Rename gdb exception types
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905 #undef FIELD_EQ
906 }
907
908 /* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
910
911 struct type *
912 create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
915 {
916 if (result_type == NULL)
917 result_type = alloc_type_copy (index_type);
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
920 if (TYPE_STUB (index_type))
921 TYPE_TARGET_STUB (result_type) = 1;
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
924
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
929
930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
931 TYPE_UNSIGNED (result_type) = 1;
932
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
940 return result_type;
941 }
942
943 /* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953 struct type *
954 create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956 {
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968 }
969
970 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973 static int
974 has_static_range (const struct range_bounds *bounds)
975 {
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978 }
979
980
981 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
984
985 int
986 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
987 {
988 type = check_typedef (type);
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
999 entries. */
1000 int i;
1001
1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
1009 }
1010
1011 /* Set unsigned indicator if warranted. */
1012 if (*lowp >= 0)
1013 {
1014 TYPE_UNSIGNED (type) = 1;
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
1036 /* fall through */
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048 }
1049
1050 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064 int
1065 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066 {
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092 }
1093
1094 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106 */
1107
1108 int
1109 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110 {
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131 }
1132
1133 /* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
1154
1155 struct type *
1156 create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
1159 struct dynamic_prop *byte_stride_prop,
1160 unsigned int bit_stride)
1161 {
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
1173 if (result_type == NULL)
1174 result_type = alloc_type_copy (range_type);
1175
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
1187 element_type = check_typedef (element_type);
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
1200 else
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1214 TYPE_INDEX_TYPE (result_type) = range_type;
1215 if (byte_stride_prop != NULL)
1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1217 else if (bit_stride > 0)
1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1219
1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1221 if (TYPE_LENGTH (result_type) == 0)
1222 TYPE_TARGET_STUB (result_type) = 1;
1223
1224 return result_type;
1225 }
1226
1227 /* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230 struct type *
1231 create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234 {
1235 return create_array_type_with_stride (result_type, element_type,
1236 range_type, NULL, 0);
1237 }
1238
1239 struct type *
1240 lookup_array_range_type (struct type *element_type,
1241 LONGEST low_bound, LONGEST high_bound)
1242 {
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
1252
1253 return create_array_type (NULL, element_type, range_type);
1254 }
1255
1256 /* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
1267
1268 struct type *
1269 create_string_type (struct type *result_type,
1270 struct type *string_char_type,
1271 struct type *range_type)
1272 {
1273 result_type = create_array_type (result_type,
1274 string_char_type,
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1277 return result_type;
1278 }
1279
1280 struct type *
1281 lookup_string_range_type (struct type *string_char_type,
1282 LONGEST low_bound, LONGEST high_bound)
1283 {
1284 struct type *result_type;
1285
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290 }
1291
1292 struct type *
1293 create_set_type (struct type *result_type, struct type *domain_type)
1294 {
1295 if (result_type == NULL)
1296 result_type = alloc_type_copy (domain_type);
1297
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1302
1303 if (!TYPE_STUB (domain_type))
1304 {
1305 LONGEST low_bound, high_bound, bit_length;
1306
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1312 if (low_bound >= 0)
1313 TYPE_UNSIGNED (result_type) = 1;
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
1317 return result_type;
1318 }
1319
1320 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323 void
1324 make_vector_type (struct type *array_type)
1325 {
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
1343 TYPE_VECTOR (array_type) = 1;
1344 }
1345
1346 struct type *
1347 init_vector_type (struct type *elt_type, int n)
1348 {
1349 struct type *array_type;
1350
1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1352 make_vector_type (array_type);
1353 return array_type;
1354 }
1355
1356 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362 struct type *
1363 internal_type_self_type (struct type *type)
1364 {
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381 }
1382
1383 /* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388 void
1389 set_type_self_type (struct type *type, struct type *self_type)
1390 {
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409 }
1410
1411 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
1417
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
1420 allocated. */
1421
1422 void
1423 smash_to_memberptr_type (struct type *type, struct type *self_type,
1424 struct type *to_type)
1425 {
1426 smash_type (type);
1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1428 TYPE_TARGET_TYPE (type) = to_type;
1429 set_type_self_type (type, self_type);
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1434 }
1435
1436 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442 void
1443 smash_to_methodptr_type (struct type *type, struct type *to_type)
1444 {
1445 smash_type (type);
1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1447 TYPE_TARGET_TYPE (type) = to_type;
1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1450 }
1451
1452 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1453 METHOD just means `function that gets an extra "this" argument'.
1454
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
1457 allocated. */
1458
1459 void
1460 smash_to_method_type (struct type *type, struct type *self_type,
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
1463 {
1464 smash_type (type);
1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
1466 TYPE_TARGET_TYPE (type) = to_type;
1467 set_type_self_type (type, self_type);
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
1471 TYPE_VARARGS (type) = 1;
1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1473 }
1474
1475 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482 const char *
1483 type_name_or_error (struct type *type)
1484 {
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
1489 type = check_typedef (type);
1490
1491 name = TYPE_NAME (type);
1492 if (name != NULL)
1493 return name;
1494
1495 name = TYPE_NAME (saved_type);
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
1500 }
1501
1502 /* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
1505
1506 struct type *
1507 lookup_typename (const struct language_defn *language,
1508 struct gdbarch *gdbarch, const char *name,
1509 const struct block *block, int noerr)
1510 {
1511 struct symbol *sym;
1512
1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1514 language->la_language, NULL).symbol;
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
1521 }
1522
1523 struct type *
1524 lookup_unsigned_typename (const struct language_defn *language,
1525 struct gdbarch *gdbarch, const char *name)
1526 {
1527 char *uns = (char *) alloca (strlen (name) + 10);
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
1531 return lookup_typename (language, gdbarch, uns, NULL, 0);
1532 }
1533
1534 struct type *
1535 lookup_signed_typename (const struct language_defn *language,
1536 struct gdbarch *gdbarch, const char *name)
1537 {
1538 struct type *t;
1539 char *uns = (char *) alloca (strlen (name) + 8);
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
1543 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
1545 if (t != NULL)
1546 return t;
1547 return lookup_typename (language, gdbarch, name, NULL, 0);
1548 }
1549
1550 /* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553 struct type *
1554 lookup_struct (const char *name, const struct block *block)
1555 {
1556 struct symbol *sym;
1557
1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1559
1560 if (sym == NULL)
1561 {
1562 error (_("No struct type named %s."), name);
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
1568 }
1569 return (SYMBOL_TYPE (sym));
1570 }
1571
1572 /* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575 struct type *
1576 lookup_union (const char *name, const struct block *block)
1577 {
1578 struct symbol *sym;
1579 struct type *t;
1580
1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1582
1583 if (sym == NULL)
1584 error (_("No union type named %s."), name);
1585
1586 t = SYMBOL_TYPE (sym);
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1589 return t;
1590
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
1594 }
1595
1596 /* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599 struct type *
1600 lookup_enum (const char *name, const struct block *block)
1601 {
1602 struct symbol *sym;
1603
1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1605 if (sym == NULL)
1606 {
1607 error (_("No enum type named %s."), name);
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
1613 }
1614 return (SYMBOL_TYPE (sym));
1615 }
1616
1617 /* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620 struct type *
1621 lookup_template_type (char *name, struct type *type,
1622 const struct block *block)
1623 {
1624 struct symbol *sym;
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1627
1628 strcpy (nam, name);
1629 strcat (nam, "<");
1630 strcat (nam, TYPE_NAME (type));
1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1632
1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1634
1635 if (sym == NULL)
1636 {
1637 error (_("No template type named %s."), name);
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
1643 }
1644 return (SYMBOL_TYPE (sym));
1645 }
1646
1647 /* See gdbtypes.h. */
1648
1649 struct_elt
1650 lookup_struct_elt (struct type *type, const char *name, int noerr)
1651 {
1652 int i;
1653
1654 for (;;)
1655 {
1656 type = check_typedef (type);
1657 if (TYPE_CODE (type) != TYPE_CODE_PTR
1658 && TYPE_CODE (type) != TYPE_CODE_REF)
1659 break;
1660 type = TYPE_TARGET_TYPE (type);
1661 }
1662
1663 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1664 && TYPE_CODE (type) != TYPE_CODE_UNION)
1665 {
1666 std::string type_name = type_to_string (type);
1667 error (_("Type %s is not a structure or union type."),
1668 type_name.c_str ());
1669 }
1670
1671 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1672 {
1673 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1674
1675 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1676 {
1677 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1678 }
1679 else if (!t_field_name || *t_field_name == '\0')
1680 {
1681 struct_elt elt
1682 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1683 if (elt.field != NULL)
1684 {
1685 elt.offset += TYPE_FIELD_BITPOS (type, i);
1686 return elt;
1687 }
1688 }
1689 }
1690
1691 /* OK, it's not in this class. Recursively check the baseclasses. */
1692 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1693 {
1694 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1695 if (elt.field != NULL)
1696 return elt;
1697 }
1698
1699 if (noerr)
1700 return {nullptr, 0};
1701
1702 std::string type_name = type_to_string (type);
1703 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1704 }
1705
1706 /* See gdbtypes.h. */
1707
1708 struct type *
1709 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1710 {
1711 struct_elt elt = lookup_struct_elt (type, name, noerr);
1712 if (elt.field != NULL)
1713 return FIELD_TYPE (*elt.field);
1714 else
1715 return NULL;
1716 }
1717
1718 /* Store in *MAX the largest number representable by unsigned integer type
1719 TYPE. */
1720
1721 void
1722 get_unsigned_type_max (struct type *type, ULONGEST *max)
1723 {
1724 unsigned int n;
1725
1726 type = check_typedef (type);
1727 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1728 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1729
1730 /* Written this way to avoid overflow. */
1731 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1732 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1733 }
1734
1735 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1736 signed integer type TYPE. */
1737
1738 void
1739 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1740 {
1741 unsigned int n;
1742
1743 type = check_typedef (type);
1744 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1745 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1746
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *min = -((ULONGEST) 1 << (n - 1));
1749 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1750 }
1751
1752 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1753 cplus_stuff.vptr_fieldno.
1754
1755 cplus_stuff is initialized to cplus_struct_default which does not
1756 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1757 designated initializers). We cope with that here. */
1758
1759 int
1760 internal_type_vptr_fieldno (struct type *type)
1761 {
1762 type = check_typedef (type);
1763 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1764 || TYPE_CODE (type) == TYPE_CODE_UNION);
1765 if (!HAVE_CPLUS_STRUCT (type))
1766 return -1;
1767 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1768 }
1769
1770 /* Set the value of cplus_stuff.vptr_fieldno. */
1771
1772 void
1773 set_type_vptr_fieldno (struct type *type, int fieldno)
1774 {
1775 type = check_typedef (type);
1776 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1777 || TYPE_CODE (type) == TYPE_CODE_UNION);
1778 if (!HAVE_CPLUS_STRUCT (type))
1779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1780 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1781 }
1782
1783 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1784 cplus_stuff.vptr_basetype. */
1785
1786 struct type *
1787 internal_type_vptr_basetype (struct type *type)
1788 {
1789 type = check_typedef (type);
1790 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1791 || TYPE_CODE (type) == TYPE_CODE_UNION);
1792 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1793 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1794 }
1795
1796 /* Set the value of cplus_stuff.vptr_basetype. */
1797
1798 void
1799 set_type_vptr_basetype (struct type *type, struct type *basetype)
1800 {
1801 type = check_typedef (type);
1802 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1803 || TYPE_CODE (type) == TYPE_CODE_UNION);
1804 if (!HAVE_CPLUS_STRUCT (type))
1805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1806 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1807 }
1808
1809 /* Lookup the vptr basetype/fieldno values for TYPE.
1810 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1811 vptr_fieldno. Also, if found and basetype is from the same objfile,
1812 cache the results.
1813 If not found, return -1 and ignore BASETYPEP.
1814 Callers should be aware that in some cases (for example,
1815 the type or one of its baseclasses is a stub type and we are
1816 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1817 this function will not be able to find the
1818 virtual function table pointer, and vptr_fieldno will remain -1 and
1819 vptr_basetype will remain NULL or incomplete. */
1820
1821 int
1822 get_vptr_fieldno (struct type *type, struct type **basetypep)
1823 {
1824 type = check_typedef (type);
1825
1826 if (TYPE_VPTR_FIELDNO (type) < 0)
1827 {
1828 int i;
1829
1830 /* We must start at zero in case the first (and only) baseclass
1831 is virtual (and hence we cannot share the table pointer). */
1832 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1833 {
1834 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1835 int fieldno;
1836 struct type *basetype;
1837
1838 fieldno = get_vptr_fieldno (baseclass, &basetype);
1839 if (fieldno >= 0)
1840 {
1841 /* If the type comes from a different objfile we can't cache
1842 it, it may have a different lifetime. PR 2384 */
1843 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1844 {
1845 set_type_vptr_fieldno (type, fieldno);
1846 set_type_vptr_basetype (type, basetype);
1847 }
1848 if (basetypep)
1849 *basetypep = basetype;
1850 return fieldno;
1851 }
1852 }
1853
1854 /* Not found. */
1855 return -1;
1856 }
1857 else
1858 {
1859 if (basetypep)
1860 *basetypep = TYPE_VPTR_BASETYPE (type);
1861 return TYPE_VPTR_FIELDNO (type);
1862 }
1863 }
1864
1865 static void
1866 stub_noname_complaint (void)
1867 {
1868 complaint (_("stub type has NULL name"));
1869 }
1870
1871 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1872 attached to it, and that property has a non-constant value. */
1873
1874 static int
1875 array_type_has_dynamic_stride (struct type *type)
1876 {
1877 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1878
1879 return (prop != NULL && prop->kind != PROP_CONST);
1880 }
1881
1882 /* Worker for is_dynamic_type. */
1883
1884 static int
1885 is_dynamic_type_internal (struct type *type, int top_level)
1886 {
1887 type = check_typedef (type);
1888
1889 /* We only want to recognize references at the outermost level. */
1890 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1891 type = check_typedef (TYPE_TARGET_TYPE (type));
1892
1893 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1894 dynamic, even if the type itself is statically defined.
