gdb: Dynamic string length support
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static bool opaque_type_resolution = true;
120
121 /* See gdbtypes.h. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static bool strict_type_checking = true;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 struct gdbarch *arch;
236
237 if (TYPE_OBJFILE_OWNED (type))
238 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
239 else
240 arch = TYPE_OWNER (type).gdbarch;
241
242 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
243 a gdbarch, however, this is very rare, and even then, in most cases
244 that get_type_arch is called, we assume that a non-NULL value is
245 returned. */
246 gdb_assert (arch != NULL);
247 return arch;
248 }
249
250 /* See gdbtypes.h. */
251
252 struct type *
253 get_target_type (struct type *type)
254 {
255 if (type != NULL)
256 {
257 type = TYPE_TARGET_TYPE (type);
258 if (type != NULL)
259 type = check_typedef (type);
260 }
261
262 return type;
263 }
264
265 /* See gdbtypes.h. */
266
267 unsigned int
268 type_length_units (struct type *type)
269 {
270 struct gdbarch *arch = get_type_arch (type);
271 int unit_size = gdbarch_addressable_memory_unit_size (arch);
272
273 return TYPE_LENGTH (type) / unit_size;
274 }
275
276 /* Alloc a new type instance structure, fill it with some defaults,
277 and point it at OLDTYPE. Allocate the new type instance from the
278 same place as OLDTYPE. */
279
280 static struct type *
281 alloc_type_instance (struct type *oldtype)
282 {
283 struct type *type;
284
285 /* Allocate the structure. */
286
287 if (! TYPE_OBJFILE_OWNED (oldtype))
288 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
289 else
290 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
291 struct type);
292
293 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
294
295 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
296
297 return type;
298 }
299
300 /* Clear all remnants of the previous type at TYPE, in preparation for
301 replacing it with something else. Preserve owner information. */
302
303 static void
304 smash_type (struct type *type)
305 {
306 int objfile_owned = TYPE_OBJFILE_OWNED (type);
307 union type_owner owner = TYPE_OWNER (type);
308
309 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
310
311 /* Restore owner information. */
312 TYPE_OBJFILE_OWNED (type) = objfile_owned;
313 TYPE_OWNER (type) = owner;
314
315 /* For now, delete the rings. */
316 TYPE_CHAIN (type) = type;
317
318 /* For now, leave the pointer/reference types alone. */
319 }
320
321 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
322 to a pointer to memory where the pointer type should be stored.
323 If *TYPEPTR is zero, update it to point to the pointer type we return.
324 We allocate new memory if needed. */
325
326 struct type *
327 make_pointer_type (struct type *type, struct type **typeptr)
328 {
329 struct type *ntype; /* New type */
330 struct type *chain;
331
332 ntype = TYPE_POINTER_TYPE (type);
333
334 if (ntype)
335 {
336 if (typeptr == 0)
337 return ntype; /* Don't care about alloc,
338 and have new type. */
339 else if (*typeptr == 0)
340 {
341 *typeptr = ntype; /* Tracking alloc, and have new type. */
342 return ntype;
343 }
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
348 ntype = alloc_type_copy (type);
349 if (typeptr)
350 *typeptr = ntype;
351 }
352 else /* We have storage, but need to reset it. */
353 {
354 ntype = *typeptr;
355 chain = TYPE_CHAIN (ntype);
356 smash_type (ntype);
357 TYPE_CHAIN (ntype) = chain;
358 }
359
360 TYPE_TARGET_TYPE (ntype) = type;
361 TYPE_POINTER_TYPE (type) = ntype;
362
363 /* FIXME! Assumes the machine has only one representation for pointers! */
364
365 TYPE_LENGTH (ntype)
366 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
367 TYPE_CODE (ntype) = TYPE_CODE_PTR;
368
369 /* Mark pointers as unsigned. The target converts between pointers
370 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
371 gdbarch_address_to_pointer. */
372 TYPE_UNSIGNED (ntype) = 1;
373
374 /* Update the length of all the other variants of this type. */
375 chain = TYPE_CHAIN (ntype);
376 while (chain != ntype)
377 {
378 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
379 chain = TYPE_CHAIN (chain);
380 }
381
382 return ntype;
383 }
384
385 /* Given a type TYPE, return a type of pointers to that type.
386 May need to construct such a type if this is the first use. */
387
388 struct type *
389 lookup_pointer_type (struct type *type)
390 {
391 return make_pointer_type (type, (struct type **) 0);
392 }
393
394 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
395 points to a pointer to memory where the reference type should be
396 stored. If *TYPEPTR is zero, update it to point to the reference
397 type we return. We allocate new memory if needed. REFCODE denotes
398 the kind of reference type to lookup (lvalue or rvalue reference). */
399
400 struct type *
401 make_reference_type (struct type *type, struct type **typeptr,
402 enum type_code refcode)
403 {
404 struct type *ntype; /* New type */
405 struct type **reftype;
406 struct type *chain;
407
408 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
409
410 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
411 : TYPE_RVALUE_REFERENCE_TYPE (type));
412
413 if (ntype)
414 {
415 if (typeptr == 0)
416 return ntype; /* Don't care about alloc,
417 and have new type. */
418 else if (*typeptr == 0)
419 {
420 *typeptr = ntype; /* Tracking alloc, and have new type. */
421 return ntype;
422 }
423 }
424
425 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
426 {
427 ntype = alloc_type_copy (type);
428 if (typeptr)
429 *typeptr = ntype;
430 }
431 else /* We have storage, but need to reset it. */
432 {
433 ntype = *typeptr;
434 chain = TYPE_CHAIN (ntype);
435 smash_type (ntype);
436 TYPE_CHAIN (ntype) = chain;
437 }
438
439 TYPE_TARGET_TYPE (ntype) = type;
440 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
441 : &TYPE_RVALUE_REFERENCE_TYPE (type));
442
443 *reftype = ntype;
444
445 /* FIXME! Assume the machine has only one representation for
446 references, and that it matches the (only) representation for
447 pointers! */
448
449 TYPE_LENGTH (ntype) =
450 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
451 TYPE_CODE (ntype) = refcode;
452
453 *reftype = ntype;
454
455 /* Update the length of all the other variants of this type. */
456 chain = TYPE_CHAIN (ntype);
457 while (chain != ntype)
458 {
459 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
460 chain = TYPE_CHAIN (chain);
461 }
462
463 return ntype;
464 }
465
466 /* Same as above, but caller doesn't care about memory allocation
467 details. */
468
469 struct type *
470 lookup_reference_type (struct type *type, enum type_code refcode)
471 {
472 return make_reference_type (type, (struct type **) 0, refcode);
473 }
474
475 /* Lookup the lvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_lvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_REF);
481 }
482
483 /* Lookup the rvalue reference type for the type TYPE. */
484
485 struct type *
486 lookup_rvalue_reference_type (struct type *type)
487 {
488 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
489 }
490
491 /* Lookup a function type that returns type TYPE. TYPEPTR, if
492 nonzero, points to a pointer to memory where the function type
493 should be stored. If *TYPEPTR is zero, update it to point to the
494 function type we return. We allocate new memory if needed. */
495
496 struct type *
497 make_function_type (struct type *type, struct type **typeptr)
498 {
499 struct type *ntype; /* New type */
500
501 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
502 {
503 ntype = alloc_type_copy (type);
504 if (typeptr)
505 *typeptr = ntype;
506 }
507 else /* We have storage, but need to reset it. */
508 {
509 ntype = *typeptr;
510 smash_type (ntype);
511 }
512
513 TYPE_TARGET_TYPE (ntype) = type;
514
515 TYPE_LENGTH (ntype) = 1;
516 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
517
518 INIT_FUNC_SPECIFIC (ntype);
519
520 return ntype;
521 }
522
523 /* Given a type TYPE, return a type of functions that return that type.
524 May need to construct such a type if this is the first use. */
525
526 struct type *
527 lookup_function_type (struct type *type)
528 {
529 return make_function_type (type, (struct type **) 0);
530 }
531
532 /* Given a type TYPE and argument types, return the appropriate
533 function type. If the final type in PARAM_TYPES is NULL, make a
534 varargs function. */
535
536 struct type *
537 lookup_function_type_with_arguments (struct type *type,
538 int nparams,
539 struct type **param_types)
540 {
541 struct type *fn = make_function_type (type, (struct type **) 0);
542 int i;
543
544 if (nparams > 0)
545 {
546 if (param_types[nparams - 1] == NULL)
547 {
548 --nparams;
549 TYPE_VARARGS (fn) = 1;
550 }
551 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
552 == TYPE_CODE_VOID)
553 {
554 --nparams;
555 /* Caller should have ensured this. */
556 gdb_assert (nparams == 0);
557 TYPE_PROTOTYPED (fn) = 1;
558 }
559 else
560 TYPE_PROTOTYPED (fn) = 1;
561 }
562
563 TYPE_NFIELDS (fn) = nparams;
564 TYPE_FIELDS (fn)
565 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
566 for (i = 0; i < nparams; ++i)
567 TYPE_FIELD_TYPE (fn, i) = param_types[i];
568
569 return fn;
570 }
571
572 /* Identify address space identifier by name --
573 return the integer flag defined in gdbtypes.h. */
574
575 int
576 address_space_name_to_int (struct gdbarch *gdbarch,
577 const char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated)
904 && FIELD_EQ (bias));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound,
916 LONGEST bias)
917 {
918 /* The INDEX_TYPE should be a type capable of holding the upper and lower
919 bounds, as such a zero sized, or void type makes no sense. */
920 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
921 gdb_assert (TYPE_LENGTH (index_type) > 0);
922
923 if (result_type == NULL)
924 result_type = alloc_type_copy (index_type);
925 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
926 TYPE_TARGET_TYPE (result_type) = index_type;
927 if (TYPE_STUB (index_type))
928 TYPE_TARGET_STUB (result_type) = 1;
929 else
930 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
931
932 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
933 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
934 TYPE_RANGE_DATA (result_type)->low = *low_bound;
935 TYPE_RANGE_DATA (result_type)->high = *high_bound;
936 TYPE_RANGE_DATA (result_type)->bias = bias;
937
938 /* Initialize the stride to be a constant, the value will already be zero
939 thanks to the use of TYPE_ZALLOC above. */
940 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
941
942 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
943 TYPE_UNSIGNED (result_type) = 1;
944
945 /* Ada allows the declaration of range types whose upper bound is
946 less than the lower bound, so checking the lower bound is not
947 enough. Make sure we do not mark a range type whose upper bound
948 is negative as unsigned. */
949 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
950 TYPE_UNSIGNED (result_type) = 0;
951
952 return result_type;
953 }
954
955 /* See gdbtypes.h. */
956
957 struct type *
958 create_range_type_with_stride (struct type *result_type,
959 struct type *index_type,
960 const struct dynamic_prop *low_bound,
961 const struct dynamic_prop *high_bound,
962 LONGEST bias,
963 const struct dynamic_prop *stride,
964 bool byte_stride_p)
965 {
966 result_type = create_range_type (result_type, index_type, low_bound,
967 high_bound, bias);
968
969 gdb_assert (stride != nullptr);
970 TYPE_RANGE_DATA (result_type)->stride = *stride;
971 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
972
973 return result_type;
974 }
975
976
977
978 /* Create a range type using either a blank type supplied in
979 RESULT_TYPE, or creating a new type, inheriting the objfile from
980 INDEX_TYPE.
981
982 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
983 to HIGH_BOUND, inclusive.
984
985 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
986 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
987
988 struct type *
989 create_static_range_type (struct type *result_type, struct type *index_type,
990 LONGEST low_bound, LONGEST high_bound)
991 {
992 struct dynamic_prop low, high;
993
994 low.kind = PROP_CONST;
995 low.data.const_val = low_bound;
996
997 high.kind = PROP_CONST;
998 high.data.const_val = high_bound;
999
1000 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1001
1002 return result_type;
1003 }
1004
1005 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1006 are static, otherwise returns 0. */
1007
1008 static bool
1009 has_static_range (const struct range_bounds *bounds)
1010 {
1011 /* If the range doesn't have a defined stride then its stride field will
1012 be initialized to the constant 0. */
1013 return (bounds->low.kind == PROP_CONST
1014 && bounds->high.kind == PROP_CONST
1015 && bounds->stride.kind == PROP_CONST);
1016 }
1017
1018
1019 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1020 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1021 bounds will fit in LONGEST), or -1 otherwise. */
1022
1023 int
1024 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1025 {
1026 type = check_typedef (type);
1027 switch (TYPE_CODE (type))
1028 {
1029 case TYPE_CODE_RANGE:
1030 *lowp = TYPE_LOW_BOUND (type);
1031 *highp = TYPE_HIGH_BOUND (type);
1032 return 1;
1033 case TYPE_CODE_ENUM:
1034 if (TYPE_NFIELDS (type) > 0)
1035 {
1036 /* The enums may not be sorted by value, so search all
1037 entries. */
1038 int i;
1039
1040 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1041 for (i = 0; i < TYPE_NFIELDS (type); i++)
1042 {
1043 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1044 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1045 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1046 *highp = TYPE_FIELD_ENUMVAL (type, i);
1047 }
1048
1049 /* Set unsigned indicator if warranted. */
1050 if (*lowp >= 0)
1051 {
1052 TYPE_UNSIGNED (type) = 1;
1053 }
1054 }
1055 else
1056 {
1057 *lowp = 0;
1058 *highp = -1;
1059 }
1060 return 0;
1061 case TYPE_CODE_BOOL:
1062 *lowp = 0;
1063 *highp = 1;
1064 return 0;
1065 case TYPE_CODE_INT:
1066 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1067 return -1;
1068 if (!TYPE_UNSIGNED (type))
1069 {
1070 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1071 *highp = -*lowp - 1;
1072 return 0;
1073 }
1074 /* fall through */
1075 case TYPE_CODE_CHAR:
1076 *lowp = 0;
1077 /* This round-about calculation is to avoid shifting by
1078 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1079 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1080 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1081 *highp = (*highp - 1) | *highp;
1082 return 0;
1083 default:
1084 return -1;
1085 }
1086 }
1087
1088 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1089 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1090 Save the high bound into HIGH_BOUND if not NULL.
1091
1092 Return 1 if the operation was successful. Return zero otherwise,
1093 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1094
1095 We now simply use get_discrete_bounds call to get the values
1096 of the low and high bounds.
1097 get_discrete_bounds can return three values:
1098 1, meaning that index is a range,
1099 0, meaning that index is a discrete type,
1100 or -1 for failure. */
1101
1102 int
1103 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1104 {
1105 struct type *index = TYPE_INDEX_TYPE (type);
1106 LONGEST low = 0;
1107 LONGEST high = 0;
1108 int res;
1109
1110 if (index == NULL)
1111 return 0;
1112
1113 res = get_discrete_bounds (index, &low, &high);
1114 if (res == -1)
1115 return 0;
1116
1117 /* Check if the array bounds are undefined. */
1118 if (res == 1
1119 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1120 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1121 return 0;
1122
1123 if (low_bound)
1124 *low_bound = low;
1125
1126 if (high_bound)
1127 *high_bound = high;
1128
1129 return 1;
1130 }
1131
1132 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1133 representation of a value of this type, save the corresponding
1134 position number in POS.
1135
1136 Its differs from VAL only in the case of enumeration types. In
1137 this case, the position number of the value of the first listed
1138 enumeration literal is zero; the position number of the value of
1139 each subsequent enumeration literal is one more than that of its
1140 predecessor in the list.
1141
1142 Return 1 if the operation was successful. Return zero otherwise,
1143 in which case the value of POS is unmodified.
1144 */
1145
1146 int
1147 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1148 {
1149 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1150 {
1151 int i;
1152
1153 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1154 {
1155 if (val == TYPE_FIELD_ENUMVAL (type, i))
1156 {
1157 *pos = i;
1158 return 1;
1159 }
1160 }
1161 /* Invalid enumeration value. */
1162 return 0;
1163 }
1164 else
1165 {
1166 *pos = val;
1167 return 1;
1168 }
1169 }
1170
1171 /* Create an array type using either a blank type supplied in
1172 RESULT_TYPE, or creating a new type, inheriting the objfile from
1173 RANGE_TYPE.
1174
1175 Elements will be of type ELEMENT_TYPE, the indices will be of type
1176 RANGE_TYPE.
1177
1178 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1179 This byte stride property is added to the resulting array type
1180 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1181 argument can only be used to create types that are objfile-owned
1182 (see add_dyn_prop), meaning that either this function must be called
1183 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1184
1185 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1186 If BIT_STRIDE is not zero, build a packed array type whose element
1187 size is BIT_STRIDE. Otherwise, ignore this parameter.
1188
1189 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1190 sure it is TYPE_CODE_UNDEF before we bash it into an array
1191 type? */
1192
1193 struct type *
1194 create_array_type_with_stride (struct type *result_type,
1195 struct type *element_type,
1196 struct type *range_type,
1197 struct dynamic_prop *byte_stride_prop,
1198 unsigned int bit_stride)
1199 {
1200 if (byte_stride_prop != NULL
1201 && byte_stride_prop->kind == PROP_CONST)
1202 {
1203 /* The byte stride is actually not dynamic. Pretend we were
1204 called with bit_stride set instead of byte_stride_prop.
1205 This will give us the same result type, while avoiding
1206 the need to handle this as a special case. */
1207 bit_stride = byte_stride_prop->data.const_val * 8;
1208 byte_stride_prop = NULL;
1209 }
1210
1211 if (result_type == NULL)
1212 result_type = alloc_type_copy (range_type);
1213
1214 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1215 TYPE_TARGET_TYPE (result_type) = element_type;
1216 if (byte_stride_prop == NULL
1217 && has_static_range (TYPE_RANGE_DATA (range_type))
1218 && (!type_not_associated (result_type)
1219 && !type_not_allocated (result_type)))
1220 {
1221 LONGEST low_bound, high_bound;
1222 unsigned int stride;
1223
1224 /* If the array itself doesn't provide a stride value then take
1225 whatever stride the range provides. Don't update BIT_STRIDE as
1226 we don't want to place the stride value from the range into this
1227 arrays bit size field. */
1228 stride = bit_stride;
1229 if (stride == 0)
1230 stride = TYPE_BIT_STRIDE (range_type);
1231
1232 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1233 low_bound = high_bound = 0;
1234 element_type = check_typedef (element_type);
1235 /* Be careful when setting the array length. Ada arrays can be
1236 empty arrays with the high_bound being smaller than the low_bound.
