Split rank_one_type_parm_complex from rank_one_type
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905 #undef FIELD_EQ
906 }
907
908 /* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
910
911 struct type *
912 create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
915 {
916 if (result_type == NULL)
917 result_type = alloc_type_copy (index_type);
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
920 if (TYPE_STUB (index_type))
921 TYPE_TARGET_STUB (result_type) = 1;
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
924
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
929
930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
931 TYPE_UNSIGNED (result_type) = 1;
932
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
940 return result_type;
941 }
942
943 /* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953 struct type *
954 create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956 {
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968 }
969
970 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973 static int
974 has_static_range (const struct range_bounds *bounds)
975 {
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978 }
979
980
981 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
984
985 int
986 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
987 {
988 type = check_typedef (type);
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
999 entries. */
1000 int i;
1001
1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
1009 }
1010
1011 /* Set unsigned indicator if warranted. */
1012 if (*lowp >= 0)
1013 {
1014 TYPE_UNSIGNED (type) = 1;
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
1036 /* fall through */
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048 }
1049
1050 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064 int
1065 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066 {
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092 }
1093
1094 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106 */
1107
1108 int
1109 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110 {
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131 }
1132
1133 /* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
1154
1155 struct type *
1156 create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
1159 struct dynamic_prop *byte_stride_prop,
1160 unsigned int bit_stride)
1161 {
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
1173 if (result_type == NULL)
1174 result_type = alloc_type_copy (range_type);
1175
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
1187 element_type = check_typedef (element_type);
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
1200 else
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1214 TYPE_INDEX_TYPE (result_type) = range_type;
1215 if (byte_stride_prop != NULL)
1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1217 else if (bit_stride > 0)
1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1219
1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1221 if (TYPE_LENGTH (result_type) == 0)
1222 TYPE_TARGET_STUB (result_type) = 1;
1223
1224 return result_type;
1225 }
1226
1227 /* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230 struct type *
1231 create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234 {
1235 return create_array_type_with_stride (result_type, element_type,
1236 range_type, NULL, 0);
1237 }
1238
1239 struct type *
1240 lookup_array_range_type (struct type *element_type,
1241 LONGEST low_bound, LONGEST high_bound)
1242 {
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
1252
1253 return create_array_type (NULL, element_type, range_type);
1254 }
1255
1256 /* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
1267
1268 struct type *
1269 create_string_type (struct type *result_type,
1270 struct type *string_char_type,
1271 struct type *range_type)
1272 {
1273 result_type = create_array_type (result_type,
1274 string_char_type,
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1277 return result_type;
1278 }
1279
1280 struct type *
1281 lookup_string_range_type (struct type *string_char_type,
1282 LONGEST low_bound, LONGEST high_bound)
1283 {
1284 struct type *result_type;
1285
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290 }
1291
1292 struct type *
1293 create_set_type (struct type *result_type, struct type *domain_type)
1294 {
1295 if (result_type == NULL)
1296 result_type = alloc_type_copy (domain_type);
1297
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1302
1303 if (!TYPE_STUB (domain_type))
1304 {
1305 LONGEST low_bound, high_bound, bit_length;
1306
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1312 if (low_bound >= 0)
1313 TYPE_UNSIGNED (result_type) = 1;
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
1317 return result_type;
1318 }
1319
1320 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323 void
1324 make_vector_type (struct type *array_type)
1325 {
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
1343 TYPE_VECTOR (array_type) = 1;
1344 }
1345
1346 struct type *
1347 init_vector_type (struct type *elt_type, int n)
1348 {
1349 struct type *array_type;
1350
1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1352 make_vector_type (array_type);
1353 return array_type;
1354 }
1355
1356 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362 struct type *
1363 internal_type_self_type (struct type *type)
1364 {
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381 }
1382
1383 /* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388 void
1389 set_type_self_type (struct type *type, struct type *self_type)
1390 {
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409 }
1410
1411 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
1417
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
1420 allocated. */
1421
1422 void
1423 smash_to_memberptr_type (struct type *type, struct type *self_type,
1424 struct type *to_type)
1425 {
1426 smash_type (type);
1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1428 TYPE_TARGET_TYPE (type) = to_type;
1429 set_type_self_type (type, self_type);
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1434 }
1435
1436 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442 void
1443 smash_to_methodptr_type (struct type *type, struct type *to_type)
1444 {
1445 smash_type (type);
1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1447 TYPE_TARGET_TYPE (type) = to_type;
1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1450 }
1451
1452 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1453 METHOD just means `function that gets an extra "this" argument'.
1454
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
1457 allocated. */
1458
1459 void
1460 smash_to_method_type (struct type *type, struct type *self_type,
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
1463 {
1464 smash_type (type);
1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
1466 TYPE_TARGET_TYPE (type) = to_type;
1467 set_type_self_type (type, self_type);
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
1471 TYPE_VARARGS (type) = 1;
1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1473 }
1474
1475 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482 const char *
1483 type_name_or_error (struct type *type)
1484 {
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
1489 type = check_typedef (type);
1490
1491 name = TYPE_NAME (type);
1492 if (name != NULL)
1493 return name;
1494
1495 name = TYPE_NAME (saved_type);
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
1500 }
1501
1502 /* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
1505
1506 struct type *
1507 lookup_typename (const struct language_defn *language,
1508 struct gdbarch *gdbarch, const char *name,
1509 const struct block *block, int noerr)
1510 {
1511 struct symbol *sym;
1512
1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1514 language->la_language, NULL).symbol;
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
1521 }
1522
1523 struct type *
1524 lookup_unsigned_typename (const struct language_defn *language,
1525 struct gdbarch *gdbarch, const char *name)
1526 {
1527 char *uns = (char *) alloca (strlen (name) + 10);
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
1531 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1532 }
1533
1534 struct type *
1535 lookup_signed_typename (const struct language_defn *language,
1536 struct gdbarch *gdbarch, const char *name)
1537 {
1538 struct type *t;
1539 char *uns = (char *) alloca (strlen (name) + 8);
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
1543 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
1545 if (t != NULL)
1546 return t;
1547 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1548 }
1549
1550 /* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553 struct type *
1554 lookup_struct (const char *name, const struct block *block)
1555 {
1556 struct symbol *sym;
1557
1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1559
1560 if (sym == NULL)
1561 {
1562 error (_("No struct type named %s."), name);
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
1568 }
1569 return (SYMBOL_TYPE (sym));
1570 }
1571
1572 /* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575 struct type *
1576 lookup_union (const char *name, const struct block *block)
1577 {
1578 struct symbol *sym;
1579 struct type *t;
1580
1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1582
1583 if (sym == NULL)
1584 error (_("No union type named %s."), name);
1585
1586 t = SYMBOL_TYPE (sym);
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1589 return t;
1590
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
1594 }
1595
1596 /* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599 struct type *
1600 lookup_enum (const char *name, const struct block *block)
1601 {
1602 struct symbol *sym;
1603
1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1605 if (sym == NULL)
1606 {
1607 error (_("No enum type named %s."), name);
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
1613 }
1614 return (SYMBOL_TYPE (sym));
1615 }
1616
1617 /* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620 struct type *
1621 lookup_template_type (char *name, struct type *type,
1622 const struct block *block)
1623 {
1624 struct symbol *sym;
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1627
1628 strcpy (nam, name);
1629 strcat (nam, "<");
1630 strcat (nam, TYPE_NAME (type));
1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1632
1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1634
1635 if (sym == NULL)
1636 {
1637 error (_("No template type named %s."), name);
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
1643 }
1644 return (SYMBOL_TYPE (sym));
1645 }
1646
1647 /* Given a type TYPE, lookup the type of the component of type named
1648 NAME.
1649
1650 TYPE can be either a struct or union, or a pointer or reference to
1651 a struct or union. If it is a pointer or reference, its target
1652 type is automatically used. Thus '.' and '->' are interchangable,
1653 as specified for the definitions of the expression element types
1654 STRUCTOP_STRUCT and STRUCTOP_PTR.
1655
1656 If NOERR is nonzero, return zero if NAME is not suitably defined.
1657 If NAME is the name of a baseclass type, return that type. */
1658
1659 struct type *
1660 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1661 {
1662 int i;
1663
1664 for (;;)
1665 {
1666 type = check_typedef (type);
1667 if (TYPE_CODE (type) != TYPE_CODE_PTR
1668 && TYPE_CODE (type) != TYPE_CODE_REF)
1669 break;
1670 type = TYPE_TARGET_TYPE (type);
1671 }
1672
1673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1674 && TYPE_CODE (type) != TYPE_CODE_UNION)
1675 {
1676 std::string type_name = type_to_string (type);
1677 error (_("Type %s is not a structure or union type."),
1678 type_name.c_str ());
1679 }
1680
1681 #if 0
1682 /* FIXME: This change put in by Michael seems incorrect for the case
1683 where the structure tag name is the same as the member name.
1684 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1685 foo; } bell;" Disabled by fnf. */
1686 {
1687 char *type_name;
1688
1689 type_name = TYPE_NAME (type);
1690 if (type_name != NULL && strcmp (type_name, name) == 0)
1691 return type;
1692 }
1693 #endif
1694
1695 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1696 {
1697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1698
1699 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1700 {
1701 return TYPE_FIELD_TYPE (type, i);
1702 }
1703 else if (!t_field_name || *t_field_name == '\0')
1704 {
1705 struct type *subtype
1706 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1707
1708 if (subtype != NULL)
1709 return subtype;
1710 }
1711 }
1712
1713 /* OK, it's not in this class. Recursively check the baseclasses. */
1714 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1715 {
1716 struct type *t;
1717
1718 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1719 if (t != NULL)
1720 {
1721 return t;
1722 }
1723 }
1724
1725 if (noerr)
1726 {
1727 return NULL;
1728 }
1729
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1732 }
1733
1734 /* Store in *MAX the largest number representable by unsigned integer type
1735 TYPE. */
1736
1737 void
1738 get_unsigned_type_max (struct type *type, ULONGEST *max)
1739 {
1740 unsigned int n;
1741
1742 type = check_typedef (type);
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1744 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1745
1746 /* Written this way to avoid overflow. */
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1749 }
1750
1751 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1752 signed integer type TYPE. */
1753
1754 void
1755 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1756 {
1757 unsigned int n;
1758
1759 type = check_typedef (type);
1760 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1761 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1762
1763 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1764 *min = -((ULONGEST) 1 << (n - 1));
1765 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1766 }
1767
1768 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1769 cplus_stuff.vptr_fieldno.
1770
1771 cplus_stuff is initialized to cplus_struct_default which does not
1772 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1773 designated initializers). We cope with that here. */
1774
1775 int
1776 internal_type_vptr_fieldno (struct type *type)
1777 {
1778 type = check_typedef (type);
1779 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1780 || TYPE_CODE (type) == TYPE_CODE_UNION);
1781 if (!HAVE_CPLUS_STRUCT (type))
1782 return -1;
1783 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1784 }
1785
1786 /* Set the value of cplus_stuff.vptr_fieldno. */
1787
1788 void
1789 set_type_vptr_fieldno (struct type *type, int fieldno)
1790 {
1791 type = check_typedef (type);
1792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1793 || TYPE_CODE (type) == TYPE_CODE_UNION);
1794 if (!HAVE_CPLUS_STRUCT (type))
1795 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1796 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1797 }
1798
1799 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1800 cplus_stuff.vptr_basetype. */
1801
1802 struct type *
1803 internal_type_vptr_basetype (struct type *type)
1804 {
1805 type = check_typedef (type);
1806 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1807 || TYPE_CODE (type) == TYPE_CODE_UNION);
1808 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1809 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1810 }
1811
1812 /* Set the value of cplus_stuff.vptr_basetype. */
1813
1814 void
1815 set_type_vptr_basetype (struct type *type, struct type *basetype)
1816 {
1817 type = check_typedef (type);
1818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1819 || TYPE_CODE (type) == TYPE_CODE_UNION);
1820 if (!HAVE_CPLUS_STRUCT (type))
1821 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1822 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1823 }
1824
1825 /* Lookup the vptr basetype/fieldno values for TYPE.
1826 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1827 vptr_fieldno. Also, if found and basetype is from the same objfile,
1828 cache the results.
1829 If not found, return -1 and ignore BASETYPEP.
1830 Callers should be aware that in some cases (for example,
1831 the type or one of its baseclasses is a stub type and we are
1832 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1833 this function will not be able to find the
1834 virtual function table pointer, and vptr_fieldno will remain -1 and
1835 vptr_basetype will remain NULL or incomplete. */
1836
1837 int
1838 get_vptr_fieldno (struct type *type, struct type **basetypep)
1839 {
1840 type = check_typedef (type);
1841
1842 if (TYPE_VPTR_FIELDNO (type) < 0)
1843 {
1844 int i;
1845
1846 /* We must start at zero in case the first (and only) baseclass
1847 is virtual (and hence we cannot share the table pointer). */
1848 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1849 {
1850 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1851 int fieldno;
1852 struct type *basetype;
1853
1854 fieldno = get_vptr_fieldno (baseclass, &basetype);
1855 if (fieldno >= 0)
1856 {
1857 /* If the type comes from a different objfile we can't cache
1858 it, it may have a different lifetime. PR 2384 */
1859 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1860 {
1861 set_type_vptr_fieldno (type, fieldno);
1862 set_type_vptr_basetype (type, basetype);
1863 }
1864 if (basetypep)
1865 *basetypep = basetype;
1866 return fieldno;
1867 }
1868 }
1869
1870 /* Not found. */
1871 return -1;
1872 }
1873 else
1874 {
1875 if (basetypep)
1876 *basetypep = TYPE_VPTR_BASETYPE (type);
1877 return TYPE_VPTR_FIELDNO (type);
1878 }
1879 }
1880
1881 static void
1882 stub_noname_complaint (void)
1883 {
1884 complaint (_("stub type has NULL name"));
1885 }
1886
1887 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1888 attached to it, and that property has a non-constant value. */
1889
1890 static int
1891 array_type_has_dynamic_stride (struct type *type)
1892 {
1893 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1894
1895 return (prop != NULL && prop->kind != PROP_CONST);
1896 }
1897
1898 /* Worker for is_dynamic_type. */
1899
1900 static int
1901 is_dynamic_type_internal (struct type *type, int top_level)
1902 {
1903 type = check_typedef (type);
1904
1905 /* We only want to recognize references at the outermost level. */
1906 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1907 type = check_typedef (TYPE_TARGET_TYPE (type));
1908
1909 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1910 dynamic, even if the type itself is statically defined.
