ());
4993 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4994 gdb_stdout);
4995 printf_filtered (")");
4996 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4997 type->num_fields ());
4998 puts_filtered ("\n");
4999 }
5000 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
5001 {
5002 printf_filtered ("%*sprotected_field_bits (%d bits at *",
5003 spaces, "", type->num_fields ());
5004 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
5005 gdb_stdout);
5006 printf_filtered (")");
5007 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
5008 type->num_fields ());
5009 puts_filtered ("\n");
5010 }
5011 }
5012 if (TYPE_NFN_FIELDS (type) > 0)
5013 {
5014 dump_fn_fieldlists (type, spaces);
5015 }
5016
5017 printf_filtered ("%*scalling_convention %d\n", spaces, "",
5018 TYPE_CPLUS_CALLING_CONVENTION (type));
5019 }
5020
5021 /* Print the contents of the TYPE's type_specific union, assuming that
5022 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
5023
5024 static void
5025 print_gnat_stuff (struct type *type, int spaces)
5026 {
5027 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
5028
5029 if (descriptive_type == NULL)
5030 printf_filtered ("%*sno descriptive type\n", spaces + 2, "");
5031 else
5032 {
5033 printf_filtered ("%*sdescriptive type\n", spaces + 2, "");
5034 recursive_dump_type (descriptive_type, spaces + 4);
5035 }
5036 }
5037
5038 /* Print the contents of the TYPE's type_specific union, assuming that
5039 its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */
5040
5041 static void
5042 print_fixed_point_type_info (struct type *type, int spaces)
5043 {
5044 printf_filtered ("%*sscaling factor: %s\n", spaces + 2, "",
5045 type->fixed_point_scaling_factor ().str ().c_str ());
5046 }
5047
5048 static struct obstack dont_print_type_obstack;
5049
5050 /* Print the dynamic_prop PROP. */
5051
5052 static void
5053 dump_dynamic_prop (dynamic_prop const& prop)
5054 {
5055 switch (prop.kind ())
5056 {
5057 case PROP_CONST:
5058 printf_filtered ("%s", plongest (prop.const_val ()));
5059 break;
5060 case PROP_UNDEFINED:
5061 printf_filtered ("(undefined)");
5062 break;
5063 case PROP_LOCEXPR:
5064 case PROP_LOCLIST:
5065 printf_filtered ("(dynamic)");
5066 break;
5067 default:
5068 gdb_assert_not_reached ("unhandled prop kind");
5069 break;
5070 }
5071 }
5072
5073 void
5074 recursive_dump_type (struct type *type, int spaces)
5075 {
5076 int idx;
5077
5078 if (spaces == 0)
5079 obstack_begin (&dont_print_type_obstack, 0);
5080
5081 if (type->num_fields () > 0
5082 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
5083 {
5084 struct type **first_dont_print
5085 = (struct type **) obstack_base (&dont_print_type_obstack);
5086
5087 int i = (struct type **)
5088 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
5089
5090 while (--i >= 0)
5091 {
5092 if (type == first_dont_print[i])
5093 {
5094 printf_filtered ("%*stype node ", spaces, "");
5095 gdb_print_host_address (type, gdb_stdout);
5096 printf_filtered (_(" <same as already seen type>\n"));
5097 return;
5098 }
5099 }
5100
5101 obstack_ptr_grow (&dont_print_type_obstack, type);
5102 }
5103
5104 printf_filtered ("%*stype node ", spaces, "");
5105 gdb_print_host_address (type, gdb_stdout);
5106 printf_filtered ("\n");
5107 printf_filtered ("%*sname '%s' (", spaces, "",
5108 type->name () ? type->name () : "<NULL>");
5109 gdb_print_host_address (type->name (), gdb_stdout);
5110 printf_filtered (")\n");
5111 printf_filtered ("%*scode 0x%x ", spaces, "", type->code ());
5112 switch (type->code ())
5113 {
5114 case TYPE_CODE_UNDEF:
5115 printf_filtered ("(TYPE_CODE_UNDEF)");
5116 break;
5117 case TYPE_CODE_PTR:
5118 printf_filtered ("(TYPE_CODE_PTR)");
5119 break;
5120 case TYPE_CODE_ARRAY:
5121 printf_filtered ("(TYPE_CODE_ARRAY)");
5122 break;
5123 case TYPE_CODE_STRUCT:
5124 printf_filtered ("(TYPE_CODE_STRUCT)");
5125 break;
5126 case TYPE_CODE_UNION:
5127 printf_filtered ("(TYPE_CODE_UNION)");
5128 break;
5129 case TYPE_CODE_ENUM:
5130 printf_filtered ("(TYPE_CODE_ENUM)");
5131 break;
5132 case TYPE_CODE_FLAGS:
5133 printf_filtered ("(TYPE_CODE_FLAGS)");
5134 break;
5135 case TYPE_CODE_FUNC:
5136 printf_filtered ("(TYPE_CODE_FUNC)");
5137 break;
5138 case TYPE_CODE_INT:
5139 printf_filtered ("(TYPE_CODE_INT)");
5140 break;
5141 case TYPE_CODE_FLT:
5142 printf_filtered ("(TYPE_CODE_FLT)");
5143 break;
5144 case TYPE_CODE_VOID:
5145 printf_filtered ("(TYPE_CODE_VOID)");
5146 break;
5147 case TYPE_CODE_SET:
5148 printf_filtered ("(TYPE_CODE_SET)");
5149 break;
5150 case TYPE_CODE_RANGE:
5151 printf_filtered ("(TYPE_CODE_RANGE)");