1237 In such cases, the array length should be zero. */
1238 if (high_bound < low_bound)
1239 TYPE_LENGTH (result_type) = 0;
1240 else if (stride > 0)
1241 TYPE_LENGTH (result_type) =
1242 (stride * (high_bound - low_bound + 1) + 7) / 8;
1243 else
1244 TYPE_LENGTH (result_type) =
1245 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1246 }
1247 else
1248 {
1249 /* This type is dynamic and its length needs to be computed
1250 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1251 undefined by setting it to zero. Although we are not expected
1252 to trust TYPE_LENGTH in this case, setting the size to zero
1253 allows us to avoid allocating objects of random sizes in case
1254 we accidently do. */
1255 TYPE_LENGTH (result_type) = 0;
1256 }
1257
1258 TYPE_NFIELDS (result_type) = 1;
1259 TYPE_FIELDS (result_type) =
1260 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1261 TYPE_INDEX_TYPE (result_type) = range_type;
1262 if (byte_stride_prop != NULL)
1263 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1264 else if (bit_stride > 0)
1265 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1266
1267 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1268 if (TYPE_LENGTH (result_type) == 0)
1269 TYPE_TARGET_STUB (result_type) = 1;
1270
1271 return result_type;
1272 }
1273
1274 /* Same as create_array_type_with_stride but with no bit_stride
1275 (BIT_STRIDE = 0), thus building an unpacked array. */
1276
1277 struct type *
1278 create_array_type (struct type *result_type,
1279 struct type *element_type,
1280 struct type *range_type)
1281 {
1282 return create_array_type_with_stride (result_type, element_type,
1283 range_type, NULL, 0);
1284 }
1285
1286 struct type *
1287 lookup_array_range_type (struct type *element_type,
1288 LONGEST low_bound, LONGEST high_bound)
1289 {
1290 struct type *index_type;
1291 struct type *range_type;
1292
1293 if (TYPE_OBJFILE_OWNED (element_type))
1294 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1295 else
1296 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1297 range_type = create_static_range_type (NULL, index_type,
1298 low_bound, high_bound);
1299
1300 return create_array_type (NULL, element_type, range_type);
1301 }
1302
1303 /* Create a string type using either a blank type supplied in
1304 RESULT_TYPE, or creating a new type. String types are similar
1305 enough to array of char types that we can use create_array_type to
1306 build the basic type and then bash it into a string type.
1307
1308 For fixed length strings, the range type contains 0 as the lower
1309 bound and the length of the string minus one as the upper bound.
1310
1311 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1312 sure it is TYPE_CODE_UNDEF before we bash it into a string
1313 type? */
1314
1315 struct type *
1316 create_string_type (struct type *result_type,
1317 struct type *string_char_type,
1318 struct type *range_type)
1319 {
1320 result_type = create_array_type (result_type,
1321 string_char_type,
1322 range_type);
1323 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1324 return result_type;
1325 }
1326
1327 struct type *
1328 lookup_string_range_type (struct type *string_char_type,
1329 LONGEST low_bound, LONGEST high_bound)
1330 {
1331 struct type *result_type;
1332
1333 result_type = lookup_array_range_type (string_char_type,
1334 low_bound, high_bound);
1335 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1336 return result_type;
1337 }
1338
1339 struct type *
1340 create_set_type (struct type *result_type, struct type *domain_type)
1341 {
1342 if (result_type == NULL)
1343 result_type = alloc_type_copy (domain_type);
1344
1345 TYPE_CODE (result_type) = TYPE_CODE_SET;
1346 TYPE_NFIELDS (result_type) = 1;
1347 TYPE_FIELDS (result_type)
1348 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1349
1350 if (!TYPE_STUB (domain_type))
1351 {
1352 LONGEST low_bound, high_bound, bit_length;
1353
1354 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1355 low_bound = high_bound = 0;
1356 bit_length = high_bound - low_bound + 1;
1357 TYPE_LENGTH (result_type)
1358 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1359 if (low_bound >= 0)
1360 TYPE_UNSIGNED (result_type) = 1;
1361 }
1362 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1363
1364 return result_type;
1365 }
1366
1367 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1368 and any array types nested inside it. */
1369
1370 void
1371 make_vector_type (struct type *array_type)
1372 {
1373 struct type *inner_array, *elt_type;
1374 int flags;
1375
1376 /* Find the innermost array type, in case the array is
1377 multi-dimensional. */
1378 inner_array = array_type;
1379 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1380 inner_array = TYPE_TARGET_TYPE (inner_array);
1381
1382 elt_type = TYPE_TARGET_TYPE (inner_array);
1383 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1384 {
1385 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1386 elt_type = make_qualified_type (elt_type, flags, NULL);
1387 TYPE_TARGET_TYPE (inner_array) = elt_type;
1388 }
1389
1390 TYPE_VECTOR (array_type) = 1;
1391 }
1392
1393 struct type *
1394 init_vector_type (struct type *elt_type, int n)
1395 {
1396 struct type *array_type;
1397
1398 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1399 make_vector_type (array_type);
1400 return array_type;
1401 }
1402
1403 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1404 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1405 confusing. "self" is a common enough replacement for "this".
1406 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1407 TYPE_CODE_METHOD. */
1408
1409 struct type *
1410 internal_type_self_type (struct type *type)
1411 {
1412 switch (TYPE_CODE (type))
1413 {
1414 case TYPE_CODE_METHODPTR:
1415 case TYPE_CODE_MEMBERPTR:
1416 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1417 return NULL;
1418 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1419 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1420 case TYPE_CODE_METHOD:
1421 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1422 return NULL;
1423 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1424 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1425 default:
1426 gdb_assert_not_reached ("bad type");
1427 }
1428 }
1429
1430 /* Set the type of the class that TYPE belongs to.
1431 In c++ this is the class of "this".
1432 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1433 TYPE_CODE_METHOD. */
1434
1435 void
1436 set_type_self_type (struct type *type, struct type *self_type)
1437 {
1438 switch (TYPE_CODE (type))
1439 {
1440 case TYPE_CODE_METHODPTR:
1441 case TYPE_CODE_MEMBERPTR:
1442 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1443 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1444 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1445 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1446 break;
1447 case TYPE_CODE_METHOD:
1448 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1449 INIT_FUNC_SPECIFIC (type);
1450 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1451 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1452 break;
1453 default:
1454 gdb_assert_not_reached ("bad type");
1455 }
1456 }
1457
1458 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1459 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1460 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1461 TYPE doesn't include the offset (that's the value of the MEMBER
1462 itself), but does include the structure type into which it points
1463 (for some reason).
1464
1465 When "smashing" the type, we preserve the objfile that the old type
1466 pointed to, since we aren't changing where the type is actually
1467 allocated. */
1468
1469 void
1470 smash_to_memberptr_type (struct type *type, struct type *self_type,
1471 struct type *to_type)
1472 {
1473 smash_type (type);
1474 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1475 TYPE_TARGET_TYPE (type) = to_type;
1476 set_type_self_type (type, self_type);
1477 /* Assume that a data member pointer is the same size as a normal
1478 pointer. */
1479 TYPE_LENGTH (type)
1480 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1481 }
1482
1483 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1484
1485 When "smashing" the type, we preserve the objfile that the old type
1486 pointed to, since we aren't changing where the type is actually
1487 allocated. */
1488
1489 void
1490 smash_to_methodptr_type (struct type *type, struct type *to_type)
1491 {
1492 smash_type (type);
1493 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1494 TYPE_TARGET_TYPE (type) = to_type;
1495 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1496 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1497 }
1498
1499 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1500 METHOD just means `function that gets an extra "this" argument'.
1501
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
1504 allocated. */
1505
1506 void
1507 smash_to_method_type (struct type *type, struct type *self_type,
1508 struct type *to_type, struct field *args,
1509 int nargs, int varargs)
1510 {
1511 smash_type (type);
1512 TYPE_CODE (type) = TYPE_CODE_METHOD;
1513 TYPE_TARGET_TYPE (type) = to_type;
1514 set_type_self_type (type, self_type);
1515 TYPE_FIELDS (type) = args;
1516 TYPE_NFIELDS (type) = nargs;
1517 if (varargs)
1518 TYPE_VARARGS (type) = 1;
1519 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1520 }
1521
1522 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1523 Since GCC PR debug/47510 DWARF provides associated information to detect the
1524 anonymous class linkage name from its typedef.
1525
1526 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1527 apply it itself. */
1528
1529 const char *
1530 type_name_or_error (struct type *type)
1531 {
1532 struct type *saved_type = type;
1533 const char *name;
1534 struct objfile *objfile;
1535
1536 type = check_typedef (type);
1537
1538 name = TYPE_NAME (type);
1539 if (name != NULL)
1540 return name;
1541
1542 name = TYPE_NAME (saved_type);
1543 objfile = TYPE_OBJFILE (saved_type);
1544 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1545 name ? name : "<anonymous>",
1546 objfile ? objfile_name (objfile) : "<arch>");
1547 }
1548
1549 /* Lookup a typedef or primitive type named NAME, visible in lexical
1550 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1551 suitably defined. */
1552
1553 struct type *
1554 lookup_typename (const struct language_defn *language,
1555 struct gdbarch *gdbarch, const char *name,
1556 const struct block *block, int noerr)
1557 {
1558 struct symbol *sym;
1559
1560 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1561 language->la_language, NULL).symbol;
1562 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1563 return SYMBOL_TYPE (sym);
1564
1565 if (noerr)
1566 return NULL;
1567 error (_("No type named %s."), name);
1568 }
1569
1570 struct type *
1571 lookup_unsigned_typename (const struct language_defn *language,
1572 struct gdbarch *gdbarch, const char *name)
1573 {
1574 char *uns = (char *) alloca (strlen (name) + 10);
1575
1576 strcpy (uns, "unsigned ");
1577 strcpy (uns + 9, name);
1578 return lookup_typename (language, gdbarch, uns, NULL, 0);
1579 }
1580
1581 struct type *
1582 lookup_signed_typename (const struct language_defn *language,
1583 struct gdbarch *gdbarch, const char *name)
1584 {
1585 struct type *t;
1586 char *uns = (char *) alloca (strlen (name) + 8);
1587
1588 strcpy (uns, "signed ");
1589 strcpy (uns + 7, name);
1590 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1591 /* If we don't find "signed FOO" just try again with plain "FOO". */
1592 if (t != NULL)
1593 return t;
1594 return lookup_typename (language, gdbarch, name, NULL, 0);
1595 }
1596
1597 /* Lookup a structure type named "struct NAME",
1598 visible in lexical block BLOCK. */
1599
1600 struct type *
1601 lookup_struct (const char *name, const struct block *block)
1602 {
1603 struct symbol *sym;
1604
1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1606
1607 if (sym == NULL)
1608 {
1609 error (_("No struct type named %s."), name);
1610 }
1611 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1612 {
1613 error (_("This context has class, union or enum %s, not a struct."),
1614 name);
1615 }
1616 return (SYMBOL_TYPE (sym));
1617 }
1618
1619 /* Lookup a union type named "union NAME",
1620 visible in lexical block BLOCK. */
1621
1622 struct type *
1623 lookup_union (const char *name, const struct block *block)
1624 {
1625 struct symbol *sym;
1626 struct type *t;
1627
1628 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1629
1630 if (sym == NULL)
1631 error (_("No union type named %s."), name);
1632
1633 t = SYMBOL_TYPE (sym);
1634
1635 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1636 return t;
1637
1638 /* If we get here, it's not a union. */
1639 error (_("This context has class, struct or enum %s, not a union."),
1640 name);
1641 }
1642
1643 /* Lookup an enum type named "enum NAME",
1644 visible in lexical block BLOCK. */
1645
1646 struct type *
1647 lookup_enum (const char *name, const struct block *block)
1648 {
1649 struct symbol *sym;
1650
1651 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1652 if (sym == NULL)
1653 {
1654 error (_("No enum type named %s."), name);
1655 }
1656 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1657 {
1658 error (_("This context has class, struct or union %s, not an enum."),
1659 name);
1660 }
1661 return (SYMBOL_TYPE (sym));
1662 }
1663
1664 /* Lookup a template type named "template NAME<TYPE>",
1665 visible in lexical block BLOCK. */
1666
1667 struct type *
1668 lookup_template_type (const char *name, struct type *type,
1669 const struct block *block)
1670 {
1671 struct symbol *sym;
1672 char *nam = (char *)
1673 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1674
1675 strcpy (nam, name);
1676 strcat (nam, "<");
1677 strcat (nam, TYPE_NAME (type));
1678 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1679
1680 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1681
1682 if (sym == NULL)
1683 {
1684 error (_("No template type named %s."), name);
1685 }
1686 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1687 {
1688 error (_("This context has class, union or enum %s, not a struct."),
1689 name);
1690 }
1691 return (SYMBOL_TYPE (sym));
1692 }
1693
1694 /* See gdbtypes.h. */
1695
1696 struct_elt
1697 lookup_struct_elt (struct type *type, const char *name, int noerr)
1698 {
1699 int i;
1700
1701 for (;;)
1702 {
1703 type = check_typedef (type);
1704 if (TYPE_CODE (type) != TYPE_CODE_PTR
1705 && TYPE_CODE (type) != TYPE_CODE_REF)
1706 break;
1707 type = TYPE_TARGET_TYPE (type);
1708 }
1709
1710 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1711 && TYPE_CODE (type) != TYPE_CODE_UNION)
1712 {
1713 std::string type_name = type_to_string (type);
1714 error (_("Type %s is not a structure or union type."),
1715 type_name.c_str ());
1716 }
1717
1718 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1719 {
1720 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1721
1722 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1723 {
1724 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1725 }
1726 else if (!t_field_name || *t_field_name == '\0')
1727 {
1728 struct_elt elt
1729 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1730 if (elt.field != NULL)
1731 {
1732 elt.offset += TYPE_FIELD_BITPOS (type, i);
1733 return elt;
1734 }
1735 }
1736 }
1737
1738 /* OK, it's not in this class. Recursively check the baseclasses. */
1739 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1740 {
1741 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1742 if (elt.field != NULL)
1743 return elt;
1744 }
1745
1746 if (noerr)
1747 return {nullptr, 0};
1748
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1751 }
1752
1753 /* See gdbtypes.h. */
1754
1755 struct type *
1756 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1757 {
1758 struct_elt elt = lookup_struct_elt (type, name, noerr);
1759 if (elt.field != NULL)
1760 return FIELD_TYPE (*elt.field);
1761 else
1762 return NULL;
1763 }
1764
1765 /* Store in *MAX the largest number representable by unsigned integer type
1766 TYPE. */
1767
1768 void
1769 get_unsigned_type_max (struct type *type, ULONGEST *max)
1770 {
1771 unsigned int n;
1772
1773 type = check_typedef (type);
1774 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1775 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1776
1777 /* Written this way to avoid overflow. */
1778 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1779 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1780 }
1781
1782 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1783 signed integer type TYPE. */
1784
1785 void
1786 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1787 {
1788 unsigned int n;
1789
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1792 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1793
1794 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1795 *min = -((ULONGEST) 1 << (n - 1));
1796 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1797 }
1798
1799 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1800 cplus_stuff.vptr_fieldno.
1801
1802 cplus_stuff is initialized to cplus_struct_default which does not
1803 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1804 designated initializers). We cope with that here. */
1805
1806 int
1807 internal_type_vptr_fieldno (struct type *type)
1808 {
1809 type = check_typedef (type);
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1811 || TYPE_CODE (type) == TYPE_CODE_UNION);
1812 if (!HAVE_CPLUS_STRUCT (type))
1813 return -1;
1814 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1815 }
1816
1817 /* Set the value of cplus_stuff.vptr_fieldno. */
1818
1819 void
1820 set_type_vptr_fieldno (struct type *type, int fieldno)
1821 {
1822 type = check_typedef (type);
1823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1824 || TYPE_CODE (type) == TYPE_CODE_UNION);
1825 if (!HAVE_CPLUS_STRUCT (type))
1826 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1827 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1828 }
1829
1830 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1831 cplus_stuff.vptr_basetype. */
1832
1833 struct type *
1834 internal_type_vptr_basetype (struct type *type)
1835 {
1836 type = check_typedef (type);
1837 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1838 || TYPE_CODE (type) == TYPE_CODE_UNION);
1839 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1840 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1841 }
1842
1843 /* Set the value of cplus_stuff.vptr_basetype. */
1844
1845 void
1846 set_type_vptr_basetype (struct type *type, struct type *basetype)
1847 {
1848 type = check_typedef (type);
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 if (!HAVE_CPLUS_STRUCT (type))
1852 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1853 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1854 }
1855
1856 /* Lookup the vptr basetype/fieldno values for TYPE.
1857 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1858 vptr_fieldno. Also, if found and basetype is from the same objfile,
1859 cache the results.
1860 If not found, return -1 and ignore BASETYPEP.
1861 Callers should be aware that in some cases (for example,
1862 the type or one of its baseclasses is a stub type and we are
1863 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1864 this function will not be able to find the
1865 virtual function table pointer, and vptr_fieldno will remain -1 and
1866 vptr_basetype will remain NULL or incomplete. */
1867
1868 int
1869 get_vptr_fieldno (struct type *type, struct type **basetypep)
1870 {
1871 type = check_typedef (type);
1872
1873 if (TYPE_VPTR_FIELDNO (type) < 0)
1874 {
1875 int i;
1876
1877 /* We must start at zero in case the first (and only) baseclass
1878 is virtual (and hence we cannot share the table pointer). */
1879 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1880 {
1881 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1882 int fieldno;
1883 struct type *basetype;
1884
1885 fieldno = get_vptr_fieldno (baseclass, &basetype);
1886 if (fieldno >= 0)
1887 {
1888 /* If the type comes from a different objfile we can't cache
1889 it, it may have a different lifetime. PR 2384 */
1890 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1891 {
1892 set_type_vptr_fieldno (type, fieldno);
1893 set_type_vptr_basetype (type, basetype);
1894 }
1895 if (basetypep)
1896 *basetypep = basetype;
1897 return fieldno;
1898 }
1899 }
1900
1901 /* Not found. */
1902 return -1;
1903 }
1904 else
1905 {
1906 if (basetypep)
1907 *basetypep = TYPE_VPTR_BASETYPE (type);
1908 return TYPE_VPTR_FIELDNO (type);
1909 }
1910 }
1911
1912 static void
1913 stub_noname_complaint (void)
1914 {
1915 complaint (_("stub type has NULL name"));
1916 }
1917
1918 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1919 attached to it, and that property has a non-constant value. */
1920
1921 static int
1922 array_type_has_dynamic_stride (struct type *type)
1923 {
1924 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1925
1926 return (prop != NULL && prop->kind != PROP_CONST);
1927 }
1928
1929 /* Worker for is_dynamic_type. */
1930
1931 static int
1932 is_dynamic_type_internal (struct type *type, int top_level)
1933 {
1934 type = check_typedef (type);
1935
1936 /* We only want to recognize references at the outermost level. */
1937 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1938 type = check_typedef (TYPE_TARGET_TYPE (type));
1939
1940 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1941 dynamic, even if the type itself is statically defined.