1895 From a user's point of view, this may appear counter-intuitive;
1896 but it makes sense in this context, because the point is to determine
1897 whether any part of the type needs to be resolved before it can
1898 be exploited. */
1899 if (TYPE_DATA_LOCATION (type) != NULL
1900 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1901 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1902 return 1;
1903
1904 if (TYPE_ASSOCIATED_PROP (type))
1905 return 1;
1906
1907 if (TYPE_ALLOCATED_PROP (type))
1908 return 1;
1909
1910 switch (TYPE_CODE (type))
1911 {
1912 case TYPE_CODE_RANGE:
1913 {
1914 /* A range type is obviously dynamic if it has at least one
1915 dynamic bound. But also consider the range type to be
1916 dynamic when its subtype is dynamic, even if the bounds
1917 of the range type are static. It allows us to assume that
1918 the subtype of a static range type is also static. */
1919 return (!has_static_range (TYPE_RANGE_DATA (type))
1920 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1921 }
1922
1923 case TYPE_CODE_ARRAY:
1924 {
1925 gdb_assert (TYPE_NFIELDS (type) == 1);
1926
1927 /* The array is dynamic if either the bounds are dynamic... */
1928 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1929 return 1;
1930 /* ... or the elements it contains have a dynamic contents... */
1931 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1932 return 1;
1933 /* ... or if it has a dynamic stride... */
1934 if (array_type_has_dynamic_stride (type))
1935 return 1;
1936 return 0;
1937 }
1938
1939 case TYPE_CODE_STRUCT:
1940 case TYPE_CODE_UNION:
1941 {
1942 int i;
1943
1944 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1945 if (!field_is_static (&TYPE_FIELD (type, i))
1946 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1947 return 1;
1948 }
1949 break;
1950 }
1951
1952 return 0;
1953 }
1954
1955 /* See gdbtypes.h. */
1956
1957 int
1958 is_dynamic_type (struct type *type)
1959 {
1960 return is_dynamic_type_internal (type, 1);
1961 }
1962
1963 static struct type *resolve_dynamic_type_internal
1964 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1965
1966 /* Given a dynamic range type (dyn_range_type) and a stack of
1967 struct property_addr_info elements, return a static version
1968 of that type. */
1969
1970 static struct type *
1971 resolve_dynamic_range (struct type *dyn_range_type,
1972 struct property_addr_info *addr_stack)
1973 {
1974 CORE_ADDR value;
1975 struct type *static_range_type, *static_target_type;
1976 const struct dynamic_prop *prop;
1977 struct dynamic_prop low_bound, high_bound;
1978
1979 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1980
1981 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1982 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1983 {
1984 low_bound.kind = PROP_CONST;
1985 low_bound.data.const_val = value;
1986 }
1987 else
1988 {
1989 low_bound.kind = PROP_UNDEFINED;
1990 low_bound.data.const_val = 0;
1991 }
1992
1993 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1994 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1995 {
1996 high_bound.kind = PROP_CONST;
1997 high_bound.data.const_val = value;
1998
1999 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2000 high_bound.data.const_val
2001 = low_bound.data.const_val + high_bound.data.const_val - 1;
2002 }
2003 else
2004 {
2005 high_bound.kind = PROP_UNDEFINED;
2006 high_bound.data.const_val = 0;
2007 }
2008
2009 static_target_type
2010 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2011 addr_stack, 0);
2012 static_range_type = create_range_type (copy_type (dyn_range_type),
2013 static_target_type,
2014 &low_bound, &high_bound);
2015 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2016 return static_range_type;
2017 }
2018
2019 /* Resolves dynamic bound values of an array type TYPE to static ones.
2020 ADDR_STACK is a stack of struct property_addr_info to be used
2021 if needed during the dynamic resolution. */
2022
2023 static struct type *
2024 resolve_dynamic_array (struct type *type,
2025 struct property_addr_info *addr_stack)
2026 {
2027 CORE_ADDR value;
2028 struct type *elt_type;
2029 struct type *range_type;
2030 struct type *ary_dim;
2031 struct dynamic_prop *prop;
2032 unsigned int bit_stride = 0;
2033
2034 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2035
2036 type = copy_type (type);
2037
2038 elt_type = type;
2039 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2040 range_type = resolve_dynamic_range (range_type, addr_stack);
2041
2042 /* Resolve allocated/associated here before creating a new array type, which
2043 will update the length of the array accordingly. */
2044 prop = TYPE_ALLOCATED_PROP (type);
2045 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2046 {
2047 TYPE_DYN_PROP_ADDR (prop) = value;
2048 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2049 }
2050 prop = TYPE_ASSOCIATED_PROP (type);
2051 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2052 {
2053 TYPE_DYN_PROP_ADDR (prop) = value;
2054 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2055 }
2056
2057 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2058
2059 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2060 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2061 else
2062 elt_type = TYPE_TARGET_TYPE (type);
2063
2064 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2065 if (prop != NULL)
2066 {
2067 int prop_eval_ok
2068 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2069
2070 if (prop_eval_ok)
2071 {
2072 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2073 bit_stride = (unsigned int) (value * 8);
2074 }
2075 else
2076 {
2077 /* Could be a bug in our code, but it could also happen
2078 if the DWARF info is not correct. Issue a warning,
2079 and assume no byte/bit stride (leave bit_stride = 0). */
2080 warning (_("cannot determine array stride for type %s"),
2081 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2082 }
2083 }
2084 else
2085 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2086
2087 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2088 bit_stride);
2089 }
2090
2091 /* Resolve dynamic bounds of members of the union TYPE to static
2092 bounds. ADDR_STACK is a stack of struct property_addr_info
2093 to be used if needed during the dynamic resolution. */
2094
2095 static struct type *
2096 resolve_dynamic_union (struct type *type,
2097 struct property_addr_info *addr_stack)
2098 {
2099 struct type *resolved_type;
2100 int i;
2101 unsigned int max_len = 0;
2102
2103 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2104
2105 resolved_type = copy_type (type);
2106 TYPE_FIELDS (resolved_type)
2107 = (struct field *) TYPE_ALLOC (resolved_type,
2108 TYPE_NFIELDS (resolved_type)
2109 * sizeof (struct field));
2110 memcpy (TYPE_FIELDS (resolved_type),
2111 TYPE_FIELDS (type),
2112 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2113 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2114 {
2115 struct type *t;
2116
2117 if (field_is_static (&TYPE_FIELD (type, i)))
2118 continue;
2119
2120 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2121 addr_stack, 0);
2122 TYPE_FIELD_TYPE (resolved_type, i) = t;
2123 if (TYPE_LENGTH (t) > max_len)
2124 max_len = TYPE_LENGTH (t);
2125 }
2126
2127 TYPE_LENGTH (resolved_type) = max_len;
2128 return resolved_type;
2129 }
2130
2131 /* Resolve dynamic bounds of members of the struct TYPE to static
2132 bounds. ADDR_STACK is a stack of struct property_addr_info to
2133 be used if needed during the dynamic resolution. */
2134
2135 static struct type *
2136 resolve_dynamic_struct (struct type *type,
2137 struct property_addr_info *addr_stack)
2138 {
2139 struct type *resolved_type;
2140 int i;
2141 unsigned resolved_type_bit_length = 0;
2142
2143 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2144 gdb_assert (TYPE_NFIELDS (type) > 0);
2145
2146 resolved_type = copy_type (type);
2147 TYPE_FIELDS (resolved_type)
2148 = (struct field *) TYPE_ALLOC (resolved_type,
2149 TYPE_NFIELDS (resolved_type)
2150 * sizeof (struct field));
2151 memcpy (TYPE_FIELDS (resolved_type),
2152 TYPE_FIELDS (type),
2153 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2154 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2155 {
2156 unsigned new_bit_length;
2157 struct property_addr_info pinfo;
2158
2159 if (field_is_static (&TYPE_FIELD (type, i)))
2160 continue;
2161
2162 /* As we know this field is not a static field, the field's
2163 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2164 this is the case, but only trigger a simple error rather
2165 than an internal error if that fails. While failing
2166 that verification indicates a bug in our code, the error
2167 is not severe enough to suggest to the user he stops
2168 his debugging session because of it. */
2169 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2170 error (_("Cannot determine struct field location"
2171 " (invalid location kind)"));
2172
2173 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2174 pinfo.valaddr = addr_stack->valaddr;
2175 pinfo.addr
2176 = (addr_stack->addr
2177 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2178 pinfo.next = addr_stack;
2179
2180 TYPE_FIELD_TYPE (resolved_type, i)
2181 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2182 &pinfo, 0);
2183 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2184 == FIELD_LOC_KIND_BITPOS);
2185
2186 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2187 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2188 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2189 else
2190 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2191 * TARGET_CHAR_BIT);
2192
2193 /* Normally, we would use the position and size of the last field
2194 to determine the size of the enclosing structure. But GCC seems
2195 to be encoding the position of some fields incorrectly when
2196 the struct contains a dynamic field that is not placed last.
2197 So we compute the struct size based on the field that has
2198 the highest position + size - probably the best we can do. */
2199 if (new_bit_length > resolved_type_bit_length)
2200 resolved_type_bit_length = new_bit_length;
2201 }
2202
2203 /* The length of a type won't change for fortran, but it does for C and Ada.
2204 For fortran the size of dynamic fields might change over time but not the
2205 type length of the structure. If we adapt it, we run into problems
2206 when calculating the element offset for arrays of structs. */
2207 if (current_language->la_language != language_fortran)
2208 TYPE_LENGTH (resolved_type)
2209 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2210
2211 /* The Ada language uses this field as a cache for static fixed types: reset
2212 it as RESOLVED_TYPE must have its own static fixed type. */
2213 TYPE_TARGET_TYPE (resolved_type) = NULL;
2214
2215 return resolved_type;
2216 }
2217
2218 /* Worker for resolved_dynamic_type. */
2219
2220 static struct type *
2221 resolve_dynamic_type_internal (struct type *type,
2222 struct property_addr_info *addr_stack,
2223 int top_level)
2224 {
2225 struct type *real_type = check_typedef (type);
2226 struct type *resolved_type = type;
2227 struct dynamic_prop *prop;
2228 CORE_ADDR value;
2229
2230 if (!is_dynamic_type_internal (real_type, top_level))
2231 return type;
2232
2233 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2234 {
2235 resolved_type = copy_type (type);
2236 TYPE_TARGET_TYPE (resolved_type)
2237 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2238 top_level);
2239 }
2240 else
2241 {
2242 /* Before trying to resolve TYPE, make sure it is not a stub. */
2243 type = real_type;
2244
2245 switch (TYPE_CODE (type))
2246 {
2247 case TYPE_CODE_REF:
2248 {
2249 struct property_addr_info pinfo;
2250
2251 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2252 pinfo.valaddr = NULL;
2253 if (addr_stack->valaddr != NULL)
2254 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2255 else
2256 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2257 pinfo.next = addr_stack;
2258
2259 resolved_type = copy_type (type);
2260 TYPE_TARGET_TYPE (resolved_type)
2261 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2262 &pinfo, top_level);
2263 break;
2264 }
2265
2266 case TYPE_CODE_ARRAY:
2267 resolved_type = resolve_dynamic_array (type, addr_stack);
2268 break;
2269
2270 case TYPE_CODE_RANGE:
2271 resolved_type = resolve_dynamic_range (type, addr_stack);
2272 break;
2273
2274 case TYPE_CODE_UNION:
2275 resolved_type = resolve_dynamic_union (type, addr_stack);
2276 break;
2277
2278 case TYPE_CODE_STRUCT:
2279 resolved_type = resolve_dynamic_struct (type, addr_stack);
2280 break;
2281 }
2282 }
2283
2284 /* Resolve data_location attribute. */
2285 prop = TYPE_DATA_LOCATION (resolved_type);
2286 if (prop != NULL
2287 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2288 {
2289 TYPE_DYN_PROP_ADDR (prop) = value;
2290 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2291 }
2292
2293 return resolved_type;
2294 }
2295
2296 /* See gdbtypes.h */
2297
2298 struct type *
2299 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2300 CORE_ADDR addr)
2301 {
2302 struct property_addr_info pinfo
2303 = {check_typedef (type), valaddr, addr, NULL};
2304
2305 return resolve_dynamic_type_internal (type, &pinfo, 1);
2306 }
2307
2308 /* See gdbtypes.h */
2309
2310 struct dynamic_prop *
2311 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2312 {
2313 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2314
2315 while (node != NULL)
2316 {
2317 if (node->prop_kind == prop_kind)
2318 return &node->prop;
2319 node = node->next;
2320 }
2321 return NULL;
2322 }
2323
2324 /* See gdbtypes.h */
2325
2326 void
2327 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2328 struct type *type)
2329 {
2330 struct dynamic_prop_list *temp;
2331
2332 gdb_assert (TYPE_OBJFILE_OWNED (type));
2333
2334 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2335 struct dynamic_prop_list);
2336 temp->prop_kind = prop_kind;
2337 temp->prop = prop;
2338 temp->next = TYPE_DYN_PROP_LIST (type);
2339
2340 TYPE_DYN_PROP_LIST (type) = temp;
2341 }
2342
2343 /* Remove dynamic property from TYPE in case it exists. */
2344
2345 void
2346 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2347 struct type *type)
2348 {
2349 struct dynamic_prop_list *prev_node, *curr_node;
2350
2351 curr_node = TYPE_DYN_PROP_LIST (type);
2352 prev_node = NULL;
2353
2354 while (NULL != curr_node)
2355 {
2356 if (curr_node->prop_kind == prop_kind)
2357 {
2358 /* Update the linked list but don't free anything.
2359 The property was allocated on objstack and it is not known
2360 if we are on top of it. Nevertheless, everything is released
2361 when the complete objstack is freed. */
2362 if (NULL == prev_node)
2363 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2364 else
2365 prev_node->next = curr_node->next;
2366
2367 return;
2368 }
2369
2370 prev_node = curr_node;
2371 curr_node = curr_node->next;
2372 }
2373 }
2374
2375 /* Find the real type of TYPE. This function returns the real type,
2376 after removing all layers of typedefs, and completing opaque or stub
2377 types. Completion changes the TYPE argument, but stripping of
2378 typedefs does not.
2379
2380 Instance flags (e.g. const/volatile) are preserved as typedefs are
2381 stripped. If necessary a new qualified form of the underlying type
2382 is created.
2383
2384 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2385 not been computed and we're either in the middle of reading symbols, or
2386 there was no name for the typedef in the debug info.
2387
2388 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2389 QUITs in the symbol reading code can also throw.
2390 Thus this function can throw an exception.
2391
2392 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2393 the target type.
2394
2395 If this is a stubbed struct (i.e. declared as struct foo *), see if
2396 we can find a full definition in some other file. If so, copy this
2397 definition, so we can use it in future. There used to be a comment
2398 (but not any code) that if we don't find a full definition, we'd
2399 set a flag so we don't spend time in the future checking the same
2400 type. That would be a mistake, though--we might load in more
2401 symbols which contain a full definition for the type. */
2402
2403 struct type *
2404 check_typedef (struct type *type)
2405 {
2406 struct type *orig_type = type;
2407 /* While we're removing typedefs, we don't want to lose qualifiers.
2408 E.g., const/volatile. */
2409 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2410
2411 gdb_assert (type);
2412
2413 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2414 {
2415 if (!TYPE_TARGET_TYPE (type))
2416 {
2417 const char *name;
2418 struct symbol *sym;
2419
2420 /* It is dangerous to call lookup_symbol if we are currently
2421 reading a symtab. Infinite recursion is one danger. */
2422 if (currently_reading_symtab)
2423 return make_qualified_type (type, instance_flags, NULL);
2424
2425 name = TYPE_NAME (type);
2426 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2427 VAR_DOMAIN as appropriate? */
2428 if (name == NULL)
2429 {
2430 stub_noname_complaint ();
2431 return make_qualified_type (type, instance_flags, NULL);
2432 }
2433 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2434 if (sym)
2435 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2436 else /* TYPE_CODE_UNDEF */
2437 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2438 }
2439 type = TYPE_TARGET_TYPE (type);
2440
2441 /* Preserve the instance flags as we traverse down the typedef chain.
2442
2443 Handling address spaces/classes is nasty, what do we do if there's a
2444 conflict?
2445 E.g., what if an outer typedef marks the type as class_1 and an inner
2446 typedef marks the type as class_2?
