Use is_xcoff_format in gas testsuite
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118
119 /* Should opaque types be resolved? */
120
121 static bool opaque_type_resolution = true;
122
123 /* See gdbtypes.h. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static bool strict_type_checking = true;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 type->set_code (TYPE_CODE_UNDEF);
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the obstack associated with GDBARCH. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 type->set_code (TYPE_CODE_UNDEF);
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216 }
217
218 /* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222 struct type *
223 alloc_type_copy (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 }
230
231 /* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234 struct gdbarch *
235 get_type_arch (const struct type *type)
236 {
237 struct gdbarch *arch;
238
239 if (TYPE_OBJFILE_OWNED (type))
240 arch = TYPE_OWNER (type).objfile->arch ();
241 else
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
250 }
251
252 /* See gdbtypes.h. */
253
254 struct type *
255 get_target_type (struct type *type)
256 {
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265 }
266
267 /* See gdbtypes.h. */
268
269 unsigned int
270 type_length_units (struct type *type)
271 {
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276 }
277
278 /* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282 static struct type *
283 alloc_type_instance (struct type *oldtype)
284 {
285 struct type *type;
286
287 /* Allocate the structure. */
288
289 if (! TYPE_OBJFILE_OWNED (oldtype))
290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
291 else
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
299 return type;
300 }
301
302 /* Clear all remnants of the previous type at TYPE, in preparation for
303 replacing it with something else. Preserve owner information. */
304
305 static void
306 smash_type (struct type *type)
307 {
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321 }
322
323 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328 struct type *
329 make_pointer_type (struct type *type, struct type **typeptr)
330 {
331 struct type *ntype; /* New type */
332 struct type *chain;
333
334 ntype = TYPE_POINTER_TYPE (type);
335
336 if (ntype)
337 {
338 if (typeptr == 0)
339 return ntype; /* Don't care about alloc,
340 and have new type. */
341 else if (*typeptr == 0)
342 {
343 *typeptr = ntype; /* Tracking alloc, and have new type. */
344 return ntype;
345 }
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
350 ntype = alloc_type_copy (type);
351 if (typeptr)
352 *typeptr = ntype;
353 }
354 else /* We have storage, but need to reset it. */
355 {
356 ntype = *typeptr;
357 chain = TYPE_CHAIN (ntype);
358 smash_type (ntype);
359 TYPE_CHAIN (ntype) = chain;
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
365 /* FIXME! Assumes the machine has only one representation for pointers! */
366
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
369 ntype->set_code (TYPE_CODE_PTR);
370
371 /* Mark pointers as unsigned. The target converts between pointers
372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
373 gdbarch_address_to_pointer. */
374 TYPE_UNSIGNED (ntype) = 1;
375
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
384 return ntype;
385 }
386
387 /* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390 struct type *
391 lookup_pointer_type (struct type *type)
392 {
393 return make_pointer_type (type, (struct type **) 0);
394 }
395
396 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
401
402 struct type *
403 make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
405 {
406 struct type *ntype; /* New type */
407 struct type **reftype;
408 struct type *chain;
409
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
414
415 if (ntype)
416 {
417 if (typeptr == 0)
418 return ntype; /* Don't care about alloc,
419 and have new type. */
420 else if (*typeptr == 0)
421 {
422 *typeptr = ntype; /* Tracking alloc, and have new type. */
423 return ntype;
424 }
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
429 ntype = alloc_type_copy (type);
430 if (typeptr)
431 *typeptr = ntype;
432 }
433 else /* We have storage, but need to reset it. */
434 {
435 ntype = *typeptr;
436 chain = TYPE_CHAIN (ntype);
437 smash_type (ntype);
438 TYPE_CHAIN (ntype) = chain;
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
446
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
450
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
453 ntype->set_code (refcode);
454
455 *reftype = ntype;
456
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
465 return ntype;
466 }
467
468 /* Same as above, but caller doesn't care about memory allocation
469 details. */
470
471 struct type *
472 lookup_reference_type (struct type *type, enum type_code refcode)
473 {
474 return make_reference_type (type, (struct type **) 0, refcode);
475 }
476
477 /* Lookup the lvalue reference type for the type TYPE. */
478
479 struct type *
480 lookup_lvalue_reference_type (struct type *type)
481 {
482 return lookup_reference_type (type, TYPE_CODE_REF);
483 }
484
485 /* Lookup the rvalue reference type for the type TYPE. */
486
487 struct type *
488 lookup_rvalue_reference_type (struct type *type)
489 {
490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
491 }
492
493 /* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
496 function type we return. We allocate new memory if needed. */
497
498 struct type *
499 make_function_type (struct type *type, struct type **typeptr)
500 {
501 struct type *ntype; /* New type */
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
505 ntype = alloc_type_copy (type);
506 if (typeptr)
507 *typeptr = ntype;
508 }
509 else /* We have storage, but need to reset it. */
510 {
511 ntype = *typeptr;
512 smash_type (ntype);
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 ntype->set_code (TYPE_CODE_FUNC);
519
520 INIT_FUNC_SPECIFIC (ntype);
521
522 return ntype;
523 }
524
525 /* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528 struct type *
529 lookup_function_type (struct type *type)
530 {
531 return make_function_type (type, (struct type **) 0);
532 }
533
534 /* Given a type TYPE and argument types, return the appropriate
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
537
538 struct type *
539 lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542 {
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
546 if (nparams > 0)
547 {
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (check_typedef (param_types[nparams - 1])->code ()
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
561 else
562 TYPE_PROTOTYPED (fn) = 1;
563 }
564
565 fn->set_num_fields (nparams);
566 fn->set_fields
567 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
568 for (i = 0; i < nparams; ++i)
569 fn->field (i).set_type (param_types[i]);
570
571 return fn;
572 }
573
574 /* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
576
577 int
578 address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
580 {
581 int type_flags;
582
583 /* Check for known address space delimiters. */
584 if (!strcmp (space_identifier, "code"))
585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
586 else if (!strcmp (space_identifier, "data"))
587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
592 return type_flags;
593 else
594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
595 }
596
597 /* Identify address space identifier by integer flag as defined in
598 gdbtypes.h -- return the string version of the adress space name. */
599
600 const char *
601 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
602 {
603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
604 return "code";
605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
606 return "data";
607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
610 else
611 return NULL;
612 }
613
614 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
618
619 static struct type *
620 make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
622 {
623 struct type *ntype;
624
625 ntype = type;
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
633
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
649
650 /* Pointers or references to the original type are not relevant to
651 the new type. */
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
654
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
661
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
665 return ntype;
666 }
667
668 /* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
676
677 struct type *
678 make_type_with_address_space (struct type *type, int space_flag)
679 {
680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687 }
688
689 /* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
694
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
700
701 struct type *
702 make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
705 {
706 struct type *ntype; /* New type */
707
708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
711
712 if (cnst)
713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
714
715 if (voltl)
716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
717
718 if (typeptr && *typeptr != NULL)
719 {
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
733 }
734
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
737
738 if (typeptr != NULL)
739 *typeptr = ntype;
740
741 return ntype;
742 }
743
744 /* Make a 'restrict'-qualified version of TYPE. */
745
746 struct type *
747 make_restrict_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753 }
754
755 /* Make a type without const, volatile, or restrict. */
756
757 struct type *
758 make_unqualified_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766 }
767
768 /* Make a '_Atomic'-qualified version of TYPE. */
769
770 struct type *
771 make_atomic_type (struct type *type)
772 {
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777 }
778
779 /* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
782
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
788
789 void
790 replace_type (struct type *ntype, struct type *type)
791 {
792 struct type *chain;
793
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
799
800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
801
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
804 chain = ntype;
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
819
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
823 }
824
825 /* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830 struct type *
831 lookup_memberptr_type (struct type *type, struct type *domain)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (type);
836 smash_to_memberptr_type (mtype, domain, type);
837 return mtype;
838 }
839
840 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842 struct type *
843 lookup_methodptr_type (struct type *to_type)
844 {
845 struct type *mtype;
846
847 mtype = alloc_type_copy (to_type);
848 smash_to_methodptr_type (mtype, to_type);
849 return mtype;
850 }
851
852 /* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
857
858 struct type *
859 allocate_stub_method (struct type *type)
860 {
861 struct type *mtype;
862
863 mtype = alloc_type_copy (type);
864 mtype->set_code (TYPE_CODE_METHOD);
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
867 TYPE_TARGET_TYPE (mtype) = type;
868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
869 return mtype;
870 }
871
872 /* See gdbtypes.h. */
873
874 bool
875 operator== (const dynamic_prop &l, const dynamic_prop &r)
876 {
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897 }
898
899 /* See gdbtypes.h. */
900
901 bool
902 operator== (const range_bounds &l, const range_bounds &r)
903 {
904 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
911
912 #undef FIELD_EQ
913 }
914
915 /* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
917
918 struct type *
919 create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
923 {
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (index_type->code () != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
929 if (result_type == NULL)
930 result_type = alloc_type_copy (index_type);
931 result_type->set_code (TYPE_CODE_RANGE);
932 TYPE_TARGET_TYPE (result_type) = index_type;
933 if (TYPE_STUB (index_type))
934 TYPE_TARGET_STUB (result_type) = 1;
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
937
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
942 TYPE_RANGE_DATA (result_type)->bias = bias;
943
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
949 TYPE_UNSIGNED (result_type) = 1;
950
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
961 return result_type;
962 }
963
964 /* See gdbtypes.h. */
965
966 struct type *
967 create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974 {
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983 }
984
985
986
987 /* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997 struct type *
998 create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000 {
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1010
1011 return result_type;
1012 }
1013
1014 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
1017 static bool
1018 has_static_range (const struct range_bounds *bounds)
1019 {
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind == PROP_CONST
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
1025 }
1026
1027
1028 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
1031
1032 int
1033 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1034 {
1035 type = check_typedef (type);
1036 switch (type->code ())
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1042 {
1043 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1044 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1045 return 0;
1046 }
1047 return 1;
1048 case TYPE_CODE_ENUM:
1049 if (type->num_fields () > 0)
1050 {
1051 /* The enums may not be sorted by value, so search all
1052 entries. */
1053 int i;
1054
1055 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1056 for (i = 0; i < type->num_fields (); i++)
1057 {
1058 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1059 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1060 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1061 *highp = TYPE_FIELD_ENUMVAL (type, i);
1062 }
1063
1064 /* Set unsigned indicator if warranted. */
1065 if (*lowp >= 0)
1066 {
1067 TYPE_UNSIGNED (type) = 1;
1068 }
1069 }
1070 else
1071 {
1072 *lowp = 0;
1073 *highp = -1;
1074 }
1075 return 0;
1076 case TYPE_CODE_BOOL:
1077 *lowp = 0;
1078 *highp = 1;
1079 return 0;
1080 case TYPE_CODE_INT:
1081 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1082 return -1;
1083 if (!TYPE_UNSIGNED (type))
1084 {
1085 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1086 *highp = -*lowp - 1;
1087 return 0;
1088 }
1089 /* fall through */
1090 case TYPE_CODE_CHAR:
1091 *lowp = 0;
1092 /* This round-about calculation is to avoid shifting by
1093 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1094 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1095 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1096 *highp = (*highp - 1) | *highp;
1097 return 0;
1098 default:
1099 return -1;
1100 }
1101 }
1102
1103 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1104 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1105 Save the high bound into HIGH_BOUND if not NULL.
1106
1107 Return 1 if the operation was successful. Return zero otherwise,
1108 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1109
1110 We now simply use get_discrete_bounds call to get the values
1111 of the low and high bounds.
1112 get_discrete_bounds can return three values:
1113 1, meaning that index is a range,
1114 0, meaning that index is a discrete type,
1115 or -1 for failure. */
1116
1117 int
1118 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1119 {
1120 struct type *index = type->index_type ();
1121 LONGEST low = 0;
1122 LONGEST high = 0;
1123 int res;
1124
1125 if (index == NULL)
1126 return 0;
1127
1128 res = get_discrete_bounds (index, &low, &high);
1129 if (res == -1)
1130 return 0;
1131
1132 /* Check if the array bounds are undefined. */
1133 if (res == 1
1134 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1135 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1136 return 0;
1137
1138 if (low_bound)
1139 *low_bound = low;
1140
1141 if (high_bound)
1142 *high_bound = high;
1143
1144 return 1;
1145 }
1146
1147 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1148 representation of a value of this type, save the corresponding
1149 position number in POS.
1150
1151 Its differs from VAL only in the case of enumeration types. In
1152 this case, the position number of the value of the first listed
1153 enumeration literal is zero; the position number of the value of
1154 each subsequent enumeration literal is one more than that of its
1155 predecessor in the list.
1156
1157 Return 1 if the operation was successful. Return zero otherwise,
1158 in which case the value of POS is unmodified.
1159 */
1160
1161 int
1162 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1163 {
1164 if (type->code () == TYPE_CODE_RANGE)
1165 type = TYPE_TARGET_TYPE (type);
1166
1167 if (type->code () == TYPE_CODE_ENUM)
1168 {
1169 int i;
1170
1171 for (i = 0; i < type->num_fields (); i += 1)
1172 {
1173 if (val == TYPE_FIELD_ENUMVAL (type, i))
1174 {
1175 *pos = i;
1176 return 1;
1177 }
1178 }
1179 /* Invalid enumeration value. */
1180 return 0;
1181 }
1182 else
1183 {
1184 *pos = val;
1185 return 1;
1186 }
1187 }
1188
1189 /* If the array TYPE has static bounds calculate and update its
1190 size, then return true. Otherwise return false and leave TYPE
1191 unchanged. */
1192
1193 static bool
1194 update_static_array_size (struct type *type)
1195 {
1196 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1197
1198 struct type *range_type = type->index_type ();
1199
1200 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1201 && has_static_range (TYPE_RANGE_DATA (range_type))
1202 && (!type_not_associated (type)
1203 && !type_not_allocated (type)))
1204 {
1205 LONGEST low_bound, high_bound;
1206 int stride;
1207 struct type *element_type;
1208
1209 /* If the array itself doesn't provide a stride value then take
1210 whatever stride the range provides. Don't update BIT_STRIDE as
1211 we don't want to place the stride value from the range into this
1212 arrays bit size field. */
1213 stride = TYPE_FIELD_BITSIZE (type, 0);
1214 if (stride == 0)
1215 stride = TYPE_BIT_STRIDE (range_type);
1216
1217 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1218 low_bound = high_bound = 0;
1219 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1220 /* Be careful when setting the array length. Ada arrays can be
1221 empty arrays with the high_bound being smaller than the low_bound.
1222 In such cases, the array length should be zero. */
1223 if (high_bound < low_bound)
1224 TYPE_LENGTH (type) = 0;
1225 else if (stride != 0)
1226 {
1227 /* Ensure that the type length is always positive, even in the
1228 case where (for example in Fortran) we have a negative
1229 stride. It is possible to have a single element array with a
1230 negative stride in Fortran (this doesn't mean anything
1231 special, it's still just a single element array) so do
1232 consider that case when touching this code. */
1233 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1234 TYPE_LENGTH (type)
1235 = ((std::abs (stride) * element_count) + 7) / 8;
1236 }
1237 else
1238 TYPE_LENGTH (type) =
1239 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1240
1241 return true;
1242 }
1243
1244 return false;
1245 }
1246
1247 /* Create an array type using either a blank type supplied in
1248 RESULT_TYPE, or creating a new type, inheriting the objfile from
1249 RANGE_TYPE.
1250
1251 Elements will be of type ELEMENT_TYPE, the indices will be of type
1252 RANGE_TYPE.
1253
1254 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1255 This byte stride property is added to the resulting array type
1256 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1257 argument can only be used to create types that are objfile-owned
1258 (see add_dyn_prop), meaning that either this function must be called
1259 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1260
1261 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1262 If BIT_STRIDE is not zero, build a packed array type whose element
1263 size is BIT_STRIDE. Otherwise, ignore this parameter.
1264
1265 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1266 sure it is TYPE_CODE_UNDEF before we bash it into an array
1267 type? */
1268
1269 struct type *
1270 create_array_type_with_stride (struct type *result_type,
1271 struct type *element_type,
1272 struct type *range_type,
1273 struct dynamic_prop *byte_stride_prop,
1274 unsigned int bit_stride)
1275 {
1276 if (byte_stride_prop != NULL
1277 && byte_stride_prop->kind == PROP_CONST)
1278 {
1279 /* The byte stride is actually not dynamic. Pretend we were
1280 called with bit_stride set instead of byte_stride_prop.
1281 This will give us the same result type, while avoiding
1282 the need to handle this as a special case. */
1283 bit_stride = byte_stride_prop->data.const_val * 8;
1284 byte_stride_prop = NULL;
1285 }
1286
1287 if (result_type == NULL)
1288 result_type = alloc_type_copy (range_type);
1289
1290 result_type->set_code (TYPE_CODE_ARRAY);
1291 TYPE_TARGET_TYPE (result_type) = element_type;
1292
1293 result_type->set_num_fields (1);
1294 result_type->set_fields
1295 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1296 result_type->set_index_type (range_type);
1297 if (byte_stride_prop != NULL)
1298 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1299 else if (bit_stride > 0)
1300 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1301
1302 if (!update_static_array_size (result_type))
1303 {
1304 /* This type is dynamic and its length needs to be computed
1305 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1306 undefined by setting it to zero. Although we are not expected
1307 to trust TYPE_LENGTH in this case, setting the size to zero
1308 allows us to avoid allocating objects of random sizes in case
1309 we accidently do. */
1310 TYPE_LENGTH (result_type) = 0;
1311 }
1312
1313 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1314 if (TYPE_LENGTH (result_type) == 0)
1315 TYPE_TARGET_STUB (result_type) = 1;
1316
1317 return result_type;
1318 }
1319
1320 /* Same as create_array_type_with_stride but with no bit_stride
1321 (BIT_STRIDE = 0), thus building an unpacked array. */
1322
1323 struct type *
1324 create_array_type (struct type *result_type,
1325 struct type *element_type,
1326 struct type *range_type)
1327 {
1328 return create_array_type_with_stride (result_type, element_type,
1329 range_type, NULL, 0);
1330 }
1331
1332 struct type *
1333 lookup_array_range_type (struct type *element_type,
1334 LONGEST low_bound, LONGEST high_bound)
1335 {
1336 struct type *index_type;
1337 struct type *range_type;
1338
1339 if (TYPE_OBJFILE_OWNED (element_type))
1340 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1341 else
1342 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1343 range_type = create_static_range_type (NULL, index_type,
1344 low_bound, high_bound);
1345
1346 return create_array_type (NULL, element_type, range_type);
1347 }
1348
1349 /* Create a string type using either a blank type supplied in
1350 RESULT_TYPE, or creating a new type. String types are similar
1351 enough to array of char types that we can use create_array_type to
1352 build the basic type and then bash it into a string type.
1353
1354 For fixed length strings, the range type contains 0 as the lower
1355 bound and the length of the string minus one as the upper bound.