1942 From a user's point of view, this may appear counter-intuitive;
1943 but it makes sense in this context, because the point is to determine
1944 whether any part of the type needs to be resolved before it can
1945 be exploited. */
1946 if (TYPE_DATA_LOCATION (type) != NULL
1947 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1948 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1949 return 1;
1950
1951 if (TYPE_ASSOCIATED_PROP (type))
1952 return 1;
1953
1954 if (TYPE_ALLOCATED_PROP (type))
1955 return 1;
1956
1957 switch (TYPE_CODE (type))
1958 {
1959 case TYPE_CODE_RANGE:
1960 {
1961 /* A range type is obviously dynamic if it has at least one
1962 dynamic bound. But also consider the range type to be
1963 dynamic when its subtype is dynamic, even if the bounds
1964 of the range type are static. It allows us to assume that
1965 the subtype of a static range type is also static. */
1966 return (!has_static_range (TYPE_RANGE_DATA (type))
1967 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1968 }
1969
1970 case TYPE_CODE_STRING:
1971 /* Strings are very much like an array of characters, and can be
1972 treated as one here. */
1973 case TYPE_CODE_ARRAY:
1974 {
1975 gdb_assert (TYPE_NFIELDS (type) == 1);
1976
1977 /* The array is dynamic if either the bounds are dynamic... */
1978 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1979 return 1;
1980 /* ... or the elements it contains have a dynamic contents... */
1981 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1982 return 1;
1983 /* ... or if it has a dynamic stride... */
1984 if (array_type_has_dynamic_stride (type))
1985 return 1;
1986 return 0;
1987 }
1988
1989 case TYPE_CODE_STRUCT:
1990 case TYPE_CODE_UNION:
1991 {
1992 int i;
1993
1994 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1995 if (!field_is_static (&TYPE_FIELD (type, i))
1996 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1997 return 1;
1998 }
1999 break;
2000 }
2001
2002 return 0;
2003 }
2004
2005 /* See gdbtypes.h. */
2006
2007 int
2008 is_dynamic_type (struct type *type)
2009 {
2010 return is_dynamic_type_internal (type, 1);
2011 }
2012
2013 static struct type *resolve_dynamic_type_internal
2014 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2015
2016 /* Given a dynamic range type (dyn_range_type) and a stack of
2017 struct property_addr_info elements, return a static version
2018 of that type. */
2019
2020 static struct type *
2021 resolve_dynamic_range (struct type *dyn_range_type,
2022 struct property_addr_info *addr_stack)
2023 {
2024 CORE_ADDR value;
2025 struct type *static_range_type, *static_target_type;
2026 const struct dynamic_prop *prop;
2027 struct dynamic_prop low_bound, high_bound, stride;
2028
2029 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2030
2031 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2032 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2033 {
2034 low_bound.kind = PROP_CONST;
2035 low_bound.data.const_val = value;
2036 }
2037 else
2038 {
2039 low_bound.kind = PROP_UNDEFINED;
2040 low_bound.data.const_val = 0;
2041 }
2042
2043 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2044 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2045 {
2046 high_bound.kind = PROP_CONST;
2047 high_bound.data.const_val = value;
2048
2049 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2050 high_bound.data.const_val
2051 = low_bound.data.const_val + high_bound.data.const_val - 1;
2052 }
2053 else
2054 {
2055 high_bound.kind = PROP_UNDEFINED;
2056 high_bound.data.const_val = 0;
2057 }
2058
2059 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2060 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2061 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 stride.kind = PROP_CONST;
2064 stride.data.const_val = value;
2065
2066 /* If we have a bit stride that is not an exact number of bytes then
2067 I really don't think this is going to work with current GDB, the
2068 array indexing code in GDB seems to be pretty heavily tied to byte
2069 offsets right now. Assuming 8 bits in a byte. */
2070 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2071 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2072 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2073 error (_("bit strides that are not a multiple of the byte size "
2074 "are currently not supported"));
2075 }
2076 else
2077 {
2078 stride.kind = PROP_UNDEFINED;
2079 stride.data.const_val = 0;
2080 byte_stride_p = true;
2081 }
2082
2083 static_target_type
2084 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2085 addr_stack, 0);
2086 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2087 static_range_type = create_range_type_with_stride
2088 (copy_type (dyn_range_type), static_target_type,
2089 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2090 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2091 return static_range_type;
2092 }
2093
2094 /* Resolves dynamic bound values of an array or string type TYPE to static
2095 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2096 needed during the dynamic resolution. */
2097
2098 static struct type *
2099 resolve_dynamic_array_or_string (struct type *type,
2100 struct property_addr_info *addr_stack)
2101 {
2102 CORE_ADDR value;
2103 struct type *elt_type;
2104 struct type *range_type;
2105 struct type *ary_dim;
2106 struct dynamic_prop *prop;
2107 unsigned int bit_stride = 0;
2108
2109 /* For dynamic type resolution strings can be treated like arrays of
2110 characters. */
2111 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2112 || TYPE_CODE (type) == TYPE_CODE_STRING);
2113
2114 type = copy_type (type);
2115
2116 elt_type = type;
2117 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2118 range_type = resolve_dynamic_range (range_type, addr_stack);
2119
2120 /* Resolve allocated/associated here before creating a new array type, which
2121 will update the length of the array accordingly. */
2122 prop = TYPE_ALLOCATED_PROP (type);
2123 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2124 {
2125 TYPE_DYN_PROP_ADDR (prop) = value;
2126 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2127 }
2128 prop = TYPE_ASSOCIATED_PROP (type);
2129 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2130 {
2131 TYPE_DYN_PROP_ADDR (prop) = value;
2132 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2133 }
2134
2135 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2136
2137 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2138 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2139 else
2140 elt_type = TYPE_TARGET_TYPE (type);
2141
2142 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2143 if (prop != NULL)
2144 {
2145 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2146 {
2147 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2148 bit_stride = (unsigned int) (value * 8);
2149 }
2150 else
2151 {
2152 /* Could be a bug in our code, but it could also happen
2153 if the DWARF info is not correct. Issue a warning,
2154 and assume no byte/bit stride (leave bit_stride = 0). */
2155 warning (_("cannot determine array stride for type %s"),
2156 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2157 }
2158 }
2159 else
2160 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2161
2162 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2163 bit_stride);
2164 }
2165
2166 /* Resolve dynamic bounds of members of the union TYPE to static
2167 bounds. ADDR_STACK is a stack of struct property_addr_info
2168 to be used if needed during the dynamic resolution. */
2169
2170 static struct type *
2171 resolve_dynamic_union (struct type *type,
2172 struct property_addr_info *addr_stack)
2173 {
2174 struct type *resolved_type;
2175 int i;
2176 unsigned int max_len = 0;
2177
2178 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2179
2180 resolved_type = copy_type (type);
2181 TYPE_FIELDS (resolved_type)
2182 = (struct field *) TYPE_ALLOC (resolved_type,
2183 TYPE_NFIELDS (resolved_type)
2184 * sizeof (struct field));
2185 memcpy (TYPE_FIELDS (resolved_type),
2186 TYPE_FIELDS (type),
2187 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2188 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2189 {
2190 struct type *t;
2191
2192 if (field_is_static (&TYPE_FIELD (type, i)))
2193 continue;
2194
2195 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2196 addr_stack, 0);
2197 TYPE_FIELD_TYPE (resolved_type, i) = t;
2198 if (TYPE_LENGTH (t) > max_len)
2199 max_len = TYPE_LENGTH (t);
2200 }
2201
2202 TYPE_LENGTH (resolved_type) = max_len;
2203 return resolved_type;
2204 }
2205
2206 /* Resolve dynamic bounds of members of the struct TYPE to static
2207 bounds. ADDR_STACK is a stack of struct property_addr_info to
2208 be used if needed during the dynamic resolution. */
2209
2210 static struct type *
2211 resolve_dynamic_struct (struct type *type,
2212 struct property_addr_info *addr_stack)
2213 {
2214 struct type *resolved_type;
2215 int i;
2216 unsigned resolved_type_bit_length = 0;
2217
2218 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2219 gdb_assert (TYPE_NFIELDS (type) > 0);
2220
2221 resolved_type = copy_type (type);
2222 TYPE_FIELDS (resolved_type)
2223 = (struct field *) TYPE_ALLOC (resolved_type,
2224 TYPE_NFIELDS (resolved_type)
2225 * sizeof (struct field));
2226 memcpy (TYPE_FIELDS (resolved_type),
2227 TYPE_FIELDS (type),
2228 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2229 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2230 {
2231 unsigned new_bit_length;
2232 struct property_addr_info pinfo;
2233
2234 if (field_is_static (&TYPE_FIELD (type, i)))
2235 continue;
2236
2237 /* As we know this field is not a static field, the field's
2238 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2239 this is the case, but only trigger a simple error rather
2240 than an internal error if that fails. While failing
2241 that verification indicates a bug in our code, the error
2242 is not severe enough to suggest to the user he stops
2243 his debugging session because of it. */
2244 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2245 error (_("Cannot determine struct field location"
2246 " (invalid location kind)"));
2247
2248 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2249 pinfo.valaddr = addr_stack->valaddr;
2250 pinfo.addr
2251 = (addr_stack->addr
2252 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2253 pinfo.next = addr_stack;
2254
2255 TYPE_FIELD_TYPE (resolved_type, i)
2256 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2257 &pinfo, 0);
2258 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2259 == FIELD_LOC_KIND_BITPOS);
2260
2261 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2262 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2263 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2264 else
2265 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2266 * TARGET_CHAR_BIT);
2267
2268 /* Normally, we would use the position and size of the last field
2269 to determine the size of the enclosing structure. But GCC seems
2270 to be encoding the position of some fields incorrectly when
2271 the struct contains a dynamic field that is not placed last.
2272 So we compute the struct size based on the field that has
2273 the highest position + size - probably the best we can do. */
2274 if (new_bit_length > resolved_type_bit_length)
2275 resolved_type_bit_length = new_bit_length;
2276 }
2277
2278 /* The length of a type won't change for fortran, but it does for C and Ada.
2279 For fortran the size of dynamic fields might change over time but not the
2280 type length of the structure. If we adapt it, we run into problems
2281 when calculating the element offset for arrays of structs. */
2282 if (current_language->la_language != language_fortran)
2283 TYPE_LENGTH (resolved_type)
2284 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2285
2286 /* The Ada language uses this field as a cache for static fixed types: reset
2287 it as RESOLVED_TYPE must have its own static fixed type. */
2288 TYPE_TARGET_TYPE (resolved_type) = NULL;
2289
2290 return resolved_type;
2291 }
2292
2293 /* Worker for resolved_dynamic_type. */
2294
2295 static struct type *
2296 resolve_dynamic_type_internal (struct type *type,
2297 struct property_addr_info *addr_stack,
2298 int top_level)
2299 {
2300 struct type *real_type = check_typedef (type);
2301 struct type *resolved_type = type;
2302 struct dynamic_prop *prop;
2303 CORE_ADDR value;
2304
2305 if (!is_dynamic_type_internal (real_type, top_level))
2306 return type;
2307
2308 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2309 {
2310 resolved_type = copy_type (type);
2311 TYPE_TARGET_TYPE (resolved_type)
2312 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2313 top_level);
2314 }
2315 else
2316 {
2317 /* Before trying to resolve TYPE, make sure it is not a stub. */
2318 type = real_type;
2319
2320 switch (TYPE_CODE (type))
2321 {
2322 case TYPE_CODE_REF:
2323 {
2324 struct property_addr_info pinfo;
2325
2326 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2327 pinfo.valaddr = NULL;
2328 if (addr_stack->valaddr != NULL)
2329 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2330 else
2331 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2332 pinfo.next = addr_stack;
2333
2334 resolved_type = copy_type (type);
2335 TYPE_TARGET_TYPE (resolved_type)
2336 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2337 &pinfo, top_level);
2338 break;
2339 }
2340
2341 case TYPE_CODE_STRING:
2342 /* Strings are very much like an array of characters, and can be
2343 treated as one here. */
2344 case TYPE_CODE_ARRAY:
2345 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2346 break;
2347
2348 case TYPE_CODE_RANGE:
2349 resolved_type = resolve_dynamic_range (type, addr_stack);
2350 break;
2351
2352 case TYPE_CODE_UNION:
2353 resolved_type = resolve_dynamic_union (type, addr_stack);
2354 break;
2355
2356 case TYPE_CODE_STRUCT:
2357 resolved_type = resolve_dynamic_struct (type, addr_stack);
2358 break;
2359 }
2360 }
2361
2362 /* Resolve data_location attribute. */
2363 prop = TYPE_DATA_LOCATION (resolved_type);
2364 if (prop != NULL
2365 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2366 {
2367 TYPE_DYN_PROP_ADDR (prop) = value;
2368 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2369 }
2370
2371 return resolved_type;
2372 }
2373
2374 /* See gdbtypes.h */
2375
2376 struct type *
2377 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2378 CORE_ADDR addr)
2379 {
2380 struct property_addr_info pinfo
2381 = {check_typedef (type), valaddr, addr, NULL};
2382
2383 return resolve_dynamic_type_internal (type, &pinfo, 1);
2384 }
2385
2386 /* See gdbtypes.h */
2387
2388 struct dynamic_prop *
2389 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2390 {
2391 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2392
2393 while (node != NULL)
2394 {
2395 if (node->prop_kind == prop_kind)
2396 return &node->prop;
2397 node = node->next;
2398 }
2399 return NULL;
2400 }
2401
2402 /* See gdbtypes.h */
2403
2404 void
2405 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2406 struct type *type)
2407 {
2408 struct dynamic_prop_list *temp;
2409
2410 gdb_assert (TYPE_OBJFILE_OWNED (type));
2411
2412 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2413 struct dynamic_prop_list);
2414 temp->prop_kind = prop_kind;
2415 temp->prop = prop;
2416 temp->next = TYPE_DYN_PROP_LIST (type);
2417
2418 TYPE_DYN_PROP_LIST (type) = temp;
2419 }
2420
2421 /* Remove dynamic property from TYPE in case it exists. */
2422
2423 void
2424 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2425 struct type *type)
2426 {
2427 struct dynamic_prop_list *prev_node, *curr_node;
2428
2429 curr_node = TYPE_DYN_PROP_LIST (type);
2430 prev_node = NULL;
2431
2432 while (NULL != curr_node)
2433 {
2434 if (curr_node->prop_kind == prop_kind)
2435 {
2436 /* Update the linked list but don't free anything.
2437 The property was allocated on objstack and it is not known
2438 if we are on top of it. Nevertheless, everything is released
2439 when the complete objstack is freed. */
2440 if (NULL == prev_node)
2441 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2442 else
2443 prev_node->next = curr_node->next;
2444
2445 return;
2446 }
2447
2448 prev_node = curr_node;
2449 curr_node = curr_node->next;
2450 }
2451 }
2452
2453 /* Find the real type of TYPE. This function returns the real type,
2454 after removing all layers of typedefs, and completing opaque or stub
2455 types. Completion changes the TYPE argument, but stripping of
2456 typedefs does not.
2457
2458 Instance flags (e.g. const/volatile) are preserved as typedefs are
2459 stripped. If necessary a new qualified form of the underlying type
2460 is created.
2461
2462 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2463 not been computed and we're either in the middle of reading symbols, or
2464 there was no name for the typedef in the debug info.
2465
2466 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2467 QUITs in the symbol reading code can also throw.
2468 Thus this function can throw an exception.
2469
2470 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2471 the target type.
2472
2473 If this is a stubbed struct (i.e. declared as struct foo *), see if
2474 we can find a full definition in some other file. If so, copy this
2475 definition, so we can use it in future. There used to be a comment
2476 (but not any code) that if we don't find a full definition, we'd
2477 set a flag so we don't spend time in the future checking the same
2478 type. That would be a mistake, though--we might load in more
2479 symbols which contain a full definition for the type. */
2480
2481 struct type *
2482 check_typedef (struct type *type)
2483 {
2484 struct type *orig_type = type;
2485 /* While we're removing typedefs, we don't want to lose qualifiers.
2486 E.g., const/volatile. */
2487 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2488
2489 gdb_assert (type);
2490
2491 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2492 {
2493 if (!TYPE_TARGET_TYPE (type))
2494 {
2495 const char *name;
2496 struct symbol *sym;
2497
2498 /* It is dangerous to call lookup_symbol if we are currently
2499 reading a symtab. Infinite recursion is one danger. */
2500 if (currently_reading_symtab)
2501 return make_qualified_type (type, instance_flags, NULL);
2502
2503 name = TYPE_NAME (type);
2504 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2505 VAR_DOMAIN as appropriate? */
2506 if (name == NULL)
2507 {
2508 stub_noname_complaint ();
2509 return make_qualified_type (type, instance_flags, NULL);
2510 }
2511 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2512 if (sym)
2513 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2514 else /* TYPE_CODE_UNDEF */
2515 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2516 }
2517 type = TYPE_TARGET_TYPE (type);
2518
2519 /* Preserve the instance flags as we traverse down the typedef chain.
2520
2521 Handling address spaces/classes is nasty, what do we do if there's a
2522 conflict?
2523 E.g., what if an outer typedef marks the type as class_1 and an inner
2524 typedef marks the type as class_2?
