Fix calling prototyped functions via function pointers
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank CV_CONVERSION_BADNESS = {1, 0};
55 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
56 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
59 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
60 const struct rank BASE_CONVERSION_BADNESS = {2,0};
61 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
62 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
63 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
64 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
65
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double_big,
113 &floatformat_ibm_long_double_little
114 };
115
116 /* Should opaque types be resolved? */
117
118 static int opaque_type_resolution = 1;
119
120 /* A flag to enable printing of debugging information of C++
121 overloading. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static int strict_type_checking = 1;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 if (TYPE_OBJFILE_OWNED (type))
236 return get_objfile_arch (TYPE_OWNER (type).objfile);
237 else
238 return TYPE_OWNER (type).gdbarch;
239 }
240
241 /* See gdbtypes.h. */
242
243 struct type *
244 get_target_type (struct type *type)
245 {
246 if (type != NULL)
247 {
248 type = TYPE_TARGET_TYPE (type);
249 if (type != NULL)
250 type = check_typedef (type);
251 }
252
253 return type;
254 }
255
256 /* See gdbtypes.h. */
257
258 unsigned int
259 type_length_units (struct type *type)
260 {
261 struct gdbarch *arch = get_type_arch (type);
262 int unit_size = gdbarch_addressable_memory_unit_size (arch);
263
264 return TYPE_LENGTH (type) / unit_size;
265 }
266
267 /* Alloc a new type instance structure, fill it with some defaults,
268 and point it at OLDTYPE. Allocate the new type instance from the
269 same place as OLDTYPE. */
270
271 static struct type *
272 alloc_type_instance (struct type *oldtype)
273 {
274 struct type *type;
275
276 /* Allocate the structure. */
277
278 if (! TYPE_OBJFILE_OWNED (oldtype))
279 type = XCNEW (struct type);
280 else
281 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
282 struct type);
283
284 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
285
286 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
287
288 return type;
289 }
290
291 /* Clear all remnants of the previous type at TYPE, in preparation for
292 replacing it with something else. Preserve owner information. */
293
294 static void
295 smash_type (struct type *type)
296 {
297 int objfile_owned = TYPE_OBJFILE_OWNED (type);
298 union type_owner owner = TYPE_OWNER (type);
299
300 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
301
302 /* Restore owner information. */
303 TYPE_OBJFILE_OWNED (type) = objfile_owned;
304 TYPE_OWNER (type) = owner;
305
306 /* For now, delete the rings. */
307 TYPE_CHAIN (type) = type;
308
309 /* For now, leave the pointer/reference types alone. */
310 }
311
312 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
313 to a pointer to memory where the pointer type should be stored.
314 If *TYPEPTR is zero, update it to point to the pointer type we return.
315 We allocate new memory if needed. */
316
317 struct type *
318 make_pointer_type (struct type *type, struct type **typeptr)
319 {
320 struct type *ntype; /* New type */
321 struct type *chain;
322
323 ntype = TYPE_POINTER_TYPE (type);
324
325 if (ntype)
326 {
327 if (typeptr == 0)
328 return ntype; /* Don't care about alloc,
329 and have new type. */
330 else if (*typeptr == 0)
331 {
332 *typeptr = ntype; /* Tracking alloc, and have new type. */
333 return ntype;
334 }
335 }
336
337 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
338 {
339 ntype = alloc_type_copy (type);
340 if (typeptr)
341 *typeptr = ntype;
342 }
343 else /* We have storage, but need to reset it. */
344 {
345 ntype = *typeptr;
346 chain = TYPE_CHAIN (ntype);
347 smash_type (ntype);
348 TYPE_CHAIN (ntype) = chain;
349 }
350
351 TYPE_TARGET_TYPE (ntype) = type;
352 TYPE_POINTER_TYPE (type) = ntype;
353
354 /* FIXME! Assumes the machine has only one representation for pointers! */
355
356 TYPE_LENGTH (ntype)
357 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
358 TYPE_CODE (ntype) = TYPE_CODE_PTR;
359
360 /* Mark pointers as unsigned. The target converts between pointers
361 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
362 gdbarch_address_to_pointer. */
363 TYPE_UNSIGNED (ntype) = 1;
364
365 /* Update the length of all the other variants of this type. */
366 chain = TYPE_CHAIN (ntype);
367 while (chain != ntype)
368 {
369 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
370 chain = TYPE_CHAIN (chain);
371 }
372
373 return ntype;
374 }
375
376 /* Given a type TYPE, return a type of pointers to that type.
