Fix PR c++/21323: GDB thinks char16_t and char32_t are signed in C++
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank LVALUE_REFERENCE_TO_RVALUE_BINDING_BADNESS = {5,0};
62 const struct rank DIFFERENT_REFERENCE_TYPE_BADNESS = {6,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* See gdbtypes.h. */
258
259 unsigned int
260 type_length_units (struct type *type)
261 {
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266 }
267
268 /* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272 static struct type *
273 alloc_type_instance (struct type *oldtype)
274 {
275 struct type *type;
276
277 /* Allocate the structure. */
278
279 if (! TYPE_OBJFILE_OWNED (oldtype))
280 type = XCNEW (struct type);
281 else
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
289 return type;
290 }
291
292 /* Clear all remnants of the previous type at TYPE, in preparation for
293 replacing it with something else. Preserve owner information. */
294
295 static void
296 smash_type (struct type *type)
297 {
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311 }
312
313 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318 struct type *
319 make_pointer_type (struct type *type, struct type **typeptr)
320 {
321 struct type *ntype; /* New type */
322 struct type *chain;
323
324 ntype = TYPE_POINTER_TYPE (type);
325
326 if (ntype)
327 {
328 if (typeptr == 0)
329 return ntype; /* Don't care about alloc,
330 and have new type. */
331 else if (*typeptr == 0)
332 {
333 *typeptr = ntype; /* Tracking alloc, and have new type. */
334 return ntype;
335 }
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
340 ntype = alloc_type_copy (type);
341 if (typeptr)
342 *typeptr = ntype;
343 }
344 else /* We have storage, but need to reset it. */
345 {
346 ntype = *typeptr;
347 chain = TYPE_CHAIN (ntype);
348 smash_type (ntype);
349 TYPE_CHAIN (ntype) = chain;
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
355 /* FIXME! Assumes the machine has only one representation for pointers! */
356
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
361 /* Mark pointers as unsigned. The target converts between pointers
362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
363 gdbarch_address_to_pointer. */
364 TYPE_UNSIGNED (ntype) = 1;
365
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
374 return ntype;
375 }
376
377 /* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380 struct type *
381 lookup_pointer_type (struct type *type)
382 {
383 return make_pointer_type (type, (struct type **) 0);
384 }
385
386 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
391
392 struct type *
393 make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
395 {
396 struct type *ntype; /* New type */
397 struct type **reftype;
398 struct type *chain;
399
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
404
405 if (ntype)
406 {
407 if (typeptr == 0)
408 return ntype; /* Don't care about alloc,
409 and have new type. */
410 else if (*typeptr == 0)
411 {
412 *typeptr = ntype; /* Tracking alloc, and have new type. */
413 return ntype;
414 }
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
419 ntype = alloc_type_copy (type);
420 if (typeptr)
421 *typeptr = ntype;
422 }
423 else /* We have storage, but need to reset it. */
424 {
425 ntype = *typeptr;
426 chain = TYPE_CHAIN (ntype);
427 smash_type (ntype);
428 TYPE_CHAIN (ntype) = chain;
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
436
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
440
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
443 TYPE_CODE (ntype) = refcode;
444
445 *reftype = ntype;
446
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
455 return ntype;
456 }
457
458 /* Same as above, but caller doesn't care about memory allocation
459 details. */
460
461 struct type *
462 lookup_reference_type (struct type *type, enum type_code refcode)
463 {
464 return make_reference_type (type, (struct type **) 0, refcode);
465 }
466
467 /* Lookup the lvalue reference type for the type TYPE. */
468
469 struct type *
470 lookup_lvalue_reference_type (struct type *type)
471 {
472 return lookup_reference_type (type, TYPE_CODE_REF);
473 }
474
475 /* Lookup the rvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_rvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
481 }
482
483 /* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
486 function type we return. We allocate new memory if needed. */
487
488 struct type *
489 make_function_type (struct type *type, struct type **typeptr)
490 {
491 struct type *ntype; /* New type */
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
495 ntype = alloc_type_copy (type);
496 if (typeptr)
497 *typeptr = ntype;
498 }
499 else /* We have storage, but need to reset it. */
500 {
501 ntype = *typeptr;
502 smash_type (ntype);
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
509
510 INIT_FUNC_SPECIFIC (ntype);
511
512 return ntype;
513 }
514
515 /* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518 struct type *
519 lookup_function_type (struct type *type)
520 {
521 return make_function_type (type, (struct type **) 0);
522 }
523
524 /* Given a type TYPE and argument types, return the appropriate
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
527
528 struct type *
529 lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532 {
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
536 if (nparams > 0)
537 {
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
551 }
552
553 TYPE_NFIELDS (fn) = nparams;
554 TYPE_FIELDS (fn)
555 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
556 for (i = 0; i < nparams; ++i)
557 TYPE_FIELD_TYPE (fn, i) = param_types[i];
558
559 return fn;
560 }
561
562 /* Identify address space identifier by name --
563 return the integer flag defined in gdbtypes.h. */
564
565 int
566 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
567 {
568 int type_flags;
569
570 /* Check for known address space delimiters. */
571 if (!strcmp (space_identifier, "code"))
572 return TYPE_INSTANCE_FLAG_CODE_SPACE;
573 else if (!strcmp (space_identifier, "data"))
574 return TYPE_INSTANCE_FLAG_DATA_SPACE;
575 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
576 && gdbarch_address_class_name_to_type_flags (gdbarch,
577 space_identifier,
578 &type_flags))
579 return type_flags;
580 else
581 error (_("Unknown address space specifier: \"%s\""), space_identifier);
582 }
583
584 /* Identify address space identifier by integer flag as defined in
585 gdbtypes.h -- return the string version of the adress space name. */
586
587 const char *
588 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
589 {
590 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
591 return "code";
592 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
593 return "data";
594 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
595 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
596 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
597 else
598 return NULL;
599 }
600
601 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
602
603 If STORAGE is non-NULL, create the new type instance there.
604 STORAGE must be in the same obstack as TYPE. */
605
606 static struct type *
607 make_qualified_type (struct type *type, int new_flags,
608 struct type *storage)
609 {
610 struct type *ntype;
611
612 ntype = type;
613 do
614 {
615 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
616 return ntype;
617 ntype = TYPE_CHAIN (ntype);
618 }
619 while (ntype != type);
620
621 /* Create a new type instance. */
622 if (storage == NULL)
623 ntype = alloc_type_instance (type);
624 else
625 {
626 /* If STORAGE was provided, it had better be in the same objfile
627 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
628 if one objfile is freed and the other kept, we'd have
629 dangling pointers. */
630 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
631
632 ntype = storage;
633 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
634 TYPE_CHAIN (ntype) = ntype;
635 }
636
637 /* Pointers or references to the original type are not relevant to
638 the new type. */
639 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
640 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
641
642 /* Chain the new qualified type to the old type. */
643 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
644 TYPE_CHAIN (type) = ntype;
645
646 /* Now set the instance flags and return the new type. */
647 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
648
649 /* Set length of new type to that of the original type. */
650 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
651
652 return ntype;
653 }
654
655 /* Make an address-space-delimited variant of a type -- a type that
656 is identical to the one supplied except that it has an address
657 space attribute attached to it (such as "code" or "data").
658
659 The space attributes "code" and "data" are for Harvard
660 architectures. The address space attributes are for architectures
661 which have alternately sized pointers or pointers with alternate
662 representations. */
663
664 struct type *
665 make_type_with_address_space (struct type *type, int space_flag)
666 {
667 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
668 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
669 | TYPE_INSTANCE_FLAG_DATA_SPACE
670 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
671 | space_flag);
672
673 return make_qualified_type (type, new_flags, NULL);
674 }
675
676 /* Make a "c-v" variant of a type -- a type that is identical to the
677 one supplied except that it may have const or volatile attributes
678 CNST is a flag for setting the const attribute
679 VOLTL is a flag for setting the volatile attribute
680 TYPE is the base type whose variant we are creating.
681
682 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
683 storage to hold the new qualified type; *TYPEPTR and TYPE must be
684 in the same objfile. Otherwise, allocate fresh memory for the new
685 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
686 new type we construct. */
687
688 struct type *
689 make_cv_type (int cnst, int voltl,
690 struct type *type,
691 struct type **typeptr)
692 {
693 struct type *ntype; /* New type */
694
695 int new_flags = (TYPE_INSTANCE_FLAGS (type)
696 & ~(TYPE_INSTANCE_FLAG_CONST
697 | TYPE_INSTANCE_FLAG_VOLATILE));
698
699 if (cnst)
700 new_flags |= TYPE_INSTANCE_FLAG_CONST;
701
702 if (voltl)
703 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
704
705 if (typeptr && *typeptr != NULL)
706 {
707 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
708 a C-V variant chain that threads across objfiles: if one
709 objfile gets freed, then the other has a broken C-V chain.
710
711 This code used to try to copy over the main type from TYPE to
712 *TYPEPTR if they were in different objfiles, but that's
713 wrong, too: TYPE may have a field list or member function
714 lists, which refer to types of their own, etc. etc. The
715 whole shebang would need to be copied over recursively; you
716 can't have inter-objfile pointers. The only thing to do is
717 to leave stub types as stub types, and look them up afresh by
718 name each time you encounter them. */
719 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
720 }
721
722 ntype = make_qualified_type (type, new_flags,
723 typeptr ? *typeptr : NULL);
724
725 if (typeptr != NULL)
726 *typeptr = ntype;
727
728 return ntype;
729 }
730
731 /* Make a 'restrict'-qualified version of TYPE. */
732
733 struct type *
734 make_restrict_type (struct type *type)
735 {
736 return make_qualified_type (type,
737 (TYPE_INSTANCE_FLAGS (type)
738 | TYPE_INSTANCE_FLAG_RESTRICT),
739 NULL);
740 }
741
742 /* Make a type without const, volatile, or restrict. */
743
744 struct type *
745 make_unqualified_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 & ~(TYPE_INSTANCE_FLAG_CONST
750 | TYPE_INSTANCE_FLAG_VOLATILE
751 | TYPE_INSTANCE_FLAG_RESTRICT)),
752 NULL);
753 }
754
755 /* Make a '_Atomic'-qualified version of TYPE. */
756
757 struct type *
758 make_atomic_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 | TYPE_INSTANCE_FLAG_ATOMIC),
763 NULL);
764 }
765
766 /* Replace the contents of ntype with the type *type. This changes the
767 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
768 the changes are propogated to all types in the TYPE_CHAIN.
769
770 In order to build recursive types, it's inevitable that we'll need
771 to update types in place --- but this sort of indiscriminate
772 smashing is ugly, and needs to be replaced with something more
773 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
774 clear if more steps are needed. */
775
776 void
777 replace_type (struct type *ntype, struct type *type)
778 {
779 struct type *chain;
780
781 /* These two types had better be in the same objfile. Otherwise,
782 the assignment of one type's main type structure to the other
783 will produce a type with references to objects (names; field
784 lists; etc.) allocated on an objfile other than its own. */
785 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
786
787 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
788
789 /* The type length is not a part of the main type. Update it for
790 each type on the variant chain. */
791 chain = ntype;
792 do
793 {
794 /* Assert that this element of the chain has no address-class bits
795 set in its flags. Such type variants might have type lengths
796 which are supposed to be different from the non-address-class
797 variants. This assertion shouldn't ever be triggered because
798 symbol readers which do construct address-class variants don't
799 call replace_type(). */
800 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
801
802 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
803 chain = TYPE_CHAIN (chain);
804 }
805 while (ntype != chain);
806
807 /* Assert that the two types have equivalent instance qualifiers.
808 This should be true for at least all of our debug readers. */
809 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
810 }
811
812 /* Implement direct support for MEMBER_TYPE in GNU C++.
813 May need to construct such a type if this is the first use.
814 The TYPE is the type of the member. The DOMAIN is the type
815 of the aggregate that the member belongs to. */
816
817 struct type *
818 lookup_memberptr_type (struct type *type, struct type *domain)
819 {
820 struct type *mtype;
821
822 mtype = alloc_type_copy (type);
823 smash_to_memberptr_type (mtype, domain, type);
824 return mtype;
825 }
826
827 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
828
829 struct type *
830 lookup_methodptr_type (struct type *to_type)
831 {
832 struct type *mtype;
833
834 mtype = alloc_type_copy (to_type);
835 smash_to_methodptr_type (mtype, to_type);
836 return mtype;
837 }
838
839 /* Allocate a stub method whose return type is TYPE. This apparently
840 happens for speed of symbol reading, since parsing out the
841 arguments to the method is cpu-intensive, the way we are doing it.
842 So, we will fill in arguments later. This always returns a fresh
843 type. */
844
845 struct type *
846 allocate_stub_method (struct type *type)
847 {
848 struct type *mtype;
849
850 mtype = alloc_type_copy (type);
851 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
852 TYPE_LENGTH (mtype) = 1;
853 TYPE_STUB (mtype) = 1;
854 TYPE_TARGET_TYPE (mtype) = type;
855 /* TYPE_SELF_TYPE (mtype) = unknown yet */
856 return mtype;
857 }
858
859 /* Create a range type with a dynamic range from LOW_BOUND to
860 HIGH_BOUND, inclusive. See create_range_type for further details. */
861
862 struct type *
863 create_range_type (struct type *result_type, struct type *index_type,
864 const struct dynamic_prop *low_bound,
865 const struct dynamic_prop *high_bound)
866 {
867 if (result_type == NULL)
868 result_type = alloc_type_copy (index_type);
869 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
870 TYPE_TARGET_TYPE (result_type) = index_type;
871 if (TYPE_STUB (index_type))
872 TYPE_TARGET_STUB (result_type) = 1;
873 else
874 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
875
876 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
877 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
878 TYPE_RANGE_DATA (result_type)->low = *low_bound;
879 TYPE_RANGE_DATA (result_type)->high = *high_bound;
880
881 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
882 TYPE_UNSIGNED (result_type) = 1;
883
884 /* Ada allows the declaration of range types whose upper bound is
885 less than the lower bound, so checking the lower bound is not
886 enough. Make sure we do not mark a range type whose upper bound
887 is negative as unsigned. */
888 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
889 TYPE_UNSIGNED (result_type) = 0;
890
891 return result_type;
892 }
893
894 /* Create a range type using either a blank type supplied in
895 RESULT_TYPE, or creating a new type, inheriting the objfile from
896 INDEX_TYPE.
897
898 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
899 to HIGH_BOUND, inclusive.
900
901 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
902 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
903
904 struct type *
905 create_static_range_type (struct type *result_type, struct type *index_type,
906 LONGEST low_bound, LONGEST high_bound)
907 {
908 struct dynamic_prop low, high;
909
910 low.kind = PROP_CONST;
911 low.data.const_val = low_bound;
912
913 high.kind = PROP_CONST;
914 high.data.const_val = high_bound;
915
916 result_type = create_range_type (result_type, index_type, &low, &high);
917
918 return result_type;
919 }
920
921 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
922 are static, otherwise returns 0. */
923
924 static int
925 has_static_range (const struct range_bounds *bounds)
926 {
927 return (bounds->low.kind == PROP_CONST
928 && bounds->high.kind == PROP_CONST);
929 }
930
931
932 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
933 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
934 bounds will fit in LONGEST), or -1 otherwise. */
935
936 int
937 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
938 {
939 type = check_typedef (type);
940 switch (TYPE_CODE (type))
941 {
942 case TYPE_CODE_RANGE:
943 *lowp = TYPE_LOW_BOUND (type);
944 *highp = TYPE_HIGH_BOUND (type);
945 return 1;
946 case TYPE_CODE_ENUM:
947 if (TYPE_NFIELDS (type) > 0)
948 {
949 /* The enums may not be sorted by value, so search all
950 entries. */
951 int i;
952
953 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
954 for (i = 0; i < TYPE_NFIELDS (type); i++)
955 {
956 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
957 *lowp = TYPE_FIELD_ENUMVAL (type, i);
958 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
959 *highp = TYPE_FIELD_ENUMVAL (type, i);
960 }
961
962 /* Set unsigned indicator if warranted. */
963 if (*lowp >= 0)
964 {
965 TYPE_UNSIGNED (type) = 1;
966 }
967 }
968 else
969 {
970 *lowp = 0;
971 *highp = -1;
972 }
973 return 0;
974 case TYPE_CODE_BOOL:
975 *lowp = 0;
976 *highp = 1;
977 return 0;
978 case TYPE_CODE_INT:
979 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
980 return -1;
981 if (!TYPE_UNSIGNED (type))
982 {
983 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
984 *highp = -*lowp - 1;
985 return 0;
986 }
987 /* ... fall through for unsigned ints ... */
988 case TYPE_CODE_CHAR:
989 *lowp = 0;
990 /* This round-about calculation is to avoid shifting by
991 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
992 if TYPE_LENGTH (type) == sizeof (LONGEST). */
993 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
994 *highp = (*highp - 1) | *highp;
995 return 0;
996 default:
997 return -1;
998 }
999 }
1000
1001 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1002 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1003 Save the high bound into HIGH_BOUND if not NULL.
1004
1005 Return 1 if the operation was successful. Return zero otherwise,
1006 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1007
1008 We now simply use get_discrete_bounds call to get the values
1009 of the low and high bounds.
1010 get_discrete_bounds can return three values:
1011 1, meaning that index is a range,
1012 0, meaning that index is a discrete type,
1013 or -1 for failure. */
1014
1015 int
1016 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1017 {
1018 struct type *index = TYPE_INDEX_TYPE (type);
1019 LONGEST low = 0;
1020 LONGEST high = 0;
1021 int res;
1022
1023 if (index == NULL)
1024 return 0;
1025
1026 res = get_discrete_bounds (index, &low, &high);
1027 if (res == -1)
1028 return 0;
1029
1030 /* Check if the array bounds are undefined. */
1031 if (res == 1
1032 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1033 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1034 return 0;
1035
1036 if (low_bound)
1037 *low_bound = low;
1038
1039 if (high_bound)
1040 *high_bound = high;
1041
1042 return 1;
1043 }
1044
1045 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1046 representation of a value of this type, save the corresponding
1047 position number in POS.
1048
1049 Its differs from VAL only in the case of enumeration types. In
1050 this case, the position number of the value of the first listed
1051 enumeration literal is zero; the position number of the value of
1052 each subsequent enumeration literal is one more than that of its
1053 predecessor in the list.
1054
1055 Return 1 if the operation was successful. Return zero otherwise,
1056 in which case the value of POS is unmodified.