2525 This is the wrong place to do such error checking. We leave it to
2526 the code that created the typedef in the first place to flag the
2527 error. We just pick the outer address space (akin to letting the
2528 outer cast in a chain of casting win), instead of assuming
2529 "it can't happen". */
2530 {
2531 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2532 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2533 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2534 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2535
2536 /* Treat code vs data spaces and address classes separately. */
2537 if ((instance_flags & ALL_SPACES) != 0)
2538 new_instance_flags &= ~ALL_SPACES;
2539 if ((instance_flags & ALL_CLASSES) != 0)
2540 new_instance_flags &= ~ALL_CLASSES;
2541
2542 instance_flags |= new_instance_flags;
2543 }
2544 }
2545
2546 /* If this is a struct/class/union with no fields, then check
2547 whether a full definition exists somewhere else. This is for
2548 systems where a type definition with no fields is issued for such
2549 types, instead of identifying them as stub types in the first
2550 place. */
2551
2552 if (TYPE_IS_OPAQUE (type)
2553 && opaque_type_resolution
2554 && !currently_reading_symtab)
2555 {
2556 const char *name = TYPE_NAME (type);
2557 struct type *newtype;
2558
2559 if (name == NULL)
2560 {
2561 stub_noname_complaint ();
2562 return make_qualified_type (type, instance_flags, NULL);
2563 }
2564 newtype = lookup_transparent_type (name);
2565
2566 if (newtype)
2567 {
2568 /* If the resolved type and the stub are in the same
2569 objfile, then replace the stub type with the real deal.
2570 But if they're in separate objfiles, leave the stub
2571 alone; we'll just look up the transparent type every time
2572 we call check_typedef. We can't create pointers between
2573 types allocated to different objfiles, since they may
2574 have different lifetimes. Trying to copy NEWTYPE over to
2575 TYPE's objfile is pointless, too, since you'll have to
2576 move over any other types NEWTYPE refers to, which could
2577 be an unbounded amount of stuff. */
2578 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2579 type = make_qualified_type (newtype,
2580 TYPE_INSTANCE_FLAGS (type),
2581 type);
2582 else
2583 type = newtype;
2584 }
2585 }
2586 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2587 types. */
2588 else if (TYPE_STUB (type) && !currently_reading_symtab)
2589 {
2590 const char *name = TYPE_NAME (type);
2591 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2592 as appropriate? */
2593 struct symbol *sym;
2594
2595 if (name == NULL)
2596 {
2597 stub_noname_complaint ();
2598 return make_qualified_type (type, instance_flags, NULL);
2599 }
2600 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2601 if (sym)
2602 {
2603 /* Same as above for opaque types, we can replace the stub
2604 with the complete type only if they are in the same
2605 objfile. */
2606 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2607 type = make_qualified_type (SYMBOL_TYPE (sym),
2608 TYPE_INSTANCE_FLAGS (type),
2609 type);
2610 else
2611 type = SYMBOL_TYPE (sym);
2612 }
2613 }
2614
2615 if (TYPE_TARGET_STUB (type))
2616 {
2617 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2618
2619 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2620 {
2621 /* Nothing we can do. */
2622 }
2623 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2624 {
2625 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2626 TYPE_TARGET_STUB (type) = 0;
2627 }
2628 }
2629
2630 type = make_qualified_type (type, instance_flags, NULL);
2631
2632 /* Cache TYPE_LENGTH for future use. */
2633 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2634
2635 return type;
2636 }
2637
2638 /* Parse a type expression in the string [P..P+LENGTH). If an error
2639 occurs, silently return a void type. */
2640
2641 static struct type *
2642 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2643 {
2644 struct ui_file *saved_gdb_stderr;
2645 struct type *type = NULL; /* Initialize to keep gcc happy. */
2646
2647 /* Suppress error messages. */
2648 saved_gdb_stderr = gdb_stderr;
2649 gdb_stderr = &null_stream;
2650
2651 /* Call parse_and_eval_type() without fear of longjmp()s. */
2652 try
2653 {
2654 type = parse_and_eval_type (p, length);
2655 }
2656 catch (const gdb_exception_error &except)
2657 {
2658 type = builtin_type (gdbarch)->builtin_void;
2659 }
2660
2661 /* Stop suppressing error messages. */
2662 gdb_stderr = saved_gdb_stderr;
2663
2664 return type;
2665 }
2666
2667 /* Ugly hack to convert method stubs into method types.
2668
2669 He ain't kiddin'. This demangles the name of the method into a
2670 string including argument types, parses out each argument type,
2671 generates a string casting a zero to that type, evaluates the
2672 string, and stuffs the resulting type into an argtype vector!!!
2673 Then it knows the type of the whole function (including argument
2674 types for overloading), which info used to be in the stab's but was
2675 removed to hack back the space required for them. */
2676
2677 static void
2678 check_stub_method (struct type *type, int method_id, int signature_id)
2679 {
2680 struct gdbarch *gdbarch = get_type_arch (type);
2681 struct fn_field *f;
2682 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2683 char *demangled_name = gdb_demangle (mangled_name,
2684 DMGL_PARAMS | DMGL_ANSI);
2685 char *argtypetext, *p;
2686 int depth = 0, argcount = 1;
2687 struct field *argtypes;
2688 struct type *mtype;
2689
2690 /* Make sure we got back a function string that we can use. */
2691 if (demangled_name)
2692 p = strchr (demangled_name, '(');
2693 else
2694 p = NULL;
2695
2696 if (demangled_name == NULL || p == NULL)
2697 error (_("Internal: Cannot demangle mangled name `%s'."),
2698 mangled_name);
2699
2700 /* Now, read in the parameters that define this type. */
2701 p += 1;
2702 argtypetext = p;
2703 while (*p)
2704 {
2705 if (*p == '(' || *p == '<')
2706 {
2707 depth += 1;
2708 }
2709 else if (*p == ')' || *p == '>')
2710 {
2711 depth -= 1;
2712 }
2713 else if (*p == ',' && depth == 0)
2714 {
2715 argcount += 1;
2716 }
2717
2718 p += 1;
2719 }
2720
2721 /* If we read one argument and it was ``void'', don't count it. */
2722 if (startswith (argtypetext, "(void)"))
2723 argcount -= 1;
2724
2725 /* We need one extra slot, for the THIS pointer. */
2726
2727 argtypes = (struct field *)
2728 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2729 p = argtypetext;
2730
2731 /* Add THIS pointer for non-static methods. */
2732 f = TYPE_FN_FIELDLIST1 (type, method_id);
2733 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2734 argcount = 0;
2735 else
2736 {
2737 argtypes[0].type = lookup_pointer_type (type);
2738 argcount = 1;
2739 }
2740
2741 if (*p != ')') /* () means no args, skip while. */
2742 {
2743 depth = 0;
2744 while (*p)
2745 {
2746 if (depth <= 0 && (*p == ',' || *p == ')'))
2747 {
2748 /* Avoid parsing of ellipsis, they will be handled below.
2749 Also avoid ``void'' as above. */
2750 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2751 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2752 {
2753 argtypes[argcount].type =
2754 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2755 argcount += 1;
2756 }
2757 argtypetext = p + 1;
2758 }
2759
2760 if (*p == '(' || *p == '<')
2761 {
2762 depth += 1;
2763 }
2764 else if (*p == ')' || *p == '>')
2765 {
2766 depth -= 1;
2767 }
2768
2769 p += 1;
2770 }
2771 }
2772
2773 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2774
2775 /* Now update the old "stub" type into a real type. */
2776 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2777 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2778 We want a method (TYPE_CODE_METHOD). */
2779 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2780 argtypes, argcount, p[-2] == '.');
2781 TYPE_STUB (mtype) = 0;
2782 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2783
2784 xfree (demangled_name);
2785 }
2786
2787 /* This is the external interface to check_stub_method, above. This
2788 function unstubs all of the signatures for TYPE's METHOD_ID method
2789 name. After calling this function TYPE_FN_FIELD_STUB will be
2790 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2791 correct.
2792
2793 This function unfortunately can not die until stabs do. */
2794
2795 void
2796 check_stub_method_group (struct type *type, int method_id)
2797 {
2798 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2799 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2800
2801 for (int j = 0; j < len; j++)
2802 {
2803 if (TYPE_FN_FIELD_STUB (f, j))
2804 check_stub_method (type, method_id, j);
2805 }
2806 }
2807
2808 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2809 const struct cplus_struct_type cplus_struct_default = { };
2810
2811 void
2812 allocate_cplus_struct_type (struct type *type)
2813 {
2814 if (HAVE_CPLUS_STRUCT (type))
2815 /* Structure was already allocated. Nothing more to do. */
2816 return;
2817
2818 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2819 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2820 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2821 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2822 set_type_vptr_fieldno (type, -1);
2823 }
2824
2825 const struct gnat_aux_type gnat_aux_default =
2826 { NULL };
2827
2828 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2829 and allocate the associated gnat-specific data. The gnat-specific
2830 data is also initialized to gnat_aux_default. */
2831
2832 void
2833 allocate_gnat_aux_type (struct type *type)
2834 {
2835 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2836 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2837 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2838 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2839 }
2840
2841 /* Helper function to initialize a newly allocated type. Set type code
2842 to CODE and initialize the type-specific fields accordingly. */
2843
2844 static void
2845 set_type_code (struct type *type, enum type_code code)
2846 {
2847 TYPE_CODE (type) = code;
2848
2849 switch (code)
2850 {
2851 case TYPE_CODE_STRUCT:
2852 case TYPE_CODE_UNION:
2853 case TYPE_CODE_NAMESPACE:
2854 INIT_CPLUS_SPECIFIC (type);
2855 break;
2856 case TYPE_CODE_FLT:
2857 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2858 break;
2859 case TYPE_CODE_FUNC:
2860 INIT_FUNC_SPECIFIC (type);
2861 break;
2862 }
2863 }
2864
2865 /* Helper function to verify floating-point format and size.
2866 BIT is the type size in bits; if BIT equals -1, the size is
2867 determined by the floatformat. Returns size to be used. */
2868
2869 static int
2870 verify_floatformat (int bit, const struct floatformat *floatformat)
2871 {
2872 gdb_assert (floatformat != NULL);
2873
2874 if (bit == -1)
2875 bit = floatformat->totalsize;
2876
2877 gdb_assert (bit >= 0);
2878 gdb_assert (bit >= floatformat->totalsize);
2879
2880 return bit;
2881 }
2882
2883 /* Return the floating-point format for a floating-point variable of
2884 type TYPE. */
2885
2886 const struct floatformat *
2887 floatformat_from_type (const struct type *type)
2888 {
2889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2890 gdb_assert (TYPE_FLOATFORMAT (type));
2891 return TYPE_FLOATFORMAT (type);
2892 }
2893
2894 /* Helper function to initialize the standard scalar types.
2895
2896 If NAME is non-NULL, then it is used to initialize the type name.
2897 Note that NAME is not copied; it is required to have a lifetime at
2898 least as long as OBJFILE. */
2899
2900 struct type *
2901 init_type (struct objfile *objfile, enum type_code code, int bit,
2902 const char *name)
2903 {
2904 struct type *type;
2905
2906 type = alloc_type (objfile);
2907 set_type_code (type, code);
2908 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2909 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2910 TYPE_NAME (type) = name;
2911
2912 return type;
2913 }
2914
2915 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2916 to use with variables that have no debug info. NAME is the type
2917 name. */
2918
2919 static struct type *
2920 init_nodebug_var_type (struct objfile *objfile, const char *name)
2921 {
2922 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2923 }
2924
2925 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2926 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2927 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2928
2929 struct type *
2930 init_integer_type (struct objfile *objfile,
2931 int bit, int unsigned_p, const char *name)
2932 {
2933 struct type *t;
2934
2935 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2936 if (unsigned_p)
2937 TYPE_UNSIGNED (t) = 1;
2938
2939 return t;
2940 }
2941
2942 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2943 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2944 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2945
2946 struct type *
2947 init_character_type (struct objfile *objfile,
2948 int bit, int unsigned_p, const char *name)
2949 {
2950 struct type *t;
2951
2952 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2953 if (unsigned_p)
2954 TYPE_UNSIGNED (t) = 1;
2955
2956 return t;
2957 }
2958
2959 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2960 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2961 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2962
2963 struct type *
2964 init_boolean_type (struct objfile *objfile,
2965 int bit, int unsigned_p, const char *name)
2966 {
2967 struct type *t;
2968
2969 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2970 if (unsigned_p)
2971 TYPE_UNSIGNED (t) = 1;
2972
2973 return t;
2974 }
2975
2976 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2977 BIT is the type size in bits; if BIT equals -1, the size is
2978 determined by the floatformat. NAME is the type name. Set the
2979 TYPE_FLOATFORMAT from FLOATFORMATS. */
2980
2981 struct type *
2982 init_float_type (struct objfile *objfile,
2983 int bit, const char *name,
2984 const struct floatformat **floatformats)
2985 {
2986 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2987 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2988 struct type *t;
2989
2990 bit = verify_floatformat (bit, fmt);
2991 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2992 TYPE_FLOATFORMAT (t) = fmt;
2993
2994 return t;
2995 }
2996
2997 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2998 BIT is the type size in bits. NAME is the type name. */
2999
3000 struct type *
3001 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3002 {
3003 struct type *t;
3004
3005 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3006 return t;
3007 }
3008
3009 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3010 NAME is the type name. TARGET_TYPE is the component float type. */
3011
3012 struct type *
3013 init_complex_type (struct objfile *objfile,
3014 const char *name, struct type *target_type)
3015 {
3016 struct type *t;
3017
3018 t = init_type (objfile, TYPE_CODE_COMPLEX,
3019 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
3020 TYPE_TARGET_TYPE (t) = target_type;
3021 return t;
3022 }
3023
3024 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3025 BIT is the pointer type size in bits. NAME is the type name.
3026 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3027 TYPE_UNSIGNED flag. */
3028
3029 struct type *
3030 init_pointer_type (struct objfile *objfile,
3031 int bit, const char *name, struct type *target_type)
3032 {
3033 struct type *t;
3034
3035 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3036 TYPE_TARGET_TYPE (t) = target_type;
3037 TYPE_UNSIGNED (t) = 1;
3038 return t;
3039 }
3040
3041 /* See gdbtypes.h. */
3042
3043 unsigned
3044 type_raw_align (struct type *type)
3045 {
3046 if (type->align_log2 != 0)
3047 return 1 << (type->align_log2 - 1);
3048 return 0;
3049 }
3050
3051 /* See gdbtypes.h. */
3052
3053 unsigned
3054 type_align (struct type *type)
3055 {
3056 /* Check alignment provided in the debug information. */
3057 unsigned raw_align = type_raw_align (type);
3058 if (raw_align != 0)
3059 return raw_align;
3060
3061 /* Allow the architecture to provide an alignment. */
3062 struct gdbarch *arch = get_type_arch (type);
3063 ULONGEST align = gdbarch_type_align (arch, type);
3064 if (align != 0)
3065 return align;
3066
3067 switch (TYPE_CODE (type))
3068 {
3069 case TYPE_CODE_PTR:
3070 case TYPE_CODE_FUNC:
3071 case TYPE_CODE_FLAGS:
3072 case TYPE_CODE_INT:
3073 case TYPE_CODE_RANGE:
3074 case TYPE_CODE_FLT:
3075 case TYPE_CODE_ENUM:
3076 case TYPE_CODE_REF:
3077 case TYPE_CODE_RVALUE_REF:
3078 case TYPE_CODE_CHAR:
3079 case TYPE_CODE_BOOL:
3080 case TYPE_CODE_DECFLOAT:
3081 case TYPE_CODE_METHODPTR:
3082 case TYPE_CODE_MEMBERPTR:
3083 align = type_length_units (check_typedef (type));
3084 break;
3085
3086 case TYPE_CODE_ARRAY:
3087 case TYPE_CODE_COMPLEX:
3088 case TYPE_CODE_TYPEDEF:
3089 align = type_align (TYPE_TARGET_TYPE (type));
3090 break;
3091
3092 case TYPE_CODE_STRUCT:
3093 case TYPE_CODE_UNION:
3094 {
3095 int number_of_non_static_fields = 0;
3096 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3097 {
3098 if (!field_is_static (&TYPE_FIELD (type, i)))
3099 {
3100 number_of_non_static_fields++;
3101 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3102 if (f_align == 0)
3103 {
3104 /* Don't pretend we know something we don't. */
3105 align = 0;
3106 break;
3107 }
3108 if (f_align > align)
3109 align = f_align;
3110 }
3111 }
3112 /* A struct with no fields, or with only static fields has an
3113 alignment of 1. */
3114 if (number_of_non_static_fields == 0)
3115 align = 1;
3116 }
3117 break;
3118
3119 case TYPE_CODE_SET:
3120 case TYPE_CODE_STRING:
3121 /* Not sure what to do here, and these can't appear in C or C++
3122 anyway. */
3123 break;
3124
3125 case TYPE_CODE_VOID:
3126 align = 1;
3127 break;
3128
3129 case TYPE_CODE_ERROR:
3130 case TYPE_CODE_METHOD:
3131 default:
3132 break;
3133 }
3134
3135 if ((align & (align - 1)) != 0)
3136 {
3137 /* Not a power of 2, so pass. */
3138 align = 0;
3139 }
3140
3141 return align;
3142 }
3143
3144 /* See gdbtypes.h. */
3145
3146 bool
3147 set_type_align (struct type *type, ULONGEST align)
3148 {
3149 /* Must be a power of 2. Zero is ok. */
3150 gdb_assert ((align & (align - 1)) == 0);
3151
3152 unsigned result = 0;
3153 while (align != 0)
3154 {
3155 ++result;
3156 align >>= 1;
3157 }
3158
3159 if (result >= (1 << TYPE_ALIGN_BITS))
3160 return false;
3161
3162 type->align_log2 = result;
3163 return true;
3164 }
3165
3166 \f
3167 /* Queries on types. */
3168
3169 int
3170 can_dereference (struct type *t)
3171 {
3172 /* FIXME: Should we return true for references as well as
3173 pointers? */
3174 t = check_typedef (t);
3175 return
3176 (t != NULL
3177 && TYPE_CODE (t) == TYPE_CODE_PTR
3178 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3179 }
3180
3181 int
3182 is_integral_type (struct type *t)
3183 {
3184 t = check_typedef (t);
3185 return
3186 ((t != NULL)
3187 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3188 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3189 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3190 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3191 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3192 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3193 }
3194
3195 int
3196 is_floating_type (struct type *t)
3197 {
3198 t = check_typedef (t);
3199 return
3200 ((t != NULL)
3201 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3202 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3203 }
3204
3205 /* Return true if TYPE is scalar. */
3206
3207 int
3208 is_scalar_type (struct type *type)
3209 {
3210 type = check_typedef (type);
3211
3212 switch (TYPE_CODE (type))
3213 {
3214 case TYPE_CODE_ARRAY:
3215 case TYPE_CODE_STRUCT:
3216 case TYPE_CODE_UNION:
3217 case TYPE_CODE_SET:
3218 case TYPE_CODE_STRING:
3219 return 0;
3220 default:
3221 return 1;
3222 }
3223 }
3224
3225 /* Return true if T is scalar, or a composite type which in practice has
3226 the memory layout of a scalar type. E.g., an array or struct with only
3227 one scalar element inside it, or a union with only scalar elements. */
3228
3229 int
3230 is_scalar_type_recursive (struct type *t)
3231 {
3232 t = check_typedef (t);
3233
3234 if (is_scalar_type (t))
3235 return 1;
3236 /* Are we dealing with an array or string of known dimensions? */
3237 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3238 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3239 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3240 {
3241 LONGEST low_bound, high_bound;
3242 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3243
3244 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3245
3246 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3247 }
3248 /* Are we dealing with a struct with one element? */
3249 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3250 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3251 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3252 {
3253 int i, n = TYPE_NFIELDS (t);
3254
3255 /* If all elements of the union are scalar, then the union is scalar. */
3256 for (i = 0; i < n; i++)
3257 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3258 return 0;
3259
3260 return 1;
3261 }
3262
3263 return 0;
3264 }
3265
3266 /* Return true is T is a class or a union. False otherwise. */
3267
3268 int
3269 class_or_union_p (const struct type *t)
3270 {
3271 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3272 || TYPE_CODE (t) == TYPE_CODE_UNION);
3273 }
3274
3275 /* A helper function which returns true if types A and B represent the
3276 "same" class type. This is true if the types have the same main
3277 type, or the same name. */
3278
3279 int
3280 class_types_same_p (const struct type *a, const struct type *b)
3281 {
3282 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3283 || (TYPE_NAME (a) && TYPE_NAME (b)
3284 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3285 }
3286
3287 /* If BASE is an ancestor of DCLASS return the distance between them.