1911 From a user's point of view, this may appear counter-intuitive;
1912 but it makes sense in this context, because the point is to determine
1913 whether any part of the type needs to be resolved before it can
1914 be exploited. */
1915 if (TYPE_DATA_LOCATION (type) != NULL
1916 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1917 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1918 return 1;
1919
1920 if (TYPE_ASSOCIATED_PROP (type))
1921 return 1;
1922
1923 if (TYPE_ALLOCATED_PROP (type))
1924 return 1;
1925
1926 switch (TYPE_CODE (type))
1927 {
1928 case TYPE_CODE_RANGE:
1929 {
1930 /* A range type is obviously dynamic if it has at least one
1931 dynamic bound. But also consider the range type to be
1932 dynamic when its subtype is dynamic, even if the bounds
1933 of the range type are static. It allows us to assume that
1934 the subtype of a static range type is also static. */
1935 return (!has_static_range (TYPE_RANGE_DATA (type))
1936 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1937 }
1938
1939 case TYPE_CODE_ARRAY:
1940 {
1941 gdb_assert (TYPE_NFIELDS (type) == 1);
1942
1943 /* The array is dynamic if either the bounds are dynamic... */
1944 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1945 return 1;
1946 /* ... or the elements it contains have a dynamic contents... */
1947 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1948 return 1;
1949 /* ... or if it has a dynamic stride... */
1950 if (array_type_has_dynamic_stride (type))
1951 return 1;
1952 return 0;
1953 }
1954
1955 case TYPE_CODE_STRUCT:
1956 case TYPE_CODE_UNION:
1957 {
1958 int i;
1959
1960 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1961 if (!field_is_static (&TYPE_FIELD (type, i))
1962 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1963 return 1;
1964 }
1965 break;
1966 }
1967
1968 return 0;
1969 }
1970
1971 /* See gdbtypes.h. */
1972
1973 int
1974 is_dynamic_type (struct type *type)
1975 {
1976 return is_dynamic_type_internal (type, 1);
1977 }
1978
1979 static struct type *resolve_dynamic_type_internal
1980 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1981
1982 /* Given a dynamic range type (dyn_range_type) and a stack of
1983 struct property_addr_info elements, return a static version
1984 of that type. */
1985
1986 static struct type *
1987 resolve_dynamic_range (struct type *dyn_range_type,
1988 struct property_addr_info *addr_stack)
1989 {
1990 CORE_ADDR value;
1991 struct type *static_range_type, *static_target_type;
1992 const struct dynamic_prop *prop;
1993 struct dynamic_prop low_bound, high_bound;
1994
1995 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1996
1997 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1998 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1999 {
2000 low_bound.kind = PROP_CONST;
2001 low_bound.data.const_val = value;
2002 }
2003 else
2004 {
2005 low_bound.kind = PROP_UNDEFINED;
2006 low_bound.data.const_val = 0;
2007 }
2008
2009 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2010 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2011 {
2012 high_bound.kind = PROP_CONST;
2013 high_bound.data.const_val = value;
2014
2015 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2016 high_bound.data.const_val
2017 = low_bound.data.const_val + high_bound.data.const_val - 1;
2018 }
2019 else
2020 {
2021 high_bound.kind = PROP_UNDEFINED;
2022 high_bound.data.const_val = 0;
2023 }
2024
2025 static_target_type
2026 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2027 addr_stack, 0);
2028 static_range_type = create_range_type (copy_type (dyn_range_type),
2029 static_target_type,
2030 &low_bound, &high_bound);
2031 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2032 return static_range_type;
2033 }
2034
2035 /* Resolves dynamic bound values of an array type TYPE to static ones.
2036 ADDR_STACK is a stack of struct property_addr_info to be used
2037 if needed during the dynamic resolution. */
2038
2039 static struct type *
2040 resolve_dynamic_array (struct type *type,
2041 struct property_addr_info *addr_stack)
2042 {
2043 CORE_ADDR value;
2044 struct type *elt_type;
2045 struct type *range_type;
2046 struct type *ary_dim;
2047 struct dynamic_prop *prop;
2048 unsigned int bit_stride = 0;
2049
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2051
2052 type = copy_type (type);
2053
2054 elt_type = type;
2055 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2056 range_type = resolve_dynamic_range (range_type, addr_stack);
2057
2058 /* Resolve allocated/associated here before creating a new array type, which
2059 will update the length of the array accordingly. */
2060 prop = TYPE_ALLOCATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2065 }
2066 prop = TYPE_ASSOCIATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072
2073 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2074
2075 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2076 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2077 else
2078 elt_type = TYPE_TARGET_TYPE (type);
2079
2080 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2081 if (prop != NULL)
2082 {
2083 int prop_eval_ok
2084 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2085
2086 if (prop_eval_ok)
2087 {
2088 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2089 bit_stride = (unsigned int) (value * 8);
2090 }
2091 else
2092 {
2093 /* Could be a bug in our code, but it could also happen
2094 if the DWARF info is not correct. Issue a warning,
2095 and assume no byte/bit stride (leave bit_stride = 0). */
2096 warning (_("cannot determine array stride for type %s"),
2097 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2098 }
2099 }
2100 else
2101 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2102
2103 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2104 bit_stride);
2105 }
2106
2107 /* Resolve dynamic bounds of members of the union TYPE to static
2108 bounds. ADDR_STACK is a stack of struct property_addr_info
2109 to be used if needed during the dynamic resolution. */
2110
2111 static struct type *
2112 resolve_dynamic_union (struct type *type,
2113 struct property_addr_info *addr_stack)
2114 {
2115 struct type *resolved_type;
2116 int i;
2117 unsigned int max_len = 0;
2118
2119 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2120
2121 resolved_type = copy_type (type);
2122 TYPE_FIELDS (resolved_type)
2123 = (struct field *) TYPE_ALLOC (resolved_type,
2124 TYPE_NFIELDS (resolved_type)
2125 * sizeof (struct field));
2126 memcpy (TYPE_FIELDS (resolved_type),
2127 TYPE_FIELDS (type),
2128 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2129 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2130 {
2131 struct type *t;
2132
2133 if (field_is_static (&TYPE_FIELD (type, i)))
2134 continue;
2135
2136 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2137 addr_stack, 0);
2138 TYPE_FIELD_TYPE (resolved_type, i) = t;
2139 if (TYPE_LENGTH (t) > max_len)
2140 max_len = TYPE_LENGTH (t);
2141 }
2142
2143 TYPE_LENGTH (resolved_type) = max_len;
2144 return resolved_type;
2145 }
2146
2147 /* Resolve dynamic bounds of members of the struct TYPE to static
2148 bounds. ADDR_STACK is a stack of struct property_addr_info to
2149 be used if needed during the dynamic resolution. */
2150
2151 static struct type *
2152 resolve_dynamic_struct (struct type *type,
2153 struct property_addr_info *addr_stack)
2154 {
2155 struct type *resolved_type;
2156 int i;
2157 unsigned resolved_type_bit_length = 0;
2158
2159 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2160 gdb_assert (TYPE_NFIELDS (type) > 0);
2161
2162 resolved_type = copy_type (type);
2163 TYPE_FIELDS (resolved_type)
2164 = (struct field *) TYPE_ALLOC (resolved_type,
2165 TYPE_NFIELDS (resolved_type)
2166 * sizeof (struct field));
2167 memcpy (TYPE_FIELDS (resolved_type),
2168 TYPE_FIELDS (type),
2169 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2170 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2171 {
2172 unsigned new_bit_length;
2173 struct property_addr_info pinfo;
2174
2175 if (field_is_static (&TYPE_FIELD (type, i)))
2176 continue;
2177
2178 /* As we know this field is not a static field, the field's
2179 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2180 this is the case, but only trigger a simple error rather
2181 than an internal error if that fails. While failing
2182 that verification indicates a bug in our code, the error
2183 is not severe enough to suggest to the user he stops
2184 his debugging session because of it. */
2185 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2186 error (_("Cannot determine struct field location"
2187 " (invalid location kind)"));
2188
2189 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2190 pinfo.valaddr = addr_stack->valaddr;
2191 pinfo.addr
2192 = (addr_stack->addr
2193 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2194 pinfo.next = addr_stack;
2195
2196 TYPE_FIELD_TYPE (resolved_type, i)
2197 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2198 &pinfo, 0);
2199 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2200 == FIELD_LOC_KIND_BITPOS);
2201
2202 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2203 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2204 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2205 else
2206 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2207 * TARGET_CHAR_BIT);
2208
2209 /* Normally, we would use the position and size of the last field
2210 to determine the size of the enclosing structure. But GCC seems
2211 to be encoding the position of some fields incorrectly when
2212 the struct contains a dynamic field that is not placed last.
2213 So we compute the struct size based on the field that has
2214 the highest position + size - probably the best we can do. */
2215 if (new_bit_length > resolved_type_bit_length)
2216 resolved_type_bit_length = new_bit_length;
2217 }
2218
2219 /* The length of a type won't change for fortran, but it does for C and Ada.
2220 For fortran the size of dynamic fields might change over time but not the
2221 type length of the structure. If we adapt it, we run into problems
2222 when calculating the element offset for arrays of structs. */
2223 if (current_language->la_language != language_fortran)
2224 TYPE_LENGTH (resolved_type)
2225 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2226
2227 /* The Ada language uses this field as a cache for static fixed types: reset
2228 it as RESOLVED_TYPE must have its own static fixed type. */
2229 TYPE_TARGET_TYPE (resolved_type) = NULL;
2230
2231 return resolved_type;
2232 }
2233
2234 /* Worker for resolved_dynamic_type. */
2235
2236 static struct type *
2237 resolve_dynamic_type_internal (struct type *type,
2238 struct property_addr_info *addr_stack,
2239 int top_level)
2240 {
2241 struct type *real_type = check_typedef (type);
2242 struct type *resolved_type = type;
2243 struct dynamic_prop *prop;
2244 CORE_ADDR value;
2245
2246 if (!is_dynamic_type_internal (real_type, top_level))
2247 return type;
2248
2249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2250 {
2251 resolved_type = copy_type (type);
2252 TYPE_TARGET_TYPE (resolved_type)
2253 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2254 top_level);
2255 }
2256 else
2257 {
2258 /* Before trying to resolve TYPE, make sure it is not a stub. */
2259 type = real_type;
2260
2261 switch (TYPE_CODE (type))
2262 {
2263 case TYPE_CODE_REF:
2264 {
2265 struct property_addr_info pinfo;
2266
2267 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2268 pinfo.valaddr = NULL;
2269 if (addr_stack->valaddr != NULL)
2270 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2271 else
2272 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2273 pinfo.next = addr_stack;
2274
2275 resolved_type = copy_type (type);
2276 TYPE_TARGET_TYPE (resolved_type)
2277 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2278 &pinfo, top_level);
2279 break;
2280 }
2281
2282 case TYPE_CODE_ARRAY:
2283 resolved_type = resolve_dynamic_array (type, addr_stack);
2284 break;
2285
2286 case TYPE_CODE_RANGE:
2287 resolved_type = resolve_dynamic_range (type, addr_stack);
2288 break;
2289
2290 case TYPE_CODE_UNION:
2291 resolved_type = resolve_dynamic_union (type, addr_stack);
2292 break;
2293
2294 case TYPE_CODE_STRUCT:
2295 resolved_type = resolve_dynamic_struct (type, addr_stack);
2296 break;
2297 }
2298 }
2299
2300 /* Resolve data_location attribute. */
2301 prop = TYPE_DATA_LOCATION (resolved_type);
2302 if (prop != NULL
2303 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2304 {
2305 TYPE_DYN_PROP_ADDR (prop) = value;
2306 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2307 }
2308
2309 return resolved_type;
2310 }
2311
2312 /* See gdbtypes.h */
2313
2314 struct type *
2315 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2316 CORE_ADDR addr)
2317 {
2318 struct property_addr_info pinfo
2319 = {check_typedef (type), valaddr, addr, NULL};
2320
2321 return resolve_dynamic_type_internal (type, &pinfo, 1);
2322 }
2323
2324 /* See gdbtypes.h */
2325
2326 struct dynamic_prop *
2327 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2328 {
2329 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2330
2331 while (node != NULL)
2332 {
2333 if (node->prop_kind == prop_kind)
2334 return &node->prop;
2335 node = node->next;
2336 }
2337 return NULL;
2338 }
2339
2340 /* See gdbtypes.h */
2341
2342 void
2343 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2344 struct type *type)
2345 {
2346 struct dynamic_prop_list *temp;
2347
2348 gdb_assert (TYPE_OBJFILE_OWNED (type));
2349
2350 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2351 struct dynamic_prop_list);
2352 temp->prop_kind = prop_kind;
2353 temp->prop = prop;
2354 temp->next = TYPE_DYN_PROP_LIST (type);
2355
2356 TYPE_DYN_PROP_LIST (type) = temp;
2357 }
2358
2359 /* Remove dynamic property from TYPE in case it exists. */
2360
2361 void
2362 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2363 struct type *type)
2364 {
2365 struct dynamic_prop_list *prev_node, *curr_node;
2366
2367 curr_node = TYPE_DYN_PROP_LIST (type);
2368 prev_node = NULL;
2369
2370 while (NULL != curr_node)
2371 {
2372 if (curr_node->prop_kind == prop_kind)
2373 {
2374 /* Update the linked list but don't free anything.
2375 The property was allocated on objstack and it is not known
2376 if we are on top of it. Nevertheless, everything is released
2377 when the complete objstack is freed. */
2378 if (NULL == prev_node)
2379 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2380 else
2381 prev_node->next = curr_node->next;
2382
2383 return;
2384 }
2385
2386 prev_node = curr_node;
2387 curr_node = curr_node->next;
2388 }
2389 }
2390
2391 /* Find the real type of TYPE. This function returns the real type,
2392 after removing all layers of typedefs, and completing opaque or stub
2393 types. Completion changes the TYPE argument, but stripping of
2394 typedefs does not.
2395
2396 Instance flags (e.g. const/volatile) are preserved as typedefs are
2397 stripped. If necessary a new qualified form of the underlying type
2398 is created.
2399
2400 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2401 not been computed and we're either in the middle of reading symbols, or
2402 there was no name for the typedef in the debug info.
2403
2404 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2405 QUITs in the symbol reading code can also throw.
2406 Thus this function can throw an exception.
2407
2408 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2409 the target type.
2410
2411 If this is a stubbed struct (i.e. declared as struct foo *), see if
2412 we can find a full definition in some other file. If so, copy this
2413 definition, so we can use it in future. There used to be a comment
2414 (but not any code) that if we don't find a full definition, we'd
2415 set a flag so we don't spend time in the future checking the same
2416 type. That would be a mistake, though--we might load in more
2417 symbols which contain a full definition for the type. */
2418
2419 struct type *
2420 check_typedef (struct type *type)
2421 {
2422 struct type *orig_type = type;
2423 /* While we're removing typedefs, we don't want to lose qualifiers.
2424 E.g., const/volatile. */
2425 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2426
2427 gdb_assert (type);
2428
2429 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2430 {
2431 if (!TYPE_TARGET_TYPE (type))
2432 {
2433 const char *name;
2434 struct symbol *sym;
2435
2436 /* It is dangerous to call lookup_symbol if we are currently
2437 reading a symtab. Infinite recursion is one danger. */
2438 if (currently_reading_symtab)
2439 return make_qualified_type (type, instance_flags, NULL);
2440
2441 name = TYPE_NAME (type);
2442 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2443 VAR_DOMAIN as appropriate? */
2444 if (name == NULL)
2445 {
2446 stub_noname_complaint ();
2447 return make_qualified_type (type, instance_flags, NULL);
2448 }
2449 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2450 if (sym)
2451 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2452 else /* TYPE_CODE_UNDEF */
2453 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2454 }
2455 type = TYPE_TARGET_TYPE (type);
2456
2457 /* Preserve the instance flags as we traverse down the typedef chain.
2458
2459 Handling address spaces/classes is nasty, what do we do if there's a
2460 conflict?
2461 E.g., what if an outer typedef marks the type as class_1 and an inner
2462 typedef marks the type as class_2?