1356
1357 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1358 sure it is TYPE_CODE_UNDEF before we bash it into a string
1359 type? */
1360
1361 struct type *
1362 create_string_type (struct type *result_type,
1363 struct type *string_char_type,
1364 struct type *range_type)
1365 {
1366 result_type = create_array_type (result_type,
1367 string_char_type,
1368 range_type);
1369 result_type->set_code (TYPE_CODE_STRING);
1370 return result_type;
1371 }
1372
1373 struct type *
1374 lookup_string_range_type (struct type *string_char_type,
1375 LONGEST low_bound, LONGEST high_bound)
1376 {
1377 struct type *result_type;
1378
1379 result_type = lookup_array_range_type (string_char_type,
1380 low_bound, high_bound);
1381 result_type->set_code (TYPE_CODE_STRING);
1382 return result_type;
1383 }
1384
1385 struct type *
1386 create_set_type (struct type *result_type, struct type *domain_type)
1387 {
1388 if (result_type == NULL)
1389 result_type = alloc_type_copy (domain_type);
1390
1391 result_type->set_code (TYPE_CODE_SET);
1392 result_type->set_num_fields (1);
1393 result_type->set_fields
1394 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1395
1396 if (!TYPE_STUB (domain_type))
1397 {
1398 LONGEST low_bound, high_bound, bit_length;
1399
1400 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1401 low_bound = high_bound = 0;
1402 bit_length = high_bound - low_bound + 1;
1403 TYPE_LENGTH (result_type)
1404 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1405 if (low_bound >= 0)
1406 TYPE_UNSIGNED (result_type) = 1;
1407 }
1408 result_type->field (0).set_type (domain_type);
1409
1410 return result_type;
1411 }
1412
1413 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1414 and any array types nested inside it. */
1415
1416 void
1417 make_vector_type (struct type *array_type)
1418 {
1419 struct type *inner_array, *elt_type;
1420 int flags;
1421
1422 /* Find the innermost array type, in case the array is
1423 multi-dimensional. */
1424 inner_array = array_type;
1425 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1426 inner_array = TYPE_TARGET_TYPE (inner_array);
1427
1428 elt_type = TYPE_TARGET_TYPE (inner_array);
1429 if (elt_type->code () == TYPE_CODE_INT)
1430 {
1431 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1432 elt_type = make_qualified_type (elt_type, flags, NULL);
1433 TYPE_TARGET_TYPE (inner_array) = elt_type;
1434 }
1435
1436 TYPE_VECTOR (array_type) = 1;
1437 }
1438
1439 struct type *
1440 init_vector_type (struct type *elt_type, int n)
1441 {
1442 struct type *array_type;
1443
1444 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1445 make_vector_type (array_type);
1446 return array_type;
1447 }
1448
1449 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1450 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1451 confusing. "self" is a common enough replacement for "this".
1452 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1453 TYPE_CODE_METHOD. */
1454
1455 struct type *
1456 internal_type_self_type (struct type *type)
1457 {
1458 switch (type->code ())
1459 {
1460 case TYPE_CODE_METHODPTR:
1461 case TYPE_CODE_MEMBERPTR:
1462 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1463 return NULL;
1464 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1465 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1466 case TYPE_CODE_METHOD:
1467 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1468 return NULL;
1469 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1470 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1471 default:
1472 gdb_assert_not_reached ("bad type");
1473 }
1474 }
1475
1476 /* Set the type of the class that TYPE belongs to.
1477 In c++ this is the class of "this".
1478 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1479 TYPE_CODE_METHOD. */
1480
1481 void
1482 set_type_self_type (struct type *type, struct type *self_type)
1483 {
1484 switch (type->code ())
1485 {
1486 case TYPE_CODE_METHODPTR:
1487 case TYPE_CODE_MEMBERPTR:
1488 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1489 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1490 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1491 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1492 break;
1493 case TYPE_CODE_METHOD:
1494 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1495 INIT_FUNC_SPECIFIC (type);
1496 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1497 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1498 break;
1499 default:
1500 gdb_assert_not_reached ("bad type");
1501 }
1502 }
1503
1504 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1505 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1506 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1507 TYPE doesn't include the offset (that's the value of the MEMBER
1508 itself), but does include the structure type into which it points
1509 (for some reason).
1510
1511 When "smashing" the type, we preserve the objfile that the old type
1512 pointed to, since we aren't changing where the type is actually
1513 allocated. */
1514
1515 void
1516 smash_to_memberptr_type (struct type *type, struct type *self_type,
1517 struct type *to_type)
1518 {
1519 smash_type (type);
1520 type->set_code (TYPE_CODE_MEMBERPTR);
1521 TYPE_TARGET_TYPE (type) = to_type;
1522 set_type_self_type (type, self_type);
1523 /* Assume that a data member pointer is the same size as a normal
1524 pointer. */
1525 TYPE_LENGTH (type)
1526 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1527 }
1528
1529 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1530
1531 When "smashing" the type, we preserve the objfile that the old type
1532 pointed to, since we aren't changing where the type is actually
1533 allocated. */
1534
1535 void
1536 smash_to_methodptr_type (struct type *type, struct type *to_type)
1537 {
1538 smash_type (type);
1539 type->set_code (TYPE_CODE_METHODPTR);
1540 TYPE_TARGET_TYPE (type) = to_type;
1541 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1542 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1543 }
1544
1545 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1546 METHOD just means `function that gets an extra "this" argument'.
1547
1548 When "smashing" the type, we preserve the objfile that the old type
1549 pointed to, since we aren't changing where the type is actually
1550 allocated. */
1551
1552 void
1553 smash_to_method_type (struct type *type, struct type *self_type,
1554 struct type *to_type, struct field *args,
1555 int nargs, int varargs)
1556 {
1557 smash_type (type);
1558 type->set_code (TYPE_CODE_METHOD);
1559 TYPE_TARGET_TYPE (type) = to_type;
1560 set_type_self_type (type, self_type);
1561 type->set_fields (args);
1562 type->set_num_fields (nargs);
1563 if (varargs)
1564 TYPE_VARARGS (type) = 1;
1565 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1566 }
1567
1568 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1569 Since GCC PR debug/47510 DWARF provides associated information to detect the
1570 anonymous class linkage name from its typedef.
1571
1572 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1573 apply it itself. */
1574
1575 const char *
1576 type_name_or_error (struct type *type)
1577 {
1578 struct type *saved_type = type;
1579 const char *name;
1580 struct objfile *objfile;
1581
1582 type = check_typedef (type);
1583
1584 name = type->name ();
1585 if (name != NULL)
1586 return name;
1587
1588 name = saved_type->name ();
1589 objfile = TYPE_OBJFILE (saved_type);
1590 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1591 name ? name : "<anonymous>",
1592 objfile ? objfile_name (objfile) : "<arch>");
1593 }
1594
1595 /* Lookup a typedef or primitive type named NAME, visible in lexical
1596 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1597 suitably defined. */
1598
1599 struct type *
1600 lookup_typename (const struct language_defn *language,
1601 const char *name,
1602 const struct block *block, int noerr)
1603 {
1604 struct symbol *sym;
1605
1606 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1607 language->la_language, NULL).symbol;
1608 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1609 return SYMBOL_TYPE (sym);
1610
1611 if (noerr)
1612 return NULL;
1613 error (_("No type named %s."), name);
1614 }
1615
1616 struct type *
1617 lookup_unsigned_typename (const struct language_defn *language,
1618 const char *name)
1619 {
1620 char *uns = (char *) alloca (strlen (name) + 10);
1621
1622 strcpy (uns, "unsigned ");
1623 strcpy (uns + 9, name);
1624 return lookup_typename (language, uns, NULL, 0);
1625 }
1626
1627 struct type *
1628 lookup_signed_typename (const struct language_defn *language, const char *name)
1629 {
1630 struct type *t;
1631 char *uns = (char *) alloca (strlen (name) + 8);
1632
1633 strcpy (uns, "signed ");
1634 strcpy (uns + 7, name);
1635 t = lookup_typename (language, uns, NULL, 1);
1636 /* If we don't find "signed FOO" just try again with plain "FOO". */
1637 if (t != NULL)
1638 return t;
1639 return lookup_typename (language, name, NULL, 0);
1640 }
1641
1642 /* Lookup a structure type named "struct NAME",
1643 visible in lexical block BLOCK. */
1644
1645 struct type *
1646 lookup_struct (const char *name, const struct block *block)
1647 {
1648 struct symbol *sym;
1649
1650 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1651
1652 if (sym == NULL)
1653 {
1654 error (_("No struct type named %s."), name);
1655 }
1656 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1657 {
1658 error (_("This context has class, union or enum %s, not a struct."),
1659 name);
1660 }
1661 return (SYMBOL_TYPE (sym));
1662 }
1663
1664 /* Lookup a union type named "union NAME",
1665 visible in lexical block BLOCK. */
1666
1667 struct type *
1668 lookup_union (const char *name, const struct block *block)
1669 {
1670 struct symbol *sym;
1671 struct type *t;
1672
1673 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1674
1675 if (sym == NULL)
1676 error (_("No union type named %s."), name);
1677
1678 t = SYMBOL_TYPE (sym);
1679
1680 if (t->code () == TYPE_CODE_UNION)
1681 return t;
1682
1683 /* If we get here, it's not a union. */
1684 error (_("This context has class, struct or enum %s, not a union."),
1685 name);
1686 }
1687
1688 /* Lookup an enum type named "enum NAME",
1689 visible in lexical block BLOCK. */
1690
1691 struct type *
1692 lookup_enum (const char *name, const struct block *block)
1693 {
1694 struct symbol *sym;
1695
1696 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1697 if (sym == NULL)
1698 {
1699 error (_("No enum type named %s."), name);
1700 }
1701 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1702 {
1703 error (_("This context has class, struct or union %s, not an enum."),
1704 name);
1705 }
1706 return (SYMBOL_TYPE (sym));
1707 }
1708
1709 /* Lookup a template type named "template NAME<TYPE>",
1710 visible in lexical block BLOCK. */
1711
1712 struct type *
1713 lookup_template_type (const char *name, struct type *type,
1714 const struct block *block)
1715 {
1716 struct symbol *sym;
1717 char *nam = (char *)
1718 alloca (strlen (name) + strlen (type->name ()) + 4);
1719
1720 strcpy (nam, name);
1721 strcat (nam, "<");
1722 strcat (nam, type->name ());
1723 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1724
1725 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1726
1727 if (sym == NULL)
1728 {
1729 error (_("No template type named %s."), name);
1730 }
1731 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1732 {
1733 error (_("This context has class, union or enum %s, not a struct."),
1734 name);
1735 }
1736 return (SYMBOL_TYPE (sym));
1737 }
1738
1739 /* See gdbtypes.h. */
1740
1741 struct_elt
1742 lookup_struct_elt (struct type *type, const char *name, int noerr)
1743 {
1744 int i;
1745
1746 for (;;)
1747 {
1748 type = check_typedef (type);
1749 if (type->code () != TYPE_CODE_PTR
1750 && type->code () != TYPE_CODE_REF)
1751 break;
1752 type = TYPE_TARGET_TYPE (type);
1753 }
1754
1755 if (type->code () != TYPE_CODE_STRUCT
1756 && type->code () != TYPE_CODE_UNION)
1757 {
1758 std::string type_name = type_to_string (type);
1759 error (_("Type %s is not a structure or union type."),
1760 type_name.c_str ());
1761 }
1762
1763 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1764 {
1765 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1766
1767 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1768 {
1769 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1770 }
1771 else if (!t_field_name || *t_field_name == '\0')
1772 {
1773 struct_elt elt
1774 = lookup_struct_elt (type->field (i).type (), name, 1);
1775 if (elt.field != NULL)
1776 {
1777 elt.offset += TYPE_FIELD_BITPOS (type, i);
1778 return elt;
1779 }
1780 }
1781 }
1782
1783 /* OK, it's not in this class. Recursively check the baseclasses. */
1784 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1785 {
1786 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1787 if (elt.field != NULL)
1788 return elt;
1789 }
1790
1791 if (noerr)
1792 return {nullptr, 0};
1793
1794 std::string type_name = type_to_string (type);
1795 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1796 }
1797
1798 /* See gdbtypes.h. */
1799
1800 struct type *
1801 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1802 {
1803 struct_elt elt = lookup_struct_elt (type, name, noerr);
1804 if (elt.field != NULL)
1805 return elt.field->type ();
1806 else
1807 return NULL;
1808 }
1809
1810 /* Store in *MAX the largest number representable by unsigned integer type
1811 TYPE. */
1812
1813 void
1814 get_unsigned_type_max (struct type *type, ULONGEST *max)
1815 {
1816 unsigned int n;
1817
1818 type = check_typedef (type);
1819 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1820 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1821
1822 /* Written this way to avoid overflow. */
1823 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1824 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1825 }
1826
1827 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1828 signed integer type TYPE. */
1829
1830 void
1831 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1832 {
1833 unsigned int n;
1834
1835 type = check_typedef (type);
1836 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1837 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1838
1839 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1840 *min = -((ULONGEST) 1 << (n - 1));
1841 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1842 }
1843
1844 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1845 cplus_stuff.vptr_fieldno.
1846
1847 cplus_stuff is initialized to cplus_struct_default which does not
1848 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1849 designated initializers). We cope with that here. */
1850
1851 int
1852 internal_type_vptr_fieldno (struct type *type)
1853 {
1854 type = check_typedef (type);
1855 gdb_assert (type->code () == TYPE_CODE_STRUCT
1856 || type->code () == TYPE_CODE_UNION);
1857 if (!HAVE_CPLUS_STRUCT (type))
1858 return -1;
1859 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1860 }
1861
1862 /* Set the value of cplus_stuff.vptr_fieldno. */
1863
1864 void
1865 set_type_vptr_fieldno (struct type *type, int fieldno)
1866 {
1867 type = check_typedef (type);
1868 gdb_assert (type->code () == TYPE_CODE_STRUCT
1869 || type->code () == TYPE_CODE_UNION);
1870 if (!HAVE_CPLUS_STRUCT (type))
1871 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1872 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1873 }
1874
1875 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1876 cplus_stuff.vptr_basetype. */
1877
1878 struct type *
1879 internal_type_vptr_basetype (struct type *type)
1880 {
1881 type = check_typedef (type);
1882 gdb_assert (type->code () == TYPE_CODE_STRUCT
1883 || type->code () == TYPE_CODE_UNION);
1884 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1885 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1886 }
1887
1888 /* Set the value of cplus_stuff.vptr_basetype. */
1889
1890 void
1891 set_type_vptr_basetype (struct type *type, struct type *basetype)
1892 {
1893 type = check_typedef (type);
1894 gdb_assert (type->code () == TYPE_CODE_STRUCT
1895 || type->code () == TYPE_CODE_UNION);
1896 if (!HAVE_CPLUS_STRUCT (type))
1897 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1898 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1899 }
1900
1901 /* Lookup the vptr basetype/fieldno values for TYPE.
1902 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1903 vptr_fieldno. Also, if found and basetype is from the same objfile,
1904 cache the results.
1905 If not found, return -1 and ignore BASETYPEP.
1906 Callers should be aware that in some cases (for example,
1907 the type or one of its baseclasses is a stub type and we are
1908 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1909 this function will not be able to find the
1910 virtual function table pointer, and vptr_fieldno will remain -1 and
1911 vptr_basetype will remain NULL or incomplete. */
1912
1913 int
1914 get_vptr_fieldno (struct type *type, struct type **basetypep)
1915 {
1916 type = check_typedef (type);
1917
1918 if (TYPE_VPTR_FIELDNO (type) < 0)
1919 {
1920 int i;
1921
1922 /* We must start at zero in case the first (and only) baseclass
1923 is virtual (and hence we cannot share the table pointer). */
1924 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1925 {
1926 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1927 int fieldno;
1928 struct type *basetype;
1929
1930 fieldno = get_vptr_fieldno (baseclass, &basetype);
1931 if (fieldno >= 0)
1932 {
1933 /* If the type comes from a different objfile we can't cache
1934 it, it may have a different lifetime. PR 2384 */
1935 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1936 {
1937 set_type_vptr_fieldno (type, fieldno);
1938 set_type_vptr_basetype (type, basetype);
1939 }
1940 if (basetypep)
1941 *basetypep = basetype;
1942 return fieldno;
1943 }
1944 }
1945
1946 /* Not found. */
1947 return -1;
1948 }
1949 else
1950 {
1951 if (basetypep)
1952 *basetypep = TYPE_VPTR_BASETYPE (type);
1953 return TYPE_VPTR_FIELDNO (type);
1954 }
1955 }
1956
1957 static void
1958 stub_noname_complaint (void)
1959 {
1960 complaint (_("stub type has NULL name"));
1961 }
1962
1963 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1964 attached to it, and that property has a non-constant value. */
1965
1966 static int
1967 array_type_has_dynamic_stride (struct type *type)
1968 {
1969 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1970
1971 return (prop != NULL && prop->kind != PROP_CONST);
1972 }
1973
1974 /* Worker for is_dynamic_type. */
1975
1976 static int
1977 is_dynamic_type_internal (struct type *type, int top_level)
1978 {
1979 type = check_typedef (type);
1980
1981 /* We only want to recognize references at the outermost level. */
1982 if (top_level && type->code () == TYPE_CODE_REF)
1983 type = check_typedef (TYPE_TARGET_TYPE (type));
1984
1985 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1986 dynamic, even if the type itself is statically defined.