3288 otherwise return -1;
3289 eg:
3290
3291 class A {};
3292 class B: public A {};
3293 class C: public B {};
3294 class D: C {};
3295
3296 distance_to_ancestor (A, A, 0) = 0
3297 distance_to_ancestor (A, B, 0) = 1
3298 distance_to_ancestor (A, C, 0) = 2
3299 distance_to_ancestor (A, D, 0) = 3
3300
3301 If PUBLIC is 1 then only public ancestors are considered,
3302 and the function returns the distance only if BASE is a public ancestor
3303 of DCLASS.
3304 Eg:
3305
3306 distance_to_ancestor (A, D, 1) = -1. */
3307
3308 static int
3309 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3310 {
3311 int i;
3312 int d;
3313
3314 base = check_typedef (base);
3315 dclass = check_typedef (dclass);
3316
3317 if (class_types_same_p (base, dclass))
3318 return 0;
3319
3320 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3321 {
3322 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3323 continue;
3324
3325 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3326 if (d >= 0)
3327 return 1 + d;
3328 }
3329
3330 return -1;
3331 }
3332
3333 /* Check whether BASE is an ancestor or base class or DCLASS
3334 Return 1 if so, and 0 if not.
3335 Note: If BASE and DCLASS are of the same type, this function
3336 will return 1. So for some class A, is_ancestor (A, A) will
3337 return 1. */
3338
3339 int
3340 is_ancestor (struct type *base, struct type *dclass)
3341 {
3342 return distance_to_ancestor (base, dclass, 0) >= 0;
3343 }
3344
3345 /* Like is_ancestor, but only returns true when BASE is a public
3346 ancestor of DCLASS. */
3347
3348 int
3349 is_public_ancestor (struct type *base, struct type *dclass)
3350 {
3351 return distance_to_ancestor (base, dclass, 1) >= 0;
3352 }
3353
3354 /* A helper function for is_unique_ancestor. */
3355
3356 static int
3357 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3358 int *offset,
3359 const gdb_byte *valaddr, int embedded_offset,
3360 CORE_ADDR address, struct value *val)
3361 {
3362 int i, count = 0;
3363
3364 base = check_typedef (base);
3365 dclass = check_typedef (dclass);
3366
3367 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3368 {
3369 struct type *iter;
3370 int this_offset;
3371
3372 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3373
3374 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3375 address, val);
3376
3377 if (class_types_same_p (base, iter))
3378 {
3379 /* If this is the first subclass, set *OFFSET and set count
3380 to 1. Otherwise, if this is at the same offset as
3381 previous instances, do nothing. Otherwise, increment
3382 count. */
3383 if (*offset == -1)
3384 {
3385 *offset = this_offset;
3386 count = 1;
3387 }
3388 else if (this_offset == *offset)
3389 {
3390 /* Nothing. */
3391 }
3392 else
3393 ++count;
3394 }
3395 else
3396 count += is_unique_ancestor_worker (base, iter, offset,
3397 valaddr,
3398 embedded_offset + this_offset,
3399 address, val);
3400 }
3401
3402 return count;
3403 }
3404
3405 /* Like is_ancestor, but only returns true if BASE is a unique base
3406 class of the type of VAL. */
3407
3408 int
3409 is_unique_ancestor (struct type *base, struct value *val)
3410 {
3411 int offset = -1;
3412
3413 return is_unique_ancestor_worker (base, value_type (val), &offset,
3414 value_contents_for_printing (val),
3415 value_embedded_offset (val),
3416 value_address (val), val) == 1;
3417 }
3418
3419 \f
3420 /* Overload resolution. */
3421
3422 /* Return the sum of the rank of A with the rank of B. */
3423
3424 struct rank
3425 sum_ranks (struct rank a, struct rank b)
3426 {
3427 struct rank c;
3428 c.rank = a.rank + b.rank;
3429 c.subrank = a.subrank + b.subrank;
3430 return c;
3431 }
3432
3433 /* Compare rank A and B and return:
3434 0 if a = b
3435 1 if a is better than b
3436 -1 if b is better than a. */
3437
3438 int
3439 compare_ranks (struct rank a, struct rank b)
3440 {
3441 if (a.rank == b.rank)
3442 {
3443 if (a.subrank == b.subrank)
3444 return 0;
3445 if (a.subrank < b.subrank)
3446 return 1;
3447 if (a.subrank > b.subrank)
3448 return -1;
3449 }
3450
3451 if (a.rank < b.rank)
3452 return 1;
3453
3454 /* a.rank > b.rank */
3455 return -1;
3456 }
3457
3458 /* Functions for overload resolution begin here. */
3459
3460 /* Compare two badness vectors A and B and return the result.
3461 0 => A and B are identical
3462 1 => A and B are incomparable
3463 2 => A is better than B
3464 3 => A is worse than B */
3465
3466 int
3467 compare_badness (const badness_vector &a, const badness_vector &b)
3468 {
3469 int i;
3470 int tmp;
3471 short found_pos = 0; /* any positives in c? */
3472 short found_neg = 0; /* any negatives in c? */
3473
3474 /* differing sizes => incomparable */
3475 if (a.size () != b.size ())
3476 return 1;
3477
3478 /* Subtract b from a */
3479 for (i = 0; i < a.size (); i++)
3480 {
3481 tmp = compare_ranks (b[i], a[i]);
3482 if (tmp > 0)
3483 found_pos = 1;
3484 else if (tmp < 0)
3485 found_neg = 1;
3486 }
3487
3488 if (found_pos)
3489 {
3490 if (found_neg)
3491 return 1; /* incomparable */
3492 else
3493 return 3; /* A > B */
3494 }
3495 else
3496 /* no positives */
3497 {
3498 if (found_neg)
3499 return 2; /* A < B */
3500 else
3501 return 0; /* A == B */
3502 }
3503 }
3504
3505 /* Rank a function by comparing its parameter types (PARMS), to the
3506 types of an argument list (ARGS). Return the badness vector. This
3507 has ARGS.size() + 1 entries. */
3508
3509 badness_vector
3510 rank_function (gdb::array_view<type *> parms,
3511 gdb::array_view<value *> args)
3512 {
3513 /* add 1 for the length-match rank. */
3514 badness_vector bv;
3515 bv.reserve (1 + args.size ());
3516
3517 /* First compare the lengths of the supplied lists.
3518 If there is a mismatch, set it to a high value. */
3519
3520 /* pai/1997-06-03 FIXME: when we have debug info about default
3521 arguments and ellipsis parameter lists, we should consider those
3522 and rank the length-match more finely. */
3523
3524 bv.push_back ((args.size () != parms.size ())
3525 ? LENGTH_MISMATCH_BADNESS
3526 : EXACT_MATCH_BADNESS);
3527
3528 /* Now rank all the parameters of the candidate function. */
3529 size_t min_len = std::min (parms.size (), args.size ());
3530
3531 for (size_t i = 0; i < min_len; i++)
3532 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3533 args[i]));
3534
3535 /* If more arguments than parameters, add dummy entries. */
3536 for (size_t i = min_len; i < args.size (); i++)
3537 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3538
3539 return bv;
3540 }
3541
3542 /* Compare the names of two integer types, assuming that any sign
3543 qualifiers have been checked already. We do it this way because
3544 there may be an "int" in the name of one of the types. */
3545
3546 static int
3547 integer_types_same_name_p (const char *first, const char *second)
3548 {
3549 int first_p, second_p;
3550
3551 /* If both are shorts, return 1; if neither is a short, keep
3552 checking. */
3553 first_p = (strstr (first, "short") != NULL);
3554 second_p = (strstr (second, "short") != NULL);
3555 if (first_p && second_p)
3556 return 1;
3557 if (first_p || second_p)
3558 return 0;
3559
3560 /* Likewise for long. */
3561 first_p = (strstr (first, "long") != NULL);
3562 second_p = (strstr (second, "long") != NULL);
3563 if (first_p && second_p)
3564 return 1;
3565 if (first_p || second_p)
3566 return 0;
3567
3568 /* Likewise for char. */
3569 first_p = (strstr (first, "char") != NULL);
3570 second_p = (strstr (second, "char") != NULL);
3571 if (first_p && second_p)
3572 return 1;
3573 if (first_p || second_p)
3574 return 0;
3575
3576 /* They must both be ints. */
3577 return 1;
3578 }
3579
3580 /* Compares type A to type B. Returns true if they represent the same
3581 type, false otherwise. */
3582
3583 bool
3584 types_equal (struct type *a, struct type *b)
3585 {
3586 /* Identical type pointers. */
3587 /* However, this still doesn't catch all cases of same type for b
3588 and a. The reason is that builtin types are different from
3589 the same ones constructed from the object. */
3590 if (a == b)
3591 return true;
3592
3593 /* Resolve typedefs */
3594 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3595 a = check_typedef (a);
3596 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3597 b = check_typedef (b);
3598
3599 /* If after resolving typedefs a and b are not of the same type
3600 code then they are not equal. */
3601 if (TYPE_CODE (a) != TYPE_CODE (b))
3602 return false;
3603
3604 /* If a and b are both pointers types or both reference types then
3605 they are equal of the same type iff the objects they refer to are
3606 of the same type. */
3607 if (TYPE_CODE (a) == TYPE_CODE_PTR
3608 || TYPE_CODE (a) == TYPE_CODE_REF)
3609 return types_equal (TYPE_TARGET_TYPE (a),
3610 TYPE_TARGET_TYPE (b));
3611
3612 /* Well, damnit, if the names are exactly the same, I'll say they
3613 are exactly the same. This happens when we generate method
3614 stubs. The types won't point to the same address, but they
3615 really are the same. */
3616
3617 if (TYPE_NAME (a) && TYPE_NAME (b)
3618 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3619 return true;
3620
3621 /* Check if identical after resolving typedefs. */
3622 if (a == b)
3623 return true;
3624
3625 /* Two function types are equal if their argument and return types
3626 are equal. */
3627 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3628 {
3629 int i;
3630
3631 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3632 return false;
3633
3634 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3635 return false;
3636
3637 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3638 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3639 return false;
3640
3641 return true;
3642 }
3643
3644 return false;
3645 }
3646 \f
3647 /* Deep comparison of types. */
3648
3649 /* An entry in the type-equality bcache. */
3650
3651 struct type_equality_entry
3652 {
3653 type_equality_entry (struct type *t1, struct type *t2)
3654 : type1 (t1),
3655 type2 (t2)
3656 {
3657 }
3658
3659 struct type *type1, *type2;
3660 };
3661
3662 /* A helper function to compare two strings. Returns true if they are
3663 the same, false otherwise. Handles NULLs properly. */
3664
3665 static bool
3666 compare_maybe_null_strings (const char *s, const char *t)
3667 {
3668 if (s == NULL || t == NULL)
3669 return s == t;
3670 return strcmp (s, t) == 0;
3671 }
3672
3673 /* A helper function for check_types_worklist that checks two types for
3674 "deep" equality. Returns true if the types are considered the
3675 same, false otherwise. */
3676
3677 static bool
3678 check_types_equal (struct type *type1, struct type *type2,
3679 std::vector<type_equality_entry> *worklist)
3680 {
3681 type1 = check_typedef (type1);
3682 type2 = check_typedef (type2);
3683
3684 if (type1 == type2)
3685 return true;
3686
3687 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3688 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3689 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3690 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3691 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3692 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3693 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3694 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3695 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3696 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3697 return false;
3698
3699 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3700 return false;
3701 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3702 return false;
3703
3704 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3705 {
3706 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3707 return false;
3708 }
3709 else
3710 {
3711 int i;
3712
3713 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3714 {
3715 const struct field *field1 = &TYPE_FIELD (type1, i);
3716 const struct field *field2 = &TYPE_FIELD (type2, i);
3717
3718 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3719 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3720 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3721 return false;
3722 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3723 FIELD_NAME (*field2)))
3724 return false;
3725 switch (FIELD_LOC_KIND (*field1))
3726 {
3727 case FIELD_LOC_KIND_BITPOS:
3728 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3729 return false;
3730 break;
3731 case FIELD_LOC_KIND_ENUMVAL:
3732 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3733 return false;
3734 break;
3735 case FIELD_LOC_KIND_PHYSADDR:
3736 if (FIELD_STATIC_PHYSADDR (*field1)
3737 != FIELD_STATIC_PHYSADDR (*field2))
3738 return false;
3739 break;
3740 case FIELD_LOC_KIND_PHYSNAME:
3741 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3742 FIELD_STATIC_PHYSNAME (*field2)))
3743 return false;
3744 break;
3745 case FIELD_LOC_KIND_DWARF_BLOCK:
3746 {
3747 struct dwarf2_locexpr_baton *block1, *block2;
3748
3749 block1 = FIELD_DWARF_BLOCK (*field1);
3750 block2 = FIELD_DWARF_BLOCK (*field2);
3751 if (block1->per_cu != block2->per_cu
3752 || block1->size != block2->size
3753 || memcmp (block1->data, block2->data, block1->size) != 0)
3754 return false;
3755 }
3756 break;
3757 default:
3758 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3759 "%d by check_types_equal"),
3760 FIELD_LOC_KIND (*field1));
3761 }
3762
3763 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3764 }
3765 }
3766
3767 if (TYPE_TARGET_TYPE (type1) != NULL)
3768 {
3769 if (TYPE_TARGET_TYPE (type2) == NULL)
3770 return false;
3771
3772 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3773 TYPE_TARGET_TYPE (type2));
3774 }
3775 else if (TYPE_TARGET_TYPE (type2) != NULL)
3776 return false;
3777
3778 return true;
3779 }
3780
3781 /* Check types on a worklist for equality. Returns false if any pair
3782 is not equal, true if they are all considered equal. */
3783
3784 static bool
3785 check_types_worklist (std::vector<type_equality_entry> *worklist,
3786 struct bcache *cache)
3787 {
3788 while (!worklist->empty ())
3789 {
3790 int added;
3791
3792 struct type_equality_entry entry = std::move (worklist->back ());
3793 worklist->pop_back ();
3794
3795 /* If the type pair has already been visited, we know it is
3796 ok. */
3797 cache->insert (&entry, sizeof (entry), &added);
3798 if (!added)
3799 continue;
3800
3801 if (!check_types_equal (entry.type1, entry.type2, worklist))
3802 return false;
3803 }
3804
3805 return true;
3806 }
3807
3808 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3809 "deep comparison". Otherwise return false. */
3810
3811 bool
3812 types_deeply_equal (struct type *type1, struct type *type2)
3813 {
3814 std::vector<type_equality_entry> worklist;
3815
3816 gdb_assert (type1 != NULL && type2 != NULL);
3817
3818 /* Early exit for the simple case. */
3819 if (type1 == type2)
3820 return true;
3821
3822 struct bcache cache (nullptr, nullptr);
3823 worklist.emplace_back (type1, type2);
3824 return check_types_worklist (&worklist, &cache);
3825 }
3826
3827 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3828 Otherwise return one. */
3829
3830 int
3831 type_not_allocated (const struct type *type)
3832 {
3833 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3834
3835 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3836 && !TYPE_DYN_PROP_ADDR (prop));
3837 }
3838
3839 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3840 Otherwise return one. */
3841
3842 int
3843 type_not_associated (const struct type *type)
3844 {
3845 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3846
3847 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3848 && !TYPE_DYN_PROP_ADDR (prop));
3849 }
3850
3851 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3852
3853 static struct rank
3854 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3855 {
3856 struct rank rank = {0,0};
3857
3858 switch (TYPE_CODE (arg))
3859 {
3860 case TYPE_CODE_PTR:
3861
3862 /* Allowed pointer conversions are:
3863 (a) pointer to void-pointer conversion. */
3864 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3865 return VOID_PTR_CONVERSION_BADNESS;
3866
3867 /* (b) pointer to ancestor-pointer conversion. */
3868 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3869 TYPE_TARGET_TYPE (arg),
3870 0);
3871 if (rank.subrank >= 0)
3872 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3873
3874 return INCOMPATIBLE_TYPE_BADNESS;
3875 case TYPE_CODE_ARRAY:
3876 {
3877 struct type *t1 = TYPE_TARGET_TYPE (parm);
3878 struct type *t2 = TYPE_TARGET_TYPE (arg);
3879
3880 if (types_equal (t1, t2))
3881 {
3882 /* Make sure they are CV equal. */
3883 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3884 rank.subrank |= CV_CONVERSION_CONST;
3885 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3886 rank.subrank |= CV_CONVERSION_VOLATILE;
3887 if (rank.subrank != 0)
3888 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3889 return EXACT_MATCH_BADNESS;
3890 }
3891 return INCOMPATIBLE_TYPE_BADNESS;
3892 }
3893 case TYPE_CODE_FUNC:
3894 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3895 case TYPE_CODE_INT:
3896 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3897 {
3898 if (value_as_long (value) == 0)
3899 {
3900 /* Null pointer conversion: allow it to be cast to a pointer.