2447 This is the wrong place to do such error checking. We leave it to
2448 the code that created the typedef in the first place to flag the
2449 error. We just pick the outer address space (akin to letting the
2450 outer cast in a chain of casting win), instead of assuming
2451 "it can't happen". */
2452 {
2453 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2454 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2455 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2456 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2457
2458 /* Treat code vs data spaces and address classes separately. */
2459 if ((instance_flags & ALL_SPACES) != 0)
2460 new_instance_flags &= ~ALL_SPACES;
2461 if ((instance_flags & ALL_CLASSES) != 0)
2462 new_instance_flags &= ~ALL_CLASSES;
2463
2464 instance_flags |= new_instance_flags;
2465 }
2466 }
2467
2468 /* If this is a struct/class/union with no fields, then check
2469 whether a full definition exists somewhere else. This is for
2470 systems where a type definition with no fields is issued for such
2471 types, instead of identifying them as stub types in the first
2472 place. */
2473
2474 if (TYPE_IS_OPAQUE (type)
2475 && opaque_type_resolution
2476 && !currently_reading_symtab)
2477 {
2478 const char *name = TYPE_NAME (type);
2479 struct type *newtype;
2480
2481 if (name == NULL)
2482 {
2483 stub_noname_complaint ();
2484 return make_qualified_type (type, instance_flags, NULL);
2485 }
2486 newtype = lookup_transparent_type (name);
2487
2488 if (newtype)
2489 {
2490 /* If the resolved type and the stub are in the same
2491 objfile, then replace the stub type with the real deal.
2492 But if they're in separate objfiles, leave the stub
2493 alone; we'll just look up the transparent type every time
2494 we call check_typedef. We can't create pointers between
2495 types allocated to different objfiles, since they may
2496 have different lifetimes. Trying to copy NEWTYPE over to
2497 TYPE's objfile is pointless, too, since you'll have to
2498 move over any other types NEWTYPE refers to, which could
2499 be an unbounded amount of stuff. */
2500 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2501 type = make_qualified_type (newtype,
2502 TYPE_INSTANCE_FLAGS (type),
2503 type);
2504 else
2505 type = newtype;
2506 }
2507 }
2508 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2509 types. */
2510 else if (TYPE_STUB (type) && !currently_reading_symtab)
2511 {
2512 const char *name = TYPE_NAME (type);
2513 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2514 as appropriate? */
2515 struct symbol *sym;
2516
2517 if (name == NULL)
2518 {
2519 stub_noname_complaint ();
2520 return make_qualified_type (type, instance_flags, NULL);
2521 }
2522 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2523 if (sym)
2524 {
2525 /* Same as above for opaque types, we can replace the stub
2526 with the complete type only if they are in the same
2527 objfile. */
2528 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2529 type = make_qualified_type (SYMBOL_TYPE (sym),
2530 TYPE_INSTANCE_FLAGS (type),
2531 type);
2532 else
2533 type = SYMBOL_TYPE (sym);
2534 }
2535 }
2536
2537 if (TYPE_TARGET_STUB (type))
2538 {
2539 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2540
2541 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2542 {
2543 /* Nothing we can do. */
2544 }
2545 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2546 {
2547 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2548 TYPE_TARGET_STUB (type) = 0;
2549 }
2550 }
2551
2552 type = make_qualified_type (type, instance_flags, NULL);
2553
2554 /* Cache TYPE_LENGTH for future use. */
2555 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2556
2557 return type;
2558 }
2559
2560 /* Parse a type expression in the string [P..P+LENGTH). If an error
2561 occurs, silently return a void type. */
2562
2563 static struct type *
2564 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2565 {
2566 struct ui_file *saved_gdb_stderr;
2567 struct type *type = NULL; /* Initialize to keep gcc happy. */
2568
2569 /* Suppress error messages. */
2570 saved_gdb_stderr = gdb_stderr;
2571 gdb_stderr = &null_stream;
2572
2573 /* Call parse_and_eval_type() without fear of longjmp()s. */
2574 try
2575 {
2576 type = parse_and_eval_type (p, length);
2577 }
2578 catch (const gdb_exception_error &except)
2579 {
2580 type = builtin_type (gdbarch)->builtin_void;
2581 }
2582
2583 /* Stop suppressing error messages. */
2584 gdb_stderr = saved_gdb_stderr;
2585
2586 return type;
2587 }
2588
2589 /* Ugly hack to convert method stubs into method types.
2590
2591 He ain't kiddin'. This demangles the name of the method into a
2592 string including argument types, parses out each argument type,
2593 generates a string casting a zero to that type, evaluates the
2594 string, and stuffs the resulting type into an argtype vector!!!
2595 Then it knows the type of the whole function (including argument
2596 types for overloading), which info used to be in the stab's but was
2597 removed to hack back the space required for them. */
2598
2599 static void
2600 check_stub_method (struct type *type, int method_id, int signature_id)
2601 {
2602 struct gdbarch *gdbarch = get_type_arch (type);
2603 struct fn_field *f;
2604 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2605 char *demangled_name = gdb_demangle (mangled_name,
2606 DMGL_PARAMS | DMGL_ANSI);
2607 char *argtypetext, *p;
2608 int depth = 0, argcount = 1;
2609 struct field *argtypes;
2610 struct type *mtype;
2611
2612 /* Make sure we got back a function string that we can use. */
2613 if (demangled_name)
2614 p = strchr (demangled_name, '(');
2615 else
2616 p = NULL;
2617
2618 if (demangled_name == NULL || p == NULL)
2619 error (_("Internal: Cannot demangle mangled name `%s'."),
2620 mangled_name);
2621
2622 /* Now, read in the parameters that define this type. */
2623 p += 1;
2624 argtypetext = p;
2625 while (*p)
2626 {
2627 if (*p == '(' || *p == '<')
2628 {
2629 depth += 1;
2630 }
2631 else if (*p == ')' || *p == '>')
2632 {
2633 depth -= 1;
2634 }
2635 else if (*p == ',' && depth == 0)
2636 {
2637 argcount += 1;
2638 }
2639
2640 p += 1;
2641 }
2642
2643 /* If we read one argument and it was ``void'', don't count it. */
2644 if (startswith (argtypetext, "(void)"))
2645 argcount -= 1;
2646
2647 /* We need one extra slot, for the THIS pointer. */
2648
2649 argtypes = (struct field *)
2650 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2651 p = argtypetext;
2652
2653 /* Add THIS pointer for non-static methods. */
2654 f = TYPE_FN_FIELDLIST1 (type, method_id);
2655 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2656 argcount = 0;
2657 else
2658 {
2659 argtypes[0].type = lookup_pointer_type (type);
2660 argcount = 1;
2661 }
2662
2663 if (*p != ')') /* () means no args, skip while. */
2664 {
2665 depth = 0;
2666 while (*p)
2667 {
2668 if (depth <= 0 && (*p == ',' || *p == ')'))
2669 {
2670 /* Avoid parsing of ellipsis, they will be handled below.
2671 Also avoid ``void'' as above. */
2672 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2673 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2674 {
2675 argtypes[argcount].type =
2676 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2677 argcount += 1;
2678 }
2679 argtypetext = p + 1;
2680 }
2681
2682 if (*p == '(' || *p == '<')
2683 {
2684 depth += 1;
2685 }
2686 else if (*p == ')' || *p == '>')
2687 {
2688 depth -= 1;
2689 }
2690
2691 p += 1;
2692 }
2693 }
2694
2695 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2696
2697 /* Now update the old "stub" type into a real type. */
2698 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2699 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2700 We want a method (TYPE_CODE_METHOD). */
2701 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2702 argtypes, argcount, p[-2] == '.');
2703 TYPE_STUB (mtype) = 0;
2704 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2705
2706 xfree (demangled_name);
2707 }
2708
2709 /* This is the external interface to check_stub_method, above. This
2710 function unstubs all of the signatures for TYPE's METHOD_ID method
2711 name. After calling this function TYPE_FN_FIELD_STUB will be
2712 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2713 correct.
2714
2715 This function unfortunately can not die until stabs do. */
2716
2717 void
2718 check_stub_method_group (struct type *type, int method_id)
2719 {
2720 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2721 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2722
2723 for (int j = 0; j < len; j++)
2724 {
2725 if (TYPE_FN_FIELD_STUB (f, j))
2726 check_stub_method (type, method_id, j);
2727 }
2728 }
2729
2730 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2731 const struct cplus_struct_type cplus_struct_default = { };
2732
2733 void
2734 allocate_cplus_struct_type (struct type *type)
2735 {
2736 if (HAVE_CPLUS_STRUCT (type))
2737 /* Structure was already allocated. Nothing more to do. */
2738 return;
2739
2740 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2741 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2742 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2743 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2744 set_type_vptr_fieldno (type, -1);
2745 }
2746
2747 const struct gnat_aux_type gnat_aux_default =
2748 { NULL };
2749
2750 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2751 and allocate the associated gnat-specific data. The gnat-specific
2752 data is also initialized to gnat_aux_default. */
2753
2754 void
2755 allocate_gnat_aux_type (struct type *type)
2756 {
2757 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2758 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2759 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2760 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2761 }
2762
2763 /* Helper function to initialize a newly allocated type. Set type code
2764 to CODE and initialize the type-specific fields accordingly. */
2765
2766 static void
2767 set_type_code (struct type *type, enum type_code code)
2768 {
2769 TYPE_CODE (type) = code;
2770
2771 switch (code)
2772 {
2773 case TYPE_CODE_STRUCT:
2774 case TYPE_CODE_UNION:
2775 case TYPE_CODE_NAMESPACE:
2776 INIT_CPLUS_SPECIFIC (type);
2777 break;
2778 case TYPE_CODE_FLT:
2779 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2780 break;
2781 case TYPE_CODE_FUNC:
2782 INIT_FUNC_SPECIFIC (type);
2783 break;
2784 }
2785 }
2786
2787 /* Helper function to verify floating-point format and size.
2788 BIT is the type size in bits; if BIT equals -1, the size is
2789 determined by the floatformat. Returns size to be used. */
2790
2791 static int
2792 verify_floatformat (int bit, const struct floatformat *floatformat)
2793 {
2794 gdb_assert (floatformat != NULL);
2795
2796 if (bit == -1)
2797 bit = floatformat->totalsize;
2798
2799 gdb_assert (bit >= 0);
2800 gdb_assert (bit >= floatformat->totalsize);
2801
2802 return bit;
2803 }
2804
2805 /* Return the floating-point format for a floating-point variable of
2806 type TYPE. */
2807
2808 const struct floatformat *
2809 floatformat_from_type (const struct type *type)
2810 {
2811 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2812 gdb_assert (TYPE_FLOATFORMAT (type));
2813 return TYPE_FLOATFORMAT (type);
2814 }
2815
2816 /* Helper function to initialize the standard scalar types.
2817
2818 If NAME is non-NULL, then it is used to initialize the type name.
2819 Note that NAME is not copied; it is required to have a lifetime at
2820 least as long as OBJFILE. */
2821
2822 struct type *
2823 init_type (struct objfile *objfile, enum type_code code, int bit,
2824 const char *name)
2825 {
2826 struct type *type;
2827
2828 type = alloc_type (objfile);
2829 set_type_code (type, code);
2830 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2831 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2832 TYPE_NAME (type) = name;
2833
2834 return type;
2835 }
2836
2837 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2838 to use with variables that have no debug info. NAME is the type
2839 name. */
2840
2841 static struct type *
2842 init_nodebug_var_type (struct objfile *objfile, const char *name)
2843 {
2844 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2845 }
2846
2847 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2848 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2849 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2850
2851 struct type *
2852 init_integer_type (struct objfile *objfile,
2853 int bit, int unsigned_p, const char *name)
2854 {
2855 struct type *t;
2856
2857 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2858 if (unsigned_p)
2859 TYPE_UNSIGNED (t) = 1;
2860
2861 return t;
2862 }
2863
2864 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2865 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2866 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2867
2868 struct type *
2869 init_character_type (struct objfile *objfile,
2870 int bit, int unsigned_p, const char *name)
2871 {
2872 struct type *t;
2873
2874 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2875 if (unsigned_p)
2876 TYPE_UNSIGNED (t) = 1;
2877
2878 return t;
2879 }
2880
2881 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885 struct type *
2886 init_boolean_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888 {
2889 struct type *t;
2890
2891 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896 }
2897
2898 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2899 BIT is the type size in bits; if BIT equals -1, the size is
2900 determined by the floatformat. NAME is the type name. Set the
2901 TYPE_FLOATFORMAT from FLOATFORMATS. */
2902
2903 struct type *
2904 init_float_type (struct objfile *objfile,
2905 int bit, const char *name,
2906 const struct floatformat **floatformats)
2907 {
2908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2909 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2910 struct type *t;
2911
2912 bit = verify_floatformat (bit, fmt);
2913 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2914 TYPE_FLOATFORMAT (t) = fmt;
2915
2916 return t;
2917 }
2918
2919 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2920 BIT is the type size in bits. NAME is the type name. */
2921
2922 struct type *
2923 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2924 {
2925 struct type *t;
2926
2927 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2928 return t;
2929 }
2930
2931 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2932 NAME is the type name. TARGET_TYPE is the component float type. */
2933
2934 struct type *
2935 init_complex_type (struct objfile *objfile,
2936 const char *name, struct type *target_type)
2937 {
2938 struct type *t;
2939
2940 t = init_type (objfile, TYPE_CODE_COMPLEX,
2941 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2942 TYPE_TARGET_TYPE (t) = target_type;
2943 return t;
2944 }
2945
2946 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2947 BIT is the pointer type size in bits. NAME is the type name.