1987 From a user's point of view, this may appear counter-intuitive;
1988 but it makes sense in this context, because the point is to determine
1989 whether any part of the type needs to be resolved before it can
1990 be exploited. */
1991 if (TYPE_DATA_LOCATION (type) != NULL
1992 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1993 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1994 return 1;
1995
1996 if (TYPE_ASSOCIATED_PROP (type))
1997 return 1;
1998
1999 if (TYPE_ALLOCATED_PROP (type))
2000 return 1;
2001
2002 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2003 if (prop != nullptr && prop->kind != PROP_TYPE)
2004 return 1;
2005
2006 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2007 return 1;
2008
2009 switch (type->code ())
2010 {
2011 case TYPE_CODE_RANGE:
2012 {
2013 /* A range type is obviously dynamic if it has at least one
2014 dynamic bound. But also consider the range type to be
2015 dynamic when its subtype is dynamic, even if the bounds
2016 of the range type are static. It allows us to assume that
2017 the subtype of a static range type is also static. */
2018 return (!has_static_range (TYPE_RANGE_DATA (type))
2019 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2020 }
2021
2022 case TYPE_CODE_STRING:
2023 /* Strings are very much like an array of characters, and can be
2024 treated as one here. */
2025 case TYPE_CODE_ARRAY:
2026 {
2027 gdb_assert (type->num_fields () == 1);
2028
2029 /* The array is dynamic if either the bounds are dynamic... */
2030 if (is_dynamic_type_internal (type->index_type (), 0))
2031 return 1;
2032 /* ... or the elements it contains have a dynamic contents... */
2033 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2034 return 1;
2035 /* ... or if it has a dynamic stride... */
2036 if (array_type_has_dynamic_stride (type))
2037 return 1;
2038 return 0;
2039 }
2040
2041 case TYPE_CODE_STRUCT:
2042 case TYPE_CODE_UNION:
2043 {
2044 int i;
2045
2046 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2047
2048 for (i = 0; i < type->num_fields (); ++i)
2049 {
2050 /* Static fields can be ignored here. */
2051 if (field_is_static (&type->field (i)))
2052 continue;
2053 /* If the field has dynamic type, then so does TYPE. */
2054 if (is_dynamic_type_internal (type->field (i).type (), 0))
2055 return 1;
2056 /* If the field is at a fixed offset, then it is not
2057 dynamic. */
2058 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2059 continue;
2060 /* Do not consider C++ virtual base types to be dynamic
2061 due to the field's offset being dynamic; these are
2062 handled via other means. */
2063 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2064 continue;
2065 return 1;
2066 }
2067 }
2068 break;
2069 }
2070
2071 return 0;
2072 }
2073
2074 /* See gdbtypes.h. */
2075
2076 int
2077 is_dynamic_type (struct type *type)
2078 {
2079 return is_dynamic_type_internal (type, 1);
2080 }
2081
2082 static struct type *resolve_dynamic_type_internal
2083 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2084
2085 /* Given a dynamic range type (dyn_range_type) and a stack of
2086 struct property_addr_info elements, return a static version
2087 of that type. */
2088
2089 static struct type *
2090 resolve_dynamic_range (struct type *dyn_range_type,
2091 struct property_addr_info *addr_stack)
2092 {
2093 CORE_ADDR value;
2094 struct type *static_range_type, *static_target_type;
2095 const struct dynamic_prop *prop;
2096 struct dynamic_prop low_bound, high_bound, stride;
2097
2098 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2099
2100 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2101 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2102 {
2103 low_bound.kind = PROP_CONST;
2104 low_bound.data.const_val = value;
2105 }
2106 else
2107 {
2108 low_bound.kind = PROP_UNDEFINED;
2109 low_bound.data.const_val = 0;
2110 }
2111
2112 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2113 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2114 {
2115 high_bound.kind = PROP_CONST;
2116 high_bound.data.const_val = value;
2117
2118 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2119 high_bound.data.const_val
2120 = low_bound.data.const_val + high_bound.data.const_val - 1;
2121 }
2122 else
2123 {
2124 high_bound.kind = PROP_UNDEFINED;
2125 high_bound.data.const_val = 0;
2126 }
2127
2128 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2129 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2130 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2131 {
2132 stride.kind = PROP_CONST;
2133 stride.data.const_val = value;
2134
2135 /* If we have a bit stride that is not an exact number of bytes then
2136 I really don't think this is going to work with current GDB, the
2137 array indexing code in GDB seems to be pretty heavily tied to byte
2138 offsets right now. Assuming 8 bits in a byte. */
2139 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2140 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2141 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2142 error (_("bit strides that are not a multiple of the byte size "
2143 "are currently not supported"));
2144 }
2145 else
2146 {
2147 stride.kind = PROP_UNDEFINED;
2148 stride.data.const_val = 0;
2149 byte_stride_p = true;
2150 }
2151
2152 static_target_type
2153 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2154 addr_stack, 0);
2155 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2156 static_range_type = create_range_type_with_stride
2157 (copy_type (dyn_range_type), static_target_type,
2158 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2159 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2160 return static_range_type;
2161 }
2162
2163 /* Resolves dynamic bound values of an array or string type TYPE to static
2164 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2165 needed during the dynamic resolution. */
2166
2167 static struct type *
2168 resolve_dynamic_array_or_string (struct type *type,
2169 struct property_addr_info *addr_stack)
2170 {
2171 CORE_ADDR value;
2172 struct type *elt_type;
2173 struct type *range_type;
2174 struct type *ary_dim;
2175 struct dynamic_prop *prop;
2176 unsigned int bit_stride = 0;
2177
2178 /* For dynamic type resolution strings can be treated like arrays of
2179 characters. */
2180 gdb_assert (type->code () == TYPE_CODE_ARRAY
2181 || type->code () == TYPE_CODE_STRING);
2182
2183 type = copy_type (type);
2184
2185 elt_type = type;
2186 range_type = check_typedef (elt_type->index_type ());
2187 range_type = resolve_dynamic_range (range_type, addr_stack);
2188
2189 /* Resolve allocated/associated here before creating a new array type, which
2190 will update the length of the array accordingly. */
2191 prop = TYPE_ALLOCATED_PROP (type);
2192 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2193 {
2194 TYPE_DYN_PROP_ADDR (prop) = value;
2195 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2196 }
2197 prop = TYPE_ASSOCIATED_PROP (type);
2198 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2199 {
2200 TYPE_DYN_PROP_ADDR (prop) = value;
2201 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2202 }
2203
2204 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2205
2206 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2207 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2208 else
2209 elt_type = TYPE_TARGET_TYPE (type);
2210
2211 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2212 if (prop != NULL)
2213 {
2214 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2215 {
2216 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2217 bit_stride = (unsigned int) (value * 8);
2218 }
2219 else
2220 {
2221 /* Could be a bug in our code, but it could also happen
2222 if the DWARF info is not correct. Issue a warning,
2223 and assume no byte/bit stride (leave bit_stride = 0). */
2224 warning (_("cannot determine array stride for type %s"),
2225 type->name () ? type->name () : "<no name>");
2226 }
2227 }
2228 else
2229 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2230
2231 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2232 bit_stride);
2233 }
2234
2235 /* Resolve dynamic bounds of members of the union TYPE to static
2236 bounds. ADDR_STACK is a stack of struct property_addr_info
2237 to be used if needed during the dynamic resolution. */
2238
2239 static struct type *
2240 resolve_dynamic_union (struct type *type,
2241 struct property_addr_info *addr_stack)
2242 {
2243 struct type *resolved_type;
2244 int i;
2245 unsigned int max_len = 0;
2246
2247 gdb_assert (type->code () == TYPE_CODE_UNION);
2248
2249 resolved_type = copy_type (type);
2250 resolved_type->set_fields
2251 ((struct field *)
2252 TYPE_ALLOC (resolved_type,
2253 resolved_type->num_fields () * sizeof (struct field)));
2254 memcpy (resolved_type->fields (),
2255 type->fields (),
2256 resolved_type->num_fields () * sizeof (struct field));
2257 for (i = 0; i < resolved_type->num_fields (); ++i)
2258 {
2259 struct type *t;
2260
2261 if (field_is_static (&type->field (i)))
2262 continue;
2263
2264 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2265 addr_stack, 0);
2266 resolved_type->field (i).set_type (t);
2267
2268 struct type *real_type = check_typedef (t);
2269 if (TYPE_LENGTH (real_type) > max_len)
2270 max_len = TYPE_LENGTH (real_type);
2271 }
2272
2273 TYPE_LENGTH (resolved_type) = max_len;
2274 return resolved_type;
2275 }
2276
2277 /* See gdbtypes.h. */
2278
2279 bool
2280 variant::matches (ULONGEST value, bool is_unsigned) const
2281 {
2282 for (const discriminant_range &range : discriminants)
2283 if (range.contains (value, is_unsigned))
2284 return true;
2285 return false;
2286 }
2287
2288 static void
2289 compute_variant_fields_inner (struct type *type,
2290 struct property_addr_info *addr_stack,
2291 const variant_part &part,
2292 std::vector<bool> &flags);
2293
2294 /* A helper function to determine which variant fields will be active.
2295 This handles both the variant's direct fields, and any variant
2296 parts embedded in this variant. TYPE is the type we're examining.
2297 ADDR_STACK holds information about the concrete object. VARIANT is
2298 the current variant to be handled. FLAGS is where the results are
2299 stored -- this function sets the Nth element in FLAGS if the
2300 corresponding field is enabled. ENABLED is whether this variant is
2301 enabled or not. */
2302
2303 static void
2304 compute_variant_fields_recurse (struct type *type,
2305 struct property_addr_info *addr_stack,
2306 const variant &variant,
2307 std::vector<bool> &flags,
2308 bool enabled)
2309 {
2310 for (int field = variant.first_field; field < variant.last_field; ++field)
2311 flags[field] = enabled;
2312
2313 for (const variant_part &new_part : variant.parts)
2314 {
2315 if (enabled)
2316 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2317 else
2318 {
2319 for (const auto &sub_variant : new_part.variants)
2320 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2321 flags, enabled);
2322 }
2323 }
2324 }
2325
2326 /* A helper function to determine which variant fields will be active.
2327 This evaluates the discriminant, decides which variant (if any) is
2328 active, and then updates FLAGS to reflect which fields should be
2329 available. TYPE is the type we're examining. ADDR_STACK holds
2330 information about the concrete object. VARIANT is the current
2331 variant to be handled. FLAGS is where the results are stored --
2332 this function sets the Nth element in FLAGS if the corresponding
2333 field is enabled. */
2334
2335 static void
2336 compute_variant_fields_inner (struct type *type,
2337 struct property_addr_info *addr_stack,
2338 const variant_part &part,
2339 std::vector<bool> &flags)
2340 {
2341 /* Evaluate the discriminant. */
2342 gdb::optional<ULONGEST> discr_value;
2343 if (part.discriminant_index != -1)
2344 {
2345 int idx = part.discriminant_index;
2346
2347 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2348 error (_("Cannot determine struct field location"
2349 " (invalid location kind)"));
2350
2351 if (addr_stack->valaddr.data () != NULL)
2352 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2353 idx);
2354 else
2355 {
2356 CORE_ADDR addr = (addr_stack->addr
2357 + (TYPE_FIELD_BITPOS (type, idx)
2358 / TARGET_CHAR_BIT));
2359
2360 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2361 LONGEST size = bitsize / 8;
2362 if (size == 0)
2363 size = TYPE_LENGTH (type->field (idx).type ());
2364
2365 gdb_byte bits[sizeof (ULONGEST)];
2366 read_memory (addr, bits, size);
2367
2368 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2369 % TARGET_CHAR_BIT);
2370
2371 discr_value = unpack_bits_as_long (type->field (idx).type (),
2372 bits, bitpos, bitsize);
2373 }
2374 }
2375
2376 /* Go through each variant and see which applies. */
2377 const variant *default_variant = nullptr;
2378 const variant *applied_variant = nullptr;
2379 for (const auto &variant : part.variants)
2380 {
2381 if (variant.is_default ())
2382 default_variant = &variant;
2383 else if (discr_value.has_value ()
2384 && variant.matches (*discr_value, part.is_unsigned))
2385 {
2386 applied_variant = &variant;
2387 break;
2388 }
2389 }
2390 if (applied_variant == nullptr)
2391 applied_variant = default_variant;
2392
2393 for (const auto &variant : part.variants)
2394 compute_variant_fields_recurse (type, addr_stack, variant,
2395 flags, applied_variant == &variant);
2396 }
2397
2398 /* Determine which variant fields are available in TYPE. The enabled
2399 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2400 about the concrete object. PARTS describes the top-level variant
2401 parts for this type. */
2402
2403 static void
2404 compute_variant_fields (struct type *type,
2405 struct type *resolved_type,
2406 struct property_addr_info *addr_stack,
2407 const gdb::array_view<variant_part> &parts)
2408 {
2409 /* Assume all fields are included by default. */
2410 std::vector<bool> flags (resolved_type->num_fields (), true);
2411
2412 /* Now disable fields based on the variants that control them. */
2413 for (const auto &part : parts)
2414 compute_variant_fields_inner (type, addr_stack, part, flags);
2415
2416 resolved_type->set_num_fields
2417 (std::count (flags.begin (), flags.end (), true));
2418 resolved_type->set_fields
2419 ((struct field *)
2420 TYPE_ALLOC (resolved_type,
2421 resolved_type->num_fields () * sizeof (struct field)));
2422
2423 int out = 0;
2424 for (int i = 0; i < type->num_fields (); ++i)
2425 {
2426 if (!flags[i])
2427 continue;
2428
2429 resolved_type->field (out) = type->field (i);
2430 ++out;
2431 }
2432 }
2433
2434 /* Resolve dynamic bounds of members of the struct TYPE to static
2435 bounds. ADDR_STACK is a stack of struct property_addr_info to
2436 be used if needed during the dynamic resolution. */
2437
2438 static struct type *
2439 resolve_dynamic_struct (struct type *type,
2440 struct property_addr_info *addr_stack)
2441 {
2442 struct type *resolved_type;
2443 int i;
2444 unsigned resolved_type_bit_length = 0;
2445
2446 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2447 gdb_assert (type->num_fields () > 0);
2448
2449 resolved_type = copy_type (type);
2450
2451 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2452 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2453 {
2454 compute_variant_fields (type, resolved_type, addr_stack,
2455 *variant_prop->data.variant_parts);
2456 /* We want to leave the property attached, so that the Rust code
2457 can tell whether the type was originally an enum. */
2458 variant_prop->kind = PROP_TYPE;
2459 variant_prop->data.original_type = type;
2460 }
2461 else
2462 {
2463 resolved_type->set_fields
2464 ((struct field *)
2465 TYPE_ALLOC (resolved_type,
2466 resolved_type->num_fields () * sizeof (struct field)));
2467 memcpy (resolved_type->fields (),
2468 type->fields (),
2469 resolved_type->num_fields () * sizeof (struct field));
2470 }
2471
2472 for (i = 0; i < resolved_type->num_fields (); ++i)
2473 {
2474 unsigned new_bit_length;
2475 struct property_addr_info pinfo;
2476
2477 if (field_is_static (&resolved_type->field (i)))
2478 continue;
2479
2480 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2481 {
2482 struct dwarf2_property_baton baton;
2483 baton.property_type
2484 = lookup_pointer_type (resolved_type->field (i).type ());
2485 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2486
2487 struct dynamic_prop prop;
2488 prop.kind = PROP_LOCEXPR;
2489 prop.data.baton = &baton;
2490
2491 CORE_ADDR addr;
2492 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2493 true))
2494 SET_FIELD_BITPOS (resolved_type->field (i),
2495 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2496 }
2497
2498 /* As we know this field is not a static field, the field's
2499 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2500 this is the case, but only trigger a simple error rather
2501 than an internal error if that fails. While failing
2502 that verification indicates a bug in our code, the error
2503 is not severe enough to suggest to the user he stops
2504 his debugging session because of it. */
2505 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2506 error (_("Cannot determine struct field location"
2507 " (invalid location kind)"));
2508
2509 pinfo.type = check_typedef (resolved_type->field (i).type ());
2510 pinfo.valaddr = addr_stack->valaddr;
2511 pinfo.addr
2512 = (addr_stack->addr
2513 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2514 pinfo.next = addr_stack;
2515
2516 resolved_type->field (i).set_type
2517 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2518 &pinfo, 0));
2519 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2520 == FIELD_LOC_KIND_BITPOS);
2521
2522 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2523 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2524 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2525 else
2526 {
2527 struct type *real_type
2528 = check_typedef (resolved_type->field (i).type ());
2529
2530 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2531 }
2532
2533 /* Normally, we would use the position and size of the last field
2534 to determine the size of the enclosing structure. But GCC seems
2535 to be encoding the position of some fields incorrectly when
2536 the struct contains a dynamic field that is not placed last.
2537 So we compute the struct size based on the field that has
2538 the highest position + size - probably the best we can do. */
2539 if (new_bit_length > resolved_type_bit_length)
2540 resolved_type_bit_length = new_bit_length;
2541 }
2542
2543 /* The length of a type won't change for fortran, but it does for C and Ada.
2544 For fortran the size of dynamic fields might change over time but not the
2545 type length of the structure. If we adapt it, we run into problems
2546 when calculating the element offset for arrays of structs. */
2547 if (current_language->la_language != language_fortran)
2548 TYPE_LENGTH (resolved_type)
2549 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2550
2551 /* The Ada language uses this field as a cache for static fixed types: reset
2552 it as RESOLVED_TYPE must have its own static fixed type. */
2553 TYPE_TARGET_TYPE (resolved_type) = NULL;
2554
2555 return resolved_type;
2556 }
2557
2558 /* Worker for resolved_dynamic_type. */
2559
2560 static struct type *
2561 resolve_dynamic_type_internal (struct type *type,
2562 struct property_addr_info *addr_stack,
2563 int top_level)
2564 {
2565 struct type *real_type = check_typedef (type);
2566 struct type *resolved_type = nullptr;
2567 struct dynamic_prop *prop;
2568 CORE_ADDR value;
2569
2570 if (!is_dynamic_type_internal (real_type, top_level))
2571 return type;
2572
2573 gdb::optional<CORE_ADDR> type_length;
2574 prop = TYPE_DYNAMIC_LENGTH (type);
2575 if (prop != NULL
2576 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2577 type_length = value;
2578
2579 if (type->code () == TYPE_CODE_TYPEDEF)
2580 {
2581 resolved_type = copy_type (type);
2582 TYPE_TARGET_TYPE (resolved_type)
2583 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2584 top_level);
2585 }
2586 else
2587 {
2588 /* Before trying to resolve TYPE, make sure it is not a stub. */
2589 type = real_type;
2590
2591 switch (type->code ())
2592 {
2593 case TYPE_CODE_REF:
2594 {
2595 struct property_addr_info pinfo;
2596
2597 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2598 pinfo.valaddr = {};
2599 if (addr_stack->valaddr.data () != NULL)
2600 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2601 type);
2602 else
2603 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2604 pinfo.next = addr_stack;
2605
2606 resolved_type = copy_type (type);
2607 TYPE_TARGET_TYPE (resolved_type)
2608 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2609 &pinfo, top_level);
2610 break;
2611 }
2612
2613 case TYPE_CODE_STRING:
2614 /* Strings are very much like an array of characters, and can be
2615 treated as one here. */
2616 case TYPE_CODE_ARRAY:
2617 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2618 break;
2619
2620 case TYPE_CODE_RANGE:
2621 resolved_type = resolve_dynamic_range (type, addr_stack);
2622 break;
2623
2624 case TYPE_CODE_UNION:
2625 resolved_type = resolve_dynamic_union (type, addr_stack);
2626 break;
2627
2628 case TYPE_CODE_STRUCT:
2629 resolved_type = resolve_dynamic_struct (type, addr_stack);
2630 break;
2631 }
2632 }
2633
2634 if (resolved_type == nullptr)
2635 return type;
2636
2637 if (type_length.has_value ())
2638 {
2639 TYPE_LENGTH (resolved_type) = *type_length;
2640 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2641 }
2642
2643 /* Resolve data_location attribute. */
2644 prop = TYPE_DATA_LOCATION (resolved_type);
2645 if (prop != NULL
2646 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2647 {
2648 TYPE_DYN_PROP_ADDR (prop) = value;
2649 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2650 }
2651
2652 return resolved_type;
2653 }
2654
2655 /* See gdbtypes.h */
2656
2657 struct type *
2658 resolve_dynamic_type (struct type *type,
2659 gdb::array_view<const gdb_byte> valaddr,
2660 CORE_ADDR addr)
2661 {
2662 struct property_addr_info pinfo
2663 = {check_typedef (type), valaddr, addr, NULL};
2664
2665 return resolve_dynamic_type_internal (type, &pinfo, 1);
2666 }
2667
2668 /* See gdbtypes.h */
2669
2670 dynamic_prop *
2671 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2672 {
2673 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2674
2675 while (node != NULL)
2676 {
2677 if (node->prop_kind == prop_kind)
2678 return &node->prop;
2679 node = node->next;
2680 }
2681 return NULL;
2682 }
2683
2684 /* See gdbtypes.h */
2685
2686 void
2687 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2688 {
2689 struct dynamic_prop_list *temp;
2690
2691 gdb_assert (TYPE_OBJFILE_OWNED (this));
2692
2693 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2694 struct dynamic_prop_list);
2695 temp->prop_kind = prop_kind;
2696 temp->prop = prop;
2697 temp->next = this->main_type->dyn_prop_list;
2698
2699 this->main_type->dyn_prop_list = temp;
2700 }
2701
2702 /* See gdbtypes.h. */
2703
2704 void
2705 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2706 {
2707 struct dynamic_prop_list *prev_node, *curr_node;
2708
2709 curr_node = this->main_type->dyn_prop_list;
2710 prev_node = NULL;
2711
2712 while (NULL != curr_node)
2713 {
2714 if (curr_node->prop_kind == kind)
2715 {
2716 /* Update the linked list but don't free anything.
2717 The property was allocated on objstack and it is not known
2718 if we are on top of it. Nevertheless, everything is released
2719 when the complete objstack is freed. */
2720 if (NULL == prev_node)
2721 this->main_type->dyn_prop_list = curr_node->next;
2722 else
2723 prev_node->next = curr_node->next;
2724
2725 return;
2726 }
2727
2728 prev_node = curr_node;
2729 curr_node = curr_node->next;
2730 }
2731 }
2732
2733 /* Find the real type of TYPE. This function returns the real type,
2734 after removing all layers of typedefs, and completing opaque or stub
2735 types. Completion changes the TYPE argument, but stripping of
2736 typedefs does not.
