i386: Check vector length for scatter/gather prefetch instructions
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
579 {
580 int type_flags;
581
582 /* Check for known address space delimiters. */
583 if (!strcmp (space_identifier, "code"))
584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
585 else if (!strcmp (space_identifier, "data"))
586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
591 return type_flags;
592 else
593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
594 }
595
596 /* Identify address space identifier by integer flag as defined in
597 gdbtypes.h -- return the string version of the adress space name. */
598
599 const char *
600 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
601 {
602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
603 return "code";
604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
605 return "data";
606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
609 else
610 return NULL;
611 }
612
613 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
617
618 static struct type *
619 make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
621 {
622 struct type *ntype;
623
624 ntype = type;
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
632
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
648
649 /* Pointers or references to the original type are not relevant to
650 the new type. */
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
653
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
660
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
664 return ntype;
665 }
666
667 /* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
675
676 struct type *
677 make_type_with_address_space (struct type *type, int space_flag)
678 {
679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686 }
687
688 /* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
693
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
699
700 struct type *
701 make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
704 {
705 struct type *ntype; /* New type */
706
707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
710
711 if (cnst)
712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
713
714 if (voltl)
715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
716
717 if (typeptr && *typeptr != NULL)
718 {
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
732 }
733
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
736
737 if (typeptr != NULL)
738 *typeptr = ntype;
739
740 return ntype;
741 }
742
743 /* Make a 'restrict'-qualified version of TYPE. */
744
745 struct type *
746 make_restrict_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752 }
753
754 /* Make a type without const, volatile, or restrict. */
755
756 struct type *
757 make_unqualified_type (struct type *type)
758 {
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765 }
766
767 /* Make a '_Atomic'-qualified version of TYPE. */
768
769 struct type *
770 make_atomic_type (struct type *type)
771 {
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776 }
777
778 /* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
781
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
787
788 void
789 replace_type (struct type *ntype, struct type *type)
790 {
791 struct type *chain;
792
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
798
799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
800
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
803 chain = ntype;
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
818
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
822 }
823
824 /* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829 struct type *
830 lookup_memberptr_type (struct type *type, struct type *domain)
831 {
832 struct type *mtype;
833
834 mtype = alloc_type_copy (type);
835 smash_to_memberptr_type (mtype, domain, type);
836 return mtype;
837 }
838
839 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841 struct type *
842 lookup_methodptr_type (struct type *to_type)
843 {
844 struct type *mtype;
845
846 mtype = alloc_type_copy (to_type);
847 smash_to_methodptr_type (mtype, to_type);
848 return mtype;
849 }
850
851 /* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
856
857 struct type *
858 allocate_stub_method (struct type *type)
859 {
860 struct type *mtype;
861
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
866 TYPE_TARGET_TYPE (mtype) = type;
867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
868 return mtype;
869 }
870
871 /* See gdbtypes.h. */
872
873 bool
874 operator== (const dynamic_prop &l, const dynamic_prop &r)
875 {
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892 }
893
894 /* See gdbtypes.h. */
895
896 bool
897 operator== (const range_bounds &l, const range_bounds &r)
898 {
899 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound)
916 {
917 if (result_type == NULL)
918 result_type = alloc_type_copy (index_type);
919 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
920 TYPE_TARGET_TYPE (result_type) = index_type;
921 if (TYPE_STUB (index_type))
922 TYPE_TARGET_STUB (result_type) = 1;
923 else
924 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
925
926 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
927 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
928 TYPE_RANGE_DATA (result_type)->low = *low_bound;
929 TYPE_RANGE_DATA (result_type)->high = *high_bound;
930
931 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
932 TYPE_UNSIGNED (result_type) = 1;
933
934 /* Ada allows the declaration of range types whose upper bound is
935 less than the lower bound, so checking the lower bound is not
936 enough. Make sure we do not mark a range type whose upper bound
937 is negative as unsigned. */
938 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
939 TYPE_UNSIGNED (result_type) = 0;
940
941 return result_type;
942 }
943
944 /* Create a range type using either a blank type supplied in
945 RESULT_TYPE, or creating a new type, inheriting the objfile from
946 INDEX_TYPE.
947
948 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
949 to HIGH_BOUND, inclusive.
950
951 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
952 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
953
954 struct type *
955 create_static_range_type (struct type *result_type, struct type *index_type,
956 LONGEST low_bound, LONGEST high_bound)
957 {
958 struct dynamic_prop low, high;
959
960 low.kind = PROP_CONST;
961 low.data.const_val = low_bound;
962
963 high.kind = PROP_CONST;
964 high.data.const_val = high_bound;
965
966 result_type = create_range_type (result_type, index_type, &low, &high);
967
968 return result_type;
969 }
970
971 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
972 are static, otherwise returns 0. */
973
974 static int
975 has_static_range (const struct range_bounds *bounds)
976 {
977 return (bounds->low.kind == PROP_CONST
978 && bounds->high.kind == PROP_CONST);
979 }
980
981
982 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
983 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
984 bounds will fit in LONGEST), or -1 otherwise. */
985
986 int
987 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
988 {
989 type = check_typedef (type);
990 switch (TYPE_CODE (type))
991 {
992 case TYPE_CODE_RANGE:
993 *lowp = TYPE_LOW_BOUND (type);
994 *highp = TYPE_HIGH_BOUND (type);
995 return 1;
996 case TYPE_CODE_ENUM:
997 if (TYPE_NFIELDS (type) > 0)
998 {
999 /* The enums may not be sorted by value, so search all
1000 entries. */
1001 int i;
1002
1003 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1004 for (i = 0; i < TYPE_NFIELDS (type); i++)
1005 {
1006 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1007 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1008 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1009 *highp = TYPE_FIELD_ENUMVAL (type, i);
1010 }
1011
1012 /* Set unsigned indicator if warranted. */
1013 if (*lowp >= 0)
1014 {
1015 TYPE_UNSIGNED (type) = 1;
1016 }
1017 }
1018 else
1019 {
1020 *lowp = 0;
1021 *highp = -1;
1022 }
1023 return 0;
1024 case TYPE_CODE_BOOL:
1025 *lowp = 0;
1026 *highp = 1;
1027 return 0;
1028 case TYPE_CODE_INT:
1029 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1030 return -1;
1031 if (!TYPE_UNSIGNED (type))
1032 {
1033 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1034 *highp = -*lowp - 1;
1035 return 0;
1036 }
1037 /* fall through */
1038 case TYPE_CODE_CHAR:
1039 *lowp = 0;
1040 /* This round-about calculation is to avoid shifting by
1041 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1042 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1043 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1044 *highp = (*highp - 1) | *highp;
1045 return 0;
1046 default:
1047 return -1;
1048 }
1049 }
1050
1051 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1052 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1053 Save the high bound into HIGH_BOUND if not NULL.
1054
1055 Return 1 if the operation was successful. Return zero otherwise,
1056 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1057
1058 We now simply use get_discrete_bounds call to get the values
1059 of the low and high bounds.
1060 get_discrete_bounds can return three values:
1061 1, meaning that index is a range,
1062 0, meaning that index is a discrete type,
1063 or -1 for failure. */
1064
1065 int
1066 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1067 {
1068 struct type *index = TYPE_INDEX_TYPE (type);
1069 LONGEST low = 0;
1070 LONGEST high = 0;
1071 int res;
1072
1073 if (index == NULL)
1074 return 0;
1075
1076 res = get_discrete_bounds (index, &low, &high);
1077 if (res == -1)
1078 return 0;
1079
1080 /* Check if the array bounds are undefined. */
1081 if (res == 1
1082 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1083 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1084 return 0;
1085
1086 if (low_bound)
1087 *low_bound = low;
1088
1089 if (high_bound)
1090 *high_bound = high;
1091
1092 return 1;
1093 }
1094
1095 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1096 representation of a value of this type, save the corresponding
1097 position number in POS.
1098
1099 Its differs from VAL only in the case of enumeration types. In
1100 this case, the position number of the value of the first listed
1101 enumeration literal is zero; the position number of the value of
1102 each subsequent enumeration literal is one more than that of its
1103 predecessor in the list.
1104
1105 Return 1 if the operation was successful. Return zero otherwise,
1106 in which case the value of POS is unmodified.
1107 */
1108
1109 int
1110 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1111 {
1112 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1113 {
1114 int i;
1115
1116 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1117 {
1118 if (val == TYPE_FIELD_ENUMVAL (type, i))
1119 {
1120 *pos = i;
1121 return 1;
1122 }
1123 }
1124 /* Invalid enumeration value. */
1125 return 0;
1126 }
1127 else
1128 {
1129 *pos = val;
1130 return 1;
1131 }
1132 }
1133
1134 /* Create an array type using either a blank type supplied in
1135 RESULT_TYPE, or creating a new type, inheriting the objfile from
1136 RANGE_TYPE.
1137
1138 Elements will be of type ELEMENT_TYPE, the indices will be of type
1139 RANGE_TYPE.
1140
1141 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1142 This byte stride property is added to the resulting array type
1143 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1144 argument can only be used to create types that are objfile-owned
1145 (see add_dyn_prop), meaning that either this function must be called
1146 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1147
1148 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1149 If BIT_STRIDE is not zero, build a packed array type whose element
1150 size is BIT_STRIDE. Otherwise, ignore this parameter.
1151
1152 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1153 sure it is TYPE_CODE_UNDEF before we bash it into an array
1154 type? */
1155
1156 struct type *
1157 create_array_type_with_stride (struct type *result_type,
1158 struct type *element_type,
1159 struct type *range_type,
1160 struct dynamic_prop *byte_stride_prop,
1161 unsigned int bit_stride)
1162 {
1163 if (byte_stride_prop != NULL
1164 && byte_stride_prop->kind == PROP_CONST)
1165 {
1166 /* The byte stride is actually not dynamic. Pretend we were
1167 called with bit_stride set instead of byte_stride_prop.
1168 This will give us the same result type, while avoiding
1169 the need to handle this as a special case. */
1170 bit_stride = byte_stride_prop->data.const_val * 8;
1171 byte_stride_prop = NULL;
1172 }
1173
1174 if (result_type == NULL)
1175 result_type = alloc_type_copy (range_type);
1176
1177 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1178 TYPE_TARGET_TYPE (result_type) = element_type;
1179 if (byte_stride_prop == NULL
1180 && has_static_range (TYPE_RANGE_DATA (range_type))
1181 && (!type_not_associated (result_type)
1182 && !type_not_allocated (result_type)))
1183 {
1184 LONGEST low_bound, high_bound;
1185
1186 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1187 low_bound = high_bound = 0;
1188 element_type = check_typedef (element_type);
1189 /* Be careful when setting the array length. Ada arrays can be
1190 empty arrays with the high_bound being smaller than the low_bound.
1191 In such cases, the array length should be zero. */
1192 if (high_bound < low_bound)
1193 TYPE_LENGTH (result_type) = 0;
1194 else if (bit_stride > 0)
1195 TYPE_LENGTH (result_type) =
1196 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1197 else
1198 TYPE_LENGTH (result_type) =
1199 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1200 }
1201 else
1202 {
1203 /* This type is dynamic and its length needs to be computed
1204 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1205 undefined by setting it to zero. Although we are not expected
1206 to trust TYPE_LENGTH in this case, setting the size to zero
1207 allows us to avoid allocating objects of random sizes in case
1208 we accidently do. */
1209 TYPE_LENGTH (result_type) = 0;
1210 }
1211
1212 TYPE_NFIELDS (result_type) = 1;
1213 TYPE_FIELDS (result_type) =
1214 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1215 TYPE_INDEX_TYPE (result_type) = range_type;
1216 if (byte_stride_prop != NULL)
1217 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1218 else if (bit_stride > 0)
1219 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1220
1221 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1222 if (TYPE_LENGTH (result_type) == 0)
1223 TYPE_TARGET_STUB (result_type) = 1;
1224
1225 return result_type;
1226 }
1227
1228 /* Same as create_array_type_with_stride but with no bit_stride
1229 (BIT_STRIDE = 0), thus building an unpacked array. */
1230
1231 struct type *
1232 create_array_type (struct type *result_type,
1233 struct type *element_type,
1234 struct type *range_type)
1235 {
1236 return create_array_type_with_stride (result_type, element_type,
1237 range_type, NULL, 0);
1238 }
1239
1240 struct type *
1241 lookup_array_range_type (struct type *element_type,
1242 LONGEST low_bound, LONGEST high_bound)
1243 {
1244 struct type *index_type;
1245 struct type *range_type;
1246
1247 if (TYPE_OBJFILE_OWNED (element_type))
1248 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1249 else
1250 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1251 range_type = create_static_range_type (NULL, index_type,
1252 low_bound, high_bound);
1253
1254 return create_array_type (NULL, element_type, range_type);
1255 }
1256
1257 /* Create a string type using either a blank type supplied in
1258 RESULT_TYPE, or creating a new type. String types are similar
1259 enough to array of char types that we can use create_array_type to
1260 build the basic type and then bash it into a string type.
1261
1262 For fixed length strings, the range type contains 0 as the lower
1263 bound and the length of the string minus one as the upper bound.
1264
1265 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1266 sure it is TYPE_CODE_UNDEF before we bash it into a string
1267 type? */
1268
1269 struct type *
1270 create_string_type (struct type *result_type,
1271 struct type *string_char_type,
1272 struct type *range_type)
1273 {
1274 result_type = create_array_type (result_type,
1275 string_char_type,
1276 range_type);
1277 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1278 return result_type;
1279 }
1280
1281 struct type *
1282 lookup_string_range_type (struct type *string_char_type,
1283 LONGEST low_bound, LONGEST high_bound)
1284 {
1285 struct type *result_type;
1286
1287 result_type = lookup_array_range_type (string_char_type,
1288 low_bound, high_bound);
1289 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1290 return result_type;
1291 }
1292
1293 struct type *
1294 create_set_type (struct type *result_type, struct type *domain_type)
1295 {
1296 if (result_type == NULL)
1297 result_type = alloc_type_copy (domain_type);
1298
1299 TYPE_CODE (result_type) = TYPE_CODE_SET;
1300 TYPE_NFIELDS (result_type) = 1;
1301 TYPE_FIELDS (result_type)
1302 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1303
1304 if (!TYPE_STUB (domain_type))
1305 {
1306 LONGEST low_bound, high_bound, bit_length;
1307
1308 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1309 low_bound = high_bound = 0;
1310 bit_length = high_bound - low_bound + 1;
1311 TYPE_LENGTH (result_type)
1312 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1313 if (low_bound >= 0)
1314 TYPE_UNSIGNED (result_type) = 1;
1315 }
1316 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1317
1318 return result_type;
1319 }
1320
1321 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1322 and any array types nested inside it. */
1323
1324 void
1325 make_vector_type (struct type *array_type)
1326 {
1327 struct type *inner_array, *elt_type;
1328 int flags;
1329
1330 /* Find the innermost array type, in case the array is
1331 multi-dimensional. */
1332 inner_array = array_type;
1333 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1334 inner_array = TYPE_TARGET_TYPE (inner_array);
1335
1336 elt_type = TYPE_TARGET_TYPE (inner_array);
1337 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1338 {
1339 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1340 elt_type = make_qualified_type (elt_type, flags, NULL);
1341 TYPE_TARGET_TYPE (inner_array) = elt_type;
1342 }
1343
1344 TYPE_VECTOR (array_type) = 1;
1345 }
1346
1347 struct type *
1348 init_vector_type (struct type *elt_type, int n)
1349 {
1350 struct type *array_type;
1351
1352 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1353 make_vector_type (array_type);
1354 return array_type;
1355 }
1356
1357 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1358 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1359 confusing. "self" is a common enough replacement for "this".
1360 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1361 TYPE_CODE_METHOD. */
1362
1363 struct type *
1364 internal_type_self_type (struct type *type)
1365 {
1366 switch (TYPE_CODE (type))
1367 {
1368 case TYPE_CODE_METHODPTR:
1369 case TYPE_CODE_MEMBERPTR:
1370 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1371 return NULL;
1372 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1373 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1374 case TYPE_CODE_METHOD:
1375 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1376 return NULL;
1377 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1378 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1379 default:
1380 gdb_assert_not_reached ("bad type");
1381 }
1382 }
1383
1384 /* Set the type of the class that TYPE belongs to.
1385 In c++ this is the class of "this".
1386 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1387 TYPE_CODE_METHOD. */
1388
1389 void
1390 set_type_self_type (struct type *type, struct type *self_type)
1391 {
1392 switch (TYPE_CODE (type))
1393 {
1394 case TYPE_CODE_METHODPTR:
1395 case TYPE_CODE_MEMBERPTR:
1396 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1397 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1398 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1399 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1400 break;
1401 case TYPE_CODE_METHOD:
1402 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1403 INIT_FUNC_SPECIFIC (type);
1404 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1405 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1406 break;
1407 default:
1408 gdb_assert_not_reached ("bad type");
1409 }
1410 }
1411
1412 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1413 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1414 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1415 TYPE doesn't include the offset (that's the value of the MEMBER
1416 itself), but does include the structure type into which it points
1417 (for some reason).