1057 */
1058
1059 int
1060 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1061 {
1062 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1063 {
1064 int i;
1065
1066 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1067 {
1068 if (val == TYPE_FIELD_ENUMVAL (type, i))
1069 {
1070 *pos = i;
1071 return 1;
1072 }
1073 }
1074 /* Invalid enumeration value. */
1075 return 0;
1076 }
1077 else
1078 {
1079 *pos = val;
1080 return 1;
1081 }
1082 }
1083
1084 /* Create an array type using either a blank type supplied in
1085 RESULT_TYPE, or creating a new type, inheriting the objfile from
1086 RANGE_TYPE.
1087
1088 Elements will be of type ELEMENT_TYPE, the indices will be of type
1089 RANGE_TYPE.
1090
1091 If BIT_STRIDE is not zero, build a packed array type whose element
1092 size is BIT_STRIDE. Otherwise, ignore this parameter.
1093
1094 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1095 sure it is TYPE_CODE_UNDEF before we bash it into an array
1096 type? */
1097
1098 struct type *
1099 create_array_type_with_stride (struct type *result_type,
1100 struct type *element_type,
1101 struct type *range_type,
1102 unsigned int bit_stride)
1103 {
1104 if (result_type == NULL)
1105 result_type = alloc_type_copy (range_type);
1106
1107 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1108 TYPE_TARGET_TYPE (result_type) = element_type;
1109 if (has_static_range (TYPE_RANGE_DATA (range_type))
1110 && (!type_not_associated (result_type)
1111 && !type_not_allocated (result_type)))
1112 {
1113 LONGEST low_bound, high_bound;
1114
1115 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1116 low_bound = high_bound = 0;
1117 element_type = check_typedef (element_type);
1118 /* Be careful when setting the array length. Ada arrays can be
1119 empty arrays with the high_bound being smaller than the low_bound.
1120 In such cases, the array length should be zero. */
1121 if (high_bound < low_bound)
1122 TYPE_LENGTH (result_type) = 0;
1123 else if (bit_stride > 0)
1124 TYPE_LENGTH (result_type) =
1125 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1126 else
1127 TYPE_LENGTH (result_type) =
1128 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1129 }
1130 else
1131 {
1132 /* This type is dynamic and its length needs to be computed
1133 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1134 undefined by setting it to zero. Although we are not expected
1135 to trust TYPE_LENGTH in this case, setting the size to zero
1136 allows us to avoid allocating objects of random sizes in case
1137 we accidently do. */
1138 TYPE_LENGTH (result_type) = 0;
1139 }
1140
1141 TYPE_NFIELDS (result_type) = 1;
1142 TYPE_FIELDS (result_type) =
1143 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1144 TYPE_INDEX_TYPE (result_type) = range_type;
1145 if (bit_stride > 0)
1146 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1147
1148 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1149 if (TYPE_LENGTH (result_type) == 0)
1150 TYPE_TARGET_STUB (result_type) = 1;
1151
1152 return result_type;
1153 }
1154
1155 /* Same as create_array_type_with_stride but with no bit_stride
1156 (BIT_STRIDE = 0), thus building an unpacked array. */
1157
1158 struct type *
1159 create_array_type (struct type *result_type,
1160 struct type *element_type,
1161 struct type *range_type)
1162 {
1163 return create_array_type_with_stride (result_type, element_type,
1164 range_type, 0);
1165 }
1166
1167 struct type *
1168 lookup_array_range_type (struct type *element_type,
1169 LONGEST low_bound, LONGEST high_bound)
1170 {
1171 struct gdbarch *gdbarch = get_type_arch (element_type);
1172 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1173 struct type *range_type
1174 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1175
1176 return create_array_type (NULL, element_type, range_type);
1177 }
1178
1179 /* Create a string type using either a blank type supplied in
1180 RESULT_TYPE, or creating a new type. String types are similar
1181 enough to array of char types that we can use create_array_type to
1182 build the basic type and then bash it into a string type.
1183
1184 For fixed length strings, the range type contains 0 as the lower
1185 bound and the length of the string minus one as the upper bound.
1186
1187 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1188 sure it is TYPE_CODE_UNDEF before we bash it into a string
1189 type? */
1190
1191 struct type *
1192 create_string_type (struct type *result_type,
1193 struct type *string_char_type,
1194 struct type *range_type)
1195 {
1196 result_type = create_array_type (result_type,
1197 string_char_type,
1198 range_type);
1199 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1200 return result_type;
1201 }
1202
1203 struct type *
1204 lookup_string_range_type (struct type *string_char_type,
1205 LONGEST low_bound, LONGEST high_bound)
1206 {
1207 struct type *result_type;
1208
1209 result_type = lookup_array_range_type (string_char_type,
1210 low_bound, high_bound);
1211 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1212 return result_type;
1213 }
1214
1215 struct type *
1216 create_set_type (struct type *result_type, struct type *domain_type)
1217 {
1218 if (result_type == NULL)
1219 result_type = alloc_type_copy (domain_type);
1220
1221 TYPE_CODE (result_type) = TYPE_CODE_SET;
1222 TYPE_NFIELDS (result_type) = 1;
1223 TYPE_FIELDS (result_type)
1224 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1225
1226 if (!TYPE_STUB (domain_type))
1227 {
1228 LONGEST low_bound, high_bound, bit_length;
1229
1230 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1231 low_bound = high_bound = 0;
1232 bit_length = high_bound - low_bound + 1;
1233 TYPE_LENGTH (result_type)
1234 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1235 if (low_bound >= 0)
1236 TYPE_UNSIGNED (result_type) = 1;
1237 }
1238 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1239
1240 return result_type;
1241 }
1242
1243 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1244 and any array types nested inside it. */
1245
1246 void
1247 make_vector_type (struct type *array_type)
1248 {
1249 struct type *inner_array, *elt_type;
1250 int flags;
1251
1252 /* Find the innermost array type, in case the array is
1253 multi-dimensional. */
1254 inner_array = array_type;
1255 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1256 inner_array = TYPE_TARGET_TYPE (inner_array);
1257
1258 elt_type = TYPE_TARGET_TYPE (inner_array);
1259 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1260 {
1261 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1262 elt_type = make_qualified_type (elt_type, flags, NULL);
1263 TYPE_TARGET_TYPE (inner_array) = elt_type;
1264 }
1265
1266 TYPE_VECTOR (array_type) = 1;
1267 }
1268
1269 struct type *
1270 init_vector_type (struct type *elt_type, int n)
1271 {
1272 struct type *array_type;
1273
1274 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1275 make_vector_type (array_type);
1276 return array_type;
1277 }
1278
1279 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1280 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1281 confusing. "self" is a common enough replacement for "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285 struct type *
1286 internal_type_self_type (struct type *type)
1287 {
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 return NULL;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1296 case TYPE_CODE_METHOD:
1297 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1298 return NULL;
1299 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1300 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1301 default:
1302 gdb_assert_not_reached ("bad type");
1303 }
1304 }
1305
1306 /* Set the type of the class that TYPE belongs to.
1307 In c++ this is the class of "this".
1308 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1309 TYPE_CODE_METHOD. */
1310
1311 void
1312 set_type_self_type (struct type *type, struct type *self_type)
1313 {
1314 switch (TYPE_CODE (type))
1315 {
1316 case TYPE_CODE_METHODPTR:
1317 case TYPE_CODE_MEMBERPTR:
1318 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1319 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1320 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1321 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1322 break;
1323 case TYPE_CODE_METHOD:
1324 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1325 INIT_FUNC_SPECIFIC (type);
1326 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1327 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1328 break;
1329 default:
1330 gdb_assert_not_reached ("bad type");
1331 }
1332 }
1333
1334 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1335 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1336 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1337 TYPE doesn't include the offset (that's the value of the MEMBER
1338 itself), but does include the structure type into which it points
1339 (for some reason).
1340
1341 When "smashing" the type, we preserve the objfile that the old type
1342 pointed to, since we aren't changing where the type is actually
1343 allocated. */
1344
1345 void
1346 smash_to_memberptr_type (struct type *type, struct type *self_type,
1347 struct type *to_type)
1348 {
1349 smash_type (type);
1350 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1351 TYPE_TARGET_TYPE (type) = to_type;
1352 set_type_self_type (type, self_type);
1353 /* Assume that a data member pointer is the same size as a normal
1354 pointer. */
1355 TYPE_LENGTH (type)
1356 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1357 }
1358
1359 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1360
1361 When "smashing" the type, we preserve the objfile that the old type
1362 pointed to, since we aren't changing where the type is actually
1363 allocated. */
1364
1365 void
1366 smash_to_methodptr_type (struct type *type, struct type *to_type)
1367 {
1368 smash_type (type);
1369 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1370 TYPE_TARGET_TYPE (type) = to_type;
1371 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1372 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1373 }
1374
1375 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1376 METHOD just means `function that gets an extra "this" argument'.
1377
1378 When "smashing" the type, we preserve the objfile that the old type
1379 pointed to, since we aren't changing where the type is actually
1380 allocated. */
1381
1382 void
1383 smash_to_method_type (struct type *type, struct type *self_type,
1384 struct type *to_type, struct field *args,
1385 int nargs, int varargs)
1386 {
1387 smash_type (type);
1388 TYPE_CODE (type) = TYPE_CODE_METHOD;
1389 TYPE_TARGET_TYPE (type) = to_type;
1390 set_type_self_type (type, self_type);
1391 TYPE_FIELDS (type) = args;
1392 TYPE_NFIELDS (type) = nargs;
1393 if (varargs)
1394 TYPE_VARARGS (type) = 1;
1395 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1396 }
1397
1398 /* Return a typename for a struct/union/enum type without "struct ",
1399 "union ", or "enum ". If the type has a NULL name, return NULL. */
1400
1401 const char *
1402 type_name_no_tag (const struct type *type)
1403 {
1404 if (TYPE_TAG_NAME (type) != NULL)
1405 return TYPE_TAG_NAME (type);
1406
1407 /* Is there code which expects this to return the name if there is
1408 no tag name? My guess is that this is mainly used for C++ in
1409 cases where the two will always be the same. */
1410 return TYPE_NAME (type);
1411 }
1412
1413 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1414 Since GCC PR debug/47510 DWARF provides associated information to detect the
1415 anonymous class linkage name from its typedef.
1416
1417 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1418 apply it itself. */
1419
1420 const char *
1421 type_name_no_tag_or_error (struct type *type)
1422 {
1423 struct type *saved_type = type;
1424 const char *name;
1425 struct objfile *objfile;
1426
1427 type = check_typedef (type);
1428
1429 name = type_name_no_tag (type);
1430 if (name != NULL)
1431 return name;
1432
1433 name = type_name_no_tag (saved_type);
1434 objfile = TYPE_OBJFILE (saved_type);
1435 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1436 name ? name : "<anonymous>",
1437 objfile ? objfile_name (objfile) : "<arch>");
1438 }
1439
1440 /* Lookup a typedef or primitive type named NAME, visible in lexical
1441 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1442 suitably defined. */
1443
1444 struct type *
1445 lookup_typename (const struct language_defn *language,
1446 struct gdbarch *gdbarch, const char *name,
1447 const struct block *block, int noerr)
1448 {
1449 struct symbol *sym;
1450
1451 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1452 language->la_language, NULL).symbol;
1453 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1454 return SYMBOL_TYPE (sym);
1455
1456 if (noerr)
1457 return NULL;
1458 error (_("No type named %s."), name);
1459 }
1460
1461 struct type *
1462 lookup_unsigned_typename (const struct language_defn *language,
1463 struct gdbarch *gdbarch, const char *name)
1464 {
1465 char *uns = (char *) alloca (strlen (name) + 10);
1466
1467 strcpy (uns, "unsigned ");
1468 strcpy (uns + 9, name);
1469 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1470 }
1471
1472 struct type *
1473 lookup_signed_typename (const struct language_defn *language,
1474 struct gdbarch *gdbarch, const char *name)
1475 {
1476 struct type *t;
1477 char *uns = (char *) alloca (strlen (name) + 8);
1478
1479 strcpy (uns, "signed ");
1480 strcpy (uns + 7, name);
1481 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1482 /* If we don't find "signed FOO" just try again with plain "FOO". */
1483 if (t != NULL)
1484 return t;
1485 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1486 }
1487
1488 /* Lookup a structure type named "struct NAME",
1489 visible in lexical block BLOCK. */
1490
1491 struct type *
1492 lookup_struct (const char *name, const struct block *block)
1493 {
1494 struct symbol *sym;
1495
1496 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1497
1498 if (sym == NULL)
1499 {
1500 error (_("No struct type named %s."), name);
1501 }
1502 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1503 {
1504 error (_("This context has class, union or enum %s, not a struct."),
1505 name);
1506 }
1507 return (SYMBOL_TYPE (sym));
1508 }
1509
1510 /* Lookup a union type named "union NAME",
1511 visible in lexical block BLOCK. */
1512
1513 struct type *
1514 lookup_union (const char *name, const struct block *block)
1515 {
1516 struct symbol *sym;
1517 struct type *t;
1518
1519 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1520
1521 if (sym == NULL)
1522 error (_("No union type named %s."), name);
1523
1524 t = SYMBOL_TYPE (sym);
1525
1526 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1527 return t;
1528
1529 /* If we get here, it's not a union. */
1530 error (_("This context has class, struct or enum %s, not a union."),
1531 name);
1532 }
1533
1534 /* Lookup an enum type named "enum NAME",
1535 visible in lexical block BLOCK. */
1536
1537 struct type *
1538 lookup_enum (const char *name, const struct block *block)
1539 {
1540 struct symbol *sym;
1541
1542 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1543 if (sym == NULL)
1544 {
1545 error (_("No enum type named %s."), name);
1546 }
1547 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1548 {
1549 error (_("This context has class, struct or union %s, not an enum."),
1550 name);
1551 }
1552 return (SYMBOL_TYPE (sym));
1553 }
1554
1555 /* Lookup a template type named "template NAME<TYPE>",
1556 visible in lexical block BLOCK. */
1557
1558 struct type *
1559 lookup_template_type (char *name, struct type *type,
1560 const struct block *block)
1561 {
1562 struct symbol *sym;
1563 char *nam = (char *)
1564 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1565
1566 strcpy (nam, name);
1567 strcat (nam, "<");
1568 strcat (nam, TYPE_NAME (type));
1569 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1570
1571 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1572
1573 if (sym == NULL)
1574 {
1575 error (_("No template type named %s."), name);
1576 }
1577 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1578 {
1579 error (_("This context has class, union or enum %s, not a struct."),
1580 name);
1581 }
1582 return (SYMBOL_TYPE (sym));
1583 }
1584
1585 /* Given a type TYPE, lookup the type of the component of type named
1586 NAME.
1587
1588 TYPE can be either a struct or union, or a pointer or reference to
1589 a struct or union. If it is a pointer or reference, its target
1590 type is automatically used. Thus '.' and '->' are interchangable,
1591 as specified for the definitions of the expression element types
1592 STRUCTOP_STRUCT and STRUCTOP_PTR.
1593
1594 If NOERR is nonzero, return zero if NAME is not suitably defined.
1595 If NAME is the name of a baseclass type, return that type. */
1596
1597 struct type *
1598 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1599 {
1600 int i;
1601
1602 for (;;)
1603 {
1604 type = check_typedef (type);
1605 if (TYPE_CODE (type) != TYPE_CODE_PTR
1606 && TYPE_CODE (type) != TYPE_CODE_REF)
1607 break;
1608 type = TYPE_TARGET_TYPE (type);
1609 }
1610
1611 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1612 && TYPE_CODE (type) != TYPE_CODE_UNION)
1613 {
1614 std::string type_name = type_to_string (type);
1615 error (_("Type %s is not a structure or union type."),
1616 type_name.c_str ());
1617 }
1618
1619 #if 0
1620 /* FIXME: This change put in by Michael seems incorrect for the case
1621 where the structure tag name is the same as the member name.
1622 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1623 foo; } bell;" Disabled by fnf. */
1624 {
1625 char *type_name;
1626
1627 type_name = type_name_no_tag (type);
1628 if (type_name != NULL && strcmp (type_name, name) == 0)
1629 return type;
1630 }
1631 #endif
1632
1633 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1634 {
1635 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1636
1637 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1638 {
1639 return TYPE_FIELD_TYPE (type, i);
1640 }
1641 else if (!t_field_name || *t_field_name == '\0')
1642 {
1643 struct type *subtype
1644 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1645
1646 if (subtype != NULL)
1647 return subtype;
1648 }
1649 }
1650
1651 /* OK, it's not in this class. Recursively check the baseclasses. */
1652 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1653 {
1654 struct type *t;
1655
1656 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1657 if (t != NULL)
1658 {
1659 return t;
1660 }
1661 }
1662
1663 if (noerr)
1664 {
1665 return NULL;
1666 }
1667
1668 std::string type_name = type_to_string (type);
1669 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1670 }
1671
1672 /* Store in *MAX the largest number representable by unsigned integer type
1673 TYPE. */
1674
1675 void
1676 get_unsigned_type_max (struct type *type, ULONGEST *max)
1677 {
1678 unsigned int n;
1679
1680 type = check_typedef (type);
1681 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1682 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1683
1684 /* Written this way to avoid overflow. */
1685 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1686 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1687 }
1688
1689 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1690 signed integer type TYPE. */
1691
1692 void
1693 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1694 {
1695 unsigned int n;
1696
1697 type = check_typedef (type);
1698 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1699 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1700
1701 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1702 *min = -((ULONGEST) 1 << (n - 1));
1703 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1704 }
1705
1706 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1707 cplus_stuff.vptr_fieldno.