377 May need to construct such a type if this is the first use. */
378
379 struct type *
380 lookup_pointer_type (struct type *type)
381 {
382 return make_pointer_type (type, (struct type **) 0);
383 }
384
385 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
386 points to a pointer to memory where the reference type should be
387 stored. If *TYPEPTR is zero, update it to point to the reference
388 type we return. We allocate new memory if needed. REFCODE denotes
389 the kind of reference type to lookup (lvalue or rvalue reference). */
390
391 struct type *
392 make_reference_type (struct type *type, struct type **typeptr,
393 enum type_code refcode)
394 {
395 struct type *ntype; /* New type */
396 struct type **reftype;
397 struct type *chain;
398
399 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
400
401 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
402 : TYPE_RVALUE_REFERENCE_TYPE (type));
403
404 if (ntype)
405 {
406 if (typeptr == 0)
407 return ntype; /* Don't care about alloc,
408 and have new type. */
409 else if (*typeptr == 0)
410 {
411 *typeptr = ntype; /* Tracking alloc, and have new type. */
412 return ntype;
413 }
414 }
415
416 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
417 {
418 ntype = alloc_type_copy (type);
419 if (typeptr)
420 *typeptr = ntype;
421 }
422 else /* We have storage, but need to reset it. */
423 {
424 ntype = *typeptr;
425 chain = TYPE_CHAIN (ntype);
426 smash_type (ntype);
427 TYPE_CHAIN (ntype) = chain;
428 }
429
430 TYPE_TARGET_TYPE (ntype) = type;
431 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
432 : &TYPE_RVALUE_REFERENCE_TYPE (type));
433
434 *reftype = ntype;
435
436 /* FIXME! Assume the machine has only one representation for
437 references, and that it matches the (only) representation for
438 pointers! */
439
440 TYPE_LENGTH (ntype) =
441 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
442 TYPE_CODE (ntype) = refcode;
443
444 *reftype = ntype;
445
446 /* Update the length of all the other variants of this type. */
447 chain = TYPE_CHAIN (ntype);
448 while (chain != ntype)
449 {
450 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
451 chain = TYPE_CHAIN (chain);
452 }
453
454 return ntype;
455 }
456
457 /* Same as above, but caller doesn't care about memory allocation
458 details. */
459
460 struct type *
461 lookup_reference_type (struct type *type, enum type_code refcode)
462 {
463 return make_reference_type (type, (struct type **) 0, refcode);
464 }
465
466 /* Lookup the lvalue reference type for the type TYPE. */
467
468 struct type *
469 lookup_lvalue_reference_type (struct type *type)
470 {
471 return lookup_reference_type (type, TYPE_CODE_REF);
472 }
473
474 /* Lookup the rvalue reference type for the type TYPE. */
475
476 struct type *
477 lookup_rvalue_reference_type (struct type *type)
478 {
479 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
480 }
481
482 /* Lookup a function type that returns type TYPE. TYPEPTR, if
483 nonzero, points to a pointer to memory where the function type
484 should be stored. If *TYPEPTR is zero, update it to point to the
485 function type we return. We allocate new memory if needed. */
486
487 struct type *
488 make_function_type (struct type *type, struct type **typeptr)
489 {
490 struct type *ntype; /* New type */
491
492 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
493 {
494 ntype = alloc_type_copy (type);
495 if (typeptr)
496 *typeptr = ntype;
497 }
498 else /* We have storage, but need to reset it. */
499 {
500 ntype = *typeptr;
501 smash_type (ntype);
502 }
503
504 TYPE_TARGET_TYPE (ntype) = type;
505
506 TYPE_LENGTH (ntype) = 1;
507 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
508
509 INIT_FUNC_SPECIFIC (ntype);
510
511 return ntype;
512 }
513
514 /* Given a type TYPE, return a type of functions that return that type.