1418
1419 When "smashing" the type, we preserve the objfile that the old type
1420 pointed to, since we aren't changing where the type is actually
1421 allocated. */
1422
1423 void
1424 smash_to_memberptr_type (struct type *type, struct type *self_type,
1425 struct type *to_type)
1426 {
1427 smash_type (type);
1428 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1429 TYPE_TARGET_TYPE (type) = to_type;
1430 set_type_self_type (type, self_type);
1431 /* Assume that a data member pointer is the same size as a normal
1432 pointer. */
1433 TYPE_LENGTH (type)
1434 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1435 }
1436
1437 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1438
1439 When "smashing" the type, we preserve the objfile that the old type
1440 pointed to, since we aren't changing where the type is actually
1441 allocated. */
1442
1443 void
1444 smash_to_methodptr_type (struct type *type, struct type *to_type)
1445 {
1446 smash_type (type);
1447 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1448 TYPE_TARGET_TYPE (type) = to_type;
1449 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1450 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1451 }
1452
1453 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1454 METHOD just means `function that gets an extra "this" argument'.
1455
1456 When "smashing" the type, we preserve the objfile that the old type
1457 pointed to, since we aren't changing where the type is actually
1458 allocated. */
1459
1460 void
1461 smash_to_method_type (struct type *type, struct type *self_type,
1462 struct type *to_type, struct field *args,
1463 int nargs, int varargs)
1464 {
1465 smash_type (type);
1466 TYPE_CODE (type) = TYPE_CODE_METHOD;
1467 TYPE_TARGET_TYPE (type) = to_type;
1468 set_type_self_type (type, self_type);
1469 TYPE_FIELDS (type) = args;
1470 TYPE_NFIELDS (type) = nargs;
1471 if (varargs)
1472 TYPE_VARARGS (type) = 1;
1473 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1474 }
1475
1476 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1477 Since GCC PR debug/47510 DWARF provides associated information to detect the
1478 anonymous class linkage name from its typedef.
1479
1480 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1481 apply it itself. */
1482
1483 const char *
1484 type_name_or_error (struct type *type)
1485 {
1486 struct type *saved_type = type;
1487 const char *name;
1488 struct objfile *objfile;
1489
1490 type = check_typedef (type);
1491
1492 name = TYPE_NAME (type);
1493 if (name != NULL)
1494 return name;
1495
1496 name = TYPE_NAME (saved_type);
1497 objfile = TYPE_OBJFILE (saved_type);
1498 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1499 name ? name : "<anonymous>",
1500 objfile ? objfile_name (objfile) : "<arch>");
1501 }
1502
1503 /* Lookup a typedef or primitive type named NAME, visible in lexical
1504 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1505 suitably defined. */
1506
1507 struct type *
1508 lookup_typename (const struct language_defn *language,
1509 struct gdbarch *gdbarch, const char *name,
1510 const struct block *block, int noerr)
1511 {
1512 struct symbol *sym;
1513
1514 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1515 language->la_language, NULL).symbol;
1516 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1517 return SYMBOL_TYPE (sym);
1518
1519 if (noerr)
1520 return NULL;
1521 error (_("No type named %s."), name);
1522 }
1523
1524 struct type *
1525 lookup_unsigned_typename (const struct language_defn *language,
1526 struct gdbarch *gdbarch, const char *name)
1527 {
1528 char *uns = (char *) alloca (strlen (name) + 10);
1529
1530 strcpy (uns, "unsigned ");
1531 strcpy (uns + 9, name);
1532 return lookup_typename (language, gdbarch, uns, NULL, 0);
1533 }
1534
1535 struct type *
1536 lookup_signed_typename (const struct language_defn *language,
1537 struct gdbarch *gdbarch, const char *name)
1538 {
1539 struct type *t;
1540 char *uns = (char *) alloca (strlen (name) + 8);
1541
1542 strcpy (uns, "signed ");
1543 strcpy (uns + 7, name);
1544 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1545 /* If we don't find "signed FOO" just try again with plain "FOO". */
1546 if (t != NULL)
1547 return t;
1548 return lookup_typename (language, gdbarch, name, NULL, 0);
1549 }
1550
1551 /* Lookup a structure type named "struct NAME",
1552 visible in lexical block BLOCK. */
1553
1554 struct type *
1555 lookup_struct (const char *name, const struct block *block)
1556 {
1557 struct symbol *sym;
1558
1559 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1560
1561 if (sym == NULL)
1562 {
1563 error (_("No struct type named %s."), name);
1564 }
1565 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1566 {
1567 error (_("This context has class, union or enum %s, not a struct."),
1568 name);
1569 }
1570 return (SYMBOL_TYPE (sym));
1571 }
1572
1573 /* Lookup a union type named "union NAME",
1574 visible in lexical block BLOCK. */
1575
1576 struct type *
1577 lookup_union (const char *name, const struct block *block)
1578 {
1579 struct symbol *sym;
1580 struct type *t;
1581
1582 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1583
1584 if (sym == NULL)
1585 error (_("No union type named %s."), name);
1586
1587 t = SYMBOL_TYPE (sym);
1588
1589 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1590 return t;
1591
1592 /* If we get here, it's not a union. */
1593 error (_("This context has class, struct or enum %s, not a union."),
1594 name);
1595 }
1596
1597 /* Lookup an enum type named "enum NAME",
1598 visible in lexical block BLOCK. */
1599
1600 struct type *
1601 lookup_enum (const char *name, const struct block *block)
1602 {
1603 struct symbol *sym;
1604
1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1606 if (sym == NULL)
1607 {
1608 error (_("No enum type named %s."), name);
1609 }
1610 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1611 {
1612 error (_("This context has class, struct or union %s, not an enum."),
1613 name);
1614 }
1615 return (SYMBOL_TYPE (sym));
1616 }
1617
1618 /* Lookup a template type named "template NAME<TYPE>",
1619 visible in lexical block BLOCK. */
1620
1621 struct type *
1622 lookup_template_type (const char *name, struct type *type,
1623 const struct block *block)
1624 {
1625 struct symbol *sym;
1626 char *nam = (char *)
1627 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1628
1629 strcpy (nam, name);
1630 strcat (nam, "<");
1631 strcat (nam, TYPE_NAME (type));
1632 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1633
1634 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1635
1636 if (sym == NULL)
1637 {
1638 error (_("No template type named %s."), name);
1639 }
1640 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1641 {
1642 error (_("This context has class, union or enum %s, not a struct."),
1643 name);
1644 }
1645 return (SYMBOL_TYPE (sym));
1646 }
1647
1648 /* See gdbtypes.h. */
1649
1650 struct_elt
1651 lookup_struct_elt (struct type *type, const char *name, int noerr)
1652 {
1653 int i;
1654
1655 for (;;)
1656 {
1657 type = check_typedef (type);
1658 if (TYPE_CODE (type) != TYPE_CODE_PTR
1659 && TYPE_CODE (type) != TYPE_CODE_REF)
1660 break;
1661 type = TYPE_TARGET_TYPE (type);
1662 }
1663
1664 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1665 && TYPE_CODE (type) != TYPE_CODE_UNION)
1666 {
1667 std::string type_name = type_to_string (type);
1668 error (_("Type %s is not a structure or union type."),
1669 type_name.c_str ());
1670 }
1671
1672 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1673 {
1674 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1675
1676 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1677 {
1678 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1679 }
1680 else if (!t_field_name || *t_field_name == '\0')
1681 {
1682 struct_elt elt
1683 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1684 if (elt.field != NULL)
1685 {
1686 elt.offset += TYPE_FIELD_BITPOS (type, i);
1687 return elt;
1688 }
1689 }
1690 }
1691
1692 /* OK, it's not in this class. Recursively check the baseclasses. */
1693 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1694 {
1695 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1696 if (elt.field != NULL)
1697 return elt;
1698 }
1699
1700 if (noerr)
1701 return {nullptr, 0};
1702
1703 std::string type_name = type_to_string (type);
1704 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1705 }
1706
1707 /* See gdbtypes.h. */
1708
1709 struct type *
1710 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1711 {
1712 struct_elt elt = lookup_struct_elt (type, name, noerr);
1713 if (elt.field != NULL)
1714 return FIELD_TYPE (*elt.field);
1715 else
1716 return NULL;
1717 }
1718
1719 /* Store in *MAX the largest number representable by unsigned integer type
1720 TYPE. */
1721
1722 void
1723 get_unsigned_type_max (struct type *type, ULONGEST *max)
1724 {
1725 unsigned int n;
1726
1727 type = check_typedef (type);
1728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1729 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1730
1731 /* Written this way to avoid overflow. */
1732 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1733 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1734 }
1735
1736 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1737 signed integer type TYPE. */
1738
1739 void
1740 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1741 {
1742 unsigned int n;
1743
1744 type = check_typedef (type);
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1746 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1747
1748 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1749 *min = -((ULONGEST) 1 << (n - 1));
1750 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1751 }
1752
1753 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1754 cplus_stuff.vptr_fieldno.
1755
1756 cplus_stuff is initialized to cplus_struct_default which does not
1757 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1758 designated initializers). We cope with that here. */
1759
1760 int
1761 internal_type_vptr_fieldno (struct type *type)
1762 {
1763 type = check_typedef (type);
1764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1765 || TYPE_CODE (type) == TYPE_CODE_UNION);
1766 if (!HAVE_CPLUS_STRUCT (type))
1767 return -1;
1768 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1769 }
1770
1771 /* Set the value of cplus_stuff.vptr_fieldno. */
1772
1773 void
1774 set_type_vptr_fieldno (struct type *type, int fieldno)
1775 {
1776 type = check_typedef (type);
1777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 || TYPE_CODE (type) == TYPE_CODE_UNION);
1779 if (!HAVE_CPLUS_STRUCT (type))
1780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1781 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1782 }
1783
1784 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1785 cplus_stuff.vptr_basetype. */
1786
1787 struct type *
1788 internal_type_vptr_basetype (struct type *type)
1789 {
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1792 || TYPE_CODE (type) == TYPE_CODE_UNION);
1793 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1794 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1795 }
1796
1797 /* Set the value of cplus_stuff.vptr_basetype. */
1798
1799 void
1800 set_type_vptr_basetype (struct type *type, struct type *basetype)
1801 {
1802 type = check_typedef (type);
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1804 || TYPE_CODE (type) == TYPE_CODE_UNION);
1805 if (!HAVE_CPLUS_STRUCT (type))
1806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1807 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1808 }
1809
1810 /* Lookup the vptr basetype/fieldno values for TYPE.
1811 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1812 vptr_fieldno. Also, if found and basetype is from the same objfile,
1813 cache the results.
1814 If not found, return -1 and ignore BASETYPEP.
1815 Callers should be aware that in some cases (for example,
1816 the type or one of its baseclasses is a stub type and we are
1817 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1818 this function will not be able to find the
1819 virtual function table pointer, and vptr_fieldno will remain -1 and
1820 vptr_basetype will remain NULL or incomplete. */
1821
1822 int
1823 get_vptr_fieldno (struct type *type, struct type **basetypep)
1824 {
1825 type = check_typedef (type);
1826
1827 if (TYPE_VPTR_FIELDNO (type) < 0)
1828 {
1829 int i;
1830
1831 /* We must start at zero in case the first (and only) baseclass
1832 is virtual (and hence we cannot share the table pointer). */
1833 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1834 {
1835 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1836 int fieldno;
1837 struct type *basetype;
1838
1839 fieldno = get_vptr_fieldno (baseclass, &basetype);
1840 if (fieldno >= 0)
1841 {
1842 /* If the type comes from a different objfile we can't cache
1843 it, it may have a different lifetime. PR 2384 */
1844 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1845 {
1846 set_type_vptr_fieldno (type, fieldno);
1847 set_type_vptr_basetype (type, basetype);
1848 }
1849 if (basetypep)
1850 *basetypep = basetype;
1851 return fieldno;
1852 }
1853 }
1854
1855 /* Not found. */
1856 return -1;
1857 }
1858 else
1859 {
1860 if (basetypep)
1861 *basetypep = TYPE_VPTR_BASETYPE (type);
1862 return TYPE_VPTR_FIELDNO (type);
1863 }
1864 }
1865
1866 static void
1867 stub_noname_complaint (void)
1868 {
1869 complaint (_("stub type has NULL name"));
1870 }
1871
1872 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1873 attached to it, and that property has a non-constant value. */
1874
1875 static int
1876 array_type_has_dynamic_stride (struct type *type)
1877 {
1878 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1879
1880 return (prop != NULL && prop->kind != PROP_CONST);
1881 }
1882
1883 /* Worker for is_dynamic_type. */
1884
1885 static int
1886 is_dynamic_type_internal (struct type *type, int top_level)
1887 {
1888 type = check_typedef (type);
1889
1890 /* We only want to recognize references at the outermost level. */
1891 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1892 type = check_typedef (TYPE_TARGET_TYPE (type));
1893
1894 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1895 dynamic, even if the type itself is statically defined.
1896 From a user's point of view, this may appear counter-intuitive;
1897 but it makes sense in this context, because the point is to determine
1898 whether any part of the type needs to be resolved before it can
1899 be exploited. */
1900 if (TYPE_DATA_LOCATION (type) != NULL
1901 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1902 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1903 return 1;
1904
1905 if (TYPE_ASSOCIATED_PROP (type))
1906 return 1;
1907
1908 if (TYPE_ALLOCATED_PROP (type))
1909 return 1;
1910
1911 switch (TYPE_CODE (type))
1912 {
1913 case TYPE_CODE_RANGE:
1914 {
1915 /* A range type is obviously dynamic if it has at least one
1916 dynamic bound. But also consider the range type to be
1917 dynamic when its subtype is dynamic, even if the bounds
1918 of the range type are static. It allows us to assume that
1919 the subtype of a static range type is also static. */
1920 return (!has_static_range (TYPE_RANGE_DATA (type))
1921 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1922 }
1923
1924 case TYPE_CODE_ARRAY:
1925 {
1926 gdb_assert (TYPE_NFIELDS (type) == 1);
1927
1928 /* The array is dynamic if either the bounds are dynamic... */
1929 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1930 return 1;
1931 /* ... or the elements it contains have a dynamic contents... */
1932 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1933 return 1;
1934 /* ... or if it has a dynamic stride... */
1935 if (array_type_has_dynamic_stride (type))
1936 return 1;
1937 return 0;
1938 }
1939
1940 case TYPE_CODE_STRUCT:
1941 case TYPE_CODE_UNION:
1942 {
1943 int i;
1944
1945 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1946 if (!field_is_static (&TYPE_FIELD (type, i))
1947 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1948 return 1;
1949 }
1950 break;
1951 }
1952
1953 return 0;
1954 }
1955
1956 /* See gdbtypes.h. */
1957
1958 int
1959 is_dynamic_type (struct type *type)
1960 {
1961 return is_dynamic_type_internal (type, 1);
1962 }
1963
1964 static struct type *resolve_dynamic_type_internal
1965 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1966
1967 /* Given a dynamic range type (dyn_range_type) and a stack of
1968 struct property_addr_info elements, return a static version
1969 of that type. */
1970
1971 static struct type *
1972 resolve_dynamic_range (struct type *dyn_range_type,
1973 struct property_addr_info *addr_stack)
1974 {
1975 CORE_ADDR value;
1976 struct type *static_range_type, *static_target_type;
1977 const struct dynamic_prop *prop;
1978 struct dynamic_prop low_bound, high_bound;
1979
1980 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1981
1982 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1983 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1984 {
1985 low_bound.kind = PROP_CONST;
1986 low_bound.data.const_val = value;
1987 }
1988 else
1989 {
1990 low_bound.kind = PROP_UNDEFINED;
1991 low_bound.data.const_val = 0;
1992 }
1993
1994 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1995 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1996 {
1997 high_bound.kind = PROP_CONST;
1998 high_bound.data.const_val = value;
1999
2000 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2001 high_bound.data.const_val
2002 = low_bound.data.const_val + high_bound.data.const_val - 1;
2003 }
2004 else
2005 {
2006 high_bound.kind = PROP_UNDEFINED;
2007 high_bound.data.const_val = 0;
2008 }
2009
2010 static_target_type
2011 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2012 addr_stack, 0);
2013 static_range_type = create_range_type (copy_type (dyn_range_type),
2014 static_target_type,
2015 &low_bound, &high_bound);
2016 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2017 return static_range_type;
2018 }
2019
2020 /* Resolves dynamic bound values of an array type TYPE to static ones.