2463 This is the wrong place to do such error checking. We leave it to
2464 the code that created the typedef in the first place to flag the
2465 error. We just pick the outer address space (akin to letting the
2466 outer cast in a chain of casting win), instead of assuming
2467 "it can't happen". */
2468 {
2469 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2470 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2471 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2472 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2473
2474 /* Treat code vs data spaces and address classes separately. */
2475 if ((instance_flags & ALL_SPACES) != 0)
2476 new_instance_flags &= ~ALL_SPACES;
2477 if ((instance_flags & ALL_CLASSES) != 0)
2478 new_instance_flags &= ~ALL_CLASSES;
2479
2480 instance_flags |= new_instance_flags;
2481 }
2482 }
2483
2484 /* If this is a struct/class/union with no fields, then check
2485 whether a full definition exists somewhere else. This is for
2486 systems where a type definition with no fields is issued for such
2487 types, instead of identifying them as stub types in the first
2488 place. */
2489
2490 if (TYPE_IS_OPAQUE (type)
2491 && opaque_type_resolution
2492 && !currently_reading_symtab)
2493 {
2494 const char *name = TYPE_NAME (type);
2495 struct type *newtype;
2496
2497 if (name == NULL)
2498 {
2499 stub_noname_complaint ();
2500 return make_qualified_type (type, instance_flags, NULL);
2501 }
2502 newtype = lookup_transparent_type (name);
2503
2504 if (newtype)
2505 {
2506 /* If the resolved type and the stub are in the same
2507 objfile, then replace the stub type with the real deal.
2508 But if they're in separate objfiles, leave the stub
2509 alone; we'll just look up the transparent type every time
2510 we call check_typedef. We can't create pointers between
2511 types allocated to different objfiles, since they may
2512 have different lifetimes. Trying to copy NEWTYPE over to
2513 TYPE's objfile is pointless, too, since you'll have to
2514 move over any other types NEWTYPE refers to, which could
2515 be an unbounded amount of stuff. */
2516 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2517 type = make_qualified_type (newtype,
2518 TYPE_INSTANCE_FLAGS (type),
2519 type);
2520 else
2521 type = newtype;
2522 }
2523 }
2524 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2525 types. */
2526 else if (TYPE_STUB (type) && !currently_reading_symtab)
2527 {
2528 const char *name = TYPE_NAME (type);
2529 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2530 as appropriate? */
2531 struct symbol *sym;
2532
2533 if (name == NULL)
2534 {
2535 stub_noname_complaint ();
2536 return make_qualified_type (type, instance_flags, NULL);
2537 }
2538 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2539 if (sym)
2540 {
2541 /* Same as above for opaque types, we can replace the stub
2542 with the complete type only if they are in the same
2543 objfile. */
2544 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2545 type = make_qualified_type (SYMBOL_TYPE (sym),
2546 TYPE_INSTANCE_FLAGS (type),
2547 type);
2548 else
2549 type = SYMBOL_TYPE (sym);
2550 }
2551 }
2552
2553 if (TYPE_TARGET_STUB (type))
2554 {
2555 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2556
2557 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2558 {
2559 /* Nothing we can do. */
2560 }
2561 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2562 {
2563 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2564 TYPE_TARGET_STUB (type) = 0;
2565 }
2566 }
2567
2568 type = make_qualified_type (type, instance_flags, NULL);
2569
2570 /* Cache TYPE_LENGTH for future use. */
2571 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2572
2573 return type;
2574 }
2575
2576 /* Parse a type expression in the string [P..P+LENGTH). If an error
2577 occurs, silently return a void type. */
2578
2579 static struct type *
2580 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2581 {
2582 struct ui_file *saved_gdb_stderr;
2583 struct type *type = NULL; /* Initialize to keep gcc happy. */
2584
2585 /* Suppress error messages. */
2586 saved_gdb_stderr = gdb_stderr;
2587 gdb_stderr = &null_stream;
2588
2589 /* Call parse_and_eval_type() without fear of longjmp()s. */
2590 TRY
2591 {
2592 type = parse_and_eval_type (p, length);
2593 }
2594 CATCH (except, RETURN_MASK_ERROR)
2595 {
2596 type = builtin_type (gdbarch)->builtin_void;
2597 }
2598 END_CATCH
2599
2600 /* Stop suppressing error messages. */
2601 gdb_stderr = saved_gdb_stderr;
2602
2603 return type;
2604 }
2605
2606 /* Ugly hack to convert method stubs into method types.
2607
2608 He ain't kiddin'. This demangles the name of the method into a
2609 string including argument types, parses out each argument type,
2610 generates a string casting a zero to that type, evaluates the
2611 string, and stuffs the resulting type into an argtype vector!!!
2612 Then it knows the type of the whole function (including argument
2613 types for overloading), which info used to be in the stab's but was
2614 removed to hack back the space required for them. */
2615
2616 static void
2617 check_stub_method (struct type *type, int method_id, int signature_id)
2618 {
2619 struct gdbarch *gdbarch = get_type_arch (type);
2620 struct fn_field *f;
2621 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2622 char *demangled_name = gdb_demangle (mangled_name,
2623 DMGL_PARAMS | DMGL_ANSI);
2624 char *argtypetext, *p;
2625 int depth = 0, argcount = 1;
2626 struct field *argtypes;
2627 struct type *mtype;
2628
2629 /* Make sure we got back a function string that we can use. */
2630 if (demangled_name)
2631 p = strchr (demangled_name, '(');
2632 else
2633 p = NULL;
2634
2635 if (demangled_name == NULL || p == NULL)
2636 error (_("Internal: Cannot demangle mangled name `%s'."),
2637 mangled_name);
2638
2639 /* Now, read in the parameters that define this type. */
2640 p += 1;
2641 argtypetext = p;
2642 while (*p)
2643 {
2644 if (*p == '(' || *p == '<')
2645 {
2646 depth += 1;
2647 }
2648 else if (*p == ')' || *p == '>')
2649 {
2650 depth -= 1;
2651 }
2652 else if (*p == ',' && depth == 0)
2653 {
2654 argcount += 1;
2655 }
2656
2657 p += 1;
2658 }
2659
2660 /* If we read one argument and it was ``void'', don't count it. */
2661 if (startswith (argtypetext, "(void)"))
2662 argcount -= 1;
2663
2664 /* We need one extra slot, for the THIS pointer. */
2665
2666 argtypes = (struct field *)
2667 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2668 p = argtypetext;
2669
2670 /* Add THIS pointer for non-static methods. */
2671 f = TYPE_FN_FIELDLIST1 (type, method_id);
2672 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2673 argcount = 0;
2674 else
2675 {
2676 argtypes[0].type = lookup_pointer_type (type);
2677 argcount = 1;
2678 }
2679
2680 if (*p != ')') /* () means no args, skip while. */
2681 {
2682 depth = 0;
2683 while (*p)
2684 {
2685 if (depth <= 0 && (*p == ',' || *p == ')'))
2686 {
2687 /* Avoid parsing of ellipsis, they will be handled below.
2688 Also avoid ``void'' as above. */
2689 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2690 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2691 {
2692 argtypes[argcount].type =
2693 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2694 argcount += 1;
2695 }
2696 argtypetext = p + 1;
2697 }
2698
2699 if (*p == '(' || *p == '<')
2700 {
2701 depth += 1;
2702 }
2703 else if (*p == ')' || *p == '>')
2704 {
2705 depth -= 1;
2706 }
2707
2708 p += 1;
2709 }
2710 }
2711
2712 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2713
2714 /* Now update the old "stub" type into a real type. */
2715 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2716 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2717 We want a method (TYPE_CODE_METHOD). */
2718 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2719 argtypes, argcount, p[-2] == '.');
2720 TYPE_STUB (mtype) = 0;
2721 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2722
2723 xfree (demangled_name);
2724 }
2725
2726 /* This is the external interface to check_stub_method, above. This
2727 function unstubs all of the signatures for TYPE's METHOD_ID method
2728 name. After calling this function TYPE_FN_FIELD_STUB will be
2729 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2730 correct.
2731
2732 This function unfortunately can not die until stabs do. */
2733
2734 void
2735 check_stub_method_group (struct type *type, int method_id)
2736 {
2737 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2738 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2739
2740 for (int j = 0; j < len; j++)
2741 {
2742 if (TYPE_FN_FIELD_STUB (f, j))
2743 check_stub_method (type, method_id, j);
2744 }
2745 }
2746
2747 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2748 const struct cplus_struct_type cplus_struct_default = { };
2749
2750 void
2751 allocate_cplus_struct_type (struct type *type)
2752 {
2753 if (HAVE_CPLUS_STRUCT (type))
2754 /* Structure was already allocated. Nothing more to do. */
2755 return;
2756
2757 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2758 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2759 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2760 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2761 set_type_vptr_fieldno (type, -1);
2762 }
2763
2764 const struct gnat_aux_type gnat_aux_default =
2765 { NULL };
2766
2767 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2768 and allocate the associated gnat-specific data. The gnat-specific
2769 data is also initialized to gnat_aux_default. */
2770
2771 void
2772 allocate_gnat_aux_type (struct type *type)
2773 {
2774 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2775 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2776 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2777 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2778 }
2779
2780 /* Helper function to initialize a newly allocated type. Set type code
2781 to CODE and initialize the type-specific fields accordingly. */
2782
2783 static void
2784 set_type_code (struct type *type, enum type_code code)
2785 {
2786 TYPE_CODE (type) = code;
2787
2788 switch (code)
2789 {
2790 case TYPE_CODE_STRUCT:
2791 case TYPE_CODE_UNION:
2792 case TYPE_CODE_NAMESPACE:
2793 INIT_CPLUS_SPECIFIC (type);
2794 break;
2795 case TYPE_CODE_FLT:
2796 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2797 break;
2798 case TYPE_CODE_FUNC:
2799 INIT_FUNC_SPECIFIC (type);
2800 break;
2801 }
2802 }
2803
2804 /* Helper function to verify floating-point format and size.
2805 BIT is the type size in bits; if BIT equals -1, the size is
2806 determined by the floatformat. Returns size to be used. */
2807
2808 static int
2809 verify_floatformat (int bit, const struct floatformat *floatformat)
2810 {
2811 gdb_assert (floatformat != NULL);
2812
2813 if (bit == -1)
2814 bit = floatformat->totalsize;
2815
2816 gdb_assert (bit >= 0);
2817 gdb_assert (bit >= floatformat->totalsize);
2818
2819 return bit;
2820 }
2821
2822 /* Return the floating-point format for a floating-point variable of
2823 type TYPE. */
2824
2825 const struct floatformat *
2826 floatformat_from_type (const struct type *type)
2827 {
2828 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2829 gdb_assert (TYPE_FLOATFORMAT (type));
2830 return TYPE_FLOATFORMAT (type);
2831 }
2832
2833 /* Helper function to initialize the standard scalar types.
2834
2835 If NAME is non-NULL, then it is used to initialize the type name.
2836 Note that NAME is not copied; it is required to have a lifetime at
2837 least as long as OBJFILE. */
2838
2839 struct type *
2840 init_type (struct objfile *objfile, enum type_code code, int bit,
2841 const char *name)
2842 {
2843 struct type *type;
2844
2845 type = alloc_type (objfile);
2846 set_type_code (type, code);
2847 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2848 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2849 TYPE_NAME (type) = name;
2850
2851 return type;
2852 }
2853
2854 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2855 to use with variables that have no debug info. NAME is the type
2856 name. */
2857
2858 static struct type *
2859 init_nodebug_var_type (struct objfile *objfile, const char *name)
2860 {
2861 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2862 }
2863
2864 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2865 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2866 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2867
2868 struct type *
2869 init_integer_type (struct objfile *objfile,
2870 int bit, int unsigned_p, const char *name)
2871 {
2872 struct type *t;
2873
2874 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2875 if (unsigned_p)
2876 TYPE_UNSIGNED (t) = 1;
2877
2878 return t;
2879 }
2880
2881 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885 struct type *
2886 init_character_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888 {
2889 struct type *t;
2890
2891 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896 }
2897
2898 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2899 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2900 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2901
2902 struct type *
2903 init_boolean_type (struct objfile *objfile,
2904 int bit, int unsigned_p, const char *name)
2905 {
2906 struct type *t;
2907
2908 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2909 if (unsigned_p)
2910 TYPE_UNSIGNED (t) = 1;
2911
2912 return t;
2913 }
2914
2915 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2916 BIT is the type size in bits; if BIT equals -1, the size is
2917 determined by the floatformat. NAME is the type name. Set the
2918 TYPE_FLOATFORMAT from FLOATFORMATS. */
2919
2920 struct type *
2921 init_float_type (struct objfile *objfile,
2922 int bit, const char *name,
2923 const struct floatformat **floatformats)
2924 {
2925 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2926 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2927 struct type *t;
2928
2929 bit = verify_floatformat (bit, fmt);
2930 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2931 TYPE_FLOATFORMAT (t) = fmt;
2932
2933 return t;
2934 }
2935
2936 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2937 BIT is the type size in bits. NAME is the type name. */
2938
2939 struct type *
2940 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2941 {
2942 struct type *t;
2943
2944 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2945 return t;
2946 }
2947
2948 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2949 NAME is the type name. TARGET_TYPE is the component float type. */
2950
2951 struct type *
2952 init_complex_type (struct objfile *objfile,
2953 const char *name, struct type *target_type)
2954 {
2955 struct type *t;
2956
2957 t = init_type (objfile, TYPE_CODE_COMPLEX,
2958 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2959 TYPE_TARGET_TYPE (t) = target_type;
2960 return t;
2961 }
2962
2963 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2964 BIT is the pointer type size in bits. NAME is the type name.