3901 [4.10.1 of C++ standard draft n3290] */
3902 return NULL_POINTER_CONVERSION_BADNESS;
3903 }
3904 else
3905 {
3906 /* If type checking is disabled, allow the conversion. */
3907 if (!strict_type_checking)
3908 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3909 }
3910 }
3911 /* fall through */
3912 case TYPE_CODE_ENUM:
3913 case TYPE_CODE_FLAGS:
3914 case TYPE_CODE_CHAR:
3915 case TYPE_CODE_RANGE:
3916 case TYPE_CODE_BOOL:
3917 default:
3918 return INCOMPATIBLE_TYPE_BADNESS;
3919 }
3920 }
3921
3922 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3923
3924 static struct rank
3925 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3926 {
3927 switch (TYPE_CODE (arg))
3928 {
3929 case TYPE_CODE_PTR:
3930 case TYPE_CODE_ARRAY:
3931 return rank_one_type (TYPE_TARGET_TYPE (parm),
3932 TYPE_TARGET_TYPE (arg), NULL);
3933 default:
3934 return INCOMPATIBLE_TYPE_BADNESS;
3935 }
3936 }
3937
3938 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3939
3940 static struct rank
3941 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3942 {
3943 switch (TYPE_CODE (arg))
3944 {
3945 case TYPE_CODE_PTR: /* funcptr -> func */
3946 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3947 default:
3948 return INCOMPATIBLE_TYPE_BADNESS;
3949 }
3950 }
3951
3952 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3953
3954 static struct rank
3955 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3956 {
3957 switch (TYPE_CODE (arg))
3958 {
3959 case TYPE_CODE_INT:
3960 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3961 {
3962 /* Deal with signed, unsigned, and plain chars and
3963 signed and unsigned ints. */
3964 if (TYPE_NOSIGN (parm))
3965 {
3966 /* This case only for character types. */
3967 if (TYPE_NOSIGN (arg))
3968 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3969 else /* signed/unsigned char -> plain char */
3970 return INTEGER_CONVERSION_BADNESS;
3971 }
3972 else if (TYPE_UNSIGNED (parm))
3973 {
3974 if (TYPE_UNSIGNED (arg))
3975 {
3976 /* unsigned int -> unsigned int, or
3977 unsigned long -> unsigned long */
3978 if (integer_types_same_name_p (TYPE_NAME (parm),
3979 TYPE_NAME (arg)))
3980 return EXACT_MATCH_BADNESS;
3981 else if (integer_types_same_name_p (TYPE_NAME (arg),
3982 "int")
3983 && integer_types_same_name_p (TYPE_NAME (parm),
3984 "long"))
3985 /* unsigned int -> unsigned long */
3986 return INTEGER_PROMOTION_BADNESS;
3987 else
3988 /* unsigned long -> unsigned int */
3989 return INTEGER_CONVERSION_BADNESS;
3990 }
3991 else
3992 {
3993 if (integer_types_same_name_p (TYPE_NAME (arg),
3994 "long")
3995 && integer_types_same_name_p (TYPE_NAME (parm),
3996 "int"))
3997 /* signed long -> unsigned int */
3998 return INTEGER_CONVERSION_BADNESS;
3999 else
4000 /* signed int/long -> unsigned int/long */
4001 return INTEGER_CONVERSION_BADNESS;
4002 }
4003 }
4004 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4005 {
4006 if (integer_types_same_name_p (TYPE_NAME (parm),
4007 TYPE_NAME (arg)))
4008 return EXACT_MATCH_BADNESS;
4009 else if (integer_types_same_name_p (TYPE_NAME (arg),
4010 "int")
4011 && integer_types_same_name_p (TYPE_NAME (parm),
4012 "long"))
4013 return INTEGER_PROMOTION_BADNESS;
4014 else
4015 return INTEGER_CONVERSION_BADNESS;
4016 }
4017 else
4018 return INTEGER_CONVERSION_BADNESS;
4019 }
4020 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4021 return INTEGER_PROMOTION_BADNESS;
4022 else
4023 return INTEGER_CONVERSION_BADNESS;
4024 case TYPE_CODE_ENUM:
4025 case TYPE_CODE_FLAGS:
4026 case TYPE_CODE_CHAR:
4027 case TYPE_CODE_RANGE:
4028 case TYPE_CODE_BOOL:
4029 if (TYPE_DECLARED_CLASS (arg))
4030 return INCOMPATIBLE_TYPE_BADNESS;
4031 return INTEGER_PROMOTION_BADNESS;
4032 case TYPE_CODE_FLT:
4033 return INT_FLOAT_CONVERSION_BADNESS;
4034 case TYPE_CODE_PTR:
4035 return NS_POINTER_CONVERSION_BADNESS;
4036 default:
4037 return INCOMPATIBLE_TYPE_BADNESS;
4038 }
4039 }
4040
4041 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4042
4043 static struct rank
4044 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4045 {
4046 switch (TYPE_CODE (arg))
4047 {
4048 case TYPE_CODE_INT:
4049 case TYPE_CODE_CHAR:
4050 case TYPE_CODE_RANGE:
4051 case TYPE_CODE_BOOL:
4052 case TYPE_CODE_ENUM:
4053 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4054 return INCOMPATIBLE_TYPE_BADNESS;
4055 return INTEGER_CONVERSION_BADNESS;
4056 case TYPE_CODE_FLT:
4057 return INT_FLOAT_CONVERSION_BADNESS;
4058 default:
4059 return INCOMPATIBLE_TYPE_BADNESS;
4060 }
4061 }
4062
4063 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4064
4065 static struct rank
4066 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4067 {
4068 switch (TYPE_CODE (arg))
4069 {
4070 case TYPE_CODE_RANGE:
4071 case TYPE_CODE_BOOL:
4072 case TYPE_CODE_ENUM:
4073 if (TYPE_DECLARED_CLASS (arg))
4074 return INCOMPATIBLE_TYPE_BADNESS;
4075 return INTEGER_CONVERSION_BADNESS;
4076 case TYPE_CODE_FLT:
4077 return INT_FLOAT_CONVERSION_BADNESS;
4078 case TYPE_CODE_INT:
4079 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4080 return INTEGER_CONVERSION_BADNESS;
4081 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4082 return INTEGER_PROMOTION_BADNESS;
4083 /* fall through */
4084 case TYPE_CODE_CHAR:
4085 /* Deal with signed, unsigned, and plain chars for C++ and
4086 with int cases falling through from previous case. */
4087 if (TYPE_NOSIGN (parm))
4088 {
4089 if (TYPE_NOSIGN (arg))
4090 return EXACT_MATCH_BADNESS;
4091 else
4092 return INTEGER_CONVERSION_BADNESS;
4093 }
4094 else if (TYPE_UNSIGNED (parm))
4095 {
4096 if (TYPE_UNSIGNED (arg))
4097 return EXACT_MATCH_BADNESS;
4098 else
4099 return INTEGER_PROMOTION_BADNESS;
4100 }
4101 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4102 return EXACT_MATCH_BADNESS;
4103 else
4104 return INTEGER_CONVERSION_BADNESS;
4105 default:
4106 return INCOMPATIBLE_TYPE_BADNESS;
4107 }
4108 }
4109
4110 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4111
4112 static struct rank
4113 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4114 {
4115 switch (TYPE_CODE (arg))
4116 {
4117 case TYPE_CODE_INT:
4118 case TYPE_CODE_CHAR:
4119 case TYPE_CODE_RANGE:
4120 case TYPE_CODE_BOOL:
4121 case TYPE_CODE_ENUM:
4122 return INTEGER_CONVERSION_BADNESS;
4123 case TYPE_CODE_FLT:
4124 return INT_FLOAT_CONVERSION_BADNESS;
4125 default:
4126 return INCOMPATIBLE_TYPE_BADNESS;
4127 }
4128 }
4129
4130 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4131
4132 static struct rank
4133 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4134 {
4135 switch (TYPE_CODE (arg))
4136 {
4137 /* n3290 draft, section 4.12.1 (conv.bool):
4138
4139 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4140 pointer to member type can be converted to a prvalue of type
4141 bool. A zero value, null pointer value, or null member pointer
4142 value is converted to false; any other value is converted to
4143 true. A prvalue of type std::nullptr_t can be converted to a
4144 prvalue of type bool; the resulting value is false." */
4145 case TYPE_CODE_INT:
4146 case TYPE_CODE_CHAR:
4147 case TYPE_CODE_ENUM:
4148 case TYPE_CODE_FLT:
4149 case TYPE_CODE_MEMBERPTR:
4150 case TYPE_CODE_PTR:
4151 return BOOL_CONVERSION_BADNESS;
4152 case TYPE_CODE_RANGE:
4153 return INCOMPATIBLE_TYPE_BADNESS;
4154 case TYPE_CODE_BOOL:
4155 return EXACT_MATCH_BADNESS;
4156 default:
4157 return INCOMPATIBLE_TYPE_BADNESS;
4158 }
4159 }
4160
4161 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4162
4163 static struct rank
4164 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4165 {
4166 switch (TYPE_CODE (arg))
4167 {
4168 case TYPE_CODE_FLT:
4169 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4170 return FLOAT_PROMOTION_BADNESS;
4171 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4172 return EXACT_MATCH_BADNESS;
4173 else
4174 return FLOAT_CONVERSION_BADNESS;
4175 case TYPE_CODE_INT:
4176 case TYPE_CODE_BOOL:
4177 case TYPE_CODE_ENUM:
4178 case TYPE_CODE_RANGE:
4179 case TYPE_CODE_CHAR:
4180 return INT_FLOAT_CONVERSION_BADNESS;
4181 default:
4182 return INCOMPATIBLE_TYPE_BADNESS;
4183 }
4184 }
4185
4186 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4187
4188 static struct rank
4189 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4190 {
4191 switch (TYPE_CODE (arg))
4192 { /* Strictly not needed for C++, but... */
4193 case TYPE_CODE_FLT:
4194 return FLOAT_PROMOTION_BADNESS;
4195 case TYPE_CODE_COMPLEX:
4196 return EXACT_MATCH_BADNESS;
4197 default:
4198 return INCOMPATIBLE_TYPE_BADNESS;
4199 }
4200 }
4201
4202 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4203
4204 static struct rank
4205 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4206 {
4207 struct rank rank = {0, 0};
4208
4209 switch (TYPE_CODE (arg))
4210 {
4211 case TYPE_CODE_STRUCT:
4212 /* Check for derivation */
4213 rank.subrank = distance_to_ancestor (parm, arg, 0);
4214 if (rank.subrank >= 0)
4215 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4216 /* fall through */
4217 default:
4218 return INCOMPATIBLE_TYPE_BADNESS;
4219 }
4220 }
4221
4222 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4223
4224 static struct rank
4225 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4226 {
4227 switch (TYPE_CODE (arg))
4228 {
4229 /* Not in C++ */
4230 case TYPE_CODE_SET:
4231 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4232 TYPE_FIELD_TYPE (arg, 0), NULL);
4233 default:
4234 return INCOMPATIBLE_TYPE_BADNESS;
4235 }
4236 }
4237
4238 /* Compare one type (PARM) for compatibility with another (ARG).
4239 * PARM is intended to be the parameter type of a function; and
4240 * ARG is the supplied argument's type. This function tests if
4241 * the latter can be converted to the former.
4242 * VALUE is the argument's value or NULL if none (or called recursively)
4243 *
4244 * Return 0 if they are identical types;
4245 * Otherwise, return an integer which corresponds to how compatible
4246 * PARM is to ARG. The higher the return value, the worse the match.
4247 * Generally the "bad" conversions are all uniformly assigned a 100. */
4248
4249 struct rank
4250 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4251 {
4252 struct rank rank = {0,0};
4253
4254 /* Resolve typedefs */
4255 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4256 parm = check_typedef (parm);
4257 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4258 arg = check_typedef (arg);
4259
4260 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4261 {
4262 if (VALUE_LVAL (value) == not_lval)
4263 {
4264 /* Rvalues should preferably bind to rvalue references or const
4265 lvalue references. */
4266 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4267 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4268 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4269 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4270 else
4271 return INCOMPATIBLE_TYPE_BADNESS;
4272 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4273 }
4274 else
4275 {
4276 /* Lvalues should prefer lvalue overloads. */
4277 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4278 {
4279 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4280 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4281 }
4282 }
4283 }
4284
4285 if (types_equal (parm, arg))
4286 {
4287 struct type *t1 = parm;
4288 struct type *t2 = arg;
4289
4290 /* For pointers and references, compare target type. */
4291 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4292 {
4293 t1 = TYPE_TARGET_TYPE (parm);
4294 t2 = TYPE_TARGET_TYPE (arg);
4295 }
4296
4297 /* Make sure they are CV equal, too. */
4298 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4299 rank.subrank |= CV_CONVERSION_CONST;
4300 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4301 rank.subrank |= CV_CONVERSION_VOLATILE;
4302 if (rank.subrank != 0)
4303 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4304 return EXACT_MATCH_BADNESS;
4305 }
4306
4307 /* See through references, since we can almost make non-references
4308 references. */
4309
4310 if (TYPE_IS_REFERENCE (arg))
4311 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4312 REFERENCE_CONVERSION_BADNESS));
4313 if (TYPE_IS_REFERENCE (parm))
4314 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4315 REFERENCE_CONVERSION_BADNESS));
4316 if (overload_debug)
4317 /* Debugging only. */
4318 fprintf_filtered (gdb_stderr,
4319 "------ Arg is %s [%d], parm is %s [%d]\n",
4320 TYPE_NAME (arg), TYPE_CODE (arg),
4321 TYPE_NAME (parm), TYPE_CODE (parm));
4322
4323 /* x -> y means arg of type x being supplied for parameter of type y. */
4324
4325 switch (TYPE_CODE (parm))
4326 {
4327 case TYPE_CODE_PTR:
4328 return rank_one_type_parm_ptr (parm, arg, value);
4329 case TYPE_CODE_ARRAY:
4330 return rank_one_type_parm_array (parm, arg, value);
4331 case TYPE_CODE_FUNC:
4332 return rank_one_type_parm_func (parm, arg, value);
4333 case TYPE_CODE_INT:
4334 return rank_one_type_parm_int (parm, arg, value);
4335 case TYPE_CODE_ENUM:
4336 return rank_one_type_parm_enum (parm, arg, value);
4337 case TYPE_CODE_CHAR:
4338 return rank_one_type_parm_char (parm, arg, value);
4339 case TYPE_CODE_RANGE:
4340 return rank_one_type_parm_range (parm, arg, value);
4341 case TYPE_CODE_BOOL:
4342 return rank_one_type_parm_bool (parm, arg, value);
4343 case TYPE_CODE_FLT:
4344 return rank_one_type_parm_float (parm, arg, value);
4345 case TYPE_CODE_COMPLEX:
4346 return rank_one_type_parm_complex (parm, arg, value);
4347 case TYPE_CODE_STRUCT:
4348 return rank_one_type_parm_struct (parm, arg, value);
4349 case TYPE_CODE_SET:
4350 return rank_one_type_parm_set (parm, arg, value);
4351 default:
4352 return INCOMPATIBLE_TYPE_BADNESS;
4353 } /* switch (TYPE_CODE (arg)) */
4354 }
4355
4356 /* End of functions for overload resolution. */
4357 \f
4358 /* Routines to pretty-print types. */
4359
4360 static void
4361 print_bit_vector (B_TYPE *bits, int nbits)
4362 {
4363 int bitno;
4364
4365 for (bitno = 0; bitno < nbits; bitno++)
4366 {
4367 if ((bitno % 8) == 0)
4368 {
4369 puts_filtered (" ");
4370 }
4371 if (B_TST (bits, bitno))
4372 printf_filtered (("1"));
4373 else
4374 printf_filtered (("0"));
4375 }
4376 }
4377
4378 /* Note the first arg should be the "this" pointer, we may not want to
4379 include it since we may get into a infinitely recursive
4380 situation. */
4381
4382 static void
4383 print_args (struct field *args, int nargs, int spaces)
4384 {
4385 if (args != NULL)
4386 {
4387 int i;
4388
4389 for (i = 0; i < nargs; i++)
4390 {
4391 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4392 args[i].name != NULL ? args[i].name : "<NULL>");
4393 recursive_dump_type (args[i].type, spaces + 2);
4394 }
4395 }
4396 }
4397
4398 int
4399 field_is_static (struct field *f)
4400 {
4401 /* "static" fields are the fields whose location is not relative
4402 to the address of the enclosing struct. It would be nice to
4403 have a dedicated flag that would be set for static fields when
4404 the type is being created. But in practice, checking the field
4405 loc_kind should give us an accurate answer. */
4406 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4407 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4408 }
4409
4410 static void
4411 dump_fn_fieldlists (struct type *type, int spaces)
4412 {
4413 int method_idx;
4414 int overload_idx;
4415 struct fn_field *f;
4416
4417 printfi_filtered (spaces, "fn_fieldlists ");
4418 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4419 printf_filtered ("\n");
4420 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4421 {
4422 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4423 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4424 method_idx,
4425 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4426 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4427 gdb_stdout);
4428 printf_filtered (_(") length %d\n"),
4429 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4430 for (overload_idx = 0;
4431 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4432 overload_idx++)
4433 {
4434 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4435 overload_idx,
4436 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4437 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4438 gdb_stdout);
4439 printf_filtered (")\n");
4440 printfi_filtered (spaces + 8, "type ");
4441 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4442 gdb_stdout);
4443 printf_filtered ("\n");
4444
4445 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4446 spaces + 8 + 2);
4447
4448 printfi_filtered (spaces + 8, "args ");
4449 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4450 gdb_stdout);
4451 printf_filtered ("\n");
4452 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4453 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4454 spaces + 8 + 2);
4455 printfi_filtered (spaces + 8, "fcontext ");
4456 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4457 gdb_stdout);
4458 printf_filtered ("\n");
4459
4460 printfi_filtered (spaces + 8, "is_const %d\n",
4461 TYPE_FN_FIELD_CONST (f, overload_idx));
4462 printfi_filtered (spaces + 8, "is_volatile %d\n",
4463 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4464 printfi_filtered (spaces + 8, "is_private %d\n",
4465 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4466 printfi_filtered (spaces + 8, "is_protected %d\n",
4467 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4468 printfi_filtered (spaces + 8, "is_stub %d\n",
4469 TYPE_FN_FIELD_STUB (f, overload_idx));
4470 printfi_filtered (spaces + 8, "voffset %u\n",