5152 break;
5153 case TYPE_CODE_STRING:
5154 printf_filtered ("(TYPE_CODE_STRING)");
5155 break;
5156 case TYPE_CODE_ERROR:
5157 printf_filtered ("(TYPE_CODE_ERROR)");
5158 break;
5159 case TYPE_CODE_MEMBERPTR:
5160 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
5161 break;
5162 case TYPE_CODE_METHODPTR:
5163 printf_filtered ("(TYPE_CODE_METHODPTR)");
5164 break;
5165 case TYPE_CODE_METHOD:
5166 printf_filtered ("(TYPE_CODE_METHOD)");
5167 break;
5168 case TYPE_CODE_REF:
5169 printf_filtered ("(TYPE_CODE_REF)");
5170 break;
5171 case TYPE_CODE_CHAR:
5172 printf_filtered ("(TYPE_CODE_CHAR)");
5173 break;
5174 case TYPE_CODE_BOOL:
5175 printf_filtered ("(TYPE_CODE_BOOL)");
5176 break;
5177 case TYPE_CODE_COMPLEX:
5178 printf_filtered ("(TYPE_CODE_COMPLEX)");
5179 break;
5180 case TYPE_CODE_TYPEDEF:
5181 printf_filtered ("(TYPE_CODE_TYPEDEF)");
5182 break;
5183 case TYPE_CODE_NAMESPACE:
5184 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5185 break;
5186 case TYPE_CODE_FIXED_POINT:
5187 printf_filtered ("(TYPE_CODE_FIXED_POINT)");
5188 break;
5189 default:
5190 printf_filtered ("(UNKNOWN TYPE CODE)");
5191 break;
5192 }
5193 puts_filtered ("\n");
5194 printf_filtered ("%*slength %s\n", spaces, "",
5195 pulongest (TYPE_LENGTH (type)));
5196 if (type->is_objfile_owned ())
5197 {
5198 printf_filtered ("%*sobjfile ", spaces, "");
5199 gdb_print_host_address (type->objfile_owner (), gdb_stdout);
5200 }
5201 else
5202 {
5203 printf_filtered ("%*sgdbarch ", spaces, "");
5204 gdb_print_host_address (type->arch_owner (), gdb_stdout);
5205 }
5206 printf_filtered ("\n");
5207 printf_filtered ("%*starget_type ", spaces, "");
5208 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5209 printf_filtered ("\n");
5210 if (TYPE_TARGET_TYPE (type) != NULL)
5211 {
5212 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5213 }
5214 printf_filtered ("%*spointer_type ", spaces, "");
5215 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5216 printf_filtered ("\n");
5217 printf_filtered ("%*sreference_type ", spaces, "");
5218 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5219 printf_filtered ("\n");
5220 printf_filtered ("%*stype_chain ", spaces, "");
5221 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5222 printf_filtered ("\n");
5223 printf_filtered ("%*sinstance_flags 0x%x", spaces, "",
5224 (unsigned) type->instance_flags ());
5225 if (TYPE_CONST (type))
5226 {
5227 puts_filtered (" TYPE_CONST");
5228 }
5229 if (TYPE_VOLATILE (type))
5230 {
5231 puts_filtered (" TYPE_VOLATILE");
5232 }
5233 if (TYPE_CODE_SPACE (type))
5234 {
5235 puts_filtered (" TYPE_CODE_SPACE");
5236 }
5237 if (TYPE_DATA_SPACE (type))
5238 {
5239 puts_filtered (" TYPE_DATA_SPACE");
5240 }
5241 if (TYPE_ADDRESS_CLASS_1 (type))
5242 {
5243 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5244 }
5245 if (TYPE_ADDRESS_CLASS_2 (type))
5246 {
5247 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5248 }
5249 if (TYPE_RESTRICT (type))
5250 {
5251 puts_filtered (" TYPE_RESTRICT");
5252 }
5253 if (TYPE_ATOMIC (type))
5254 {
5255 puts_filtered (" TYPE_ATOMIC");
5256 }
5257 puts_filtered ("\n");
5258
5259 printf_filtered ("%*sflags", spaces, "");
5260 if (type->is_unsigned ())
5261 {
5262 puts_filtered (" TYPE_UNSIGNED");
5263 }
5264 if (type->has_no_signedness ())
5265 {
5266 puts_filtered (" TYPE_NOSIGN");
5267 }
5268 if (type->endianity_is_not_default ())
5269 {
5270 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5271 }
5272 if (type->is_stub ())
5273 {
5274 puts_filtered (" TYPE_STUB");
5275 }
5276 if (type->target_is_stub ())
5277 {
5278 puts_filtered (" TYPE_TARGET_STUB");
5279 }
5280 if (type->is_prototyped ())
5281 {
5282 puts_filtered (" TYPE_PROTOTYPED");
5283 }
5284 if (type->has_varargs ())
5285 {
5286 puts_filtered (" TYPE_VARARGS");
5287 }
5288 /* This is used for things like AltiVec registers on ppc. Gcc emits
5289 an attribute for the array type, which tells whether or not we
5290 have a vector, instead of a regular array. */
5291 if (type->is_vector ())
5292 {
5293 puts_filtered (" TYPE_VECTOR");
5294 }
5295 if (type->is_fixed_instance ())
5296 {
5297 puts_filtered (" TYPE_FIXED_INSTANCE");
5298 }
5299 if (type->stub_is_supported ())
5300 {
5301 puts_filtered (" TYPE_STUB_SUPPORTED");
5302 }
5303 if (TYPE_NOTTEXT (type))
5304 {
5305 puts_filtered (" TYPE_NOTTEXT");
5306 }
5307 puts_filtered ("\n");
5308 printf_filtered ("%*snfields %d ", spaces, "", type->num_fields ());
5309 if (TYPE_ASSOCIATED_PROP (type) != nullptr
5310 || TYPE_ALLOCATED_PROP (type) != nullptr)
5311 {