1708
1709 cplus_stuff is initialized to cplus_struct_default which does not
1710 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1711 designated initializers). We cope with that here. */
1712
1713 int
1714 internal_type_vptr_fieldno (struct type *type)
1715 {
1716 type = check_typedef (type);
1717 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1718 || TYPE_CODE (type) == TYPE_CODE_UNION);
1719 if (!HAVE_CPLUS_STRUCT (type))
1720 return -1;
1721 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1722 }
1723
1724 /* Set the value of cplus_stuff.vptr_fieldno. */
1725
1726 void
1727 set_type_vptr_fieldno (struct type *type, int fieldno)
1728 {
1729 type = check_typedef (type);
1730 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1731 || TYPE_CODE (type) == TYPE_CODE_UNION);
1732 if (!HAVE_CPLUS_STRUCT (type))
1733 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1734 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1735 }
1736
1737 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1738 cplus_stuff.vptr_basetype. */
1739
1740 struct type *
1741 internal_type_vptr_basetype (struct type *type)
1742 {
1743 type = check_typedef (type);
1744 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1745 || TYPE_CODE (type) == TYPE_CODE_UNION);
1746 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1747 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1748 }
1749
1750 /* Set the value of cplus_stuff.vptr_basetype. */
1751
1752 void
1753 set_type_vptr_basetype (struct type *type, struct type *basetype)
1754 {
1755 type = check_typedef (type);
1756 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1757 || TYPE_CODE (type) == TYPE_CODE_UNION);
1758 if (!HAVE_CPLUS_STRUCT (type))
1759 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1760 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1761 }
1762
1763 /* Lookup the vptr basetype/fieldno values for TYPE.
1764 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1765 vptr_fieldno. Also, if found and basetype is from the same objfile,
1766 cache the results.
1767 If not found, return -1 and ignore BASETYPEP.
1768 Callers should be aware that in some cases (for example,
1769 the type or one of its baseclasses is a stub type and we are
1770 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1771 this function will not be able to find the
1772 virtual function table pointer, and vptr_fieldno will remain -1 and
1773 vptr_basetype will remain NULL or incomplete. */
1774
1775 int
1776 get_vptr_fieldno (struct type *type, struct type **basetypep)
1777 {
1778 type = check_typedef (type);
1779
1780 if (TYPE_VPTR_FIELDNO (type) < 0)
1781 {
1782 int i;
1783
1784 /* We must start at zero in case the first (and only) baseclass
1785 is virtual (and hence we cannot share the table pointer). */
1786 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1787 {
1788 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1789 int fieldno;
1790 struct type *basetype;
1791
1792 fieldno = get_vptr_fieldno (baseclass, &basetype);
1793 if (fieldno >= 0)
1794 {
1795 /* If the type comes from a different objfile we can't cache
1796 it, it may have a different lifetime. PR 2384 */
1797 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1798 {
1799 set_type_vptr_fieldno (type, fieldno);
1800 set_type_vptr_basetype (type, basetype);
1801 }
1802 if (basetypep)
1803 *basetypep = basetype;
1804 return fieldno;
1805 }
1806 }
1807
1808 /* Not found. */
1809 return -1;
1810 }
1811 else
1812 {
1813 if (basetypep)
1814 *basetypep = TYPE_VPTR_BASETYPE (type);
1815 return TYPE_VPTR_FIELDNO (type);
1816 }
1817 }
1818
1819 static void
1820 stub_noname_complaint (void)
1821 {
1822 complaint (&symfile_complaints, _("stub type has NULL name"));
1823 }
1824
1825 /* Worker for is_dynamic_type. */
1826
1827 static int
1828 is_dynamic_type_internal (struct type *type, int top_level)
1829 {
1830 type = check_typedef (type);
1831
1832 /* We only want to recognize references at the outermost level. */
1833 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1834 type = check_typedef (TYPE_TARGET_TYPE (type));
1835
1836 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1837 dynamic, even if the type itself is statically defined.
1838 From a user's point of view, this may appear counter-intuitive;
1839 but it makes sense in this context, because the point is to determine
1840 whether any part of the type needs to be resolved before it can
1841 be exploited. */
1842 if (TYPE_DATA_LOCATION (type) != NULL
1843 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1844 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1845 return 1;
1846
1847 if (TYPE_ASSOCIATED_PROP (type))
1848 return 1;
1849
1850 if (TYPE_ALLOCATED_PROP (type))
1851 return 1;
1852
1853 switch (TYPE_CODE (type))
1854 {
1855 case TYPE_CODE_RANGE:
1856 {
1857 /* A range type is obviously dynamic if it has at least one
1858 dynamic bound. But also consider the range type to be
1859 dynamic when its subtype is dynamic, even if the bounds
1860 of the range type are static. It allows us to assume that
1861 the subtype of a static range type is also static. */
1862 return (!has_static_range (TYPE_RANGE_DATA (type))
1863 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1864 }
1865
1866 case TYPE_CODE_ARRAY:
1867 {
1868 gdb_assert (TYPE_NFIELDS (type) == 1);
1869
1870 /* The array is dynamic if either the bounds are dynamic,
1871 or the elements it contains have a dynamic contents. */
1872 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1873 return 1;
1874 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1875 }
1876
1877 case TYPE_CODE_STRUCT:
1878 case TYPE_CODE_UNION:
1879 {
1880 int i;
1881
1882 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1883 if (!field_is_static (&TYPE_FIELD (type, i))
1884 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1885 return 1;
1886 }
1887 break;
1888 }
1889
1890 return 0;
1891 }
1892
1893 /* See gdbtypes.h. */
1894
1895 int
1896 is_dynamic_type (struct type *type)
1897 {
1898 return is_dynamic_type_internal (type, 1);
1899 }
1900
1901 static struct type *resolve_dynamic_type_internal
1902 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1903
1904 /* Given a dynamic range type (dyn_range_type) and a stack of
1905 struct property_addr_info elements, return a static version
1906 of that type. */
1907
1908 static struct type *
1909 resolve_dynamic_range (struct type *dyn_range_type,
1910 struct property_addr_info *addr_stack)
1911 {
1912 CORE_ADDR value;
1913 struct type *static_range_type, *static_target_type;
1914 const struct dynamic_prop *prop;
1915 struct dynamic_prop low_bound, high_bound;
1916
1917 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1918
1919 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1920 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1921 {
1922 low_bound.kind = PROP_CONST;
1923 low_bound.data.const_val = value;
1924 }
1925 else
1926 {
1927 low_bound.kind = PROP_UNDEFINED;
1928 low_bound.data.const_val = 0;
1929 }
1930
1931 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1932 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1933 {
1934 high_bound.kind = PROP_CONST;
1935 high_bound.data.const_val = value;
1936
1937 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1938 high_bound.data.const_val
1939 = low_bound.data.const_val + high_bound.data.const_val - 1;
1940 }
1941 else
1942 {
1943 high_bound.kind = PROP_UNDEFINED;
1944 high_bound.data.const_val = 0;
1945 }
1946
1947 static_target_type
1948 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1949 addr_stack, 0);
1950 static_range_type = create_range_type (copy_type (dyn_range_type),
1951 static_target_type,
1952 &low_bound, &high_bound);
1953 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1954 return static_range_type;
1955 }
1956
1957 /* Resolves dynamic bound values of an array type TYPE to static ones.
1958 ADDR_STACK is a stack of struct property_addr_info to be used
1959 if needed during the dynamic resolution. */
1960
1961 static struct type *
1962 resolve_dynamic_array (struct type *type,
1963 struct property_addr_info *addr_stack)
1964 {
1965 CORE_ADDR value;
1966 struct type *elt_type;
1967 struct type *range_type;
1968 struct type *ary_dim;
1969 struct dynamic_prop *prop;
1970
1971 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1972
1973 type = copy_type (type);
1974
1975 elt_type = type;
1976 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1977 range_type = resolve_dynamic_range (range_type, addr_stack);
1978
1979 /* Resolve allocated/associated here before creating a new array type, which
1980 will update the length of the array accordingly. */
1981 prop = TYPE_ALLOCATED_PROP (type);
1982 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1983 {
1984 TYPE_DYN_PROP_ADDR (prop) = value;
1985 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1986 }
1987 prop = TYPE_ASSOCIATED_PROP (type);
1988 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1989 {
1990 TYPE_DYN_PROP_ADDR (prop) = value;
1991 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1992 }
1993
1994 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1995
1996 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1997 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1998 else
1999 elt_type = TYPE_TARGET_TYPE (type);
2000
2001 return create_array_type_with_stride (type, elt_type, range_type,
2002 TYPE_FIELD_BITSIZE (type, 0));
2003 }
2004
2005 /* Resolve dynamic bounds of members of the union TYPE to static
2006 bounds. ADDR_STACK is a stack of struct property_addr_info
2007 to be used if needed during the dynamic resolution. */
2008
2009 static struct type *
2010 resolve_dynamic_union (struct type *type,
2011 struct property_addr_info *addr_stack)
2012 {
2013 struct type *resolved_type;
2014 int i;
2015 unsigned int max_len = 0;
2016
2017 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2018
2019 resolved_type = copy_type (type);
2020 TYPE_FIELDS (resolved_type)
2021 = (struct field *) TYPE_ALLOC (resolved_type,
2022 TYPE_NFIELDS (resolved_type)
2023 * sizeof (struct field));
2024 memcpy (TYPE_FIELDS (resolved_type),
2025 TYPE_FIELDS (type),
2026 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2027 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2028 {
2029 struct type *t;
2030
2031 if (field_is_static (&TYPE_FIELD (type, i)))
2032 continue;
2033
2034 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2035 addr_stack, 0);
2036 TYPE_FIELD_TYPE (resolved_type, i) = t;
2037 if (TYPE_LENGTH (t) > max_len)
2038 max_len = TYPE_LENGTH (t);
2039 }
2040
2041 TYPE_LENGTH (resolved_type) = max_len;
2042 return resolved_type;
2043 }
2044
2045 /* Resolve dynamic bounds of members of the struct TYPE to static
2046 bounds. ADDR_STACK is a stack of struct property_addr_info to
2047 be used if needed during the dynamic resolution. */
2048
2049 static struct type *
2050 resolve_dynamic_struct (struct type *type,
2051 struct property_addr_info *addr_stack)
2052 {
2053 struct type *resolved_type;
2054 int i;
2055 unsigned resolved_type_bit_length = 0;
2056
2057 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2058 gdb_assert (TYPE_NFIELDS (type) > 0);
2059
2060 resolved_type = copy_type (type);
2061 TYPE_FIELDS (resolved_type)
2062 = (struct field *) TYPE_ALLOC (resolved_type,
2063 TYPE_NFIELDS (resolved_type)
2064 * sizeof (struct field));
2065 memcpy (TYPE_FIELDS (resolved_type),
2066 TYPE_FIELDS (type),
2067 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2068 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2069 {
2070 unsigned new_bit_length;
2071 struct property_addr_info pinfo;
2072
2073 if (field_is_static (&TYPE_FIELD (type, i)))
2074 continue;
2075
2076 /* As we know this field is not a static field, the field's
2077 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2078 this is the case, but only trigger a simple error rather
2079 than an internal error if that fails. While failing
2080 that verification indicates a bug in our code, the error
2081 is not severe enough to suggest to the user he stops
2082 his debugging session because of it. */
2083 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2084 error (_("Cannot determine struct field location"
2085 " (invalid location kind)"));
2086
2087 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2088 pinfo.valaddr = addr_stack->valaddr;
2089 pinfo.addr
2090 = (addr_stack->addr
2091 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2092 pinfo.next = addr_stack;
2093
2094 TYPE_FIELD_TYPE (resolved_type, i)
2095 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2096 &pinfo, 0);
2097 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2098 == FIELD_LOC_KIND_BITPOS);
2099
2100 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2101 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2102 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2103 else
2104 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2105 * TARGET_CHAR_BIT);
2106
2107 /* Normally, we would use the position and size of the last field
2108 to determine the size of the enclosing structure. But GCC seems
2109 to be encoding the position of some fields incorrectly when
2110 the struct contains a dynamic field that is not placed last.
2111 So we compute the struct size based on the field that has
2112 the highest position + size - probably the best we can do. */
2113 if (new_bit_length > resolved_type_bit_length)
2114 resolved_type_bit_length = new_bit_length;
2115 }
2116
2117 /* The length of a type won't change for fortran, but it does for C and Ada.
2118 For fortran the size of dynamic fields might change over time but not the
2119 type length of the structure. If we adapt it, we run into problems
2120 when calculating the element offset for arrays of structs. */
2121 if (current_language->la_language != language_fortran)
2122 TYPE_LENGTH (resolved_type)
2123 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2124
2125 /* The Ada language uses this field as a cache for static fixed types: reset
2126 it as RESOLVED_TYPE must have its own static fixed type. */
2127 TYPE_TARGET_TYPE (resolved_type) = NULL;
2128
2129 return resolved_type;
2130 }
2131
2132 /* Worker for resolved_dynamic_type. */
2133
2134 static struct type *
2135 resolve_dynamic_type_internal (struct type *type,
2136 struct property_addr_info *addr_stack,
2137 int top_level)
2138 {
2139 struct type *real_type = check_typedef (type);
2140 struct type *resolved_type = type;
2141 struct dynamic_prop *prop;
2142 CORE_ADDR value;
2143
2144 if (!is_dynamic_type_internal (real_type, top_level))
2145 return type;
2146
2147 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2148 {
2149 resolved_type = copy_type (type);
2150 TYPE_TARGET_TYPE (resolved_type)
2151 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2152 top_level);
2153 }
2154 else
2155 {
2156 /* Before trying to resolve TYPE, make sure it is not a stub. */
2157 type = real_type;
2158
2159 switch (TYPE_CODE (type))
2160 {
2161 case TYPE_CODE_REF:
2162 {
2163 struct property_addr_info pinfo;
2164
2165 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2166 pinfo.valaddr = NULL;
2167 if (addr_stack->valaddr != NULL)
2168 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2169 else
2170 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2171 pinfo.next = addr_stack;
2172
2173 resolved_type = copy_type (type);
2174 TYPE_TARGET_TYPE (resolved_type)
2175 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2176 &pinfo, top_level);
2177 break;
2178 }
2179
2180 case TYPE_CODE_ARRAY:
2181 resolved_type = resolve_dynamic_array (type, addr_stack);
2182 break;
2183
2184 case TYPE_CODE_RANGE:
2185 resolved_type = resolve_dynamic_range (type, addr_stack);
2186 break;
2187
2188 case TYPE_CODE_UNION:
2189 resolved_type = resolve_dynamic_union (type, addr_stack);
2190 break;
2191
2192 case TYPE_CODE_STRUCT:
2193 resolved_type = resolve_dynamic_struct (type, addr_stack);
2194 break;
2195 }
2196 }
2197
2198 /* Resolve data_location attribute. */
2199 prop = TYPE_DATA_LOCATION (resolved_type);
2200 if (prop != NULL
2201 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2202 {
2203 TYPE_DYN_PROP_ADDR (prop) = value;
2204 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2205 }
2206
2207 return resolved_type;
2208 }
2209
2210 /* See gdbtypes.h */
2211
2212 struct type *
2213 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2214 CORE_ADDR addr)
2215 {
2216 struct property_addr_info pinfo
2217 = {check_typedef (type), valaddr, addr, NULL};
2218
2219 return resolve_dynamic_type_internal (type, &pinfo, 1);
2220 }
2221
2222 /* See gdbtypes.h */
2223
2224 struct dynamic_prop *
2225 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2226 {
2227 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2228
2229 while (node != NULL)
2230 {
2231 if (node->prop_kind == prop_kind)
2232 return &node->prop;
2233 node = node->next;
2234 }
2235 return NULL;
2236 }
2237
2238 /* See gdbtypes.h */
2239
2240 void
2241 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2242 struct type *type, struct objfile *objfile)
2243 {
2244 struct dynamic_prop_list *temp;
2245
2246 gdb_assert (TYPE_OBJFILE_OWNED (type));
2247
2248 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2249 temp->prop_kind = prop_kind;
2250 temp->prop = prop;
2251 temp->next = TYPE_DYN_PROP_LIST (type);
2252
2253 TYPE_DYN_PROP_LIST (type) = temp;
2254 }
2255
2256 /* Remove dynamic property from TYPE in case it exists. */
2257
2258 void
2259 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2260 struct type *type)
2261 {
2262 struct dynamic_prop_list *prev_node, *curr_node;
2263
2264 curr_node = TYPE_DYN_PROP_LIST (type);
2265 prev_node = NULL;
2266
2267 while (NULL != curr_node)
2268 {
2269 if (curr_node->prop_kind == prop_kind)
2270 {
2271 /* Update the linked list but don't free anything.
2272 The property was allocated on objstack and it is not known
2273 if we are on top of it. Nevertheless, everything is released
2274 when the complete objstack is freed. */
2275 if (NULL == prev_node)
2276 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2277 else
2278 prev_node->next = curr_node->next;
2279
2280 return;
2281 }
2282
2283 prev_node = curr_node;
2284 curr_node = curr_node->next;
2285 }
2286 }
2287
2288 /* Find the real type of TYPE. This function returns the real type,
2289 after removing all layers of typedefs, and completing opaque or stub
2290 types. Completion changes the TYPE argument, but stripping of
2291 typedefs does not.
2292
2293 Instance flags (e.g. const/volatile) are preserved as typedefs are
2294 stripped. If necessary a new qualified form of the underlying type
2295 is created.
2296
2297 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2298 not been computed and we're either in the middle of reading symbols, or
2299 there was no name for the typedef in the debug info.
2300
2301 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2302 QUITs in the symbol reading code can also throw.
2303 Thus this function can throw an exception.
2304
2305 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2306 the target type.
2307
2308 If this is a stubbed struct (i.e. declared as struct foo *), see if
2309 we can find a full definition in some other file. If so, copy this
2310 definition, so we can use it in future. There used to be a comment
2311 (but not any code) that if we don't find a full definition, we'd
2312 set a flag so we don't spend time in the future checking the same
2313 type. That would be a mistake, though--we might load in more
2314 symbols which contain a full definition for the type. */
2315
2316 struct type *
2317 check_typedef (struct type *type)
2318 {
2319 struct type *orig_type = type;
2320 /* While we're removing typedefs, we don't want to lose qualifiers.
2321 E.g., const/volatile. */
2322 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2323
2324 gdb_assert (type);
2325
2326 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2327 {
2328 if (!TYPE_TARGET_TYPE (type))
2329 {
2330 const char *name;
2331 struct symbol *sym;
2332
2333 /* It is dangerous to call lookup_symbol if we are currently
2334 reading a symtab. Infinite recursion is one danger. */
2335 if (currently_reading_symtab)
2336 return make_qualified_type (type, instance_flags, NULL);
2337
2338 name = type_name_no_tag (type);
2339 /* FIXME: shouldn't we separately check the TYPE_NAME and
2340 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2341 VAR_DOMAIN as appropriate? (this code was written before
2342 TYPE_NAME and TYPE_TAG_NAME were separate). */
2343 if (name == NULL)
2344 {
2345 stub_noname_complaint ();
2346 return make_qualified_type (type, instance_flags, NULL);
2347 }
2348 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2349 if (sym)
2350 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2351 else /* TYPE_CODE_UNDEF */
2352 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2353 }
2354 type = TYPE_TARGET_TYPE (type);
2355
2356 /* Preserve the instance flags as we traverse down the typedef chain.