2948 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2949 TYPE_UNSIGNED flag. */
2950
2951 struct type *
2952 init_pointer_type (struct objfile *objfile,
2953 int bit, const char *name, struct type *target_type)
2954 {
2955 struct type *t;
2956
2957 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2958 TYPE_TARGET_TYPE (t) = target_type;
2959 TYPE_UNSIGNED (t) = 1;
2960 return t;
2961 }
2962
2963 /* See gdbtypes.h. */
2964
2965 unsigned
2966 type_raw_align (struct type *type)
2967 {
2968 if (type->align_log2 != 0)
2969 return 1 << (type->align_log2 - 1);
2970 return 0;
2971 }
2972
2973 /* See gdbtypes.h. */
2974
2975 unsigned
2976 type_align (struct type *type)
2977 {
2978 /* Check alignment provided in the debug information. */
2979 unsigned raw_align = type_raw_align (type);
2980 if (raw_align != 0)
2981 return raw_align;
2982
2983 /* Allow the architecture to provide an alignment. */
2984 struct gdbarch *arch = get_type_arch (type);
2985 ULONGEST align = gdbarch_type_align (arch, type);
2986 if (align != 0)
2987 return align;
2988
2989 switch (TYPE_CODE (type))
2990 {
2991 case TYPE_CODE_PTR:
2992 case TYPE_CODE_FUNC:
2993 case TYPE_CODE_FLAGS:
2994 case TYPE_CODE_INT:
2995 case TYPE_CODE_RANGE:
2996 case TYPE_CODE_FLT:
2997 case TYPE_CODE_ENUM:
2998 case TYPE_CODE_REF:
2999 case TYPE_CODE_RVALUE_REF:
3000 case TYPE_CODE_CHAR:
3001 case TYPE_CODE_BOOL:
3002 case TYPE_CODE_DECFLOAT:
3003 case TYPE_CODE_METHODPTR:
3004 case TYPE_CODE_MEMBERPTR:
3005 align = type_length_units (check_typedef (type));
3006 break;
3007
3008 case TYPE_CODE_ARRAY:
3009 case TYPE_CODE_COMPLEX:
3010 case TYPE_CODE_TYPEDEF:
3011 align = type_align (TYPE_TARGET_TYPE (type));
3012 break;
3013
3014 case TYPE_CODE_STRUCT:
3015 case TYPE_CODE_UNION:
3016 {
3017 if (TYPE_NFIELDS (type) == 0)
3018 {
3019 /* An empty struct has alignment 1. */
3020 align = 1;
3021 break;
3022 }
3023 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3024 {
3025 if (!field_is_static (&TYPE_FIELD (type, i)))
3026 {
3027 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3028 if (f_align == 0)
3029 {
3030 /* Don't pretend we know something we don't. */
3031 align = 0;
3032 break;
3033 }
3034 if (f_align > align)
3035 align = f_align;
3036 }
3037 }
3038 }
3039 break;
3040
3041 case TYPE_CODE_SET:
3042 case TYPE_CODE_STRING:
3043 /* Not sure what to do here, and these can't appear in C or C++
3044 anyway. */
3045 break;
3046
3047 case TYPE_CODE_VOID:
3048 align = 1;
3049 break;
3050
3051 case TYPE_CODE_ERROR:
3052 case TYPE_CODE_METHOD:
3053 default:
3054 break;
3055 }
3056
3057 if ((align & (align - 1)) != 0)
3058 {
3059 /* Not a power of 2, so pass. */
3060 align = 0;
3061 }
3062
3063 return align;
3064 }
3065
3066 /* See gdbtypes.h. */
3067
3068 bool
3069 set_type_align (struct type *type, ULONGEST align)
3070 {
3071 /* Must be a power of 2. Zero is ok. */
3072 gdb_assert ((align & (align - 1)) == 0);
3073
3074 unsigned result = 0;
3075 while (align != 0)
3076 {
3077 ++result;
3078 align >>= 1;
3079 }
3080
3081 if (result >= (1 << TYPE_ALIGN_BITS))
3082 return false;
3083
3084 type->align_log2 = result;
3085 return true;
3086 }
3087
3088 \f
3089 /* Queries on types. */
3090
3091 int
3092 can_dereference (struct type *t)
3093 {
3094 /* FIXME: Should we return true for references as well as
3095 pointers? */
3096 t = check_typedef (t);
3097 return
3098 (t != NULL
3099 && TYPE_CODE (t) == TYPE_CODE_PTR
3100 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3101 }
3102
3103 int
3104 is_integral_type (struct type *t)
3105 {
3106 t = check_typedef (t);
3107 return
3108 ((t != NULL)
3109 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3110 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3111 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3112 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3113 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3114 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3115 }
3116
3117 int
3118 is_floating_type (struct type *t)
3119 {
3120 t = check_typedef (t);
3121 return
3122 ((t != NULL)
3123 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3124 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3125 }
3126
3127 /* Return true if TYPE is scalar. */
3128
3129 int
3130 is_scalar_type (struct type *type)
3131 {
3132 type = check_typedef (type);
3133
3134 switch (TYPE_CODE (type))
3135 {
3136 case TYPE_CODE_ARRAY:
3137 case TYPE_CODE_STRUCT:
3138 case TYPE_CODE_UNION:
3139 case TYPE_CODE_SET:
3140 case TYPE_CODE_STRING:
3141 return 0;
3142 default:
3143 return 1;
3144 }
3145 }
3146
3147 /* Return true if T is scalar, or a composite type which in practice has
3148 the memory layout of a scalar type. E.g., an array or struct with only
3149 one scalar element inside it, or a union with only scalar elements. */
3150
3151 int
3152 is_scalar_type_recursive (struct type *t)
3153 {
3154 t = check_typedef (t);
3155
3156 if (is_scalar_type (t))
3157 return 1;
3158 /* Are we dealing with an array or string of known dimensions? */
3159 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3160 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3161 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3162 {
3163 LONGEST low_bound, high_bound;
3164 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3165
3166 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3167
3168 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3169 }
3170 /* Are we dealing with a struct with one element? */
3171 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3172 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3173 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3174 {
3175 int i, n = TYPE_NFIELDS (t);
3176
3177 /* If all elements of the union are scalar, then the union is scalar. */
3178 for (i = 0; i < n; i++)
3179 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3180 return 0;
3181
3182 return 1;
3183 }
3184
3185 return 0;
3186 }
3187
3188 /* Return true is T is a class or a union. False otherwise. */
3189
3190 int
3191 class_or_union_p (const struct type *t)
3192 {
3193 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3194 || TYPE_CODE (t) == TYPE_CODE_UNION);
3195 }
3196
3197 /* A helper function which returns true if types A and B represent the
3198 "same" class type. This is true if the types have the same main
3199 type, or the same name. */
3200
3201 int
3202 class_types_same_p (const struct type *a, const struct type *b)
3203 {
3204 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3205 || (TYPE_NAME (a) && TYPE_NAME (b)
3206 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3207 }
3208
3209 /* If BASE is an ancestor of DCLASS return the distance between them.
3210 otherwise return -1;
3211 eg:
3212
3213 class A {};
3214 class B: public A {};
3215 class C: public B {};
3216 class D: C {};
3217
3218 distance_to_ancestor (A, A, 0) = 0
3219 distance_to_ancestor (A, B, 0) = 1
3220 distance_to_ancestor (A, C, 0) = 2
3221 distance_to_ancestor (A, D, 0) = 3
3222
3223 If PUBLIC is 1 then only public ancestors are considered,
3224 and the function returns the distance only if BASE is a public ancestor
3225 of DCLASS.
3226 Eg:
3227
3228 distance_to_ancestor (A, D, 1) = -1. */
3229
3230 static int
3231 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3232 {
3233 int i;
3234 int d;
3235
3236 base = check_typedef (base);
3237 dclass = check_typedef (dclass);
3238
3239 if (class_types_same_p (base, dclass))
3240 return 0;
3241
3242 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3243 {
3244 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3245 continue;
3246
3247 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3248 if (d >= 0)
3249 return 1 + d;
3250 }
3251
3252 return -1;
3253 }
3254
3255 /* Check whether BASE is an ancestor or base class or DCLASS
3256 Return 1 if so, and 0 if not.
3257 Note: If BASE and DCLASS are of the same type, this function
3258 will return 1. So for some class A, is_ancestor (A, A) will
3259 return 1. */
3260
3261 int
3262 is_ancestor (struct type *base, struct type *dclass)
3263 {
3264 return distance_to_ancestor (base, dclass, 0) >= 0;
3265 }
3266
3267 /* Like is_ancestor, but only returns true when BASE is a public
3268 ancestor of DCLASS. */
3269
3270 int
3271 is_public_ancestor (struct type *base, struct type *dclass)
3272 {
3273 return distance_to_ancestor (base, dclass, 1) >= 0;
3274 }
3275
3276 /* A helper function for is_unique_ancestor. */
3277
3278 static int
3279 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3280 int *offset,
3281 const gdb_byte *valaddr, int embedded_offset,
3282 CORE_ADDR address, struct value *val)
3283 {
3284 int i, count = 0;
3285
3286 base = check_typedef (base);
3287 dclass = check_typedef (dclass);
3288
3289 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3290 {
3291 struct type *iter;
3292 int this_offset;
3293
3294 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3295
3296 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3297 address, val);
3298
3299 if (class_types_same_p (base, iter))
3300 {
3301 /* If this is the first subclass, set *OFFSET and set count
3302 to 1. Otherwise, if this is at the same offset as
3303 previous instances, do nothing. Otherwise, increment
3304 count. */
3305 if (*offset == -1)
3306 {
3307 *offset = this_offset;
3308 count = 1;
3309 }
3310 else if (this_offset == *offset)
3311 {
3312 /* Nothing. */
3313 }
3314 else
3315 ++count;
3316 }
3317 else
3318 count += is_unique_ancestor_worker (base, iter, offset,
3319 valaddr,
3320 embedded_offset + this_offset,
3321 address, val);
3322 }
3323
3324 return count;
3325 }
3326
3327 /* Like is_ancestor, but only returns true if BASE is a unique base
3328 class of the type of VAL. */
3329
3330 int
3331 is_unique_ancestor (struct type *base, struct value *val)
3332 {
3333 int offset = -1;
3334
3335 return is_unique_ancestor_worker (base, value_type (val), &offset,
3336 value_contents_for_printing (val),
3337 value_embedded_offset (val),
3338 value_address (val), val) == 1;
3339 }
3340
3341 \f
3342 /* Overload resolution. */
3343
3344 /* Return the sum of the rank of A with the rank of B. */
3345
3346 struct rank
3347 sum_ranks (struct rank a, struct rank b)
3348 {
3349 struct rank c;
3350 c.rank = a.rank + b.rank;
3351 c.subrank = a.subrank + b.subrank;
3352 return c;
3353 }
3354
3355 /* Compare rank A and B and return:
3356 0 if a = b
3357 1 if a is better than b
3358 -1 if b is better than a. */
3359
3360 int
3361 compare_ranks (struct rank a, struct rank b)
3362 {
3363 if (a.rank == b.rank)
3364 {
3365 if (a.subrank == b.subrank)
3366 return 0;
3367 if (a.subrank < b.subrank)
3368 return 1;
3369 if (a.subrank > b.subrank)
3370 return -1;
3371 }
3372
3373 if (a.rank < b.rank)
3374 return 1;
3375
3376 /* a.rank > b.rank */
3377 return -1;
3378 }
3379
3380 /* Functions for overload resolution begin here. */
3381
3382 /* Compare two badness vectors A and B and return the result.
3383 0 => A and B are identical
3384 1 => A and B are incomparable
3385 2 => A is better than B
3386 3 => A is worse than B */
3387
3388 int
3389 compare_badness (const badness_vector &a, const badness_vector &b)
3390 {
3391 int i;
3392 int tmp;
3393 short found_pos = 0; /* any positives in c? */
3394 short found_neg = 0; /* any negatives in c? */
3395
3396 /* differing sizes => incomparable */
3397 if (a.size () != b.size ())
3398 return 1;
3399
3400 /* Subtract b from a */
3401 for (i = 0; i < a.size (); i++)
3402 {
3403 tmp = compare_ranks (b[i], a[i]);
3404 if (tmp > 0)
3405 found_pos = 1;
3406 else if (tmp < 0)
3407 found_neg = 1;
3408 }
3409
3410 if (found_pos)
3411 {
3412 if (found_neg)
3413 return 1; /* incomparable */
3414 else
3415 return 3; /* A > B */
3416 }
3417 else
3418 /* no positives */
3419 {
3420 if (found_neg)
3421 return 2; /* A < B */
3422 else
3423 return 0; /* A == B */
3424 }
3425 }
3426
3427 /* Rank a function by comparing its parameter types (PARMS), to the
3428 types of an argument list (ARGS). Return the badness vector. This
3429 has ARGS.size() + 1 entries. */
3430
3431 badness_vector
3432 rank_function (gdb::array_view<type *> parms,
3433 gdb::array_view<value *> args)
3434 {
3435 /* add 1 for the length-match rank. */
3436 badness_vector bv;
3437 bv.reserve (1 + args.size ());
3438
3439 /* First compare the lengths of the supplied lists.