2965 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2966 TYPE_UNSIGNED flag. */
2967
2968 struct type *
2969 init_pointer_type (struct objfile *objfile,
2970 int bit, const char *name, struct type *target_type)
2971 {
2972 struct type *t;
2973
2974 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2975 TYPE_TARGET_TYPE (t) = target_type;
2976 TYPE_UNSIGNED (t) = 1;
2977 return t;
2978 }
2979
2980 /* See gdbtypes.h. */
2981
2982 unsigned
2983 type_raw_align (struct type *type)
2984 {
2985 if (type->align_log2 != 0)
2986 return 1 << (type->align_log2 - 1);
2987 return 0;
2988 }
2989
2990 /* See gdbtypes.h. */
2991
2992 unsigned
2993 type_align (struct type *type)
2994 {
2995 /* Check alignment provided in the debug information. */
2996 unsigned raw_align = type_raw_align (type);
2997 if (raw_align != 0)
2998 return raw_align;
2999
3000 /* Allow the architecture to provide an alignment. */
3001 struct gdbarch *arch = get_type_arch (type);
3002 ULONGEST align = gdbarch_type_align (arch, type);
3003 if (align != 0)
3004 return align;
3005
3006 switch (TYPE_CODE (type))
3007 {
3008 case TYPE_CODE_PTR:
3009 case TYPE_CODE_FUNC:
3010 case TYPE_CODE_FLAGS:
3011 case TYPE_CODE_INT:
3012 case TYPE_CODE_RANGE:
3013 case TYPE_CODE_FLT:
3014 case TYPE_CODE_ENUM:
3015 case TYPE_CODE_REF:
3016 case TYPE_CODE_RVALUE_REF:
3017 case TYPE_CODE_CHAR:
3018 case TYPE_CODE_BOOL:
3019 case TYPE_CODE_DECFLOAT:
3020 case TYPE_CODE_METHODPTR:
3021 case TYPE_CODE_MEMBERPTR:
3022 align = type_length_units (check_typedef (type));
3023 break;
3024
3025 case TYPE_CODE_ARRAY:
3026 case TYPE_CODE_COMPLEX:
3027 case TYPE_CODE_TYPEDEF:
3028 align = type_align (TYPE_TARGET_TYPE (type));
3029 break;
3030
3031 case TYPE_CODE_STRUCT:
3032 case TYPE_CODE_UNION:
3033 {
3034 if (TYPE_NFIELDS (type) == 0)
3035 {
3036 /* An empty struct has alignment 1. */
3037 align = 1;
3038 break;
3039 }
3040 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3041 {
3042 if (!field_is_static (&TYPE_FIELD (type, i)))
3043 {
3044 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3045 if (f_align == 0)
3046 {
3047 /* Don't pretend we know something we don't. */
3048 align = 0;
3049 break;
3050 }
3051 if (f_align > align)
3052 align = f_align;
3053 }
3054 }
3055 }
3056 break;
3057
3058 case TYPE_CODE_SET:
3059 case TYPE_CODE_STRING:
3060 /* Not sure what to do here, and these can't appear in C or C++
3061 anyway. */
3062 break;
3063
3064 case TYPE_CODE_VOID:
3065 align = 1;
3066 break;
3067
3068 case TYPE_CODE_ERROR:
3069 case TYPE_CODE_METHOD:
3070 default:
3071 break;
3072 }
3073
3074 if ((align & (align - 1)) != 0)
3075 {
3076 /* Not a power of 2, so pass. */
3077 align = 0;
3078 }
3079
3080 return align;
3081 }
3082
3083 /* See gdbtypes.h. */
3084
3085 bool
3086 set_type_align (struct type *type, ULONGEST align)
3087 {
3088 /* Must be a power of 2. Zero is ok. */
3089 gdb_assert ((align & (align - 1)) == 0);
3090
3091 unsigned result = 0;
3092 while (align != 0)
3093 {
3094 ++result;
3095 align >>= 1;
3096 }
3097
3098 if (result >= (1 << TYPE_ALIGN_BITS))
3099 return false;
3100
3101 type->align_log2 = result;
3102 return true;
3103 }
3104
3105 \f
3106 /* Queries on types. */
3107
3108 int
3109 can_dereference (struct type *t)
3110 {
3111 /* FIXME: Should we return true for references as well as
3112 pointers? */
3113 t = check_typedef (t);
3114 return
3115 (t != NULL
3116 && TYPE_CODE (t) == TYPE_CODE_PTR
3117 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3118 }
3119
3120 int
3121 is_integral_type (struct type *t)
3122 {
3123 t = check_typedef (t);
3124 return
3125 ((t != NULL)
3126 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3127 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3128 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3129 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3130 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3131 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3132 }
3133
3134 int
3135 is_floating_type (struct type *t)
3136 {
3137 t = check_typedef (t);
3138 return
3139 ((t != NULL)
3140 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3141 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3142 }
3143
3144 /* Return true if TYPE is scalar. */
3145
3146 int
3147 is_scalar_type (struct type *type)
3148 {
3149 type = check_typedef (type);
3150
3151 switch (TYPE_CODE (type))
3152 {
3153 case TYPE_CODE_ARRAY:
3154 case TYPE_CODE_STRUCT:
3155 case TYPE_CODE_UNION:
3156 case TYPE_CODE_SET:
3157 case TYPE_CODE_STRING:
3158 return 0;
3159 default:
3160 return 1;
3161 }
3162 }
3163
3164 /* Return true if T is scalar, or a composite type which in practice has
3165 the memory layout of a scalar type. E.g., an array or struct with only
3166 one scalar element inside it, or a union with only scalar elements. */
3167
3168 int
3169 is_scalar_type_recursive (struct type *t)
3170 {
3171 t = check_typedef (t);
3172
3173 if (is_scalar_type (t))
3174 return 1;
3175 /* Are we dealing with an array or string of known dimensions? */
3176 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3177 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3178 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3179 {
3180 LONGEST low_bound, high_bound;
3181 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3182
3183 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3184
3185 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3186 }
3187 /* Are we dealing with a struct with one element? */
3188 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3189 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3190 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3191 {
3192 int i, n = TYPE_NFIELDS (t);
3193
3194 /* If all elements of the union are scalar, then the union is scalar. */
3195 for (i = 0; i < n; i++)
3196 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3197 return 0;
3198
3199 return 1;
3200 }
3201
3202 return 0;
3203 }
3204
3205 /* Return true is T is a class or a union. False otherwise. */
3206
3207 int
3208 class_or_union_p (const struct type *t)
3209 {
3210 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3211 || TYPE_CODE (t) == TYPE_CODE_UNION);
3212 }
3213
3214 /* A helper function which returns true if types A and B represent the
3215 "same" class type. This is true if the types have the same main
3216 type, or the same name. */
3217
3218 int
3219 class_types_same_p (const struct type *a, const struct type *b)
3220 {
3221 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3222 || (TYPE_NAME (a) && TYPE_NAME (b)
3223 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3224 }
3225
3226 /* If BASE is an ancestor of DCLASS return the distance between them.
3227 otherwise return -1;
3228 eg:
3229
3230 class A {};
3231 class B: public A {};
3232 class C: public B {};
3233 class D: C {};
3234
3235 distance_to_ancestor (A, A, 0) = 0
3236 distance_to_ancestor (A, B, 0) = 1
3237 distance_to_ancestor (A, C, 0) = 2
3238 distance_to_ancestor (A, D, 0) = 3
3239
3240 If PUBLIC is 1 then only public ancestors are considered,
3241 and the function returns the distance only if BASE is a public ancestor
3242 of DCLASS.
3243 Eg:
3244
3245 distance_to_ancestor (A, D, 1) = -1. */
3246
3247 static int
3248 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3249 {
3250 int i;
3251 int d;
3252
3253 base = check_typedef (base);
3254 dclass = check_typedef (dclass);
3255
3256 if (class_types_same_p (base, dclass))
3257 return 0;
3258
3259 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3260 {
3261 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3262 continue;
3263
3264 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3265 if (d >= 0)
3266 return 1 + d;
3267 }
3268
3269 return -1;
3270 }
3271
3272 /* Check whether BASE is an ancestor or base class or DCLASS
3273 Return 1 if so, and 0 if not.
3274 Note: If BASE and DCLASS are of the same type, this function
3275 will return 1. So for some class A, is_ancestor (A, A) will
3276 return 1. */
3277
3278 int
3279 is_ancestor (struct type *base, struct type *dclass)
3280 {
3281 return distance_to_ancestor (base, dclass, 0) >= 0;
3282 }
3283
3284 /* Like is_ancestor, but only returns true when BASE is a public
3285 ancestor of DCLASS. */
3286
3287 int
3288 is_public_ancestor (struct type *base, struct type *dclass)
3289 {
3290 return distance_to_ancestor (base, dclass, 1) >= 0;
3291 }
3292
3293 /* A helper function for is_unique_ancestor. */
3294
3295 static int
3296 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3297 int *offset,
3298 const gdb_byte *valaddr, int embedded_offset,
3299 CORE_ADDR address, struct value *val)
3300 {
3301 int i, count = 0;
3302
3303 base = check_typedef (base);
3304 dclass = check_typedef (dclass);
3305
3306 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3307 {
3308 struct type *iter;
3309 int this_offset;
3310
3311 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3312
3313 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3314 address, val);
3315
3316 if (class_types_same_p (base, iter))
3317 {
3318 /* If this is the first subclass, set *OFFSET and set count
3319 to 1. Otherwise, if this is at the same offset as
3320 previous instances, do nothing. Otherwise, increment
3321 count. */
3322 if (*offset == -1)
3323 {
3324 *offset = this_offset;
3325 count = 1;
3326 }
3327 else if (this_offset == *offset)
3328 {
3329 /* Nothing. */
3330 }
3331 else
3332 ++count;
3333 }
3334 else
3335 count += is_unique_ancestor_worker (base, iter, offset,
3336 valaddr,
3337 embedded_offset + this_offset,
3338 address, val);
3339 }
3340
3341 return count;
3342 }
3343
3344 /* Like is_ancestor, but only returns true if BASE is a unique base
3345 class of the type of VAL. */
3346
3347 int
3348 is_unique_ancestor (struct type *base, struct value *val)
3349 {
3350 int offset = -1;
3351
3352 return is_unique_ancestor_worker (base, value_type (val), &offset,
3353 value_contents_for_printing (val),
3354 value_embedded_offset (val),
3355 value_address (val), val) == 1;
3356 }
3357
3358 \f
3359 /* Overload resolution. */
3360
3361 /* Return the sum of the rank of A with the rank of B. */
3362
3363 struct rank
3364 sum_ranks (struct rank a, struct rank b)
3365 {
3366 struct rank c;
3367 c.rank = a.rank + b.rank;
3368 c.subrank = a.subrank + b.subrank;
3369 return c;
3370 }
3371
3372 /* Compare rank A and B and return:
3373 0 if a = b
3374 1 if a is better than b
3375 -1 if b is better than a. */
3376
3377 int
3378 compare_ranks (struct rank a, struct rank b)
3379 {
3380 if (a.rank == b.rank)
3381 {
3382 if (a.subrank == b.subrank)
3383 return 0;
3384 if (a.subrank < b.subrank)
3385 return 1;
3386 if (a.subrank > b.subrank)
3387 return -1;
3388 }
3389
3390 if (a.rank < b.rank)
3391 return 1;
3392
3393 /* a.rank > b.rank */
3394 return -1;
3395 }
3396
3397 /* Functions for overload resolution begin here. */
3398
3399 /* Compare two badness vectors A and B and return the result.
3400 0 => A and B are identical
3401 1 => A and B are incomparable
3402 2 => A is better than B
3403 3 => A is worse than B */
3404
3405 int
3406 compare_badness (const badness_vector &a, const badness_vector &b)
3407 {
3408 int i;
3409 int tmp;
3410 short found_pos = 0; /* any positives in c? */
3411 short found_neg = 0; /* any negatives in c? */
3412
3413 /* differing sizes => incomparable */
3414 if (a.size () != b.size ())
3415 return 1;
3416
3417 /* Subtract b from a */
3418 for (i = 0; i < a.size (); i++)
3419 {
3420 tmp = compare_ranks (b[i], a[i]);
3421 if (tmp > 0)
3422 found_pos = 1;
3423 else if (tmp < 0)
3424 found_neg = 1;
3425 }
3426
3427 if (found_pos)
3428 {
3429 if (found_neg)
3430 return 1; /* incomparable */
3431 else
3432 return 3; /* A > B */
3433 }
3434 else
3435 /* no positives */
3436 {
3437 if (found_neg)
3438 return 2; /* A < B */
3439 else
3440 return 0; /* A == B */
3441 }
3442 }
3443
3444 /* Rank a function by comparing its parameter types (PARMS), to the
3445 types of an argument list (ARGS). Return the badness vector. This
3446 has ARGS.size() + 1 entries. */
3447
3448 badness_vector
3449 rank_function (gdb::array_view<type *> parms,
3450 gdb::array_view<value *> args)
3451 {
3452 /* add 1 for the length-match rank. */
3453 badness_vector bv;
3454 bv.reserve (1 + args.size ());
3455
3456 /* First compare the lengths of the supplied lists.