2357
2358 Handling address spaces/classes is nasty, what do we do if there's a
2359 conflict?
2360 E.g., what if an outer typedef marks the type as class_1 and an inner
2361 typedef marks the type as class_2?
2362 This is the wrong place to do such error checking. We leave it to
2363 the code that created the typedef in the first place to flag the
2364 error. We just pick the outer address space (akin to letting the
2365 outer cast in a chain of casting win), instead of assuming
2366 "it can't happen". */
2367 {
2368 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2369 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2370 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2371 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2372
2373 /* Treat code vs data spaces and address classes separately. */
2374 if ((instance_flags & ALL_SPACES) != 0)
2375 new_instance_flags &= ~ALL_SPACES;
2376 if ((instance_flags & ALL_CLASSES) != 0)
2377 new_instance_flags &= ~ALL_CLASSES;
2378
2379 instance_flags |= new_instance_flags;
2380 }
2381 }
2382
2383 /* If this is a struct/class/union with no fields, then check
2384 whether a full definition exists somewhere else. This is for
2385 systems where a type definition with no fields is issued for such
2386 types, instead of identifying them as stub types in the first
2387 place. */
2388
2389 if (TYPE_IS_OPAQUE (type)
2390 && opaque_type_resolution
2391 && !currently_reading_symtab)
2392 {
2393 const char *name = type_name_no_tag (type);
2394 struct type *newtype;
2395
2396 if (name == NULL)
2397 {
2398 stub_noname_complaint ();
2399 return make_qualified_type (type, instance_flags, NULL);
2400 }
2401 newtype = lookup_transparent_type (name);
2402
2403 if (newtype)
2404 {
2405 /* If the resolved type and the stub are in the same
2406 objfile, then replace the stub type with the real deal.
2407 But if they're in separate objfiles, leave the stub
2408 alone; we'll just look up the transparent type every time
2409 we call check_typedef. We can't create pointers between
2410 types allocated to different objfiles, since they may
2411 have different lifetimes. Trying to copy NEWTYPE over to
2412 TYPE's objfile is pointless, too, since you'll have to
2413 move over any other types NEWTYPE refers to, which could
2414 be an unbounded amount of stuff. */
2415 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2416 type = make_qualified_type (newtype,
2417 TYPE_INSTANCE_FLAGS (type),
2418 type);
2419 else
2420 type = newtype;
2421 }
2422 }
2423 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2424 types. */
2425 else if (TYPE_STUB (type) && !currently_reading_symtab)
2426 {
2427 const char *name = type_name_no_tag (type);
2428 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2429 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2430 as appropriate? (this code was written before TYPE_NAME and
2431 TYPE_TAG_NAME were separate). */
2432 struct symbol *sym;
2433
2434 if (name == NULL)
2435 {
2436 stub_noname_complaint ();
2437 return make_qualified_type (type, instance_flags, NULL);
2438 }
2439 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2440 if (sym)
2441 {
2442 /* Same as above for opaque types, we can replace the stub
2443 with the complete type only if they are in the same
2444 objfile. */
2445 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2446 type = make_qualified_type (SYMBOL_TYPE (sym),
2447 TYPE_INSTANCE_FLAGS (type),
2448 type);
2449 else
2450 type = SYMBOL_TYPE (sym);
2451 }
2452 }
2453
2454 if (TYPE_TARGET_STUB (type))
2455 {
2456 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2457
2458 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2459 {
2460 /* Nothing we can do. */
2461 }
2462 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2463 {
2464 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2465 TYPE_TARGET_STUB (type) = 0;
2466 }
2467 }
2468
2469 type = make_qualified_type (type, instance_flags, NULL);
2470
2471 /* Cache TYPE_LENGTH for future use. */
2472 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2473
2474 return type;
2475 }
2476
2477 /* Parse a type expression in the string [P..P+LENGTH). If an error
2478 occurs, silently return a void type. */
2479
2480 static struct type *
2481 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2482 {
2483 struct ui_file *saved_gdb_stderr;
2484 struct type *type = NULL; /* Initialize to keep gcc happy. */
2485
2486 /* Suppress error messages. */
2487 saved_gdb_stderr = gdb_stderr;
2488 gdb_stderr = &null_stream;
2489
2490 /* Call parse_and_eval_type() without fear of longjmp()s. */
2491 TRY
2492 {
2493 type = parse_and_eval_type (p, length);
2494 }
2495 CATCH (except, RETURN_MASK_ERROR)
2496 {
2497 type = builtin_type (gdbarch)->builtin_void;
2498 }
2499 END_CATCH
2500
2501 /* Stop suppressing error messages. */
2502 gdb_stderr = saved_gdb_stderr;
2503
2504 return type;
2505 }
2506
2507 /* Ugly hack to convert method stubs into method types.
2508
2509 He ain't kiddin'. This demangles the name of the method into a
2510 string including argument types, parses out each argument type,
2511 generates a string casting a zero to that type, evaluates the
2512 string, and stuffs the resulting type into an argtype vector!!!
2513 Then it knows the type of the whole function (including argument
2514 types for overloading), which info used to be in the stab's but was
2515 removed to hack back the space required for them. */
2516
2517 static void
2518 check_stub_method (struct type *type, int method_id, int signature_id)
2519 {
2520 struct gdbarch *gdbarch = get_type_arch (type);
2521 struct fn_field *f;
2522 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2523 char *demangled_name = gdb_demangle (mangled_name,
2524 DMGL_PARAMS | DMGL_ANSI);
2525 char *argtypetext, *p;
2526 int depth = 0, argcount = 1;
2527 struct field *argtypes;
2528 struct type *mtype;
2529
2530 /* Make sure we got back a function string that we can use. */
2531 if (demangled_name)
2532 p = strchr (demangled_name, '(');
2533 else
2534 p = NULL;
2535
2536 if (demangled_name == NULL || p == NULL)
2537 error (_("Internal: Cannot demangle mangled name `%s'."),
2538 mangled_name);
2539
2540 /* Now, read in the parameters that define this type. */
2541 p += 1;
2542 argtypetext = p;
2543 while (*p)
2544 {
2545 if (*p == '(' || *p == '<')
2546 {
2547 depth += 1;
2548 }
2549 else if (*p == ')' || *p == '>')
2550 {
2551 depth -= 1;
2552 }
2553 else if (*p == ',' && depth == 0)
2554 {
2555 argcount += 1;
2556 }
2557
2558 p += 1;
2559 }
2560
2561 /* If we read one argument and it was ``void'', don't count it. */
2562 if (startswith (argtypetext, "(void)"))
2563 argcount -= 1;
2564
2565 /* We need one extra slot, for the THIS pointer. */
2566
2567 argtypes = (struct field *)
2568 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2569 p = argtypetext;
2570
2571 /* Add THIS pointer for non-static methods. */
2572 f = TYPE_FN_FIELDLIST1 (type, method_id);
2573 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2574 argcount = 0;
2575 else
2576 {
2577 argtypes[0].type = lookup_pointer_type (type);
2578 argcount = 1;
2579 }
2580
2581 if (*p != ')') /* () means no args, skip while. */
2582 {
2583 depth = 0;
2584 while (*p)
2585 {
2586 if (depth <= 0 && (*p == ',' || *p == ')'))
2587 {
2588 /* Avoid parsing of ellipsis, they will be handled below.
2589 Also avoid ``void'' as above. */
2590 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2591 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2592 {
2593 argtypes[argcount].type =
2594 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2595 argcount += 1;
2596 }
2597 argtypetext = p + 1;
2598 }
2599
2600 if (*p == '(' || *p == '<')
2601 {
2602 depth += 1;
2603 }
2604 else if (*p == ')' || *p == '>')
2605 {
2606 depth -= 1;
2607 }
2608
2609 p += 1;
2610 }
2611 }
2612
2613 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2614
2615 /* Now update the old "stub" type into a real type. */
2616 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2617 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2618 We want a method (TYPE_CODE_METHOD). */
2619 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2620 argtypes, argcount, p[-2] == '.');
2621 TYPE_STUB (mtype) = 0;
2622 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2623
2624 xfree (demangled_name);
2625 }
2626
2627 /* This is the external interface to check_stub_method, above. This
2628 function unstubs all of the signatures for TYPE's METHOD_ID method
2629 name. After calling this function TYPE_FN_FIELD_STUB will be
2630 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2631 correct.
2632
2633 This function unfortunately can not die until stabs do. */
2634
2635 void
2636 check_stub_method_group (struct type *type, int method_id)
2637 {
2638 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2639 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2640 int j, found_stub = 0;
2641
2642 for (j = 0; j < len; j++)
2643 if (TYPE_FN_FIELD_STUB (f, j))
2644 {
2645 found_stub = 1;
2646 check_stub_method (type, method_id, j);
2647 }
2648
2649 /* GNU v3 methods with incorrect names were corrected when we read
2650 in type information, because it was cheaper to do it then. The
2651 only GNU v2 methods with incorrect method names are operators and
2652 destructors; destructors were also corrected when we read in type
2653 information.
2654
2655 Therefore the only thing we need to handle here are v2 operator
2656 names. */
2657 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2658 {
2659 int ret;
2660 char dem_opname[256];
2661
2662 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2663 method_id),
2664 dem_opname, DMGL_ANSI);
2665 if (!ret)
2666 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2667 method_id),
2668 dem_opname, 0);
2669 if (ret)
2670 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2671 }
2672 }
2673
2674 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2675 const struct cplus_struct_type cplus_struct_default = { };
2676
2677 void
2678 allocate_cplus_struct_type (struct type *type)
2679 {
2680 if (HAVE_CPLUS_STRUCT (type))
2681 /* Structure was already allocated. Nothing more to do. */
2682 return;
2683
2684 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2685 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2686 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2687 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2688 set_type_vptr_fieldno (type, -1);
2689 }
2690
2691 const struct gnat_aux_type gnat_aux_default =
2692 { NULL };
2693
2694 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2695 and allocate the associated gnat-specific data. The gnat-specific
2696 data is also initialized to gnat_aux_default. */
2697
2698 void
2699 allocate_gnat_aux_type (struct type *type)
2700 {
2701 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2702 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2703 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2704 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2705 }
2706
2707 /* Helper function to initialize a newly allocated type. Set type code
2708 to CODE and initialize the type-specific fields accordingly. */
2709
2710 static void
2711 set_type_code (struct type *type, enum type_code code)
2712 {
2713 TYPE_CODE (type) = code;
2714
2715 switch (code)
2716 {
2717 case TYPE_CODE_STRUCT:
2718 case TYPE_CODE_UNION:
2719 case TYPE_CODE_NAMESPACE:
2720 INIT_CPLUS_SPECIFIC (type);
2721 break;
2722 case TYPE_CODE_FLT:
2723 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2724 break;
2725 case TYPE_CODE_FUNC:
2726 INIT_FUNC_SPECIFIC (type);
2727 break;
2728 }
2729 }
2730
2731 /* Helper function to verify floating-point format and size.
2732 BIT is the type size in bits; if BIT equals -1, the size is
2733 determined by the floatformat. Returns size to be used. */
2734
2735 static int
2736 verify_floatformat (int bit, const struct floatformat **floatformats)
2737 {
2738 gdb_assert (floatformats != NULL);
2739 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2740
2741 if (bit == -1)
2742 bit = floatformats[0]->totalsize;
2743 gdb_assert (bit >= 0);
2744
2745 size_t len = bit / TARGET_CHAR_BIT;
2746 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2747 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2748
2749 return bit;
2750 }
2751
2752 /* Helper function to initialize the standard scalar types.
2753
2754 If NAME is non-NULL, then it is used to initialize the type name.
2755 Note that NAME is not copied; it is required to have a lifetime at
2756 least as long as OBJFILE. */
2757
2758 struct type *
2759 init_type (struct objfile *objfile, enum type_code code, int length,
2760 const char *name)
2761 {
2762 struct type *type;
2763
2764 type = alloc_type (objfile);
2765 set_type_code (type, code);
2766 TYPE_LENGTH (type) = length;
2767 TYPE_NAME (type) = name;
2768
2769 return type;
2770 }
2771
2772 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2773 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2774 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2775
2776 struct type *
2777 init_integer_type (struct objfile *objfile,
2778 int bit, int unsigned_p, const char *name)
2779 {
2780 struct type *t;
2781
2782 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2783 if (unsigned_p)
2784 TYPE_UNSIGNED (t) = 1;
2785
2786 return t;
2787 }
2788
2789 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2790 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2791 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2792
2793 struct type *
2794 init_character_type (struct objfile *objfile,
2795 int bit, int unsigned_p, const char *name)
2796 {
2797 struct type *t;
2798
2799 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2800 if (unsigned_p)
2801 TYPE_UNSIGNED (t) = 1;
2802
2803 return t;
2804 }
2805
2806 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2807 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2808 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2809
2810 struct type *
2811 init_boolean_type (struct objfile *objfile,
2812 int bit, int unsigned_p, const char *name)
2813 {
2814 struct type *t;
2815
2816 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2817 if (unsigned_p)
2818 TYPE_UNSIGNED (t) = 1;
2819
2820 return t;
2821 }
2822
2823 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2824 BIT is the type size in bits; if BIT equals -1, the size is
2825 determined by the floatformat. NAME is the type name. Set the
2826 TYPE_FLOATFORMAT from FLOATFORMATS. */
2827
2828 struct type *
2829 init_float_type (struct objfile *objfile,
2830 int bit, const char *name,
2831 const struct floatformat **floatformats)
2832 {
2833 struct type *t;
2834
2835 bit = verify_floatformat (bit, floatformats);
2836 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2837 TYPE_FLOATFORMAT (t) = floatformats;
2838
2839 return t;
2840 }
2841
2842 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2843 BIT is the type size in bits. NAME is the type name. */
2844
2845 struct type *
2846 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2847 {
2848 struct type *t;
2849
2850 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2851 return t;
2852 }
2853
2854 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2855 NAME is the type name. TARGET_TYPE is the component float type. */
2856
2857 struct type *
2858 init_complex_type (struct objfile *objfile,
2859 const char *name, struct type *target_type)
2860 {
2861 struct type *t;
2862
2863 t = init_type (objfile, TYPE_CODE_COMPLEX,
2864 2 * TYPE_LENGTH (target_type), name);
2865 TYPE_TARGET_TYPE (t) = target_type;
2866 return t;
2867 }
2868
2869 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2870 BIT is the pointer type size in bits. NAME is the type name.
2871 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2872 TYPE_UNSIGNED flag. */
2873
2874 struct type *
2875 init_pointer_type (struct objfile *objfile,
2876 int bit, const char *name, struct type *target_type)
2877 {
2878 struct type *t;
2879
2880 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2881 TYPE_TARGET_TYPE (t) = target_type;
2882 TYPE_UNSIGNED (t) = 1;
2883 return t;
2884 }
2885
2886 \f
2887 /* Queries on types. */
2888
2889 int
2890 can_dereference (struct type *t)
2891 {
2892 /* FIXME: Should we return true for references as well as
2893 pointers? */
2894 t = check_typedef (t);
2895 return
2896 (t != NULL
2897 && TYPE_CODE (t) == TYPE_CODE_PTR
2898 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2899 }
2900
2901 int
2902 is_integral_type (struct type *t)
2903 {
2904 t = check_typedef (t);
2905 return
2906 ((t != NULL)
2907 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2908 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2909 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2910 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2911 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2912 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2913 }
2914
2915 /* Return true if TYPE is scalar. */
2916
2917 int
2918 is_scalar_type (struct type *type)
2919 {
2920 type = check_typedef (type);
2921
2922 switch (TYPE_CODE (type))
2923 {
2924 case TYPE_CODE_ARRAY:
2925 case TYPE_CODE_STRUCT:
2926 case TYPE_CODE_UNION:
2927 case TYPE_CODE_SET:
2928 case TYPE_CODE_STRING:
2929 return 0;
2930 default:
2931 return 1;
2932 }
2933 }
2934
2935 /* Return true if T is scalar, or a composite type which in practice has
2936 the memory layout of a scalar type. E.g., an array or struct with only
2937 one scalar element inside it, or a union with only scalar elements. */
2938
2939 int
2940 is_scalar_type_recursive (struct type *t)
2941 {
2942 t = check_typedef (t);
2943
2944 if (is_scalar_type (t))
2945 return 1;
2946 /* Are we dealing with an array or string of known dimensions? */
2947 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2948 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2949 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2950 {
2951 LONGEST low_bound, high_bound;
2952 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2953
2954 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2955
2956 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2957 }
2958 /* Are we dealing with a struct with one element? */
2959 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2960 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2961 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2962 {
2963 int i, n = TYPE_NFIELDS (t);
2964
2965 /* If all elements of the union are scalar, then the union is scalar. */
2966 for (i = 0; i < n; i++)
2967 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2968 return 0;
2969
2970 return 1;
2971 }
2972
2973 return 0;
2974 }
2975
2976 /* Return true is T is a class or a union. False otherwise. */
2977
2978 int
2979 class_or_union_p (const struct type *t)
2980 {
2981 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2982 || TYPE_CODE (t) == TYPE_CODE_UNION);
2983 }
2984
2985 /* A helper function which returns true if types A and B represent the
2986 "same" class type. This is true if the types have the same main
2987 type, or the same name. */
2988
2989 int
2990 class_types_same_p (const struct type *a, const struct type *b)
2991 {
2992 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2993 || (TYPE_NAME (a) && TYPE_NAME (b)
2994 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2995 }
2996
2997 /* If BASE is an ancestor of DCLASS return the distance between them.
2998 otherwise return -1;
2999 eg:
3000
3001 class A {};
3002 class B: public A {};
3003 class C: public B {};
3004 class D: C {};
3005
3006 distance_to_ancestor (A, A, 0) = 0
3007 distance_to_ancestor (A, B, 0) = 1
3008 distance_to_ancestor (A, C, 0) = 2
3009 distance_to_ancestor (A, D, 0) = 3
3010
3011 If PUBLIC is 1 then only public ancestors are considered,
3012 and the function returns the distance only if BASE is a public ancestor
3013 of DCLASS.