5312 printf_filtered ("%*s", spaces, "");
5313 if (TYPE_ASSOCIATED_PROP (type) != nullptr)
5314 {
5315 printf_filtered ("associated ");
5316 dump_dynamic_prop (*TYPE_ASSOCIATED_PROP (type));
5317 }
5318 if (TYPE_ALLOCATED_PROP (type) != nullptr)
5319 {
5320 if (TYPE_ASSOCIATED_PROP (type) != nullptr)
5321 printf_filtered (" ");
5322 printf_filtered ("allocated ");
5323 dump_dynamic_prop (*TYPE_ALLOCATED_PROP (type));
5324 }
5325 printf_filtered ("\n");
5326 }
5327 gdb_print_host_address (type->fields (), gdb_stdout);
5328 puts_filtered ("\n");
5329 for (idx = 0; idx < type->num_fields (); idx++)
5330 {
5331 if (type->code () == TYPE_CODE_ENUM)
5332 printf_filtered ("%*s[%d] enumval %s type ", spaces + 2, "",
5333 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5334 else
5335 printf_filtered ("%*s[%d] bitpos %s bitsize %d type ", spaces + 2, "",
5336 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5337 TYPE_FIELD_BITSIZE (type, idx));
5338 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5339 printf_filtered (" name '%s' (",
5340 TYPE_FIELD_NAME (type, idx) != NULL
5341 ? TYPE_FIELD_NAME (type, idx)
5342 : "<NULL>");
5343 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5344 printf_filtered (")\n");
5345 if (type->field (idx).type () != NULL)
5346 {
5347 recursive_dump_type (type->field (idx).type (), spaces + 4);
5348 }
5349 }
5350 if (type->code () == TYPE_CODE_RANGE)
5351 {
5352 printf_filtered ("%*slow ", spaces, "");
5353 dump_dynamic_prop (type->bounds ()->low);
5354 printf_filtered (" high ");
5355 dump_dynamic_prop (type->bounds ()->high);
5356 printf_filtered ("\n");
5357 }
5358
5359 switch (TYPE_SPECIFIC_FIELD (type))
5360 {
5361 case TYPE_SPECIFIC_CPLUS_STUFF:
5362 printf_filtered ("%*scplus_stuff ", spaces, "");
5363 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5364 gdb_stdout);
5365 puts_filtered ("\n");
5366 print_cplus_stuff (type, spaces);
5367 break;
5368
5369 case TYPE_SPECIFIC_GNAT_STUFF:
5370 printf_filtered ("%*sgnat_stuff ", spaces, "");
5371 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5372 puts_filtered ("\n");
5373 print_gnat_stuff (type, spaces);
5374 break;
5375
5376 case TYPE_SPECIFIC_FLOATFORMAT:
5377 printf_filtered ("%*sfloatformat ", spaces, "");
5378 if (TYPE_FLOATFORMAT (type) == NULL
5379 || TYPE_FLOATFORMAT (type)->name == NULL)
5380 puts_filtered ("(null)");
5381 else
5382 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5383 puts_filtered ("\n");
5384 break;
5385
5386 case TYPE_SPECIFIC_FUNC:
5387 printf_filtered ("%*scalling_convention %d\n", spaces, "",
5388 TYPE_CALLING_CONVENTION (type));
5389 /* tail_call_list is not printed. */
5390 break;
5391
5392 case TYPE_SPECIFIC_SELF_TYPE:
5393 printf_filtered ("%*sself_type ", spaces, "");
5394 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5395 puts_filtered ("\n");
5396 break;
5397
5398 case TYPE_SPECIFIC_FIXED_POINT:
5399 printf_filtered ("%*sfixed_point_info ", spaces, "");
5400 print_fixed_point_type_info (type, spaces);
5401 puts_filtered ("\n");
5402 break;
5403
5404 case TYPE_SPECIFIC_INT:
5405 if (type->bit_size_differs_p ())
5406 {
5407 unsigned bit_size = type->bit_size ();
5408 unsigned bit_off = type->bit_offset ();
5409 printf_filtered ("%*s bit size = %u, bit offset = %u\n", spaces, "",
5410 bit_size, bit_off);
5411 }
5412 break;
5413 }
5414
5415 if (spaces == 0)
5416 obstack_free (&dont_print_type_obstack, NULL);
5417 }
5418 \f
5419 /* Trivial helpers for the libiberty hash table, for mapping one
5420 type to another. */
5421
5422 struct type_pair : public allocate_on_obstack
5423 {
5424 type_pair (struct type *old_, struct type *newobj_)
5425 : old (old_), newobj (newobj_)
5426 {}
5427
5428 struct type * const old, * const newobj;
5429 };
5430
5431 static hashval_t
5432 type_pair_hash (const void *item)
5433 {
5434 const struct type_pair *pair = (const struct type_pair *) item;
5435
5436 return htab_hash_pointer (pair->old);
5437 }
5438
5439 static int
5440 type_pair_eq (const void *item_lhs, const void *item_rhs)
5441 {
5442 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5443 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5444
5445 return lhs->old == rhs->old;
5446 }
5447
5448 /* Allocate the hash table used by copy_type_recursive to walk
5449 types without duplicates. We use OBJFILE's obstack, because
5450 OBJFILE is about to be deleted. */
5451
5452 htab_up
5453 create_copied_types_hash (struct objfile *objfile)
5454 {
5455 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5456 NULL, &objfile->objfile_obstack,
5457 hashtab_obstack_allocate,