2021 ADDR_STACK is a stack of struct property_addr_info to be used
2022 if needed during the dynamic resolution. */
2023
2024 static struct type *
2025 resolve_dynamic_array (struct type *type,
2026 struct property_addr_info *addr_stack)
2027 {
2028 CORE_ADDR value;
2029 struct type *elt_type;
2030 struct type *range_type;
2031 struct type *ary_dim;
2032 struct dynamic_prop *prop;
2033 unsigned int bit_stride = 0;
2034
2035 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2036
2037 type = copy_type (type);
2038
2039 elt_type = type;
2040 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2041 range_type = resolve_dynamic_range (range_type, addr_stack);
2042
2043 /* Resolve allocated/associated here before creating a new array type, which
2044 will update the length of the array accordingly. */
2045 prop = TYPE_ALLOCATED_PROP (type);
2046 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2047 {
2048 TYPE_DYN_PROP_ADDR (prop) = value;
2049 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2050 }
2051 prop = TYPE_ASSOCIATED_PROP (type);
2052 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2053 {
2054 TYPE_DYN_PROP_ADDR (prop) = value;
2055 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2056 }
2057
2058 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2059
2060 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2061 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2062 else
2063 elt_type = TYPE_TARGET_TYPE (type);
2064
2065 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2066 if (prop != NULL)
2067 {
2068 int prop_eval_ok
2069 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2070
2071 if (prop_eval_ok)
2072 {
2073 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2074 bit_stride = (unsigned int) (value * 8);
2075 }
2076 else
2077 {
2078 /* Could be a bug in our code, but it could also happen
2079 if the DWARF info is not correct. Issue a warning,
2080 and assume no byte/bit stride (leave bit_stride = 0). */
2081 warning (_("cannot determine array stride for type %s"),
2082 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2083 }
2084 }
2085 else
2086 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2087
2088 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2089 bit_stride);
2090 }
2091
2092 /* Resolve dynamic bounds of members of the union TYPE to static
2093 bounds. ADDR_STACK is a stack of struct property_addr_info
2094 to be used if needed during the dynamic resolution. */
2095
2096 static struct type *
2097 resolve_dynamic_union (struct type *type,
2098 struct property_addr_info *addr_stack)
2099 {
2100 struct type *resolved_type;
2101 int i;
2102 unsigned int max_len = 0;
2103
2104 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2105
2106 resolved_type = copy_type (type);
2107 TYPE_FIELDS (resolved_type)
2108 = (struct field *) TYPE_ALLOC (resolved_type,
2109 TYPE_NFIELDS (resolved_type)
2110 * sizeof (struct field));
2111 memcpy (TYPE_FIELDS (resolved_type),
2112 TYPE_FIELDS (type),
2113 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2114 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2115 {
2116 struct type *t;
2117
2118 if (field_is_static (&TYPE_FIELD (type, i)))
2119 continue;
2120
2121 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2122 addr_stack, 0);
2123 TYPE_FIELD_TYPE (resolved_type, i) = t;
2124 if (TYPE_LENGTH (t) > max_len)
2125 max_len = TYPE_LENGTH (t);
2126 }
2127
2128 TYPE_LENGTH (resolved_type) = max_len;
2129 return resolved_type;
2130 }
2131
2132 /* Resolve dynamic bounds of members of the struct TYPE to static
2133 bounds. ADDR_STACK is a stack of struct property_addr_info to
2134 be used if needed during the dynamic resolution. */
2135
2136 static struct type *
2137 resolve_dynamic_struct (struct type *type,
2138 struct property_addr_info *addr_stack)
2139 {
2140 struct type *resolved_type;
2141 int i;
2142 unsigned resolved_type_bit_length = 0;
2143
2144 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2145 gdb_assert (TYPE_NFIELDS (type) > 0);
2146
2147 resolved_type = copy_type (type);
2148 TYPE_FIELDS (resolved_type)
2149 = (struct field *) TYPE_ALLOC (resolved_type,
2150 TYPE_NFIELDS (resolved_type)
2151 * sizeof (struct field));
2152 memcpy (TYPE_FIELDS (resolved_type),
2153 TYPE_FIELDS (type),
2154 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2155 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2156 {
2157 unsigned new_bit_length;
2158 struct property_addr_info pinfo;
2159
2160 if (field_is_static (&TYPE_FIELD (type, i)))
2161 continue;
2162
2163 /* As we know this field is not a static field, the field's
2164 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2165 this is the case, but only trigger a simple error rather
2166 than an internal error if that fails. While failing
2167 that verification indicates a bug in our code, the error
2168 is not severe enough to suggest to the user he stops
2169 his debugging session because of it. */
2170 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2171 error (_("Cannot determine struct field location"
2172 " (invalid location kind)"));
2173
2174 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2175 pinfo.valaddr = addr_stack->valaddr;
2176 pinfo.addr
2177 = (addr_stack->addr
2178 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2179 pinfo.next = addr_stack;
2180
2181 TYPE_FIELD_TYPE (resolved_type, i)
2182 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2183 &pinfo, 0);
2184 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2185 == FIELD_LOC_KIND_BITPOS);
2186
2187 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2188 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2189 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2190 else
2191 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2192 * TARGET_CHAR_BIT);
2193
2194 /* Normally, we would use the position and size of the last field
2195 to determine the size of the enclosing structure. But GCC seems
2196 to be encoding the position of some fields incorrectly when
2197 the struct contains a dynamic field that is not placed last.
2198 So we compute the struct size based on the field that has
2199 the highest position + size - probably the best we can do. */
2200 if (new_bit_length > resolved_type_bit_length)
2201 resolved_type_bit_length = new_bit_length;
2202 }
2203
2204 /* The length of a type won't change for fortran, but it does for C and Ada.
2205 For fortran the size of dynamic fields might change over time but not the
2206 type length of the structure. If we adapt it, we run into problems
2207 when calculating the element offset for arrays of structs. */
2208 if (current_language->la_language != language_fortran)
2209 TYPE_LENGTH (resolved_type)
2210 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2211
2212 /* The Ada language uses this field as a cache for static fixed types: reset
2213 it as RESOLVED_TYPE must have its own static fixed type. */
2214 TYPE_TARGET_TYPE (resolved_type) = NULL;
2215
2216 return resolved_type;
2217 }
2218
2219 /* Worker for resolved_dynamic_type. */
2220
2221 static struct type *
2222 resolve_dynamic_type_internal (struct type *type,
2223 struct property_addr_info *addr_stack,
2224 int top_level)
2225 {
2226 struct type *real_type = check_typedef (type);
2227 struct type *resolved_type = type;
2228 struct dynamic_prop *prop;
2229 CORE_ADDR value;
2230
2231 if (!is_dynamic_type_internal (real_type, top_level))
2232 return type;
2233
2234 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2235 {
2236 resolved_type = copy_type (type);
2237 TYPE_TARGET_TYPE (resolved_type)
2238 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2239 top_level);
2240 }
2241 else
2242 {
2243 /* Before trying to resolve TYPE, make sure it is not a stub. */
2244 type = real_type;
2245
2246 switch (TYPE_CODE (type))
2247 {
2248 case TYPE_CODE_REF:
2249 {
2250 struct property_addr_info pinfo;
2251
2252 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2253 pinfo.valaddr = NULL;
2254 if (addr_stack->valaddr != NULL)
2255 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2256 else
2257 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2258 pinfo.next = addr_stack;
2259
2260 resolved_type = copy_type (type);
2261 TYPE_TARGET_TYPE (resolved_type)
2262 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2263 &pinfo, top_level);
2264 break;
2265 }
2266
2267 case TYPE_CODE_ARRAY:
2268 resolved_type = resolve_dynamic_array (type, addr_stack);
2269 break;
2270
2271 case TYPE_CODE_RANGE:
2272 resolved_type = resolve_dynamic_range (type, addr_stack);
2273 break;
2274
2275 case TYPE_CODE_UNION:
2276 resolved_type = resolve_dynamic_union (type, addr_stack);
2277 break;
2278
2279 case TYPE_CODE_STRUCT:
2280 resolved_type = resolve_dynamic_struct (type, addr_stack);
2281 break;
2282 }
2283 }
2284
2285 /* Resolve data_location attribute. */
2286 prop = TYPE_DATA_LOCATION (resolved_type);
2287 if (prop != NULL
2288 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2289 {
2290 TYPE_DYN_PROP_ADDR (prop) = value;
2291 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2292 }
2293
2294 return resolved_type;
2295 }
2296
2297 /* See gdbtypes.h */
2298
2299 struct type *
2300 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2301 CORE_ADDR addr)
2302 {
2303 struct property_addr_info pinfo
2304 = {check_typedef (type), valaddr, addr, NULL};
2305
2306 return resolve_dynamic_type_internal (type, &pinfo, 1);
2307 }
2308
2309 /* See gdbtypes.h */
2310
2311 struct dynamic_prop *
2312 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2313 {
2314 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2315
2316 while (node != NULL)
2317 {
2318 if (node->prop_kind == prop_kind)
2319 return &node->prop;
2320 node = node->next;
2321 }
2322 return NULL;
2323 }
2324
2325 /* See gdbtypes.h */
2326
2327 void
2328 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2329 struct type *type)
2330 {
2331 struct dynamic_prop_list *temp;
2332
2333 gdb_assert (TYPE_OBJFILE_OWNED (type));
2334
2335 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2336 struct dynamic_prop_list);
2337 temp->prop_kind = prop_kind;
2338 temp->prop = prop;
2339 temp->next = TYPE_DYN_PROP_LIST (type);
2340
2341 TYPE_DYN_PROP_LIST (type) = temp;
2342 }
2343
2344 /* Remove dynamic property from TYPE in case it exists. */
2345
2346 void
2347 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2348 struct type *type)
2349 {
2350 struct dynamic_prop_list *prev_node, *curr_node;
2351
2352 curr_node = TYPE_DYN_PROP_LIST (type);
2353 prev_node = NULL;
2354
2355 while (NULL != curr_node)
2356 {
2357 if (curr_node->prop_kind == prop_kind)
2358 {
2359 /* Update the linked list but don't free anything.
2360 The property was allocated on objstack and it is not known
2361 if we are on top of it. Nevertheless, everything is released
2362 when the complete objstack is freed. */
2363 if (NULL == prev_node)
2364 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2365 else
2366 prev_node->next = curr_node->next;
2367
2368 return;
2369 }
2370
2371 prev_node = curr_node;
2372 curr_node = curr_node->next;
2373 }
2374 }
2375
2376 /* Find the real type of TYPE. This function returns the real type,
2377 after removing all layers of typedefs, and completing opaque or stub
2378 types. Completion changes the TYPE argument, but stripping of
2379 typedefs does not.
2380
2381 Instance flags (e.g. const/volatile) are preserved as typedefs are
2382 stripped. If necessary a new qualified form of the underlying type
2383 is created.
2384
2385 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2386 not been computed and we're either in the middle of reading symbols, or
2387 there was no name for the typedef in the debug info.
2388
2389 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2390 QUITs in the symbol reading code can also throw.
2391 Thus this function can throw an exception.
2392
2393 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2394 the target type.
2395
2396 If this is a stubbed struct (i.e. declared as struct foo *), see if
2397 we can find a full definition in some other file. If so, copy this
2398 definition, so we can use it in future. There used to be a comment
2399 (but not any code) that if we don't find a full definition, we'd
2400 set a flag so we don't spend time in the future checking the same
2401 type. That would be a mistake, though--we might load in more
2402 symbols which contain a full definition for the type. */
2403
2404 struct type *
2405 check_typedef (struct type *type)
2406 {
2407 struct type *orig_type = type;
2408 /* While we're removing typedefs, we don't want to lose qualifiers.
2409 E.g., const/volatile. */
2410 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2411
2412 gdb_assert (type);
2413
2414 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2415 {
2416 if (!TYPE_TARGET_TYPE (type))
2417 {
2418 const char *name;
2419 struct symbol *sym;
2420
2421 /* It is dangerous to call lookup_symbol if we are currently
2422 reading a symtab. Infinite recursion is one danger. */
2423 if (currently_reading_symtab)
2424 return make_qualified_type (type, instance_flags, NULL);
2425
2426 name = TYPE_NAME (type);
2427 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2428 VAR_DOMAIN as appropriate? */
2429 if (name == NULL)
2430 {
2431 stub_noname_complaint ();
2432 return make_qualified_type (type, instance_flags, NULL);
2433 }
2434 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2435 if (sym)
2436 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2437 else /* TYPE_CODE_UNDEF */
2438 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2439 }
2440 type = TYPE_TARGET_TYPE (type);
2441
2442 /* Preserve the instance flags as we traverse down the typedef chain.
2443
2444 Handling address spaces/classes is nasty, what do we do if there's a
2445 conflict?
2446 E.g., what if an outer typedef marks the type as class_1 and an inner
2447 typedef marks the type as class_2?
2448 This is the wrong place to do such error checking. We leave it to
2449 the code that created the typedef in the first place to flag the
2450 error. We just pick the outer address space (akin to letting the
2451 outer cast in a chain of casting win), instead of assuming
2452 "it can't happen". */
2453 {
2454 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2455 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2456 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2457 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2458
2459 /* Treat code vs data spaces and address classes separately. */
2460 if ((instance_flags & ALL_SPACES) != 0)
2461 new_instance_flags &= ~ALL_SPACES;
2462 if ((instance_flags & ALL_CLASSES) != 0)
2463 new_instance_flags &= ~ALL_CLASSES;
2464
2465 instance_flags |= new_instance_flags;
2466 }
2467 }
2468
2469 /* If this is a struct/class/union with no fields, then check
2470 whether a full definition exists somewhere else. This is for
2471 systems where a type definition with no fields is issued for such
2472 types, instead of identifying them as stub types in the first
2473 place. */
2474
2475 if (TYPE_IS_OPAQUE (type)
2476 && opaque_type_resolution
2477 && !currently_reading_symtab)
2478 {
2479 const char *name = TYPE_NAME (type);
2480 struct type *newtype;
2481
2482 if (name == NULL)
2483 {
2484 stub_noname_complaint ();
2485 return make_qualified_type (type, instance_flags, NULL);
2486 }
2487 newtype = lookup_transparent_type (name);
2488
2489 if (newtype)
2490 {
2491 /* If the resolved type and the stub are in the same
2492 objfile, then replace the stub type with the real deal.
2493 But if they're in separate objfiles, leave the stub
2494 alone; we'll just look up the transparent type every time
2495 we call check_typedef. We can't create pointers between
2496 types allocated to different objfiles, since they may
2497 have different lifetimes. Trying to copy NEWTYPE over to
2498 TYPE's objfile is pointless, too, since you'll have to
2499 move over any other types NEWTYPE refers to, which could
2500 be an unbounded amount of stuff. */
2501 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2502 type = make_qualified_type (newtype,
2503 TYPE_INSTANCE_FLAGS (type),
2504 type);
2505 else
2506 type = newtype;
2507 }
2508 }
2509 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2510 types. */
2511 else if (TYPE_STUB (type) && !currently_reading_symtab)
2512 {
2513 const char *name = TYPE_NAME (type);
2514 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2515 as appropriate? */
2516 struct symbol *sym;
2517
2518 if (name == NULL)
2519 {
2520 stub_noname_complaint ();
2521 return make_qualified_type (type, instance_flags, NULL);
2522 }
2523 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2524 if (sym)
2525 {
2526 /* Same as above for opaque types, we can replace the stub
2527 with the complete type only if they are in the same
2528 objfile. */
2529 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2530 type = make_qualified_type (SYMBOL_TYPE (sym),
2531 TYPE_INSTANCE_FLAGS (type),
2532 type);
2533 else
2534 type = SYMBOL_TYPE (sym);
2535 }
2536 }
2537
2538 if (TYPE_TARGET_STUB (type))
2539 {
2540 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2541
2542 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2543 {
2544 /* Nothing we can do. */
2545 }
2546 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2547 {
2548 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2549 TYPE_TARGET_STUB (type) = 0;
2550 }
2551 }
2552
2553 type = make_qualified_type (type, instance_flags, NULL);
2554
2555 /* Cache TYPE_LENGTH for future use. */
2556 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2557
2558 return type;
2559 }
2560
2561 /* Parse a type expression in the string [P..P+LENGTH). If an error
2562 occurs, silently return a void type. */
2563
2564 static struct type *
2565 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2566 {
2567 struct ui_file *saved_gdb_stderr;
2568 struct type *type = NULL; /* Initialize to keep gcc happy. */
2569
2570 /* Suppress error messages. */
2571 saved_gdb_stderr = gdb_stderr;
2572 gdb_stderr = &null_stream;
2573
2574 /* Call parse_and_eval_type() without fear of longjmp()s. */
2575 try
2576 {
2577 type = parse_and_eval_type (p, length);
2578 }
2579 catch (const gdb_exception_error &except)
2580 {
2581 type = builtin_type (gdbarch)->builtin_void;
2582 }
2583
2584 /* Stop suppressing error messages. */
2585 gdb_stderr = saved_gdb_stderr;
2586
2587 return type;
2588 }
2589
2590 /* Ugly hack to convert method stubs into method types.
2591
2592 He ain't kiddin'. This demangles the name of the method into a
2593 string including argument types, parses out each argument type,
2594 generates a string casting a zero to that type, evaluates the
2595 string, and stuffs the resulting type into an argtype vector!!!
2596 Then it knows the type of the whole function (including argument
2597 types for overloading), which info used to be in the stab's but was
2598 removed to hack back the space required for them. */
2599
2600 static void
2601 check_stub_method (struct type *type, int method_id, int signature_id)
2602 {
2603 struct gdbarch *gdbarch = get_type_arch (type);
2604 struct fn_field *f;
2605 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2606 char *demangled_name = gdb_demangle (mangled_name,
2607 DMGL_PARAMS | DMGL_ANSI);
2608 char *argtypetext, *p;
2609 int depth = 0, argcount = 1;
2610 struct field *argtypes;
2611 struct type *mtype;
2612
2613 /* Make sure we got back a function string that we can use. */
2614 if (demangled_name)
2615 p = strchr (demangled_name, '(');
2616 else
2617 p = NULL;
2618
2619 if (demangled_name == NULL || p == NULL)
2620 error (_("Internal: Cannot demangle mangled name `%s'."),
2621 mangled_name);
2622
2623 /* Now, read in the parameters that define this type. */
2624 p += 1;
2625 argtypetext = p;
2626 while (*p)
2627 {
2628 if (*p == '(' || *p == '<')
2629 {
2630 depth += 1;
2631 }
2632 else if (*p == ')' || *p == '>')
2633 {
2634 depth -= 1;
2635 }
2636 else if (*p == ',' && depth == 0)
2637 {
2638 argcount += 1;
2639 }
2640
2641 p += 1;
2642 }
2643
2644 /* If we read one argument and it was ``void'', don't count it. */
2645 if (startswith (argtypetext, "(void)"))
2646 argcount -= 1;
2647
2648 /* We need one extra slot, for the THIS pointer. */
2649
2650 argtypes = (struct field *)
2651 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2652 p = argtypetext;
2653
2654 /* Add THIS pointer for non-static methods. */
2655 f = TYPE_FN_FIELDLIST1 (type, method_id);
2656 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2657 argcount = 0;
2658 else
2659 {
2660 argtypes[0].type = lookup_pointer_type (type);
2661 argcount = 1;
2662 }
2663
2664 if (*p != ')') /* () means no args, skip while. */
2665 {
2666 depth = 0;
2667 while (*p)
2668 {
2669 if (depth <= 0 && (*p == ',' || *p == ')'))
2670 {
2671 /* Avoid parsing of ellipsis, they will be handled below.