515 May need to construct such a type if this is the first use. */
516
517 struct type *
518 lookup_function_type (struct type *type)
519 {
520 return make_function_type (type, (struct type **) 0);
521 }
522
523 /* Given a type TYPE and argument types, return the appropriate
524 function type. If the final type in PARAM_TYPES is NULL, make a
525 varargs function. */
526
527 struct type *
528 lookup_function_type_with_arguments (struct type *type,
529 int nparams,
530 struct type **param_types)
531 {
532 struct type *fn = make_function_type (type, (struct type **) 0);
533 int i;
534
535 if (nparams > 0)
536 {
537 if (param_types[nparams - 1] == NULL)
538 {
539 --nparams;
540 TYPE_VARARGS (fn) = 1;
541 }
542 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
543 == TYPE_CODE_VOID)
544 {
545 --nparams;
546 /* Caller should have ensured this. */
547 gdb_assert (nparams == 0);
548 TYPE_PROTOTYPED (fn) = 1;
549 }
550 else
551 TYPE_PROTOTYPED (fn) = 1;
552 }
553
554 TYPE_NFIELDS (fn) = nparams;
555 TYPE_FIELDS (fn)
556 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
557 for (i = 0; i < nparams; ++i)
558 TYPE_FIELD_TYPE (fn, i) = param_types[i];
559
560 return fn;
561 }
562
563 /* Identify address space identifier by name --
564 return the integer flag defined in gdbtypes.h. */
565
566 int
567 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
568 {
569 int type_flags;
570
571 /* Check for known address space delimiters. */
572 if (!strcmp (space_identifier, "code"))
573 return TYPE_INSTANCE_FLAG_CODE_SPACE;
574 else if (!strcmp (space_identifier, "data"))
575 return TYPE_INSTANCE_FLAG_DATA_SPACE;
576 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
577 && gdbarch_address_class_name_to_type_flags (gdbarch,
578 space_identifier,
579 &type_flags))
580 return type_flags;
581 else
582 error (_("Unknown address space specifier: \"%s\""), space_identifier);
583 }
584
585 /* Identify address space identifier by integer flag as defined in
586 gdbtypes.h -- return the string version of the adress space name. */
587
588 const char *
589 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
590 {
591 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
592 return "code";
593 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
594 return "data";
595 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
596 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
597 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
598 else
599 return NULL;
600 }
601
602 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
603
604 If STORAGE is non-NULL, create the new type instance there.
605 STORAGE must be in the same obstack as TYPE. */
606
607 static struct type *
608 make_qualified_type (struct type *type, int new_flags,
609 struct type *storage)
610 {
611 struct type *ntype;
612
613 ntype = type;
614 do
615 {
616 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
617 return ntype;
618 ntype = TYPE_CHAIN (ntype);
619 }
620 while (ntype != type);
621
622 /* Create a new type instance. */
623 if (storage == NULL)
624 ntype = alloc_type_instance (type);
625 else
626 {
627 /* If STORAGE was provided, it had better be in the same objfile
628 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
629 if one objfile is freed and the other kept, we'd have
630 dangling pointers. */
631 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
632
633 ntype = storage;
634 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
635 TYPE_CHAIN (ntype) = ntype;
636 }
637
638 /* Pointers or references to the original type are not relevant to
639 the new type. */
640 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
641 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
642
643 /* Chain the new qualified type to the old type. */
644 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
645 TYPE_CHAIN (type) = ntype;
646
647 /* Now set the instance flags and return the new type. */
648 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
649
650 /* Set length of new type to that of the original type. */
651 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
652
653 return ntype;
654 }
655
656 /* Make an address-space-delimited variant of a type -- a type that
657 is identical to the one supplied except that it has an address
658 space attribute attached to it (such as "code" or "data").
659
660 The space attributes "code" and "data" are for Harvard
661 architectures. The address space attributes are for architectures
662 which have alternately sized pointers or pointers with alternate
663 representations. */
664
665 struct type *
666 make_type_with_address_space (struct type *type, int space_flag)
667 {
668 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
669 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
670 | TYPE_INSTANCE_FLAG_DATA_SPACE
671 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
672 | space_flag);
673
674 return make_qualified_type (type, new_flags, NULL);
675 }
676
677 /* Make a "c-v" variant of a type -- a type that is identical to the
678 one supplied except that it may have const or volatile attributes
679 CNST is a flag for setting the const attribute
680 VOLTL is a flag for setting the volatile attribute
681 TYPE is the base type whose variant we are creating.
682
683 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
684 storage to hold the new qualified type; *TYPEPTR and TYPE must be
685 in the same objfile. Otherwise, allocate fresh memory for the new
686 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
687 new type we construct. */
688
689 struct type *
690 make_cv_type (int cnst, int voltl,
691 struct type *type,
692 struct type **typeptr)
693 {
694 struct type *ntype; /* New type */
695
696 int new_flags = (TYPE_INSTANCE_FLAGS (type)
697 & ~(TYPE_INSTANCE_FLAG_CONST
698 | TYPE_INSTANCE_FLAG_VOLATILE));
699
700 if (cnst)
701 new_flags |= TYPE_INSTANCE_FLAG_CONST;
702
703 if (voltl)
704 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
705
706 if (typeptr && *typeptr != NULL)
707 {
708 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
709 a C-V variant chain that threads across objfiles: if one
710 objfile gets freed, then the other has a broken C-V chain.