2737
2738 Instance flags (e.g. const/volatile) are preserved as typedefs are
2739 stripped. If necessary a new qualified form of the underlying type
2740 is created.
2741
2742 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2743 not been computed and we're either in the middle of reading symbols, or
2744 there was no name for the typedef in the debug info.
2745
2746 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2747 QUITs in the symbol reading code can also throw.
2748 Thus this function can throw an exception.
2749
2750 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2751 the target type.
2752
2753 If this is a stubbed struct (i.e. declared as struct foo *), see if
2754 we can find a full definition in some other file. If so, copy this
2755 definition, so we can use it in future. There used to be a comment
2756 (but not any code) that if we don't find a full definition, we'd
2757 set a flag so we don't spend time in the future checking the same
2758 type. That would be a mistake, though--we might load in more
2759 symbols which contain a full definition for the type. */
2760
2761 struct type *
2762 check_typedef (struct type *type)
2763 {
2764 struct type *orig_type = type;
2765 /* While we're removing typedefs, we don't want to lose qualifiers.
2766 E.g., const/volatile. */
2767 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2768
2769 gdb_assert (type);
2770
2771 while (type->code () == TYPE_CODE_TYPEDEF)
2772 {
2773 if (!TYPE_TARGET_TYPE (type))
2774 {
2775 const char *name;
2776 struct symbol *sym;
2777
2778 /* It is dangerous to call lookup_symbol if we are currently
2779 reading a symtab. Infinite recursion is one danger. */
2780 if (currently_reading_symtab)
2781 return make_qualified_type (type, instance_flags, NULL);
2782
2783 name = type->name ();
2784 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2785 VAR_DOMAIN as appropriate? */
2786 if (name == NULL)
2787 {
2788 stub_noname_complaint ();
2789 return make_qualified_type (type, instance_flags, NULL);
2790 }
2791 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2792 if (sym)
2793 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2794 else /* TYPE_CODE_UNDEF */
2795 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2796 }
2797 type = TYPE_TARGET_TYPE (type);
2798
2799 /* Preserve the instance flags as we traverse down the typedef chain.
2800
2801 Handling address spaces/classes is nasty, what do we do if there's a
2802 conflict?
2803 E.g., what if an outer typedef marks the type as class_1 and an inner
2804 typedef marks the type as class_2?
2805 This is the wrong place to do such error checking. We leave it to
2806 the code that created the typedef in the first place to flag the
2807 error. We just pick the outer address space (akin to letting the
2808 outer cast in a chain of casting win), instead of assuming
2809 "it can't happen". */
2810 {
2811 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2812 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2813 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2814 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2815
2816 /* Treat code vs data spaces and address classes separately. */
2817 if ((instance_flags & ALL_SPACES) != 0)
2818 new_instance_flags &= ~ALL_SPACES;
2819 if ((instance_flags & ALL_CLASSES) != 0)
2820 new_instance_flags &= ~ALL_CLASSES;
2821
2822 instance_flags |= new_instance_flags;
2823 }
2824 }
2825
2826 /* If this is a struct/class/union with no fields, then check
2827 whether a full definition exists somewhere else. This is for
2828 systems where a type definition with no fields is issued for such
2829 types, instead of identifying them as stub types in the first
2830 place. */
2831
2832 if (TYPE_IS_OPAQUE (type)
2833 && opaque_type_resolution
2834 && !currently_reading_symtab)
2835 {
2836 const char *name = type->name ();
2837 struct type *newtype;
2838
2839 if (name == NULL)
2840 {
2841 stub_noname_complaint ();
2842 return make_qualified_type (type, instance_flags, NULL);
2843 }
2844 newtype = lookup_transparent_type (name);
2845
2846 if (newtype)
2847 {
2848 /* If the resolved type and the stub are in the same
2849 objfile, then replace the stub type with the real deal.
2850 But if they're in separate objfiles, leave the stub
2851 alone; we'll just look up the transparent type every time
2852 we call check_typedef. We can't create pointers between
2853 types allocated to different objfiles, since they may
2854 have different lifetimes. Trying to copy NEWTYPE over to
2855 TYPE's objfile is pointless, too, since you'll have to
2856 move over any other types NEWTYPE refers to, which could
2857 be an unbounded amount of stuff. */
2858 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2859 type = make_qualified_type (newtype,
2860 TYPE_INSTANCE_FLAGS (type),
2861 type);
2862 else
2863 type = newtype;
2864 }
2865 }
2866 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2867 types. */
2868 else if (TYPE_STUB (type) && !currently_reading_symtab)
2869 {
2870 const char *name = type->name ();
2871 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2872 as appropriate? */
2873 struct symbol *sym;
2874
2875 if (name == NULL)
2876 {
2877 stub_noname_complaint ();
2878 return make_qualified_type (type, instance_flags, NULL);
2879 }
2880 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2881 if (sym)
2882 {
2883 /* Same as above for opaque types, we can replace the stub
2884 with the complete type only if they are in the same
2885 objfile. */
2886 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2887 type = make_qualified_type (SYMBOL_TYPE (sym),
2888 TYPE_INSTANCE_FLAGS (type),
2889 type);
2890 else
2891 type = SYMBOL_TYPE (sym);
2892 }
2893 }
2894
2895 if (TYPE_TARGET_STUB (type))
2896 {
2897 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2898
2899 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2900 {
2901 /* Nothing we can do. */
2902 }
2903 else if (type->code () == TYPE_CODE_RANGE)
2904 {
2905 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2906 TYPE_TARGET_STUB (type) = 0;
2907 }
2908 else if (type->code () == TYPE_CODE_ARRAY
2909 && update_static_array_size (type))
2910 TYPE_TARGET_STUB (type) = 0;
2911 }
2912
2913 type = make_qualified_type (type, instance_flags, NULL);
2914
2915 /* Cache TYPE_LENGTH for future use. */
2916 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2917
2918 return type;
2919 }
2920
2921 /* Parse a type expression in the string [P..P+LENGTH). If an error
2922 occurs, silently return a void type. */
2923
2924 static struct type *
2925 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2926 {
2927 struct ui_file *saved_gdb_stderr;
2928 struct type *type = NULL; /* Initialize to keep gcc happy. */
2929
2930 /* Suppress error messages. */
2931 saved_gdb_stderr = gdb_stderr;
2932 gdb_stderr = &null_stream;
2933
2934 /* Call parse_and_eval_type() without fear of longjmp()s. */
2935 try
2936 {
2937 type = parse_and_eval_type (p, length);
2938 }
2939 catch (const gdb_exception_error &except)
2940 {
2941 type = builtin_type (gdbarch)->builtin_void;
2942 }
2943
2944 /* Stop suppressing error messages. */
2945 gdb_stderr = saved_gdb_stderr;
2946
2947 return type;
2948 }
2949
2950 /* Ugly hack to convert method stubs into method types.
2951
2952 He ain't kiddin'. This demangles the name of the method into a
2953 string including argument types, parses out each argument type,
2954 generates a string casting a zero to that type, evaluates the
2955 string, and stuffs the resulting type into an argtype vector!!!
2956 Then it knows the type of the whole function (including argument
2957 types for overloading), which info used to be in the stab's but was
2958 removed to hack back the space required for them. */
2959
2960 static void
2961 check_stub_method (struct type *type, int method_id, int signature_id)
2962 {
2963 struct gdbarch *gdbarch = get_type_arch (type);
2964 struct fn_field *f;
2965 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2966 char *demangled_name = gdb_demangle (mangled_name,
2967 DMGL_PARAMS | DMGL_ANSI);
2968 char *argtypetext, *p;
2969 int depth = 0, argcount = 1;
2970 struct field *argtypes;
2971 struct type *mtype;
2972
2973 /* Make sure we got back a function string that we can use. */
2974 if (demangled_name)
2975 p = strchr (demangled_name, '(');
2976 else
2977 p = NULL;
2978
2979 if (demangled_name == NULL || p == NULL)
2980 error (_("Internal: Cannot demangle mangled name `%s'."),
2981 mangled_name);
2982
2983 /* Now, read in the parameters that define this type. */
2984 p += 1;
2985 argtypetext = p;
2986 while (*p)
2987 {
2988 if (*p == '(' || *p == '<')
2989 {
2990 depth += 1;
2991 }
2992 else if (*p == ')' || *p == '>')
2993 {
2994 depth -= 1;
2995 }
2996 else if (*p == ',' && depth == 0)
2997 {
2998 argcount += 1;
2999 }
3000
3001 p += 1;
3002 }
3003
3004 /* If we read one argument and it was ``void'', don't count it. */
3005 if (startswith (argtypetext, "(void)"))
3006 argcount -= 1;
3007
3008 /* We need one extra slot, for the THIS pointer. */
3009
3010 argtypes = (struct field *)
3011 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
3012 p = argtypetext;
3013
3014 /* Add THIS pointer for non-static methods. */
3015 f = TYPE_FN_FIELDLIST1 (type, method_id);
3016 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3017 argcount = 0;
3018 else
3019 {
3020 argtypes[0].set_type (lookup_pointer_type (type));
3021 argcount = 1;
3022 }
3023
3024 if (*p != ')') /* () means no args, skip while. */
3025 {
3026 depth = 0;
3027 while (*p)
3028 {
3029 if (depth <= 0 && (*p == ',' || *p == ')'))
3030 {
3031 /* Avoid parsing of ellipsis, they will be handled below.
3032 Also avoid ``void'' as above. */
3033 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3034 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3035 {
3036 argtypes[argcount].set_type
3037 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3038 argcount += 1;
3039 }
3040 argtypetext = p + 1;
3041 }
3042
3043 if (*p == '(' || *p == '<')
3044 {
3045 depth += 1;
3046 }
3047 else if (*p == ')' || *p == '>')
3048 {
3049 depth -= 1;
3050 }
3051
3052 p += 1;
3053 }
3054 }
3055
3056 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3057
3058 /* Now update the old "stub" type into a real type. */
3059 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3060 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3061 We want a method (TYPE_CODE_METHOD). */
3062 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3063 argtypes, argcount, p[-2] == '.');
3064 TYPE_STUB (mtype) = 0;
3065 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3066
3067 xfree (demangled_name);
3068 }
3069
3070 /* This is the external interface to check_stub_method, above. This
3071 function unstubs all of the signatures for TYPE's METHOD_ID method
3072 name. After calling this function TYPE_FN_FIELD_STUB will be
3073 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3074 correct.
3075
3076 This function unfortunately can not die until stabs do. */
3077
3078 void
3079 check_stub_method_group (struct type *type, int method_id)
3080 {
3081 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3082 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3083
3084 for (int j = 0; j < len; j++)
3085 {
3086 if (TYPE_FN_FIELD_STUB (f, j))
3087 check_stub_method (type, method_id, j);
3088 }
3089 }
3090
3091 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3092 const struct cplus_struct_type cplus_struct_default = { };
3093
3094 void
3095 allocate_cplus_struct_type (struct type *type)
3096 {
3097 if (HAVE_CPLUS_STRUCT (type))
3098 /* Structure was already allocated. Nothing more to do. */
3099 return;
3100
3101 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3102 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3103 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3104 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3105 set_type_vptr_fieldno (type, -1);
3106 }
3107
3108 const struct gnat_aux_type gnat_aux_default =
3109 { NULL };
3110
3111 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3112 and allocate the associated gnat-specific data. The gnat-specific
3113 data is also initialized to gnat_aux_default. */
3114
3115 void
3116 allocate_gnat_aux_type (struct type *type)
3117 {
3118 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3119 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3120 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3121 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3122 }
3123
3124 /* Helper function to initialize a newly allocated type. Set type code
3125 to CODE and initialize the type-specific fields accordingly. */
3126
3127 static void
3128 set_type_code (struct type *type, enum type_code code)
3129 {
3130 type->set_code (code);
3131
3132 switch (code)
3133 {
3134 case TYPE_CODE_STRUCT:
3135 case TYPE_CODE_UNION:
3136 case TYPE_CODE_NAMESPACE:
3137 INIT_CPLUS_SPECIFIC (type);
3138 break;
3139 case TYPE_CODE_FLT:
3140 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3141 break;
3142 case TYPE_CODE_FUNC:
3143 INIT_FUNC_SPECIFIC (type);
3144 break;
3145 }
3146 }
3147
3148 /* Helper function to verify floating-point format and size.
3149 BIT is the type size in bits; if BIT equals -1, the size is
3150 determined by the floatformat. Returns size to be used. */
3151
3152 static int
3153 verify_floatformat (int bit, const struct floatformat *floatformat)
3154 {
3155 gdb_assert (floatformat != NULL);
3156
3157 if (bit == -1)
3158 bit = floatformat->totalsize;
3159
3160 gdb_assert (bit >= 0);
3161 gdb_assert (bit >= floatformat->totalsize);
3162
3163 return bit;
3164 }
3165
3166 /* Return the floating-point format for a floating-point variable of
3167 type TYPE. */
3168
3169 const struct floatformat *
3170 floatformat_from_type (const struct type *type)
3171 {
3172 gdb_assert (type->code () == TYPE_CODE_FLT);
3173 gdb_assert (TYPE_FLOATFORMAT (type));
3174 return TYPE_FLOATFORMAT (type);
3175 }
3176
3177 /* Helper function to initialize the standard scalar types.
3178
3179 If NAME is non-NULL, then it is used to initialize the type name.
3180 Note that NAME is not copied; it is required to have a lifetime at
3181 least as long as OBJFILE. */
3182
3183 struct type *
3184 init_type (struct objfile *objfile, enum type_code code, int bit,
3185 const char *name)
3186 {
3187 struct type *type;
3188
3189 type = alloc_type (objfile);
3190 set_type_code (type, code);
3191 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3192 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3193 type->set_name (name);
3194
3195 return type;
3196 }
3197
3198 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3199 to use with variables that have no debug info. NAME is the type
3200 name. */
3201
3202 static struct type *
3203 init_nodebug_var_type (struct objfile *objfile, const char *name)
3204 {
3205 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3206 }
3207
3208 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3209 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3210 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3211
3212 struct type *
3213 init_integer_type (struct objfile *objfile,
3214 int bit, int unsigned_p, const char *name)
3215 {
3216 struct type *t;
3217
3218 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3219 if (unsigned_p)
3220 TYPE_UNSIGNED (t) = 1;
3221
3222 return t;
3223 }
3224
3225 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3226 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3227 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3228
3229 struct type *
3230 init_character_type (struct objfile *objfile,
3231 int bit, int unsigned_p, const char *name)
3232 {
3233 struct type *t;
3234
3235 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3236 if (unsigned_p)
3237 TYPE_UNSIGNED (t) = 1;
3238
3239 return t;
3240 }
3241
3242 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3243 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3244 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3245
3246 struct type *
3247 init_boolean_type (struct objfile *objfile,
3248 int bit, int unsigned_p, const char *name)
3249 {
3250 struct type *t;
3251
3252 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3253 if (unsigned_p)
3254 TYPE_UNSIGNED (t) = 1;
3255
3256 return t;
3257 }
3258
3259 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3260 BIT is the type size in bits; if BIT equals -1, the size is
3261 determined by the floatformat. NAME is the type name. Set the
3262 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3263 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3264 order of the objfile's architecture is used. */
3265
3266 struct type *
3267 init_float_type (struct objfile *objfile,
3268 int bit, const char *name,
3269 const struct floatformat **floatformats,
3270 enum bfd_endian byte_order)
3271 {
3272 if (byte_order == BFD_ENDIAN_UNKNOWN)
3273 {
3274 struct gdbarch *gdbarch = objfile->arch ();
3275 byte_order = gdbarch_byte_order (gdbarch);
3276 }
3277 const struct floatformat *fmt = floatformats[byte_order];
3278 struct type *t;
3279
3280 bit = verify_floatformat (bit, fmt);
3281 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3282 TYPE_FLOATFORMAT (t) = fmt;
3283
3284 return t;
3285 }
3286
3287 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3288 BIT is the type size in bits. NAME is the type name. */
3289
3290 struct type *
3291 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3292 {
3293 struct type *t;
3294
3295 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3296 return t;
3297 }
3298
3299 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3300 name. TARGET_TYPE is the component type. */
3301
3302 struct type *
3303 init_complex_type (const char *name, struct type *target_type)
3304 {
3305 struct type *t;
3306
3307 gdb_assert (target_type->code () == TYPE_CODE_INT
3308 || target_type->code () == TYPE_CODE_FLT);
3309
3310 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3311 {
3312 if (name == nullptr)
3313 {
3314 char *new_name
3315 = (char *) TYPE_ALLOC (target_type,
3316 strlen (target_type->name ())
3317 + strlen ("_Complex ") + 1);
3318 strcpy (new_name, "_Complex ");
3319 strcat (new_name, target_type->name ());
3320 name = new_name;
3321 }
3322
3323 t = alloc_type_copy (target_type);
3324 set_type_code (t, TYPE_CODE_COMPLEX);
3325 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3326 t->set_name (name);
3327
3328 TYPE_TARGET_TYPE (t) = target_type;
3329 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3330 }
3331
3332 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3333 }
3334
3335 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3336 BIT is the pointer type size in bits. NAME is the type name.