3457 If there is a mismatch, set it to a high value. */
3458
3459 /* pai/1997-06-03 FIXME: when we have debug info about default
3460 arguments and ellipsis parameter lists, we should consider those
3461 and rank the length-match more finely. */
3462
3463 bv.push_back ((args.size () != parms.size ())
3464 ? LENGTH_MISMATCH_BADNESS
3465 : EXACT_MATCH_BADNESS);
3466
3467 /* Now rank all the parameters of the candidate function. */
3468 size_t min_len = std::min (parms.size (), args.size ());
3469
3470 for (size_t i = 0; i < min_len; i++)
3471 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3472 args[i]));
3473
3474 /* If more arguments than parameters, add dummy entries. */
3475 for (size_t i = min_len; i < args.size (); i++)
3476 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3477
3478 return bv;
3479 }
3480
3481 /* Compare the names of two integer types, assuming that any sign
3482 qualifiers have been checked already. We do it this way because
3483 there may be an "int" in the name of one of the types. */
3484
3485 static int
3486 integer_types_same_name_p (const char *first, const char *second)
3487 {
3488 int first_p, second_p;
3489
3490 /* If both are shorts, return 1; if neither is a short, keep
3491 checking. */
3492 first_p = (strstr (first, "short") != NULL);
3493 second_p = (strstr (second, "short") != NULL);
3494 if (first_p && second_p)
3495 return 1;
3496 if (first_p || second_p)
3497 return 0;
3498
3499 /* Likewise for long. */
3500 first_p = (strstr (first, "long") != NULL);
3501 second_p = (strstr (second, "long") != NULL);
3502 if (first_p && second_p)
3503 return 1;
3504 if (first_p || second_p)
3505 return 0;
3506
3507 /* Likewise for char. */
3508 first_p = (strstr (first, "char") != NULL);
3509 second_p = (strstr (second, "char") != NULL);
3510 if (first_p && second_p)
3511 return 1;
3512 if (first_p || second_p)
3513 return 0;
3514
3515 /* They must both be ints. */
3516 return 1;
3517 }
3518
3519 /* Compares type A to type B. Returns true if they represent the same
3520 type, false otherwise. */
3521
3522 bool
3523 types_equal (struct type *a, struct type *b)
3524 {
3525 /* Identical type pointers. */
3526 /* However, this still doesn't catch all cases of same type for b
3527 and a. The reason is that builtin types are different from
3528 the same ones constructed from the object. */
3529 if (a == b)
3530 return true;
3531
3532 /* Resolve typedefs */
3533 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3534 a = check_typedef (a);
3535 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3536 b = check_typedef (b);
3537
3538 /* If after resolving typedefs a and b are not of the same type
3539 code then they are not equal. */
3540 if (TYPE_CODE (a) != TYPE_CODE (b))
3541 return false;
3542
3543 /* If a and b are both pointers types or both reference types then
3544 they are equal of the same type iff the objects they refer to are
3545 of the same type. */
3546 if (TYPE_CODE (a) == TYPE_CODE_PTR
3547 || TYPE_CODE (a) == TYPE_CODE_REF)
3548 return types_equal (TYPE_TARGET_TYPE (a),
3549 TYPE_TARGET_TYPE (b));
3550
3551 /* Well, damnit, if the names are exactly the same, I'll say they
3552 are exactly the same. This happens when we generate method
3553 stubs. The types won't point to the same address, but they
3554 really are the same. */
3555
3556 if (TYPE_NAME (a) && TYPE_NAME (b)
3557 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3558 return true;
3559
3560 /* Check if identical after resolving typedefs. */
3561 if (a == b)
3562 return true;
3563
3564 /* Two function types are equal if their argument and return types
3565 are equal. */
3566 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3567 {
3568 int i;
3569
3570 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3571 return false;
3572
3573 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3574 return false;
3575
3576 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3577 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3578 return false;
3579
3580 return true;
3581 }
3582
3583 return false;
3584 }
3585 \f
3586 /* Deep comparison of types. */
3587
3588 /* An entry in the type-equality bcache. */
3589
3590 struct type_equality_entry
3591 {
3592 type_equality_entry (struct type *t1, struct type *t2)
3593 : type1 (t1),
3594 type2 (t2)
3595 {
3596 }
3597
3598 struct type *type1, *type2;
3599 };
3600
3601 /* A helper function to compare two strings. Returns true if they are
3602 the same, false otherwise. Handles NULLs properly. */
3603
3604 static bool
3605 compare_maybe_null_strings (const char *s, const char *t)
3606 {
3607 if (s == NULL || t == NULL)
3608 return s == t;
3609 return strcmp (s, t) == 0;
3610 }
3611
3612 /* A helper function for check_types_worklist that checks two types for
3613 "deep" equality. Returns true if the types are considered the
3614 same, false otherwise. */
3615
3616 static bool
3617 check_types_equal (struct type *type1, struct type *type2,
3618 std::vector<type_equality_entry> *worklist)
3619 {
3620 type1 = check_typedef (type1);
3621 type2 = check_typedef (type2);
3622
3623 if (type1 == type2)
3624 return true;
3625
3626 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3627 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3628 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3629 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3630 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3631 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3632 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3633 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3634 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3635 return false;
3636
3637 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3638 return false;
3639 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3640 return false;
3641
3642 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3643 {
3644 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3645 return false;
3646 }
3647 else
3648 {
3649 int i;
3650
3651 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3652 {
3653 const struct field *field1 = &TYPE_FIELD (type1, i);
3654 const struct field *field2 = &TYPE_FIELD (type2, i);
3655
3656 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3657 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3658 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3659 return false;
3660 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3661 FIELD_NAME (*field2)))
3662 return false;
3663 switch (FIELD_LOC_KIND (*field1))
3664 {
3665 case FIELD_LOC_KIND_BITPOS:
3666 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3667 return false;
3668 break;
3669 case FIELD_LOC_KIND_ENUMVAL:
3670 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3671 return false;
3672 break;
3673 case FIELD_LOC_KIND_PHYSADDR:
3674 if (FIELD_STATIC_PHYSADDR (*field1)
3675 != FIELD_STATIC_PHYSADDR (*field2))
3676 return false;
3677 break;
3678 case FIELD_LOC_KIND_PHYSNAME:
3679 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3680 FIELD_STATIC_PHYSNAME (*field2)))
3681 return false;
3682 break;
3683 case FIELD_LOC_KIND_DWARF_BLOCK:
3684 {
3685 struct dwarf2_locexpr_baton *block1, *block2;
3686
3687 block1 = FIELD_DWARF_BLOCK (*field1);
3688 block2 = FIELD_DWARF_BLOCK (*field2);
3689 if (block1->per_cu != block2->per_cu
3690 || block1->size != block2->size
3691 || memcmp (block1->data, block2->data, block1->size) != 0)
3692 return false;
3693 }
3694 break;
3695 default:
3696 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3697 "%d by check_types_equal"),
3698 FIELD_LOC_KIND (*field1));
3699 }
3700
3701 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3702 }
3703 }
3704
3705 if (TYPE_TARGET_TYPE (type1) != NULL)
3706 {
3707 if (TYPE_TARGET_TYPE (type2) == NULL)
3708 return false;
3709
3710 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3711 TYPE_TARGET_TYPE (type2));
3712 }
3713 else if (TYPE_TARGET_TYPE (type2) != NULL)
3714 return false;
3715
3716 return true;
3717 }
3718
3719 /* Check types on a worklist for equality. Returns false if any pair
3720 is not equal, true if they are all considered equal. */
3721
3722 static bool
3723 check_types_worklist (std::vector<type_equality_entry> *worklist,
3724 struct bcache *cache)
3725 {
3726 while (!worklist->empty ())
3727 {
3728 int added;
3729
3730 struct type_equality_entry entry = std::move (worklist->back ());
3731 worklist->pop_back ();
3732
3733 /* If the type pair has already been visited, we know it is
3734 ok. */
3735 cache->insert (&entry, sizeof (entry), &added);
3736 if (!added)
3737 continue;
3738
3739 if (!check_types_equal (entry.type1, entry.type2, worklist))
3740 return false;
3741 }
3742
3743 return true;
3744 }
3745
3746 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3747 "deep comparison". Otherwise return false. */
3748
3749 bool
3750 types_deeply_equal (struct type *type1, struct type *type2)
3751 {
3752 std::vector<type_equality_entry> worklist;
3753
3754 gdb_assert (type1 != NULL && type2 != NULL);
3755
3756 /* Early exit for the simple case. */
3757 if (type1 == type2)
3758 return true;
3759
3760 struct bcache cache (nullptr, nullptr);
3761 worklist.emplace_back (type1, type2);
3762 return check_types_worklist (&worklist, &cache);
3763 }
3764
3765 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3766 Otherwise return one. */
3767
3768 int
3769 type_not_allocated (const struct type *type)
3770 {
3771 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3772
3773 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3774 && !TYPE_DYN_PROP_ADDR (prop));
3775 }
3776
3777 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3778 Otherwise return one. */
3779
3780 int
3781 type_not_associated (const struct type *type)
3782 {
3783 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3784
3785 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3786 && !TYPE_DYN_PROP_ADDR (prop));
3787 }
3788
3789 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3790
3791 static struct rank
3792 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3793 {
3794 struct rank rank = {0,0};
3795
3796 switch (TYPE_CODE (arg))
3797 {
3798 case TYPE_CODE_PTR:
3799
3800 /* Allowed pointer conversions are:
3801 (a) pointer to void-pointer conversion. */
3802 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3803 return VOID_PTR_CONVERSION_BADNESS;
3804
3805 /* (b) pointer to ancestor-pointer conversion. */
3806 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3807 TYPE_TARGET_TYPE (arg),
3808 0);
3809 if (rank.subrank >= 0)
3810 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3811
3812 return INCOMPATIBLE_TYPE_BADNESS;
3813 case TYPE_CODE_ARRAY:
3814 {
3815 struct type *t1 = TYPE_TARGET_TYPE (parm);
3816 struct type *t2 = TYPE_TARGET_TYPE (arg);
3817
3818 if (types_equal (t1, t2))
3819 {
3820 /* Make sure they are CV equal. */
3821 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3822 rank.subrank |= CV_CONVERSION_CONST;
3823 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3824 rank.subrank |= CV_CONVERSION_VOLATILE;
3825 if (rank.subrank != 0)
3826 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3827 return EXACT_MATCH_BADNESS;
3828 }
3829 return INCOMPATIBLE_TYPE_BADNESS;
3830 }
3831 case TYPE_CODE_FUNC:
3832 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3833 case TYPE_CODE_INT:
3834 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3835 {
3836 if (value_as_long (value) == 0)
3837 {
3838 /* Null pointer conversion: allow it to be cast to a pointer.
3839 [4.10.1 of C++ standard draft n3290] */
3840 return NULL_POINTER_CONVERSION_BADNESS;
3841 }
3842 else
3843 {
3844 /* If type checking is disabled, allow the conversion. */
3845 if (!strict_type_checking)
3846 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3847 }
3848 }
3849 /* fall through */
3850 case TYPE_CODE_ENUM:
3851 case TYPE_CODE_FLAGS:
3852 case TYPE_CODE_CHAR:
3853 case TYPE_CODE_RANGE:
3854 case TYPE_CODE_BOOL:
3855 default:
3856 return INCOMPATIBLE_TYPE_BADNESS;
3857 }
3858 }
3859
3860 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3861
3862 static struct rank
3863 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3864 {
3865 switch (TYPE_CODE (arg))
3866 {
3867 case TYPE_CODE_PTR:
3868 case TYPE_CODE_ARRAY:
3869 return rank_one_type (TYPE_TARGET_TYPE (parm),
3870 TYPE_TARGET_TYPE (arg), NULL);
3871 default:
3872 return INCOMPATIBLE_TYPE_BADNESS;
3873 }
3874 }
3875
3876 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3877
3878 static struct rank
3879 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3880 {
3881 switch (TYPE_CODE (arg))
3882 {
3883 case TYPE_CODE_PTR: /* funcptr -> func */
3884 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3885 default:
3886 return INCOMPATIBLE_TYPE_BADNESS;
3887 }
3888 }
3889
3890 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3891
3892 static struct rank
3893 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3894 {
3895 switch (TYPE_CODE (arg))
3896 {
3897 case TYPE_CODE_INT:
3898 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3899 {
3900 /* Deal with signed, unsigned, and plain chars and
3901 signed and unsigned ints. */
3902 if (TYPE_NOSIGN (parm))
3903 {
3904 /* This case only for character types. */
3905 if (TYPE_NOSIGN (arg))
3906 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3907 else /* signed/unsigned char -> plain char */
3908 return INTEGER_CONVERSION_BADNESS;
3909 }
3910 else if (TYPE_UNSIGNED (parm))
3911 {
3912 if (TYPE_UNSIGNED (arg))
3913 {
3914 /* unsigned int -> unsigned int, or
3915 unsigned long -> unsigned long */
3916 if (integer_types_same_name_p (TYPE_NAME (parm),
3917 TYPE_NAME (arg)))
3918 return EXACT_MATCH_BADNESS;
3919 else if (integer_types_same_name_p (TYPE_NAME (arg),
3920 "int")
3921 && integer_types_same_name_p (TYPE_NAME (parm),
3922 "long"))
3923 /* unsigned int -> unsigned long */
3924 return INTEGER_PROMOTION_BADNESS;
3925 else
3926 /* unsigned long -> unsigned int */
3927 return INTEGER_CONVERSION_BADNESS;
3928 }
3929 else
3930 {
3931 if (integer_types_same_name_p (TYPE_NAME (arg),
3932 "long")
3933 && integer_types_same_name_p (TYPE_NAME (parm),
3934 "int"))
3935 /* signed long -> unsigned int */
3936 return INTEGER_CONVERSION_BADNESS;
3937 else
3938 /* signed int/long -> unsigned int/long */
3939 return INTEGER_CONVERSION_BADNESS;
3940 }
3941 }
3942 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3943 {
3944 if (integer_types_same_name_p (TYPE_NAME (parm),
3945 TYPE_NAME (arg)))
3946 return EXACT_MATCH_BADNESS;
3947 else if (integer_types_same_name_p (TYPE_NAME (arg),
3948 "int")
3949 && integer_types_same_name_p (TYPE_NAME (parm),
3950 "long"))
3951 return INTEGER_PROMOTION_BADNESS;
3952 else
3953 return INTEGER_CONVERSION_BADNESS;
3954 }
3955 else
3956 return INTEGER_CONVERSION_BADNESS;
3957 }
3958 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3959 return INTEGER_PROMOTION_BADNESS;
3960 else
3961 return INTEGER_CONVERSION_BADNESS;
3962 case TYPE_CODE_ENUM:
3963 case TYPE_CODE_FLAGS:
3964 case TYPE_CODE_CHAR:
3965 case TYPE_CODE_RANGE:
3966 case TYPE_CODE_BOOL:
3967 if (TYPE_DECLARED_CLASS (arg))
3968 return INCOMPATIBLE_TYPE_BADNESS;
3969 return INTEGER_PROMOTION_BADNESS;
3970 case TYPE_CODE_FLT:
3971 return INT_FLOAT_CONVERSION_BADNESS;
3972 case TYPE_CODE_PTR:
3973 return NS_POINTER_CONVERSION_BADNESS;
3974 default:
3975 return INCOMPATIBLE_TYPE_BADNESS;
3976 }
3977 }
3978
3979 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3980
3981 static struct rank
3982 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3983 {
3984 switch (TYPE_CODE (arg))
3985 {
3986 case TYPE_CODE_INT:
3987 case TYPE_CODE_CHAR:
3988 case TYPE_CODE_RANGE:
3989 case TYPE_CODE_BOOL:
3990 case TYPE_CODE_ENUM:
3991 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3992 return INCOMPATIBLE_TYPE_BADNESS;
3993 return INTEGER_CONVERSION_BADNESS;
3994 case TYPE_CODE_FLT:
3995 return INT_FLOAT_CONVERSION_BADNESS;
3996 default:
3997 return INCOMPATIBLE_TYPE_BADNESS;
3998 }
3999 }
4000
4001 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4002
4003 static struct rank
4004 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4005 {
4006 switch (TYPE_CODE (arg))
4007 {
4008 case TYPE_CODE_RANGE:
4009 case TYPE_CODE_BOOL:
4010 case TYPE_CODE_ENUM:
4011 if (TYPE_DECLARED_CLASS (arg))
4012 return INCOMPATIBLE_TYPE_BADNESS;
4013 return INTEGER_CONVERSION_BADNESS;
4014 case TYPE_CODE_FLT:
4015 return INT_FLOAT_CONVERSION_BADNESS;
4016 case TYPE_CODE_INT:
4017 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4018 return INTEGER_CONVERSION_BADNESS;
4019 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4020 return INTEGER_PROMOTION_BADNESS;
4021 /* fall through */
4022 case TYPE_CODE_CHAR:
4023 /* Deal with signed, unsigned, and plain chars for C++ and
4024 with int cases falling through from previous case. */
4025 if (TYPE_NOSIGN (parm))
4026 {
4027 if (TYPE_NOSIGN (arg))
4028 return EXACT_MATCH_BADNESS;
4029 else
4030 return INTEGER_CONVERSION_BADNESS;
4031 }
4032 else if (TYPE_UNSIGNED (parm))
4033 {
4034 if (TYPE_UNSIGNED (arg))
4035 return EXACT_MATCH_BADNESS;
4036 else
4037 return INTEGER_PROMOTION_BADNESS;
4038 }
4039 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4040 return EXACT_MATCH_BADNESS;
4041 else
4042 return INTEGER_CONVERSION_BADNESS;
4043 default:
4044 return INCOMPATIBLE_TYPE_BADNESS;
4045 }
4046 }
4047
4048 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4049
4050 static struct rank
4051 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4052 {
4053 switch (TYPE_CODE (arg))
4054 {
4055 case TYPE_CODE_INT:
4056 case TYPE_CODE_CHAR:
4057 case TYPE_CODE_RANGE:
4058 case TYPE_CODE_BOOL:
4059 case TYPE_CODE_ENUM:
4060 return INTEGER_CONVERSION_BADNESS;
4061 case TYPE_CODE_FLT:
4062 return INT_FLOAT_CONVERSION_BADNESS;
4063 default:
4064 return INCOMPATIBLE_TYPE_BADNESS;
4065 }
4066 }
4067
4068 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4069
4070 static struct rank
4071 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4072 {
4073 switch (TYPE_CODE (arg))
4074 {
4075 /* n3290 draft, section 4.12.1 (conv.bool):
4076
4077 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4078 pointer to member type can be converted to a prvalue of type
4079 bool. A zero value, null pointer value, or null member pointer
4080 value is converted to false; any other value is converted to
4081 true. A prvalue of type std::nullptr_t can be converted to a
4082 prvalue of type bool; the resulting value is false." */
4083 case TYPE_CODE_INT:
4084 case TYPE_CODE_CHAR:
4085 case TYPE_CODE_ENUM:
4086 case TYPE_CODE_FLT:
4087 case TYPE_CODE_MEMBERPTR:
4088 case TYPE_CODE_PTR:
4089 return BOOL_CONVERSION_BADNESS;
4090 case TYPE_CODE_RANGE:
4091 return INCOMPATIBLE_TYPE_BADNESS;
4092 case TYPE_CODE_BOOL:
4093 return EXACT_MATCH_BADNESS;
4094 default:
4095 return INCOMPATIBLE_TYPE_BADNESS;
4096 }
4097 }
4098
4099 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4100
4101 static struct rank
4102 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4103 {
4104 switch (TYPE_CODE (arg))
4105 {
4106 case TYPE_CODE_FLT:
4107 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4108 return FLOAT_PROMOTION_BADNESS;
4109 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4110 return EXACT_MATCH_BADNESS;
4111 else
4112 return FLOAT_CONVERSION_BADNESS;
4113 case TYPE_CODE_INT:
4114 case TYPE_CODE_BOOL:
4115 case TYPE_CODE_ENUM:
4116 case TYPE_CODE_RANGE:
4117 case TYPE_CODE_CHAR:
4118 return INT_FLOAT_CONVERSION_BADNESS;
4119 default:
4120 return INCOMPATIBLE_TYPE_BADNESS;
4121 }
4122 }
4123
4124 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4125
4126 static struct rank
4127 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4128 {
4129 switch (TYPE_CODE (arg))
4130 { /* Strictly not needed for C++, but... */
4131 case TYPE_CODE_FLT:
4132 return FLOAT_PROMOTION_BADNESS;
4133 case TYPE_CODE_COMPLEX:
4134 return EXACT_MATCH_BADNESS;
4135 default:
4136 return INCOMPATIBLE_TYPE_BADNESS;
4137 }
4138 }
4139
4140 /* Compare one type (PARM) for compatibility with another (ARG).