3014 Eg:
3015
3016 distance_to_ancestor (A, D, 1) = -1. */
3017
3018 static int
3019 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3020 {
3021 int i;
3022 int d;
3023
3024 base = check_typedef (base);
3025 dclass = check_typedef (dclass);
3026
3027 if (class_types_same_p (base, dclass))
3028 return 0;
3029
3030 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3031 {
3032 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3033 continue;
3034
3035 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3036 if (d >= 0)
3037 return 1 + d;
3038 }
3039
3040 return -1;
3041 }
3042
3043 /* Check whether BASE is an ancestor or base class or DCLASS
3044 Return 1 if so, and 0 if not.
3045 Note: If BASE and DCLASS are of the same type, this function
3046 will return 1. So for some class A, is_ancestor (A, A) will
3047 return 1. */
3048
3049 int
3050 is_ancestor (struct type *base, struct type *dclass)
3051 {
3052 return distance_to_ancestor (base, dclass, 0) >= 0;
3053 }
3054
3055 /* Like is_ancestor, but only returns true when BASE is a public
3056 ancestor of DCLASS. */
3057
3058 int
3059 is_public_ancestor (struct type *base, struct type *dclass)
3060 {
3061 return distance_to_ancestor (base, dclass, 1) >= 0;
3062 }
3063
3064 /* A helper function for is_unique_ancestor. */
3065
3066 static int
3067 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3068 int *offset,
3069 const gdb_byte *valaddr, int embedded_offset,
3070 CORE_ADDR address, struct value *val)
3071 {
3072 int i, count = 0;
3073
3074 base = check_typedef (base);
3075 dclass = check_typedef (dclass);
3076
3077 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3078 {
3079 struct type *iter;
3080 int this_offset;
3081
3082 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3083
3084 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3085 address, val);
3086
3087 if (class_types_same_p (base, iter))
3088 {
3089 /* If this is the first subclass, set *OFFSET and set count
3090 to 1. Otherwise, if this is at the same offset as
3091 previous instances, do nothing. Otherwise, increment
3092 count. */
3093 if (*offset == -1)
3094 {
3095 *offset = this_offset;
3096 count = 1;
3097 }
3098 else if (this_offset == *offset)
3099 {
3100 /* Nothing. */
3101 }
3102 else
3103 ++count;
3104 }
3105 else
3106 count += is_unique_ancestor_worker (base, iter, offset,
3107 valaddr,
3108 embedded_offset + this_offset,
3109 address, val);
3110 }
3111
3112 return count;
3113 }
3114
3115 /* Like is_ancestor, but only returns true if BASE is a unique base
3116 class of the type of VAL. */
3117
3118 int
3119 is_unique_ancestor (struct type *base, struct value *val)
3120 {
3121 int offset = -1;
3122
3123 return is_unique_ancestor_worker (base, value_type (val), &offset,
3124 value_contents_for_printing (val),
3125 value_embedded_offset (val),
3126 value_address (val), val) == 1;
3127 }
3128
3129 \f
3130 /* Overload resolution. */
3131
3132 /* Return the sum of the rank of A with the rank of B. */
3133
3134 struct rank
3135 sum_ranks (struct rank a, struct rank b)
3136 {
3137 struct rank c;
3138 c.rank = a.rank + b.rank;
3139 c.subrank = a.subrank + b.subrank;
3140 return c;
3141 }
3142
3143 /* Compare rank A and B and return:
3144 0 if a = b
3145 1 if a is better than b
3146 -1 if b is better than a. */
3147
3148 int
3149 compare_ranks (struct rank a, struct rank b)
3150 {
3151 if (a.rank == b.rank)
3152 {
3153 if (a.subrank == b.subrank)
3154 return 0;
3155 if (a.subrank < b.subrank)
3156 return 1;
3157 if (a.subrank > b.subrank)
3158 return -1;
3159 }
3160
3161 if (a.rank < b.rank)
3162 return 1;
3163
3164 /* a.rank > b.rank */
3165 return -1;
3166 }
3167
3168 /* Functions for overload resolution begin here. */
3169
3170 /* Compare two badness vectors A and B and return the result.
3171 0 => A and B are identical
3172 1 => A and B are incomparable
3173 2 => A is better than B
3174 3 => A is worse than B */
3175
3176 int
3177 compare_badness (struct badness_vector *a, struct badness_vector *b)
3178 {
3179 int i;
3180 int tmp;
3181 short found_pos = 0; /* any positives in c? */
3182 short found_neg = 0; /* any negatives in c? */
3183
3184 /* differing lengths => incomparable */
3185 if (a->length != b->length)
3186 return 1;
3187
3188 /* Subtract b from a */
3189 for (i = 0; i < a->length; i++)
3190 {
3191 tmp = compare_ranks (b->rank[i], a->rank[i]);
3192 if (tmp > 0)
3193 found_pos = 1;
3194 else if (tmp < 0)
3195 found_neg = 1;
3196 }
3197
3198 if (found_pos)
3199 {
3200 if (found_neg)
3201 return 1; /* incomparable */
3202 else
3203 return 3; /* A > B */
3204 }
3205 else
3206 /* no positives */
3207 {
3208 if (found_neg)
3209 return 2; /* A < B */
3210 else
3211 return 0; /* A == B */
3212 }
3213 }
3214
3215 /* Rank a function by comparing its parameter types (PARMS, length
3216 NPARMS), to the types of an argument list (ARGS, length NARGS).
3217 Return a pointer to a badness vector. This has NARGS + 1
3218 entries. */
3219
3220 struct badness_vector *
3221 rank_function (struct type **parms, int nparms,
3222 struct value **args, int nargs)
3223 {
3224 int i;
3225 struct badness_vector *bv = XNEW (struct badness_vector);
3226 int min_len = nparms < nargs ? nparms : nargs;
3227
3228 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3229 bv->rank = XNEWVEC (struct rank, nargs + 1);
3230
3231 /* First compare the lengths of the supplied lists.
3232 If there is a mismatch, set it to a high value. */
3233
3234 /* pai/1997-06-03 FIXME: when we have debug info about default
3235 arguments and ellipsis parameter lists, we should consider those
3236 and rank the length-match more finely. */
3237
3238 LENGTH_MATCH (bv) = (nargs != nparms)
3239 ? LENGTH_MISMATCH_BADNESS
3240 : EXACT_MATCH_BADNESS;
3241
3242 /* Now rank all the parameters of the candidate function. */
3243 for (i = 1; i <= min_len; i++)
3244 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3245 args[i - 1]);
3246
3247 /* If more arguments than parameters, add dummy entries. */
3248 for (i = min_len + 1; i <= nargs; i++)
3249 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3250
3251 return bv;
3252 }
3253
3254 /* Compare the names of two integer types, assuming that any sign
3255 qualifiers have been checked already. We do it this way because
3256 there may be an "int" in the name of one of the types. */
3257
3258 static int
3259 integer_types_same_name_p (const char *first, const char *second)
3260 {
3261 int first_p, second_p;
3262
3263 /* If both are shorts, return 1; if neither is a short, keep
3264 checking. */
3265 first_p = (strstr (first, "short") != NULL);
3266 second_p = (strstr (second, "short") != NULL);
3267 if (first_p && second_p)
3268 return 1;
3269 if (first_p || second_p)
3270 return 0;
3271
3272 /* Likewise for long. */
3273 first_p = (strstr (first, "long") != NULL);
3274 second_p = (strstr (second, "long") != NULL);
3275 if (first_p && second_p)
3276 return 1;
3277 if (first_p || second_p)
3278 return 0;
3279
3280 /* Likewise for char. */
3281 first_p = (strstr (first, "char") != NULL);
3282 second_p = (strstr (second, "char") != NULL);
3283 if (first_p && second_p)
3284 return 1;
3285 if (first_p || second_p)
3286 return 0;
3287
3288 /* They must both be ints. */
3289 return 1;
3290 }
3291
3292 /* Compares type A to type B returns 1 if the represent the same type
3293 0 otherwise. */
3294
3295 int
3296 types_equal (struct type *a, struct type *b)
3297 {
3298 /* Identical type pointers. */
3299 /* However, this still doesn't catch all cases of same type for b
3300 and a. The reason is that builtin types are different from
3301 the same ones constructed from the object. */
3302 if (a == b)
3303 return 1;
3304
3305 /* Resolve typedefs */
3306 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3307 a = check_typedef (a);
3308 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3309 b = check_typedef (b);
3310
3311 /* If after resolving typedefs a and b are not of the same type
3312 code then they are not equal. */
3313 if (TYPE_CODE (a) != TYPE_CODE (b))
3314 return 0;
3315
3316 /* If a and b are both pointers types or both reference types then
3317 they are equal of the same type iff the objects they refer to are
3318 of the same type. */
3319 if (TYPE_CODE (a) == TYPE_CODE_PTR
3320 || TYPE_CODE (a) == TYPE_CODE_REF)
3321 return types_equal (TYPE_TARGET_TYPE (a),
3322 TYPE_TARGET_TYPE (b));
3323
3324 /* Well, damnit, if the names are exactly the same, I'll say they
3325 are exactly the same. This happens when we generate method
3326 stubs. The types won't point to the same address, but they
3327 really are the same. */
3328
3329 if (TYPE_NAME (a) && TYPE_NAME (b)
3330 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3331 return 1;
3332
3333 /* Check if identical after resolving typedefs. */
3334 if (a == b)
3335 return 1;
3336
3337 /* Two function types are equal if their argument and return types
3338 are equal. */
3339 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3340 {
3341 int i;
3342
3343 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3344 return 0;
3345
3346 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3347 return 0;
3348
3349 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3350 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3351 return 0;
3352
3353 return 1;
3354 }
3355
3356 return 0;
3357 }
3358 \f
3359 /* Deep comparison of types. */
3360
3361 /* An entry in the type-equality bcache. */
3362
3363 typedef struct type_equality_entry
3364 {
3365 struct type *type1, *type2;
3366 } type_equality_entry_d;
3367
3368 DEF_VEC_O (type_equality_entry_d);
3369
3370 /* A helper function to compare two strings. Returns 1 if they are
3371 the same, 0 otherwise. Handles NULLs properly. */
3372
3373 static int
3374 compare_maybe_null_strings (const char *s, const char *t)
3375 {
3376 if (s == NULL && t != NULL)
3377 return 0;
3378 else if (s != NULL && t == NULL)
3379 return 0;
3380 else if (s == NULL && t== NULL)
3381 return 1;
3382 return strcmp (s, t) == 0;
3383 }
3384
3385 /* A helper function for check_types_worklist that checks two types for
3386 "deep" equality. Returns non-zero if the types are considered the
3387 same, zero otherwise. */
3388
3389 static int
3390 check_types_equal (struct type *type1, struct type *type2,
3391 VEC (type_equality_entry_d) **worklist)
3392 {
3393 type1 = check_typedef (type1);
3394 type2 = check_typedef (type2);
3395
3396 if (type1 == type2)
3397 return 1;
3398
3399 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3400 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3401 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3402 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3403 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3404 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3405 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3406 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3407 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3408 return 0;
3409
3410 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3411 TYPE_TAG_NAME (type2)))
3412 return 0;
3413 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3414 return 0;
3415
3416 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3417 {
3418 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3419 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3420 return 0;
3421 }
3422 else
3423 {
3424 int i;
3425
3426 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3427 {
3428 const struct field *field1 = &TYPE_FIELD (type1, i);
3429 const struct field *field2 = &TYPE_FIELD (type2, i);
3430 struct type_equality_entry entry;
3431
3432 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3433 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3434 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3435 return 0;
3436 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3437 FIELD_NAME (*field2)))
3438 return 0;
3439 switch (FIELD_LOC_KIND (*field1))
3440 {
3441 case FIELD_LOC_KIND_BITPOS:
3442 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3443 return 0;
3444 break;
3445 case FIELD_LOC_KIND_ENUMVAL:
3446 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3447 return 0;
3448 break;
3449 case FIELD_LOC_KIND_PHYSADDR:
3450 if (FIELD_STATIC_PHYSADDR (*field1)
3451 != FIELD_STATIC_PHYSADDR (*field2))
3452 return 0;
3453 break;
3454 case FIELD_LOC_KIND_PHYSNAME:
3455 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3456 FIELD_STATIC_PHYSNAME (*field2)))
3457 return 0;
3458 break;
3459 case FIELD_LOC_KIND_DWARF_BLOCK:
3460 {
3461 struct dwarf2_locexpr_baton *block1, *block2;
3462
3463 block1 = FIELD_DWARF_BLOCK (*field1);
3464 block2 = FIELD_DWARF_BLOCK (*field2);
3465 if (block1->per_cu != block2->per_cu
3466 || block1->size != block2->size
3467 || memcmp (block1->data, block2->data, block1->size) != 0)
3468 return 0;
3469 }
3470 break;
3471 default:
3472 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3473 "%d by check_types_equal"),
3474 FIELD_LOC_KIND (*field1));
3475 }
3476
3477 entry.type1 = FIELD_TYPE (*field1);
3478 entry.type2 = FIELD_TYPE (*field2);
3479 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3480 }
3481 }
3482
3483 if (TYPE_TARGET_TYPE (type1) != NULL)
3484 {
3485 struct type_equality_entry entry;
3486
3487 if (TYPE_TARGET_TYPE (type2) == NULL)
3488 return 0;
3489
3490 entry.type1 = TYPE_TARGET_TYPE (type1);
3491 entry.type2 = TYPE_TARGET_TYPE (type2);
3492 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3493 }
3494 else if (TYPE_TARGET_TYPE (type2) != NULL)
3495 return 0;
3496
3497 return 1;
3498 }
3499
3500 /* Check types on a worklist for equality. Returns zero if any pair
3501 is not equal, non-zero if they are all considered equal. */
3502
3503 static int
3504 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3505 struct bcache *cache)
3506 {
3507 while (!VEC_empty (type_equality_entry_d, *worklist))
3508 {
3509 struct type_equality_entry entry;
3510 int added;
3511
3512 entry = *VEC_last (type_equality_entry_d, *worklist);
3513 VEC_pop (type_equality_entry_d, *worklist);
3514
3515 /* If the type pair has already been visited, we know it is
3516 ok. */
3517 bcache_full (&entry, sizeof (entry), cache, &added);
3518 if (!added)
3519 continue;
3520
3521 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3522 return 0;
3523 }
3524
3525 return 1;
3526 }
3527
3528 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3529 "deep comparison". Otherwise return zero. */
3530
3531 int
3532 types_deeply_equal (struct type *type1, struct type *type2)
3533 {
3534 struct gdb_exception except = exception_none;
3535 int result = 0;
3536 struct bcache *cache;
3537 VEC (type_equality_entry_d) *worklist = NULL;
3538 struct type_equality_entry entry;
3539
3540 gdb_assert (type1 != NULL && type2 != NULL);
3541
3542 /* Early exit for the simple case. */
3543 if (type1 == type2)
3544 return 1;
3545
3546 cache = bcache_xmalloc (NULL, NULL);
3547
3548 entry.type1 = type1;
3549 entry.type2 = type2;
3550 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3551
3552 /* check_types_worklist calls several nested helper functions, some
3553 of which can raise a GDB exception, so we just check and rethrow
3554 here. If there is a GDB exception, a comparison is not capable
3555 (or trusted), so exit. */
3556 TRY
3557 {
3558 result = check_types_worklist (&worklist, cache);
3559 }
3560 CATCH (ex, RETURN_MASK_ALL)
3561 {
3562 except = ex;
3563 }
3564 END_CATCH
3565
3566 bcache_xfree (cache);
3567 VEC_free (type_equality_entry_d, worklist);
3568
3569 /* Rethrow if there was a problem. */
3570 if (except.reason < 0)
3571 throw_exception (except);
3572
3573 return result;
3574 }
3575
3576 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3577 Otherwise return one. */
3578
3579 int
3580 type_not_allocated (const struct type *type)
3581 {
3582 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3583
3584 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3585 && !TYPE_DYN_PROP_ADDR (prop));
3586 }
3587
3588 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3589 Otherwise return one. */
3590
3591 int
3592 type_not_associated (const struct type *type)
3593 {
3594 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3595
3596 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3597 && !TYPE_DYN_PROP_ADDR (prop));
3598 }
3599 \f
3600 /* Compare one type (PARM) for compatibility with another (ARG).
3601 * PARM is intended to be the parameter type of a function; and
3602 * ARG is the supplied argument's type. This function tests if
3603 * the latter can be converted to the former.
3604 * VALUE is the argument's value or NULL if none (or called recursively)
3605 *
3606 * Return 0 if they are identical types;
3607 * Otherwise, return an integer which corresponds to how compatible
3608 * PARM is to ARG. The higher the return value, the worse the match.