2672 Also avoid ``void'' as above. */
2673 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2674 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2675 {
2676 argtypes[argcount].type =
2677 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2678 argcount += 1;
2679 }
2680 argtypetext = p + 1;
2681 }
2682
2683 if (*p == '(' || *p == '<')
2684 {
2685 depth += 1;
2686 }
2687 else if (*p == ')' || *p == '>')
2688 {
2689 depth -= 1;
2690 }
2691
2692 p += 1;
2693 }
2694 }
2695
2696 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2697
2698 /* Now update the old "stub" type into a real type. */
2699 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2700 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2701 We want a method (TYPE_CODE_METHOD). */
2702 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2703 argtypes, argcount, p[-2] == '.');
2704 TYPE_STUB (mtype) = 0;
2705 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2706
2707 xfree (demangled_name);
2708 }
2709
2710 /* This is the external interface to check_stub_method, above. This
2711 function unstubs all of the signatures for TYPE's METHOD_ID method
2712 name. After calling this function TYPE_FN_FIELD_STUB will be
2713 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2714 correct.
2715
2716 This function unfortunately can not die until stabs do. */
2717
2718 void
2719 check_stub_method_group (struct type *type, int method_id)
2720 {
2721 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2722 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2723
2724 for (int j = 0; j < len; j++)
2725 {
2726 if (TYPE_FN_FIELD_STUB (f, j))
2727 check_stub_method (type, method_id, j);
2728 }
2729 }
2730
2731 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2732 const struct cplus_struct_type cplus_struct_default = { };
2733
2734 void
2735 allocate_cplus_struct_type (struct type *type)
2736 {
2737 if (HAVE_CPLUS_STRUCT (type))
2738 /* Structure was already allocated. Nothing more to do. */
2739 return;
2740
2741 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2742 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2743 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2744 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2745 set_type_vptr_fieldno (type, -1);
2746 }
2747
2748 const struct gnat_aux_type gnat_aux_default =
2749 { NULL };
2750
2751 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2752 and allocate the associated gnat-specific data. The gnat-specific
2753 data is also initialized to gnat_aux_default. */
2754
2755 void
2756 allocate_gnat_aux_type (struct type *type)
2757 {
2758 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2759 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2760 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2761 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2762 }
2763
2764 /* Helper function to initialize a newly allocated type. Set type code
2765 to CODE and initialize the type-specific fields accordingly. */
2766
2767 static void
2768 set_type_code (struct type *type, enum type_code code)
2769 {
2770 TYPE_CODE (type) = code;
2771
2772 switch (code)
2773 {
2774 case TYPE_CODE_STRUCT:
2775 case TYPE_CODE_UNION:
2776 case TYPE_CODE_NAMESPACE:
2777 INIT_CPLUS_SPECIFIC (type);
2778 break;
2779 case TYPE_CODE_FLT:
2780 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2781 break;
2782 case TYPE_CODE_FUNC:
2783 INIT_FUNC_SPECIFIC (type);
2784 break;
2785 }
2786 }
2787
2788 /* Helper function to verify floating-point format and size.
2789 BIT is the type size in bits; if BIT equals -1, the size is
2790 determined by the floatformat. Returns size to be used. */
2791
2792 static int
2793 verify_floatformat (int bit, const struct floatformat *floatformat)
2794 {
2795 gdb_assert (floatformat != NULL);
2796
2797 if (bit == -1)
2798 bit = floatformat->totalsize;
2799
2800 gdb_assert (bit >= 0);
2801 gdb_assert (bit >= floatformat->totalsize);
2802
2803 return bit;
2804 }
2805
2806 /* Return the floating-point format for a floating-point variable of
2807 type TYPE. */
2808
2809 const struct floatformat *
2810 floatformat_from_type (const struct type *type)
2811 {
2812 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2813 gdb_assert (TYPE_FLOATFORMAT (type));
2814 return TYPE_FLOATFORMAT (type);
2815 }
2816
2817 /* Helper function to initialize the standard scalar types.
2818
2819 If NAME is non-NULL, then it is used to initialize the type name.
2820 Note that NAME is not copied; it is required to have a lifetime at
2821 least as long as OBJFILE. */
2822
2823 struct type *
2824 init_type (struct objfile *objfile, enum type_code code, int bit,
2825 const char *name)
2826 {
2827 struct type *type;
2828
2829 type = alloc_type (objfile);
2830 set_type_code (type, code);
2831 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2832 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2833 TYPE_NAME (type) = name;
2834
2835 return type;
2836 }
2837
2838 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2839 to use with variables that have no debug info. NAME is the type
2840 name. */
2841
2842 static struct type *
2843 init_nodebug_var_type (struct objfile *objfile, const char *name)
2844 {
2845 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2846 }
2847
2848 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2849 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2850 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2851
2852 struct type *
2853 init_integer_type (struct objfile *objfile,
2854 int bit, int unsigned_p, const char *name)
2855 {
2856 struct type *t;
2857
2858 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2859 if (unsigned_p)
2860 TYPE_UNSIGNED (t) = 1;
2861
2862 return t;
2863 }
2864
2865 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2866 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2867 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2868
2869 struct type *
2870 init_character_type (struct objfile *objfile,
2871 int bit, int unsigned_p, const char *name)
2872 {
2873 struct type *t;
2874
2875 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2876 if (unsigned_p)
2877 TYPE_UNSIGNED (t) = 1;
2878
2879 return t;
2880 }
2881
2882 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2883 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2884 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2885
2886 struct type *
2887 init_boolean_type (struct objfile *objfile,
2888 int bit, int unsigned_p, const char *name)
2889 {
2890 struct type *t;
2891
2892 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2893 if (unsigned_p)
2894 TYPE_UNSIGNED (t) = 1;
2895
2896 return t;
2897 }
2898
2899 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2900 BIT is the type size in bits; if BIT equals -1, the size is
2901 determined by the floatformat. NAME is the type name. Set the
2902 TYPE_FLOATFORMAT from FLOATFORMATS. */
2903
2904 struct type *
2905 init_float_type (struct objfile *objfile,
2906 int bit, const char *name,
2907 const struct floatformat **floatformats)
2908 {
2909 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2910 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2911 struct type *t;
2912
2913 bit = verify_floatformat (bit, fmt);
2914 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2915 TYPE_FLOATFORMAT (t) = fmt;
2916
2917 return t;
2918 }
2919
2920 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2921 BIT is the type size in bits. NAME is the type name. */
2922
2923 struct type *
2924 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2925 {
2926 struct type *t;
2927
2928 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2929 return t;
2930 }
2931
2932 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2933 NAME is the type name. TARGET_TYPE is the component float type. */
2934
2935 struct type *
2936 init_complex_type (struct objfile *objfile,
2937 const char *name, struct type *target_type)
2938 {
2939 struct type *t;
2940
2941 t = init_type (objfile, TYPE_CODE_COMPLEX,
2942 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2943 TYPE_TARGET_TYPE (t) = target_type;
2944 return t;
2945 }
2946
2947 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2948 BIT is the pointer type size in bits. NAME is the type name.
2949 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2950 TYPE_UNSIGNED flag. */
2951
2952 struct type *
2953 init_pointer_type (struct objfile *objfile,
2954 int bit, const char *name, struct type *target_type)
2955 {
2956 struct type *t;
2957
2958 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2959 TYPE_TARGET_TYPE (t) = target_type;
2960 TYPE_UNSIGNED (t) = 1;
2961 return t;
2962 }
2963
2964 /* See gdbtypes.h. */
2965
2966 unsigned
2967 type_raw_align (struct type *type)
2968 {
2969 if (type->align_log2 != 0)
2970 return 1 << (type->align_log2 - 1);
2971 return 0;
2972 }
2973
2974 /* See gdbtypes.h. */
2975
2976 unsigned
2977 type_align (struct type *type)
2978 {
2979 /* Check alignment provided in the debug information. */
2980 unsigned raw_align = type_raw_align (type);
2981 if (raw_align != 0)
2982 return raw_align;
2983
2984 /* Allow the architecture to provide an alignment. */
2985 struct gdbarch *arch = get_type_arch (type);
2986 ULONGEST align = gdbarch_type_align (arch, type);
2987 if (align != 0)
2988 return align;
2989
2990 switch (TYPE_CODE (type))
2991 {
2992 case TYPE_CODE_PTR:
2993 case TYPE_CODE_FUNC:
2994 case TYPE_CODE_FLAGS:
2995 case TYPE_CODE_INT:
2996 case TYPE_CODE_RANGE:
2997 case TYPE_CODE_FLT:
2998 case TYPE_CODE_ENUM:
2999 case TYPE_CODE_REF:
3000 case TYPE_CODE_RVALUE_REF:
3001 case TYPE_CODE_CHAR:
3002 case TYPE_CODE_BOOL:
3003 case TYPE_CODE_DECFLOAT:
3004 case TYPE_CODE_METHODPTR:
3005 case TYPE_CODE_MEMBERPTR:
3006 align = type_length_units (check_typedef (type));
3007 break;
3008
3009 case TYPE_CODE_ARRAY:
3010 case TYPE_CODE_COMPLEX:
3011 case TYPE_CODE_TYPEDEF:
3012 align = type_align (TYPE_TARGET_TYPE (type));
3013 break;
3014
3015 case TYPE_CODE_STRUCT:
3016 case TYPE_CODE_UNION:
3017 {
3018 int number_of_non_static_fields = 0;
3019 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3020 {
3021 if (!field_is_static (&TYPE_FIELD (type, i)))
3022 {
3023 number_of_non_static_fields++;
3024 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3025 if (f_align == 0)
3026 {
3027 /* Don't pretend we know something we don't. */
3028 align = 0;
3029 break;
3030 }
3031 if (f_align > align)
3032 align = f_align;
3033 }
3034 }
3035 /* A struct with no fields, or with only static fields has an
3036 alignment of 1. */
3037 if (number_of_non_static_fields == 0)
3038 align = 1;
3039 }
3040 break;
3041
3042 case TYPE_CODE_SET:
3043 case TYPE_CODE_STRING:
3044 /* Not sure what to do here, and these can't appear in C or C++
3045 anyway. */
3046 break;
3047
3048 case TYPE_CODE_VOID:
3049 align = 1;
3050 break;
3051
3052 case TYPE_CODE_ERROR:
3053 case TYPE_CODE_METHOD:
3054 default:
3055 break;
3056 }
3057
3058 if ((align & (align - 1)) != 0)
3059 {
3060 /* Not a power of 2, so pass. */
3061 align = 0;
3062 }
3063
3064 return align;
3065 }
3066
3067 /* See gdbtypes.h. */
3068
3069 bool
3070 set_type_align (struct type *type, ULONGEST align)
3071 {
3072 /* Must be a power of 2. Zero is ok. */
3073 gdb_assert ((align & (align - 1)) == 0);
3074
3075 unsigned result = 0;
3076 while (align != 0)
3077 {
3078 ++result;
3079 align >>= 1;
3080 }
3081
3082 if (result >= (1 << TYPE_ALIGN_BITS))
3083 return false;
3084
3085 type->align_log2 = result;
3086 return true;
3087 }
3088
3089 \f
3090 /* Queries on types. */
3091
3092 int
3093 can_dereference (struct type *t)
3094 {
3095 /* FIXME: Should we return true for references as well as
3096 pointers? */
3097 t = check_typedef (t);
3098 return
3099 (t != NULL
3100 && TYPE_CODE (t) == TYPE_CODE_PTR
3101 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3102 }
3103
3104 int
3105 is_integral_type (struct type *t)
3106 {
3107 t = check_typedef (t);
3108 return
3109 ((t != NULL)
3110 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3111 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3112 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3113 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3114 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3115 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3116 }
3117
3118 int
3119 is_floating_type (struct type *t)
3120 {
3121 t = check_typedef (t);
3122 return
3123 ((t != NULL)
3124 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3125 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3126 }
3127
3128 /* Return true if TYPE is scalar. */
3129
3130 int
3131 is_scalar_type (struct type *type)
3132 {
3133 type = check_typedef (type);
3134
3135 switch (TYPE_CODE (type))
3136 {
3137 case TYPE_CODE_ARRAY:
3138 case TYPE_CODE_STRUCT:
3139 case TYPE_CODE_UNION:
3140 case TYPE_CODE_SET:
3141 case TYPE_CODE_STRING:
3142 return 0;
3143 default:
3144 return 1;
3145 }
3146 }
3147
3148 /* Return true if T is scalar, or a composite type which in practice has
3149 the memory layout of a scalar type. E.g., an array or struct with only
3150 one scalar element inside it, or a union with only scalar elements. */
3151
3152 int
3153 is_scalar_type_recursive (struct type *t)
3154 {
3155 t = check_typedef (t);
3156
3157 if (is_scalar_type (t))
3158 return 1;
3159 /* Are we dealing with an array or string of known dimensions? */
3160 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3161 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3162 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3163 {
3164 LONGEST low_bound, high_bound;
3165 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3166
3167 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3168
3169 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3170 }
3171 /* Are we dealing with a struct with one element? */
3172 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3173 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3174 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3175 {
3176 int i, n = TYPE_NFIELDS (t);
3177
3178 /* If all elements of the union are scalar, then the union is scalar. */
3179 for (i = 0; i < n; i++)
3180 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3181 return 0;
3182
3183 return 1;
3184 }
3185
3186 return 0;
3187 }
3188
3189 /* Return true is T is a class or a union. False otherwise. */
3190
3191 int
3192 class_or_union_p (const struct type *t)
3193 {
3194 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3195 || TYPE_CODE (t) == TYPE_CODE_UNION);
3196 }
3197
3198 /* A helper function which returns true if types A and B represent the
3199 "same" class type. This is true if the types have the same main
3200 type, or the same name. */
3201
3202 int
3203 class_types_same_p (const struct type *a, const struct type *b)
3204 {
3205 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3206 || (TYPE_NAME (a) && TYPE_NAME (b)
3207 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3208 }
3209
3210 /* If BASE is an ancestor of DCLASS return the distance between them.
3211 otherwise return -1;
3212 eg:
3213
3214 class A {};
3215 class B: public A {};
3216 class C: public B {};
3217 class D: C {};
3218
3219 distance_to_ancestor (A, A, 0) = 0
3220 distance_to_ancestor (A, B, 0) = 1
3221 distance_to_ancestor (A, C, 0) = 2
3222 distance_to_ancestor (A, D, 0) = 3
3223
3224 If PUBLIC is 1 then only public ancestors are considered,
3225 and the function returns the distance only if BASE is a public ancestor
3226 of DCLASS.