4471 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4472 }
4473 }
4474 }
4475
4476 static void
4477 print_cplus_stuff (struct type *type, int spaces)
4478 {
4479 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4480 printfi_filtered (spaces, "vptr_basetype ");
4481 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4482 puts_filtered ("\n");
4483 if (TYPE_VPTR_BASETYPE (type) != NULL)
4484 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4485
4486 printfi_filtered (spaces, "n_baseclasses %d\n",
4487 TYPE_N_BASECLASSES (type));
4488 printfi_filtered (spaces, "nfn_fields %d\n",
4489 TYPE_NFN_FIELDS (type));
4490 if (TYPE_N_BASECLASSES (type) > 0)
4491 {
4492 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4493 TYPE_N_BASECLASSES (type));
4494 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4495 gdb_stdout);
4496 printf_filtered (")");
4497
4498 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4499 TYPE_N_BASECLASSES (type));
4500 puts_filtered ("\n");
4501 }
4502 if (TYPE_NFIELDS (type) > 0)
4503 {
4504 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4505 {
4506 printfi_filtered (spaces,
4507 "private_field_bits (%d bits at *",
4508 TYPE_NFIELDS (type));
4509 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4510 gdb_stdout);
4511 printf_filtered (")");
4512 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4513 TYPE_NFIELDS (type));
4514 puts_filtered ("\n");
4515 }
4516 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4517 {
4518 printfi_filtered (spaces,
4519 "protected_field_bits (%d bits at *",
4520 TYPE_NFIELDS (type));
4521 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4522 gdb_stdout);
4523 printf_filtered (")");
4524 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4525 TYPE_NFIELDS (type));
4526 puts_filtered ("\n");
4527 }
4528 }
4529 if (TYPE_NFN_FIELDS (type) > 0)
4530 {
4531 dump_fn_fieldlists (type, spaces);
4532 }
4533 }
4534
4535 /* Print the contents of the TYPE's type_specific union, assuming that
4536 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4537
4538 static void
4539 print_gnat_stuff (struct type *type, int spaces)
4540 {
4541 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4542
4543 if (descriptive_type == NULL)
4544 printfi_filtered (spaces + 2, "no descriptive type\n");
4545 else
4546 {
4547 printfi_filtered (spaces + 2, "descriptive type\n");
4548 recursive_dump_type (descriptive_type, spaces + 4);
4549 }
4550 }
4551
4552 static struct obstack dont_print_type_obstack;
4553
4554 void
4555 recursive_dump_type (struct type *type, int spaces)
4556 {
4557 int idx;
4558
4559 if (spaces == 0)
4560 obstack_begin (&dont_print_type_obstack, 0);
4561
4562 if (TYPE_NFIELDS (type) > 0
4563 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4564 {
4565 struct type **first_dont_print
4566 = (struct type **) obstack_base (&dont_print_type_obstack);
4567
4568 int i = (struct type **)
4569 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4570
4571 while (--i >= 0)
4572 {
4573 if (type == first_dont_print[i])
4574 {
4575 printfi_filtered (spaces, "type node ");
4576 gdb_print_host_address (type, gdb_stdout);
4577 printf_filtered (_(" <same as already seen type>\n"));
4578 return;
4579 }
4580 }
4581
4582 obstack_ptr_grow (&dont_print_type_obstack, type);
4583 }
4584
4585 printfi_filtered (spaces, "type node ");
4586 gdb_print_host_address (type, gdb_stdout);
4587 printf_filtered ("\n");
4588 printfi_filtered (spaces, "name '%s' (",
4589 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4590 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4591 printf_filtered (")\n");
4592 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4593 switch (TYPE_CODE (type))
4594 {
4595 case TYPE_CODE_UNDEF:
4596 printf_filtered ("(TYPE_CODE_UNDEF)");
4597 break;
4598 case TYPE_CODE_PTR:
4599 printf_filtered ("(TYPE_CODE_PTR)");
4600 break;
4601 case TYPE_CODE_ARRAY:
4602 printf_filtered ("(TYPE_CODE_ARRAY)");
4603 break;
4604 case TYPE_CODE_STRUCT:
4605 printf_filtered ("(TYPE_CODE_STRUCT)");
4606 break;
4607 case TYPE_CODE_UNION:
4608 printf_filtered ("(TYPE_CODE_UNION)");
4609 break;
4610 case TYPE_CODE_ENUM:
4611 printf_filtered ("(TYPE_CODE_ENUM)");
4612 break;
4613 case TYPE_CODE_FLAGS:
4614 printf_filtered ("(TYPE_CODE_FLAGS)");
4615 break;
4616 case TYPE_CODE_FUNC:
4617 printf_filtered ("(TYPE_CODE_FUNC)");
4618 break;
4619 case TYPE_CODE_INT:
4620 printf_filtered ("(TYPE_CODE_INT)");
4621 break;
4622 case TYPE_CODE_FLT:
4623 printf_filtered ("(TYPE_CODE_FLT)");
4624 break;
4625 case TYPE_CODE_VOID:
4626 printf_filtered ("(TYPE_CODE_VOID)");
4627 break;
4628 case TYPE_CODE_SET:
4629 printf_filtered ("(TYPE_CODE_SET)");
4630 break;
4631 case TYPE_CODE_RANGE:
4632 printf_filtered ("(TYPE_CODE_RANGE)");
4633 break;
4634 case TYPE_CODE_STRING:
4635 printf_filtered ("(TYPE_CODE_STRING)");
4636 break;
4637 case TYPE_CODE_ERROR:
4638 printf_filtered ("(TYPE_CODE_ERROR)");
4639 break;
4640 case TYPE_CODE_MEMBERPTR:
4641 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4642 break;
4643 case TYPE_CODE_METHODPTR:
4644 printf_filtered ("(TYPE_CODE_METHODPTR)");
4645 break;
4646 case TYPE_CODE_METHOD:
4647 printf_filtered ("(TYPE_CODE_METHOD)");
4648 break;
4649 case TYPE_CODE_REF:
4650 printf_filtered ("(TYPE_CODE_REF)");
4651 break;
4652 case TYPE_CODE_CHAR:
4653 printf_filtered ("(TYPE_CODE_CHAR)");
4654 break;
4655 case TYPE_CODE_BOOL:
4656 printf_filtered ("(TYPE_CODE_BOOL)");
4657 break;
4658 case TYPE_CODE_COMPLEX:
4659 printf_filtered ("(TYPE_CODE_COMPLEX)");
4660 break;
4661 case TYPE_CODE_TYPEDEF:
4662 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4663 break;
4664 case TYPE_CODE_NAMESPACE:
4665 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4666 break;
4667 default:
4668 printf_filtered ("(UNKNOWN TYPE CODE)");
4669 break;
4670 }
4671 puts_filtered ("\n");
4672 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4673 if (TYPE_OBJFILE_OWNED (type))
4674 {
4675 printfi_filtered (spaces, "objfile ");
4676 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4677 }
4678 else
4679 {
4680 printfi_filtered (spaces, "gdbarch ");
4681 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4682 }
4683 printf_filtered ("\n");
4684 printfi_filtered (spaces, "target_type ");
4685 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4686 printf_filtered ("\n");
4687 if (TYPE_TARGET_TYPE (type) != NULL)
4688 {
4689 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4690 }
4691 printfi_filtered (spaces, "pointer_type ");
4692 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4693 printf_filtered ("\n");
4694 printfi_filtered (spaces, "reference_type ");
4695 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4696 printf_filtered ("\n");
4697 printfi_filtered (spaces, "type_chain ");
4698 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4699 printf_filtered ("\n");
4700 printfi_filtered (spaces, "instance_flags 0x%x",
4701 TYPE_INSTANCE_FLAGS (type));
4702 if (TYPE_CONST (type))
4703 {
4704 puts_filtered (" TYPE_CONST");
4705 }
4706 if (TYPE_VOLATILE (type))
4707 {
4708 puts_filtered (" TYPE_VOLATILE");
4709 }
4710 if (TYPE_CODE_SPACE (type))
4711 {
4712 puts_filtered (" TYPE_CODE_SPACE");
4713 }
4714 if (TYPE_DATA_SPACE (type))
4715 {
4716 puts_filtered (" TYPE_DATA_SPACE");
4717 }
4718 if (TYPE_ADDRESS_CLASS_1 (type))
4719 {
4720 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4721 }
4722 if (TYPE_ADDRESS_CLASS_2 (type))
4723 {
4724 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4725 }
4726 if (TYPE_RESTRICT (type))
4727 {
4728 puts_filtered (" TYPE_RESTRICT");
4729 }
4730 if (TYPE_ATOMIC (type))
4731 {
4732 puts_filtered (" TYPE_ATOMIC");
4733 }
4734 puts_filtered ("\n");
4735
4736 printfi_filtered (spaces, "flags");
4737 if (TYPE_UNSIGNED (type))
4738 {
4739 puts_filtered (" TYPE_UNSIGNED");
4740 }
4741 if (TYPE_NOSIGN (type))
4742 {
4743 puts_filtered (" TYPE_NOSIGN");
4744 }
4745 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4746 {
4747 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4748 }
4749 if (TYPE_STUB (type))
4750 {
4751 puts_filtered (" TYPE_STUB");
4752 }
4753 if (TYPE_TARGET_STUB (type))
4754 {
4755 puts_filtered (" TYPE_TARGET_STUB");
4756 }
4757 if (TYPE_PROTOTYPED (type))
4758 {
4759 puts_filtered (" TYPE_PROTOTYPED");
4760 }
4761 if (TYPE_INCOMPLETE (type))
4762 {
4763 puts_filtered (" TYPE_INCOMPLETE");
4764 }
4765 if (TYPE_VARARGS (type))
4766 {
4767 puts_filtered (" TYPE_VARARGS");
4768 }
4769 /* This is used for things like AltiVec registers on ppc. Gcc emits
4770 an attribute for the array type, which tells whether or not we
4771 have a vector, instead of a regular array. */
4772 if (TYPE_VECTOR (type))
4773 {
4774 puts_filtered (" TYPE_VECTOR");
4775 }
4776 if (TYPE_FIXED_INSTANCE (type))
4777 {
4778 puts_filtered (" TYPE_FIXED_INSTANCE");
4779 }
4780 if (TYPE_STUB_SUPPORTED (type))
4781 {
4782 puts_filtered (" TYPE_STUB_SUPPORTED");
4783 }
4784 if (TYPE_NOTTEXT (type))
4785 {
4786 puts_filtered (" TYPE_NOTTEXT");
4787 }
4788 puts_filtered ("\n");
4789 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4790 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4791 puts_filtered ("\n");
4792 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4793 {
4794 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4795 printfi_filtered (spaces + 2,
4796 "[%d] enumval %s type ",
4797 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4798 else
4799 printfi_filtered (spaces + 2,
4800 "[%d] bitpos %s bitsize %d type ",
4801 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4802 TYPE_FIELD_BITSIZE (type, idx));
4803 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4804 printf_filtered (" name '%s' (",
4805 TYPE_FIELD_NAME (type, idx) != NULL
4806 ? TYPE_FIELD_NAME (type, idx)
4807 : "<NULL>");
4808 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4809 printf_filtered (")\n");
4810 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4811 {
4812 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4813 }
4814 }
4815 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4816 {
4817 printfi_filtered (spaces, "low %s%s high %s%s\n",
4818 plongest (TYPE_LOW_BOUND (type)),
4819 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4820 plongest (TYPE_HIGH_BOUND (type)),
4821 TYPE_HIGH_BOUND_UNDEFINED (type)
4822 ? " (undefined)" : "");
4823 }
4824
4825 switch (TYPE_SPECIFIC_FIELD (type))
4826 {
4827 case TYPE_SPECIFIC_CPLUS_STUFF:
4828 printfi_filtered (spaces, "cplus_stuff ");
4829 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4830 gdb_stdout);
4831 puts_filtered ("\n");
4832 print_cplus_stuff (type, spaces);
4833 break;
4834
4835 case TYPE_SPECIFIC_GNAT_STUFF:
4836 printfi_filtered (spaces, "gnat_stuff ");
4837 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4838 puts_filtered ("\n");
4839 print_gnat_stuff (type, spaces);
4840 break;
4841
4842 case TYPE_SPECIFIC_FLOATFORMAT:
4843 printfi_filtered (spaces, "floatformat ");
4844 if (TYPE_FLOATFORMAT (type) == NULL
4845 || TYPE_FLOATFORMAT (type)->name == NULL)
4846 puts_filtered ("(null)");
4847 else
4848 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4849 puts_filtered ("\n");
4850 break;
4851
4852 case TYPE_SPECIFIC_FUNC:
4853 printfi_filtered (spaces, "calling_convention %d\n",
4854 TYPE_CALLING_CONVENTION (type));
4855 /* tail_call_list is not printed. */
4856 break;
4857
4858 case TYPE_SPECIFIC_SELF_TYPE:
4859 printfi_filtered (spaces, "self_type ");
4860 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4861 puts_filtered ("\n");
4862 break;
4863 }
4864
4865 if (spaces == 0)
4866 obstack_free (&dont_print_type_obstack, NULL);
4867 }
4868 \f
4869 /* Trivial helpers for the libiberty hash table, for mapping one
4870 type to another. */
4871
4872 struct type_pair : public allocate_on_obstack
4873 {
4874 type_pair (struct type *old_, struct type *newobj_)
4875 : old (old_), newobj (newobj_)
4876 {}
4877
4878 struct type * const old, * const newobj;
4879 };
4880
4881 static hashval_t
4882 type_pair_hash (const void *item)
4883 {
4884 const struct type_pair *pair = (const struct type_pair *) item;
4885
4886 return htab_hash_pointer (pair->old);
4887 }
4888
4889 static int
4890 type_pair_eq (const void *item_lhs, const void *item_rhs)
4891 {
4892 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4893 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4894
4895 return lhs->old == rhs->old;
4896 }
4897
4898 /* Allocate the hash table used by copy_type_recursive to walk
4899 types without duplicates. We use OBJFILE's obstack, because
4900 OBJFILE is about to be deleted. */
4901
4902 htab_t
4903 create_copied_types_hash (struct objfile *objfile)
4904 {
4905 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4906 NULL, &objfile->objfile_obstack,
4907 hashtab_obstack_allocate,
4908 dummy_obstack_deallocate);
4909 }
4910
4911 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4912
4913 static struct dynamic_prop_list *
4914 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4915 struct dynamic_prop_list *list)
4916 {
4917 struct dynamic_prop_list *copy = list;
4918 struct dynamic_prop_list **node_ptr = &copy;
4919
4920 while (*node_ptr != NULL)
4921 {
4922 struct dynamic_prop_list *node_copy;
4923
4924 node_copy = ((struct dynamic_prop_list *)
4925 obstack_copy (objfile_obstack, *node_ptr,
4926 sizeof (struct dynamic_prop_list)));
4927 node_copy->prop = (*node_ptr)->prop;
4928 *node_ptr = node_copy;
4929
4930 node_ptr = &node_copy->next;
4931 }
4932
4933 return copy;
4934 }
4935
4936 /* Recursively copy (deep copy) TYPE, if it is associated with
4937 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4938 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4939 it is not associated with OBJFILE. */
4940
4941 struct type *
4942 copy_type_recursive (struct objfile *objfile,
4943 struct type *type,
4944 htab_t copied_types)
4945 {
4946 void **slot;
4947 struct type *new_type;
4948
4949 if (! TYPE_OBJFILE_OWNED (type))
4950 return type;
4951
4952 /* This type shouldn't be pointing to any types in other objfiles;
4953 if it did, the type might disappear unexpectedly. */
4954 gdb_assert (TYPE_OBJFILE (type) == objfile);
4955
4956 struct type_pair pair (type, nullptr);
4957
4958 slot = htab_find_slot (copied_types, &pair, INSERT);
4959 if (*slot != NULL)
4960 return ((struct type_pair *) *slot)->newobj;
4961
4962 new_type = alloc_type_arch (get_type_arch (type));
4963
4964 /* We must add the new type to the hash table immediately, in case
4965 we encounter this type again during a recursive call below. */
4966 struct type_pair *stored
4967 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4968
4969 *slot = stored;
4970
4971 /* Copy the common fields of types. For the main type, we simply
4972 copy the entire thing and then update specific fields as needed. */
4973 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4974 TYPE_OBJFILE_OWNED (new_type) = 0;
4975 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4976
4977 if (TYPE_NAME (type))
4978 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4979
4980 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4981 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4982
4983 /* Copy the fields. */
4984 if (TYPE_NFIELDS (type))
4985 {
4986 int i, nfields;
4987
4988 nfields = TYPE_NFIELDS (type);
4989 TYPE_FIELDS (new_type) = (struct field *)
4990 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4991 for (i = 0; i < nfields; i++)
4992 {
4993 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4994 TYPE_FIELD_ARTIFICIAL (type, i);
4995 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4996 if (TYPE_FIELD_TYPE (type, i))
4997 TYPE_FIELD_TYPE (new_type, i)
4998 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4999 copied_types);
5000 if (TYPE_FIELD_NAME (type, i))
5001 TYPE_FIELD_NAME (new_type, i) =
5002 xstrdup (TYPE_FIELD_NAME (type, i));
5003 switch (TYPE_FIELD_LOC_KIND (type, i))
5004 {
5005 case FIELD_LOC_KIND_BITPOS:
5006 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5007 TYPE_FIELD_BITPOS (type, i));
5008 break;
5009 case FIELD_LOC_KIND_ENUMVAL:
5010 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5011 TYPE_FIELD_ENUMVAL (type, i));
5012 break;
5013 case FIELD_LOC_KIND_PHYSADDR:
5014 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5015 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5016 break;
5017 case FIELD_LOC_KIND_PHYSNAME:
5018 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5019 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5020 i)));
5021 break;
5022 default:
5023 internal_error (__FILE__, __LINE__,
5024 _("Unexpected type field location kind: %d"),
5025 TYPE_FIELD_LOC_KIND (type, i));
5026 }
5027 }
5028 }
5029
5030 /* For range types, copy the bounds information. */
5031 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5032 {
5033 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5034 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5035 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5036 }
5037
5038 if (TYPE_DYN_PROP_LIST (type) != NULL)
5039 TYPE_DYN_PROP_LIST (new_type)
5040 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5041 TYPE_DYN_PROP_LIST (type));
5042
5043
5044 /* Copy pointers to other types. */
5045 if (TYPE_TARGET_TYPE (type))
5046 TYPE_TARGET_TYPE (new_type) =
5047 copy_type_recursive (objfile,
5048 TYPE_TARGET_TYPE (type),
5049 copied_types);
5050
5051 /* Maybe copy the type_specific bits.