3609 * Generally the "bad" conversions are all uniformly assigned a 100. */
3610
3611 struct rank
3612 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3613 {
3614 struct rank rank = {0,0};
3615
3616 /* Resolve typedefs */
3617 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3618 parm = check_typedef (parm);
3619 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3620 arg = check_typedef (arg);
3621
3622 if (value != NULL)
3623 {
3624 /* An rvalue argument cannot be bound to a non-const lvalue
3625 reference parameter... */
3626 if (VALUE_LVAL (value) == not_lval
3627 && TYPE_CODE (parm) == TYPE_CODE_REF
3628 && !TYPE_CONST (parm->main_type->target_type))
3629 return INCOMPATIBLE_TYPE_BADNESS;
3630
3631 /* ... and an lvalue argument cannot be bound to an rvalue
3632 reference parameter. [C++ 13.3.3.1.4p3] */
3633 if (VALUE_LVAL (value) != not_lval
3634 && TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3635 return INCOMPATIBLE_TYPE_BADNESS;
3636 }
3637
3638 if (types_equal (parm, arg))
3639 return EXACT_MATCH_BADNESS;
3640
3641 /* An lvalue reference to a function should get higher priority than an
3642 rvalue reference to a function. */
3643
3644 if (value != NULL && TYPE_CODE (arg) == TYPE_CODE_RVALUE_REF
3645 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) == TYPE_CODE_FUNC)
3646 {
3647 return (sum_ranks (rank_one_type (parm,
3648 lookup_pointer_type (TYPE_TARGET_TYPE (arg)), NULL),
3649 DIFFERENT_REFERENCE_TYPE_BADNESS));
3650 }
3651
3652 /* If a conversion to one type of reference is an identity conversion, and a
3653 conversion to the second type of reference is a non-identity conversion,
3654 choose the first type. */
3655
3656 if (value != NULL && TYPE_IS_REFERENCE (parm) && TYPE_IS_REFERENCE (arg)
3657 && TYPE_CODE (parm) != TYPE_CODE (arg))
3658 {
3659 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm),
3660 TYPE_TARGET_TYPE (arg), NULL), DIFFERENT_REFERENCE_TYPE_BADNESS));
3661 }
3662
3663 /* An rvalue should be first tried to bind to an rvalue reference, and then to
3664 an lvalue reference. */
3665
3666 if (value != NULL && TYPE_CODE (parm) == TYPE_CODE_REF
3667 && VALUE_LVAL (value) == not_lval)
3668 {
3669 if (TYPE_IS_REFERENCE (arg))
3670 arg = TYPE_TARGET_TYPE (arg);
3671 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3672 LVALUE_REFERENCE_TO_RVALUE_BINDING_BADNESS));
3673 }
3674
3675 /* See through references, since we can almost make non-references
3676 references. */
3677
3678 if (TYPE_IS_REFERENCE (arg))
3679 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3680 REFERENCE_CONVERSION_BADNESS));
3681 if (TYPE_IS_REFERENCE (parm))
3682 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3683 REFERENCE_CONVERSION_BADNESS));
3684 if (overload_debug)
3685 /* Debugging only. */
3686 fprintf_filtered (gdb_stderr,
3687 "------ Arg is %s [%d], parm is %s [%d]\n",
3688 TYPE_NAME (arg), TYPE_CODE (arg),
3689 TYPE_NAME (parm), TYPE_CODE (parm));
3690
3691 /* x -> y means arg of type x being supplied for parameter of type y. */
3692
3693 switch (TYPE_CODE (parm))
3694 {
3695 case TYPE_CODE_PTR:
3696 switch (TYPE_CODE (arg))
3697 {
3698 case TYPE_CODE_PTR:
3699
3700 /* Allowed pointer conversions are:
3701 (a) pointer to void-pointer conversion. */
3702 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3703 return VOID_PTR_CONVERSION_BADNESS;
3704
3705 /* (b) pointer to ancestor-pointer conversion. */
3706 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3707 TYPE_TARGET_TYPE (arg),
3708 0);
3709 if (rank.subrank >= 0)
3710 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3711
3712 return INCOMPATIBLE_TYPE_BADNESS;
3713 case TYPE_CODE_ARRAY:
3714 if (types_equal (TYPE_TARGET_TYPE (parm),
3715 TYPE_TARGET_TYPE (arg)))
3716 return EXACT_MATCH_BADNESS;
3717 return INCOMPATIBLE_TYPE_BADNESS;
3718 case TYPE_CODE_FUNC:
3719 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3720 case TYPE_CODE_INT:
3721 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3722 {
3723 if (value_as_long (value) == 0)
3724 {
3725 /* Null pointer conversion: allow it to be cast to a pointer.
3726 [4.10.1 of C++ standard draft n3290] */
3727 return NULL_POINTER_CONVERSION_BADNESS;
3728 }
3729 else
3730 {
3731 /* If type checking is disabled, allow the conversion. */
3732 if (!strict_type_checking)
3733 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3734 }
3735 }
3736 /* fall through */
3737 case TYPE_CODE_ENUM:
3738 case TYPE_CODE_FLAGS:
3739 case TYPE_CODE_CHAR:
3740 case TYPE_CODE_RANGE:
3741 case TYPE_CODE_BOOL:
3742 default:
3743 return INCOMPATIBLE_TYPE_BADNESS;
3744 }
3745 case TYPE_CODE_ARRAY:
3746 switch (TYPE_CODE (arg))
3747 {
3748 case TYPE_CODE_PTR:
3749 case TYPE_CODE_ARRAY:
3750 return rank_one_type (TYPE_TARGET_TYPE (parm),
3751 TYPE_TARGET_TYPE (arg), NULL);
3752 default:
3753 return INCOMPATIBLE_TYPE_BADNESS;
3754 }
3755 case TYPE_CODE_FUNC:
3756 switch (TYPE_CODE (arg))
3757 {
3758 case TYPE_CODE_PTR: /* funcptr -> func */
3759 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3760 default:
3761 return INCOMPATIBLE_TYPE_BADNESS;
3762 }
3763 case TYPE_CODE_INT:
3764 switch (TYPE_CODE (arg))
3765 {
3766 case TYPE_CODE_INT:
3767 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3768 {
3769 /* Deal with signed, unsigned, and plain chars and
3770 signed and unsigned ints. */
3771 if (TYPE_NOSIGN (parm))
3772 {
3773 /* This case only for character types. */
3774 if (TYPE_NOSIGN (arg))
3775 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3776 else /* signed/unsigned char -> plain char */
3777 return INTEGER_CONVERSION_BADNESS;
3778 }
3779 else if (TYPE_UNSIGNED (parm))
3780 {
3781 if (TYPE_UNSIGNED (arg))
3782 {
3783 /* unsigned int -> unsigned int, or
3784 unsigned long -> unsigned long */
3785 if (integer_types_same_name_p (TYPE_NAME (parm),
3786 TYPE_NAME (arg)))
3787 return EXACT_MATCH_BADNESS;
3788 else if (integer_types_same_name_p (TYPE_NAME (arg),
3789 "int")
3790 && integer_types_same_name_p (TYPE_NAME (parm),
3791 "long"))
3792 /* unsigned int -> unsigned long */
3793 return INTEGER_PROMOTION_BADNESS;
3794 else
3795 /* unsigned long -> unsigned int */
3796 return INTEGER_CONVERSION_BADNESS;
3797 }
3798 else
3799 {
3800 if (integer_types_same_name_p (TYPE_NAME (arg),
3801 "long")
3802 && integer_types_same_name_p (TYPE_NAME (parm),
3803 "int"))
3804 /* signed long -> unsigned int */
3805 return INTEGER_CONVERSION_BADNESS;
3806 else
3807 /* signed int/long -> unsigned int/long */
3808 return INTEGER_CONVERSION_BADNESS;
3809 }
3810 }
3811 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3812 {
3813 if (integer_types_same_name_p (TYPE_NAME (parm),
3814 TYPE_NAME (arg)))
3815 return EXACT_MATCH_BADNESS;
3816 else if (integer_types_same_name_p (TYPE_NAME (arg),
3817 "int")
3818 && integer_types_same_name_p (TYPE_NAME (parm),
3819 "long"))
3820 return INTEGER_PROMOTION_BADNESS;
3821 else
3822 return INTEGER_CONVERSION_BADNESS;
3823 }
3824 else
3825 return INTEGER_CONVERSION_BADNESS;
3826 }
3827 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3828 return INTEGER_PROMOTION_BADNESS;
3829 else
3830 return INTEGER_CONVERSION_BADNESS;
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_FLAGS:
3833 case TYPE_CODE_CHAR:
3834 case TYPE_CODE_RANGE:
3835 case TYPE_CODE_BOOL:
3836 if (TYPE_DECLARED_CLASS (arg))
3837 return INCOMPATIBLE_TYPE_BADNESS;
3838 return INTEGER_PROMOTION_BADNESS;
3839 case TYPE_CODE_FLT:
3840 return INT_FLOAT_CONVERSION_BADNESS;
3841 case TYPE_CODE_PTR:
3842 return NS_POINTER_CONVERSION_BADNESS;
3843 default:
3844 return INCOMPATIBLE_TYPE_BADNESS;
3845 }
3846 break;
3847 case TYPE_CODE_ENUM:
3848 switch (TYPE_CODE (arg))
3849 {
3850 case TYPE_CODE_INT:
3851 case TYPE_CODE_CHAR:
3852 case TYPE_CODE_RANGE:
3853 case TYPE_CODE_BOOL:
3854 case TYPE_CODE_ENUM:
3855 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3856 return INCOMPATIBLE_TYPE_BADNESS;
3857 return INTEGER_CONVERSION_BADNESS;
3858 case TYPE_CODE_FLT:
3859 return INT_FLOAT_CONVERSION_BADNESS;
3860 default:
3861 return INCOMPATIBLE_TYPE_BADNESS;
3862 }
3863 break;
3864 case TYPE_CODE_CHAR:
3865 switch (TYPE_CODE (arg))
3866 {
3867 case TYPE_CODE_RANGE:
3868 case TYPE_CODE_BOOL:
3869 case TYPE_CODE_ENUM:
3870 if (TYPE_DECLARED_CLASS (arg))
3871 return INCOMPATIBLE_TYPE_BADNESS;
3872 return INTEGER_CONVERSION_BADNESS;
3873 case TYPE_CODE_FLT:
3874 return INT_FLOAT_CONVERSION_BADNESS;
3875 case TYPE_CODE_INT:
3876 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3877 return INTEGER_CONVERSION_BADNESS;
3878 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3879 return INTEGER_PROMOTION_BADNESS;
3880 /* >>> !! else fall through !! <<< */
3881 case TYPE_CODE_CHAR:
3882 /* Deal with signed, unsigned, and plain chars for C++ and
3883 with int cases falling through from previous case. */
3884 if (TYPE_NOSIGN (parm))
3885 {
3886 if (TYPE_NOSIGN (arg))
3887 return EXACT_MATCH_BADNESS;
3888 else
3889 return INTEGER_CONVERSION_BADNESS;
3890 }
3891 else if (TYPE_UNSIGNED (parm))
3892 {
3893 if (TYPE_UNSIGNED (arg))
3894 return EXACT_MATCH_BADNESS;
3895 else
3896 return INTEGER_PROMOTION_BADNESS;
3897 }
3898 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3899 return EXACT_MATCH_BADNESS;
3900 else
3901 return INTEGER_CONVERSION_BADNESS;
3902 default:
3903 return INCOMPATIBLE_TYPE_BADNESS;
3904 }
3905 break;
3906 case TYPE_CODE_RANGE:
3907 switch (TYPE_CODE (arg))
3908 {
3909 case TYPE_CODE_INT:
3910 case TYPE_CODE_CHAR:
3911 case TYPE_CODE_RANGE:
3912 case TYPE_CODE_BOOL:
3913 case TYPE_CODE_ENUM:
3914 return INTEGER_CONVERSION_BADNESS;
3915 case TYPE_CODE_FLT:
3916 return INT_FLOAT_CONVERSION_BADNESS;
3917 default:
3918 return INCOMPATIBLE_TYPE_BADNESS;
3919 }
3920 break;
3921 case TYPE_CODE_BOOL:
3922 switch (TYPE_CODE (arg))
3923 {
3924 /* n3290 draft, section 4.12.1 (conv.bool):
3925
3926 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3927 pointer to member type can be converted to a prvalue of type
3928 bool. A zero value, null pointer value, or null member pointer
3929 value is converted to false; any other value is converted to
3930 true. A prvalue of type std::nullptr_t can be converted to a
3931 prvalue of type bool; the resulting value is false." */
3932 case TYPE_CODE_INT:
3933 case TYPE_CODE_CHAR:
3934 case TYPE_CODE_ENUM:
3935 case TYPE_CODE_FLT:
3936 case TYPE_CODE_MEMBERPTR:
3937 case TYPE_CODE_PTR:
3938 return BOOL_CONVERSION_BADNESS;
3939 case TYPE_CODE_RANGE:
3940 return INCOMPATIBLE_TYPE_BADNESS;
3941 case TYPE_CODE_BOOL:
3942 return EXACT_MATCH_BADNESS;
3943 default:
3944 return INCOMPATIBLE_TYPE_BADNESS;
3945 }
3946 break;
3947 case TYPE_CODE_FLT:
3948 switch (TYPE_CODE (arg))
3949 {
3950 case TYPE_CODE_FLT:
3951 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3952 return FLOAT_PROMOTION_BADNESS;
3953 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3954 return EXACT_MATCH_BADNESS;
3955 else
3956 return FLOAT_CONVERSION_BADNESS;
3957 case TYPE_CODE_INT:
3958 case TYPE_CODE_BOOL:
3959 case TYPE_CODE_ENUM:
3960 case TYPE_CODE_RANGE:
3961 case TYPE_CODE_CHAR:
3962 return INT_FLOAT_CONVERSION_BADNESS;
3963 default:
3964 return INCOMPATIBLE_TYPE_BADNESS;
3965 }
3966 break;
3967 case TYPE_CODE_COMPLEX:
3968 switch (TYPE_CODE (arg))
3969 { /* Strictly not needed for C++, but... */
3970 case TYPE_CODE_FLT:
3971 return FLOAT_PROMOTION_BADNESS;
3972 case TYPE_CODE_COMPLEX:
3973 return EXACT_MATCH_BADNESS;
3974 default:
3975 return INCOMPATIBLE_TYPE_BADNESS;
3976 }
3977 break;
3978 case TYPE_CODE_STRUCT:
3979 switch (TYPE_CODE (arg))
3980 {
3981 case TYPE_CODE_STRUCT:
3982 /* Check for derivation */
3983 rank.subrank = distance_to_ancestor (parm, arg, 0);
3984 if (rank.subrank >= 0)
3985 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3986 /* else fall through */
3987 default:
3988 return INCOMPATIBLE_TYPE_BADNESS;
3989 }
3990 break;
3991 case TYPE_CODE_UNION:
3992 switch (TYPE_CODE (arg))
3993 {
3994 case TYPE_CODE_UNION:
3995 default:
3996 return INCOMPATIBLE_TYPE_BADNESS;
3997 }
3998 break;
3999 case TYPE_CODE_MEMBERPTR:
4000 switch (TYPE_CODE (arg))
4001 {
4002 default:
4003 return INCOMPATIBLE_TYPE_BADNESS;
4004 }
4005 break;
4006 case TYPE_CODE_METHOD:
4007 switch (TYPE_CODE (arg))
4008 {
4009
4010 default:
4011 return INCOMPATIBLE_TYPE_BADNESS;
4012 }
4013 break;
4014 case TYPE_CODE_REF:
4015 switch (TYPE_CODE (arg))
4016 {
4017
4018 default:
4019 return INCOMPATIBLE_TYPE_BADNESS;
4020 }
4021
4022 break;
4023 case TYPE_CODE_SET:
4024 switch (TYPE_CODE (arg))
4025 {
4026 /* Not in C++ */
4027 case TYPE_CODE_SET:
4028 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4029 TYPE_FIELD_TYPE (arg, 0), NULL);
4030 default:
4031 return INCOMPATIBLE_TYPE_BADNESS;
4032 }
4033 break;
4034 case TYPE_CODE_VOID:
4035 default:
4036 return INCOMPATIBLE_TYPE_BADNESS;
4037 } /* switch (TYPE_CODE (arg)) */
4038 }
4039
4040 /* End of functions for overload resolution. */
4041 \f
4042 /* Routines to pretty-print types. */
4043
4044 static void
4045 print_bit_vector (B_TYPE *bits, int nbits)
4046 {
4047 int bitno;
4048
4049 for (bitno = 0; bitno < nbits; bitno++)
4050 {
4051 if ((bitno % 8) == 0)
4052 {
4053 puts_filtered (" ");
4054 }
4055 if (B_TST (bits, bitno))
4056 printf_filtered (("1"));
4057 else
4058 printf_filtered (("0"));
4059 }
4060 }
4061
4062 /* Note the first arg should be the "this" pointer, we may not want to
4063 include it since we may get into a infinitely recursive
4064 situation. */
4065
4066 static void
4067 print_args (struct field *args, int nargs, int spaces)
4068 {
4069 if (args != NULL)
4070 {
4071 int i;
4072
4073 for (i = 0; i < nargs; i++)
4074 {
4075 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4076 args[i].name != NULL ? args[i].name : "<NULL>");
4077 recursive_dump_type (args[i].type, spaces + 2);
4078 }
4079 }
4080 }
4081
4082 int
4083 field_is_static (struct field *f)
4084 {
4085 /* "static" fields are the fields whose location is not relative
4086 to the address of the enclosing struct. It would be nice to
4087 have a dedicated flag that would be set for static fields when
4088 the type is being created. But in practice, checking the field
4089 loc_kind should give us an accurate answer. */
4090 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4091 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4092 }
4093
4094 static void
4095 dump_fn_fieldlists (struct type *type, int spaces)
4096 {
4097 int method_idx;
4098 int overload_idx;
4099 struct fn_field *f;
4100
4101 printfi_filtered (spaces, "fn_fieldlists ");
4102 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4103 printf_filtered ("\n");
4104 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4105 {
4106 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4107 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4108 method_idx,
4109 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4110 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4111 gdb_stdout);
4112 printf_filtered (_(") length %d\n"),
4113 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4114 for (overload_idx = 0;
4115 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4116 overload_idx++)
4117 {
4118 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4119 overload_idx,
4120 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4121 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4122 gdb_stdout);
4123 printf_filtered (")\n");
4124 printfi_filtered (spaces + 8, "type ");
4125 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4126 gdb_stdout);
4127 printf_filtered ("\n");
4128
4129 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4130 spaces + 8 + 2);
4131
4132 printfi_filtered (spaces + 8, "args ");
4133 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4134 gdb_stdout);
4135 printf_filtered ("\n");
4136 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4137 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4138 spaces + 8 + 2);
4139 printfi_filtered (spaces + 8, "fcontext ");
4140 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4141 gdb_stdout);
4142 printf_filtered ("\n");
4143
4144 printfi_filtered (spaces + 8, "is_const %d\n",
4145 TYPE_FN_FIELD_CONST (f, overload_idx));
4146 printfi_filtered (spaces + 8, "is_volatile %d\n",
4147 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4148 printfi_filtered (spaces + 8, "is_private %d\n",
4149 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4150 printfi_filtered (spaces + 8, "is_protected %d\n",
4151 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4152 printfi_filtered (spaces + 8, "is_stub %d\n",
4153 TYPE_FN_FIELD_STUB (f, overload_idx));
4154 printfi_filtered (spaces + 8, "voffset %u\n",
4155 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4156 }
4157 }
4158 }
4159
4160 static void
4161 print_cplus_stuff (struct type *type, int spaces)
4162 {
4163 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4164 printfi_filtered (spaces, "vptr_basetype ");
4165 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4166 puts_filtered ("\n");
4167 if (TYPE_VPTR_BASETYPE (type) != NULL)
4168 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4169
4170 printfi_filtered (spaces, "n_baseclasses %d\n",
4171 TYPE_N_BASECLASSES (type));
4172 printfi_filtered (spaces, "nfn_fields %d\n",
4173 TYPE_NFN_FIELDS (type));