3227 Eg:
3228
3229 distance_to_ancestor (A, D, 1) = -1. */
3230
3231 static int
3232 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3233 {
3234 int i;
3235 int d;
3236
3237 base = check_typedef (base);
3238 dclass = check_typedef (dclass);
3239
3240 if (class_types_same_p (base, dclass))
3241 return 0;
3242
3243 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3244 {
3245 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3246 continue;
3247
3248 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3249 if (d >= 0)
3250 return 1 + d;
3251 }
3252
3253 return -1;
3254 }
3255
3256 /* Check whether BASE is an ancestor or base class or DCLASS
3257 Return 1 if so, and 0 if not.
3258 Note: If BASE and DCLASS are of the same type, this function
3259 will return 1. So for some class A, is_ancestor (A, A) will
3260 return 1. */
3261
3262 int
3263 is_ancestor (struct type *base, struct type *dclass)
3264 {
3265 return distance_to_ancestor (base, dclass, 0) >= 0;
3266 }
3267
3268 /* Like is_ancestor, but only returns true when BASE is a public
3269 ancestor of DCLASS. */
3270
3271 int
3272 is_public_ancestor (struct type *base, struct type *dclass)
3273 {
3274 return distance_to_ancestor (base, dclass, 1) >= 0;
3275 }
3276
3277 /* A helper function for is_unique_ancestor. */
3278
3279 static int
3280 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3281 int *offset,
3282 const gdb_byte *valaddr, int embedded_offset,
3283 CORE_ADDR address, struct value *val)
3284 {
3285 int i, count = 0;
3286
3287 base = check_typedef (base);
3288 dclass = check_typedef (dclass);
3289
3290 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3291 {
3292 struct type *iter;
3293 int this_offset;
3294
3295 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3296
3297 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3298 address, val);
3299
3300 if (class_types_same_p (base, iter))
3301 {
3302 /* If this is the first subclass, set *OFFSET and set count
3303 to 1. Otherwise, if this is at the same offset as
3304 previous instances, do nothing. Otherwise, increment
3305 count. */
3306 if (*offset == -1)
3307 {
3308 *offset = this_offset;
3309 count = 1;
3310 }
3311 else if (this_offset == *offset)
3312 {
3313 /* Nothing. */
3314 }
3315 else
3316 ++count;
3317 }
3318 else
3319 count += is_unique_ancestor_worker (base, iter, offset,
3320 valaddr,
3321 embedded_offset + this_offset,
3322 address, val);
3323 }
3324
3325 return count;
3326 }
3327
3328 /* Like is_ancestor, but only returns true if BASE is a unique base
3329 class of the type of VAL. */
3330
3331 int
3332 is_unique_ancestor (struct type *base, struct value *val)
3333 {
3334 int offset = -1;
3335
3336 return is_unique_ancestor_worker (base, value_type (val), &offset,
3337 value_contents_for_printing (val),
3338 value_embedded_offset (val),
3339 value_address (val), val) == 1;
3340 }
3341
3342 \f
3343 /* Overload resolution. */
3344
3345 /* Return the sum of the rank of A with the rank of B. */
3346
3347 struct rank
3348 sum_ranks (struct rank a, struct rank b)
3349 {
3350 struct rank c;
3351 c.rank = a.rank + b.rank;
3352 c.subrank = a.subrank + b.subrank;
3353 return c;
3354 }
3355
3356 /* Compare rank A and B and return:
3357 0 if a = b
3358 1 if a is better than b
3359 -1 if b is better than a. */
3360
3361 int
3362 compare_ranks (struct rank a, struct rank b)
3363 {
3364 if (a.rank == b.rank)
3365 {
3366 if (a.subrank == b.subrank)
3367 return 0;
3368 if (a.subrank < b.subrank)
3369 return 1;
3370 if (a.subrank > b.subrank)
3371 return -1;
3372 }
3373
3374 if (a.rank < b.rank)
3375 return 1;
3376
3377 /* a.rank > b.rank */
3378 return -1;
3379 }
3380
3381 /* Functions for overload resolution begin here. */
3382
3383 /* Compare two badness vectors A and B and return the result.
3384 0 => A and B are identical
3385 1 => A and B are incomparable
3386 2 => A is better than B
3387 3 => A is worse than B */
3388
3389 int
3390 compare_badness (const badness_vector &a, const badness_vector &b)
3391 {
3392 int i;
3393 int tmp;
3394 short found_pos = 0; /* any positives in c? */
3395 short found_neg = 0; /* any negatives in c? */
3396
3397 /* differing sizes => incomparable */
3398 if (a.size () != b.size ())
3399 return 1;
3400
3401 /* Subtract b from a */
3402 for (i = 0; i < a.size (); i++)
3403 {
3404 tmp = compare_ranks (b[i], a[i]);
3405 if (tmp > 0)
3406 found_pos = 1;
3407 else if (tmp < 0)
3408 found_neg = 1;
3409 }
3410
3411 if (found_pos)
3412 {
3413 if (found_neg)
3414 return 1; /* incomparable */
3415 else
3416 return 3; /* A > B */
3417 }
3418 else
3419 /* no positives */
3420 {
3421 if (found_neg)
3422 return 2; /* A < B */
3423 else
3424 return 0; /* A == B */
3425 }
3426 }
3427
3428 /* Rank a function by comparing its parameter types (PARMS), to the
3429 types of an argument list (ARGS). Return the badness vector. This
3430 has ARGS.size() + 1 entries. */
3431
3432 badness_vector
3433 rank_function (gdb::array_view<type *> parms,
3434 gdb::array_view<value *> args)
3435 {
3436 /* add 1 for the length-match rank. */
3437 badness_vector bv;
3438 bv.reserve (1 + args.size ());
3439
3440 /* First compare the lengths of the supplied lists.
3441 If there is a mismatch, set it to a high value. */
3442
3443 /* pai/1997-06-03 FIXME: when we have debug info about default
3444 arguments and ellipsis parameter lists, we should consider those
3445 and rank the length-match more finely. */
3446
3447 bv.push_back ((args.size () != parms.size ())
3448 ? LENGTH_MISMATCH_BADNESS
3449 : EXACT_MATCH_BADNESS);
3450
3451 /* Now rank all the parameters of the candidate function. */
3452 size_t min_len = std::min (parms.size (), args.size ());
3453
3454 for (size_t i = 0; i < min_len; i++)
3455 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3456 args[i]));
3457
3458 /* If more arguments than parameters, add dummy entries. */
3459 for (size_t i = min_len; i < args.size (); i++)
3460 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3461
3462 return bv;
3463 }
3464
3465 /* Compare the names of two integer types, assuming that any sign
3466 qualifiers have been checked already. We do it this way because
3467 there may be an "int" in the name of one of the types. */
3468
3469 static int
3470 integer_types_same_name_p (const char *first, const char *second)
3471 {
3472 int first_p, second_p;
3473
3474 /* If both are shorts, return 1; if neither is a short, keep
3475 checking. */
3476 first_p = (strstr (first, "short") != NULL);
3477 second_p = (strstr (second, "short") != NULL);
3478 if (first_p && second_p)
3479 return 1;
3480 if (first_p || second_p)
3481 return 0;
3482
3483 /* Likewise for long. */
3484 first_p = (strstr (first, "long") != NULL);
3485 second_p = (strstr (second, "long") != NULL);
3486 if (first_p && second_p)
3487 return 1;
3488 if (first_p || second_p)
3489 return 0;
3490
3491 /* Likewise for char. */
3492 first_p = (strstr (first, "char") != NULL);
3493 second_p = (strstr (second, "char") != NULL);
3494 if (first_p && second_p)
3495 return 1;
3496 if (first_p || second_p)
3497 return 0;
3498
3499 /* They must both be ints. */
3500 return 1;
3501 }
3502
3503 /* Compares type A to type B. Returns true if they represent the same
3504 type, false otherwise. */
3505
3506 bool
3507 types_equal (struct type *a, struct type *b)
3508 {
3509 /* Identical type pointers. */
3510 /* However, this still doesn't catch all cases of same type for b
3511 and a. The reason is that builtin types are different from
3512 the same ones constructed from the object. */
3513 if (a == b)
3514 return true;
3515
3516 /* Resolve typedefs */
3517 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3518 a = check_typedef (a);
3519 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3520 b = check_typedef (b);
3521
3522 /* If after resolving typedefs a and b are not of the same type
3523 code then they are not equal. */
3524 if (TYPE_CODE (a) != TYPE_CODE (b))
3525 return false;
3526
3527 /* If a and b are both pointers types or both reference types then
3528 they are equal of the same type iff the objects they refer to are
3529 of the same type. */
3530 if (TYPE_CODE (a) == TYPE_CODE_PTR
3531 || TYPE_CODE (a) == TYPE_CODE_REF)
3532 return types_equal (TYPE_TARGET_TYPE (a),
3533 TYPE_TARGET_TYPE (b));
3534
3535 /* Well, damnit, if the names are exactly the same, I'll say they
3536 are exactly the same. This happens when we generate method
3537 stubs. The types won't point to the same address, but they
3538 really are the same. */
3539
3540 if (TYPE_NAME (a) && TYPE_NAME (b)
3541 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3542 return true;
3543
3544 /* Check if identical after resolving typedefs. */
3545 if (a == b)
3546 return true;
3547
3548 /* Two function types are equal if their argument and return types
3549 are equal. */
3550 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3551 {
3552 int i;
3553
3554 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3555 return false;
3556
3557 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3558 return false;
3559
3560 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3561 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3562 return false;
3563
3564 return true;
3565 }
3566
3567 return false;
3568 }
3569 \f
3570 /* Deep comparison of types. */
3571
3572 /* An entry in the type-equality bcache. */
3573
3574 struct type_equality_entry
3575 {
3576 type_equality_entry (struct type *t1, struct type *t2)
3577 : type1 (t1),
3578 type2 (t2)
3579 {
3580 }
3581
3582 struct type *type1, *type2;
3583 };
3584
3585 /* A helper function to compare two strings. Returns true if they are
3586 the same, false otherwise. Handles NULLs properly. */
3587
3588 static bool
3589 compare_maybe_null_strings (const char *s, const char *t)
3590 {
3591 if (s == NULL || t == NULL)
3592 return s == t;
3593 return strcmp (s, t) == 0;
3594 }
3595
3596 /* A helper function for check_types_worklist that checks two types for
3597 "deep" equality. Returns true if the types are considered the
3598 same, false otherwise. */
3599
3600 static bool
3601 check_types_equal (struct type *type1, struct type *type2,
3602 std::vector<type_equality_entry> *worklist)
3603 {
3604 type1 = check_typedef (type1);
3605 type2 = check_typedef (type2);
3606
3607 if (type1 == type2)
3608 return true;
3609
3610 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3611 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3612 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3613 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3614 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3615 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3616 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3617 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3618 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3619 return false;
3620
3621 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3622 return false;
3623 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3624 return false;
3625
3626 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3627 {
3628 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3629 return false;
3630 }
3631 else
3632 {
3633 int i;
3634
3635 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3636 {
3637 const struct field *field1 = &TYPE_FIELD (type1, i);
3638 const struct field *field2 = &TYPE_FIELD (type2, i);
3639
3640 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3641 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3642 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3643 return false;
3644 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3645 FIELD_NAME (*field2)))
3646 return false;
3647 switch (FIELD_LOC_KIND (*field1))
3648 {
3649 case FIELD_LOC_KIND_BITPOS:
3650 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3651 return false;
3652 break;
3653 case FIELD_LOC_KIND_ENUMVAL:
3654 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3655 return false;
3656 break;
3657 case FIELD_LOC_KIND_PHYSADDR:
3658 if (FIELD_STATIC_PHYSADDR (*field1)
3659 != FIELD_STATIC_PHYSADDR (*field2))
3660 return false;
3661 break;
3662 case FIELD_LOC_KIND_PHYSNAME:
3663 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3664 FIELD_STATIC_PHYSNAME (*field2)))
3665 return false;
3666 break;
3667 case FIELD_LOC_KIND_DWARF_BLOCK:
3668 {
3669 struct dwarf2_locexpr_baton *block1, *block2;
3670
3671 block1 = FIELD_DWARF_BLOCK (*field1);
3672 block2 = FIELD_DWARF_BLOCK (*field2);
3673 if (block1->per_cu != block2->per_cu
3674 || block1->size != block2->size
3675 || memcmp (block1->data, block2->data, block1->size) != 0)
3676 return false;
3677 }
3678 break;
3679 default:
3680 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3681 "%d by check_types_equal"),
3682 FIELD_LOC_KIND (*field1));
3683 }
3684
3685 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3686 }
3687 }
3688
3689 if (TYPE_TARGET_TYPE (type1) != NULL)
3690 {
3691 if (TYPE_TARGET_TYPE (type2) == NULL)
3692 return false;
3693
3694 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3695 TYPE_TARGET_TYPE (type2));
3696 }
3697 else if (TYPE_TARGET_TYPE (type2) != NULL)
3698 return false;
3699
3700 return true;
3701 }
3702
3703 /* Check types on a worklist for equality. Returns false if any pair
3704 is not equal, true if they are all considered equal. */
3705
3706 static bool
3707 check_types_worklist (std::vector<type_equality_entry> *worklist,
3708 struct bcache *cache)
3709 {
3710 while (!worklist->empty ())
3711 {
3712 int added;
3713
3714 struct type_equality_entry entry = std::move (worklist->back ());
3715 worklist->pop_back ();
3716
3717 /* If the type pair has already been visited, we know it is
3718 ok. */
3719 cache->insert (&entry, sizeof (entry), &added);
3720 if (!added)
3721 continue;
3722
3723 if (!check_types_equal (entry.type1, entry.type2, worklist))
3724 return false;
3725 }
3726
3727 return true;
3728 }
3729
3730 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3731 "deep comparison". Otherwise return false. */
3732
3733 bool
3734 types_deeply_equal (struct type *type1, struct type *type2)
3735 {
3736 std::vector<type_equality_entry> worklist;
3737
3738 gdb_assert (type1 != NULL && type2 != NULL);
3739
3740 /* Early exit for the simple case. */
3741 if (type1 == type2)
3742 return true;
3743
3744 struct bcache cache (nullptr, nullptr);
3745 worklist.emplace_back (type1, type2);
3746 return check_types_worklist (&worklist, &cache);
3747 }
3748
3749 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3750 Otherwise return one. */
3751
3752 int
3753 type_not_allocated (const struct type *type)
3754 {
3755 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3756
3757 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3758 && !TYPE_DYN_PROP_ADDR (prop));
3759 }
3760
3761 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3762 Otherwise return one. */
3763
3764 int
3765 type_not_associated (const struct type *type)
3766 {
3767 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3768
3769 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3770 && !TYPE_DYN_PROP_ADDR (prop));
3771 }
3772
3773 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3774
3775 static struct rank
3776 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3777 {
3778 struct rank rank = {0,0};
3779
3780 switch (TYPE_CODE (arg))
3781 {
3782 case TYPE_CODE_PTR:
3783
3784 /* Allowed pointer conversions are:
3785 (a) pointer to void-pointer conversion. */
3786 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3787 return VOID_PTR_CONVERSION_BADNESS;
3788
3789 /* (b) pointer to ancestor-pointer conversion. */
3790 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3791 TYPE_TARGET_TYPE (arg),
3792 0);
3793 if (rank.subrank >= 0)
3794 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3795
3796 return INCOMPATIBLE_TYPE_BADNESS;
3797 case TYPE_CODE_ARRAY:
3798 {
3799 struct type *t1 = TYPE_TARGET_TYPE (parm);
3800 struct type *t2 = TYPE_TARGET_TYPE (arg);
3801
3802 if (types_equal (t1, t2))
3803 {
3804 /* Make sure they are CV equal. */
3805 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3806 rank.subrank |= CV_CONVERSION_CONST;
3807 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3808 rank.subrank |= CV_CONVERSION_VOLATILE;
3809 if (rank.subrank != 0)
3810 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3811 return EXACT_MATCH_BADNESS;
3812 }
3813 return INCOMPATIBLE_TYPE_BADNESS;
3814 }
3815 case TYPE_CODE_FUNC:
3816 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3817 case TYPE_CODE_INT:
3818 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3819 {
3820 if (value_as_long (value) == 0)
3821 {
3822 /* Null pointer conversion: allow it to be cast to a pointer.