3337 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3338 TYPE_UNSIGNED flag. */
3339
3340 struct type *
3341 init_pointer_type (struct objfile *objfile,
3342 int bit, const char *name, struct type *target_type)
3343 {
3344 struct type *t;
3345
3346 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3347 TYPE_TARGET_TYPE (t) = target_type;
3348 TYPE_UNSIGNED (t) = 1;
3349 return t;
3350 }
3351
3352 /* See gdbtypes.h. */
3353
3354 unsigned
3355 type_raw_align (struct type *type)
3356 {
3357 if (type->align_log2 != 0)
3358 return 1 << (type->align_log2 - 1);
3359 return 0;
3360 }
3361
3362 /* See gdbtypes.h. */
3363
3364 unsigned
3365 type_align (struct type *type)
3366 {
3367 /* Check alignment provided in the debug information. */
3368 unsigned raw_align = type_raw_align (type);
3369 if (raw_align != 0)
3370 return raw_align;
3371
3372 /* Allow the architecture to provide an alignment. */
3373 struct gdbarch *arch = get_type_arch (type);
3374 ULONGEST align = gdbarch_type_align (arch, type);
3375 if (align != 0)
3376 return align;
3377
3378 switch (type->code ())
3379 {
3380 case TYPE_CODE_PTR:
3381 case TYPE_CODE_FUNC:
3382 case TYPE_CODE_FLAGS:
3383 case TYPE_CODE_INT:
3384 case TYPE_CODE_RANGE:
3385 case TYPE_CODE_FLT:
3386 case TYPE_CODE_ENUM:
3387 case TYPE_CODE_REF:
3388 case TYPE_CODE_RVALUE_REF:
3389 case TYPE_CODE_CHAR:
3390 case TYPE_CODE_BOOL:
3391 case TYPE_CODE_DECFLOAT:
3392 case TYPE_CODE_METHODPTR:
3393 case TYPE_CODE_MEMBERPTR:
3394 align = type_length_units (check_typedef (type));
3395 break;
3396
3397 case TYPE_CODE_ARRAY:
3398 case TYPE_CODE_COMPLEX:
3399 case TYPE_CODE_TYPEDEF:
3400 align = type_align (TYPE_TARGET_TYPE (type));
3401 break;
3402
3403 case TYPE_CODE_STRUCT:
3404 case TYPE_CODE_UNION:
3405 {
3406 int number_of_non_static_fields = 0;
3407 for (unsigned i = 0; i < type->num_fields (); ++i)
3408 {
3409 if (!field_is_static (&type->field (i)))
3410 {
3411 number_of_non_static_fields++;
3412 ULONGEST f_align = type_align (type->field (i).type ());
3413 if (f_align == 0)
3414 {
3415 /* Don't pretend we know something we don't. */
3416 align = 0;
3417 break;
3418 }
3419 if (f_align > align)
3420 align = f_align;
3421 }
3422 }
3423 /* A struct with no fields, or with only static fields has an
3424 alignment of 1. */
3425 if (number_of_non_static_fields == 0)
3426 align = 1;
3427 }
3428 break;
3429
3430 case TYPE_CODE_SET:
3431 case TYPE_CODE_STRING:
3432 /* Not sure what to do here, and these can't appear in C or C++
3433 anyway. */
3434 break;
3435
3436 case TYPE_CODE_VOID:
3437 align = 1;
3438 break;
3439
3440 case TYPE_CODE_ERROR:
3441 case TYPE_CODE_METHOD:
3442 default:
3443 break;
3444 }
3445
3446 if ((align & (align - 1)) != 0)
3447 {
3448 /* Not a power of 2, so pass. */
3449 align = 0;
3450 }
3451
3452 return align;
3453 }
3454
3455 /* See gdbtypes.h. */
3456
3457 bool
3458 set_type_align (struct type *type, ULONGEST align)
3459 {
3460 /* Must be a power of 2. Zero is ok. */
3461 gdb_assert ((align & (align - 1)) == 0);
3462
3463 unsigned result = 0;
3464 while (align != 0)
3465 {
3466 ++result;
3467 align >>= 1;
3468 }
3469
3470 if (result >= (1 << TYPE_ALIGN_BITS))
3471 return false;
3472
3473 type->align_log2 = result;
3474 return true;
3475 }
3476
3477 \f
3478 /* Queries on types. */
3479
3480 int
3481 can_dereference (struct type *t)
3482 {
3483 /* FIXME: Should we return true for references as well as
3484 pointers? */
3485 t = check_typedef (t);
3486 return
3487 (t != NULL
3488 && t->code () == TYPE_CODE_PTR
3489 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3490 }
3491
3492 int
3493 is_integral_type (struct type *t)
3494 {
3495 t = check_typedef (t);
3496 return
3497 ((t != NULL)
3498 && ((t->code () == TYPE_CODE_INT)
3499 || (t->code () == TYPE_CODE_ENUM)
3500 || (t->code () == TYPE_CODE_FLAGS)
3501 || (t->code () == TYPE_CODE_CHAR)
3502 || (t->code () == TYPE_CODE_RANGE)
3503 || (t->code () == TYPE_CODE_BOOL)));
3504 }
3505
3506 int
3507 is_floating_type (struct type *t)
3508 {
3509 t = check_typedef (t);
3510 return
3511 ((t != NULL)
3512 && ((t->code () == TYPE_CODE_FLT)
3513 || (t->code () == TYPE_CODE_DECFLOAT)));
3514 }
3515
3516 /* Return true if TYPE is scalar. */
3517
3518 int
3519 is_scalar_type (struct type *type)
3520 {
3521 type = check_typedef (type);
3522
3523 switch (type->code ())
3524 {
3525 case TYPE_CODE_ARRAY:
3526 case TYPE_CODE_STRUCT:
3527 case TYPE_CODE_UNION:
3528 case TYPE_CODE_SET:
3529 case TYPE_CODE_STRING:
3530 return 0;
3531 default:
3532 return 1;
3533 }
3534 }
3535
3536 /* Return true if T is scalar, or a composite type which in practice has
3537 the memory layout of a scalar type. E.g., an array or struct with only
3538 one scalar element inside it, or a union with only scalar elements. */
3539
3540 int
3541 is_scalar_type_recursive (struct type *t)
3542 {
3543 t = check_typedef (t);
3544
3545 if (is_scalar_type (t))
3546 return 1;
3547 /* Are we dealing with an array or string of known dimensions? */
3548 else if ((t->code () == TYPE_CODE_ARRAY
3549 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3550 && t->index_type ()->code () == TYPE_CODE_RANGE)
3551 {
3552 LONGEST low_bound, high_bound;
3553 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3554
3555 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3556
3557 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3558 }
3559 /* Are we dealing with a struct with one element? */
3560 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3561 return is_scalar_type_recursive (t->field (0).type ());
3562 else if (t->code () == TYPE_CODE_UNION)
3563 {
3564 int i, n = t->num_fields ();
3565
3566 /* If all elements of the union are scalar, then the union is scalar. */
3567 for (i = 0; i < n; i++)
3568 if (!is_scalar_type_recursive (t->field (i).type ()))
3569 return 0;
3570
3571 return 1;
3572 }
3573
3574 return 0;
3575 }
3576
3577 /* Return true is T is a class or a union. False otherwise. */
3578
3579 int
3580 class_or_union_p (const struct type *t)
3581 {
3582 return (t->code () == TYPE_CODE_STRUCT
3583 || t->code () == TYPE_CODE_UNION);
3584 }
3585
3586 /* A helper function which returns true if types A and B represent the
3587 "same" class type. This is true if the types have the same main
3588 type, or the same name. */
3589
3590 int
3591 class_types_same_p (const struct type *a, const struct type *b)
3592 {
3593 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3594 || (a->name () && b->name ()
3595 && !strcmp (a->name (), b->name ())));
3596 }
3597
3598 /* If BASE is an ancestor of DCLASS return the distance between them.
3599 otherwise return -1;
3600 eg:
3601
3602 class A {};
3603 class B: public A {};
3604 class C: public B {};
3605 class D: C {};
3606
3607 distance_to_ancestor (A, A, 0) = 0
3608 distance_to_ancestor (A, B, 0) = 1
3609 distance_to_ancestor (A, C, 0) = 2
3610 distance_to_ancestor (A, D, 0) = 3
3611
3612 If PUBLIC is 1 then only public ancestors are considered,
3613 and the function returns the distance only if BASE is a public ancestor
3614 of DCLASS.
3615 Eg:
3616
3617 distance_to_ancestor (A, D, 1) = -1. */
3618
3619 static int
3620 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3621 {
3622 int i;
3623 int d;
3624
3625 base = check_typedef (base);
3626 dclass = check_typedef (dclass);
3627
3628 if (class_types_same_p (base, dclass))
3629 return 0;
3630
3631 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3632 {
3633 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3634 continue;
3635
3636 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3637 if (d >= 0)
3638 return 1 + d;
3639 }
3640
3641 return -1;
3642 }
3643
3644 /* Check whether BASE is an ancestor or base class or DCLASS
3645 Return 1 if so, and 0 if not.
3646 Note: If BASE and DCLASS are of the same type, this function
3647 will return 1. So for some class A, is_ancestor (A, A) will
3648 return 1. */
3649
3650 int
3651 is_ancestor (struct type *base, struct type *dclass)
3652 {
3653 return distance_to_ancestor (base, dclass, 0) >= 0;
3654 }
3655
3656 /* Like is_ancestor, but only returns true when BASE is a public
3657 ancestor of DCLASS. */
3658
3659 int
3660 is_public_ancestor (struct type *base, struct type *dclass)
3661 {
3662 return distance_to_ancestor (base, dclass, 1) >= 0;
3663 }
3664
3665 /* A helper function for is_unique_ancestor. */
3666
3667 static int
3668 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3669 int *offset,
3670 const gdb_byte *valaddr, int embedded_offset,
3671 CORE_ADDR address, struct value *val)
3672 {
3673 int i, count = 0;
3674
3675 base = check_typedef (base);
3676 dclass = check_typedef (dclass);
3677
3678 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3679 {
3680 struct type *iter;
3681 int this_offset;
3682
3683 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3684
3685 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3686 address, val);
3687
3688 if (class_types_same_p (base, iter))
3689 {
3690 /* If this is the first subclass, set *OFFSET and set count
3691 to 1. Otherwise, if this is at the same offset as
3692 previous instances, do nothing. Otherwise, increment
3693 count. */
3694 if (*offset == -1)
3695 {
3696 *offset = this_offset;
3697 count = 1;
3698 }
3699 else if (this_offset == *offset)
3700 {
3701 /* Nothing. */
3702 }
3703 else
3704 ++count;
3705 }
3706 else
3707 count += is_unique_ancestor_worker (base, iter, offset,
3708 valaddr,
3709 embedded_offset + this_offset,
3710 address, val);
3711 }
3712
3713 return count;
3714 }
3715
3716 /* Like is_ancestor, but only returns true if BASE is a unique base
3717 class of the type of VAL. */
3718
3719 int
3720 is_unique_ancestor (struct type *base, struct value *val)
3721 {
3722 int offset = -1;
3723
3724 return is_unique_ancestor_worker (base, value_type (val), &offset,
3725 value_contents_for_printing (val),
3726 value_embedded_offset (val),
3727 value_address (val), val) == 1;
3728 }
3729
3730 /* See gdbtypes.h. */
3731
3732 enum bfd_endian
3733 type_byte_order (const struct type *type)
3734 {
3735 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3736 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3737 {
3738 if (byteorder == BFD_ENDIAN_BIG)
3739 return BFD_ENDIAN_LITTLE;
3740 else
3741 {
3742 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3743 return BFD_ENDIAN_BIG;
3744 }
3745 }
3746
3747 return byteorder;
3748 }
3749
3750 \f
3751 /* Overload resolution. */
3752
3753 /* Return the sum of the rank of A with the rank of B. */
3754
3755 struct rank
3756 sum_ranks (struct rank a, struct rank b)
3757 {
3758 struct rank c;
3759 c.rank = a.rank + b.rank;
3760 c.subrank = a.subrank + b.subrank;
3761 return c;
3762 }
3763
3764 /* Compare rank A and B and return:
3765 0 if a = b
3766 1 if a is better than b
3767 -1 if b is better than a. */
3768
3769 int
3770 compare_ranks (struct rank a, struct rank b)
3771 {
3772 if (a.rank == b.rank)
3773 {
3774 if (a.subrank == b.subrank)
3775 return 0;
3776 if (a.subrank < b.subrank)
3777 return 1;
3778 if (a.subrank > b.subrank)
3779 return -1;
3780 }
3781
3782 if (a.rank < b.rank)
3783 return 1;
3784
3785 /* a.rank > b.rank */
3786 return -1;
3787 }
3788
3789 /* Functions for overload resolution begin here. */
3790
3791 /* Compare two badness vectors A and B and return the result.
3792 0 => A and B are identical
3793 1 => A and B are incomparable
3794 2 => A is better than B
3795 3 => A is worse than B */
3796
3797 int
3798 compare_badness (const badness_vector &a, const badness_vector &b)
3799 {
3800 int i;
3801 int tmp;
3802 short found_pos = 0; /* any positives in c? */
3803 short found_neg = 0; /* any negatives in c? */
3804
3805 /* differing sizes => incomparable */
3806 if (a.size () != b.size ())
3807 return 1;
3808
3809 /* Subtract b from a */
3810 for (i = 0; i < a.size (); i++)
3811 {
3812 tmp = compare_ranks (b[i], a[i]);
3813 if (tmp > 0)
3814 found_pos = 1;
3815 else if (tmp < 0)
3816 found_neg = 1;
3817 }
3818
3819 if (found_pos)
3820 {
3821 if (found_neg)
3822 return 1; /* incomparable */
3823 else
3824 return 3; /* A > B */
3825 }
3826 else
3827 /* no positives */
3828 {
3829 if (found_neg)
3830 return 2; /* A < B */
3831 else
3832 return 0; /* A == B */
3833 }
3834 }
3835
3836 /* Rank a function by comparing its parameter types (PARMS), to the
3837 types of an argument list (ARGS). Return the badness vector. This
3838 has ARGS.size() + 1 entries. */
3839
3840 badness_vector
3841 rank_function (gdb::array_view<type *> parms,
3842 gdb::array_view<value *> args)
3843 {
3844 /* add 1 for the length-match rank. */
3845 badness_vector bv;
3846 bv.reserve (1 + args.size ());
3847
3848 /* First compare the lengths of the supplied lists.
3849 If there is a mismatch, set it to a high value. */
3850
3851 /* pai/1997-06-03 FIXME: when we have debug info about default
3852 arguments and ellipsis parameter lists, we should consider those
3853 and rank the length-match more finely. */
3854
3855 bv.push_back ((args.size () != parms.size ())
3856 ? LENGTH_MISMATCH_BADNESS
3857 : EXACT_MATCH_BADNESS);
3858
3859 /* Now rank all the parameters of the candidate function. */
3860 size_t min_len = std::min (parms.size (), args.size ());
3861
3862 for (size_t i = 0; i < min_len; i++)
3863 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3864 args[i]));
3865
3866 /* If more arguments than parameters, add dummy entries. */
3867 for (size_t i = min_len; i < args.size (); i++)
3868 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3869
3870 return bv;
3871 }
3872
3873 /* Compare the names of two integer types, assuming that any sign
3874 qualifiers have been checked already. We do it this way because
3875 there may be an "int" in the name of one of the types. */
3876
3877 static int
3878 integer_types_same_name_p (const char *first, const char *second)
3879 {
3880 int first_p, second_p;
3881
3882 /* If both are shorts, return 1; if neither is a short, keep
3883 checking. */
3884 first_p = (strstr (first, "short") != NULL);
3885 second_p = (strstr (second, "short") != NULL);
3886 if (first_p && second_p)
3887 return 1;
3888 if (first_p || second_p)
3889 return 0;
3890
3891 /* Likewise for long. */
3892 first_p = (strstr (first, "long") != NULL);
3893 second_p = (strstr (second, "long") != NULL);
3894 if (first_p && second_p)
3895 return 1;
3896 if (first_p || second_p)
3897 return 0;
3898
3899 /* Likewise for char. */
3900 first_p = (strstr (first, "char") != NULL);
3901 second_p = (strstr (second, "char") != NULL);
3902 if (first_p && second_p)
3903 return 1;
3904 if (first_p || second_p)
3905 return 0;
3906
3907 /* They must both be ints. */
3908 return 1;
3909 }
3910
3911 /* Compares type A to type B. Returns true if they represent the same
3912 type, false otherwise. */
3913
3914 bool
3915 types_equal (struct type *a, struct type *b)
3916 {
3917 /* Identical type pointers. */
3918 /* However, this still doesn't catch all cases of same type for b
3919 and a. The reason is that builtin types are different from
3920 the same ones constructed from the object. */
3921 if (a == b)
3922 return true;
3923
3924 /* Resolve typedefs */
3925 if (a->code () == TYPE_CODE_TYPEDEF)
3926 a = check_typedef (a);
3927 if (b->code () == TYPE_CODE_TYPEDEF)
3928 b = check_typedef (b);
3929
3930 /* If after resolving typedefs a and b are not of the same type
3931 code then they are not equal. */
3932 if (a->code () != b->code ())
3933 return false;
3934
3935 /* If a and b are both pointers types or both reference types then
3936 they are equal of the same type iff the objects they refer to are
3937 of the same type. */
3938 if (a->code () == TYPE_CODE_PTR
3939 || a->code () == TYPE_CODE_REF)
3940 return types_equal (TYPE_TARGET_TYPE (a),
3941 TYPE_TARGET_TYPE (b));
3942
3943 /* Well, damnit, if the names are exactly the same, I'll say they
3944 are exactly the same. This happens when we generate method
3945 stubs. The types won't point to the same address, but they
3946 really are the same. */
3947
3948 if (a->name () && b->name ()
3949 && strcmp (a->name (), b->name ()) == 0)
3950 return true;
3951
3952 /* Check if identical after resolving typedefs. */
3953 if (a == b)
3954 return true;
3955
3956 /* Two function types are equal if their argument and return types
3957 are equal. */
3958 if (a->code () == TYPE_CODE_FUNC)
3959 {
3960 int i;
3961
3962 if (a->num_fields () != b->num_fields ())
3963 return false;
3964
3965 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3966 return false;
3967
3968 for (i = 0; i < a->num_fields (); ++i)
3969 if (!types_equal (a->field (i).type (), b->field (i).type ()))
3970 return false;
3971
3972 return true;
3973 }
3974
3975 return false;
3976 }
3977 \f
3978 /* Deep comparison of types. */
3979
3980 /* An entry in the type-equality bcache. */
3981
3982 struct type_equality_entry
3983 {
3984 type_equality_entry (struct type *t1, struct type *t2)
3985 : type1 (t1),
3986 type2 (t2)
3987 {
3988 }
3989
3990 struct type *type1, *type2;
3991 };
3992
3993 /* A helper function to compare two strings. Returns true if they are
3994 the same, false otherwise. Handles NULLs properly. */
3995
3996 static bool
3997 compare_maybe_null_strings (const char *s, const char *t)
3998 {
3999 if (s == NULL || t == NULL)
4000 return s == t;
4001 return strcmp (s, t) == 0;
4002 }
4003
4004 /* A helper function for check_types_worklist that checks two types for
4005 "deep" equality. Returns true if the types are considered the
4006 same, false otherwise. */
4007
4008 static bool
4009 check_types_equal (struct type *type1, struct type *type2,
4010 std::vector<type_equality_entry> *worklist)
4011 {
4012 type1 = check_typedef (type1);
4013 type2 = check_typedef (type2);
4014
4015 if (type1 == type2)
4016 return true;
4017
4018 if (type1->code () != type2->code ()
4019 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4020 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4021 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
4022 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
4023 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4024 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4025 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4026 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4027 || type1->num_fields () != type2->num_fields ())
4028 return false;
4029
4030 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4031 return false;
4032 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4033 return false;
4034
4035 if (type1->code () == TYPE_CODE_RANGE)
4036 {
4037 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
4038 return false;
4039 }
4040 else
4041 {
4042 int i;
4043
4044 for (i = 0; i < type1->num_fields (); ++i)
4045 {
4046 const struct field *field1 = &type1->field (i);
4047 const struct field *field2 = &type2->field (i);
4048
4049 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4050 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4051 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4052 return false;
4053 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4054 FIELD_NAME (*field2)))
4055 return false;
4056 switch (FIELD_LOC_KIND (*field1))
4057 {
4058 case FIELD_LOC_KIND_BITPOS:
4059 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4060 return false;
4061 break;
4062 case FIELD_LOC_KIND_ENUMVAL:
4063 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4064 return false;
4065 break;
4066 case FIELD_LOC_KIND_PHYSADDR:
4067 if (FIELD_STATIC_PHYSADDR (*field1)
4068 != FIELD_STATIC_PHYSADDR (*field2))
4069 return false;
4070 break;
4071 case FIELD_LOC_KIND_PHYSNAME:
4072 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4073 FIELD_STATIC_PHYSNAME (*field2)))
4074 return false;
4075 break;
4076 case FIELD_LOC_KIND_DWARF_BLOCK:
4077 {
4078 struct dwarf2_locexpr_baton *block1, *block2;
4079
4080 block1 = FIELD_DWARF_BLOCK (*field1);
4081 block2 = FIELD_DWARF_BLOCK (*field2);
4082 if (block1->per_cu != block2->per_cu
4083 || block1->size != block2->size
4084 || memcmp (block1->data, block2->data, block1->size) != 0)
4085 return false;
4086 }
4087 break;
4088 default:
4089 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4090 "%d by check_types_equal"),
4091 FIELD_LOC_KIND (*field1));
4092 }
4093
4094 worklist->emplace_back (field1->type (), field2->type ());
4095 }
4096 }
4097
4098 if (TYPE_TARGET_TYPE (type1) != NULL)
4099 {
4100 if (TYPE_TARGET_TYPE (type2) == NULL)
4101 return false;
4102
4103 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4104 TYPE_TARGET_TYPE (type2));
4105 }
4106 else if (TYPE_TARGET_TYPE (type2) != NULL)
4107 return false;
4108
4109 return true;
4110 }
4111
4112 /* Check types on a worklist for equality. Returns false if any pair
4113 is not equal, true if they are all considered equal. */
4114
4115 static bool
4116 check_types_worklist (std::vector<type_equality_entry> *worklist,
4117 gdb::bcache *cache)
4118 {
4119 while (!worklist->empty ())
4120 {
4121 int added;
4122
4123 struct type_equality_entry entry = std::move (worklist->back ());
4124 worklist->pop_back ();
4125
4126 /* If the type pair has already been visited, we know it is
4127 ok. */
4128 cache->insert (&entry, sizeof (entry), &added);
4129 if (!added)
4130 continue;
4131
4132 if (!check_types_equal (entry.type1, entry.type2, worklist))
4133 return false;
4134 }
4135
4136 return true;
4137 }
4138
4139 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4140 "deep comparison". Otherwise return false. */
4141
4142 bool
4143 types_deeply_equal (struct type *type1, struct type *type2)
4144 {
4145 std::vector<type_equality_entry> worklist;
4146
4147 gdb_assert (type1 != NULL && type2 != NULL);
4148
4149 /* Early exit for the simple case. */
4150 if (type1 == type2)
4151 return true;
4152
4153 gdb::bcache cache (nullptr, nullptr);
4154 worklist.emplace_back (type1, type2);
4155 return check_types_worklist (&worklist, &cache);
4156 }
4157
4158 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4159 Otherwise return one. */
4160
4161 int
4162 type_not_allocated (const struct type *type)
4163 {
4164 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4165
4166 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4167 && !TYPE_DYN_PROP_ADDR (prop));
4168 }
4169
4170 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4171 Otherwise return one. */
4172
4173 int
4174 type_not_associated (const struct type *type)
4175 {
4176 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4177
4178 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4179 && !TYPE_DYN_PROP_ADDR (prop));
4180 }
4181
4182 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4183
4184 static struct rank
4185 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4186 {
4187 struct rank rank = {0,0};
4188
4189 switch (arg->code ())
4190 {
4191 case TYPE_CODE_PTR:
4192
4193 /* Allowed pointer conversions are:
4194 (a) pointer to void-pointer conversion. */
4195 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4196 return VOID_PTR_CONVERSION_BADNESS;
4197
4198 /* (b) pointer to ancestor-pointer conversion. */
4199 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4200 TYPE_TARGET_TYPE (arg),
4201 0);
4202 if (rank.subrank >= 0)
4203 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4204
4205 return INCOMPATIBLE_TYPE_BADNESS;
4206 case TYPE_CODE_ARRAY:
4207 {
4208 struct type *t1 = TYPE_TARGET_TYPE (parm);
4209 struct type *t2 = TYPE_TARGET_TYPE (arg);
4210
4211 if (types_equal (t1, t2))
4212 {
4213 /* Make sure they are CV equal. */
4214 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4215 rank.subrank |= CV_CONVERSION_CONST;
4216 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4217 rank.subrank |= CV_CONVERSION_VOLATILE;
4218 if (rank.subrank != 0)
4219 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4220 return EXACT_MATCH_BADNESS;
4221 }
4222 return INCOMPATIBLE_TYPE_BADNESS;
4223 }
4224 case TYPE_CODE_FUNC:
4225 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4226 case TYPE_CODE_INT:
4227 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4228 {
4229 if (value_as_long (value) == 0)
4230 {
4231 /* Null pointer conversion: allow it to be cast to a pointer.