4141 * PARM is intended to be the parameter type of a function; and
4142 * ARG is the supplied argument's type. This function tests if
4143 * the latter can be converted to the former.
4144 * VALUE is the argument's value or NULL if none (or called recursively)
4145 *
4146 * Return 0 if they are identical types;
4147 * Otherwise, return an integer which corresponds to how compatible
4148 * PARM is to ARG. The higher the return value, the worse the match.
4149 * Generally the "bad" conversions are all uniformly assigned a 100. */
4150
4151 struct rank
4152 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4153 {
4154 struct rank rank = {0,0};
4155
4156 /* Resolve typedefs */
4157 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4158 parm = check_typedef (parm);
4159 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4160 arg = check_typedef (arg);
4161
4162 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4163 {
4164 if (VALUE_LVAL (value) == not_lval)
4165 {
4166 /* Rvalues should preferably bind to rvalue references or const
4167 lvalue references. */
4168 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4169 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4170 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4171 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4172 else
4173 return INCOMPATIBLE_TYPE_BADNESS;
4174 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4175 }
4176 else
4177 {
4178 /* Lvalues should prefer lvalue overloads. */
4179 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4180 {
4181 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4182 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4183 }
4184 }
4185 }
4186
4187 if (types_equal (parm, arg))
4188 {
4189 struct type *t1 = parm;
4190 struct type *t2 = arg;
4191
4192 /* For pointers and references, compare target type. */
4193 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4194 {
4195 t1 = TYPE_TARGET_TYPE (parm);
4196 t2 = TYPE_TARGET_TYPE (arg);
4197 }
4198
4199 /* Make sure they are CV equal, too. */
4200 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4201 rank.subrank |= CV_CONVERSION_CONST;
4202 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4203 rank.subrank |= CV_CONVERSION_VOLATILE;
4204 if (rank.subrank != 0)
4205 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4206 return EXACT_MATCH_BADNESS;
4207 }
4208
4209 /* See through references, since we can almost make non-references
4210 references. */
4211
4212 if (TYPE_IS_REFERENCE (arg))
4213 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4214 REFERENCE_CONVERSION_BADNESS));
4215 if (TYPE_IS_REFERENCE (parm))
4216 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4217 REFERENCE_CONVERSION_BADNESS));
4218 if (overload_debug)
4219 /* Debugging only. */
4220 fprintf_filtered (gdb_stderr,
4221 "------ Arg is %s [%d], parm is %s [%d]\n",
4222 TYPE_NAME (arg), TYPE_CODE (arg),
4223 TYPE_NAME (parm), TYPE_CODE (parm));
4224
4225 /* x -> y means arg of type x being supplied for parameter of type y. */
4226
4227 switch (TYPE_CODE (parm))
4228 {
4229 case TYPE_CODE_PTR:
4230 return rank_one_type_parm_ptr (parm, arg, value);
4231 case TYPE_CODE_ARRAY:
4232 return rank_one_type_parm_array (parm, arg, value);
4233 case TYPE_CODE_FUNC:
4234 return rank_one_type_parm_func (parm, arg, value);
4235 case TYPE_CODE_INT:
4236 return rank_one_type_parm_int (parm, arg, value);
4237 case TYPE_CODE_ENUM:
4238 return rank_one_type_parm_enum (parm, arg, value);
4239 case TYPE_CODE_CHAR:
4240 return rank_one_type_parm_char (parm, arg, value);
4241 case TYPE_CODE_RANGE:
4242 return rank_one_type_parm_range (parm, arg, value);
4243 case TYPE_CODE_BOOL:
4244 return rank_one_type_parm_bool (parm, arg, value);
4245 case TYPE_CODE_FLT:
4246 return rank_one_type_parm_float (parm, arg, value);
4247 case TYPE_CODE_COMPLEX:
4248 return rank_one_type_parm_complex (parm, arg, value);
4249 case TYPE_CODE_STRUCT:
4250 switch (TYPE_CODE (arg))
4251 {
4252 case TYPE_CODE_STRUCT:
4253 /* Check for derivation */
4254 rank.subrank = distance_to_ancestor (parm, arg, 0);
4255 if (rank.subrank >= 0)
4256 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4257 /* fall through */
4258 default:
4259 return INCOMPATIBLE_TYPE_BADNESS;
4260 }
4261 break;
4262 case TYPE_CODE_UNION:
4263 switch (TYPE_CODE (arg))
4264 {
4265 case TYPE_CODE_UNION:
4266 default:
4267 return INCOMPATIBLE_TYPE_BADNESS;
4268 }
4269 break;
4270 case TYPE_CODE_MEMBERPTR:
4271 switch (TYPE_CODE (arg))
4272 {
4273 default:
4274 return INCOMPATIBLE_TYPE_BADNESS;
4275 }
4276 break;
4277 case TYPE_CODE_METHOD:
4278 switch (TYPE_CODE (arg))
4279 {
4280
4281 default:
4282 return INCOMPATIBLE_TYPE_BADNESS;
4283 }
4284 break;
4285 case TYPE_CODE_REF:
4286 switch (TYPE_CODE (arg))
4287 {
4288
4289 default:
4290 return INCOMPATIBLE_TYPE_BADNESS;
4291 }
4292
4293 break;
4294 case TYPE_CODE_SET:
4295 switch (TYPE_CODE (arg))
4296 {
4297 /* Not in C++ */
4298 case TYPE_CODE_SET:
4299 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4300 TYPE_FIELD_TYPE (arg, 0), NULL);
4301 default:
4302 return INCOMPATIBLE_TYPE_BADNESS;
4303 }
4304 break;
4305 case TYPE_CODE_VOID:
4306 default:
4307 return INCOMPATIBLE_TYPE_BADNESS;
4308 } /* switch (TYPE_CODE (arg)) */
4309 }
4310
4311 /* End of functions for overload resolution. */
4312 \f
4313 /* Routines to pretty-print types. */
4314
4315 static void
4316 print_bit_vector (B_TYPE *bits, int nbits)
4317 {
4318 int bitno;
4319
4320 for (bitno = 0; bitno < nbits; bitno++)
4321 {
4322 if ((bitno % 8) == 0)
4323 {
4324 puts_filtered (" ");
4325 }
4326 if (B_TST (bits, bitno))
4327 printf_filtered (("1"));
4328 else
4329 printf_filtered (("0"));
4330 }
4331 }
4332
4333 /* Note the first arg should be the "this" pointer, we may not want to
4334 include it since we may get into a infinitely recursive
4335 situation. */
4336
4337 static void
4338 print_args (struct field *args, int nargs, int spaces)
4339 {
4340 if (args != NULL)
4341 {
4342 int i;
4343
4344 for (i = 0; i < nargs; i++)
4345 {
4346 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4347 args[i].name != NULL ? args[i].name : "<NULL>");
4348 recursive_dump_type (args[i].type, spaces + 2);
4349 }
4350 }
4351 }
4352
4353 int
4354 field_is_static (struct field *f)
4355 {
4356 /* "static" fields are the fields whose location is not relative
4357 to the address of the enclosing struct. It would be nice to
4358 have a dedicated flag that would be set for static fields when
4359 the type is being created. But in practice, checking the field
4360 loc_kind should give us an accurate answer. */
4361 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4362 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4363 }
4364
4365 static void
4366 dump_fn_fieldlists (struct type *type, int spaces)
4367 {
4368 int method_idx;
4369 int overload_idx;
4370 struct fn_field *f;
4371
4372 printfi_filtered (spaces, "fn_fieldlists ");
4373 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4374 printf_filtered ("\n");
4375 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4376 {
4377 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4378 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4379 method_idx,
4380 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4381 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4382 gdb_stdout);
4383 printf_filtered (_(") length %d\n"),
4384 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4385 for (overload_idx = 0;
4386 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4387 overload_idx++)
4388 {
4389 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4390 overload_idx,
4391 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4392 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4393 gdb_stdout);
4394 printf_filtered (")\n");
4395 printfi_filtered (spaces + 8, "type ");
4396 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4397 gdb_stdout);
4398 printf_filtered ("\n");
4399
4400 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4401 spaces + 8 + 2);
4402
4403 printfi_filtered (spaces + 8, "args ");
4404 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4405 gdb_stdout);
4406 printf_filtered ("\n");
4407 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4408 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4409 spaces + 8 + 2);
4410 printfi_filtered (spaces + 8, "fcontext ");
4411 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4412 gdb_stdout);
4413 printf_filtered ("\n");
4414
4415 printfi_filtered (spaces + 8, "is_const %d\n",
4416 TYPE_FN_FIELD_CONST (f, overload_idx));
4417 printfi_filtered (spaces + 8, "is_volatile %d\n",
4418 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4419 printfi_filtered (spaces + 8, "is_private %d\n",
4420 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4421 printfi_filtered (spaces + 8, "is_protected %d\n",
4422 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4423 printfi_filtered (spaces + 8, "is_stub %d\n",
4424 TYPE_FN_FIELD_STUB (f, overload_idx));
4425 printfi_filtered (spaces + 8, "voffset %u\n",
4426 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4427 }
4428 }
4429 }
4430
4431 static void
4432 print_cplus_stuff (struct type *type, int spaces)
4433 {
4434 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4435 printfi_filtered (spaces, "vptr_basetype ");
4436 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4437 puts_filtered ("\n");
4438 if (TYPE_VPTR_BASETYPE (type) != NULL)
4439 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4440
4441 printfi_filtered (spaces, "n_baseclasses %d\n",
4442 TYPE_N_BASECLASSES (type));
4443 printfi_filtered (spaces, "nfn_fields %d\n",
4444 TYPE_NFN_FIELDS (type));
4445 if (TYPE_N_BASECLASSES (type) > 0)
4446 {
4447 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4448 TYPE_N_BASECLASSES (type));
4449 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4450 gdb_stdout);
4451 printf_filtered (")");
4452
4453 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4454 TYPE_N_BASECLASSES (type));
4455 puts_filtered ("\n");
4456 }
4457 if (TYPE_NFIELDS (type) > 0)
4458 {
4459 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4460 {
4461 printfi_filtered (spaces,
4462 "private_field_bits (%d bits at *",
4463 TYPE_NFIELDS (type));
4464 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4465 gdb_stdout);
4466 printf_filtered (")");
4467 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4468 TYPE_NFIELDS (type));
4469 puts_filtered ("\n");
4470 }
4471 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4472 {
4473 printfi_filtered (spaces,
4474 "protected_field_bits (%d bits at *",
4475 TYPE_NFIELDS (type));
4476 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4477 gdb_stdout);
4478 printf_filtered (")");
4479 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4480 TYPE_NFIELDS (type));
4481 puts_filtered ("\n");
4482 }
4483 }
4484 if (TYPE_NFN_FIELDS (type) > 0)
4485 {
4486 dump_fn_fieldlists (type, spaces);
4487 }
4488 }
4489
4490 /* Print the contents of the TYPE's type_specific union, assuming that
4491 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4492
4493 static void
4494 print_gnat_stuff (struct type *type, int spaces)
4495 {
4496 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4497
4498 if (descriptive_type == NULL)
4499 printfi_filtered (spaces + 2, "no descriptive type\n");
4500 else
4501 {
4502 printfi_filtered (spaces + 2, "descriptive type\n");
4503 recursive_dump_type (descriptive_type, spaces + 4);
4504 }
4505 }
4506
4507 static struct obstack dont_print_type_obstack;
4508
4509 void
4510 recursive_dump_type (struct type *type, int spaces)
4511 {
4512 int idx;
4513
4514 if (spaces == 0)
4515 obstack_begin (&dont_print_type_obstack, 0);
4516
4517 if (TYPE_NFIELDS (type) > 0
4518 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4519 {
4520 struct type **first_dont_print
4521 = (struct type **) obstack_base (&dont_print_type_obstack);
4522
4523 int i = (struct type **)
4524 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4525
4526 while (--i >= 0)
4527 {
4528 if (type == first_dont_print[i])
4529 {
4530 printfi_filtered (spaces, "type node ");
4531 gdb_print_host_address (type, gdb_stdout);
4532 printf_filtered (_(" <same as already seen type>\n"));
4533 return;
4534 }
4535 }
4536
4537 obstack_ptr_grow (&dont_print_type_obstack, type);
4538 }
4539
4540 printfi_filtered (spaces, "type node ");
4541 gdb_print_host_address (type, gdb_stdout);
4542 printf_filtered ("\n");
4543 printfi_filtered (spaces, "name '%s' (",
4544 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4545 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4546 printf_filtered (")\n");
4547 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4548 switch (TYPE_CODE (type))
4549 {
4550 case TYPE_CODE_UNDEF:
4551 printf_filtered ("(TYPE_CODE_UNDEF)");
4552 break;
4553 case TYPE_CODE_PTR:
4554 printf_filtered ("(TYPE_CODE_PTR)");
4555 break;
4556 case TYPE_CODE_ARRAY:
4557 printf_filtered ("(TYPE_CODE_ARRAY)");
4558 break;
4559 case TYPE_CODE_STRUCT:
4560 printf_filtered ("(TYPE_CODE_STRUCT)");
4561 break;
4562 case TYPE_CODE_UNION:
4563 printf_filtered ("(TYPE_CODE_UNION)");
4564 break;
4565 case TYPE_CODE_ENUM:
4566 printf_filtered ("(TYPE_CODE_ENUM)");
4567 break;
4568 case TYPE_CODE_FLAGS:
4569 printf_filtered ("(TYPE_CODE_FLAGS)");
4570 break;
4571 case TYPE_CODE_FUNC:
4572 printf_filtered ("(TYPE_CODE_FUNC)");
4573 break;
4574 case TYPE_CODE_INT:
4575 printf_filtered ("(TYPE_CODE_INT)");
4576 break;
4577 case TYPE_CODE_FLT:
4578 printf_filtered ("(TYPE_CODE_FLT)");
4579 break;
4580 case TYPE_CODE_VOID:
4581 printf_filtered ("(TYPE_CODE_VOID)");
4582 break;
4583 case TYPE_CODE_SET:
4584 printf_filtered ("(TYPE_CODE_SET)");
4585 break;
4586 case TYPE_CODE_RANGE:
4587 printf_filtered ("(TYPE_CODE_RANGE)");
4588 break;
4589 case TYPE_CODE_STRING:
4590 printf_filtered ("(TYPE_CODE_STRING)");
4591 break;
4592 case TYPE_CODE_ERROR:
4593 printf_filtered ("(TYPE_CODE_ERROR)");
4594 break;
4595 case TYPE_CODE_MEMBERPTR:
4596 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4597 break;
4598 case TYPE_CODE_METHODPTR:
4599 printf_filtered ("(TYPE_CODE_METHODPTR)");
4600 break;
4601 case TYPE_CODE_METHOD:
4602 printf_filtered ("(TYPE_CODE_METHOD)");
4603 break;
4604 case TYPE_CODE_REF:
4605 printf_filtered ("(TYPE_CODE_REF)");
4606 break;
4607 case TYPE_CODE_CHAR:
4608 printf_filtered ("(TYPE_CODE_CHAR)");
4609 break;
4610 case TYPE_CODE_BOOL:
4611 printf_filtered ("(TYPE_CODE_BOOL)");
4612 break;
4613 case TYPE_CODE_COMPLEX:
4614 printf_filtered ("(TYPE_CODE_COMPLEX)");
4615 break;
4616 case TYPE_CODE_TYPEDEF:
4617 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4618 break;
4619 case TYPE_CODE_NAMESPACE:
4620 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4621 break;
4622 default:
4623 printf_filtered ("(UNKNOWN TYPE CODE)");
4624 break;
4625 }
4626 puts_filtered ("\n");
4627 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4628 if (TYPE_OBJFILE_OWNED (type))
4629 {
4630 printfi_filtered (spaces, "objfile ");
4631 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4632 }
4633 else
4634 {
4635 printfi_filtered (spaces, "gdbarch ");
4636 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4637 }
4638 printf_filtered ("\n");
4639 printfi_filtered (spaces, "target_type ");
4640 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4641 printf_filtered ("\n");
4642 if (TYPE_TARGET_TYPE (type) != NULL)
4643 {
4644 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4645 }
4646 printfi_filtered (spaces, "pointer_type ");
4647 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4648 printf_filtered ("\n");
4649 printfi_filtered (spaces, "reference_type ");
4650 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4651 printf_filtered ("\n");
4652 printfi_filtered (spaces, "type_chain ");
4653 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4654 printf_filtered ("\n");
4655 printfi_filtered (spaces, "instance_flags 0x%x",
4656 TYPE_INSTANCE_FLAGS (type));
4657 if (TYPE_CONST (type))
4658 {
4659 puts_filtered (" TYPE_CONST");
4660 }
4661 if (TYPE_VOLATILE (type))
4662 {
4663 puts_filtered (" TYPE_VOLATILE");
4664 }
4665 if (TYPE_CODE_SPACE (type))
4666 {
4667 puts_filtered (" TYPE_CODE_SPACE");
4668 }
4669 if (TYPE_DATA_SPACE (type))
4670 {
4671 puts_filtered (" TYPE_DATA_SPACE");
4672 }
4673 if (TYPE_ADDRESS_CLASS_1 (type))
4674 {
4675 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4676 }
4677 if (TYPE_ADDRESS_CLASS_2 (type))
4678 {
4679 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4680 }
4681 if (TYPE_RESTRICT (type))
4682 {
4683 puts_filtered (" TYPE_RESTRICT");
4684 }
4685 if (TYPE_ATOMIC (type))
4686 {
4687 puts_filtered (" TYPE_ATOMIC");
4688 }
4689 puts_filtered ("\n");
4690
4691 printfi_filtered (spaces, "flags");
4692 if (TYPE_UNSIGNED (type))
4693 {
4694 puts_filtered (" TYPE_UNSIGNED");
4695 }
4696 if (TYPE_NOSIGN (type))
4697 {
4698 puts_filtered (" TYPE_NOSIGN");
4699 }
4700 if (TYPE_STUB (type))
4701 {
4702 puts_filtered (" TYPE_STUB");
4703 }
4704 if (TYPE_TARGET_STUB (type))
4705 {
4706 puts_filtered (" TYPE_TARGET_STUB");
4707 }
4708 if (TYPE_PROTOTYPED (type))
4709 {
4710 puts_filtered (" TYPE_PROTOTYPED");
4711 }
4712 if (TYPE_INCOMPLETE (type))
4713 {
4714 puts_filtered (" TYPE_INCOMPLETE");
4715 }
4716 if (TYPE_VARARGS (type))
4717 {
4718 puts_filtered (" TYPE_VARARGS");
4719 }
4720 /* This is used for things like AltiVec registers on ppc. Gcc emits
4721 an attribute for the array type, which tells whether or not we
4722 have a vector, instead of a regular array. */
4723 if (TYPE_VECTOR (type))
4724 {
4725 puts_filtered (" TYPE_VECTOR");
4726 }
4727 if (TYPE_FIXED_INSTANCE (type))
4728 {
4729 puts_filtered (" TYPE_FIXED_INSTANCE");
4730 }
4731 if (TYPE_STUB_SUPPORTED (type))
4732 {
4733 puts_filtered (" TYPE_STUB_SUPPORTED");
4734 }
4735 if (TYPE_NOTTEXT (type))
4736 {
4737 puts_filtered (" TYPE_NOTTEXT");
4738 }
4739 puts_filtered ("\n");
4740 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4741 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4742 puts_filtered ("\n");
4743 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4744 {
4745 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4746 printfi_filtered (spaces + 2,
4747 "[%d] enumval %s type ",
4748 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4749 else
4750 printfi_filtered (spaces + 2,
4751 "[%d] bitpos %s bitsize %d type ",
4752 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4753 TYPE_FIELD_BITSIZE (type, idx));
4754 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4755 printf_filtered (" name '%s' (",
4756 TYPE_FIELD_NAME (type, idx) != NULL
4757 ? TYPE_FIELD_NAME (type, idx)
4758 : "<NULL>");
4759 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4760 printf_filtered (")\n");
4761 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4762 {
4763 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4764 }
4765 }
4766 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4767 {
4768 printfi_filtered (spaces, "low %s%s high %s%s\n",
4769 plongest (TYPE_LOW_BOUND (type)),
4770 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4771 plongest (TYPE_HIGH_BOUND (type)),
4772 TYPE_HIGH_BOUND_UNDEFINED (type)
4773 ? " (undefined)" : "");
4774 }
4775
4776 switch (TYPE_SPECIFIC_FIELD (type))
4777 {
4778 case TYPE_SPECIFIC_CPLUS_STUFF:
4779 printfi_filtered (spaces, "cplus_stuff ");
4780 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4781 gdb_stdout);
4782 puts_filtered ("\n");
4783 print_cplus_stuff (type, spaces);
4784 break;
4785
4786 case TYPE_SPECIFIC_GNAT_STUFF:
4787 printfi_filtered (spaces, "gnat_stuff ");
4788 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4789 puts_filtered ("\n");
4790 print_gnat_stuff (type, spaces);
4791 break;
4792
4793 case TYPE_SPECIFIC_FLOATFORMAT:
4794 printfi_filtered (spaces, "floatformat ");
4795 if (TYPE_FLOATFORMAT (type) == NULL
4796 || TYPE_FLOATFORMAT (type)->name == NULL)
4797 puts_filtered ("(null)");
4798 else
4799 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4800 puts_filtered ("\n");
4801 break;
4802
4803 case TYPE_SPECIFIC_FUNC:
4804 printfi_filtered (spaces, "calling_convention %d\n",
4805 TYPE_CALLING_CONVENTION (type));
4806 /* tail_call_list is not printed. */
4807 break;
4808
4809 case TYPE_SPECIFIC_SELF_TYPE:
4810 printfi_filtered (spaces, "self_type ");
4811 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4812 puts_filtered ("\n");
4813 break;
4814 }
4815
4816 if (spaces == 0)
4817 obstack_free (&dont_print_type_obstack, NULL);
4818 }
4819 \f
4820 /* Trivial helpers for the libiberty hash table, for mapping one
4821 type to another. */
4822
4823 struct type_pair : public allocate_on_obstack
4824 {
4825 type_pair (struct type *old_, struct type *newobj_)
4826 : old (old_), newobj (newobj_)
4827 {}
4828
4829 struct type * const old, * const newobj;
4830 };
4831
4832 static hashval_t
4833 type_pair_hash (const void *item)
4834 {
4835 const struct type_pair *pair = (const struct type_pair *) item;
4836
4837 return htab_hash_pointer (pair->old);
4838 }
4839
4840 static int
4841 type_pair_eq (const void *item_lhs, const void *item_rhs)
4842 {
4843 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4844 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4845
4846 return lhs->old == rhs->old;
4847 }
4848
4849 /* Allocate the hash table used by copy_type_recursive to walk
4850 types without duplicates. We use OBJFILE's obstack, because
4851 OBJFILE is about to be deleted. */
4852
4853 htab_t
4854 create_copied_types_hash (struct objfile *objfile)
4855 {
4856 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4857 NULL, &objfile->objfile_obstack,
4858 hashtab_obstack_allocate,
4859 dummy_obstack_deallocate);
4860 }
4861
4862 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4863
4864 static struct dynamic_prop_list *
4865 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4866 struct dynamic_prop_list *list)
4867 {
4868 struct dynamic_prop_list *copy = list;
4869 struct dynamic_prop_list **node_ptr = &copy;
4870
4871 while (*node_ptr != NULL)
4872 {
4873 struct dynamic_prop_list *node_copy;
4874
4875 node_copy = ((struct dynamic_prop_list *)
4876 obstack_copy (objfile_obstack, *node_ptr,
4877 sizeof (struct dynamic_prop_list)));
4878 node_copy->prop = (*node_ptr)->prop;
4879 *node_ptr = node_copy;
4880
4881 node_ptr = &node_copy->next;
4882 }
4883
4884 return copy;
4885 }
4886
4887 /* Recursively copy (deep copy) TYPE, if it is associated with
4888 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4889 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4890 it is not associated with OBJFILE. */
4891
4892 struct type *
4893 copy_type_recursive (struct objfile *objfile,
4894 struct type *type,
4895 htab_t copied_types)
4896 {
4897 void **slot;
4898 struct type *new_type;
4899
4900 if (! TYPE_OBJFILE_OWNED (type))
4901 return type;
4902
4903 /* This type shouldn't be pointing to any types in other objfiles;
4904 if it did, the type might disappear unexpectedly. */
4905 gdb_assert (TYPE_OBJFILE (type) == objfile);
4906
4907 struct type_pair pair (type, nullptr);
4908
4909 slot = htab_find_slot (copied_types, &pair, INSERT);
4910 if (*slot != NULL)
4911 return ((struct type_pair *) *slot)->newobj;
4912
4913 new_type = alloc_type_arch (get_type_arch (type));
4914
4915 /* We must add the new type to the hash table immediately, in case
4916 we encounter this type again during a recursive call below. */
4917 struct type_pair *stored
4918 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4919
4920 *slot = stored;
4921
4922 /* Copy the common fields of types. For the main type, we simply
4923 copy the entire thing and then update specific fields as needed. */
4924 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4925 TYPE_OBJFILE_OWNED (new_type) = 0;
4926 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4927
4928 if (TYPE_NAME (type))
4929 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4930
4931 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4932 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4933
4934 /* Copy the fields. */
4935 if (TYPE_NFIELDS (type))
4936 {
4937 int i, nfields;
4938
4939 nfields = TYPE_NFIELDS (type);
4940 TYPE_FIELDS (new_type) = (struct field *)
4941 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4942 for (i = 0; i < nfields; i++)
4943 {
4944 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4945 TYPE_FIELD_ARTIFICIAL (type, i);
4946 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4947 if (TYPE_FIELD_TYPE (type, i))
4948 TYPE_FIELD_TYPE (new_type, i)
4949 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4950 copied_types);
4951 if (TYPE_FIELD_NAME (type, i))
4952 TYPE_FIELD_NAME (new_type, i) =
4953 xstrdup (TYPE_FIELD_NAME (type, i));
4954 switch (TYPE_FIELD_LOC_KIND (type, i))
4955 {
4956 case FIELD_LOC_KIND_BITPOS:
4957 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4958 TYPE_FIELD_BITPOS (type, i));
4959 break;
4960 case FIELD_LOC_KIND_ENUMVAL:
4961 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4962 TYPE_FIELD_ENUMVAL (type, i));
4963 break;
4964 case FIELD_LOC_KIND_PHYSADDR:
4965 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4966 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4967 break;
4968 case FIELD_LOC_KIND_PHYSNAME:
4969 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4970 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4971 i)));
4972 break;
4973 default:
4974 internal_error (__FILE__, __LINE__,
4975 _("Unexpected type field location kind: %d"),
4976 TYPE_FIELD_LOC_KIND (type, i));
4977 }
4978 }
4979 }
4980
4981 /* For range types, copy the bounds information. */
4982 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4983 {
4984 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4985 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4986 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4987 }
4988
4989 if (TYPE_DYN_PROP_LIST (type) != NULL)
4990 TYPE_DYN_PROP_LIST (new_type)
4991 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4992 TYPE_DYN_PROP_LIST (type));
4993
4994
4995 /* Copy pointers to other types. */
4996 if (TYPE_TARGET_TYPE (type))
4997 TYPE_TARGET_TYPE (new_type) =
4998 copy_type_recursive (objfile,
4999 TYPE_TARGET_TYPE (type),
5000 copied_types);
5001
5002 /* Maybe copy the type_specific bits.
5003
5004 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5005 base classes and methods. There's no fundamental reason why we
5006 can't, but at the moment it is not needed. */
5007
5008 switch (TYPE_SPECIFIC_FIELD (type))
5009 {
5010 case TYPE_SPECIFIC_NONE:
5011 break;
5012 case TYPE_SPECIFIC_FUNC:
5013 INIT_FUNC_SPECIFIC (new_type);
5014 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5015 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5016 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5017 break;
5018 case TYPE_SPECIFIC_FLOATFORMAT:
5019 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5020 break;
5021 case TYPE_SPECIFIC_CPLUS_STUFF:
5022 INIT_CPLUS_SPECIFIC (new_type);
5023 break;
5024 case TYPE_SPECIFIC_GNAT_STUFF:
5025 INIT_GNAT_SPECIFIC (new_type);
5026 break;
5027 case TYPE_SPECIFIC_SELF_TYPE:
5028 set_type_self_type (new_type,
5029 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5030 copied_types));
5031 break;
5032 default:
5033 gdb_assert_not_reached ("bad type_specific_kind");
5034 }
5035
5036 return new_type;
5037 }
5038
5039 /* Make a copy of the given TYPE, except that the pointer & reference
5040 types are not preserved.