3440 If there is a mismatch, set it to a high value. */
3441
3442 /* pai/1997-06-03 FIXME: when we have debug info about default
3443 arguments and ellipsis parameter lists, we should consider those
3444 and rank the length-match more finely. */
3445
3446 bv.push_back ((args.size () != parms.size ())
3447 ? LENGTH_MISMATCH_BADNESS
3448 : EXACT_MATCH_BADNESS);
3449
3450 /* Now rank all the parameters of the candidate function. */
3451 size_t min_len = std::min (parms.size (), args.size ());
3452
3453 for (size_t i = 0; i < min_len; i++)
3454 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3455 args[i]));
3456
3457 /* If more arguments than parameters, add dummy entries. */
3458 for (size_t i = min_len; i < args.size (); i++)
3459 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3460
3461 return bv;
3462 }
3463
3464 /* Compare the names of two integer types, assuming that any sign
3465 qualifiers have been checked already. We do it this way because
3466 there may be an "int" in the name of one of the types. */
3467
3468 static int
3469 integer_types_same_name_p (const char *first, const char *second)
3470 {
3471 int first_p, second_p;
3472
3473 /* If both are shorts, return 1; if neither is a short, keep
3474 checking. */
3475 first_p = (strstr (first, "short") != NULL);
3476 second_p = (strstr (second, "short") != NULL);
3477 if (first_p && second_p)
3478 return 1;
3479 if (first_p || second_p)
3480 return 0;
3481
3482 /* Likewise for long. */
3483 first_p = (strstr (first, "long") != NULL);
3484 second_p = (strstr (second, "long") != NULL);
3485 if (first_p && second_p)
3486 return 1;
3487 if (first_p || second_p)
3488 return 0;
3489
3490 /* Likewise for char. */
3491 first_p = (strstr (first, "char") != NULL);
3492 second_p = (strstr (second, "char") != NULL);
3493 if (first_p && second_p)
3494 return 1;
3495 if (first_p || second_p)
3496 return 0;
3497
3498 /* They must both be ints. */
3499 return 1;
3500 }
3501
3502 /* Compares type A to type B. Returns true if they represent the same
3503 type, false otherwise. */
3504
3505 bool
3506 types_equal (struct type *a, struct type *b)
3507 {
3508 /* Identical type pointers. */
3509 /* However, this still doesn't catch all cases of same type for b
3510 and a. The reason is that builtin types are different from
3511 the same ones constructed from the object. */
3512 if (a == b)
3513 return true;
3514
3515 /* Resolve typedefs */
3516 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3517 a = check_typedef (a);
3518 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3519 b = check_typedef (b);
3520
3521 /* If after resolving typedefs a and b are not of the same type
3522 code then they are not equal. */
3523 if (TYPE_CODE (a) != TYPE_CODE (b))
3524 return false;
3525
3526 /* If a and b are both pointers types or both reference types then
3527 they are equal of the same type iff the objects they refer to are
3528 of the same type. */
3529 if (TYPE_CODE (a) == TYPE_CODE_PTR
3530 || TYPE_CODE (a) == TYPE_CODE_REF)
3531 return types_equal (TYPE_TARGET_TYPE (a),
3532 TYPE_TARGET_TYPE (b));
3533
3534 /* Well, damnit, if the names are exactly the same, I'll say they
3535 are exactly the same. This happens when we generate method
3536 stubs. The types won't point to the same address, but they
3537 really are the same. */
3538
3539 if (TYPE_NAME (a) && TYPE_NAME (b)
3540 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3541 return true;
3542
3543 /* Check if identical after resolving typedefs. */
3544 if (a == b)
3545 return true;
3546
3547 /* Two function types are equal if their argument and return types
3548 are equal. */
3549 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3550 {
3551 int i;
3552
3553 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3554 return false;
3555
3556 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3557 return false;
3558
3559 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3560 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3561 return false;
3562
3563 return true;
3564 }
3565
3566 return false;
3567 }
3568 \f
3569 /* Deep comparison of types. */
3570
3571 /* An entry in the type-equality bcache. */
3572
3573 struct type_equality_entry
3574 {
3575 type_equality_entry (struct type *t1, struct type *t2)
3576 : type1 (t1),
3577 type2 (t2)
3578 {
3579 }
3580
3581 struct type *type1, *type2;
3582 };
3583
3584 /* A helper function to compare two strings. Returns true if they are
3585 the same, false otherwise. Handles NULLs properly. */
3586
3587 static bool
3588 compare_maybe_null_strings (const char *s, const char *t)
3589 {
3590 if (s == NULL || t == NULL)
3591 return s == t;
3592 return strcmp (s, t) == 0;
3593 }
3594
3595 /* A helper function for check_types_worklist that checks two types for
3596 "deep" equality. Returns true if the types are considered the
3597 same, false otherwise. */
3598
3599 static bool
3600 check_types_equal (struct type *type1, struct type *type2,
3601 std::vector<type_equality_entry> *worklist)
3602 {
3603 type1 = check_typedef (type1);
3604 type2 = check_typedef (type2);
3605
3606 if (type1 == type2)
3607 return true;
3608
3609 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3610 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3611 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3612 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3613 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3614 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3615 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3616 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3617 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3618 return false;
3619
3620 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3621 return false;
3622 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3623 return false;
3624
3625 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3626 {
3627 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3628 return false;
3629 }
3630 else
3631 {
3632 int i;
3633
3634 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3635 {
3636 const struct field *field1 = &TYPE_FIELD (type1, i);
3637 const struct field *field2 = &TYPE_FIELD (type2, i);
3638
3639 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3640 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3641 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3642 return false;
3643 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3644 FIELD_NAME (*field2)))
3645 return false;
3646 switch (FIELD_LOC_KIND (*field1))
3647 {
3648 case FIELD_LOC_KIND_BITPOS:
3649 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3650 return false;
3651 break;
3652 case FIELD_LOC_KIND_ENUMVAL:
3653 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3654 return false;
3655 break;
3656 case FIELD_LOC_KIND_PHYSADDR:
3657 if (FIELD_STATIC_PHYSADDR (*field1)
3658 != FIELD_STATIC_PHYSADDR (*field2))
3659 return false;
3660 break;
3661 case FIELD_LOC_KIND_PHYSNAME:
3662 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3663 FIELD_STATIC_PHYSNAME (*field2)))
3664 return false;
3665 break;
3666 case FIELD_LOC_KIND_DWARF_BLOCK:
3667 {
3668 struct dwarf2_locexpr_baton *block1, *block2;
3669
3670 block1 = FIELD_DWARF_BLOCK (*field1);
3671 block2 = FIELD_DWARF_BLOCK (*field2);
3672 if (block1->per_cu != block2->per_cu
3673 || block1->size != block2->size
3674 || memcmp (block1->data, block2->data, block1->size) != 0)
3675 return false;
3676 }
3677 break;
3678 default:
3679 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3680 "%d by check_types_equal"),
3681 FIELD_LOC_KIND (*field1));
3682 }
3683
3684 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3685 }
3686 }
3687
3688 if (TYPE_TARGET_TYPE (type1) != NULL)
3689 {
3690 if (TYPE_TARGET_TYPE (type2) == NULL)
3691 return false;
3692
3693 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3694 TYPE_TARGET_TYPE (type2));
3695 }
3696 else if (TYPE_TARGET_TYPE (type2) != NULL)
3697 return false;
3698
3699 return true;
3700 }
3701
3702 /* Check types on a worklist for equality. Returns false if any pair
3703 is not equal, true if they are all considered equal. */
3704
3705 static bool
3706 check_types_worklist (std::vector<type_equality_entry> *worklist,
3707 struct bcache *cache)
3708 {
3709 while (!worklist->empty ())
3710 {
3711 int added;
3712
3713 struct type_equality_entry entry = std::move (worklist->back ());
3714 worklist->pop_back ();
3715
3716 /* If the type pair has already been visited, we know it is
3717 ok. */
3718 cache->insert (&entry, sizeof (entry), &added);
3719 if (!added)
3720 continue;
3721
3722 if (!check_types_equal (entry.type1, entry.type2, worklist))
3723 return false;
3724 }
3725
3726 return true;
3727 }
3728
3729 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3730 "deep comparison". Otherwise return false. */
3731
3732 bool
3733 types_deeply_equal (struct type *type1, struct type *type2)
3734 {
3735 std::vector<type_equality_entry> worklist;
3736
3737 gdb_assert (type1 != NULL && type2 != NULL);
3738
3739 /* Early exit for the simple case. */
3740 if (type1 == type2)
3741 return true;
3742
3743 struct bcache cache (nullptr, nullptr);
3744 worklist.emplace_back (type1, type2);
3745 return check_types_worklist (&worklist, &cache);
3746 }
3747
3748 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3749 Otherwise return one. */
3750
3751 int
3752 type_not_allocated (const struct type *type)
3753 {
3754 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3755
3756 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3757 && !TYPE_DYN_PROP_ADDR (prop));
3758 }
3759
3760 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3761 Otherwise return one. */
3762
3763 int
3764 type_not_associated (const struct type *type)
3765 {
3766 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3767
3768 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3769 && !TYPE_DYN_PROP_ADDR (prop));
3770 }
3771
3772 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3773
3774 static struct rank
3775 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3776 {
3777 struct rank rank = {0,0};
3778
3779 switch (TYPE_CODE (arg))
3780 {
3781 case TYPE_CODE_PTR:
3782
3783 /* Allowed pointer conversions are:
3784 (a) pointer to void-pointer conversion. */
3785 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3786 return VOID_PTR_CONVERSION_BADNESS;
3787
3788 /* (b) pointer to ancestor-pointer conversion. */
3789 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3790 TYPE_TARGET_TYPE (arg),
3791 0);
3792 if (rank.subrank >= 0)
3793 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3794
3795 return INCOMPATIBLE_TYPE_BADNESS;
3796 case TYPE_CODE_ARRAY:
3797 {
3798 struct type *t1 = TYPE_TARGET_TYPE (parm);
3799 struct type *t2 = TYPE_TARGET_TYPE (arg);
3800
3801 if (types_equal (t1, t2))
3802 {
3803 /* Make sure they are CV equal. */
3804 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3805 rank.subrank |= CV_CONVERSION_CONST;
3806 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3807 rank.subrank |= CV_CONVERSION_VOLATILE;
3808 if (rank.subrank != 0)
3809 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3810 return EXACT_MATCH_BADNESS;
3811 }
3812 return INCOMPATIBLE_TYPE_BADNESS;
3813 }
3814 case TYPE_CODE_FUNC:
3815 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3816 case TYPE_CODE_INT:
3817 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3818 {
3819 if (value_as_long (value) == 0)
3820 {
3821 /* Null pointer conversion: allow it to be cast to a pointer.
3822 [4.10.1 of C++ standard draft n3290] */
3823 return NULL_POINTER_CONVERSION_BADNESS;
3824 }
3825 else
3826 {
3827 /* If type checking is disabled, allow the conversion. */
3828 if (!strict_type_checking)
3829 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3830 }
3831 }
3832 /* fall through */
3833 case TYPE_CODE_ENUM:
3834 case TYPE_CODE_FLAGS:
3835 case TYPE_CODE_CHAR:
3836 case TYPE_CODE_RANGE:
3837 case TYPE_CODE_BOOL:
3838 default:
3839 return INCOMPATIBLE_TYPE_BADNESS;
3840 }
3841 }
3842
3843 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3844
3845 static struct rank
3846 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3847 {
3848 switch (TYPE_CODE (arg))
3849 {
3850 case TYPE_CODE_PTR:
3851 case TYPE_CODE_ARRAY:
3852 return rank_one_type (TYPE_TARGET_TYPE (parm),
3853 TYPE_TARGET_TYPE (arg), NULL);
3854 default:
3855 return INCOMPATIBLE_TYPE_BADNESS;
3856 }
3857 }
3858
3859 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3860
3861 static struct rank
3862 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3863 {
3864 switch (TYPE_CODE (arg))
3865 {
3866 case TYPE_CODE_PTR: /* funcptr -> func */
3867 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3868 default:
3869 return INCOMPATIBLE_TYPE_BADNESS;
3870 }
3871 }
3872
3873 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3874
3875 static struct rank
3876 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3877 {
3878 switch (TYPE_CODE (arg))
3879 {
3880 case TYPE_CODE_INT:
3881 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3882 {
3883 /* Deal with signed, unsigned, and plain chars and
3884 signed and unsigned ints. */
3885 if (TYPE_NOSIGN (parm))
3886 {
3887 /* This case only for character types. */
3888 if (TYPE_NOSIGN (arg))
3889 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3890 else /* signed/unsigned char -> plain char */
3891 return INTEGER_CONVERSION_BADNESS;
3892 }
3893 else if (TYPE_UNSIGNED (parm))
3894 {
3895 if (TYPE_UNSIGNED (arg))
3896 {
3897 /* unsigned int -> unsigned int, or
3898 unsigned long -> unsigned long */
3899 if (integer_types_same_name_p (TYPE_NAME (parm),
3900 TYPE_NAME (arg)))
3901 return EXACT_MATCH_BADNESS;
3902 else if (integer_types_same_name_p (TYPE_NAME (arg),
3903 "int")
3904 && integer_types_same_name_p (TYPE_NAME (parm),
3905 "long"))
3906 /* unsigned int -> unsigned long */
3907 return INTEGER_PROMOTION_BADNESS;
3908 else
3909 /* unsigned long -> unsigned int */
3910 return INTEGER_CONVERSION_BADNESS;
3911 }
3912 else
3913 {
3914 if (integer_types_same_name_p (TYPE_NAME (arg),
3915 "long")
3916 && integer_types_same_name_p (TYPE_NAME (parm),
3917 "int"))
3918 /* signed long -> unsigned int */
3919 return INTEGER_CONVERSION_BADNESS;
3920 else
3921 /* signed int/long -> unsigned int/long */
3922 return INTEGER_CONVERSION_BADNESS;
3923 }
3924 }
3925 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3926 {
3927 if (integer_types_same_name_p (TYPE_NAME (parm),
3928 TYPE_NAME (arg)))
3929 return EXACT_MATCH_BADNESS;
3930 else if (integer_types_same_name_p (TYPE_NAME (arg),
3931 "int")
3932 && integer_types_same_name_p (TYPE_NAME (parm),
3933 "long"))
3934 return INTEGER_PROMOTION_BADNESS;
3935 else
3936 return INTEGER_CONVERSION_BADNESS;
3937 }
3938 else
3939 return INTEGER_CONVERSION_BADNESS;
3940 }
3941 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3942 return INTEGER_PROMOTION_BADNESS;
3943 else
3944 return INTEGER_CONVERSION_BADNESS;
3945 case TYPE_CODE_ENUM:
3946 case TYPE_CODE_FLAGS:
3947 case TYPE_CODE_CHAR:
3948 case TYPE_CODE_RANGE:
3949 case TYPE_CODE_BOOL:
3950 if (TYPE_DECLARED_CLASS (arg))
3951 return INCOMPATIBLE_TYPE_BADNESS;
3952 return INTEGER_PROMOTION_BADNESS;
3953 case TYPE_CODE_FLT:
3954 return INT_FLOAT_CONVERSION_BADNESS;
3955 case TYPE_CODE_PTR:
3956 return NS_POINTER_CONVERSION_BADNESS;
3957 default:
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 }
3960 }
3961
3962 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3963
3964 static struct rank
3965 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3966 {
3967 switch (TYPE_CODE (arg))
3968 {
3969 case TYPE_CODE_INT:
3970 case TYPE_CODE_CHAR:
3971 case TYPE_CODE_RANGE:
3972 case TYPE_CODE_BOOL:
3973 case TYPE_CODE_ENUM:
3974 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3975 return INCOMPATIBLE_TYPE_BADNESS;
3976 return INTEGER_CONVERSION_BADNESS;
3977 case TYPE_CODE_FLT:
3978 return INT_FLOAT_CONVERSION_BADNESS;
3979 default:
3980 return INCOMPATIBLE_TYPE_BADNESS;
3981 }
3982 }
3983
3984 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3985
3986 static struct rank
3987 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3988 {
3989 switch (TYPE_CODE (arg))
3990 {
3991 case TYPE_CODE_RANGE:
3992 case TYPE_CODE_BOOL:
3993 case TYPE_CODE_ENUM:
3994 if (TYPE_DECLARED_CLASS (arg))
3995 return INCOMPATIBLE_TYPE_BADNESS;
3996 return INTEGER_CONVERSION_BADNESS;
3997 case TYPE_CODE_FLT:
3998 return INT_FLOAT_CONVERSION_BADNESS;
3999 case TYPE_CODE_INT:
4000 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4001 return INTEGER_CONVERSION_BADNESS;
4002 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4003 return INTEGER_PROMOTION_BADNESS;
4004 /* fall through */
4005 case TYPE_CODE_CHAR:
4006 /* Deal with signed, unsigned, and plain chars for C++ and
4007 with int cases falling through from previous case. */
4008 if (TYPE_NOSIGN (parm))
4009 {
4010 if (TYPE_NOSIGN (arg))
4011 return EXACT_MATCH_BADNESS;
4012 else
4013 return INTEGER_CONVERSION_BADNESS;
4014 }
4015 else if (TYPE_UNSIGNED (parm))
4016 {
4017 if (TYPE_UNSIGNED (arg))
4018 return EXACT_MATCH_BADNESS;
4019 else
4020 return INTEGER_PROMOTION_BADNESS;
4021 }
4022 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4023 return EXACT_MATCH_BADNESS;
4024 else
4025 return INTEGER_CONVERSION_BADNESS;
4026 default:
4027 return INCOMPATIBLE_TYPE_BADNESS;
4028 }
4029 }
4030
4031 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4032
4033 static struct rank
4034 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4035 {
4036 switch (TYPE_CODE (arg))
4037 {
4038 case TYPE_CODE_INT:
4039 case TYPE_CODE_CHAR:
4040 case TYPE_CODE_RANGE:
4041 case TYPE_CODE_BOOL:
4042 case TYPE_CODE_ENUM:
4043 return INTEGER_CONVERSION_BADNESS;
4044 case TYPE_CODE_FLT:
4045 return INT_FLOAT_CONVERSION_BADNESS;
4046 default:
4047 return INCOMPATIBLE_TYPE_BADNESS;
4048 }
4049 }
4050
4051 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4052
4053 static struct rank
4054 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4055 {
4056 switch (TYPE_CODE (arg))
4057 {
4058 /* n3290 draft, section 4.12.1 (conv.bool):
4059
4060 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4061 pointer to member type can be converted to a prvalue of type
4062 bool. A zero value, null pointer value, or null member pointer
4063 value is converted to false; any other value is converted to
4064 true. A prvalue of type std::nullptr_t can be converted to a
4065 prvalue of type bool; the resulting value is false." */
4066 case TYPE_CODE_INT:
4067 case TYPE_CODE_CHAR:
4068 case TYPE_CODE_ENUM:
4069 case TYPE_CODE_FLT:
4070 case TYPE_CODE_MEMBERPTR:
4071 case TYPE_CODE_PTR:
4072 return BOOL_CONVERSION_BADNESS;
4073 case TYPE_CODE_RANGE:
4074 return INCOMPATIBLE_TYPE_BADNESS;
4075 case TYPE_CODE_BOOL:
4076 return EXACT_MATCH_BADNESS;
4077 default:
4078 return INCOMPATIBLE_TYPE_BADNESS;
4079 }
4080 }
4081
4082 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4083
4084 static struct rank
4085 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4086 {
4087 switch (TYPE_CODE (arg))
4088 {
4089 case TYPE_CODE_FLT:
4090 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4091 return FLOAT_PROMOTION_BADNESS;
4092 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4093 return EXACT_MATCH_BADNESS;
4094 else
4095 return FLOAT_CONVERSION_BADNESS;
4096 case TYPE_CODE_INT:
4097 case TYPE_CODE_BOOL:
4098 case TYPE_CODE_ENUM:
4099 case TYPE_CODE_RANGE:
4100 case TYPE_CODE_CHAR:
4101 return INT_FLOAT_CONVERSION_BADNESS;
4102 default:
4103 return INCOMPATIBLE_TYPE_BADNESS;
4104 }
4105 }
4106
4107 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4108
4109 static struct rank
4110 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4111 {
4112 switch (TYPE_CODE (arg))
4113 { /* Strictly not needed for C++, but... */
4114 case TYPE_CODE_FLT:
4115 return FLOAT_PROMOTION_BADNESS;
4116 case TYPE_CODE_COMPLEX:
4117 return EXACT_MATCH_BADNESS;
4118 default:
4119 return INCOMPATIBLE_TYPE_BADNESS;
4120 }
4121 }
4122
4123 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4124
4125 static struct rank
4126 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4127 {
4128 struct rank rank = {0, 0};
4129
4130 switch (TYPE_CODE (arg))
4131 {
4132 case TYPE_CODE_STRUCT:
4133 /* Check for derivation */
4134 rank.subrank = distance_to_ancestor (parm, arg, 0);
4135 if (rank.subrank >= 0)
4136 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4137 /* fall through */
4138 default:
4139 return INCOMPATIBLE_TYPE_BADNESS;
4140 }
4141 }
4142
4143 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4144
4145 static struct rank
4146 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4147 {
4148 switch (TYPE_CODE (arg))
4149 {
4150 /* Not in C++ */
4151 case TYPE_CODE_SET:
4152 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4153 TYPE_FIELD_TYPE (arg, 0), NULL);
4154 default:
4155 return INCOMPATIBLE_TYPE_BADNESS;
4156 }
4157 }
4158
4159 /* Compare one type (PARM) for compatibility with another (ARG).