3823 [4.10.1 of C++ standard draft n3290] */
3824 return NULL_POINTER_CONVERSION_BADNESS;
3825 }
3826 else
3827 {
3828 /* If type checking is disabled, allow the conversion. */
3829 if (!strict_type_checking)
3830 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3831 }
3832 }
3833 /* fall through */
3834 case TYPE_CODE_ENUM:
3835 case TYPE_CODE_FLAGS:
3836 case TYPE_CODE_CHAR:
3837 case TYPE_CODE_RANGE:
3838 case TYPE_CODE_BOOL:
3839 default:
3840 return INCOMPATIBLE_TYPE_BADNESS;
3841 }
3842 }
3843
3844 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3845
3846 static struct rank
3847 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3848 {
3849 switch (TYPE_CODE (arg))
3850 {
3851 case TYPE_CODE_PTR:
3852 case TYPE_CODE_ARRAY:
3853 return rank_one_type (TYPE_TARGET_TYPE (parm),
3854 TYPE_TARGET_TYPE (arg), NULL);
3855 default:
3856 return INCOMPATIBLE_TYPE_BADNESS;
3857 }
3858 }
3859
3860 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3861
3862 static struct rank
3863 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3864 {
3865 switch (TYPE_CODE (arg))
3866 {
3867 case TYPE_CODE_PTR: /* funcptr -> func */
3868 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3869 default:
3870 return INCOMPATIBLE_TYPE_BADNESS;
3871 }
3872 }
3873
3874 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3875
3876 static struct rank
3877 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3878 {
3879 switch (TYPE_CODE (arg))
3880 {
3881 case TYPE_CODE_INT:
3882 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3883 {
3884 /* Deal with signed, unsigned, and plain chars and
3885 signed and unsigned ints. */
3886 if (TYPE_NOSIGN (parm))
3887 {
3888 /* This case only for character types. */
3889 if (TYPE_NOSIGN (arg))
3890 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3891 else /* signed/unsigned char -> plain char */
3892 return INTEGER_CONVERSION_BADNESS;
3893 }
3894 else if (TYPE_UNSIGNED (parm))
3895 {
3896 if (TYPE_UNSIGNED (arg))
3897 {
3898 /* unsigned int -> unsigned int, or
3899 unsigned long -> unsigned long */
3900 if (integer_types_same_name_p (TYPE_NAME (parm),
3901 TYPE_NAME (arg)))
3902 return EXACT_MATCH_BADNESS;
3903 else if (integer_types_same_name_p (TYPE_NAME (arg),
3904 "int")
3905 && integer_types_same_name_p (TYPE_NAME (parm),
3906 "long"))
3907 /* unsigned int -> unsigned long */
3908 return INTEGER_PROMOTION_BADNESS;
3909 else
3910 /* unsigned long -> unsigned int */
3911 return INTEGER_CONVERSION_BADNESS;
3912 }
3913 else
3914 {
3915 if (integer_types_same_name_p (TYPE_NAME (arg),
3916 "long")
3917 && integer_types_same_name_p (TYPE_NAME (parm),
3918 "int"))
3919 /* signed long -> unsigned int */
3920 return INTEGER_CONVERSION_BADNESS;
3921 else
3922 /* signed int/long -> unsigned int/long */
3923 return INTEGER_CONVERSION_BADNESS;
3924 }
3925 }
3926 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3927 {
3928 if (integer_types_same_name_p (TYPE_NAME (parm),
3929 TYPE_NAME (arg)))
3930 return EXACT_MATCH_BADNESS;
3931 else if (integer_types_same_name_p (TYPE_NAME (arg),
3932 "int")
3933 && integer_types_same_name_p (TYPE_NAME (parm),
3934 "long"))
3935 return INTEGER_PROMOTION_BADNESS;
3936 else
3937 return INTEGER_CONVERSION_BADNESS;
3938 }
3939 else
3940 return INTEGER_CONVERSION_BADNESS;
3941 }
3942 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3943 return INTEGER_PROMOTION_BADNESS;
3944 else
3945 return INTEGER_CONVERSION_BADNESS;
3946 case TYPE_CODE_ENUM:
3947 case TYPE_CODE_FLAGS:
3948 case TYPE_CODE_CHAR:
3949 case TYPE_CODE_RANGE:
3950 case TYPE_CODE_BOOL:
3951 if (TYPE_DECLARED_CLASS (arg))
3952 return INCOMPATIBLE_TYPE_BADNESS;
3953 return INTEGER_PROMOTION_BADNESS;
3954 case TYPE_CODE_FLT:
3955 return INT_FLOAT_CONVERSION_BADNESS;
3956 case TYPE_CODE_PTR:
3957 return NS_POINTER_CONVERSION_BADNESS;
3958 default:
3959 return INCOMPATIBLE_TYPE_BADNESS;
3960 }
3961 }
3962
3963 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3964
3965 static struct rank
3966 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3967 {
3968 switch (TYPE_CODE (arg))
3969 {
3970 case TYPE_CODE_INT:
3971 case TYPE_CODE_CHAR:
3972 case TYPE_CODE_RANGE:
3973 case TYPE_CODE_BOOL:
3974 case TYPE_CODE_ENUM:
3975 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3976 return INCOMPATIBLE_TYPE_BADNESS;
3977 return INTEGER_CONVERSION_BADNESS;
3978 case TYPE_CODE_FLT:
3979 return INT_FLOAT_CONVERSION_BADNESS;
3980 default:
3981 return INCOMPATIBLE_TYPE_BADNESS;
3982 }
3983 }
3984
3985 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3986
3987 static struct rank
3988 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3989 {
3990 switch (TYPE_CODE (arg))
3991 {
3992 case TYPE_CODE_RANGE:
3993 case TYPE_CODE_BOOL:
3994 case TYPE_CODE_ENUM:
3995 if (TYPE_DECLARED_CLASS (arg))
3996 return INCOMPATIBLE_TYPE_BADNESS;
3997 return INTEGER_CONVERSION_BADNESS;
3998 case TYPE_CODE_FLT:
3999 return INT_FLOAT_CONVERSION_BADNESS;
4000 case TYPE_CODE_INT:
4001 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4002 return INTEGER_CONVERSION_BADNESS;
4003 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4004 return INTEGER_PROMOTION_BADNESS;
4005 /* fall through */
4006 case TYPE_CODE_CHAR:
4007 /* Deal with signed, unsigned, and plain chars for C++ and
4008 with int cases falling through from previous case. */
4009 if (TYPE_NOSIGN (parm))
4010 {
4011 if (TYPE_NOSIGN (arg))
4012 return EXACT_MATCH_BADNESS;
4013 else
4014 return INTEGER_CONVERSION_BADNESS;
4015 }
4016 else if (TYPE_UNSIGNED (parm))
4017 {
4018 if (TYPE_UNSIGNED (arg))
4019 return EXACT_MATCH_BADNESS;
4020 else
4021 return INTEGER_PROMOTION_BADNESS;
4022 }
4023 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4024 return EXACT_MATCH_BADNESS;
4025 else
4026 return INTEGER_CONVERSION_BADNESS;
4027 default:
4028 return INCOMPATIBLE_TYPE_BADNESS;
4029 }
4030 }
4031
4032 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4033
4034 static struct rank
4035 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4036 {
4037 switch (TYPE_CODE (arg))
4038 {
4039 case TYPE_CODE_INT:
4040 case TYPE_CODE_CHAR:
4041 case TYPE_CODE_RANGE:
4042 case TYPE_CODE_BOOL:
4043 case TYPE_CODE_ENUM:
4044 return INTEGER_CONVERSION_BADNESS;
4045 case TYPE_CODE_FLT:
4046 return INT_FLOAT_CONVERSION_BADNESS;
4047 default:
4048 return INCOMPATIBLE_TYPE_BADNESS;
4049 }
4050 }
4051
4052 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4053
4054 static struct rank
4055 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4056 {
4057 switch (TYPE_CODE (arg))
4058 {
4059 /* n3290 draft, section 4.12.1 (conv.bool):
4060
4061 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4062 pointer to member type can be converted to a prvalue of type
4063 bool. A zero value, null pointer value, or null member pointer
4064 value is converted to false; any other value is converted to
4065 true. A prvalue of type std::nullptr_t can be converted to a
4066 prvalue of type bool; the resulting value is false." */
4067 case TYPE_CODE_INT:
4068 case TYPE_CODE_CHAR:
4069 case TYPE_CODE_ENUM:
4070 case TYPE_CODE_FLT:
4071 case TYPE_CODE_MEMBERPTR:
4072 case TYPE_CODE_PTR:
4073 return BOOL_CONVERSION_BADNESS;
4074 case TYPE_CODE_RANGE:
4075 return INCOMPATIBLE_TYPE_BADNESS;
4076 case TYPE_CODE_BOOL:
4077 return EXACT_MATCH_BADNESS;
4078 default:
4079 return INCOMPATIBLE_TYPE_BADNESS;
4080 }
4081 }
4082
4083 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4084
4085 static struct rank
4086 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4087 {
4088 switch (TYPE_CODE (arg))
4089 {
4090 case TYPE_CODE_FLT:
4091 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4092 return FLOAT_PROMOTION_BADNESS;
4093 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4094 return EXACT_MATCH_BADNESS;
4095 else
4096 return FLOAT_CONVERSION_BADNESS;
4097 case TYPE_CODE_INT:
4098 case TYPE_CODE_BOOL:
4099 case TYPE_CODE_ENUM:
4100 case TYPE_CODE_RANGE:
4101 case TYPE_CODE_CHAR:
4102 return INT_FLOAT_CONVERSION_BADNESS;
4103 default:
4104 return INCOMPATIBLE_TYPE_BADNESS;
4105 }
4106 }
4107
4108 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4109
4110 static struct rank
4111 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4112 {
4113 switch (TYPE_CODE (arg))
4114 { /* Strictly not needed for C++, but... */
4115 case TYPE_CODE_FLT:
4116 return FLOAT_PROMOTION_BADNESS;
4117 case TYPE_CODE_COMPLEX:
4118 return EXACT_MATCH_BADNESS;
4119 default:
4120 return INCOMPATIBLE_TYPE_BADNESS;
4121 }
4122 }
4123
4124 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4125
4126 static struct rank
4127 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4128 {
4129 struct rank rank = {0, 0};
4130
4131 switch (TYPE_CODE (arg))
4132 {
4133 case TYPE_CODE_STRUCT:
4134 /* Check for derivation */
4135 rank.subrank = distance_to_ancestor (parm, arg, 0);
4136 if (rank.subrank >= 0)
4137 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4138 /* fall through */
4139 default:
4140 return INCOMPATIBLE_TYPE_BADNESS;
4141 }
4142 }
4143
4144 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4145
4146 static struct rank
4147 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4148 {
4149 switch (TYPE_CODE (arg))
4150 {
4151 /* Not in C++ */
4152 case TYPE_CODE_SET:
4153 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4154 TYPE_FIELD_TYPE (arg, 0), NULL);
4155 default:
4156 return INCOMPATIBLE_TYPE_BADNESS;
4157 }
4158 }
4159
4160 /* Compare one type (PARM) for compatibility with another (ARG).
4161 * PARM is intended to be the parameter type of a function; and
4162 * ARG is the supplied argument's type. This function tests if
4163 * the latter can be converted to the former.
4164 * VALUE is the argument's value or NULL if none (or called recursively)
4165 *
4166 * Return 0 if they are identical types;
4167 * Otherwise, return an integer which corresponds to how compatible
4168 * PARM is to ARG. The higher the return value, the worse the match.
4169 * Generally the "bad" conversions are all uniformly assigned a 100. */
4170
4171 struct rank
4172 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4173 {
4174 struct rank rank = {0,0};
4175
4176 /* Resolve typedefs */
4177 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4178 parm = check_typedef (parm);
4179 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4180 arg = check_typedef (arg);
4181
4182 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4183 {
4184 if (VALUE_LVAL (value) == not_lval)
4185 {
4186 /* Rvalues should preferably bind to rvalue references or const
4187 lvalue references. */
4188 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4189 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4190 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4191 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4192 else
4193 return INCOMPATIBLE_TYPE_BADNESS;
4194 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4195 }
4196 else
4197 {
4198 /* Lvalues should prefer lvalue overloads. */
4199 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4200 {
4201 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4202 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4203 }
4204 }
4205 }
4206
4207 if (types_equal (parm, arg))
4208 {
4209 struct type *t1 = parm;
4210 struct type *t2 = arg;
4211
4212 /* For pointers and references, compare target type. */
4213 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4214 {
4215 t1 = TYPE_TARGET_TYPE (parm);
4216 t2 = TYPE_TARGET_TYPE (arg);
4217 }
4218
4219 /* Make sure they are CV equal, too. */
4220 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4221 rank.subrank |= CV_CONVERSION_CONST;
4222 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4223 rank.subrank |= CV_CONVERSION_VOLATILE;
4224 if (rank.subrank != 0)
4225 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4226 return EXACT_MATCH_BADNESS;
4227 }
4228
4229 /* See through references, since we can almost make non-references
4230 references. */
4231
4232 if (TYPE_IS_REFERENCE (arg))
4233 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4234 REFERENCE_CONVERSION_BADNESS));
4235 if (TYPE_IS_REFERENCE (parm))
4236 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4237 REFERENCE_CONVERSION_BADNESS));
4238 if (overload_debug)
4239 /* Debugging only. */
4240 fprintf_filtered (gdb_stderr,
4241 "------ Arg is %s [%d], parm is %s [%d]\n",
4242 TYPE_NAME (arg), TYPE_CODE (arg),
4243 TYPE_NAME (parm), TYPE_CODE (parm));
4244
4245 /* x -> y means arg of type x being supplied for parameter of type y. */
4246
4247 switch (TYPE_CODE (parm))
4248 {
4249 case TYPE_CODE_PTR:
4250 return rank_one_type_parm_ptr (parm, arg, value);
4251 case TYPE_CODE_ARRAY:
4252 return rank_one_type_parm_array (parm, arg, value);
4253 case TYPE_CODE_FUNC:
4254 return rank_one_type_parm_func (parm, arg, value);
4255 case TYPE_CODE_INT:
4256 return rank_one_type_parm_int (parm, arg, value);
4257 case TYPE_CODE_ENUM:
4258 return rank_one_type_parm_enum (parm, arg, value);
4259 case TYPE_CODE_CHAR:
4260 return rank_one_type_parm_char (parm, arg, value);
4261 case TYPE_CODE_RANGE:
4262 return rank_one_type_parm_range (parm, arg, value);
4263 case TYPE_CODE_BOOL:
4264 return rank_one_type_parm_bool (parm, arg, value);
4265 case TYPE_CODE_FLT:
4266 return rank_one_type_parm_float (parm, arg, value);
4267 case TYPE_CODE_COMPLEX:
4268 return rank_one_type_parm_complex (parm, arg, value);
4269 case TYPE_CODE_STRUCT:
4270 return rank_one_type_parm_struct (parm, arg, value);
4271 case TYPE_CODE_SET:
4272 return rank_one_type_parm_set (parm, arg, value);
4273 default:
4274 return INCOMPATIBLE_TYPE_BADNESS;
4275 } /* switch (TYPE_CODE (arg)) */
4276 }
4277
4278 /* End of functions for overload resolution. */
4279 \f
4280 /* Routines to pretty-print types. */
4281
4282 static void
4283 print_bit_vector (B_TYPE *bits, int nbits)
4284 {
4285 int bitno;
4286
4287 for (bitno = 0; bitno < nbits; bitno++)
4288 {
4289 if ((bitno % 8) == 0)
4290 {
4291 puts_filtered (" ");
4292 }
4293 if (B_TST (bits, bitno))
4294 printf_filtered (("1"));
4295 else
4296 printf_filtered (("0"));
4297 }
4298 }
4299
4300 /* Note the first arg should be the "this" pointer, we may not want to
4301 include it since we may get into a infinitely recursive
4302 situation. */
4303
4304 static void
4305 print_args (struct field *args, int nargs, int spaces)
4306 {
4307 if (args != NULL)
4308 {
4309 int i;
4310
4311 for (i = 0; i < nargs; i++)
4312 {
4313 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4314 args[i].name != NULL ? args[i].name : "<NULL>");
4315 recursive_dump_type (args[i].type, spaces + 2);
4316 }
4317 }
4318 }
4319
4320 int
4321 field_is_static (struct field *f)
4322 {
4323 /* "static" fields are the fields whose location is not relative
4324 to the address of the enclosing struct. It would be nice to
4325 have a dedicated flag that would be set for static fields when
4326 the type is being created. But in practice, checking the field
4327 loc_kind should give us an accurate answer. */
4328 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4329 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4330 }
4331
4332 static void
4333 dump_fn_fieldlists (struct type *type, int spaces)
4334 {
4335 int method_idx;
4336 int overload_idx;
4337 struct fn_field *f;
4338
4339 printfi_filtered (spaces, "fn_fieldlists ");
4340 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4341 printf_filtered ("\n");
4342 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4343 {
4344 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4345 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4346 method_idx,
4347 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4348 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4349 gdb_stdout);
4350 printf_filtered (_(") length %d\n"),
4351 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4352 for (overload_idx = 0;
4353 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4354 overload_idx++)
4355 {
4356 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4357 overload_idx,
4358 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4359 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4360 gdb_stdout);
4361 printf_filtered (")\n");
4362 printfi_filtered (spaces + 8, "type ");
4363 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4364 gdb_stdout);
4365 printf_filtered ("\n");
4366
4367 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4368 spaces + 8 + 2);
4369
4370 printfi_filtered (spaces + 8, "args ");
4371 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4372 gdb_stdout);
4373 printf_filtered ("\n");
4374 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4375 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4376 spaces + 8 + 2);
4377 printfi_filtered (spaces + 8, "fcontext ");
4378 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4379 gdb_stdout);
4380 printf_filtered ("\n");
4381
4382 printfi_filtered (spaces + 8, "is_const %d\n",
4383 TYPE_FN_FIELD_CONST (f, overload_idx));
4384 printfi_filtered (spaces + 8, "is_volatile %d\n",
4385 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4386 printfi_filtered (spaces + 8, "is_private %d\n",
4387 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4388 printfi_filtered (spaces + 8, "is_protected %d\n",
4389 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4390 printfi_filtered (spaces + 8, "is_stub %d\n",
4391 TYPE_FN_FIELD_STUB (f, overload_idx));
4392 printfi_filtered (spaces + 8, "voffset %u\n",
4393 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4394 }
4395 }
4396 }
4397
4398 static void
4399 print_cplus_stuff (struct type *type, int spaces)
4400 {
4401 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4402 printfi_filtered (spaces, "vptr_basetype ");
4403 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4404 puts_filtered ("\n");
4405 if (TYPE_VPTR_BASETYPE (type) != NULL)
4406 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4407
4408 printfi_filtered (spaces, "n_baseclasses %d\n",