5052
5053 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5054 base classes and methods. There's no fundamental reason why we
5055 can't, but at the moment it is not needed. */
5056
5057 switch (TYPE_SPECIFIC_FIELD (type))
5058 {
5059 case TYPE_SPECIFIC_NONE:
5060 break;
5061 case TYPE_SPECIFIC_FUNC:
5062 INIT_FUNC_SPECIFIC (new_type);
5063 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5064 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5065 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5066 break;
5067 case TYPE_SPECIFIC_FLOATFORMAT:
5068 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5069 break;
5070 case TYPE_SPECIFIC_CPLUS_STUFF:
5071 INIT_CPLUS_SPECIFIC (new_type);
5072 break;
5073 case TYPE_SPECIFIC_GNAT_STUFF:
5074 INIT_GNAT_SPECIFIC (new_type);
5075 break;
5076 case TYPE_SPECIFIC_SELF_TYPE:
5077 set_type_self_type (new_type,
5078 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5079 copied_types));
5080 break;
5081 default:
5082 gdb_assert_not_reached ("bad type_specific_kind");
5083 }
5084
5085 return new_type;
5086 }
5087
5088 /* Make a copy of the given TYPE, except that the pointer & reference
5089 types are not preserved.
5090
5091 This function assumes that the given type has an associated objfile.
5092 This objfile is used to allocate the new type. */
5093
5094 struct type *
5095 copy_type (const struct type *type)
5096 {
5097 struct type *new_type;
5098
5099 gdb_assert (TYPE_OBJFILE_OWNED (type));
5100
5101 new_type = alloc_type_copy (type);
5102 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5103 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5104 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5105 sizeof (struct main_type));
5106 if (TYPE_DYN_PROP_LIST (type) != NULL)
5107 TYPE_DYN_PROP_LIST (new_type)
5108 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5109 TYPE_DYN_PROP_LIST (type));
5110
5111 return new_type;
5112 }
5113 \f
5114 /* Helper functions to initialize architecture-specific types. */
5115
5116 /* Allocate a type structure associated with GDBARCH and set its
5117 CODE, LENGTH, and NAME fields. */
5118
5119 struct type *
5120 arch_type (struct gdbarch *gdbarch,
5121 enum type_code code, int bit, const char *name)
5122 {
5123 struct type *type;
5124
5125 type = alloc_type_arch (gdbarch);
5126 set_type_code (type, code);
5127 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5128 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5129
5130 if (name)
5131 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5132
5133 return type;
5134 }
5135
5136 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5137 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5138 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5139
5140 struct type *
5141 arch_integer_type (struct gdbarch *gdbarch,
5142 int bit, int unsigned_p, const char *name)
5143 {
5144 struct type *t;
5145
5146 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5147 if (unsigned_p)
5148 TYPE_UNSIGNED (t) = 1;
5149
5150 return t;
5151 }
5152
5153 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5154 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5155 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5156
5157 struct type *
5158 arch_character_type (struct gdbarch *gdbarch,
5159 int bit, int unsigned_p, const char *name)
5160 {
5161 struct type *t;
5162
5163 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5164 if (unsigned_p)
5165 TYPE_UNSIGNED (t) = 1;
5166
5167 return t;
5168 }
5169
5170 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5171 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5172 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5173
5174 struct type *
5175 arch_boolean_type (struct gdbarch *gdbarch,
5176 int bit, int unsigned_p, const char *name)
5177 {
5178 struct type *t;
5179
5180 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5181 if (unsigned_p)
5182 TYPE_UNSIGNED (t) = 1;
5183
5184 return t;
5185 }
5186
5187 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5188 BIT is the type size in bits; if BIT equals -1, the size is
5189 determined by the floatformat. NAME is the type name. Set the
5190 TYPE_FLOATFORMAT from FLOATFORMATS. */
5191
5192 struct type *
5193 arch_float_type (struct gdbarch *gdbarch,
5194 int bit, const char *name,
5195 const struct floatformat **floatformats)
5196 {
5197 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5198 struct type *t;
5199
5200 bit = verify_floatformat (bit, fmt);
5201 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5202 TYPE_FLOATFORMAT (t) = fmt;
5203
5204 return t;
5205 }
5206
5207 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5208 BIT is the type size in bits. NAME is the type name. */
5209
5210 struct type *
5211 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5212 {
5213 struct type *t;
5214
5215 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5216 return t;
5217 }
5218
5219 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5220 NAME is the type name. TARGET_TYPE is the component float type. */
5221
5222 struct type *
5223 arch_complex_type (struct gdbarch *gdbarch,
5224 const char *name, struct type *target_type)
5225 {
5226 struct type *t;
5227
5228 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5229 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5230 TYPE_TARGET_TYPE (t) = target_type;
5231 return t;
5232 }
5233
5234 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5235 BIT is the pointer type size in bits. NAME is the type name.
5236 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5237 TYPE_UNSIGNED flag. */
5238
5239 struct type *
5240 arch_pointer_type (struct gdbarch *gdbarch,
5241 int bit, const char *name, struct type *target_type)
5242 {
5243 struct type *t;
5244
5245 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5246 TYPE_TARGET_TYPE (t) = target_type;
5247 TYPE_UNSIGNED (t) = 1;
5248 return t;
5249 }
5250
5251 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5252 NAME is the type name. BIT is the size of the flag word in bits. */
5253
5254 struct type *
5255 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5256 {
5257 struct type *type;
5258
5259 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5260 TYPE_UNSIGNED (type) = 1;
5261 TYPE_NFIELDS (type) = 0;
5262 /* Pre-allocate enough space assuming every field is one bit. */
5263 TYPE_FIELDS (type)
5264 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5265
5266 return type;
5267 }
5268
5269 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5270 position BITPOS is called NAME. Pass NAME as "" for fields that
5271 should not be printed. */
5272
5273 void
5274 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5275 struct type *field_type, const char *name)
5276 {
5277 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5278 int field_nr = TYPE_NFIELDS (type);
5279
5280 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5281 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5282 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5283 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5284 gdb_assert (name != NULL);
5285
5286 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5287 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5288 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5289 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5290 ++TYPE_NFIELDS (type);
5291 }
5292
5293 /* Special version of append_flags_type_field to add a flag field.
5294 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5295 position BITPOS is called NAME. */
5296
5297 void
5298 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5299 {
5300 struct gdbarch *gdbarch = get_type_arch (type);
5301
5302 append_flags_type_field (type, bitpos, 1,
5303 builtin_type (gdbarch)->builtin_bool,
5304 name);
5305 }
5306
5307 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5308 specified by CODE) associated with GDBARCH. NAME is the type name. */
5309
5310 struct type *
5311 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5312 enum type_code code)
5313 {
5314 struct type *t;
5315
5316 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5317 t = arch_type (gdbarch, code, 0, NULL);
5318 TYPE_NAME (t) = name;
5319 INIT_CPLUS_SPECIFIC (t);
5320 return t;
5321 }
5322
5323 /* Add new field with name NAME and type FIELD to composite type T.
5324 Do not set the field's position or adjust the type's length;
5325 the caller should do so. Return the new field. */
5326
5327 struct field *
5328 append_composite_type_field_raw (struct type *t, const char *name,
5329 struct type *field)
5330 {
5331 struct field *f;
5332
5333 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5334 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5335 TYPE_NFIELDS (t));
5336 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5337 memset (f, 0, sizeof f[0]);
5338 FIELD_TYPE (f[0]) = field;
5339 FIELD_NAME (f[0]) = name;
5340 return f;
5341 }
5342
5343 /* Add new field with name NAME and type FIELD to composite type T.
5344 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5345
5346 void
5347 append_composite_type_field_aligned (struct type *t, const char *name,
5348 struct type *field, int alignment)
5349 {
5350 struct field *f = append_composite_type_field_raw (t, name, field);
5351
5352 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5353 {
5354 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5355 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5356 }
5357 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5358 {
5359 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5360 if (TYPE_NFIELDS (t) > 1)
5361 {
5362 SET_FIELD_BITPOS (f[0],
5363 (FIELD_BITPOS (f[-1])
5364 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5365 * TARGET_CHAR_BIT)));
5366
5367 if (alignment)
5368 {
5369 int left;
5370
5371 alignment *= TARGET_CHAR_BIT;
5372 left = FIELD_BITPOS (f[0]) % alignment;
5373
5374 if (left)
5375 {
5376 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5377 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5378 }
5379 }
5380 }
5381 }
5382 }
5383
5384 /* Add new field with name NAME and type FIELD to composite type T. */
5385
5386 void
5387 append_composite_type_field (struct type *t, const char *name,
5388 struct type *field)
5389 {
5390 append_composite_type_field_aligned (t, name, field, 0);
5391 }
5392
5393 static struct gdbarch_data *gdbtypes_data;
5394
5395 const struct builtin_type *
5396 builtin_type (struct gdbarch *gdbarch)
5397 {
5398 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5399 }
5400
5401 static void *
5402 gdbtypes_post_init (struct gdbarch *gdbarch)
5403 {
5404 struct builtin_type *builtin_type
5405 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5406
5407 /* Basic types. */
5408 builtin_type->builtin_void
5409 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5410 builtin_type->builtin_char
5411 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5412 !gdbarch_char_signed (gdbarch), "char");
5413 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5414 builtin_type->builtin_signed_char
5415 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5416 0, "signed char");
5417 builtin_type->builtin_unsigned_char
5418 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5419 1, "unsigned char");
5420 builtin_type->builtin_short
5421 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5422 0, "short");
5423 builtin_type->builtin_unsigned_short
5424 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5425 1, "unsigned short");
5426 builtin_type->builtin_int
5427 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5428 0, "int");
5429 builtin_type->builtin_unsigned_int
5430 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5431 1, "unsigned int");
5432 builtin_type->builtin_long
5433 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5434 0, "long");
5435 builtin_type->builtin_unsigned_long
5436 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5437 1, "unsigned long");
5438 builtin_type->builtin_long_long
5439 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5440 0, "long long");
5441 builtin_type->builtin_unsigned_long_long
5442 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5443 1, "unsigned long long");
5444 builtin_type->builtin_half
5445 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5446 "half", gdbarch_half_format (gdbarch));
5447 builtin_type->builtin_float
5448 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5449 "float", gdbarch_float_format (gdbarch));
5450 builtin_type->builtin_double
5451 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5452 "double", gdbarch_double_format (gdbarch));
5453 builtin_type->builtin_long_double
5454 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5455 "long double", gdbarch_long_double_format (gdbarch));
5456 builtin_type->builtin_complex
5457 = arch_complex_type (gdbarch, "complex",
5458 builtin_type->builtin_float);
5459 builtin_type->builtin_double_complex
5460 = arch_complex_type (gdbarch, "double complex",
5461 builtin_type->builtin_double);
5462 builtin_type->builtin_string
5463 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5464 builtin_type->builtin_bool
5465 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5466
5467 /* The following three are about decimal floating point types, which
5468 are 32-bits, 64-bits and 128-bits respectively. */
5469 builtin_type->builtin_decfloat
5470 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5471 builtin_type->builtin_decdouble
5472 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5473 builtin_type->builtin_declong
5474 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5475
5476 /* "True" character types. */
5477 builtin_type->builtin_true_char
5478 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5479 builtin_type->builtin_true_unsigned_char
5480 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5481
5482 /* Fixed-size integer types. */
5483 builtin_type->builtin_int0
5484 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5485 builtin_type->builtin_int8
5486 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5487 builtin_type->builtin_uint8
5488 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5489 builtin_type->builtin_int16
5490 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5491 builtin_type->builtin_uint16
5492 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5493 builtin_type->builtin_int24
5494 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5495 builtin_type->builtin_uint24
5496 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5497 builtin_type->builtin_int32
5498 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5499 builtin_type->builtin_uint32
5500 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5501 builtin_type->builtin_int64
5502 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5503 builtin_type->builtin_uint64
5504 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5505 builtin_type->builtin_int128
5506 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5507 builtin_type->builtin_uint128
5508 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5509 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5510 TYPE_INSTANCE_FLAG_NOTTEXT;
5511 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5512 TYPE_INSTANCE_FLAG_NOTTEXT;
5513
5514 /* Wide character types. */
5515 builtin_type->builtin_char16
5516 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5517 builtin_type->builtin_char32
5518 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5519 builtin_type->builtin_wchar
5520 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5521 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5522
5523 /* Default data/code pointer types. */
5524 builtin_type->builtin_data_ptr
5525 = lookup_pointer_type (builtin_type->builtin_void);
5526 builtin_type->builtin_func_ptr
5527 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5528 builtin_type->builtin_func_func
5529 = lookup_function_type (builtin_type->builtin_func_ptr);
5530
5531 /* This type represents a GDB internal function. */
5532 builtin_type->internal_fn
5533 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5534 "<internal function>");
5535
5536 /* This type represents an xmethod. */
5537 builtin_type->xmethod
5538 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5539
5540 return builtin_type;
5541 }
5542
5543 /* This set of objfile-based types is intended to be used by symbol
5544 readers as basic types. */
5545
5546 static const struct objfile_key<struct objfile_type,
5547 gdb::noop_deleter<struct objfile_type>>
5548 objfile_type_data;
5549
5550 const struct objfile_type *
5551 objfile_type (struct objfile *objfile)
5552 {
5553 struct gdbarch *gdbarch;
5554 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5555
5556 if (objfile_type)
5557 return objfile_type;
5558
5559 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5560 1, struct objfile_type);
5561
5562 /* Use the objfile architecture to determine basic type properties. */
5563 gdbarch = get_objfile_arch (objfile);
5564
5565 /* Basic types. */
5566 objfile_type->builtin_void
5567 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5568 objfile_type->builtin_char
5569 = init_integer_type (objfile, TARGET_CHAR_BIT,
5570 !gdbarch_char_signed (gdbarch), "char");
5571 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5572 objfile_type->builtin_signed_char
5573 = init_integer_type (objfile, TARGET_CHAR_BIT,
5574 0, "signed char");
5575 objfile_type->builtin_unsigned_char
5576 = init_integer_type (objfile, TARGET_CHAR_BIT,
5577 1, "unsigned char");
5578 objfile_type->builtin_short
5579 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5580 0, "short");
5581 objfile_type->builtin_unsigned_short
5582 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5583 1, "unsigned short");
5584 objfile_type->builtin_int
5585 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5586 0, "int");
5587 objfile_type->builtin_unsigned_int
5588 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5589 1, "unsigned int");
5590 objfile_type->builtin_long
5591 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5592 0, "long");
5593 objfile_type->builtin_unsigned_long
5594 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5595 1, "unsigned long");
5596 objfile_type->builtin_long_long
5597 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5598 0, "long long");
5599 objfile_type->builtin_unsigned_long_long
5600 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5601 1, "unsigned long long");
5602 objfile_type->builtin_float
5603 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5604 "float", gdbarch_float_format (gdbarch));
5605 objfile_type->builtin_double
5606 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5607 "double", gdbarch_double_format (gdbarch));
5608 objfile_type->builtin_long_double
5609 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5610 "long double", gdbarch_long_double_format (gdbarch));
5611
5612 /* This type represents a type that was unrecognized in symbol read-in. */
5613 objfile_type->builtin_error
5614 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5615
5616 /* The following set of types is used for symbols with no
5617 debug information. */
5618 objfile_type->nodebug_text_symbol
5619 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5620 "<text variable, no debug info>");
5621 objfile_type->nodebug_text_gnu_ifunc_symbol
5622 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5623 "<text gnu-indirect-function variable, no debug info>");
5624 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5625 objfile_type->nodebug_got_plt_symbol
5626 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5627 "<text from jump slot in .got.plt, no debug info>",
5628 objfile_type->nodebug_text_symbol);
5629 objfile_type->nodebug_data_symbol
5630 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5631 objfile_type->nodebug_unknown_symbol
5632 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5633 objfile_type->nodebug_tls_symbol
5634 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5635
5636 /* NOTE: on some targets, addresses and pointers are not necessarily
5637 the same.
5638
5639 The upshot is:
5640 - gdb's `struct type' always describes the target's
5641 representation.
5642 - gdb's `struct value' objects should always hold values in
5643 target form.
5644 - gdb's CORE_ADDR values are addresses in the unified virtual
5645 address space that the assembler and linker work with. Thus,
5646 since target_read_memory takes a CORE_ADDR as an argument, it
5647 can access any memory on the target, even if the processor has
5648 separate code and data address spaces.
5649
5650 In this context, objfile_type->builtin_core_addr is a bit odd:
5651 it's a target type for a value the target will never see. It's
5652 only used to hold the values of (typeless) linker symbols, which
5653 are indeed in the unified virtual address space. */
5654
5655 objfile_type->builtin_core_addr
5656 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5657 "__CORE_ADDR");
5658
5659 objfile_type_data.set (objfile, objfile_type);
5660 return objfile_type;
5661 }
5662
5663 void
5664 _initialize_gdbtypes (void)
5665 {
5666 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5667
5668 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5669 _("Set debugging of C++ overloading."),
5670 _("Show debugging of C++ overloading."),
5671 _("When enabled, ranking of the "
5672 "functions is displayed."),
5673 NULL,
5674 show_overload_debug,
5675 &setdebuglist, &showdebuglist);
5676
5677 /* Add user knob for controlling resolution of opaque types. */
5678 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5679 &opaque_type_resolution,
5680 _("Set resolution of opaque struct/class/union"
5681 " types (if set before loading symbols)."),
5682 _("Show resolution of opaque struct/class/union"
5683 " types (if set before loading symbols)."),
5684 NULL, NULL,
5685 show_opaque_type_resolution,
5686 &setlist, &showlist);
5687
5688 /* Add an option to permit non-strict type checking. */
5689 add_setshow_boolean_cmd ("type", class_support,
5690 &strict_type_checking,
5691 _("Set strict type checking."),
5692 _("Show strict type checking."),
5693 NULL, NULL,
5694 show_strict_type_checking,
5695 &setchecklist, &showchecklist);
5696 }
5697
5698 /* See gdbtypes.h. */
5699 enum bfd_endian
5700 type_byte_order (const struct type *type)
5701 {
5702 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
5703 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5704 {
5705 if (byteorder == BFD_ENDIAN_BIG)
5706 return BFD_ENDIAN_LITTLE;
5707 else if (byteorder == BFD_ENDIAN_LITTLE)
5708 return BFD_ENDIAN_BIG;
5709 else
5710 return BFD_ENDIAN_UNKNOWN;
5711 }
5712
5713 return byteorder;
5714 }
This page took 0.231792 seconds and 5 git commands to generate.