4174 if (TYPE_N_BASECLASSES (type) > 0)
4175 {
4176 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4177 TYPE_N_BASECLASSES (type));
4178 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4179 gdb_stdout);
4180 printf_filtered (")");
4181
4182 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4183 TYPE_N_BASECLASSES (type));
4184 puts_filtered ("\n");
4185 }
4186 if (TYPE_NFIELDS (type) > 0)
4187 {
4188 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4189 {
4190 printfi_filtered (spaces,
4191 "private_field_bits (%d bits at *",
4192 TYPE_NFIELDS (type));
4193 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4194 gdb_stdout);
4195 printf_filtered (")");
4196 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4197 TYPE_NFIELDS (type));
4198 puts_filtered ("\n");
4199 }
4200 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4201 {
4202 printfi_filtered (spaces,
4203 "protected_field_bits (%d bits at *",
4204 TYPE_NFIELDS (type));
4205 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4206 gdb_stdout);
4207 printf_filtered (")");
4208 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4209 TYPE_NFIELDS (type));
4210 puts_filtered ("\n");
4211 }
4212 }
4213 if (TYPE_NFN_FIELDS (type) > 0)
4214 {
4215 dump_fn_fieldlists (type, spaces);
4216 }
4217 }
4218
4219 /* Print the contents of the TYPE's type_specific union, assuming that
4220 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4221
4222 static void
4223 print_gnat_stuff (struct type *type, int spaces)
4224 {
4225 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4226
4227 if (descriptive_type == NULL)
4228 printfi_filtered (spaces + 2, "no descriptive type\n");
4229 else
4230 {
4231 printfi_filtered (spaces + 2, "descriptive type\n");
4232 recursive_dump_type (descriptive_type, spaces + 4);
4233 }
4234 }
4235
4236 static struct obstack dont_print_type_obstack;
4237
4238 void
4239 recursive_dump_type (struct type *type, int spaces)
4240 {
4241 int idx;
4242
4243 if (spaces == 0)
4244 obstack_begin (&dont_print_type_obstack, 0);
4245
4246 if (TYPE_NFIELDS (type) > 0
4247 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4248 {
4249 struct type **first_dont_print
4250 = (struct type **) obstack_base (&dont_print_type_obstack);
4251
4252 int i = (struct type **)
4253 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4254
4255 while (--i >= 0)
4256 {
4257 if (type == first_dont_print[i])
4258 {
4259 printfi_filtered (spaces, "type node ");
4260 gdb_print_host_address (type, gdb_stdout);
4261 printf_filtered (_(" <same as already seen type>\n"));
4262 return;
4263 }
4264 }
4265
4266 obstack_ptr_grow (&dont_print_type_obstack, type);
4267 }
4268
4269 printfi_filtered (spaces, "type node ");
4270 gdb_print_host_address (type, gdb_stdout);
4271 printf_filtered ("\n");
4272 printfi_filtered (spaces, "name '%s' (",
4273 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4274 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4275 printf_filtered (")\n");
4276 printfi_filtered (spaces, "tagname '%s' (",
4277 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4278 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4279 printf_filtered (")\n");
4280 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4281 switch (TYPE_CODE (type))
4282 {
4283 case TYPE_CODE_UNDEF:
4284 printf_filtered ("(TYPE_CODE_UNDEF)");
4285 break;
4286 case TYPE_CODE_PTR:
4287 printf_filtered ("(TYPE_CODE_PTR)");
4288 break;
4289 case TYPE_CODE_ARRAY:
4290 printf_filtered ("(TYPE_CODE_ARRAY)");
4291 break;
4292 case TYPE_CODE_STRUCT:
4293 printf_filtered ("(TYPE_CODE_STRUCT)");
4294 break;
4295 case TYPE_CODE_UNION:
4296 printf_filtered ("(TYPE_CODE_UNION)");
4297 break;
4298 case TYPE_CODE_ENUM:
4299 printf_filtered ("(TYPE_CODE_ENUM)");
4300 break;
4301 case TYPE_CODE_FLAGS:
4302 printf_filtered ("(TYPE_CODE_FLAGS)");
4303 break;
4304 case TYPE_CODE_FUNC:
4305 printf_filtered ("(TYPE_CODE_FUNC)");
4306 break;
4307 case TYPE_CODE_INT:
4308 printf_filtered ("(TYPE_CODE_INT)");
4309 break;
4310 case TYPE_CODE_FLT:
4311 printf_filtered ("(TYPE_CODE_FLT)");
4312 break;
4313 case TYPE_CODE_VOID:
4314 printf_filtered ("(TYPE_CODE_VOID)");
4315 break;
4316 case TYPE_CODE_SET:
4317 printf_filtered ("(TYPE_CODE_SET)");
4318 break;
4319 case TYPE_CODE_RANGE:
4320 printf_filtered ("(TYPE_CODE_RANGE)");
4321 break;
4322 case TYPE_CODE_STRING:
4323 printf_filtered ("(TYPE_CODE_STRING)");
4324 break;
4325 case TYPE_CODE_ERROR:
4326 printf_filtered ("(TYPE_CODE_ERROR)");
4327 break;
4328 case TYPE_CODE_MEMBERPTR:
4329 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4330 break;
4331 case TYPE_CODE_METHODPTR:
4332 printf_filtered ("(TYPE_CODE_METHODPTR)");
4333 break;
4334 case TYPE_CODE_METHOD:
4335 printf_filtered ("(TYPE_CODE_METHOD)");
4336 break;
4337 case TYPE_CODE_REF:
4338 printf_filtered ("(TYPE_CODE_REF)");
4339 break;
4340 case TYPE_CODE_CHAR:
4341 printf_filtered ("(TYPE_CODE_CHAR)");
4342 break;
4343 case TYPE_CODE_BOOL:
4344 printf_filtered ("(TYPE_CODE_BOOL)");
4345 break;
4346 case TYPE_CODE_COMPLEX:
4347 printf_filtered ("(TYPE_CODE_COMPLEX)");
4348 break;
4349 case TYPE_CODE_TYPEDEF:
4350 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4351 break;
4352 case TYPE_CODE_NAMESPACE:
4353 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4354 break;
4355 default:
4356 printf_filtered ("(UNKNOWN TYPE CODE)");
4357 break;
4358 }
4359 puts_filtered ("\n");
4360 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4361 if (TYPE_OBJFILE_OWNED (type))
4362 {
4363 printfi_filtered (spaces, "objfile ");
4364 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4365 }
4366 else
4367 {
4368 printfi_filtered (spaces, "gdbarch ");
4369 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4370 }
4371 printf_filtered ("\n");
4372 printfi_filtered (spaces, "target_type ");
4373 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4374 printf_filtered ("\n");
4375 if (TYPE_TARGET_TYPE (type) != NULL)
4376 {
4377 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4378 }
4379 printfi_filtered (spaces, "pointer_type ");
4380 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4381 printf_filtered ("\n");
4382 printfi_filtered (spaces, "reference_type ");
4383 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4384 printf_filtered ("\n");
4385 printfi_filtered (spaces, "type_chain ");
4386 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4387 printf_filtered ("\n");
4388 printfi_filtered (spaces, "instance_flags 0x%x",
4389 TYPE_INSTANCE_FLAGS (type));
4390 if (TYPE_CONST (type))
4391 {
4392 puts_filtered (" TYPE_CONST");
4393 }
4394 if (TYPE_VOLATILE (type))
4395 {
4396 puts_filtered (" TYPE_VOLATILE");
4397 }
4398 if (TYPE_CODE_SPACE (type))
4399 {
4400 puts_filtered (" TYPE_CODE_SPACE");
4401 }
4402 if (TYPE_DATA_SPACE (type))
4403 {
4404 puts_filtered (" TYPE_DATA_SPACE");
4405 }
4406 if (TYPE_ADDRESS_CLASS_1 (type))
4407 {
4408 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4409 }
4410 if (TYPE_ADDRESS_CLASS_2 (type))
4411 {
4412 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4413 }
4414 if (TYPE_RESTRICT (type))
4415 {
4416 puts_filtered (" TYPE_RESTRICT");
4417 }
4418 if (TYPE_ATOMIC (type))
4419 {
4420 puts_filtered (" TYPE_ATOMIC");
4421 }
4422 puts_filtered ("\n");
4423
4424 printfi_filtered (spaces, "flags");
4425 if (TYPE_UNSIGNED (type))
4426 {
4427 puts_filtered (" TYPE_UNSIGNED");
4428 }
4429 if (TYPE_NOSIGN (type))
4430 {
4431 puts_filtered (" TYPE_NOSIGN");
4432 }
4433 if (TYPE_STUB (type))
4434 {
4435 puts_filtered (" TYPE_STUB");
4436 }
4437 if (TYPE_TARGET_STUB (type))
4438 {
4439 puts_filtered (" TYPE_TARGET_STUB");
4440 }
4441 if (TYPE_STATIC (type))
4442 {
4443 puts_filtered (" TYPE_STATIC");
4444 }
4445 if (TYPE_PROTOTYPED (type))
4446 {
4447 puts_filtered (" TYPE_PROTOTYPED");
4448 }
4449 if (TYPE_INCOMPLETE (type))
4450 {
4451 puts_filtered (" TYPE_INCOMPLETE");
4452 }
4453 if (TYPE_VARARGS (type))
4454 {
4455 puts_filtered (" TYPE_VARARGS");
4456 }
4457 /* This is used for things like AltiVec registers on ppc. Gcc emits
4458 an attribute for the array type, which tells whether or not we
4459 have a vector, instead of a regular array. */
4460 if (TYPE_VECTOR (type))
4461 {
4462 puts_filtered (" TYPE_VECTOR");
4463 }
4464 if (TYPE_FIXED_INSTANCE (type))
4465 {
4466 puts_filtered (" TYPE_FIXED_INSTANCE");
4467 }
4468 if (TYPE_STUB_SUPPORTED (type))
4469 {
4470 puts_filtered (" TYPE_STUB_SUPPORTED");
4471 }
4472 if (TYPE_NOTTEXT (type))
4473 {
4474 puts_filtered (" TYPE_NOTTEXT");
4475 }
4476 puts_filtered ("\n");
4477 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4478 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4479 puts_filtered ("\n");
4480 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4481 {
4482 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4483 printfi_filtered (spaces + 2,
4484 "[%d] enumval %s type ",
4485 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4486 else
4487 printfi_filtered (spaces + 2,
4488 "[%d] bitpos %s bitsize %d type ",
4489 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4490 TYPE_FIELD_BITSIZE (type, idx));
4491 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4492 printf_filtered (" name '%s' (",
4493 TYPE_FIELD_NAME (type, idx) != NULL
4494 ? TYPE_FIELD_NAME (type, idx)
4495 : "<NULL>");
4496 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4497 printf_filtered (")\n");
4498 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4499 {
4500 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4501 }
4502 }
4503 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4504 {
4505 printfi_filtered (spaces, "low %s%s high %s%s\n",
4506 plongest (TYPE_LOW_BOUND (type)),
4507 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4508 plongest (TYPE_HIGH_BOUND (type)),
4509 TYPE_HIGH_BOUND_UNDEFINED (type)
4510 ? " (undefined)" : "");
4511 }
4512
4513 switch (TYPE_SPECIFIC_FIELD (type))
4514 {
4515 case TYPE_SPECIFIC_CPLUS_STUFF:
4516 printfi_filtered (spaces, "cplus_stuff ");
4517 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4518 gdb_stdout);
4519 puts_filtered ("\n");
4520 print_cplus_stuff (type, spaces);
4521 break;
4522
4523 case TYPE_SPECIFIC_GNAT_STUFF:
4524 printfi_filtered (spaces, "gnat_stuff ");
4525 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4526 puts_filtered ("\n");
4527 print_gnat_stuff (type, spaces);
4528 break;
4529
4530 case TYPE_SPECIFIC_FLOATFORMAT:
4531 printfi_filtered (spaces, "floatformat ");
4532 if (TYPE_FLOATFORMAT (type) == NULL)
4533 puts_filtered ("(null)");
4534 else
4535 {
4536 puts_filtered ("{ ");
4537 if (TYPE_FLOATFORMAT (type)[0] == NULL
4538 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4539 puts_filtered ("(null)");
4540 else
4541 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4542
4543 puts_filtered (", ");
4544 if (TYPE_FLOATFORMAT (type)[1] == NULL
4545 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4546 puts_filtered ("(null)");
4547 else
4548 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4549
4550 puts_filtered (" }");
4551 }
4552 puts_filtered ("\n");
4553 break;
4554
4555 case TYPE_SPECIFIC_FUNC:
4556 printfi_filtered (spaces, "calling_convention %d\n",
4557 TYPE_CALLING_CONVENTION (type));
4558 /* tail_call_list is not printed. */
4559 break;
4560
4561 case TYPE_SPECIFIC_SELF_TYPE:
4562 printfi_filtered (spaces, "self_type ");
4563 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4564 puts_filtered ("\n");
4565 break;
4566 }
4567
4568 if (spaces == 0)
4569 obstack_free (&dont_print_type_obstack, NULL);
4570 }
4571 \f
4572 /* Trivial helpers for the libiberty hash table, for mapping one
4573 type to another. */
4574
4575 struct type_pair
4576 {
4577 struct type *old, *newobj;
4578 };
4579
4580 static hashval_t
4581 type_pair_hash (const void *item)
4582 {
4583 const struct type_pair *pair = (const struct type_pair *) item;
4584
4585 return htab_hash_pointer (pair->old);
4586 }
4587
4588 static int
4589 type_pair_eq (const void *item_lhs, const void *item_rhs)
4590 {
4591 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4592 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4593
4594 return lhs->old == rhs->old;
4595 }
4596
4597 /* Allocate the hash table used by copy_type_recursive to walk
4598 types without duplicates. We use OBJFILE's obstack, because
4599 OBJFILE is about to be deleted. */
4600
4601 htab_t
4602 create_copied_types_hash (struct objfile *objfile)
4603 {
4604 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4605 NULL, &objfile->objfile_obstack,
4606 hashtab_obstack_allocate,
4607 dummy_obstack_deallocate);
4608 }
4609
4610 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4611
4612 static struct dynamic_prop_list *
4613 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4614 struct dynamic_prop_list *list)
4615 {
4616 struct dynamic_prop_list *copy = list;
4617 struct dynamic_prop_list **node_ptr = &copy;
4618
4619 while (*node_ptr != NULL)
4620 {
4621 struct dynamic_prop_list *node_copy;
4622
4623 node_copy = ((struct dynamic_prop_list *)
4624 obstack_copy (objfile_obstack, *node_ptr,
4625 sizeof (struct dynamic_prop_list)));
4626 node_copy->prop = (*node_ptr)->prop;
4627 *node_ptr = node_copy;
4628
4629 node_ptr = &node_copy->next;
4630 }
4631
4632 return copy;
4633 }
4634
4635 /* Recursively copy (deep copy) TYPE, if it is associated with
4636 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4637 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4638 it is not associated with OBJFILE. */
4639
4640 struct type *
4641 copy_type_recursive (struct objfile *objfile,
4642 struct type *type,
4643 htab_t copied_types)
4644 {
4645 struct type_pair *stored, pair;
4646 void **slot;
4647 struct type *new_type;
4648
4649 if (! TYPE_OBJFILE_OWNED (type))
4650 return type;
4651
4652 /* This type shouldn't be pointing to any types in other objfiles;
4653 if it did, the type might disappear unexpectedly. */
4654 gdb_assert (TYPE_OBJFILE (type) == objfile);
4655
4656 pair.old = type;
4657 slot = htab_find_slot (copied_types, &pair, INSERT);
4658 if (*slot != NULL)
4659 return ((struct type_pair *) *slot)->newobj;
4660
4661 new_type = alloc_type_arch (get_type_arch (type));
4662
4663 /* We must add the new type to the hash table immediately, in case
4664 we encounter this type again during a recursive call below. */
4665 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4666 stored->old = type;
4667 stored->newobj = new_type;
4668 *slot = stored;
4669
4670 /* Copy the common fields of types. For the main type, we simply
4671 copy the entire thing and then update specific fields as needed. */
4672 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4673 TYPE_OBJFILE_OWNED (new_type) = 0;
4674 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4675
4676 if (TYPE_NAME (type))
4677 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4678 if (TYPE_TAG_NAME (type))
4679 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4680
4681 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4682 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4683
4684 /* Copy the fields. */
4685 if (TYPE_NFIELDS (type))
4686 {
4687 int i, nfields;
4688
4689 nfields = TYPE_NFIELDS (type);
4690 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4691 for (i = 0; i < nfields; i++)
4692 {
4693 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4694 TYPE_FIELD_ARTIFICIAL (type, i);
4695 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4696 if (TYPE_FIELD_TYPE (type, i))
4697 TYPE_FIELD_TYPE (new_type, i)
4698 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4699 copied_types);
4700 if (TYPE_FIELD_NAME (type, i))
4701 TYPE_FIELD_NAME (new_type, i) =
4702 xstrdup (TYPE_FIELD_NAME (type, i));
4703 switch (TYPE_FIELD_LOC_KIND (type, i))
4704 {
4705 case FIELD_LOC_KIND_BITPOS:
4706 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4707 TYPE_FIELD_BITPOS (type, i));
4708 break;
4709 case FIELD_LOC_KIND_ENUMVAL:
4710 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4711 TYPE_FIELD_ENUMVAL (type, i));
4712 break;
4713 case FIELD_LOC_KIND_PHYSADDR:
4714 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4715 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4716 break;
4717 case FIELD_LOC_KIND_PHYSNAME:
4718 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4719 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4720 i)));
4721 break;
4722 default:
4723 internal_error (__FILE__, __LINE__,
4724 _("Unexpected type field location kind: %d"),
4725 TYPE_FIELD_LOC_KIND (type, i));
4726 }
4727 }
4728 }
4729
4730 /* For range types, copy the bounds information. */
4731 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4732 {
4733 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4734 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4735 }
4736
4737 if (TYPE_DYN_PROP_LIST (type) != NULL)
4738 TYPE_DYN_PROP_LIST (new_type)
4739 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4740 TYPE_DYN_PROP_LIST (type));
4741
4742
4743 /* Copy pointers to other types. */
4744 if (TYPE_TARGET_TYPE (type))
4745 TYPE_TARGET_TYPE (new_type) =
4746 copy_type_recursive (objfile,
4747 TYPE_TARGET_TYPE (type),
4748 copied_types);
4749
4750 /* Maybe copy the type_specific bits.