4160 * PARM is intended to be the parameter type of a function; and
4161 * ARG is the supplied argument's type. This function tests if
4162 * the latter can be converted to the former.
4163 * VALUE is the argument's value or NULL if none (or called recursively)
4164 *
4165 * Return 0 if they are identical types;
4166 * Otherwise, return an integer which corresponds to how compatible
4167 * PARM is to ARG. The higher the return value, the worse the match.
4168 * Generally the "bad" conversions are all uniformly assigned a 100. */
4169
4170 struct rank
4171 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4172 {
4173 struct rank rank = {0,0};
4174
4175 /* Resolve typedefs */
4176 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4177 parm = check_typedef (parm);
4178 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4179 arg = check_typedef (arg);
4180
4181 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4182 {
4183 if (VALUE_LVAL (value) == not_lval)
4184 {
4185 /* Rvalues should preferably bind to rvalue references or const
4186 lvalue references. */
4187 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4188 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4189 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4190 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4191 else
4192 return INCOMPATIBLE_TYPE_BADNESS;
4193 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4194 }
4195 else
4196 {
4197 /* Lvalues should prefer lvalue overloads. */
4198 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4199 {
4200 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4201 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4202 }
4203 }
4204 }
4205
4206 if (types_equal (parm, arg))
4207 {
4208 struct type *t1 = parm;
4209 struct type *t2 = arg;
4210
4211 /* For pointers and references, compare target type. */
4212 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4213 {
4214 t1 = TYPE_TARGET_TYPE (parm);
4215 t2 = TYPE_TARGET_TYPE (arg);
4216 }
4217
4218 /* Make sure they are CV equal, too. */
4219 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4220 rank.subrank |= CV_CONVERSION_CONST;
4221 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4222 rank.subrank |= CV_CONVERSION_VOLATILE;
4223 if (rank.subrank != 0)
4224 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4225 return EXACT_MATCH_BADNESS;
4226 }
4227
4228 /* See through references, since we can almost make non-references
4229 references. */
4230
4231 if (TYPE_IS_REFERENCE (arg))
4232 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4233 REFERENCE_CONVERSION_BADNESS));
4234 if (TYPE_IS_REFERENCE (parm))
4235 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4236 REFERENCE_CONVERSION_BADNESS));
4237 if (overload_debug)
4238 /* Debugging only. */
4239 fprintf_filtered (gdb_stderr,
4240 "------ Arg is %s [%d], parm is %s [%d]\n",
4241 TYPE_NAME (arg), TYPE_CODE (arg),
4242 TYPE_NAME (parm), TYPE_CODE (parm));
4243
4244 /* x -> y means arg of type x being supplied for parameter of type y. */
4245
4246 switch (TYPE_CODE (parm))
4247 {
4248 case TYPE_CODE_PTR:
4249 return rank_one_type_parm_ptr (parm, arg, value);
4250 case TYPE_CODE_ARRAY:
4251 return rank_one_type_parm_array (parm, arg, value);
4252 case TYPE_CODE_FUNC:
4253 return rank_one_type_parm_func (parm, arg, value);
4254 case TYPE_CODE_INT:
4255 return rank_one_type_parm_int (parm, arg, value);
4256 case TYPE_CODE_ENUM:
4257 return rank_one_type_parm_enum (parm, arg, value);
4258 case TYPE_CODE_CHAR:
4259 return rank_one_type_parm_char (parm, arg, value);
4260 case TYPE_CODE_RANGE:
4261 return rank_one_type_parm_range (parm, arg, value);
4262 case TYPE_CODE_BOOL:
4263 return rank_one_type_parm_bool (parm, arg, value);
4264 case TYPE_CODE_FLT:
4265 return rank_one_type_parm_float (parm, arg, value);
4266 case TYPE_CODE_COMPLEX:
4267 return rank_one_type_parm_complex (parm, arg, value);
4268 case TYPE_CODE_STRUCT:
4269 return rank_one_type_parm_struct (parm, arg, value);
4270 case TYPE_CODE_SET:
4271 return rank_one_type_parm_set (parm, arg, value);
4272 default:
4273 return INCOMPATIBLE_TYPE_BADNESS;
4274 } /* switch (TYPE_CODE (arg)) */
4275 }
4276
4277 /* End of functions for overload resolution. */
4278 \f
4279 /* Routines to pretty-print types. */
4280
4281 static void
4282 print_bit_vector (B_TYPE *bits, int nbits)
4283 {
4284 int bitno;
4285
4286 for (bitno = 0; bitno < nbits; bitno++)
4287 {
4288 if ((bitno % 8) == 0)
4289 {
4290 puts_filtered (" ");
4291 }
4292 if (B_TST (bits, bitno))
4293 printf_filtered (("1"));
4294 else
4295 printf_filtered (("0"));
4296 }
4297 }
4298
4299 /* Note the first arg should be the "this" pointer, we may not want to
4300 include it since we may get into a infinitely recursive
4301 situation. */
4302
4303 static void
4304 print_args (struct field *args, int nargs, int spaces)
4305 {
4306 if (args != NULL)
4307 {
4308 int i;
4309
4310 for (i = 0; i < nargs; i++)
4311 {
4312 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4313 args[i].name != NULL ? args[i].name : "<NULL>");
4314 recursive_dump_type (args[i].type, spaces + 2);
4315 }
4316 }
4317 }
4318
4319 int
4320 field_is_static (struct field *f)
4321 {
4322 /* "static" fields are the fields whose location is not relative
4323 to the address of the enclosing struct. It would be nice to
4324 have a dedicated flag that would be set for static fields when
4325 the type is being created. But in practice, checking the field
4326 loc_kind should give us an accurate answer. */
4327 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4328 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4329 }
4330
4331 static void
4332 dump_fn_fieldlists (struct type *type, int spaces)
4333 {
4334 int method_idx;
4335 int overload_idx;
4336 struct fn_field *f;
4337
4338 printfi_filtered (spaces, "fn_fieldlists ");
4339 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4340 printf_filtered ("\n");
4341 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4342 {
4343 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4344 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4345 method_idx,
4346 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4347 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4348 gdb_stdout);
4349 printf_filtered (_(") length %d\n"),
4350 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4351 for (overload_idx = 0;
4352 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4353 overload_idx++)
4354 {
4355 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4356 overload_idx,
4357 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4358 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4359 gdb_stdout);
4360 printf_filtered (")\n");
4361 printfi_filtered (spaces + 8, "type ");
4362 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4363 gdb_stdout);
4364 printf_filtered ("\n");
4365
4366 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4367 spaces + 8 + 2);
4368
4369 printfi_filtered (spaces + 8, "args ");
4370 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4371 gdb_stdout);
4372 printf_filtered ("\n");
4373 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4374 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4375 spaces + 8 + 2);
4376 printfi_filtered (spaces + 8, "fcontext ");
4377 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4378 gdb_stdout);
4379 printf_filtered ("\n");
4380
4381 printfi_filtered (spaces + 8, "is_const %d\n",
4382 TYPE_FN_FIELD_CONST (f, overload_idx));
4383 printfi_filtered (spaces + 8, "is_volatile %d\n",
4384 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4385 printfi_filtered (spaces + 8, "is_private %d\n",
4386 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4387 printfi_filtered (spaces + 8, "is_protected %d\n",
4388 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4389 printfi_filtered (spaces + 8, "is_stub %d\n",
4390 TYPE_FN_FIELD_STUB (f, overload_idx));
4391 printfi_filtered (spaces + 8, "voffset %u\n",
4392 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4393 }
4394 }
4395 }
4396
4397 static void
4398 print_cplus_stuff (struct type *type, int spaces)
4399 {
4400 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4401 printfi_filtered (spaces, "vptr_basetype ");
4402 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4403 puts_filtered ("\n");
4404 if (TYPE_VPTR_BASETYPE (type) != NULL)
4405 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4406
4407 printfi_filtered (spaces, "n_baseclasses %d\n",
4408 TYPE_N_BASECLASSES (type));
4409 printfi_filtered (spaces, "nfn_fields %d\n",
4410 TYPE_NFN_FIELDS (type));
4411 if (TYPE_N_BASECLASSES (type) > 0)
4412 {
4413 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4414 TYPE_N_BASECLASSES (type));
4415 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4416 gdb_stdout);
4417 printf_filtered (")");
4418
4419 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4420 TYPE_N_BASECLASSES (type));
4421 puts_filtered ("\n");
4422 }
4423 if (TYPE_NFIELDS (type) > 0)
4424 {
4425 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4426 {
4427 printfi_filtered (spaces,
4428 "private_field_bits (%d bits at *",
4429 TYPE_NFIELDS (type));
4430 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4431 gdb_stdout);
4432 printf_filtered (")");
4433 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4434 TYPE_NFIELDS (type));
4435 puts_filtered ("\n");
4436 }
4437 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4438 {
4439 printfi_filtered (spaces,
4440 "protected_field_bits (%d bits at *",
4441 TYPE_NFIELDS (type));
4442 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4443 gdb_stdout);
4444 printf_filtered (")");
4445 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4446 TYPE_NFIELDS (type));
4447 puts_filtered ("\n");
4448 }
4449 }
4450 if (TYPE_NFN_FIELDS (type) > 0)
4451 {
4452 dump_fn_fieldlists (type, spaces);
4453 }
4454 }
4455
4456 /* Print the contents of the TYPE's type_specific union, assuming that
4457 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4458
4459 static void
4460 print_gnat_stuff (struct type *type, int spaces)
4461 {
4462 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4463
4464 if (descriptive_type == NULL)
4465 printfi_filtered (spaces + 2, "no descriptive type\n");
4466 else
4467 {
4468 printfi_filtered (spaces + 2, "descriptive type\n");
4469 recursive_dump_type (descriptive_type, spaces + 4);
4470 }
4471 }
4472
4473 static struct obstack dont_print_type_obstack;
4474
4475 void
4476 recursive_dump_type (struct type *type, int spaces)
4477 {
4478 int idx;
4479
4480 if (spaces == 0)
4481 obstack_begin (&dont_print_type_obstack, 0);
4482
4483 if (TYPE_NFIELDS (type) > 0
4484 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4485 {
4486 struct type **first_dont_print
4487 = (struct type **) obstack_base (&dont_print_type_obstack);
4488
4489 int i = (struct type **)
4490 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4491
4492 while (--i >= 0)
4493 {
4494 if (type == first_dont_print[i])
4495 {
4496 printfi_filtered (spaces, "type node ");
4497 gdb_print_host_address (type, gdb_stdout);
4498 printf_filtered (_(" <same as already seen type>\n"));
4499 return;
4500 }
4501 }
4502
4503 obstack_ptr_grow (&dont_print_type_obstack, type);
4504 }
4505
4506 printfi_filtered (spaces, "type node ");
4507 gdb_print_host_address (type, gdb_stdout);
4508 printf_filtered ("\n");
4509 printfi_filtered (spaces, "name '%s' (",
4510 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4511 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4512 printf_filtered (")\n");
4513 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4514 switch (TYPE_CODE (type))
4515 {
4516 case TYPE_CODE_UNDEF:
4517 printf_filtered ("(TYPE_CODE_UNDEF)");
4518 break;
4519 case TYPE_CODE_PTR:
4520 printf_filtered ("(TYPE_CODE_PTR)");
4521 break;
4522 case TYPE_CODE_ARRAY:
4523 printf_filtered ("(TYPE_CODE_ARRAY)");
4524 break;
4525 case TYPE_CODE_STRUCT:
4526 printf_filtered ("(TYPE_CODE_STRUCT)");
4527 break;
4528 case TYPE_CODE_UNION:
4529 printf_filtered ("(TYPE_CODE_UNION)");
4530 break;
4531 case TYPE_CODE_ENUM:
4532 printf_filtered ("(TYPE_CODE_ENUM)");
4533 break;
4534 case TYPE_CODE_FLAGS:
4535 printf_filtered ("(TYPE_CODE_FLAGS)");
4536 break;
4537 case TYPE_CODE_FUNC:
4538 printf_filtered ("(TYPE_CODE_FUNC)");
4539 break;
4540 case TYPE_CODE_INT:
4541 printf_filtered ("(TYPE_CODE_INT)");
4542 break;
4543 case TYPE_CODE_FLT:
4544 printf_filtered ("(TYPE_CODE_FLT)");
4545 break;
4546 case TYPE_CODE_VOID:
4547 printf_filtered ("(TYPE_CODE_VOID)");
4548 break;
4549 case TYPE_CODE_SET:
4550 printf_filtered ("(TYPE_CODE_SET)");
4551 break;
4552 case TYPE_CODE_RANGE:
4553 printf_filtered ("(TYPE_CODE_RANGE)");
4554 break;
4555 case TYPE_CODE_STRING:
4556 printf_filtered ("(TYPE_CODE_STRING)");
4557 break;
4558 case TYPE_CODE_ERROR:
4559 printf_filtered ("(TYPE_CODE_ERROR)");
4560 break;
4561 case TYPE_CODE_MEMBERPTR:
4562 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4563 break;
4564 case TYPE_CODE_METHODPTR:
4565 printf_filtered ("(TYPE_CODE_METHODPTR)");
4566 break;
4567 case TYPE_CODE_METHOD:
4568 printf_filtered ("(TYPE_CODE_METHOD)");
4569 break;
4570 case TYPE_CODE_REF:
4571 printf_filtered ("(TYPE_CODE_REF)");
4572 break;
4573 case TYPE_CODE_CHAR:
4574 printf_filtered ("(TYPE_CODE_CHAR)");
4575 break;
4576 case TYPE_CODE_BOOL:
4577 printf_filtered ("(TYPE_CODE_BOOL)");
4578 break;
4579 case TYPE_CODE_COMPLEX:
4580 printf_filtered ("(TYPE_CODE_COMPLEX)");
4581 break;
4582 case TYPE_CODE_TYPEDEF:
4583 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4584 break;
4585 case TYPE_CODE_NAMESPACE:
4586 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4587 break;
4588 default:
4589 printf_filtered ("(UNKNOWN TYPE CODE)");
4590 break;
4591 }
4592 puts_filtered ("\n");
4593 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4594 if (TYPE_OBJFILE_OWNED (type))
4595 {
4596 printfi_filtered (spaces, "objfile ");
4597 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4598 }
4599 else
4600 {
4601 printfi_filtered (spaces, "gdbarch ");
4602 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4603 }
4604 printf_filtered ("\n");
4605 printfi_filtered (spaces, "target_type ");
4606 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4607 printf_filtered ("\n");
4608 if (TYPE_TARGET_TYPE (type) != NULL)
4609 {
4610 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4611 }
4612 printfi_filtered (spaces, "pointer_type ");
4613 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4614 printf_filtered ("\n");
4615 printfi_filtered (spaces, "reference_type ");
4616 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4617 printf_filtered ("\n");
4618 printfi_filtered (spaces, "type_chain ");
4619 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4620 printf_filtered ("\n");
4621 printfi_filtered (spaces, "instance_flags 0x%x",
4622 TYPE_INSTANCE_FLAGS (type));
4623 if (TYPE_CONST (type))
4624 {
4625 puts_filtered (" TYPE_CONST");
4626 }
4627 if (TYPE_VOLATILE (type))
4628 {
4629 puts_filtered (" TYPE_VOLATILE");
4630 }
4631 if (TYPE_CODE_SPACE (type))
4632 {
4633 puts_filtered (" TYPE_CODE_SPACE");
4634 }
4635 if (TYPE_DATA_SPACE (type))
4636 {
4637 puts_filtered (" TYPE_DATA_SPACE");
4638 }
4639 if (TYPE_ADDRESS_CLASS_1 (type))
4640 {
4641 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4642 }
4643 if (TYPE_ADDRESS_CLASS_2 (type))
4644 {
4645 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4646 }
4647 if (TYPE_RESTRICT (type))
4648 {
4649 puts_filtered (" TYPE_RESTRICT");
4650 }
4651 if (TYPE_ATOMIC (type))
4652 {
4653 puts_filtered (" TYPE_ATOMIC");
4654 }
4655 puts_filtered ("\n");
4656
4657 printfi_filtered (spaces, "flags");
4658 if (TYPE_UNSIGNED (type))
4659 {
4660 puts_filtered (" TYPE_UNSIGNED");
4661 }
4662 if (TYPE_NOSIGN (type))
4663 {
4664 puts_filtered (" TYPE_NOSIGN");
4665 }
4666 if (TYPE_STUB (type))
4667 {
4668 puts_filtered (" TYPE_STUB");
4669 }
4670 if (TYPE_TARGET_STUB (type))
4671 {
4672 puts_filtered (" TYPE_TARGET_STUB");
4673 }
4674 if (TYPE_PROTOTYPED (type))
4675 {
4676 puts_filtered (" TYPE_PROTOTYPED");
4677 }
4678 if (TYPE_INCOMPLETE (type))
4679 {
4680 puts_filtered (" TYPE_INCOMPLETE");
4681 }
4682 if (TYPE_VARARGS (type))
4683 {
4684 puts_filtered (" TYPE_VARARGS");
4685 }
4686 /* This is used for things like AltiVec registers on ppc. Gcc emits
4687 an attribute for the array type, which tells whether or not we
4688 have a vector, instead of a regular array. */
4689 if (TYPE_VECTOR (type))
4690 {
4691 puts_filtered (" TYPE_VECTOR");
4692 }
4693 if (TYPE_FIXED_INSTANCE (type))
4694 {
4695 puts_filtered (" TYPE_FIXED_INSTANCE");
4696 }
4697 if (TYPE_STUB_SUPPORTED (type))
4698 {
4699 puts_filtered (" TYPE_STUB_SUPPORTED");
4700 }
4701 if (TYPE_NOTTEXT (type))
4702 {
4703 puts_filtered (" TYPE_NOTTEXT");
4704 }
4705 puts_filtered ("\n");
4706 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4707 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4708 puts_filtered ("\n");
4709 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4710 {
4711 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4712 printfi_filtered (spaces + 2,
4713 "[%d] enumval %s type ",
4714 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4715 else
4716 printfi_filtered (spaces + 2,
4717 "[%d] bitpos %s bitsize %d type ",
4718 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4719 TYPE_FIELD_BITSIZE (type, idx));
4720 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4721 printf_filtered (" name '%s' (",
4722 TYPE_FIELD_NAME (type, idx) != NULL
4723 ? TYPE_FIELD_NAME (type, idx)
4724 : "<NULL>");
4725 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4726 printf_filtered (")\n");
4727 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4728 {
4729 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4730 }
4731 }
4732 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4733 {
4734 printfi_filtered (spaces, "low %s%s high %s%s\n",
4735 plongest (TYPE_LOW_BOUND (type)),
4736 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4737 plongest (TYPE_HIGH_BOUND (type)),
4738 TYPE_HIGH_BOUND_UNDEFINED (type)
4739 ? " (undefined)" : "");
4740 }
4741
4742 switch (TYPE_SPECIFIC_FIELD (type))
4743 {
4744 case TYPE_SPECIFIC_CPLUS_STUFF:
4745 printfi_filtered (spaces, "cplus_stuff ");
4746 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4747 gdb_stdout);
4748 puts_filtered ("\n");
4749 print_cplus_stuff (type, spaces);
4750 break;
4751
4752 case TYPE_SPECIFIC_GNAT_STUFF:
4753 printfi_filtered (spaces, "gnat_stuff ");
4754 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4755 puts_filtered ("\n");
4756 print_gnat_stuff (type, spaces);
4757 break;
4758
4759 case TYPE_SPECIFIC_FLOATFORMAT:
4760 printfi_filtered (spaces, "floatformat ");
4761 if (TYPE_FLOATFORMAT (type) == NULL
4762 || TYPE_FLOATFORMAT (type)->name == NULL)
4763 puts_filtered ("(null)");
4764 else
4765 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4766 puts_filtered ("\n");
4767 break;
4768
4769 case TYPE_SPECIFIC_FUNC:
4770 printfi_filtered (spaces, "calling_convention %d\n",
4771 TYPE_CALLING_CONVENTION (type));
4772 /* tail_call_list is not printed. */
4773 break;
4774
4775 case TYPE_SPECIFIC_SELF_TYPE:
4776 printfi_filtered (spaces, "self_type ");
4777 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4778 puts_filtered ("\n");
4779 break;
4780 }
4781
4782 if (spaces == 0)
4783 obstack_free (&dont_print_type_obstack, NULL);
4784 }
4785 \f
4786 /* Trivial helpers for the libiberty hash table, for mapping one
4787 type to another. */
4788
4789 struct type_pair : public allocate_on_obstack
4790 {
4791 type_pair (struct type *old_, struct type *newobj_)
4792 : old (old_), newobj (newobj_)
4793 {}
4794
4795 struct type * const old, * const newobj;
4796 };
4797
4798 static hashval_t
4799 type_pair_hash (const void *item)
4800 {
4801 const struct type_pair *pair = (const struct type_pair *) item;
4802
4803 return htab_hash_pointer (pair->old);
4804 }
4805
4806 static int
4807 type_pair_eq (const void *item_lhs, const void *item_rhs)
4808 {
4809 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4810 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4811
4812 return lhs->old == rhs->old;
4813 }
4814
4815 /* Allocate the hash table used by copy_type_recursive to walk
4816 types without duplicates. We use OBJFILE's obstack, because
4817 OBJFILE is about to be deleted. */
4818
4819 htab_t
4820 create_copied_types_hash (struct objfile *objfile)
4821 {
4822 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4823 NULL, &objfile->objfile_obstack,
4824 hashtab_obstack_allocate,
4825 dummy_obstack_deallocate);
4826 }
4827
4828 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4829
4830 static struct dynamic_prop_list *
4831 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4832 struct dynamic_prop_list *list)
4833 {
4834 struct dynamic_prop_list *copy = list;
4835 struct dynamic_prop_list **node_ptr = &copy;
4836
4837 while (*node_ptr != NULL)
4838 {
4839 struct dynamic_prop_list *node_copy;
4840
4841 node_copy = ((struct dynamic_prop_list *)
4842 obstack_copy (objfile_obstack, *node_ptr,
4843 sizeof (struct dynamic_prop_list)));
4844 node_copy->prop = (*node_ptr)->prop;
4845 *node_ptr = node_copy;
4846
4847 node_ptr = &node_copy->next;
4848 }
4849
4850 return copy;
4851 }
4852
4853 /* Recursively copy (deep copy) TYPE, if it is associated with
4854 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4855 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4856 it is not associated with OBJFILE. */
4857
4858 struct type *
4859 copy_type_recursive (struct objfile *objfile,
4860 struct type *type,
4861 htab_t copied_types)
4862 {
4863 void **slot;
4864 struct type *new_type;
4865
4866 if (! TYPE_OBJFILE_OWNED (type))
4867 return type;
4868
4869 /* This type shouldn't be pointing to any types in other objfiles;
4870 if it did, the type might disappear unexpectedly. */
4871 gdb_assert (TYPE_OBJFILE (type) == objfile);
4872
4873 struct type_pair pair (type, nullptr);
4874
4875 slot = htab_find_slot (copied_types, &pair, INSERT);
4876 if (*slot != NULL)
4877 return ((struct type_pair *) *slot)->newobj;
4878
4879 new_type = alloc_type_arch (get_type_arch (type));
4880
4881 /* We must add the new type to the hash table immediately, in case
4882 we encounter this type again during a recursive call below. */
4883 struct type_pair *stored
4884 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4885
4886 *slot = stored;
4887
4888 /* Copy the common fields of types. For the main type, we simply
4889 copy the entire thing and then update specific fields as needed. */
4890 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4891 TYPE_OBJFILE_OWNED (new_type) = 0;
4892 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4893
4894 if (TYPE_NAME (type))
4895 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4896
4897 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4898 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4899
4900 /* Copy the fields. */
4901 if (TYPE_NFIELDS (type))
4902 {
4903 int i, nfields;
4904
4905 nfields = TYPE_NFIELDS (type);
4906 TYPE_FIELDS (new_type) = (struct field *)
4907 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4908 for (i = 0; i < nfields; i++)
4909 {
4910 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4911 TYPE_FIELD_ARTIFICIAL (type, i);
4912 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4913 if (TYPE_FIELD_TYPE (type, i))
4914 TYPE_FIELD_TYPE (new_type, i)
4915 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4916 copied_types);
4917 if (TYPE_FIELD_NAME (type, i))
4918 TYPE_FIELD_NAME (new_type, i) =
4919 xstrdup (TYPE_FIELD_NAME (type, i));
4920 switch (TYPE_FIELD_LOC_KIND (type, i))
4921 {
4922 case FIELD_LOC_KIND_BITPOS:
4923 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4924 TYPE_FIELD_BITPOS (type, i));
4925 break;
4926 case FIELD_LOC_KIND_ENUMVAL:
4927 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4928 TYPE_FIELD_ENUMVAL (type, i));
4929 break;
4930 case FIELD_LOC_KIND_PHYSADDR:
4931 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4932 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4933 break;
4934 case FIELD_LOC_KIND_PHYSNAME:
4935 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4936 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4937 i)));
4938 break;
4939 default:
4940 internal_error (__FILE__, __LINE__,
4941 _("Unexpected type field location kind: %d"),
4942 TYPE_FIELD_LOC_KIND (type, i));
4943 }
4944 }
4945 }
4946
4947 /* For range types, copy the bounds information. */
4948 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4949 {
4950 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4951 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4952 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4953 }
4954
4955 if (TYPE_DYN_PROP_LIST (type) != NULL)
4956 TYPE_DYN_PROP_LIST (new_type)
4957 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4958 TYPE_DYN_PROP_LIST (type));
4959
4960
4961 /* Copy pointers to other types. */
4962 if (TYPE_TARGET_TYPE (type))
4963 TYPE_TARGET_TYPE (new_type) =
4964 copy_type_recursive (objfile,
4965 TYPE_TARGET_TYPE (type),
4966 copied_types);
4967
4968 /* Maybe copy the type_specific bits.
4969
4970 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4971 base classes and methods. There's no fundamental reason why we
4972 can't, but at the moment it is not needed. */
4973
4974 switch (TYPE_SPECIFIC_FIELD (type))
4975 {
4976 case TYPE_SPECIFIC_NONE:
4977 break;
4978 case TYPE_SPECIFIC_FUNC:
4979 INIT_FUNC_SPECIFIC (new_type);
4980 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4981 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4982 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4983 break;
4984 case TYPE_SPECIFIC_FLOATFORMAT:
4985 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4986 break;
4987 case TYPE_SPECIFIC_CPLUS_STUFF:
4988 INIT_CPLUS_SPECIFIC (new_type);
4989 break;
4990 case TYPE_SPECIFIC_GNAT_STUFF:
4991 INIT_GNAT_SPECIFIC (new_type);
4992 break;
4993 case TYPE_SPECIFIC_SELF_TYPE:
4994 set_type_self_type (new_type,
4995 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4996 copied_types));
4997 break;
4998 default:
4999 gdb_assert_not_reached ("bad type_specific_kind");
5000 }
5001
5002 return new_type;
5003 }
5004
5005 /* Make a copy of the given TYPE, except that the pointer & reference
5006 types are not preserved.