4232 [4.10.1 of C++ standard draft n3290] */
4233 return NULL_POINTER_CONVERSION_BADNESS;
4234 }
4235 else
4236 {
4237 /* If type checking is disabled, allow the conversion. */
4238 if (!strict_type_checking)
4239 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4240 }
4241 }
4242 /* fall through */
4243 case TYPE_CODE_ENUM:
4244 case TYPE_CODE_FLAGS:
4245 case TYPE_CODE_CHAR:
4246 case TYPE_CODE_RANGE:
4247 case TYPE_CODE_BOOL:
4248 default:
4249 return INCOMPATIBLE_TYPE_BADNESS;
4250 }
4251 }
4252
4253 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4254
4255 static struct rank
4256 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4257 {
4258 switch (arg->code ())
4259 {
4260 case TYPE_CODE_PTR:
4261 case TYPE_CODE_ARRAY:
4262 return rank_one_type (TYPE_TARGET_TYPE (parm),
4263 TYPE_TARGET_TYPE (arg), NULL);
4264 default:
4265 return INCOMPATIBLE_TYPE_BADNESS;
4266 }
4267 }
4268
4269 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4270
4271 static struct rank
4272 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4273 {
4274 switch (arg->code ())
4275 {
4276 case TYPE_CODE_PTR: /* funcptr -> func */
4277 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4278 default:
4279 return INCOMPATIBLE_TYPE_BADNESS;
4280 }
4281 }
4282
4283 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4284
4285 static struct rank
4286 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4287 {
4288 switch (arg->code ())
4289 {
4290 case TYPE_CODE_INT:
4291 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4292 {
4293 /* Deal with signed, unsigned, and plain chars and
4294 signed and unsigned ints. */
4295 if (TYPE_NOSIGN (parm))
4296 {
4297 /* This case only for character types. */
4298 if (TYPE_NOSIGN (arg))
4299 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4300 else /* signed/unsigned char -> plain char */
4301 return INTEGER_CONVERSION_BADNESS;
4302 }
4303 else if (TYPE_UNSIGNED (parm))
4304 {
4305 if (TYPE_UNSIGNED (arg))
4306 {
4307 /* unsigned int -> unsigned int, or
4308 unsigned long -> unsigned long */
4309 if (integer_types_same_name_p (parm->name (),
4310 arg->name ()))
4311 return EXACT_MATCH_BADNESS;
4312 else if (integer_types_same_name_p (arg->name (),
4313 "int")
4314 && integer_types_same_name_p (parm->name (),
4315 "long"))
4316 /* unsigned int -> unsigned long */
4317 return INTEGER_PROMOTION_BADNESS;
4318 else
4319 /* unsigned long -> unsigned int */
4320 return INTEGER_CONVERSION_BADNESS;
4321 }
4322 else
4323 {
4324 if (integer_types_same_name_p (arg->name (),
4325 "long")
4326 && integer_types_same_name_p (parm->name (),
4327 "int"))
4328 /* signed long -> unsigned int */
4329 return INTEGER_CONVERSION_BADNESS;
4330 else
4331 /* signed int/long -> unsigned int/long */
4332 return INTEGER_CONVERSION_BADNESS;
4333 }
4334 }
4335 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4336 {
4337 if (integer_types_same_name_p (parm->name (),
4338 arg->name ()))
4339 return EXACT_MATCH_BADNESS;
4340 else if (integer_types_same_name_p (arg->name (),
4341 "int")
4342 && integer_types_same_name_p (parm->name (),
4343 "long"))
4344 return INTEGER_PROMOTION_BADNESS;
4345 else
4346 return INTEGER_CONVERSION_BADNESS;
4347 }
4348 else
4349 return INTEGER_CONVERSION_BADNESS;
4350 }
4351 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4352 return INTEGER_PROMOTION_BADNESS;
4353 else
4354 return INTEGER_CONVERSION_BADNESS;
4355 case TYPE_CODE_ENUM:
4356 case TYPE_CODE_FLAGS:
4357 case TYPE_CODE_CHAR:
4358 case TYPE_CODE_RANGE:
4359 case TYPE_CODE_BOOL:
4360 if (TYPE_DECLARED_CLASS (arg))
4361 return INCOMPATIBLE_TYPE_BADNESS;
4362 return INTEGER_PROMOTION_BADNESS;
4363 case TYPE_CODE_FLT:
4364 return INT_FLOAT_CONVERSION_BADNESS;
4365 case TYPE_CODE_PTR:
4366 return NS_POINTER_CONVERSION_BADNESS;
4367 default:
4368 return INCOMPATIBLE_TYPE_BADNESS;
4369 }
4370 }
4371
4372 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4373
4374 static struct rank
4375 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4376 {
4377 switch (arg->code ())
4378 {
4379 case TYPE_CODE_INT:
4380 case TYPE_CODE_CHAR:
4381 case TYPE_CODE_RANGE:
4382 case TYPE_CODE_BOOL:
4383 case TYPE_CODE_ENUM:
4384 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4385 return INCOMPATIBLE_TYPE_BADNESS;
4386 return INTEGER_CONVERSION_BADNESS;
4387 case TYPE_CODE_FLT:
4388 return INT_FLOAT_CONVERSION_BADNESS;
4389 default:
4390 return INCOMPATIBLE_TYPE_BADNESS;
4391 }
4392 }
4393
4394 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4395
4396 static struct rank
4397 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4398 {
4399 switch (arg->code ())
4400 {
4401 case TYPE_CODE_RANGE:
4402 case TYPE_CODE_BOOL:
4403 case TYPE_CODE_ENUM:
4404 if (TYPE_DECLARED_CLASS (arg))
4405 return INCOMPATIBLE_TYPE_BADNESS;
4406 return INTEGER_CONVERSION_BADNESS;
4407 case TYPE_CODE_FLT:
4408 return INT_FLOAT_CONVERSION_BADNESS;
4409 case TYPE_CODE_INT:
4410 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4411 return INTEGER_CONVERSION_BADNESS;
4412 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4413 return INTEGER_PROMOTION_BADNESS;
4414 /* fall through */
4415 case TYPE_CODE_CHAR:
4416 /* Deal with signed, unsigned, and plain chars for C++ and
4417 with int cases falling through from previous case. */
4418 if (TYPE_NOSIGN (parm))
4419 {
4420 if (TYPE_NOSIGN (arg))
4421 return EXACT_MATCH_BADNESS;
4422 else
4423 return INTEGER_CONVERSION_BADNESS;
4424 }
4425 else if (TYPE_UNSIGNED (parm))
4426 {
4427 if (TYPE_UNSIGNED (arg))
4428 return EXACT_MATCH_BADNESS;
4429 else
4430 return INTEGER_PROMOTION_BADNESS;
4431 }
4432 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4433 return EXACT_MATCH_BADNESS;
4434 else
4435 return INTEGER_CONVERSION_BADNESS;
4436 default:
4437 return INCOMPATIBLE_TYPE_BADNESS;
4438 }
4439 }
4440
4441 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4442
4443 static struct rank
4444 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4445 {
4446 switch (arg->code ())
4447 {
4448 case TYPE_CODE_INT:
4449 case TYPE_CODE_CHAR:
4450 case TYPE_CODE_RANGE:
4451 case TYPE_CODE_BOOL:
4452 case TYPE_CODE_ENUM:
4453 return INTEGER_CONVERSION_BADNESS;
4454 case TYPE_CODE_FLT:
4455 return INT_FLOAT_CONVERSION_BADNESS;
4456 default:
4457 return INCOMPATIBLE_TYPE_BADNESS;
4458 }
4459 }
4460
4461 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4462
4463 static struct rank
4464 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4465 {
4466 switch (arg->code ())
4467 {
4468 /* n3290 draft, section 4.12.1 (conv.bool):
4469
4470 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4471 pointer to member type can be converted to a prvalue of type
4472 bool. A zero value, null pointer value, or null member pointer
4473 value is converted to false; any other value is converted to
4474 true. A prvalue of type std::nullptr_t can be converted to a
4475 prvalue of type bool; the resulting value is false." */
4476 case TYPE_CODE_INT:
4477 case TYPE_CODE_CHAR:
4478 case TYPE_CODE_ENUM:
4479 case TYPE_CODE_FLT:
4480 case TYPE_CODE_MEMBERPTR:
4481 case TYPE_CODE_PTR:
4482 return BOOL_CONVERSION_BADNESS;
4483 case TYPE_CODE_RANGE:
4484 return INCOMPATIBLE_TYPE_BADNESS;
4485 case TYPE_CODE_BOOL:
4486 return EXACT_MATCH_BADNESS;
4487 default:
4488 return INCOMPATIBLE_TYPE_BADNESS;
4489 }
4490 }
4491
4492 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4493
4494 static struct rank
4495 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4496 {
4497 switch (arg->code ())
4498 {
4499 case TYPE_CODE_FLT:
4500 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4501 return FLOAT_PROMOTION_BADNESS;
4502 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4503 return EXACT_MATCH_BADNESS;
4504 else
4505 return FLOAT_CONVERSION_BADNESS;
4506 case TYPE_CODE_INT:
4507 case TYPE_CODE_BOOL:
4508 case TYPE_CODE_ENUM:
4509 case TYPE_CODE_RANGE:
4510 case TYPE_CODE_CHAR:
4511 return INT_FLOAT_CONVERSION_BADNESS;
4512 default:
4513 return INCOMPATIBLE_TYPE_BADNESS;
4514 }
4515 }
4516
4517 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4518
4519 static struct rank
4520 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4521 {
4522 switch (arg->code ())
4523 { /* Strictly not needed for C++, but... */
4524 case TYPE_CODE_FLT:
4525 return FLOAT_PROMOTION_BADNESS;
4526 case TYPE_CODE_COMPLEX:
4527 return EXACT_MATCH_BADNESS;
4528 default:
4529 return INCOMPATIBLE_TYPE_BADNESS;
4530 }
4531 }
4532
4533 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4534
4535 static struct rank
4536 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4537 {
4538 struct rank rank = {0, 0};
4539
4540 switch (arg->code ())
4541 {
4542 case TYPE_CODE_STRUCT:
4543 /* Check for derivation */
4544 rank.subrank = distance_to_ancestor (parm, arg, 0);
4545 if (rank.subrank >= 0)
4546 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4547 /* fall through */
4548 default:
4549 return INCOMPATIBLE_TYPE_BADNESS;
4550 }
4551 }
4552
4553 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4554
4555 static struct rank
4556 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4557 {
4558 switch (arg->code ())
4559 {
4560 /* Not in C++ */
4561 case TYPE_CODE_SET:
4562 return rank_one_type (parm->field (0).type (),
4563 arg->field (0).type (), NULL);
4564 default:
4565 return INCOMPATIBLE_TYPE_BADNESS;
4566 }
4567 }
4568
4569 /* Compare one type (PARM) for compatibility with another (ARG).
4570 * PARM is intended to be the parameter type of a function; and
4571 * ARG is the supplied argument's type. This function tests if
4572 * the latter can be converted to the former.
4573 * VALUE is the argument's value or NULL if none (or called recursively)
4574 *
4575 * Return 0 if they are identical types;
4576 * Otherwise, return an integer which corresponds to how compatible
4577 * PARM is to ARG. The higher the return value, the worse the match.