4751
4752 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4753 base classes and methods. There's no fundamental reason why we
4754 can't, but at the moment it is not needed. */
4755
4756 switch (TYPE_SPECIFIC_FIELD (type))
4757 {
4758 case TYPE_SPECIFIC_NONE:
4759 break;
4760 case TYPE_SPECIFIC_FUNC:
4761 INIT_FUNC_SPECIFIC (new_type);
4762 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4763 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4764 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4765 break;
4766 case TYPE_SPECIFIC_FLOATFORMAT:
4767 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4768 break;
4769 case TYPE_SPECIFIC_CPLUS_STUFF:
4770 INIT_CPLUS_SPECIFIC (new_type);
4771 break;
4772 case TYPE_SPECIFIC_GNAT_STUFF:
4773 INIT_GNAT_SPECIFIC (new_type);
4774 break;
4775 case TYPE_SPECIFIC_SELF_TYPE:
4776 set_type_self_type (new_type,
4777 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4778 copied_types));
4779 break;
4780 default:
4781 gdb_assert_not_reached ("bad type_specific_kind");
4782 }
4783
4784 return new_type;
4785 }
4786
4787 /* Make a copy of the given TYPE, except that the pointer & reference
4788 types are not preserved.
4789
4790 This function assumes that the given type has an associated objfile.
4791 This objfile is used to allocate the new type. */
4792
4793 struct type *
4794 copy_type (const struct type *type)
4795 {
4796 struct type *new_type;
4797
4798 gdb_assert (TYPE_OBJFILE_OWNED (type));
4799
4800 new_type = alloc_type_copy (type);
4801 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4802 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4803 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4804 sizeof (struct main_type));
4805 if (TYPE_DYN_PROP_LIST (type) != NULL)
4806 TYPE_DYN_PROP_LIST (new_type)
4807 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4808 TYPE_DYN_PROP_LIST (type));
4809
4810 return new_type;
4811 }
4812 \f
4813 /* Helper functions to initialize architecture-specific types. */
4814
4815 /* Allocate a type structure associated with GDBARCH and set its
4816 CODE, LENGTH, and NAME fields. */
4817
4818 struct type *
4819 arch_type (struct gdbarch *gdbarch,
4820 enum type_code code, int length, const char *name)
4821 {
4822 struct type *type;
4823
4824 type = alloc_type_arch (gdbarch);
4825 set_type_code (type, code);
4826 TYPE_LENGTH (type) = length;
4827
4828 if (name)
4829 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4830
4831 return type;
4832 }
4833
4834 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4835 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4836 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4837
4838 struct type *
4839 arch_integer_type (struct gdbarch *gdbarch,
4840 int bit, int unsigned_p, const char *name)
4841 {
4842 struct type *t;
4843
4844 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4845 if (unsigned_p)
4846 TYPE_UNSIGNED (t) = 1;
4847
4848 return t;
4849 }
4850
4851 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4852 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4853 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4854
4855 struct type *
4856 arch_character_type (struct gdbarch *gdbarch,
4857 int bit, int unsigned_p, const char *name)
4858 {
4859 struct type *t;
4860
4861 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4862 if (unsigned_p)
4863 TYPE_UNSIGNED (t) = 1;
4864
4865 return t;
4866 }
4867
4868 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4869 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4870 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4871
4872 struct type *
4873 arch_boolean_type (struct gdbarch *gdbarch,
4874 int bit, int unsigned_p, const char *name)
4875 {
4876 struct type *t;
4877
4878 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4879 if (unsigned_p)
4880 TYPE_UNSIGNED (t) = 1;
4881
4882 return t;
4883 }
4884
4885 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4886 BIT is the type size in bits; if BIT equals -1, the size is
4887 determined by the floatformat. NAME is the type name. Set the
4888 TYPE_FLOATFORMAT from FLOATFORMATS. */
4889
4890 struct type *
4891 arch_float_type (struct gdbarch *gdbarch,
4892 int bit, const char *name,
4893 const struct floatformat **floatformats)
4894 {
4895 struct type *t;
4896
4897 bit = verify_floatformat (bit, floatformats);
4898 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4899 TYPE_FLOATFORMAT (t) = floatformats;
4900
4901 return t;
4902 }
4903
4904 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4905 BIT is the type size in bits. NAME is the type name. */
4906
4907 struct type *
4908 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4909 {
4910 struct type *t;
4911
4912 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4913 return t;
4914 }
4915
4916 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4917 NAME is the type name. TARGET_TYPE is the component float type. */
4918
4919 struct type *
4920 arch_complex_type (struct gdbarch *gdbarch,
4921 const char *name, struct type *target_type)
4922 {
4923 struct type *t;
4924
4925 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4926 2 * TYPE_LENGTH (target_type), name);
4927 TYPE_TARGET_TYPE (t) = target_type;
4928 return t;
4929 }
4930
4931 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4932 BIT is the pointer type size in bits. NAME is the type name.
4933 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4934 TYPE_UNSIGNED flag. */
4935
4936 struct type *
4937 arch_pointer_type (struct gdbarch *gdbarch,
4938 int bit, const char *name, struct type *target_type)
4939 {
4940 struct type *t;
4941
4942 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4943 TYPE_TARGET_TYPE (t) = target_type;
4944 TYPE_UNSIGNED (t) = 1;
4945 return t;
4946 }
4947
4948 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4949 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4950
4951 struct type *
4952 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4953 {
4954 int max_nfields = length * TARGET_CHAR_BIT;
4955 struct type *type;
4956
4957 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4958 TYPE_UNSIGNED (type) = 1;
4959 TYPE_NFIELDS (type) = 0;
4960 /* Pre-allocate enough space assuming every field is one bit. */
4961 TYPE_FIELDS (type)
4962 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4963
4964 return type;
4965 }
4966
4967 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4968 position BITPOS is called NAME. Pass NAME as "" for fields that
4969 should not be printed. */
4970
4971 void
4972 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4973 struct type *field_type, const char *name)
4974 {
4975 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4976 int field_nr = TYPE_NFIELDS (type);
4977
4978 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4979 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4980 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4981 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4982 gdb_assert (name != NULL);
4983
4984 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4985 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4986 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4987 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4988 ++TYPE_NFIELDS (type);
4989 }
4990
4991 /* Special version of append_flags_type_field to add a flag field.
4992 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4993 position BITPOS is called NAME. */
4994
4995 void
4996 append_flags_type_flag (struct type *type, int bitpos, const char *name)
4997 {
4998 struct gdbarch *gdbarch = get_type_arch (type);
4999
5000 append_flags_type_field (type, bitpos, 1,
5001 builtin_type (gdbarch)->builtin_bool,
5002 name);
5003 }
5004
5005 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5006 specified by CODE) associated with GDBARCH. NAME is the type name. */
5007
5008 struct type *
5009 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5010 enum type_code code)
5011 {
5012 struct type *t;
5013
5014 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5015 t = arch_type (gdbarch, code, 0, NULL);
5016 TYPE_TAG_NAME (t) = name;
5017 INIT_CPLUS_SPECIFIC (t);
5018 return t;
5019 }
5020
5021 /* Add new field with name NAME and type FIELD to composite type T.
5022 Do not set the field's position or adjust the type's length;
5023 the caller should do so. Return the new field. */
5024
5025 struct field *
5026 append_composite_type_field_raw (struct type *t, const char *name,
5027 struct type *field)
5028 {
5029 struct field *f;
5030
5031 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5032 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5033 TYPE_NFIELDS (t));
5034 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5035 memset (f, 0, sizeof f[0]);
5036 FIELD_TYPE (f[0]) = field;
5037 FIELD_NAME (f[0]) = name;
5038 return f;
5039 }
5040
5041 /* Add new field with name NAME and type FIELD to composite type T.
5042 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5043
5044 void
5045 append_composite_type_field_aligned (struct type *t, const char *name,
5046 struct type *field, int alignment)
5047 {
5048 struct field *f = append_composite_type_field_raw (t, name, field);
5049
5050 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5051 {
5052 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5053 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5054 }
5055 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5056 {
5057 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5058 if (TYPE_NFIELDS (t) > 1)
5059 {
5060 SET_FIELD_BITPOS (f[0],
5061 (FIELD_BITPOS (f[-1])
5062 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5063 * TARGET_CHAR_BIT)));
5064
5065 if (alignment)
5066 {
5067 int left;
5068
5069 alignment *= TARGET_CHAR_BIT;
5070 left = FIELD_BITPOS (f[0]) % alignment;
5071
5072 if (left)
5073 {
5074 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5075 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5076 }
5077 }
5078 }
5079 }
5080 }
5081
5082 /* Add new field with name NAME and type FIELD to composite type T. */
5083
5084 void
5085 append_composite_type_field (struct type *t, const char *name,
5086 struct type *field)
5087 {
5088 append_composite_type_field_aligned (t, name, field, 0);
5089 }
5090
5091 static struct gdbarch_data *gdbtypes_data;
5092
5093 const struct builtin_type *
5094 builtin_type (struct gdbarch *gdbarch)
5095 {
5096 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5097 }
5098
5099 static void *
5100 gdbtypes_post_init (struct gdbarch *gdbarch)
5101 {
5102 struct builtin_type *builtin_type
5103 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5104
5105 /* Basic types. */
5106 builtin_type->builtin_void
5107 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5108 builtin_type->builtin_char
5109 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5110 !gdbarch_char_signed (gdbarch), "char");
5111 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5112 builtin_type->builtin_signed_char
5113 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5114 0, "signed char");
5115 builtin_type->builtin_unsigned_char
5116 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5117 1, "unsigned char");
5118 builtin_type->builtin_short
5119 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5120 0, "short");
5121 builtin_type->builtin_unsigned_short
5122 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5123 1, "unsigned short");
5124 builtin_type->builtin_int
5125 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5126 0, "int");
5127 builtin_type->builtin_unsigned_int
5128 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5129 1, "unsigned int");
5130 builtin_type->builtin_long
5131 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5132 0, "long");
5133 builtin_type->builtin_unsigned_long
5134 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5135 1, "unsigned long");
5136 builtin_type->builtin_long_long
5137 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5138 0, "long long");
5139 builtin_type->builtin_unsigned_long_long
5140 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5141 1, "unsigned long long");
5142 builtin_type->builtin_float
5143 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5144 "float", gdbarch_float_format (gdbarch));
5145 builtin_type->builtin_double
5146 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5147 "double", gdbarch_double_format (gdbarch));
5148 builtin_type->builtin_long_double
5149 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5150 "long double", gdbarch_long_double_format (gdbarch));
5151 builtin_type->builtin_complex
5152 = arch_complex_type (gdbarch, "complex",
5153 builtin_type->builtin_float);
5154 builtin_type->builtin_double_complex
5155 = arch_complex_type (gdbarch, "double complex",
5156 builtin_type->builtin_double);
5157 builtin_type->builtin_string
5158 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5159 builtin_type->builtin_bool
5160 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5161
5162 /* The following three are about decimal floating point types, which
5163 are 32-bits, 64-bits and 128-bits respectively. */
5164 builtin_type->builtin_decfloat
5165 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5166 builtin_type->builtin_decdouble
5167 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5168 builtin_type->builtin_declong
5169 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5170
5171 /* "True" character types. */
5172 builtin_type->builtin_true_char
5173 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5174 builtin_type->builtin_true_unsigned_char
5175 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5176
5177 /* Fixed-size integer types. */
5178 builtin_type->builtin_int0
5179 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5180 builtin_type->builtin_int8
5181 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5182 builtin_type->builtin_uint8
5183 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5184 builtin_type->builtin_int16
5185 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5186 builtin_type->builtin_uint16
5187 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5188 builtin_type->builtin_int32
5189 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5190 builtin_type->builtin_uint32
5191 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5192 builtin_type->builtin_int64
5193 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5194 builtin_type->builtin_uint64
5195 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5196 builtin_type->builtin_int128
5197 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5198 builtin_type->builtin_uint128
5199 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5200 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5201 TYPE_INSTANCE_FLAG_NOTTEXT;
5202 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5203 TYPE_INSTANCE_FLAG_NOTTEXT;
5204
5205 /* Wide character types. */
5206 builtin_type->builtin_char16
5207 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5208 builtin_type->builtin_char32
5209 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5210
5211 /* Default data/code pointer types. */
5212 builtin_type->builtin_data_ptr
5213 = lookup_pointer_type (builtin_type->builtin_void);
5214 builtin_type->builtin_func_ptr
5215 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5216 builtin_type->builtin_func_func
5217 = lookup_function_type (builtin_type->builtin_func_ptr);
5218
5219 /* This type represents a GDB internal function. */
5220 builtin_type->internal_fn
5221 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5222 "<internal function>");
5223
5224 /* This type represents an xmethod. */
5225 builtin_type->xmethod
5226 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5227
5228 return builtin_type;
5229 }
5230
5231 /* This set of objfile-based types is intended to be used by symbol
5232 readers as basic types. */
5233
5234 static const struct objfile_data *objfile_type_data;
5235
5236 const struct objfile_type *
5237 objfile_type (struct objfile *objfile)
5238 {
5239 struct gdbarch *gdbarch;
5240 struct objfile_type *objfile_type
5241 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5242
5243 if (objfile_type)
5244 return objfile_type;
5245
5246 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5247 1, struct objfile_type);
5248
5249 /* Use the objfile architecture to determine basic type properties. */
5250 gdbarch = get_objfile_arch (objfile);
5251
5252 /* Basic types. */
5253 objfile_type->builtin_void
5254 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5255 objfile_type->builtin_char
5256 = init_integer_type (objfile, TARGET_CHAR_BIT,
5257 !gdbarch_char_signed (gdbarch), "char");
5258 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5259 objfile_type->builtin_signed_char
5260 = init_integer_type (objfile, TARGET_CHAR_BIT,
5261 0, "signed char");
5262 objfile_type->builtin_unsigned_char
5263 = init_integer_type (objfile, TARGET_CHAR_BIT,
5264 1, "unsigned char");
5265 objfile_type->builtin_short
5266 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5267 0, "short");
5268 objfile_type->builtin_unsigned_short
5269 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5270 1, "unsigned short");
5271 objfile_type->builtin_int
5272 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5273 0, "int");
5274 objfile_type->builtin_unsigned_int
5275 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5276 1, "unsigned int");
5277 objfile_type->builtin_long
5278 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5279 0, "long");
5280 objfile_type->builtin_unsigned_long
5281 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5282 1, "unsigned long");
5283 objfile_type->builtin_long_long
5284 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5285 0, "long long");
5286 objfile_type->builtin_unsigned_long_long
5287 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5288 1, "unsigned long long");
5289 objfile_type->builtin_float
5290 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5291 "float", gdbarch_float_format (gdbarch));
5292 objfile_type->builtin_double
5293 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5294 "double", gdbarch_double_format (gdbarch));
5295 objfile_type->builtin_long_double
5296 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5297 "long double", gdbarch_long_double_format (gdbarch));
5298
5299 /* This type represents a type that was unrecognized in symbol read-in. */
5300 objfile_type->builtin_error
5301 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5302
5303 /* The following set of types is used for symbols with no
5304 debug information. */
5305 objfile_type->nodebug_text_symbol
5306 = init_type (objfile, TYPE_CODE_FUNC, 1,
5307 "<text variable, no debug info>");
5308 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5309 = objfile_type->builtin_int;
5310 objfile_type->nodebug_text_gnu_ifunc_symbol
5311 = init_type (objfile, TYPE_CODE_FUNC, 1,
5312 "<text gnu-indirect-function variable, no debug info>");
5313 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5314 = objfile_type->nodebug_text_symbol;
5315 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5316 objfile_type->nodebug_got_plt_symbol
5317 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5318 "<text from jump slot in .got.plt, no debug info>",
5319 objfile_type->nodebug_text_symbol);
5320 objfile_type->nodebug_data_symbol
5321 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5322 "<data variable, no debug info>");
5323 objfile_type->nodebug_unknown_symbol
5324 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5325 "<variable (not text or data), no debug info>");
5326 objfile_type->nodebug_tls_symbol
5327 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5328 "<thread local variable, no debug info>");
5329
5330 /* NOTE: on some targets, addresses and pointers are not necessarily
5331 the same.
5332
5333 The upshot is:
5334 - gdb's `struct type' always describes the target's
5335 representation.
5336 - gdb's `struct value' objects should always hold values in
5337 target form.
5338 - gdb's CORE_ADDR values are addresses in the unified virtual
5339 address space that the assembler and linker work with. Thus,
5340 since target_read_memory takes a CORE_ADDR as an argument, it
5341 can access any memory on the target, even if the processor has
5342 separate code and data address spaces.
5343
5344 In this context, objfile_type->builtin_core_addr is a bit odd:
5345 it's a target type for a value the target will never see. It's
5346 only used to hold the values of (typeless) linker symbols, which
5347 are indeed in the unified virtual address space. */
5348
5349 objfile_type->builtin_core_addr
5350 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5351 "__CORE_ADDR");
5352
5353 set_objfile_data (objfile, objfile_type_data, objfile_type);
5354 return objfile_type;
5355 }
5356
5357 extern initialize_file_ftype _initialize_gdbtypes;
5358
5359 void
5360 _initialize_gdbtypes (void)
5361 {
5362 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5363 objfile_type_data = register_objfile_data ();
5364
5365 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5366 _("Set debugging of C++ overloading."),
5367 _("Show debugging of C++ overloading."),
5368 _("When enabled, ranking of the "
5369 "functions is displayed."),
5370 NULL,
5371 show_overload_debug,
5372 &setdebuglist, &showdebuglist);
5373
5374 /* Add user knob for controlling resolution of opaque types. */
5375 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5376 &opaque_type_resolution,
5377 _("Set resolution of opaque struct/class/union"
5378 " types (if set before loading symbols)."),
5379 _("Show resolution of opaque struct/class/union"
5380 " types (if set before loading symbols)."),
5381 NULL, NULL,
5382 show_opaque_type_resolution,
5383 &setlist, &showlist);
5384
5385 /* Add an option to permit non-strict type checking. */
5386 add_setshow_boolean_cmd ("type", class_support,
5387 &strict_type_checking,
5388 _("Set strict type checking."),
5389 _("Show strict type checking."),
5390 NULL, NULL,
5391 show_strict_type_checking,
5392 &setchecklist, &showchecklist);
5393 }
This page took 0.174765 seconds and 5 git commands to generate.