4409 TYPE_N_BASECLASSES (type));
4410 printfi_filtered (spaces, "nfn_fields %d\n",
4411 TYPE_NFN_FIELDS (type));
4412 if (TYPE_N_BASECLASSES (type) > 0)
4413 {
4414 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4415 TYPE_N_BASECLASSES (type));
4416 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4417 gdb_stdout);
4418 printf_filtered (")");
4419
4420 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4421 TYPE_N_BASECLASSES (type));
4422 puts_filtered ("\n");
4423 }
4424 if (TYPE_NFIELDS (type) > 0)
4425 {
4426 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4427 {
4428 printfi_filtered (spaces,
4429 "private_field_bits (%d bits at *",
4430 TYPE_NFIELDS (type));
4431 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4432 gdb_stdout);
4433 printf_filtered (")");
4434 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4435 TYPE_NFIELDS (type));
4436 puts_filtered ("\n");
4437 }
4438 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4439 {
4440 printfi_filtered (spaces,
4441 "protected_field_bits (%d bits at *",
4442 TYPE_NFIELDS (type));
4443 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4444 gdb_stdout);
4445 printf_filtered (")");
4446 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4447 TYPE_NFIELDS (type));
4448 puts_filtered ("\n");
4449 }
4450 }
4451 if (TYPE_NFN_FIELDS (type) > 0)
4452 {
4453 dump_fn_fieldlists (type, spaces);
4454 }
4455 }
4456
4457 /* Print the contents of the TYPE's type_specific union, assuming that
4458 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4459
4460 static void
4461 print_gnat_stuff (struct type *type, int spaces)
4462 {
4463 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4464
4465 if (descriptive_type == NULL)
4466 printfi_filtered (spaces + 2, "no descriptive type\n");
4467 else
4468 {
4469 printfi_filtered (spaces + 2, "descriptive type\n");
4470 recursive_dump_type (descriptive_type, spaces + 4);
4471 }
4472 }
4473
4474 static struct obstack dont_print_type_obstack;
4475
4476 void
4477 recursive_dump_type (struct type *type, int spaces)
4478 {
4479 int idx;
4480
4481 if (spaces == 0)
4482 obstack_begin (&dont_print_type_obstack, 0);
4483
4484 if (TYPE_NFIELDS (type) > 0
4485 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4486 {
4487 struct type **first_dont_print
4488 = (struct type **) obstack_base (&dont_print_type_obstack);
4489
4490 int i = (struct type **)
4491 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4492
4493 while (--i >= 0)
4494 {
4495 if (type == first_dont_print[i])
4496 {
4497 printfi_filtered (spaces, "type node ");
4498 gdb_print_host_address (type, gdb_stdout);
4499 printf_filtered (_(" <same as already seen type>\n"));
4500 return;
4501 }
4502 }
4503
4504 obstack_ptr_grow (&dont_print_type_obstack, type);
4505 }
4506
4507 printfi_filtered (spaces, "type node ");
4508 gdb_print_host_address (type, gdb_stdout);
4509 printf_filtered ("\n");
4510 printfi_filtered (spaces, "name '%s' (",
4511 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4512 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4513 printf_filtered (")\n");
4514 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4515 switch (TYPE_CODE (type))
4516 {
4517 case TYPE_CODE_UNDEF:
4518 printf_filtered ("(TYPE_CODE_UNDEF)");
4519 break;
4520 case TYPE_CODE_PTR:
4521 printf_filtered ("(TYPE_CODE_PTR)");
4522 break;
4523 case TYPE_CODE_ARRAY:
4524 printf_filtered ("(TYPE_CODE_ARRAY)");
4525 break;
4526 case TYPE_CODE_STRUCT:
4527 printf_filtered ("(TYPE_CODE_STRUCT)");
4528 break;
4529 case TYPE_CODE_UNION:
4530 printf_filtered ("(TYPE_CODE_UNION)");
4531 break;
4532 case TYPE_CODE_ENUM:
4533 printf_filtered ("(TYPE_CODE_ENUM)");
4534 break;
4535 case TYPE_CODE_FLAGS:
4536 printf_filtered ("(TYPE_CODE_FLAGS)");
4537 break;
4538 case TYPE_CODE_FUNC:
4539 printf_filtered ("(TYPE_CODE_FUNC)");
4540 break;
4541 case TYPE_CODE_INT:
4542 printf_filtered ("(TYPE_CODE_INT)");
4543 break;
4544 case TYPE_CODE_FLT:
4545 printf_filtered ("(TYPE_CODE_FLT)");
4546 break;
4547 case TYPE_CODE_VOID:
4548 printf_filtered ("(TYPE_CODE_VOID)");
4549 break;
4550 case TYPE_CODE_SET:
4551 printf_filtered ("(TYPE_CODE_SET)");
4552 break;
4553 case TYPE_CODE_RANGE:
4554 printf_filtered ("(TYPE_CODE_RANGE)");
4555 break;
4556 case TYPE_CODE_STRING:
4557 printf_filtered ("(TYPE_CODE_STRING)");
4558 break;
4559 case TYPE_CODE_ERROR:
4560 printf_filtered ("(TYPE_CODE_ERROR)");
4561 break;
4562 case TYPE_CODE_MEMBERPTR:
4563 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4564 break;
4565 case TYPE_CODE_METHODPTR:
4566 printf_filtered ("(TYPE_CODE_METHODPTR)");
4567 break;
4568 case TYPE_CODE_METHOD:
4569 printf_filtered ("(TYPE_CODE_METHOD)");
4570 break;
4571 case TYPE_CODE_REF:
4572 printf_filtered ("(TYPE_CODE_REF)");
4573 break;
4574 case TYPE_CODE_CHAR:
4575 printf_filtered ("(TYPE_CODE_CHAR)");
4576 break;
4577 case TYPE_CODE_BOOL:
4578 printf_filtered ("(TYPE_CODE_BOOL)");
4579 break;
4580 case TYPE_CODE_COMPLEX:
4581 printf_filtered ("(TYPE_CODE_COMPLEX)");
4582 break;
4583 case TYPE_CODE_TYPEDEF:
4584 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4585 break;
4586 case TYPE_CODE_NAMESPACE:
4587 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4588 break;
4589 default:
4590 printf_filtered ("(UNKNOWN TYPE CODE)");
4591 break;
4592 }
4593 puts_filtered ("\n");
4594 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4595 if (TYPE_OBJFILE_OWNED (type))
4596 {
4597 printfi_filtered (spaces, "objfile ");
4598 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4599 }
4600 else
4601 {
4602 printfi_filtered (spaces, "gdbarch ");
4603 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4604 }
4605 printf_filtered ("\n");
4606 printfi_filtered (spaces, "target_type ");
4607 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4608 printf_filtered ("\n");
4609 if (TYPE_TARGET_TYPE (type) != NULL)
4610 {
4611 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4612 }
4613 printfi_filtered (spaces, "pointer_type ");
4614 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4615 printf_filtered ("\n");
4616 printfi_filtered (spaces, "reference_type ");
4617 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4618 printf_filtered ("\n");
4619 printfi_filtered (spaces, "type_chain ");
4620 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4621 printf_filtered ("\n");
4622 printfi_filtered (spaces, "instance_flags 0x%x",
4623 TYPE_INSTANCE_FLAGS (type));
4624 if (TYPE_CONST (type))
4625 {
4626 puts_filtered (" TYPE_CONST");
4627 }
4628 if (TYPE_VOLATILE (type))
4629 {
4630 puts_filtered (" TYPE_VOLATILE");
4631 }
4632 if (TYPE_CODE_SPACE (type))
4633 {
4634 puts_filtered (" TYPE_CODE_SPACE");
4635 }
4636 if (TYPE_DATA_SPACE (type))
4637 {
4638 puts_filtered (" TYPE_DATA_SPACE");
4639 }
4640 if (TYPE_ADDRESS_CLASS_1 (type))
4641 {
4642 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4643 }
4644 if (TYPE_ADDRESS_CLASS_2 (type))
4645 {
4646 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4647 }
4648 if (TYPE_RESTRICT (type))
4649 {
4650 puts_filtered (" TYPE_RESTRICT");
4651 }
4652 if (TYPE_ATOMIC (type))
4653 {
4654 puts_filtered (" TYPE_ATOMIC");
4655 }
4656 puts_filtered ("\n");
4657
4658 printfi_filtered (spaces, "flags");
4659 if (TYPE_UNSIGNED (type))
4660 {
4661 puts_filtered (" TYPE_UNSIGNED");
4662 }
4663 if (TYPE_NOSIGN (type))
4664 {
4665 puts_filtered (" TYPE_NOSIGN");
4666 }
4667 if (TYPE_STUB (type))
4668 {
4669 puts_filtered (" TYPE_STUB");
4670 }
4671 if (TYPE_TARGET_STUB (type))
4672 {
4673 puts_filtered (" TYPE_TARGET_STUB");
4674 }
4675 if (TYPE_PROTOTYPED (type))
4676 {
4677 puts_filtered (" TYPE_PROTOTYPED");
4678 }
4679 if (TYPE_INCOMPLETE (type))
4680 {
4681 puts_filtered (" TYPE_INCOMPLETE");
4682 }
4683 if (TYPE_VARARGS (type))
4684 {
4685 puts_filtered (" TYPE_VARARGS");
4686 }
4687 /* This is used for things like AltiVec registers on ppc. Gcc emits
4688 an attribute for the array type, which tells whether or not we
4689 have a vector, instead of a regular array. */
4690 if (TYPE_VECTOR (type))
4691 {
4692 puts_filtered (" TYPE_VECTOR");
4693 }
4694 if (TYPE_FIXED_INSTANCE (type))
4695 {
4696 puts_filtered (" TYPE_FIXED_INSTANCE");
4697 }
4698 if (TYPE_STUB_SUPPORTED (type))
4699 {
4700 puts_filtered (" TYPE_STUB_SUPPORTED");
4701 }
4702 if (TYPE_NOTTEXT (type))
4703 {
4704 puts_filtered (" TYPE_NOTTEXT");
4705 }
4706 puts_filtered ("\n");
4707 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4708 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4709 puts_filtered ("\n");
4710 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4711 {
4712 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4713 printfi_filtered (spaces + 2,
4714 "[%d] enumval %s type ",
4715 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4716 else
4717 printfi_filtered (spaces + 2,
4718 "[%d] bitpos %s bitsize %d type ",
4719 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4720 TYPE_FIELD_BITSIZE (type, idx));
4721 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4722 printf_filtered (" name '%s' (",
4723 TYPE_FIELD_NAME (type, idx) != NULL
4724 ? TYPE_FIELD_NAME (type, idx)
4725 : "<NULL>");
4726 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4727 printf_filtered (")\n");
4728 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4729 {
4730 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4731 }
4732 }
4733 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4734 {
4735 printfi_filtered (spaces, "low %s%s high %s%s\n",
4736 plongest (TYPE_LOW_BOUND (type)),
4737 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4738 plongest (TYPE_HIGH_BOUND (type)),
4739 TYPE_HIGH_BOUND_UNDEFINED (type)
4740 ? " (undefined)" : "");
4741 }
4742
4743 switch (TYPE_SPECIFIC_FIELD (type))
4744 {
4745 case TYPE_SPECIFIC_CPLUS_STUFF:
4746 printfi_filtered (spaces, "cplus_stuff ");
4747 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4748 gdb_stdout);
4749 puts_filtered ("\n");
4750 print_cplus_stuff (type, spaces);
4751 break;
4752
4753 case TYPE_SPECIFIC_GNAT_STUFF:
4754 printfi_filtered (spaces, "gnat_stuff ");
4755 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4756 puts_filtered ("\n");
4757 print_gnat_stuff (type, spaces);
4758 break;
4759
4760 case TYPE_SPECIFIC_FLOATFORMAT:
4761 printfi_filtered (spaces, "floatformat ");
4762 if (TYPE_FLOATFORMAT (type) == NULL
4763 || TYPE_FLOATFORMAT (type)->name == NULL)
4764 puts_filtered ("(null)");
4765 else
4766 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4767 puts_filtered ("\n");
4768 break;
4769
4770 case TYPE_SPECIFIC_FUNC:
4771 printfi_filtered (spaces, "calling_convention %d\n",
4772 TYPE_CALLING_CONVENTION (type));
4773 /* tail_call_list is not printed. */
4774 break;
4775
4776 case TYPE_SPECIFIC_SELF_TYPE:
4777 printfi_filtered (spaces, "self_type ");
4778 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4779 puts_filtered ("\n");
4780 break;
4781 }
4782
4783 if (spaces == 0)
4784 obstack_free (&dont_print_type_obstack, NULL);
4785 }
4786 \f
4787 /* Trivial helpers for the libiberty hash table, for mapping one
4788 type to another. */
4789
4790 struct type_pair : public allocate_on_obstack
4791 {
4792 type_pair (struct type *old_, struct type *newobj_)
4793 : old (old_), newobj (newobj_)
4794 {}
4795
4796 struct type * const old, * const newobj;
4797 };
4798
4799 static hashval_t
4800 type_pair_hash (const void *item)
4801 {
4802 const struct type_pair *pair = (const struct type_pair *) item;
4803
4804 return htab_hash_pointer (pair->old);
4805 }
4806
4807 static int
4808 type_pair_eq (const void *item_lhs, const void *item_rhs)
4809 {
4810 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4811 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4812
4813 return lhs->old == rhs->old;
4814 }
4815
4816 /* Allocate the hash table used by copy_type_recursive to walk
4817 types without duplicates. We use OBJFILE's obstack, because
4818 OBJFILE is about to be deleted. */
4819
4820 htab_t
4821 create_copied_types_hash (struct objfile *objfile)
4822 {
4823 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4824 NULL, &objfile->objfile_obstack,
4825 hashtab_obstack_allocate,
4826 dummy_obstack_deallocate);
4827 }
4828
4829 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4830
4831 static struct dynamic_prop_list *
4832 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4833 struct dynamic_prop_list *list)
4834 {
4835 struct dynamic_prop_list *copy = list;
4836 struct dynamic_prop_list **node_ptr = &copy;
4837
4838 while (*node_ptr != NULL)
4839 {
4840 struct dynamic_prop_list *node_copy;
4841
4842 node_copy = ((struct dynamic_prop_list *)
4843 obstack_copy (objfile_obstack, *node_ptr,
4844 sizeof (struct dynamic_prop_list)));
4845 node_copy->prop = (*node_ptr)->prop;
4846 *node_ptr = node_copy;
4847
4848 node_ptr = &node_copy->next;
4849 }
4850
4851 return copy;
4852 }
4853
4854 /* Recursively copy (deep copy) TYPE, if it is associated with
4855 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4856 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4857 it is not associated with OBJFILE. */
4858
4859 struct type *
4860 copy_type_recursive (struct objfile *objfile,
4861 struct type *type,
4862 htab_t copied_types)
4863 {
4864 void **slot;
4865 struct type *new_type;
4866
4867 if (! TYPE_OBJFILE_OWNED (type))
4868 return type;
4869
4870 /* This type shouldn't be pointing to any types in other objfiles;
4871 if it did, the type might disappear unexpectedly. */
4872 gdb_assert (TYPE_OBJFILE (type) == objfile);
4873
4874 struct type_pair pair (type, nullptr);
4875
4876 slot = htab_find_slot (copied_types, &pair, INSERT);
4877 if (*slot != NULL)
4878 return ((struct type_pair *) *slot)->newobj;
4879
4880 new_type = alloc_type_arch (get_type_arch (type));
4881
4882 /* We must add the new type to the hash table immediately, in case
4883 we encounter this type again during a recursive call below. */
4884 struct type_pair *stored
4885 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4886
4887 *slot = stored;
4888
4889 /* Copy the common fields of types. For the main type, we simply
4890 copy the entire thing and then update specific fields as needed. */
4891 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4892 TYPE_OBJFILE_OWNED (new_type) = 0;
4893 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4894
4895 if (TYPE_NAME (type))
4896 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4897
4898 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4899 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4900
4901 /* Copy the fields. */
4902 if (TYPE_NFIELDS (type))
4903 {
4904 int i, nfields;
4905
4906 nfields = TYPE_NFIELDS (type);
4907 TYPE_FIELDS (new_type) = (struct field *)
4908 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4909 for (i = 0; i < nfields; i++)
4910 {
4911 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4912 TYPE_FIELD_ARTIFICIAL (type, i);
4913 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4914 if (TYPE_FIELD_TYPE (type, i))
4915 TYPE_FIELD_TYPE (new_type, i)
4916 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4917 copied_types);
4918 if (TYPE_FIELD_NAME (type, i))
4919 TYPE_FIELD_NAME (new_type, i) =
4920 xstrdup (TYPE_FIELD_NAME (type, i));
4921 switch (TYPE_FIELD_LOC_KIND (type, i))
4922 {
4923 case FIELD_LOC_KIND_BITPOS:
4924 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4925 TYPE_FIELD_BITPOS (type, i));
4926 break;
4927 case FIELD_LOC_KIND_ENUMVAL:
4928 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4929 TYPE_FIELD_ENUMVAL (type, i));
4930 break;
4931 case FIELD_LOC_KIND_PHYSADDR:
4932 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4933 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4934 break;
4935 case FIELD_LOC_KIND_PHYSNAME:
4936 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4937 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4938 i)));
4939 break;
4940 default:
4941 internal_error (__FILE__, __LINE__,
4942 _("Unexpected type field location kind: %d"),
4943 TYPE_FIELD_LOC_KIND (type, i));
4944 }
4945 }
4946 }
4947
4948 /* For range types, copy the bounds information. */
4949 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4950 {
4951 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4952 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4953 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4954 }
4955
4956 if (TYPE_DYN_PROP_LIST (type) != NULL)
4957 TYPE_DYN_PROP_LIST (new_type)
4958 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4959 TYPE_DYN_PROP_LIST (type));
4960
4961
4962 /* Copy pointers to other types. */
4963 if (TYPE_TARGET_TYPE (type))
4964 TYPE_TARGET_TYPE (new_type) =
4965 copy_type_recursive (objfile,
4966 TYPE_TARGET_TYPE (type),
4967 copied_types);
4968
4969 /* Maybe copy the type_specific bits.
4970
4971 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4972 base classes and methods. There's no fundamental reason why we
4973 can't, but at the moment it is not needed. */
4974
4975 switch (TYPE_SPECIFIC_FIELD (type))
4976 {
4977 case TYPE_SPECIFIC_NONE:
4978 break;
4979 case TYPE_SPECIFIC_FUNC:
4980 INIT_FUNC_SPECIFIC (new_type);
4981 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4982 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4983 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4984 break;
4985 case TYPE_SPECIFIC_FLOATFORMAT:
4986 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4987 break;
4988 case TYPE_SPECIFIC_CPLUS_STUFF:
4989 INIT_CPLUS_SPECIFIC (new_type);
4990 break;
4991 case TYPE_SPECIFIC_GNAT_STUFF:
4992 INIT_GNAT_SPECIFIC (new_type);
4993 break;
4994 case TYPE_SPECIFIC_SELF_TYPE:
4995 set_type_self_type (new_type,
4996 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4997 copied_types));
4998 break;
4999 default:
5000 gdb_assert_not_reached ("bad type_specific_kind");
5001 }
5002
5003 return new_type;
5004 }
5005
5006 /* Make a copy of the given TYPE, except that the pointer & reference
5007 types are not preserved.