4578 * Generally the "bad" conversions are all uniformly assigned a 100. */
4579
4580 struct rank
4581 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4582 {
4583 struct rank rank = {0,0};
4584
4585 /* Resolve typedefs */
4586 if (parm->code () == TYPE_CODE_TYPEDEF)
4587 parm = check_typedef (parm);
4588 if (arg->code () == TYPE_CODE_TYPEDEF)
4589 arg = check_typedef (arg);
4590
4591 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4592 {
4593 if (VALUE_LVAL (value) == not_lval)
4594 {
4595 /* Rvalues should preferably bind to rvalue references or const
4596 lvalue references. */
4597 if (parm->code () == TYPE_CODE_RVALUE_REF)
4598 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4599 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4600 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4601 else
4602 return INCOMPATIBLE_TYPE_BADNESS;
4603 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4604 }
4605 else
4606 {
4607 /* It's illegal to pass an lvalue as an rvalue. */
4608 if (parm->code () == TYPE_CODE_RVALUE_REF)
4609 return INCOMPATIBLE_TYPE_BADNESS;
4610 }
4611 }
4612
4613 if (types_equal (parm, arg))
4614 {
4615 struct type *t1 = parm;
4616 struct type *t2 = arg;
4617
4618 /* For pointers and references, compare target type. */
4619 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4620 {
4621 t1 = TYPE_TARGET_TYPE (parm);
4622 t2 = TYPE_TARGET_TYPE (arg);
4623 }
4624
4625 /* Make sure they are CV equal, too. */
4626 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4627 rank.subrank |= CV_CONVERSION_CONST;
4628 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4629 rank.subrank |= CV_CONVERSION_VOLATILE;
4630 if (rank.subrank != 0)
4631 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4632 return EXACT_MATCH_BADNESS;
4633 }
4634
4635 /* See through references, since we can almost make non-references
4636 references. */
4637
4638 if (TYPE_IS_REFERENCE (arg))
4639 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4640 REFERENCE_SEE_THROUGH_BADNESS));
4641 if (TYPE_IS_REFERENCE (parm))
4642 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4643 REFERENCE_SEE_THROUGH_BADNESS));
4644 if (overload_debug)
4645 /* Debugging only. */
4646 fprintf_filtered (gdb_stderr,
4647 "------ Arg is %s [%d], parm is %s [%d]\n",
4648 arg->name (), arg->code (),
4649 parm->name (), parm->code ());
4650
4651 /* x -> y means arg of type x being supplied for parameter of type y. */
4652
4653 switch (parm->code ())
4654 {
4655 case TYPE_CODE_PTR:
4656 return rank_one_type_parm_ptr (parm, arg, value);
4657 case TYPE_CODE_ARRAY:
4658 return rank_one_type_parm_array (parm, arg, value);
4659 case TYPE_CODE_FUNC:
4660 return rank_one_type_parm_func (parm, arg, value);
4661 case TYPE_CODE_INT:
4662 return rank_one_type_parm_int (parm, arg, value);
4663 case TYPE_CODE_ENUM:
4664 return rank_one_type_parm_enum (parm, arg, value);
4665 case TYPE_CODE_CHAR:
4666 return rank_one_type_parm_char (parm, arg, value);
4667 case TYPE_CODE_RANGE:
4668 return rank_one_type_parm_range (parm, arg, value);
4669 case TYPE_CODE_BOOL:
4670 return rank_one_type_parm_bool (parm, arg, value);
4671 case TYPE_CODE_FLT:
4672 return rank_one_type_parm_float (parm, arg, value);
4673 case TYPE_CODE_COMPLEX:
4674 return rank_one_type_parm_complex (parm, arg, value);
4675 case TYPE_CODE_STRUCT:
4676 return rank_one_type_parm_struct (parm, arg, value);
4677 case TYPE_CODE_SET:
4678 return rank_one_type_parm_set (parm, arg, value);
4679 default:
4680 return INCOMPATIBLE_TYPE_BADNESS;
4681 } /* switch (arg->code ()) */
4682 }
4683
4684 /* End of functions for overload resolution. */
4685 \f
4686 /* Routines to pretty-print types. */
4687
4688 static void
4689 print_bit_vector (B_TYPE *bits, int nbits)
4690 {
4691 int bitno;
4692
4693 for (bitno = 0; bitno < nbits; bitno++)
4694 {
4695 if ((bitno % 8) == 0)
4696 {
4697 puts_filtered (" ");
4698 }
4699 if (B_TST (bits, bitno))
4700 printf_filtered (("1"));
4701 else
4702 printf_filtered (("0"));
4703 }
4704 }
4705
4706 /* Note the first arg should be the "this" pointer, we may not want to
4707 include it since we may get into a infinitely recursive
4708 situation. */
4709
4710 static void
4711 print_args (struct field *args, int nargs, int spaces)
4712 {
4713 if (args != NULL)
4714 {
4715 int i;
4716
4717 for (i = 0; i < nargs; i++)
4718 {
4719 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4720 args[i].name != NULL ? args[i].name : "<NULL>");
4721 recursive_dump_type (args[i].type (), spaces + 2);
4722 }
4723 }
4724 }
4725
4726 int
4727 field_is_static (struct field *f)
4728 {
4729 /* "static" fields are the fields whose location is not relative
4730 to the address of the enclosing struct. It would be nice to
4731 have a dedicated flag that would be set for static fields when
4732 the type is being created. But in practice, checking the field
4733 loc_kind should give us an accurate answer. */
4734 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4735 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4736 }
4737
4738 static void
4739 dump_fn_fieldlists (struct type *type, int spaces)
4740 {
4741 int method_idx;
4742 int overload_idx;
4743 struct fn_field *f;
4744
4745 printfi_filtered (spaces, "fn_fieldlists ");
4746 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4747 printf_filtered ("\n");
4748 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4749 {
4750 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4751 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4752 method_idx,
4753 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4754 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4755 gdb_stdout);
4756 printf_filtered (_(") length %d\n"),
4757 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4758 for (overload_idx = 0;
4759 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4760 overload_idx++)
4761 {
4762 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4763 overload_idx,
4764 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4765 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4766 gdb_stdout);
4767 printf_filtered (")\n");
4768 printfi_filtered (spaces + 8, "type ");
4769 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4770 gdb_stdout);
4771 printf_filtered ("\n");
4772
4773 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4774 spaces + 8 + 2);
4775
4776 printfi_filtered (spaces + 8, "args ");
4777 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4778 gdb_stdout);
4779 printf_filtered ("\n");
4780 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4781 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4782 spaces + 8 + 2);
4783 printfi_filtered (spaces + 8, "fcontext ");
4784 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4785 gdb_stdout);
4786 printf_filtered ("\n");
4787
4788 printfi_filtered (spaces + 8, "is_const %d\n",
4789 TYPE_FN_FIELD_CONST (f, overload_idx));
4790 printfi_filtered (spaces + 8, "is_volatile %d\n",
4791 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4792 printfi_filtered (spaces + 8, "is_private %d\n",
4793 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4794 printfi_filtered (spaces + 8, "is_protected %d\n",
4795 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4796 printfi_filtered (spaces + 8, "is_stub %d\n",
4797 TYPE_FN_FIELD_STUB (f, overload_idx));
4798 printfi_filtered (spaces + 8, "defaulted %d\n",
4799 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4800 printfi_filtered (spaces + 8, "is_deleted %d\n",
4801 TYPE_FN_FIELD_DELETED (f, overload_idx));
4802 printfi_filtered (spaces + 8, "voffset %u\n",
4803 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4804 }
4805 }
4806 }
4807
4808 static void
4809 print_cplus_stuff (struct type *type, int spaces)
4810 {
4811 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4812 printfi_filtered (spaces, "vptr_basetype ");
4813 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4814 puts_filtered ("\n");
4815 if (TYPE_VPTR_BASETYPE (type) != NULL)
4816 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4817
4818 printfi_filtered (spaces, "n_baseclasses %d\n",
4819 TYPE_N_BASECLASSES (type));
4820 printfi_filtered (spaces, "nfn_fields %d\n",
4821 TYPE_NFN_FIELDS (type));
4822 if (TYPE_N_BASECLASSES (type) > 0)
4823 {
4824 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4825 TYPE_N_BASECLASSES (type));
4826 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4827 gdb_stdout);
4828 printf_filtered (")");
4829
4830 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4831 TYPE_N_BASECLASSES (type));
4832 puts_filtered ("\n");
4833 }
4834 if (type->num_fields () > 0)
4835 {
4836 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4837 {
4838 printfi_filtered (spaces,
4839 "private_field_bits (%d bits at *",
4840 type->num_fields ());
4841 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4842 gdb_stdout);
4843 printf_filtered (")");
4844 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4845 type->num_fields ());
4846 puts_filtered ("\n");
4847 }
4848 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4849 {
4850 printfi_filtered (spaces,
4851 "protected_field_bits (%d bits at *",
4852 type->num_fields ());
4853 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4854 gdb_stdout);
4855 printf_filtered (")");
4856 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4857 type->num_fields ());
4858 puts_filtered ("\n");
4859 }
4860 }
4861 if (TYPE_NFN_FIELDS (type) > 0)
4862 {
4863 dump_fn_fieldlists (type, spaces);
4864 }
4865
4866 printfi_filtered (spaces, "calling_convention %d\n",
4867 TYPE_CPLUS_CALLING_CONVENTION (type));
4868 }
4869
4870 /* Print the contents of the TYPE's type_specific union, assuming that
4871 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4872
4873 static void
4874 print_gnat_stuff (struct type *type, int spaces)
4875 {
4876 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4877
4878 if (descriptive_type == NULL)
4879 printfi_filtered (spaces + 2, "no descriptive type\n");
4880 else
4881 {
4882 printfi_filtered (spaces + 2, "descriptive type\n");
4883 recursive_dump_type (descriptive_type, spaces + 4);
4884 }
4885 }
4886
4887 static struct obstack dont_print_type_obstack;
4888
4889 void
4890 recursive_dump_type (struct type *type, int spaces)
4891 {
4892 int idx;
4893
4894 if (spaces == 0)
4895 obstack_begin (&dont_print_type_obstack, 0);
4896
4897 if (type->num_fields () > 0
4898 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4899 {
4900 struct type **first_dont_print
4901 = (struct type **) obstack_base (&dont_print_type_obstack);
4902
4903 int i = (struct type **)
4904 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4905
4906 while (--i >= 0)
4907 {
4908 if (type == first_dont_print[i])
4909 {
4910 printfi_filtered (spaces, "type node ");
4911 gdb_print_host_address (type, gdb_stdout);
4912 printf_filtered (_(" <same as already seen type>\n"));
4913 return;
4914 }
4915 }
4916
4917 obstack_ptr_grow (&dont_print_type_obstack, type);
4918 }
4919
4920 printfi_filtered (spaces, "type node ");
4921 gdb_print_host_address (type, gdb_stdout);
4922 printf_filtered ("\n");
4923 printfi_filtered (spaces, "name '%s' (",
4924 type->name () ? type->name () : "<NULL>");
4925 gdb_print_host_address (type->name (), gdb_stdout);
4926 printf_filtered (")\n");
4927 printfi_filtered (spaces, "code 0x%x ", type->code ());
4928 switch (type->code ())
4929 {
4930 case TYPE_CODE_UNDEF:
4931 printf_filtered ("(TYPE_CODE_UNDEF)");
4932 break;
4933 case TYPE_CODE_PTR:
4934 printf_filtered ("(TYPE_CODE_PTR)");
4935 break;
4936 case TYPE_CODE_ARRAY:
4937 printf_filtered ("(TYPE_CODE_ARRAY)");
4938 break;
4939 case TYPE_CODE_STRUCT:
4940 printf_filtered ("(TYPE_CODE_STRUCT)");
4941 break;
4942 case TYPE_CODE_UNION:
4943 printf_filtered ("(TYPE_CODE_UNION)");
4944 break;
4945 case TYPE_CODE_ENUM:
4946 printf_filtered ("(TYPE_CODE_ENUM)");
4947 break;
4948 case TYPE_CODE_FLAGS:
4949 printf_filtered ("(TYPE_CODE_FLAGS)");
4950 break;
4951 case TYPE_CODE_FUNC:
4952 printf_filtered ("(TYPE_CODE_FUNC)");
4953 break;
4954 case TYPE_CODE_INT:
4955 printf_filtered ("(TYPE_CODE_INT)");
4956 break;
4957 case TYPE_CODE_FLT:
4958 printf_filtered ("(TYPE_CODE_FLT)");
4959 break;
4960 case TYPE_CODE_VOID:
4961 printf_filtered ("(TYPE_CODE_VOID)");
4962 break;
4963 case TYPE_CODE_SET:
4964 printf_filtered ("(TYPE_CODE_SET)");
4965 break;
4966 case TYPE_CODE_RANGE:
4967 printf_filtered ("(TYPE_CODE_RANGE)");
4968 break;
4969 case TYPE_CODE_STRING:
4970 printf_filtered ("(TYPE_CODE_STRING)");
4971 break;
4972 case TYPE_CODE_ERROR:
4973 printf_filtered ("(TYPE_CODE_ERROR)");
4974 break;
4975 case TYPE_CODE_MEMBERPTR:
4976 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4977 break;
4978 case TYPE_CODE_METHODPTR:
4979 printf_filtered ("(TYPE_CODE_METHODPTR)");
4980 break;
4981 case TYPE_CODE_METHOD:
4982 printf_filtered ("(TYPE_CODE_METHOD)");
4983 break;
4984 case TYPE_CODE_REF:
4985 printf_filtered ("(TYPE_CODE_REF)");
4986 break;
4987 case TYPE_CODE_CHAR:
4988 printf_filtered ("(TYPE_CODE_CHAR)");
4989 break;
4990 case TYPE_CODE_BOOL:
4991 printf_filtered ("(TYPE_CODE_BOOL)");
4992 break;
4993 case TYPE_CODE_COMPLEX:
4994 printf_filtered ("(TYPE_CODE_COMPLEX)");
4995 break;
4996 case TYPE_CODE_TYPEDEF:
4997 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4998 break;
4999 case TYPE_CODE_NAMESPACE:
5000 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5001 break;
5002 default:
5003 printf_filtered ("(UNKNOWN TYPE CODE)");
5004 break;
5005 }
5006 puts_filtered ("\n");
5007 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5008 if (TYPE_OBJFILE_OWNED (type))
5009 {
5010 printfi_filtered (spaces, "objfile ");
5011 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5012 }
5013 else
5014 {
5015 printfi_filtered (spaces, "gdbarch ");
5016 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5017 }
5018 printf_filtered ("\n");
5019 printfi_filtered (spaces, "target_type ");
5020 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5021 printf_filtered ("\n");
5022 if (TYPE_TARGET_TYPE (type) != NULL)
5023 {
5024 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5025 }
5026 printfi_filtered (spaces, "pointer_type ");
5027 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5028 printf_filtered ("\n");
5029 printfi_filtered (spaces, "reference_type ");
5030 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5031 printf_filtered ("\n");
5032 printfi_filtered (spaces, "type_chain ");
5033 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5034 printf_filtered ("\n");
5035 printfi_filtered (spaces, "instance_flags 0x%x",
5036 TYPE_INSTANCE_FLAGS (type));
5037 if (TYPE_CONST (type))
5038 {
5039 puts_filtered (" TYPE_CONST");
5040 }
5041 if (TYPE_VOLATILE (type))
5042 {
5043 puts_filtered (" TYPE_VOLATILE");
5044 }
5045 if (TYPE_CODE_SPACE (type))
5046 {
5047 puts_filtered (" TYPE_CODE_SPACE");
5048 }
5049 if (TYPE_DATA_SPACE (type))
5050 {
5051 puts_filtered (" TYPE_DATA_SPACE");
5052 }
5053 if (TYPE_ADDRESS_CLASS_1 (type))
5054 {
5055 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5056 }
5057 if (TYPE_ADDRESS_CLASS_2 (type))
5058 {
5059 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5060 }
5061 if (TYPE_RESTRICT (type))
5062 {
5063 puts_filtered (" TYPE_RESTRICT");
5064 }
5065 if (TYPE_ATOMIC (type))
5066 {
5067 puts_filtered (" TYPE_ATOMIC");
5068 }
5069 puts_filtered ("\n");
5070
5071 printfi_filtered (spaces, "flags");
5072 if (TYPE_UNSIGNED (type))
5073 {
5074 puts_filtered (" TYPE_UNSIGNED");
5075 }
5076 if (TYPE_NOSIGN (type))
5077 {
5078 puts_filtered (" TYPE_NOSIGN");
5079 }
5080 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5081 {
5082 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5083 }
5084 if (TYPE_STUB (type))
5085 {
5086 puts_filtered (" TYPE_STUB");
5087 }
5088 if (TYPE_TARGET_STUB (type))
5089 {
5090 puts_filtered (" TYPE_TARGET_STUB");
5091 }
5092 if (TYPE_PROTOTYPED (type))
5093 {
5094 puts_filtered (" TYPE_PROTOTYPED");
5095 }
5096 if (TYPE_VARARGS (type))
5097 {
5098 puts_filtered (" TYPE_VARARGS");
5099 }
5100 /* This is used for things like AltiVec registers on ppc. Gcc emits
5101 an attribute for the array type, which tells whether or not we
5102 have a vector, instead of a regular array. */
5103 if (TYPE_VECTOR (type))
5104 {
5105 puts_filtered (" TYPE_VECTOR");
5106 }
5107 if (TYPE_FIXED_INSTANCE (type))
5108 {
5109 puts_filtered (" TYPE_FIXED_INSTANCE");
5110 }
5111 if (TYPE_STUB_SUPPORTED (type))
5112 {
5113 puts_filtered (" TYPE_STUB_SUPPORTED");
5114 }
5115 if (TYPE_NOTTEXT (type))
5116 {
5117 puts_filtered (" TYPE_NOTTEXT");
5118 }
5119 puts_filtered ("\n");
5120 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5121 gdb_print_host_address (type->fields (), gdb_stdout);
5122 puts_filtered ("\n");
5123 for (idx = 0; idx < type->num_fields (); idx++)
5124 {
5125 if (type->code () == TYPE_CODE_ENUM)
5126 printfi_filtered (spaces + 2,
5127 "[%d] enumval %s type ",
5128 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5129 else
5130 printfi_filtered (spaces + 2,
5131 "[%d] bitpos %s bitsize %d type ",
5132 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5133 TYPE_FIELD_BITSIZE (type, idx));
5134 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5135 printf_filtered (" name '%s' (",
5136 TYPE_FIELD_NAME (type, idx) != NULL
5137 ? TYPE_FIELD_NAME (type, idx)
5138 : "<NULL>");
5139 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5140 printf_filtered (")\n");
5141 if (type->field (idx).type () != NULL)
5142 {
5143 recursive_dump_type (type->field (idx).type (), spaces + 4);
5144 }
5145 }
5146 if (type->code () == TYPE_CODE_RANGE)
5147 {
5148 printfi_filtered (spaces, "low %s%s high %s%s\n",
5149 plongest (TYPE_LOW_BOUND (type)),
5150 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5151 plongest (TYPE_HIGH_BOUND (type)),
5152 TYPE_HIGH_BOUND_UNDEFINED (type)
5153 ? " (undefined)" : "");
5154 }
5155
5156 switch (TYPE_SPECIFIC_FIELD (type))
5157 {
5158 case TYPE_SPECIFIC_CPLUS_STUFF:
5159 printfi_filtered (spaces, "cplus_stuff ");
5160 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5161 gdb_stdout);
5162 puts_filtered ("\n");
5163 print_cplus_stuff (type, spaces);
5164 break;
5165
5166 case TYPE_SPECIFIC_GNAT_STUFF:
5167 printfi_filtered (spaces, "gnat_stuff ");
5168 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5169 puts_filtered ("\n");
5170 print_gnat_stuff (type, spaces);
5171 break;
5172
5173 case TYPE_SPECIFIC_FLOATFORMAT:
5174 printfi_filtered (spaces, "floatformat ");
5175 if (TYPE_FLOATFORMAT (type) == NULL
5176 || TYPE_FLOATFORMAT (type)->name == NULL)
5177 puts_filtered ("(null)");
5178 else
5179 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5180 puts_filtered ("\n");
5181 break;
5182
5183 case TYPE_SPECIFIC_FUNC:
5184 printfi_filtered (spaces, "calling_convention %d\n",
5185 TYPE_CALLING_CONVENTION (type));
5186 /* tail_call_list is not printed. */
5187 break;
5188
5189 case TYPE_SPECIFIC_SELF_TYPE:
5190 printfi_filtered (spaces, "self_type ");
5191 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5192 puts_filtered ("\n");
5193 break;
5194 }
5195
5196 if (spaces == 0)
5197 obstack_free (&dont_print_type_obstack, NULL);
5198 }
5199 \f
5200 /* Trivial helpers for the libiberty hash table, for mapping one
5201 type to another. */
5202
5203 struct type_pair : public allocate_on_obstack
5204 {
5205 type_pair (struct type *old_, struct type *newobj_)
5206 : old (old_), newobj (newobj_)
5207 {}
5208
5209 struct type * const old, * const newobj;
5210 };
5211
5212 static hashval_t
5213 type_pair_hash (const void *item)
5214 {
5215 const struct type_pair *pair = (const struct type_pair *) item;
5216
5217 return htab_hash_pointer (pair->old);
5218 }
5219
5220 static int
5221 type_pair_eq (const void *item_lhs, const void *item_rhs)
5222 {
5223 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5224 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5225
5226 return lhs->old == rhs->old;
5227 }
5228
5229 /* Allocate the hash table used by copy_type_recursive to walk
5230 types without duplicates. We use OBJFILE's obstack, because
5231 OBJFILE is about to be deleted. */
5232
5233 htab_t
5234 create_copied_types_hash (struct objfile *objfile)
5235 {
5236 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5237 NULL, &objfile->objfile_obstack,
5238 hashtab_obstack_allocate,
5239 dummy_obstack_deallocate);
5240 }
5241
5242 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5243
5244 static struct dynamic_prop_list *
5245 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5246 struct dynamic_prop_list *list)
5247 {
5248 struct dynamic_prop_list *copy = list;
5249 struct dynamic_prop_list **node_ptr = &copy;
5250
5251 while (*node_ptr != NULL)
5252 {
5253 struct dynamic_prop_list *node_copy;
5254
5255 node_copy = ((struct dynamic_prop_list *)
5256 obstack_copy (objfile_obstack, *node_ptr,
5257 sizeof (struct dynamic_prop_list)));
5258 node_copy->prop = (*node_ptr)->prop;
5259 *node_ptr = node_copy;
5260
5261 node_ptr = &node_copy->next;
5262 }
5263
5264 return copy;
5265 }
5266
5267 /* Recursively copy (deep copy) TYPE, if it is associated with
5268 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5269 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5270 it is not associated with OBJFILE. */
5271
5272 struct type *
5273 copy_type_recursive (struct objfile *objfile,
5274 struct type *type,
5275 htab_t copied_types)
5276 {
5277 void **slot;
5278 struct type *new_type;
5279
5280 if (! TYPE_OBJFILE_OWNED (type))
5281 return type;
5282
5283 /* This type shouldn't be pointing to any types in other objfiles;
5284 if it did, the type might disappear unexpectedly. */
5285 gdb_assert (TYPE_OBJFILE (type) == objfile);
5286
5287 struct type_pair pair (type, nullptr);
5288
5289 slot = htab_find_slot (copied_types, &pair, INSERT);
5290 if (*slot != NULL)
5291 return ((struct type_pair *) *slot)->newobj;
5292
5293 new_type = alloc_type_arch (get_type_arch (type));
5294
5295 /* We must add the new type to the hash table immediately, in case
5296 we encounter this type again during a recursive call below. */
5297 struct type_pair *stored
5298 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5299
5300 *slot = stored;
5301
5302 /* Copy the common fields of types. For the main type, we simply
5303 copy the entire thing and then update specific fields as needed. */
5304 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5305 TYPE_OBJFILE_OWNED (new_type) = 0;
5306 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5307
5308 if (type->name ())
5309 new_type->set_name (xstrdup (type->name ()));
5310
5311 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5312 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5313
5314 /* Copy the fields. */
5315 if (type->num_fields ())
5316 {
5317 int i, nfields;
5318
5319 nfields = type->num_fields ();
5320 new_type->set_fields
5321 ((struct field *)
5322 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5323
5324 for (i = 0; i < nfields; i++)
5325 {
5326 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5327 TYPE_FIELD_ARTIFICIAL (type, i);
5328 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5329 if (type->field (i).type ())
5330 new_type->field (i).set_type
5331 (copy_type_recursive (objfile, type->field (i).type (),
5332 copied_types));
5333 if (TYPE_FIELD_NAME (type, i))
5334 TYPE_FIELD_NAME (new_type, i) =
5335 xstrdup (TYPE_FIELD_NAME (type, i));
5336 switch (TYPE_FIELD_LOC_KIND (type, i))
5337 {
5338 case FIELD_LOC_KIND_BITPOS:
5339 SET_FIELD_BITPOS (new_type->field (i),
5340 TYPE_FIELD_BITPOS (type, i));
5341 break;
5342 case FIELD_LOC_KIND_ENUMVAL:
5343 SET_FIELD_ENUMVAL (new_type->field (i),
5344 TYPE_FIELD_ENUMVAL (type, i));
5345 break;
5346 case FIELD_LOC_KIND_PHYSADDR:
5347 SET_FIELD_PHYSADDR (new_type->field (i),
5348 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5349 break;
5350 case FIELD_LOC_KIND_PHYSNAME:
5351 SET_FIELD_PHYSNAME (new_type->field (i),
5352 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5353 i)));
5354 break;
5355 default:
5356 internal_error (__FILE__, __LINE__,
5357 _("Unexpected type field location kind: %d"),
5358 TYPE_FIELD_LOC_KIND (type, i));
5359 }
5360 }
5361 }
5362
5363 /* For range types, copy the bounds information. */
5364 if (type->code () == TYPE_CODE_RANGE)
5365 {
5366 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5367 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5368 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5369 }
5370
5371 if (type->main_type->dyn_prop_list != NULL)
5372 new_type->main_type->dyn_prop_list
5373 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5374 type->main_type->dyn_prop_list);
5375
5376
5377 /* Copy pointers to other types. */
5378 if (TYPE_TARGET_TYPE (type))
5379 TYPE_TARGET_TYPE (new_type) =
5380 copy_type_recursive (objfile,
5381 TYPE_TARGET_TYPE (type),
5382 copied_types);
5383
5384 /* Maybe copy the type_specific bits.