5458 dummy_obstack_deallocate));
5459 }
5460
5461 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5462
5463 static struct dynamic_prop_list *
5464 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5465 struct dynamic_prop_list *list)
5466 {
5467 struct dynamic_prop_list *copy = list;
5468 struct dynamic_prop_list **node_ptr = &copy;
5469
5470 while (*node_ptr != NULL)
5471 {
5472 struct dynamic_prop_list *node_copy;
5473
5474 node_copy = ((struct dynamic_prop_list *)
5475 obstack_copy (objfile_obstack, *node_ptr,
5476 sizeof (struct dynamic_prop_list)));
5477 node_copy->prop = (*node_ptr)->prop;
5478 *node_ptr = node_copy;
5479
5480 node_ptr = &node_copy->next;
5481 }
5482
5483 return copy;
5484 }
5485
5486 /* Recursively copy (deep copy) TYPE, if it is associated with
5487 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5488 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5489 it is not associated with OBJFILE. */
5490
5491 struct type *
5492 copy_type_recursive (struct objfile *objfile,
5493 struct type *type,
5494 htab_t copied_types)
5495 {
5496 void **slot;
5497 struct type *new_type;
5498
5499 if (!type->is_objfile_owned ())
5500 return type;
5501
5502 /* This type shouldn't be pointing to any types in other objfiles;
5503 if it did, the type might disappear unexpectedly. */
5504 gdb_assert (type->objfile_owner () == objfile);
5505
5506 struct type_pair pair (type, nullptr);
5507
5508 slot = htab_find_slot (copied_types, &pair, INSERT);
5509 if (*slot != NULL)
5510 return ((struct type_pair *) *slot)->newobj;
5511
5512 new_type = alloc_type_arch (type->arch ());
5513
5514 /* We must add the new type to the hash table immediately, in case
5515 we encounter this type again during a recursive call below. */
5516 struct type_pair *stored
5517 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5518
5519 *slot = stored;
5520
5521 /* Copy the common fields of types. For the main type, we simply
5522 copy the entire thing and then update specific fields as needed. */
5523 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5524
5525 new_type->set_owner (type->arch ());
5526
5527 if (type->name ())
5528 new_type->set_name (xstrdup (type->name ()));
5529
5530 new_type->set_instance_flags (type->instance_flags ());
5531 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5532
5533 /* Copy the fields. */
5534 if (type->num_fields ())
5535 {
5536 int i, nfields;
5537
5538 nfields = type->num_fields ();
5539 new_type->set_fields
5540 ((struct field *)
5541 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5542
5543 for (i = 0; i < nfields; i++)
5544 {
5545 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5546 TYPE_FIELD_ARTIFICIAL (type, i);
5547 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5548 if (type->field (i).type ())
5549 new_type->field (i).set_type
5550 (copy_type_recursive (objfile, type->field (i).type (),
5551 copied_types));
5552 if (TYPE_FIELD_NAME (type, i))
5553 TYPE_FIELD_NAME (new_type, i) =
5554 xstrdup (TYPE_FIELD_NAME (type, i));
5555 switch (TYPE_FIELD_LOC_KIND (type, i))
5556 {
5557 case FIELD_LOC_KIND_BITPOS:
5558 SET_FIELD_BITPOS (new_type->field (i),
5559 TYPE_FIELD_BITPOS (type, i));
5560 break;
5561 case FIELD_LOC_KIND_ENUMVAL:
5562 SET_FIELD_ENUMVAL (new_type->field (i),
5563 TYPE_FIELD_ENUMVAL (type, i));
5564 break;
5565 case FIELD_LOC_KIND_PHYSADDR:
5566 SET_FIELD_PHYSADDR (new_type->field (i),
5567 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5568 break;
5569 case FIELD_LOC_KIND_PHYSNAME:
5570 SET_FIELD_PHYSNAME (new_type->field (i),
5571 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5572 i)));
5573 break;
5574 default:
5575 internal_error (__FILE__, __LINE__,
5576 _("Unexpected type field location kind: %d"),
5577 TYPE_FIELD_LOC_KIND (type, i));
5578 }
5579 }
5580 }
5581
5582 /* For range types, copy the bounds information. */
5583 if (type->code () == TYPE_CODE_RANGE)
5584 {
5585 range_bounds *bounds
5586 = ((struct range_bounds *) TYPE_ALLOC
5587 (new_type, sizeof (struct range_bounds)));
5588
5589 *bounds = *type->bounds ();
5590 new_type->set_bounds (bounds);
5591 }
5592
5593 if (type->main_type->dyn_prop_list != NULL)
5594 new_type->main_type->dyn_prop_list
5595 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5596 type->main_type->dyn_prop_list);
5597
5598
5599 /* Copy pointers to other types. */
5600 if (TYPE_TARGET_TYPE (type))
5601 TYPE_TARGET_TYPE (new_type) =
5602 copy_type_recursive (objfile,
5603 TYPE_TARGET_TYPE (type),
5604 copied_types);
5605
5606 /* Maybe copy the type_specific bits.