5007
5008 This function assumes that the given type has an associated objfile.
5009 This objfile is used to allocate the new type. */
5010
5011 struct type *
5012 copy_type (const struct type *type)
5013 {
5014 struct type *new_type;
5015
5016 gdb_assert (TYPE_OBJFILE_OWNED (type));
5017
5018 new_type = alloc_type_copy (type);
5019 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5020 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5021 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5022 sizeof (struct main_type));
5023 if (TYPE_DYN_PROP_LIST (type) != NULL)
5024 TYPE_DYN_PROP_LIST (new_type)
5025 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5026 TYPE_DYN_PROP_LIST (type));
5027
5028 return new_type;
5029 }
5030 \f
5031 /* Helper functions to initialize architecture-specific types. */
5032
5033 /* Allocate a type structure associated with GDBARCH and set its
5034 CODE, LENGTH, and NAME fields. */
5035
5036 struct type *
5037 arch_type (struct gdbarch *gdbarch,
5038 enum type_code code, int bit, const char *name)
5039 {
5040 struct type *type;
5041
5042 type = alloc_type_arch (gdbarch);
5043 set_type_code (type, code);
5044 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5045 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5046
5047 if (name)
5048 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5049
5050 return type;
5051 }
5052
5053 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5054 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5055 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5056
5057 struct type *
5058 arch_integer_type (struct gdbarch *gdbarch,
5059 int bit, int unsigned_p, const char *name)
5060 {
5061 struct type *t;
5062
5063 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5064 if (unsigned_p)
5065 TYPE_UNSIGNED (t) = 1;
5066
5067 return t;
5068 }
5069
5070 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5071 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5072 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5073
5074 struct type *
5075 arch_character_type (struct gdbarch *gdbarch,
5076 int bit, int unsigned_p, const char *name)
5077 {
5078 struct type *t;
5079
5080 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5081 if (unsigned_p)
5082 TYPE_UNSIGNED (t) = 1;
5083
5084 return t;
5085 }
5086
5087 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5088 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5089 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5090
5091 struct type *
5092 arch_boolean_type (struct gdbarch *gdbarch,
5093 int bit, int unsigned_p, const char *name)
5094 {
5095 struct type *t;
5096
5097 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5098 if (unsigned_p)
5099 TYPE_UNSIGNED (t) = 1;
5100
5101 return t;
5102 }
5103
5104 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5105 BIT is the type size in bits; if BIT equals -1, the size is
5106 determined by the floatformat. NAME is the type name. Set the
5107 TYPE_FLOATFORMAT from FLOATFORMATS. */
5108
5109 struct type *
5110 arch_float_type (struct gdbarch *gdbarch,
5111 int bit, const char *name,
5112 const struct floatformat **floatformats)
5113 {
5114 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5115 struct type *t;
5116
5117 bit = verify_floatformat (bit, fmt);
5118 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5119 TYPE_FLOATFORMAT (t) = fmt;
5120
5121 return t;
5122 }
5123
5124 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5125 BIT is the type size in bits. NAME is the type name. */
5126
5127 struct type *
5128 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5129 {
5130 struct type *t;
5131
5132 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5133 return t;
5134 }
5135
5136 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5137 NAME is the type name. TARGET_TYPE is the component float type. */
5138
5139 struct type *
5140 arch_complex_type (struct gdbarch *gdbarch,
5141 const char *name, struct type *target_type)
5142 {
5143 struct type *t;
5144
5145 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5146 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5147 TYPE_TARGET_TYPE (t) = target_type;
5148 return t;
5149 }
5150
5151 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5152 BIT is the pointer type size in bits. NAME is the type name.
5153 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5154 TYPE_UNSIGNED flag. */
5155
5156 struct type *
5157 arch_pointer_type (struct gdbarch *gdbarch,
5158 int bit, const char *name, struct type *target_type)
5159 {
5160 struct type *t;
5161
5162 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5163 TYPE_TARGET_TYPE (t) = target_type;
5164 TYPE_UNSIGNED (t) = 1;
5165 return t;
5166 }
5167
5168 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5169 NAME is the type name. BIT is the size of the flag word in bits. */
5170
5171 struct type *
5172 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5173 {
5174 struct type *type;
5175
5176 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5177 TYPE_UNSIGNED (type) = 1;
5178 TYPE_NFIELDS (type) = 0;
5179 /* Pre-allocate enough space assuming every field is one bit. */
5180 TYPE_FIELDS (type)
5181 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5182
5183 return type;
5184 }
5185
5186 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5187 position BITPOS is called NAME. Pass NAME as "" for fields that
5188 should not be printed. */
5189
5190 void
5191 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5192 struct type *field_type, const char *name)
5193 {
5194 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5195 int field_nr = TYPE_NFIELDS (type);
5196
5197 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5198 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5199 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5200 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5201 gdb_assert (name != NULL);
5202
5203 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5204 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5205 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5206 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5207 ++TYPE_NFIELDS (type);
5208 }
5209
5210 /* Special version of append_flags_type_field to add a flag field.
5211 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5212 position BITPOS is called NAME. */
5213
5214 void
5215 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5216 {
5217 struct gdbarch *gdbarch = get_type_arch (type);
5218
5219 append_flags_type_field (type, bitpos, 1,
5220 builtin_type (gdbarch)->builtin_bool,
5221 name);
5222 }
5223
5224 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5225 specified by CODE) associated with GDBARCH. NAME is the type name. */
5226
5227 struct type *
5228 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5229 enum type_code code)
5230 {
5231 struct type *t;
5232
5233 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5234 t = arch_type (gdbarch, code, 0, NULL);
5235 TYPE_NAME (t) = name;
5236 INIT_CPLUS_SPECIFIC (t);
5237 return t;
5238 }
5239
5240 /* Add new field with name NAME and type FIELD to composite type T.
5241 Do not set the field's position or adjust the type's length;
5242 the caller should do so. Return the new field. */
5243
5244 struct field *
5245 append_composite_type_field_raw (struct type *t, const char *name,
5246 struct type *field)
5247 {
5248 struct field *f;
5249
5250 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5251 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5252 TYPE_NFIELDS (t));
5253 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5254 memset (f, 0, sizeof f[0]);
5255 FIELD_TYPE (f[0]) = field;
5256 FIELD_NAME (f[0]) = name;
5257 return f;
5258 }
5259
5260 /* Add new field with name NAME and type FIELD to composite type T.
5261 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5262
5263 void
5264 append_composite_type_field_aligned (struct type *t, const char *name,
5265 struct type *field, int alignment)
5266 {
5267 struct field *f = append_composite_type_field_raw (t, name, field);
5268
5269 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5270 {
5271 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5272 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5273 }
5274 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5275 {
5276 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5277 if (TYPE_NFIELDS (t) > 1)
5278 {
5279 SET_FIELD_BITPOS (f[0],
5280 (FIELD_BITPOS (f[-1])
5281 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5282 * TARGET_CHAR_BIT)));
5283
5284 if (alignment)
5285 {
5286 int left;
5287
5288 alignment *= TARGET_CHAR_BIT;
5289 left = FIELD_BITPOS (f[0]) % alignment;
5290
5291 if (left)
5292 {
5293 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5294 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5295 }
5296 }
5297 }
5298 }
5299 }
5300
5301 /* Add new field with name NAME and type FIELD to composite type T. */
5302
5303 void
5304 append_composite_type_field (struct type *t, const char *name,
5305 struct type *field)
5306 {
5307 append_composite_type_field_aligned (t, name, field, 0);
5308 }
5309
5310 static struct gdbarch_data *gdbtypes_data;
5311
5312 const struct builtin_type *
5313 builtin_type (struct gdbarch *gdbarch)
5314 {
5315 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5316 }
5317
5318 static void *
5319 gdbtypes_post_init (struct gdbarch *gdbarch)
5320 {
5321 struct builtin_type *builtin_type
5322 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5323
5324 /* Basic types. */
5325 builtin_type->builtin_void
5326 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5327 builtin_type->builtin_char
5328 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5329 !gdbarch_char_signed (gdbarch), "char");
5330 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5331 builtin_type->builtin_signed_char
5332 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5333 0, "signed char");
5334 builtin_type->builtin_unsigned_char
5335 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5336 1, "unsigned char");
5337 builtin_type->builtin_short
5338 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5339 0, "short");
5340 builtin_type->builtin_unsigned_short
5341 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5342 1, "unsigned short");
5343 builtin_type->builtin_int
5344 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5345 0, "int");
5346 builtin_type->builtin_unsigned_int
5347 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5348 1, "unsigned int");
5349 builtin_type->builtin_long
5350 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5351 0, "long");
5352 builtin_type->builtin_unsigned_long
5353 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5354 1, "unsigned long");
5355 builtin_type->builtin_long_long
5356 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5357 0, "long long");
5358 builtin_type->builtin_unsigned_long_long
5359 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5360 1, "unsigned long long");
5361 builtin_type->builtin_float
5362 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5363 "float", gdbarch_float_format (gdbarch));
5364 builtin_type->builtin_double
5365 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5366 "double", gdbarch_double_format (gdbarch));
5367 builtin_type->builtin_long_double
5368 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5369 "long double", gdbarch_long_double_format (gdbarch));
5370 builtin_type->builtin_complex
5371 = arch_complex_type (gdbarch, "complex",
5372 builtin_type->builtin_float);
5373 builtin_type->builtin_double_complex
5374 = arch_complex_type (gdbarch, "double complex",
5375 builtin_type->builtin_double);
5376 builtin_type->builtin_string
5377 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5378 builtin_type->builtin_bool
5379 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5380
5381 /* The following three are about decimal floating point types, which
5382 are 32-bits, 64-bits and 128-bits respectively. */
5383 builtin_type->builtin_decfloat
5384 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5385 builtin_type->builtin_decdouble
5386 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5387 builtin_type->builtin_declong
5388 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5389
5390 /* "True" character types. */
5391 builtin_type->builtin_true_char
5392 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5393 builtin_type->builtin_true_unsigned_char
5394 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5395
5396 /* Fixed-size integer types. */
5397 builtin_type->builtin_int0
5398 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5399 builtin_type->builtin_int8
5400 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5401 builtin_type->builtin_uint8
5402 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5403 builtin_type->builtin_int16
5404 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5405 builtin_type->builtin_uint16
5406 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5407 builtin_type->builtin_int24
5408 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5409 builtin_type->builtin_uint24
5410 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5411 builtin_type->builtin_int32
5412 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5413 builtin_type->builtin_uint32
5414 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5415 builtin_type->builtin_int64
5416 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5417 builtin_type->builtin_uint64
5418 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5419 builtin_type->builtin_int128
5420 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5421 builtin_type->builtin_uint128
5422 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5423 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5424 TYPE_INSTANCE_FLAG_NOTTEXT;
5425 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5426 TYPE_INSTANCE_FLAG_NOTTEXT;
5427
5428 /* Wide character types. */
5429 builtin_type->builtin_char16
5430 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5431 builtin_type->builtin_char32
5432 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5433 builtin_type->builtin_wchar
5434 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5435 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5436
5437 /* Default data/code pointer types. */
5438 builtin_type->builtin_data_ptr
5439 = lookup_pointer_type (builtin_type->builtin_void);
5440 builtin_type->builtin_func_ptr
5441 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5442 builtin_type->builtin_func_func
5443 = lookup_function_type (builtin_type->builtin_func_ptr);
5444
5445 /* This type represents a GDB internal function. */
5446 builtin_type->internal_fn
5447 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5448 "<internal function>");
5449
5450 /* This type represents an xmethod. */
5451 builtin_type->xmethod
5452 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5453
5454 return builtin_type;
5455 }
5456
5457 /* This set of objfile-based types is intended to be used by symbol
5458 readers as basic types. */
5459
5460 static const struct objfile_data *objfile_type_data;
5461
5462 const struct objfile_type *
5463 objfile_type (struct objfile *objfile)
5464 {
5465 struct gdbarch *gdbarch;
5466 struct objfile_type *objfile_type
5467 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5468
5469 if (objfile_type)
5470 return objfile_type;
5471
5472 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5473 1, struct objfile_type);
5474
5475 /* Use the objfile architecture to determine basic type properties. */
5476 gdbarch = get_objfile_arch (objfile);
5477
5478 /* Basic types. */
5479 objfile_type->builtin_void
5480 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5481 objfile_type->builtin_char
5482 = init_integer_type (objfile, TARGET_CHAR_BIT,
5483 !gdbarch_char_signed (gdbarch), "char");
5484 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5485 objfile_type->builtin_signed_char
5486 = init_integer_type (objfile, TARGET_CHAR_BIT,
5487 0, "signed char");
5488 objfile_type->builtin_unsigned_char
5489 = init_integer_type (objfile, TARGET_CHAR_BIT,
5490 1, "unsigned char");
5491 objfile_type->builtin_short
5492 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5493 0, "short");
5494 objfile_type->builtin_unsigned_short
5495 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5496 1, "unsigned short");
5497 objfile_type->builtin_int
5498 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5499 0, "int");
5500 objfile_type->builtin_unsigned_int
5501 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5502 1, "unsigned int");
5503 objfile_type->builtin_long
5504 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5505 0, "long");
5506 objfile_type->builtin_unsigned_long
5507 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5508 1, "unsigned long");
5509 objfile_type->builtin_long_long
5510 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5511 0, "long long");
5512 objfile_type->builtin_unsigned_long_long
5513 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5514 1, "unsigned long long");
5515 objfile_type->builtin_float
5516 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5517 "float", gdbarch_float_format (gdbarch));
5518 objfile_type->builtin_double
5519 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5520 "double", gdbarch_double_format (gdbarch));
5521 objfile_type->builtin_long_double
5522 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5523 "long double", gdbarch_long_double_format (gdbarch));
5524
5525 /* This type represents a type that was unrecognized in symbol read-in. */
5526 objfile_type->builtin_error
5527 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5528
5529 /* The following set of types is used for symbols with no
5530 debug information. */
5531 objfile_type->nodebug_text_symbol
5532 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5533 "<text variable, no debug info>");
5534 objfile_type->nodebug_text_gnu_ifunc_symbol
5535 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5536 "<text gnu-indirect-function variable, no debug info>");
5537 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5538 objfile_type->nodebug_got_plt_symbol
5539 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5540 "<text from jump slot in .got.plt, no debug info>",
5541 objfile_type->nodebug_text_symbol);
5542 objfile_type->nodebug_data_symbol
5543 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5544 objfile_type->nodebug_unknown_symbol
5545 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5546 objfile_type->nodebug_tls_symbol
5547 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5548
5549 /* NOTE: on some targets, addresses and pointers are not necessarily
5550 the same.
5551
5552 The upshot is:
5553 - gdb's `struct type' always describes the target's
5554 representation.
5555 - gdb's `struct value' objects should always hold values in
5556 target form.
5557 - gdb's CORE_ADDR values are addresses in the unified virtual
5558 address space that the assembler and linker work with. Thus,
5559 since target_read_memory takes a CORE_ADDR as an argument, it
5560 can access any memory on the target, even if the processor has
5561 separate code and data address spaces.
5562
5563 In this context, objfile_type->builtin_core_addr is a bit odd:
5564 it's a target type for a value the target will never see. It's
5565 only used to hold the values of (typeless) linker symbols, which
5566 are indeed in the unified virtual address space. */
5567
5568 objfile_type->builtin_core_addr
5569 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5570 "__CORE_ADDR");
5571
5572 set_objfile_data (objfile, objfile_type_data, objfile_type);
5573 return objfile_type;
5574 }
5575
5576 void
5577 _initialize_gdbtypes (void)
5578 {
5579 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5580 objfile_type_data = register_objfile_data ();
5581
5582 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5583 _("Set debugging of C++ overloading."),
5584 _("Show debugging of C++ overloading."),
5585 _("When enabled, ranking of the "
5586 "functions is displayed."),
5587 NULL,
5588 show_overload_debug,
5589 &setdebuglist, &showdebuglist);
5590
5591 /* Add user knob for controlling resolution of opaque types. */
5592 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5593 &opaque_type_resolution,
5594 _("Set resolution of opaque struct/class/union"
5595 " types (if set before loading symbols)."),
5596 _("Show resolution of opaque struct/class/union"
5597 " types (if set before loading symbols)."),
5598 NULL, NULL,
5599 show_opaque_type_resolution,
5600 &setlist, &showlist);
5601
5602 /* Add an option to permit non-strict type checking. */
5603 add_setshow_boolean_cmd ("type", class_support,
5604 &strict_type_checking,
5605 _("Set strict type checking."),
5606 _("Show strict type checking."),
5607 NULL, NULL,
5608 show_strict_type_checking,
5609 &setchecklist, &showchecklist);
5610 }
This page took 0.14547 seconds and 5 git commands to generate.