5385
5386 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5387 base classes and methods. There's no fundamental reason why we
5388 can't, but at the moment it is not needed. */
5389
5390 switch (TYPE_SPECIFIC_FIELD (type))
5391 {
5392 case TYPE_SPECIFIC_NONE:
5393 break;
5394 case TYPE_SPECIFIC_FUNC:
5395 INIT_FUNC_SPECIFIC (new_type);
5396 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5397 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5398 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5399 break;
5400 case TYPE_SPECIFIC_FLOATFORMAT:
5401 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5402 break;
5403 case TYPE_SPECIFIC_CPLUS_STUFF:
5404 INIT_CPLUS_SPECIFIC (new_type);
5405 break;
5406 case TYPE_SPECIFIC_GNAT_STUFF:
5407 INIT_GNAT_SPECIFIC (new_type);
5408 break;
5409 case TYPE_SPECIFIC_SELF_TYPE:
5410 set_type_self_type (new_type,
5411 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5412 copied_types));
5413 break;
5414 default:
5415 gdb_assert_not_reached ("bad type_specific_kind");
5416 }
5417
5418 return new_type;
5419 }
5420
5421 /* Make a copy of the given TYPE, except that the pointer & reference
5422 types are not preserved.
5423
5424 This function assumes that the given type has an associated objfile.
5425 This objfile is used to allocate the new type. */
5426
5427 struct type *
5428 copy_type (const struct type *type)
5429 {
5430 struct type *new_type;
5431
5432 gdb_assert (TYPE_OBJFILE_OWNED (type));
5433
5434 new_type = alloc_type_copy (type);
5435 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5436 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5437 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5438 sizeof (struct main_type));
5439 if (type->main_type->dyn_prop_list != NULL)
5440 new_type->main_type->dyn_prop_list
5441 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5442 type->main_type->dyn_prop_list);
5443
5444 return new_type;
5445 }
5446 \f
5447 /* Helper functions to initialize architecture-specific types. */
5448
5449 /* Allocate a type structure associated with GDBARCH and set its
5450 CODE, LENGTH, and NAME fields. */
5451
5452 struct type *
5453 arch_type (struct gdbarch *gdbarch,
5454 enum type_code code, int bit, const char *name)
5455 {
5456 struct type *type;
5457
5458 type = alloc_type_arch (gdbarch);
5459 set_type_code (type, code);
5460 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5461 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5462
5463 if (name)
5464 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5465
5466 return type;
5467 }
5468
5469 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5470 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5471 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5472
5473 struct type *
5474 arch_integer_type (struct gdbarch *gdbarch,
5475 int bit, int unsigned_p, const char *name)
5476 {
5477 struct type *t;
5478
5479 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5480 if (unsigned_p)
5481 TYPE_UNSIGNED (t) = 1;
5482
5483 return t;
5484 }
5485
5486 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5487 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5488 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5489
5490 struct type *
5491 arch_character_type (struct gdbarch *gdbarch,
5492 int bit, int unsigned_p, const char *name)
5493 {
5494 struct type *t;
5495
5496 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5497 if (unsigned_p)
5498 TYPE_UNSIGNED (t) = 1;
5499
5500 return t;
5501 }
5502
5503 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5504 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5505 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5506
5507 struct type *
5508 arch_boolean_type (struct gdbarch *gdbarch,
5509 int bit, int unsigned_p, const char *name)
5510 {
5511 struct type *t;
5512
5513 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5514 if (unsigned_p)
5515 TYPE_UNSIGNED (t) = 1;
5516
5517 return t;
5518 }
5519
5520 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5521 BIT is the type size in bits; if BIT equals -1, the size is
5522 determined by the floatformat. NAME is the type name. Set the
5523 TYPE_FLOATFORMAT from FLOATFORMATS. */
5524
5525 struct type *
5526 arch_float_type (struct gdbarch *gdbarch,
5527 int bit, const char *name,
5528 const struct floatformat **floatformats)
5529 {
5530 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5531 struct type *t;
5532
5533 bit = verify_floatformat (bit, fmt);
5534 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5535 TYPE_FLOATFORMAT (t) = fmt;
5536
5537 return t;
5538 }
5539
5540 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5541 BIT is the type size in bits. NAME is the type name. */
5542
5543 struct type *
5544 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5545 {
5546 struct type *t;
5547
5548 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5549 return t;
5550 }
5551
5552 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5553 BIT is the pointer type size in bits. NAME is the type name.
5554 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5555 TYPE_UNSIGNED flag. */
5556
5557 struct type *
5558 arch_pointer_type (struct gdbarch *gdbarch,
5559 int bit, const char *name, struct type *target_type)
5560 {
5561 struct type *t;
5562
5563 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5564 TYPE_TARGET_TYPE (t) = target_type;
5565 TYPE_UNSIGNED (t) = 1;
5566 return t;
5567 }
5568
5569 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5570 NAME is the type name. BIT is the size of the flag word in bits. */
5571
5572 struct type *
5573 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5574 {
5575 struct type *type;
5576
5577 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5578 TYPE_UNSIGNED (type) = 1;
5579 type->set_num_fields (0);
5580 /* Pre-allocate enough space assuming every field is one bit. */
5581 type->set_fields
5582 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5583
5584 return type;
5585 }
5586
5587 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5588 position BITPOS is called NAME. Pass NAME as "" for fields that
5589 should not be printed. */
5590
5591 void
5592 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5593 struct type *field_type, const char *name)
5594 {
5595 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5596 int field_nr = type->num_fields ();
5597
5598 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5599 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5600 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5601 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5602 gdb_assert (name != NULL);
5603
5604 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5605 type->field (field_nr).set_type (field_type);
5606 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5607 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5608 type->set_num_fields (type->num_fields () + 1);
5609 }
5610
5611 /* Special version of append_flags_type_field to add a flag field.
5612 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5613 position BITPOS is called NAME. */
5614
5615 void
5616 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5617 {
5618 struct gdbarch *gdbarch = get_type_arch (type);
5619
5620 append_flags_type_field (type, bitpos, 1,
5621 builtin_type (gdbarch)->builtin_bool,
5622 name);
5623 }
5624
5625 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5626 specified by CODE) associated with GDBARCH. NAME is the type name. */
5627
5628 struct type *
5629 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5630 enum type_code code)
5631 {
5632 struct type *t;
5633
5634 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5635 t = arch_type (gdbarch, code, 0, NULL);
5636 t->set_name (name);
5637 INIT_CPLUS_SPECIFIC (t);
5638 return t;
5639 }
5640
5641 /* Add new field with name NAME and type FIELD to composite type T.
5642 Do not set the field's position or adjust the type's length;
5643 the caller should do so. Return the new field. */
5644
5645 struct field *
5646 append_composite_type_field_raw (struct type *t, const char *name,
5647 struct type *field)
5648 {
5649 struct field *f;
5650
5651 t->set_num_fields (t->num_fields () + 1);
5652 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5653 t->num_fields ()));
5654 f = &t->field (t->num_fields () - 1);
5655 memset (f, 0, sizeof f[0]);
5656 f[0].set_type (field);
5657 FIELD_NAME (f[0]) = name;
5658 return f;
5659 }
5660
5661 /* Add new field with name NAME and type FIELD to composite type T.
5662 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5663
5664 void
5665 append_composite_type_field_aligned (struct type *t, const char *name,
5666 struct type *field, int alignment)
5667 {
5668 struct field *f = append_composite_type_field_raw (t, name, field);
5669
5670 if (t->code () == TYPE_CODE_UNION)
5671 {
5672 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5673 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5674 }
5675 else if (t->code () == TYPE_CODE_STRUCT)
5676 {
5677 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5678 if (t->num_fields () > 1)
5679 {
5680 SET_FIELD_BITPOS (f[0],
5681 (FIELD_BITPOS (f[-1])
5682 + (TYPE_LENGTH (f[-1].type ())
5683 * TARGET_CHAR_BIT)));
5684
5685 if (alignment)
5686 {
5687 int left;
5688
5689 alignment *= TARGET_CHAR_BIT;
5690 left = FIELD_BITPOS (f[0]) % alignment;
5691
5692 if (left)
5693 {
5694 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5695 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5696 }
5697 }
5698 }
5699 }
5700 }
5701
5702 /* Add new field with name NAME and type FIELD to composite type T. */
5703
5704 void
5705 append_composite_type_field (struct type *t, const char *name,
5706 struct type *field)
5707 {
5708 append_composite_type_field_aligned (t, name, field, 0);
5709 }
5710
5711 static struct gdbarch_data *gdbtypes_data;
5712
5713 const struct builtin_type *
5714 builtin_type (struct gdbarch *gdbarch)
5715 {
5716 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5717 }
5718
5719 static void *
5720 gdbtypes_post_init (struct gdbarch *gdbarch)
5721 {
5722 struct builtin_type *builtin_type
5723 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5724
5725 /* Basic types. */
5726 builtin_type->builtin_void
5727 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5728 builtin_type->builtin_char
5729 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5730 !gdbarch_char_signed (gdbarch), "char");
5731 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5732 builtin_type->builtin_signed_char
5733 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5734 0, "signed char");
5735 builtin_type->builtin_unsigned_char
5736 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5737 1, "unsigned char");
5738 builtin_type->builtin_short
5739 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5740 0, "short");
5741 builtin_type->builtin_unsigned_short
5742 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5743 1, "unsigned short");
5744 builtin_type->builtin_int
5745 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5746 0, "int");
5747 builtin_type->builtin_unsigned_int
5748 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5749 1, "unsigned int");
5750 builtin_type->builtin_long
5751 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5752 0, "long");
5753 builtin_type->builtin_unsigned_long
5754 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5755 1, "unsigned long");
5756 builtin_type->builtin_long_long
5757 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5758 0, "long long");
5759 builtin_type->builtin_unsigned_long_long
5760 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5761 1, "unsigned long long");
5762 builtin_type->builtin_half
5763 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5764 "half", gdbarch_half_format (gdbarch));
5765 builtin_type->builtin_float
5766 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5767 "float", gdbarch_float_format (gdbarch));
5768 builtin_type->builtin_double
5769 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5770 "double", gdbarch_double_format (gdbarch));
5771 builtin_type->builtin_long_double
5772 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5773 "long double", gdbarch_long_double_format (gdbarch));
5774 builtin_type->builtin_complex
5775 = init_complex_type ("complex", builtin_type->builtin_float);
5776 builtin_type->builtin_double_complex
5777 = init_complex_type ("double complex", builtin_type->builtin_double);
5778 builtin_type->builtin_string
5779 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5780 builtin_type->builtin_bool
5781 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5782
5783 /* The following three are about decimal floating point types, which
5784 are 32-bits, 64-bits and 128-bits respectively. */
5785 builtin_type->builtin_decfloat
5786 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5787 builtin_type->builtin_decdouble
5788 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5789 builtin_type->builtin_declong
5790 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5791
5792 /* "True" character types. */
5793 builtin_type->builtin_true_char
5794 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5795 builtin_type->builtin_true_unsigned_char
5796 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5797
5798 /* Fixed-size integer types. */
5799 builtin_type->builtin_int0
5800 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5801 builtin_type->builtin_int8
5802 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5803 builtin_type->builtin_uint8
5804 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5805 builtin_type->builtin_int16
5806 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5807 builtin_type->builtin_uint16
5808 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5809 builtin_type->builtin_int24
5810 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5811 builtin_type->builtin_uint24
5812 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5813 builtin_type->builtin_int32
5814 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5815 builtin_type->builtin_uint32
5816 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5817 builtin_type->builtin_int64
5818 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5819 builtin_type->builtin_uint64
5820 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5821 builtin_type->builtin_int128
5822 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5823 builtin_type->builtin_uint128
5824 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5825 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5826 TYPE_INSTANCE_FLAG_NOTTEXT;
5827 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5828 TYPE_INSTANCE_FLAG_NOTTEXT;
5829
5830 /* Wide character types. */
5831 builtin_type->builtin_char16
5832 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5833 builtin_type->builtin_char32
5834 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5835 builtin_type->builtin_wchar
5836 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5837 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5838
5839 /* Default data/code pointer types. */
5840 builtin_type->builtin_data_ptr
5841 = lookup_pointer_type (builtin_type->builtin_void);
5842 builtin_type->builtin_func_ptr
5843 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5844 builtin_type->builtin_func_func
5845 = lookup_function_type (builtin_type->builtin_func_ptr);
5846
5847 /* This type represents a GDB internal function. */
5848 builtin_type->internal_fn
5849 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5850 "<internal function>");
5851
5852 /* This type represents an xmethod. */
5853 builtin_type->xmethod
5854 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5855
5856 return builtin_type;
5857 }
5858
5859 /* This set of objfile-based types is intended to be used by symbol
5860 readers as basic types. */
5861
5862 static const struct objfile_key<struct objfile_type,
5863 gdb::noop_deleter<struct objfile_type>>
5864 objfile_type_data;
5865
5866 const struct objfile_type *
5867 objfile_type (struct objfile *objfile)
5868 {
5869 struct gdbarch *gdbarch;
5870 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5871
5872 if (objfile_type)
5873 return objfile_type;
5874
5875 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5876 1, struct objfile_type);
5877
5878 /* Use the objfile architecture to determine basic type properties. */
5879 gdbarch = objfile->arch ();
5880
5881 /* Basic types. */
5882 objfile_type->builtin_void
5883 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5884 objfile_type->builtin_char
5885 = init_integer_type (objfile, TARGET_CHAR_BIT,
5886 !gdbarch_char_signed (gdbarch), "char");
5887 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5888 objfile_type->builtin_signed_char
5889 = init_integer_type (objfile, TARGET_CHAR_BIT,
5890 0, "signed char");
5891 objfile_type->builtin_unsigned_char
5892 = init_integer_type (objfile, TARGET_CHAR_BIT,
5893 1, "unsigned char");
5894 objfile_type->builtin_short
5895 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5896 0, "short");
5897 objfile_type->builtin_unsigned_short
5898 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5899 1, "unsigned short");
5900 objfile_type->builtin_int
5901 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5902 0, "int");
5903 objfile_type->builtin_unsigned_int
5904 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5905 1, "unsigned int");
5906 objfile_type->builtin_long
5907 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5908 0, "long");
5909 objfile_type->builtin_unsigned_long
5910 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5911 1, "unsigned long");
5912 objfile_type->builtin_long_long
5913 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5914 0, "long long");
5915 objfile_type->builtin_unsigned_long_long
5916 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5917 1, "unsigned long long");
5918 objfile_type->builtin_float
5919 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5920 "float", gdbarch_float_format (gdbarch));
5921 objfile_type->builtin_double
5922 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5923 "double", gdbarch_double_format (gdbarch));
5924 objfile_type->builtin_long_double
5925 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5926 "long double", gdbarch_long_double_format (gdbarch));
5927
5928 /* This type represents a type that was unrecognized in symbol read-in. */
5929 objfile_type->builtin_error
5930 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5931
5932 /* The following set of types is used for symbols with no
5933 debug information. */
5934 objfile_type->nodebug_text_symbol
5935 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5936 "<text variable, no debug info>");
5937 objfile_type->nodebug_text_gnu_ifunc_symbol
5938 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5939 "<text gnu-indirect-function variable, no debug info>");
5940 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5941 objfile_type->nodebug_got_plt_symbol
5942 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5943 "<text from jump slot in .got.plt, no debug info>",
5944 objfile_type->nodebug_text_symbol);
5945 objfile_type->nodebug_data_symbol
5946 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5947 objfile_type->nodebug_unknown_symbol
5948 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5949 objfile_type->nodebug_tls_symbol
5950 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5951
5952 /* NOTE: on some targets, addresses and pointers are not necessarily
5953 the same.
5954
5955 The upshot is:
5956 - gdb's `struct type' always describes the target's
5957 representation.
5958 - gdb's `struct value' objects should always hold values in
5959 target form.
5960 - gdb's CORE_ADDR values are addresses in the unified virtual
5961 address space that the assembler and linker work with. Thus,
5962 since target_read_memory takes a CORE_ADDR as an argument, it
5963 can access any memory on the target, even if the processor has
5964 separate code and data address spaces.
5965
5966 In this context, objfile_type->builtin_core_addr is a bit odd:
5967 it's a target type for a value the target will never see. It's
5968 only used to hold the values of (typeless) linker symbols, which
5969 are indeed in the unified virtual address space. */
5970
5971 objfile_type->builtin_core_addr
5972 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5973 "__CORE_ADDR");
5974
5975 objfile_type_data.set (objfile, objfile_type);
5976 return objfile_type;
5977 }
5978
5979 void _initialize_gdbtypes ();
5980 void
5981 _initialize_gdbtypes ()
5982 {
5983 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5984
5985 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5986 _("Set debugging of C++ overloading."),
5987 _("Show debugging of C++ overloading."),
5988 _("When enabled, ranking of the "
5989 "functions is displayed."),
5990 NULL,
5991 show_overload_debug,
5992 &setdebuglist, &showdebuglist);
5993
5994 /* Add user knob for controlling resolution of opaque types. */
5995 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5996 &opaque_type_resolution,
5997 _("Set resolution of opaque struct/class/union"
5998 " types (if set before loading symbols)."),
5999 _("Show resolution of opaque struct/class/union"
6000 " types (if set before loading symbols)."),
6001 NULL, NULL,
6002 show_opaque_type_resolution,
6003 &setlist, &showlist);
6004
6005 /* Add an option to permit non-strict type checking. */
6006 add_setshow_boolean_cmd ("type", class_support,
6007 &strict_type_checking,
6008 _("Set strict type checking."),
6009 _("Show strict type checking."),
6010 NULL, NULL,
6011 show_strict_type_checking,
6012 &setchecklist, &showchecklist);
6013 }
This page took 0.263333 seconds and 4 git commands to generate.