5607
5608 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5609 base classes and methods. There's no fundamental reason why we
5610 can't, but at the moment it is not needed. */
5611
5612 switch (TYPE_SPECIFIC_FIELD (type))
5613 {
5614 case TYPE_SPECIFIC_NONE:
5615 break;
5616 case TYPE_SPECIFIC_FUNC:
5617 INIT_FUNC_SPECIFIC (new_type);
5618 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5619 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5620 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5621 break;
5622 case TYPE_SPECIFIC_FLOATFORMAT:
5623 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5624 break;
5625 case TYPE_SPECIFIC_CPLUS_STUFF:
5626 INIT_CPLUS_SPECIFIC (new_type);
5627 break;
5628 case TYPE_SPECIFIC_GNAT_STUFF:
5629 INIT_GNAT_SPECIFIC (new_type);
5630 break;
5631 case TYPE_SPECIFIC_SELF_TYPE:
5632 set_type_self_type (new_type,
5633 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5634 copied_types));
5635 break;
5636 case TYPE_SPECIFIC_FIXED_POINT:
5637 INIT_FIXED_POINT_SPECIFIC (new_type);
5638 new_type->fixed_point_info ().scaling_factor
5639 = type->fixed_point_info ().scaling_factor;
5640 break;
5641 case TYPE_SPECIFIC_INT:
5642 TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
5643 TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
5644 = TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
5645 break;
5646
5647 default:
5648 gdb_assert_not_reached ("bad type_specific_kind");
5649 }
5650
5651 return new_type;
5652 }
5653
5654 /* Make a copy of the given TYPE, except that the pointer & reference
5655 types are not preserved.
5656
5657 This function assumes that the given type has an associated objfile.
5658 This objfile is used to allocate the new type. */
5659
5660 struct type *
5661 copy_type (const struct type *type)
5662 {
5663 struct type *new_type;
5664
5665 gdb_assert (type->is_objfile_owned ());
5666
5667 new_type = alloc_type_copy (type);
5668 new_type->set_instance_flags (type->instance_flags ());
5669 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5670 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5671 sizeof (struct main_type));
5672 if (type->main_type->dyn_prop_list != NULL)
5673 new_type->main_type->dyn_prop_list
5674 = copy_dynamic_prop_list (&type->objfile_owner ()->objfile_obstack,
5675 type->main_type->dyn_prop_list);
5676
5677 return new_type;
5678 }
5679 \f
5680 /* Helper functions to initialize architecture-specific types. */
5681
5682 /* Allocate a type structure associated with GDBARCH and set its
5683 CODE, LENGTH, and NAME fields. */
5684
5685 struct type *
5686 arch_type (struct gdbarch *gdbarch,
5687 enum type_code code, int bit, const char *name)
5688 {
5689 struct type *type;
5690
5691 type = alloc_type_arch (gdbarch);
5692 set_type_code (type, code);
5693 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5694 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5695
5696 if (name)
5697 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5698
5699 return type;
5700 }
5701
5702 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5703 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5704 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5705
5706 struct type *
5707 arch_integer_type (struct gdbarch *gdbarch,
5708 int bit, int unsigned_p, const char *name)
5709 {
5710 struct type *t;
5711
5712 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5713 if (unsigned_p)
5714 t->set_is_unsigned (true);
5715
5716 return t;
5717 }
5718
5719 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5720 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5721 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5722
5723 struct type *
5724 arch_character_type (struct gdbarch *gdbarch,
5725 int bit, int unsigned_p, const char *name)
5726 {
5727 struct type *t;
5728
5729 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5730 if (unsigned_p)
5731 t->set_is_unsigned (true);
5732
5733 return t;
5734 }
5735
5736 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5737 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5738 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5739
5740 struct type *
5741 arch_boolean_type (struct gdbarch *gdbarch,
5742 int bit, int unsigned_p, const char *name)
5743 {
5744 struct type *t;
5745
5746 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5747 if (unsigned_p)
5748 t->set_is_unsigned (true);
5749
5750 return t;
5751 }
5752
5753 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5754 BIT is the type size in bits; if BIT equals -1, the size is
5755 determined by the floatformat. NAME is the type name. Set the
5756 TYPE_FLOATFORMAT from FLOATFORMATS. */
5757
5758 struct type *
5759 arch_float_type (struct gdbarch *gdbarch,
5760 int bit, const char *name,
5761 const struct floatformat **floatformats)
5762 {
5763 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5764 struct type *t;
5765
5766 bit = verify_floatformat (bit, fmt);
5767 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5768 TYPE_FLOATFORMAT (t) = fmt;
5769
5770 return t;
5771 }
5772
5773 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5774 BIT is the type size in bits. NAME is the type name. */
5775
5776 struct type *
5777 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5778 {
5779 struct type *t;
5780
5781 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5782 return t;
5783 }
5784
5785 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5786 BIT is the pointer type size in bits. NAME is the type name.
5787 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5788 TYPE_UNSIGNED flag. */
5789
5790 struct type *
5791 arch_pointer_type (struct gdbarch *gdbarch,
5792 int bit, const char *name, struct type *target_type)
5793 {
5794 struct type *t;
5795
5796 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5797 TYPE_TARGET_TYPE (t) = target_type;
5798 t->set_is_unsigned (true);
5799 return t;
5800 }
5801
5802 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5803 NAME is the type name. BIT is the size of the flag word in bits. */
5804
5805 struct type *
5806 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5807 {
5808 struct type *type;
5809
5810 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5811 type->set_is_unsigned (true);
5812 type->set_num_fields (0);
5813 /* Pre-allocate enough space assuming every field is one bit. */
5814 type->set_fields
5815 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5816
5817 return type;
5818 }
5819
5820 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5821 position BITPOS is called NAME. Pass NAME as "" for fields that
5822 should not be printed. */
5823
5824 void
5825 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5826 struct type *field_type, const char *name)
5827 {
5828 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5829 int field_nr = type->num_fields ();
5830
5831 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5832 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5833 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5834 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5835 gdb_assert (name != NULL);
5836
5837 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5838 type->field (field_nr).set_type (field_type);
5839 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5840 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5841 type->set_num_fields (type->num_fields () + 1);
5842 }
5843
5844 /* Special version of append_flags_type_field to add a flag field.