5041
5042 This function assumes that the given type has an associated objfile.
5043 This objfile is used to allocate the new type. */
5044
5045 struct type *
5046 copy_type (const struct type *type)
5047 {
5048 struct type *new_type;
5049
5050 gdb_assert (TYPE_OBJFILE_OWNED (type));
5051
5052 new_type = alloc_type_copy (type);
5053 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5054 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5055 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5056 sizeof (struct main_type));
5057 if (TYPE_DYN_PROP_LIST (type) != NULL)
5058 TYPE_DYN_PROP_LIST (new_type)
5059 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5060 TYPE_DYN_PROP_LIST (type));
5061
5062 return new_type;
5063 }
5064 \f
5065 /* Helper functions to initialize architecture-specific types. */
5066
5067 /* Allocate a type structure associated with GDBARCH and set its
5068 CODE, LENGTH, and NAME fields. */
5069
5070 struct type *
5071 arch_type (struct gdbarch *gdbarch,
5072 enum type_code code, int bit, const char *name)
5073 {
5074 struct type *type;
5075
5076 type = alloc_type_arch (gdbarch);
5077 set_type_code (type, code);
5078 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5079 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5080
5081 if (name)
5082 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5083
5084 return type;
5085 }
5086
5087 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5088 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5089 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5090
5091 struct type *
5092 arch_integer_type (struct gdbarch *gdbarch,
5093 int bit, int unsigned_p, const char *name)
5094 {
5095 struct type *t;
5096
5097 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5098 if (unsigned_p)
5099 TYPE_UNSIGNED (t) = 1;
5100
5101 return t;
5102 }
5103
5104 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5105 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5106 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5107
5108 struct type *
5109 arch_character_type (struct gdbarch *gdbarch,
5110 int bit, int unsigned_p, const char *name)
5111 {
5112 struct type *t;
5113
5114 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5115 if (unsigned_p)
5116 TYPE_UNSIGNED (t) = 1;
5117
5118 return t;
5119 }
5120
5121 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5122 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5123 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5124
5125 struct type *
5126 arch_boolean_type (struct gdbarch *gdbarch,
5127 int bit, int unsigned_p, const char *name)
5128 {
5129 struct type *t;
5130
5131 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5132 if (unsigned_p)
5133 TYPE_UNSIGNED (t) = 1;
5134
5135 return t;
5136 }
5137
5138 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5139 BIT is the type size in bits; if BIT equals -1, the size is
5140 determined by the floatformat. NAME is the type name. Set the
5141 TYPE_FLOATFORMAT from FLOATFORMATS. */
5142
5143 struct type *
5144 arch_float_type (struct gdbarch *gdbarch,
5145 int bit, const char *name,
5146 const struct floatformat **floatformats)
5147 {
5148 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5149 struct type *t;
5150
5151 bit = verify_floatformat (bit, fmt);
5152 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5153 TYPE_FLOATFORMAT (t) = fmt;
5154
5155 return t;
5156 }
5157
5158 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5159 BIT is the type size in bits. NAME is the type name. */
5160
5161 struct type *
5162 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5163 {
5164 struct type *t;
5165
5166 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5167 return t;
5168 }
5169
5170 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5171 NAME is the type name. TARGET_TYPE is the component float type. */
5172
5173 struct type *
5174 arch_complex_type (struct gdbarch *gdbarch,
5175 const char *name, struct type *target_type)
5176 {
5177 struct type *t;
5178
5179 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5180 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5181 TYPE_TARGET_TYPE (t) = target_type;
5182 return t;
5183 }
5184
5185 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5186 BIT is the pointer type size in bits. NAME is the type name.
5187 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5188 TYPE_UNSIGNED flag. */
5189
5190 struct type *
5191 arch_pointer_type (struct gdbarch *gdbarch,
5192 int bit, const char *name, struct type *target_type)
5193 {
5194 struct type *t;
5195
5196 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5197 TYPE_TARGET_TYPE (t) = target_type;
5198 TYPE_UNSIGNED (t) = 1;
5199 return t;
5200 }
5201
5202 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5203 NAME is the type name. BIT is the size of the flag word in bits. */
5204
5205 struct type *
5206 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5207 {
5208 struct type *type;
5209
5210 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5211 TYPE_UNSIGNED (type) = 1;
5212 TYPE_NFIELDS (type) = 0;
5213 /* Pre-allocate enough space assuming every field is one bit. */
5214 TYPE_FIELDS (type)
5215 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5216
5217 return type;
5218 }
5219
5220 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5221 position BITPOS is called NAME. Pass NAME as "" for fields that
5222 should not be printed. */
5223
5224 void
5225 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5226 struct type *field_type, const char *name)
5227 {
5228 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5229 int field_nr = TYPE_NFIELDS (type);
5230
5231 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5232 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5233 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5234 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5235 gdb_assert (name != NULL);
5236
5237 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5238 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5239 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5240 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5241 ++TYPE_NFIELDS (type);
5242 }
5243
5244 /* Special version of append_flags_type_field to add a flag field.
5245 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5246 position BITPOS is called NAME. */
5247
5248 void
5249 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5250 {
5251 struct gdbarch *gdbarch = get_type_arch (type);
5252
5253 append_flags_type_field (type, bitpos, 1,
5254 builtin_type (gdbarch)->builtin_bool,
5255 name);
5256 }
5257
5258 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5259 specified by CODE) associated with GDBARCH. NAME is the type name. */
5260
5261 struct type *
5262 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5263 enum type_code code)
5264 {
5265 struct type *t;
5266
5267 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5268 t = arch_type (gdbarch, code, 0, NULL);
5269 TYPE_NAME (t) = name;
5270 INIT_CPLUS_SPECIFIC (t);
5271 return t;
5272 }
5273
5274 /* Add new field with name NAME and type FIELD to composite type T.
5275 Do not set the field's position or adjust the type's length;
5276 the caller should do so. Return the new field. */
5277
5278 struct field *
5279 append_composite_type_field_raw (struct type *t, const char *name,
5280 struct type *field)
5281 {
5282 struct field *f;
5283
5284 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5285 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5286 TYPE_NFIELDS (t));
5287 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5288 memset (f, 0, sizeof f[0]);
5289 FIELD_TYPE (f[0]) = field;
5290 FIELD_NAME (f[0]) = name;
5291 return f;
5292 }
5293
5294 /* Add new field with name NAME and type FIELD to composite type T.
5295 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5296
5297 void
5298 append_composite_type_field_aligned (struct type *t, const char *name,
5299 struct type *field, int alignment)
5300 {
5301 struct field *f = append_composite_type_field_raw (t, name, field);
5302
5303 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5304 {
5305 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5306 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5307 }
5308 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5309 {
5310 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5311 if (TYPE_NFIELDS (t) > 1)
5312 {
5313 SET_FIELD_BITPOS (f[0],
5314 (FIELD_BITPOS (f[-1])
5315 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5316 * TARGET_CHAR_BIT)));
5317
5318 if (alignment)
5319 {
5320 int left;
5321
5322 alignment *= TARGET_CHAR_BIT;
5323 left = FIELD_BITPOS (f[0]) % alignment;
5324
5325 if (left)
5326 {
5327 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5328 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5329 }
5330 }
5331 }
5332 }
5333 }
5334
5335 /* Add new field with name NAME and type FIELD to composite type T. */
5336
5337 void
5338 append_composite_type_field (struct type *t, const char *name,
5339 struct type *field)
5340 {
5341 append_composite_type_field_aligned (t, name, field, 0);
5342 }
5343
5344 static struct gdbarch_data *gdbtypes_data;
5345
5346 const struct builtin_type *
5347 builtin_type (struct gdbarch *gdbarch)
5348 {
5349 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5350 }
5351
5352 static void *
5353 gdbtypes_post_init (struct gdbarch *gdbarch)
5354 {
5355 struct builtin_type *builtin_type
5356 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5357
5358 /* Basic types. */
5359 builtin_type->builtin_void
5360 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5361 builtin_type->builtin_char
5362 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5363 !gdbarch_char_signed (gdbarch), "char");
5364 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5365 builtin_type->builtin_signed_char
5366 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5367 0, "signed char");
5368 builtin_type->builtin_unsigned_char
5369 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5370 1, "unsigned char");
5371 builtin_type->builtin_short
5372 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5373 0, "short");
5374 builtin_type->builtin_unsigned_short
5375 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5376 1, "unsigned short");
5377 builtin_type->builtin_int
5378 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5379 0, "int");
5380 builtin_type->builtin_unsigned_int
5381 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5382 1, "unsigned int");
5383 builtin_type->builtin_long
5384 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5385 0, "long");
5386 builtin_type->builtin_unsigned_long
5387 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5388 1, "unsigned long");
5389 builtin_type->builtin_long_long
5390 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5391 0, "long long");
5392 builtin_type->builtin_unsigned_long_long
5393 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5394 1, "unsigned long long");
5395 builtin_type->builtin_float
5396 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5397 "float", gdbarch_float_format (gdbarch));
5398 builtin_type->builtin_double
5399 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5400 "double", gdbarch_double_format (gdbarch));
5401 builtin_type->builtin_long_double
5402 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5403 "long double", gdbarch_long_double_format (gdbarch));
5404 builtin_type->builtin_complex
5405 = arch_complex_type (gdbarch, "complex",
5406 builtin_type->builtin_float);
5407 builtin_type->builtin_double_complex
5408 = arch_complex_type (gdbarch, "double complex",
5409 builtin_type->builtin_double);
5410 builtin_type->builtin_string
5411 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5412 builtin_type->builtin_bool
5413 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5414
5415 /* The following three are about decimal floating point types, which
5416 are 32-bits, 64-bits and 128-bits respectively. */
5417 builtin_type->builtin_decfloat
5418 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5419 builtin_type->builtin_decdouble
5420 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5421 builtin_type->builtin_declong
5422 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5423
5424 /* "True" character types. */
5425 builtin_type->builtin_true_char
5426 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5427 builtin_type->builtin_true_unsigned_char
5428 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5429
5430 /* Fixed-size integer types. */
5431 builtin_type->builtin_int0
5432 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5433 builtin_type->builtin_int8
5434 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5435 builtin_type->builtin_uint8
5436 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5437 builtin_type->builtin_int16
5438 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5439 builtin_type->builtin_uint16
5440 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5441 builtin_type->builtin_int24
5442 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5443 builtin_type->builtin_uint24
5444 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5445 builtin_type->builtin_int32
5446 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5447 builtin_type->builtin_uint32
5448 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5449 builtin_type->builtin_int64
5450 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5451 builtin_type->builtin_uint64
5452 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5453 builtin_type->builtin_int128
5454 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5455 builtin_type->builtin_uint128
5456 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5457 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5458 TYPE_INSTANCE_FLAG_NOTTEXT;
5459 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5460 TYPE_INSTANCE_FLAG_NOTTEXT;
5461
5462 /* Wide character types. */
5463 builtin_type->builtin_char16
5464 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5465 builtin_type->builtin_char32
5466 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5467 builtin_type->builtin_wchar
5468 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5469 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5470
5471 /* Default data/code pointer types. */
5472 builtin_type->builtin_data_ptr
5473 = lookup_pointer_type (builtin_type->builtin_void);
5474 builtin_type->builtin_func_ptr
5475 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5476 builtin_type->builtin_func_func
5477 = lookup_function_type (builtin_type->builtin_func_ptr);
5478
5479 /* This type represents a GDB internal function. */
5480 builtin_type->internal_fn
5481 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5482 "<internal function>");
5483
5484 /* This type represents an xmethod. */
5485 builtin_type->xmethod
5486 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5487
5488 return builtin_type;
5489 }
5490
5491 /* This set of objfile-based types is intended to be used by symbol
5492 readers as basic types. */
5493
5494 static const struct objfile_data *objfile_type_data;
5495
5496 const struct objfile_type *
5497 objfile_type (struct objfile *objfile)
5498 {
5499 struct gdbarch *gdbarch;
5500 struct objfile_type *objfile_type
5501 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5502
5503 if (objfile_type)
5504 return objfile_type;
5505
5506 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5507 1, struct objfile_type);
5508
5509 /* Use the objfile architecture to determine basic type properties. */
5510 gdbarch = get_objfile_arch (objfile);
5511
5512 /* Basic types. */
5513 objfile_type->builtin_void
5514 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5515 objfile_type->builtin_char
5516 = init_integer_type (objfile, TARGET_CHAR_BIT,
5517 !gdbarch_char_signed (gdbarch), "char");
5518 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5519 objfile_type->builtin_signed_char
5520 = init_integer_type (objfile, TARGET_CHAR_BIT,
5521 0, "signed char");
5522 objfile_type->builtin_unsigned_char
5523 = init_integer_type (objfile, TARGET_CHAR_BIT,
5524 1, "unsigned char");
5525 objfile_type->builtin_short
5526 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5527 0, "short");
5528 objfile_type->builtin_unsigned_short
5529 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5530 1, "unsigned short");
5531 objfile_type->builtin_int
5532 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5533 0, "int");
5534 objfile_type->builtin_unsigned_int
5535 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5536 1, "unsigned int");
5537 objfile_type->builtin_long
5538 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5539 0, "long");
5540 objfile_type->builtin_unsigned_long
5541 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5542 1, "unsigned long");
5543 objfile_type->builtin_long_long
5544 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5545 0, "long long");
5546 objfile_type->builtin_unsigned_long_long
5547 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5548 1, "unsigned long long");
5549 objfile_type->builtin_float
5550 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5551 "float", gdbarch_float_format (gdbarch));
5552 objfile_type->builtin_double
5553 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5554 "double", gdbarch_double_format (gdbarch));
5555 objfile_type->builtin_long_double
5556 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5557 "long double", gdbarch_long_double_format (gdbarch));
5558
5559 /* This type represents a type that was unrecognized in symbol read-in. */
5560 objfile_type->builtin_error
5561 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5562
5563 /* The following set of types is used for symbols with no
5564 debug information. */
5565 objfile_type->nodebug_text_symbol
5566 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5567 "<text variable, no debug info>");
5568 objfile_type->nodebug_text_gnu_ifunc_symbol
5569 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5570 "<text gnu-indirect-function variable, no debug info>");
5571 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5572 objfile_type->nodebug_got_plt_symbol
5573 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5574 "<text from jump slot in .got.plt, no debug info>",
5575 objfile_type->nodebug_text_symbol);
5576 objfile_type->nodebug_data_symbol
5577 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5578 objfile_type->nodebug_unknown_symbol
5579 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5580 objfile_type->nodebug_tls_symbol
5581 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5582
5583 /* NOTE: on some targets, addresses and pointers are not necessarily
5584 the same.
5585
5586 The upshot is:
5587 - gdb's `struct type' always describes the target's
5588 representation.
5589 - gdb's `struct value' objects should always hold values in
5590 target form.
5591 - gdb's CORE_ADDR values are addresses in the unified virtual
5592 address space that the assembler and linker work with. Thus,
5593 since target_read_memory takes a CORE_ADDR as an argument, it
5594 can access any memory on the target, even if the processor has
5595 separate code and data address spaces.
5596
5597 In this context, objfile_type->builtin_core_addr is a bit odd:
5598 it's a target type for a value the target will never see. It's
5599 only used to hold the values of (typeless) linker symbols, which
5600 are indeed in the unified virtual address space. */
5601
5602 objfile_type->builtin_core_addr
5603 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5604 "__CORE_ADDR");
5605
5606 set_objfile_data (objfile, objfile_type_data, objfile_type);
5607 return objfile_type;
5608 }
5609
5610 void
5611 _initialize_gdbtypes (void)
5612 {
5613 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5614 objfile_type_data = register_objfile_data ();
5615
5616 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5617 _("Set debugging of C++ overloading."),
5618 _("Show debugging of C++ overloading."),
5619 _("When enabled, ranking of the "
5620 "functions is displayed."),
5621 NULL,
5622 show_overload_debug,
5623 &setdebuglist, &showdebuglist);
5624
5625 /* Add user knob for controlling resolution of opaque types. */
5626 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5627 &opaque_type_resolution,
5628 _("Set resolution of opaque struct/class/union"
5629 " types (if set before loading symbols)."),
5630 _("Show resolution of opaque struct/class/union"
5631 " types (if set before loading symbols)."),
5632 NULL, NULL,
5633 show_opaque_type_resolution,
5634 &setlist, &showlist);
5635
5636 /* Add an option to permit non-strict type checking. */
5637 add_setshow_boolean_cmd ("type", class_support,
5638 &strict_type_checking,
5639 _("Set strict type checking."),
5640 _("Show strict type checking."),
5641 NULL, NULL,
5642 show_strict_type_checking,
5643 &setchecklist, &showchecklist);
5644 }
This page took 0.22923 seconds and 5 git commands to generate.