5008
5009 This function assumes that the given type has an associated objfile.
5010 This objfile is used to allocate the new type. */
5011
5012 struct type *
5013 copy_type (const struct type *type)
5014 {
5015 struct type *new_type;
5016
5017 gdb_assert (TYPE_OBJFILE_OWNED (type));
5018
5019 new_type = alloc_type_copy (type);
5020 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5021 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5022 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5023 sizeof (struct main_type));
5024 if (TYPE_DYN_PROP_LIST (type) != NULL)
5025 TYPE_DYN_PROP_LIST (new_type)
5026 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5027 TYPE_DYN_PROP_LIST (type));
5028
5029 return new_type;
5030 }
5031 \f
5032 /* Helper functions to initialize architecture-specific types. */
5033
5034 /* Allocate a type structure associated with GDBARCH and set its
5035 CODE, LENGTH, and NAME fields. */
5036
5037 struct type *
5038 arch_type (struct gdbarch *gdbarch,
5039 enum type_code code, int bit, const char *name)
5040 {
5041 struct type *type;
5042
5043 type = alloc_type_arch (gdbarch);
5044 set_type_code (type, code);
5045 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5046 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5047
5048 if (name)
5049 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5050
5051 return type;
5052 }
5053
5054 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5055 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5056 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5057
5058 struct type *
5059 arch_integer_type (struct gdbarch *gdbarch,
5060 int bit, int unsigned_p, const char *name)
5061 {
5062 struct type *t;
5063
5064 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5065 if (unsigned_p)
5066 TYPE_UNSIGNED (t) = 1;
5067
5068 return t;
5069 }
5070
5071 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5072 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5073 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5074
5075 struct type *
5076 arch_character_type (struct gdbarch *gdbarch,
5077 int bit, int unsigned_p, const char *name)
5078 {
5079 struct type *t;
5080
5081 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5082 if (unsigned_p)
5083 TYPE_UNSIGNED (t) = 1;
5084
5085 return t;
5086 }
5087
5088 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5089 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5090 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5091
5092 struct type *
5093 arch_boolean_type (struct gdbarch *gdbarch,
5094 int bit, int unsigned_p, const char *name)
5095 {
5096 struct type *t;
5097
5098 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5099 if (unsigned_p)
5100 TYPE_UNSIGNED (t) = 1;
5101
5102 return t;
5103 }
5104
5105 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5106 BIT is the type size in bits; if BIT equals -1, the size is
5107 determined by the floatformat. NAME is the type name. Set the
5108 TYPE_FLOATFORMAT from FLOATFORMATS. */
5109
5110 struct type *
5111 arch_float_type (struct gdbarch *gdbarch,
5112 int bit, const char *name,
5113 const struct floatformat **floatformats)
5114 {
5115 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5116 struct type *t;
5117
5118 bit = verify_floatformat (bit, fmt);
5119 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5120 TYPE_FLOATFORMAT (t) = fmt;
5121
5122 return t;
5123 }
5124
5125 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5126 BIT is the type size in bits. NAME is the type name. */
5127
5128 struct type *
5129 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5130 {
5131 struct type *t;
5132
5133 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5134 return t;
5135 }
5136
5137 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5138 NAME is the type name. TARGET_TYPE is the component float type. */
5139
5140 struct type *
5141 arch_complex_type (struct gdbarch *gdbarch,
5142 const char *name, struct type *target_type)
5143 {
5144 struct type *t;
5145
5146 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5147 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5148 TYPE_TARGET_TYPE (t) = target_type;
5149 return t;
5150 }
5151
5152 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5153 BIT is the pointer type size in bits. NAME is the type name.
5154 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5155 TYPE_UNSIGNED flag. */
5156
5157 struct type *
5158 arch_pointer_type (struct gdbarch *gdbarch,
5159 int bit, const char *name, struct type *target_type)
5160 {
5161 struct type *t;
5162
5163 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5164 TYPE_TARGET_TYPE (t) = target_type;
5165 TYPE_UNSIGNED (t) = 1;
5166 return t;
5167 }
5168
5169 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5170 NAME is the type name. BIT is the size of the flag word in bits. */
5171
5172 struct type *
5173 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5174 {
5175 struct type *type;
5176
5177 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5178 TYPE_UNSIGNED (type) = 1;
5179 TYPE_NFIELDS (type) = 0;
5180 /* Pre-allocate enough space assuming every field is one bit. */
5181 TYPE_FIELDS (type)
5182 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5183
5184 return type;
5185 }
5186
5187 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5188 position BITPOS is called NAME. Pass NAME as "" for fields that
5189 should not be printed. */
5190
5191 void
5192 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5193 struct type *field_type, const char *name)
5194 {
5195 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5196 int field_nr = TYPE_NFIELDS (type);
5197
5198 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5199 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5200 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5201 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5202 gdb_assert (name != NULL);
5203
5204 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5205 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5206 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5207 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5208 ++TYPE_NFIELDS (type);
5209 }
5210
5211 /* Special version of append_flags_type_field to add a flag field.
5212 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5213 position BITPOS is called NAME. */
5214
5215 void
5216 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5217 {
5218 struct gdbarch *gdbarch = get_type_arch (type);
5219
5220 append_flags_type_field (type, bitpos, 1,
5221 builtin_type (gdbarch)->builtin_bool,
5222 name);
5223 }
5224
5225 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5226 specified by CODE) associated with GDBARCH. NAME is the type name. */
5227
5228 struct type *
5229 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5230 enum type_code code)
5231 {
5232 struct type *t;
5233
5234 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5235 t = arch_type (gdbarch, code, 0, NULL);
5236 TYPE_NAME (t) = name;
5237 INIT_CPLUS_SPECIFIC (t);
5238 return t;
5239 }
5240
5241 /* Add new field with name NAME and type FIELD to composite type T.
5242 Do not set the field's position or adjust the type's length;
5243 the caller should do so. Return the new field. */
5244
5245 struct field *
5246 append_composite_type_field_raw (struct type *t, const char *name,
5247 struct type *field)
5248 {
5249 struct field *f;
5250
5251 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5252 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5253 TYPE_NFIELDS (t));
5254 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5255 memset (f, 0, sizeof f[0]);
5256 FIELD_TYPE (f[0]) = field;
5257 FIELD_NAME (f[0]) = name;
5258 return f;
5259 }
5260
5261 /* Add new field with name NAME and type FIELD to composite type T.
5262 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5263
5264 void
5265 append_composite_type_field_aligned (struct type *t, const char *name,
5266 struct type *field, int alignment)
5267 {
5268 struct field *f = append_composite_type_field_raw (t, name, field);
5269
5270 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5271 {
5272 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5273 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5274 }
5275 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5276 {
5277 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5278 if (TYPE_NFIELDS (t) > 1)
5279 {
5280 SET_FIELD_BITPOS (f[0],
5281 (FIELD_BITPOS (f[-1])
5282 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5283 * TARGET_CHAR_BIT)));
5284
5285 if (alignment)
5286 {
5287 int left;
5288
5289 alignment *= TARGET_CHAR_BIT;
5290 left = FIELD_BITPOS (f[0]) % alignment;
5291
5292 if (left)
5293 {
5294 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5295 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5296 }
5297 }
5298 }
5299 }
5300 }
5301
5302 /* Add new field with name NAME and type FIELD to composite type T. */
5303
5304 void
5305 append_composite_type_field (struct type *t, const char *name,
5306 struct type *field)
5307 {
5308 append_composite_type_field_aligned (t, name, field, 0);
5309 }
5310
5311 static struct gdbarch_data *gdbtypes_data;
5312
5313 const struct builtin_type *
5314 builtin_type (struct gdbarch *gdbarch)
5315 {
5316 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5317 }
5318
5319 static void *
5320 gdbtypes_post_init (struct gdbarch *gdbarch)
5321 {
5322 struct builtin_type *builtin_type
5323 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5324
5325 /* Basic types. */
5326 builtin_type->builtin_void
5327 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5328 builtin_type->builtin_char
5329 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5330 !gdbarch_char_signed (gdbarch), "char");
5331 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5332 builtin_type->builtin_signed_char
5333 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5334 0, "signed char");
5335 builtin_type->builtin_unsigned_char
5336 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5337 1, "unsigned char");
5338 builtin_type->builtin_short
5339 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5340 0, "short");
5341 builtin_type->builtin_unsigned_short
5342 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5343 1, "unsigned short");
5344 builtin_type->builtin_int
5345 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5346 0, "int");
5347 builtin_type->builtin_unsigned_int
5348 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5349 1, "unsigned int");
5350 builtin_type->builtin_long
5351 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5352 0, "long");
5353 builtin_type->builtin_unsigned_long
5354 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5355 1, "unsigned long");
5356 builtin_type->builtin_long_long
5357 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5358 0, "long long");
5359 builtin_type->builtin_unsigned_long_long
5360 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5361 1, "unsigned long long");
5362 builtin_type->builtin_half
5363 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5364 "half", gdbarch_half_format (gdbarch));
5365 builtin_type->builtin_float
5366 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5367 "float", gdbarch_float_format (gdbarch));
5368 builtin_type->builtin_double
5369 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5370 "double", gdbarch_double_format (gdbarch));
5371 builtin_type->builtin_long_double
5372 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5373 "long double", gdbarch_long_double_format (gdbarch));
5374 builtin_type->builtin_complex
5375 = arch_complex_type (gdbarch, "complex",
5376 builtin_type->builtin_float);
5377 builtin_type->builtin_double_complex
5378 = arch_complex_type (gdbarch, "double complex",
5379 builtin_type->builtin_double);
5380 builtin_type->builtin_string
5381 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5382 builtin_type->builtin_bool
5383 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5384
5385 /* The following three are about decimal floating point types, which
5386 are 32-bits, 64-bits and 128-bits respectively. */
5387 builtin_type->builtin_decfloat
5388 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5389 builtin_type->builtin_decdouble
5390 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5391 builtin_type->builtin_declong
5392 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5393
5394 /* "True" character types. */
5395 builtin_type->builtin_true_char
5396 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5397 builtin_type->builtin_true_unsigned_char
5398 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5399
5400 /* Fixed-size integer types. */
5401 builtin_type->builtin_int0
5402 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5403 builtin_type->builtin_int8
5404 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5405 builtin_type->builtin_uint8
5406 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5407 builtin_type->builtin_int16
5408 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5409 builtin_type->builtin_uint16
5410 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5411 builtin_type->builtin_int24
5412 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5413 builtin_type->builtin_uint24
5414 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5415 builtin_type->builtin_int32
5416 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5417 builtin_type->builtin_uint32
5418 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5419 builtin_type->builtin_int64
5420 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5421 builtin_type->builtin_uint64
5422 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5423 builtin_type->builtin_int128
5424 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5425 builtin_type->builtin_uint128
5426 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5427 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5428 TYPE_INSTANCE_FLAG_NOTTEXT;
5429 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5430 TYPE_INSTANCE_FLAG_NOTTEXT;
5431
5432 /* Wide character types. */
5433 builtin_type->builtin_char16
5434 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5435 builtin_type->builtin_char32
5436 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5437 builtin_type->builtin_wchar
5438 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5439 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5440
5441 /* Default data/code pointer types. */
5442 builtin_type->builtin_data_ptr
5443 = lookup_pointer_type (builtin_type->builtin_void);
5444 builtin_type->builtin_func_ptr
5445 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5446 builtin_type->builtin_func_func
5447 = lookup_function_type (builtin_type->builtin_func_ptr);
5448
5449 /* This type represents a GDB internal function. */
5450 builtin_type->internal_fn
5451 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5452 "<internal function>");
5453
5454 /* This type represents an xmethod. */
5455 builtin_type->xmethod
5456 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5457
5458 return builtin_type;
5459 }
5460
5461 /* This set of objfile-based types is intended to be used by symbol
5462 readers as basic types. */
5463
5464 static const struct objfile_key<struct objfile_type,
5465 gdb::noop_deleter<struct objfile_type>>
5466 objfile_type_data;
5467
5468 const struct objfile_type *
5469 objfile_type (struct objfile *objfile)
5470 {
5471 struct gdbarch *gdbarch;
5472 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5473
5474 if (objfile_type)
5475 return objfile_type;
5476
5477 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5478 1, struct objfile_type);
5479
5480 /* Use the objfile architecture to determine basic type properties. */
5481 gdbarch = get_objfile_arch (objfile);
5482
5483 /* Basic types. */
5484 objfile_type->builtin_void
5485 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5486 objfile_type->builtin_char
5487 = init_integer_type (objfile, TARGET_CHAR_BIT,
5488 !gdbarch_char_signed (gdbarch), "char");
5489 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5490 objfile_type->builtin_signed_char
5491 = init_integer_type (objfile, TARGET_CHAR_BIT,
5492 0, "signed char");
5493 objfile_type->builtin_unsigned_char
5494 = init_integer_type (objfile, TARGET_CHAR_BIT,
5495 1, "unsigned char");
5496 objfile_type->builtin_short
5497 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5498 0, "short");
5499 objfile_type->builtin_unsigned_short
5500 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5501 1, "unsigned short");
5502 objfile_type->builtin_int
5503 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5504 0, "int");
5505 objfile_type->builtin_unsigned_int
5506 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5507 1, "unsigned int");
5508 objfile_type->builtin_long
5509 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5510 0, "long");
5511 objfile_type->builtin_unsigned_long
5512 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5513 1, "unsigned long");
5514 objfile_type->builtin_long_long
5515 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5516 0, "long long");
5517 objfile_type->builtin_unsigned_long_long
5518 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5519 1, "unsigned long long");
5520 objfile_type->builtin_float
5521 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5522 "float", gdbarch_float_format (gdbarch));
5523 objfile_type->builtin_double
5524 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5525 "double", gdbarch_double_format (gdbarch));
5526 objfile_type->builtin_long_double
5527 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5528 "long double", gdbarch_long_double_format (gdbarch));
5529
5530 /* This type represents a type that was unrecognized in symbol read-in. */
5531 objfile_type->builtin_error
5532 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5533
5534 /* The following set of types is used for symbols with no
5535 debug information. */
5536 objfile_type->nodebug_text_symbol
5537 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5538 "<text variable, no debug info>");
5539 objfile_type->nodebug_text_gnu_ifunc_symbol
5540 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5541 "<text gnu-indirect-function variable, no debug info>");
5542 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5543 objfile_type->nodebug_got_plt_symbol
5544 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5545 "<text from jump slot in .got.plt, no debug info>",
5546 objfile_type->nodebug_text_symbol);
5547 objfile_type->nodebug_data_symbol
5548 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5549 objfile_type->nodebug_unknown_symbol
5550 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5551 objfile_type->nodebug_tls_symbol
5552 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5553
5554 /* NOTE: on some targets, addresses and pointers are not necessarily
5555 the same.
5556
5557 The upshot is:
5558 - gdb's `struct type' always describes the target's
5559 representation.
5560 - gdb's `struct value' objects should always hold values in
5561 target form.
5562 - gdb's CORE_ADDR values are addresses in the unified virtual
5563 address space that the assembler and linker work with. Thus,
5564 since target_read_memory takes a CORE_ADDR as an argument, it
5565 can access any memory on the target, even if the processor has
5566 separate code and data address spaces.
5567
5568 In this context, objfile_type->builtin_core_addr is a bit odd:
5569 it's a target type for a value the target will never see. It's
5570 only used to hold the values of (typeless) linker symbols, which
5571 are indeed in the unified virtual address space. */
5572
5573 objfile_type->builtin_core_addr
5574 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5575 "__CORE_ADDR");
5576
5577 objfile_type_data.set (objfile, objfile_type);
5578 return objfile_type;
5579 }
5580
5581 void
5582 _initialize_gdbtypes (void)
5583 {
5584 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5585
5586 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5587 _("Set debugging of C++ overloading."),
5588 _("Show debugging of C++ overloading."),
5589 _("When enabled, ranking of the "
5590 "functions is displayed."),
5591 NULL,
5592 show_overload_debug,
5593 &setdebuglist, &showdebuglist);
5594
5595 /* Add user knob for controlling resolution of opaque types. */
5596 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5597 &opaque_type_resolution,
5598 _("Set resolution of opaque struct/class/union"
5599 " types (if set before loading symbols)."),
5600 _("Show resolution of opaque struct/class/union"
5601 " types (if set before loading symbols)."),
5602 NULL, NULL,
5603 show_opaque_type_resolution,
5604 &setlist, &showlist);
5605
5606 /* Add an option to permit non-strict type checking. */
5607 add_setshow_boolean_cmd ("type", class_support,
5608 &strict_type_checking,
5609 _("Set strict type checking."),
5610 _("Show strict type checking."),
5611 NULL, NULL,
5612 show_strict_type_checking,
5613 &setchecklist, &showchecklist);
5614 }
This page took 0.153795 seconds and 4 git commands to generate.