5845 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5846 position BITPOS is called NAME. */
5847
5848 void
5849 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5850 {
5851 append_flags_type_field (type, bitpos, 1,
5852 builtin_type (type->arch ())->builtin_bool,
5853 name);
5854 }
5855
5856 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5857 specified by CODE) associated with GDBARCH. NAME is the type name. */
5858
5859 struct type *
5860 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5861 enum type_code code)
5862 {
5863 struct type *t;
5864
5865 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5866 t = arch_type (gdbarch, code, 0, NULL);
5867 t->set_name (name);
5868 INIT_CPLUS_SPECIFIC (t);
5869 return t;
5870 }
5871
5872 /* Add new field with name NAME and type FIELD to composite type T.
5873 Do not set the field's position or adjust the type's length;
5874 the caller should do so. Return the new field. */
5875
5876 struct field *
5877 append_composite_type_field_raw (struct type *t, const char *name,
5878 struct type *field)
5879 {
5880 struct field *f;
5881
5882 t->set_num_fields (t->num_fields () + 1);
5883 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5884 t->num_fields ()));
5885 f = &t->field (t->num_fields () - 1);
5886 memset (f, 0, sizeof f[0]);
5887 f[0].set_type (field);
5888 FIELD_NAME (f[0]) = name;
5889 return f;
5890 }
5891
5892 /* Add new field with name NAME and type FIELD to composite type T.
5893 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5894
5895 void
5896 append_composite_type_field_aligned (struct type *t, const char *name,
5897 struct type *field, int alignment)
5898 {
5899 struct field *f = append_composite_type_field_raw (t, name, field);
5900
5901 if (t->code () == TYPE_CODE_UNION)
5902 {
5903 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5904 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5905 }
5906 else if (t->code () == TYPE_CODE_STRUCT)
5907 {
5908 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5909 if (t->num_fields () > 1)
5910 {
5911 SET_FIELD_BITPOS (f[0],
5912 (FIELD_BITPOS (f[-1])
5913 + (TYPE_LENGTH (f[-1].type ())
5914 * TARGET_CHAR_BIT)));
5915
5916 if (alignment)
5917 {
5918 int left;
5919
5920 alignment *= TARGET_CHAR_BIT;
5921 left = FIELD_BITPOS (f[0]) % alignment;
5922
5923 if (left)
5924 {
5925 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5926 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5927 }
5928 }
5929 }
5930 }
5931 }
5932
5933 /* Add new field with name NAME and type FIELD to composite type T. */
5934
5935 void
5936 append_composite_type_field (struct type *t, const char *name,
5937 struct type *field)
5938 {
5939 append_composite_type_field_aligned (t, name, field, 0);
5940 }
5941
5942 \f
5943
5944 /* We manage the lifetimes of fixed_point_type_info objects by
5945 attaching them to the objfile. Currently, these objects are
5946 modified during construction, and GMP does not provide a way to
5947 hash the contents of an mpq_t; so it's a bit of a pain to hash-cons
5948 them. If we did do this, they could be moved to the per-BFD and
5949 shared across objfiles. */
5950 typedef std::vector<std::unique_ptr<fixed_point_type_info>>
5951 fixed_point_type_storage;
5952
5953 /* Key used for managing the storage of fixed-point type info. */
5954 static const struct objfile_key<fixed_point_type_storage>
5955 fixed_point_objfile_key;
5956
5957 /* See gdbtypes.h. */
5958
5959 void
5960 allocate_fixed_point_type_info (struct type *type)
5961 {
5962 std::unique_ptr<fixed_point_type_info> up (new fixed_point_type_info);
5963 fixed_point_type_info *info;
5964
5965 if (type->is_objfile_owned ())
5966 {
5967 fixed_point_type_storage *storage
5968 = fixed_point_objfile_key.get (type->objfile_owner ());
5969 if (storage == nullptr)
5970 storage = fixed_point_objfile_key.emplace (type->objfile_owner ());
5971 info = up.get ();
5972 storage->push_back (std::move (up));
5973 }
5974 else
5975 {
5976 /* We just leak the memory, because that's what we do generally
5977 for non-objfile-attached types. */
5978 info = up.release ();
5979 }
5980
5981 type->set_fixed_point_info (info);
5982 }
5983
5984 /* See gdbtypes.h. */
5985
5986 bool
5987 is_fixed_point_type (struct type *type)
5988 {
5989 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
5990 type = TYPE_TARGET_TYPE (check_typedef (type));
5991 type = check_typedef (type);
5992
5993 return type->code () == TYPE_CODE_FIXED_POINT;
5994 }
5995
5996 /* See gdbtypes.h. */
5997
5998 struct type *
5999 type::fixed_point_type_base_type ()
6000 {
6001 struct type *type = this;
6002
6003 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
6004 type = TYPE_TARGET_TYPE (check_typedef (type));
6005 type = check_typedef (type);
6006
6007 gdb_assert (type->code () == TYPE_CODE_FIXED_POINT);
6008 return type;
6009 }
6010
6011 /* See gdbtypes.h. */
6012
6013 const gdb_mpq &
6014 type::fixed_point_scaling_factor ()
6015 {
6016 struct type *type = this->fixed_point_type_base_type ();
6017
6018 return type->fixed_point_info ().scaling_factor;
6019 }
6020
6021 \f
6022
6023 static struct gdbarch_data *gdbtypes_data;
6024
6025 const struct builtin_type *
6026 builtin_type (struct gdbarch *gdbarch)
6027 {
6028 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
6029 }
6030
6031 static void *
6032 gdbtypes_post_init (struct gdbarch *gdbarch)
6033 {
6034 struct builtin_type *builtin_type
6035 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
6036
6037 /* Basic types. */
6038 builtin_type->builtin_void
6039 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
6040 builtin_type->builtin_char
6041 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
6042 !gdbarch_char_signed (gdbarch), "char");
6043 builtin_type->builtin_char->set_has_no_signedness (true);
6044 builtin_type->builtin_signed_char
6045 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
6046 0, "signed char");
6047 builtin_type->builtin_unsigned_char
6048 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
6049 1, "unsigned char");
6050 builtin_type->builtin_short
6051 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
6052 0, "short");
6053 builtin_type->builtin_unsigned_short
6054 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
6055 1, "unsigned short");
6056 builtin_type->builtin_int
6057 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
6058 0, "int");
6059 builtin_type->builtin_unsigned_int
6060 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
6061 1, "unsigned int");
6062 builtin_type->builtin_long
6063 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
6064 0, "long");
6065 builtin_type->builtin_unsigned_long
6066 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
6067 1, "unsigned long");
6068 builtin_type->builtin_long_long
6069 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
6070 0, "long long");
6071 builtin_type->builtin_unsigned_long_long
6072 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
6073 1, "unsigned long long");
6074 builtin_type->builtin_half
6075 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
6076 "half", gdbarch_half_format (gdbarch));
6077 builtin_type->builtin_float
6078 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
6079 "float", gdbarch_float_format (gdbarch));
6080 builtin_type->builtin_bfloat16
6081 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
6082 "bfloat16", gdbarch_bfloat16_format (gdbarch));
6083 builtin_type->builtin_double
6084 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
6085 "double", gdbarch_double_format (gdbarch));
6086 builtin_type->builtin_long_double
6087 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
6088 "long double", gdbarch_long_double_format (gdbarch));
6089 builtin_type->builtin_complex
6090 = init_complex_type ("complex", builtin_type->builtin_float);
6091 builtin_type->builtin_double_complex
6092 = init_complex_type ("double complex", builtin_type->builtin_double);
6093 builtin_type->builtin_string
6094 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
6095 builtin_type->builtin_bool
6096 = arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "bool");
6097
6098 /* The following three are about decimal floating point types, which
6099 are 32-bits, 64-bits and 128-bits respectively. */
6100 builtin_type->builtin_decfloat
6101 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
6102 builtin_type->builtin_decdouble
6103 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
6104 builtin_type->builtin_declong
6105 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
6106
6107 /* "True" character types. */
6108 builtin_type->builtin_true_char
6109 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
6110 builtin_type->builtin_true_unsigned_char
6111 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
6112
6113 /* Fixed-size integer types. */
6114 builtin_type->builtin_int0
6115 = arch_integer_type (gdbarch, 0, 0, "int0_t");
6116 builtin_type->builtin_int8
6117 = arch_integer_type (gdbarch, 8, 0, "int8_t");
6118 builtin_type->builtin_uint8
6119 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
6120 builtin_type->builtin_int16
6121 = arch_integer_type (gdbarch, 16, 0, "int16_t");
6122 builtin_type->builtin_uint16
6123 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
6124 builtin_type->builtin_int24
6125 = arch_integer_type (gdbarch, 24, 0, "int24_t");
6126 builtin_type->builtin_uint24
6127 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
6128 builtin_type->builtin_int32
6129 = arch_integer_type (gdbarch, 32, 0, "int32_t");
6130 builtin_type->builtin_uint32
6131 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
6132 builtin_type->builtin_int64
6133 = arch_integer_type (gdbarch, 64, 0, "int64_t");
6134 builtin_type->builtin_uint64
6135 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
6136 builtin_type->builtin_int128
6137 = arch_integer_type (gdbarch, 128, 0, "int128_t");
6138 builtin_type->builtin_uint128
6139 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
6140
6141 builtin_type->builtin_int8->set_instance_flags
6142 (builtin_type->builtin_int8->instance_flags ()
6143 | TYPE_INSTANCE_FLAG_NOTTEXT);
6144
6145 builtin_type->builtin_uint8->set_instance_flags
6146 (builtin_type->builtin_uint8->instance_flags ()
6147 | TYPE_INSTANCE_FLAG_NOTTEXT);
6148
6149 /* Wide character types. */
6150 builtin_type->builtin_char16
6151 = arch_integer_type (gdbarch, 16, 1, "char16_t");
6152 builtin_type->builtin_char32
6153 = arch_integer_type (gdbarch, 32, 1, "char32_t");
6154 builtin_type->builtin_wchar
6155 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
6156 !gdbarch_wchar_signed (gdbarch), "wchar_t");
6157
6158 /* Default data/code pointer types. */
6159 builtin_type->builtin_data_ptr
6160 = lookup_pointer_type (builtin_type->builtin_void);
6161 builtin_type->builtin_func_ptr
6162 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
6163 builtin_type->builtin_func_func
6164 = lookup_function_type (builtin_type->builtin_func_ptr);
6165
6166 /* This type represents a GDB internal function. */
6167 builtin_type->internal_fn
6168 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
6169 "<internal function>");
6170
6171 /* This type represents an xmethod. */
6172 builtin_type->xmethod
6173 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
6174
6175 return builtin_type;
6176 }
6177
6178 /* This set of objfile-based types is intended to be used by symbol
6179 readers as basic types. */
6180
6181 static const struct objfile_key<struct objfile_type,
6182 gdb::noop_deleter<struct objfile_type>>
6183 objfile_type_data;
6184
6185 const struct objfile_type *
6186 objfile_type (struct objfile *objfile)
6187 {
6188 struct gdbarch *gdbarch;
6189 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
6190
6191 if (objfile_type)
6192 return objfile_type;
6193
6194 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
6195 1, struct objfile_type);
6196
6197 /* Use the objfile architecture to determine basic type properties. */
6198 gdbarch = objfile->arch ();
6199
6200 /* Basic types. */
6201 objfile_type->builtin_void
6202 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
6203 objfile_type->builtin_char
6204 = init_integer_type (objfile, TARGET_CHAR_BIT,
6205 !gdbarch_char_signed (gdbarch), "char");
6206 objfile_type->builtin_char->set_has_no_signedness (true);
6207 objfile_type->builtin_signed_char
6208 = init_integer_type (objfile, TARGET_CHAR_BIT,
6209 0, "signed char");
6210 objfile_type->builtin_unsigned_char
6211 = init_integer_type (objfile, TARGET_CHAR_BIT,
6212 1, "unsigned char");
6213 objfile_type->builtin_short
6214 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6215 0, "short");
6216 objfile_type->builtin_unsigned_short
6217 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6218 1, "unsigned short");
6219 objfile_type->builtin_int
6220 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6221 0, "int");
6222 objfile_type->builtin_unsigned_int
6223 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6224 1, "unsigned int");
6225 objfile_type->builtin_long
6226 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6227 0, "long");
6228 objfile_type->builtin_unsigned_long
6229 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6230 1, "unsigned long");
6231 objfile_type->builtin_long_long
6232 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6233 0, "long long");
6234 objfile_type->builtin_unsigned_long_long
6235 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6236 1, "unsigned long long");
6237 objfile_type->builtin_float
6238 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
6239 "float", gdbarch_float_format (gdbarch));
6240 objfile_type->builtin_double
6241 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
6242 "double", gdbarch_double_format (gdbarch));
6243 objfile_type->builtin_long_double
6244 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
6245 "long double", gdbarch_long_double_format (gdbarch));
6246
6247 /* This type represents a type that was unrecognized in symbol read-in. */
6248 objfile_type->builtin_error
6249 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
6250
6251 /* The following set of types is used for symbols with no
6252 debug information. */
6253 objfile_type->nodebug_text_symbol
6254 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6255 "<text variable, no debug info>");
6256
6257 objfile_type->nodebug_text_gnu_ifunc_symbol
6258 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6259 "<text gnu-indirect-function variable, no debug info>");
6260 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
6261
6262 objfile_type->nodebug_got_plt_symbol
6263 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
6264 "<text from jump slot in .got.plt, no debug info>",
6265 objfile_type->nodebug_text_symbol);
6266 objfile_type->nodebug_data_symbol
6267 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
6268 objfile_type->nodebug_unknown_symbol
6269 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
6270 objfile_type->nodebug_tls_symbol
6271 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
6272
6273 /* NOTE: on some targets, addresses and pointers are not necessarily
6274 the same.
6275
6276 The upshot is:
6277 - gdb's `struct type' always describes the target's
6278 representation.
6279 - gdb's `struct value' objects should always hold values in
6280 target form.
6281 - gdb's CORE_ADDR values are addresses in the unified virtual
6282 address space that the assembler and linker work with. Thus,
6283 since target_read_memory takes a CORE_ADDR as an argument, it
6284 can access any memory on the target, even if the processor has
6285 separate code and data address spaces.
6286
6287 In this context, objfile_type->builtin_core_addr is a bit odd:
6288 it's a target type for a value the target will never see. It's
6289 only used to hold the values of (typeless) linker symbols, which
6290 are indeed in the unified virtual address space. */
6291
6292 objfile_type->builtin_core_addr
6293 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
6294 "__CORE_ADDR");
6295
6296 objfile_type_data.set (objfile, objfile_type);
6297 return objfile_type;
6298 }
6299
6300 void _initialize_gdbtypes ();
6301 void
6302 _initialize_gdbtypes ()
6303 {
6304 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
6305
6306 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
6307 _("Set debugging of C++ overloading."),
6308 _("Show debugging of C++ overloading."),
6309 _("When enabled, ranking of the "
6310 "functions is displayed."),
6311 NULL,
6312 show_overload_debug,
6313 &setdebuglist, &showdebuglist);
6314
6315 /* Add user knob for controlling resolution of opaque types. */
6316 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6317 &opaque_type_resolution,
6318 _("Set resolution of opaque struct/class/union"
6319 " types (if set before loading symbols)."),
6320 _("Show resolution of opaque struct/class/union"
6321 " types (if set before loading symbols)."),
6322 NULL, NULL,
6323 show_opaque_type_resolution,
6324 &setlist, &showlist);
6325
6326 /* Add an option to permit non-strict type checking. */
6327 add_setshow_boolean_cmd ("type", class_support,
6328 &strict_type_checking,
6329 _("Set strict type checking."),
6330 _("Show strict type checking."),
6331 NULL, NULL,
6332 show_strict_type_checking,
6333 &setchecklist, &showchecklist);
6334 }
This page took 0.160923 seconds and 4 git commands to generate.