711
712 This code used to try to copy over the main type from TYPE to
713 *TYPEPTR if they were in different objfiles, but that's
714 wrong, too: TYPE may have a field list or member function
715 lists, which refer to types of their own, etc. etc. The
716 whole shebang would need to be copied over recursively; you
717 can't have inter-objfile pointers. The only thing to do is
718 to leave stub types as stub types, and look them up afresh by
719 name each time you encounter them. */
720 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
721 }
722
723 ntype = make_qualified_type (type, new_flags,
724 typeptr ? *typeptr : NULL);
725
726 if (typeptr != NULL)
727 *typeptr = ntype;
728
729 return ntype;
730 }
731
732 /* Make a 'restrict'-qualified version of TYPE. */
733
734 struct type *
735 make_restrict_type (struct type *type)
736 {
737 return make_qualified_type (type,
738 (TYPE_INSTANCE_FLAGS (type)
739 | TYPE_INSTANCE_FLAG_RESTRICT),
740 NULL);
741 }
742
743 /* Make a type without const, volatile, or restrict. */
744
745 struct type *
746 make_unqualified_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 & ~(TYPE_INSTANCE_FLAG_CONST
751 | TYPE_INSTANCE_FLAG_VOLATILE
752 | TYPE_INSTANCE_FLAG_RESTRICT)),
753 NULL);
754 }
755
756 /* Make a '_Atomic'-qualified version of TYPE. */
757
758 struct type *
759 make_atomic_type (struct type *type)
760 {
761 return make_qualified_type (type,
762 (TYPE_INSTANCE_FLAGS (type)
763 | TYPE_INSTANCE_FLAG_ATOMIC),
764 NULL);
765 }
766
767 /* Replace the contents of ntype with the type *type. This changes the
768 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
769 the changes are propogated to all types in the TYPE_CHAIN.
770
771 In order to build recursive types, it's inevitable that we'll need
772 to update types in place --- but this sort of indiscriminate
773 smashing is ugly, and needs to be replaced with something more
774 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
775 clear if more steps are needed. */
776
777 void
778 replace_type (struct type *ntype, struct type *type)
779 {
780 struct type *chain;
781
782 /* These two types had better be in the same objfile. Otherwise,
783 the assignment of one type's main type structure to the other
784 will produce a type with references to objects (names; field
785 lists; etc.) allocated on an objfile other than its own. */
786 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
787
788 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
789
790 /* The type length is not a part of the main type. Update it for
791 each type on the variant chain. */
792 chain = ntype;
793 do
794 {
795 /* Assert that this element of the chain has no address-class bits
796 set in its flags. Such type variants might have type lengths
797 which are supposed to be different from the non-address-class
798 variants. This assertion shouldn't ever be triggered because
799 symbol readers which do construct address-class variants don't
800 call replace_type(). */
801 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
802
803 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
804 chain = TYPE_CHAIN (chain);
805 }
806 while (ntype != chain);
807
808 /* Assert that the two types have equivalent instance qualifiers.
809 This should be true for at least all of our debug readers. */
810 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
811 }
812
813 /* Implement direct support for MEMBER_TYPE in GNU C++.
814 May need to construct such a type if this is the first use.
815 The TYPE is the type of the member. The DOMAIN is the type
816 of the aggregate that the member belongs to. */
817
818 struct type *
819 lookup_memberptr_type (struct type *type, struct type *domain)
820 {
821 struct type *mtype;
822
823 mtype = alloc_type_copy (type);
824 smash_to_memberptr_type (mtype, domain, type);
825 return mtype;
826 }
827
828 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
829
830 struct type *
831 lookup_methodptr_type (struct type *to_type)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (to_type);
836 smash_to_methodptr_type (mtype, to_type);
837 return mtype;
838 }
839
840 /* Allocate a stub method whose return type is TYPE. This apparently
841 happens for speed of symbol reading, since parsing out the
842 arguments to the method is cpu-intensive, the way we are doing it.
843 So, we will fill in arguments later. This always returns a fresh
844 type. */
845
846 struct type *
847 allocate_stub_method (struct type *type)
848 {
849 struct type *mtype;
850
851 mtype = alloc_type_copy (type);
852 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
853 TYPE_LENGTH (mtype) = 1;
854 TYPE_STUB (mtype) = 1;
855 TYPE_TARGET_TYPE (mtype) = type;
856 /* TYPE_SELF_TYPE (mtype) = unknown yet */
857 return mtype;
858 }
859
860 /* Create a range type with a dynamic range from LOW_BOUND to
861 HIGH_BOUND, inclusive. See create_range_type for further details. */
862
863 struct type *
864 create_range_type (struct type *result_type, struct type *index_type,
865 const struct dynamic_prop *low_bound,
866 const struct dynamic_prop *high_bound)
867 {
868 if (result_type == NULL)
869 result_type = alloc_type_copy (index_type);
870 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
871 TYPE_TARGET_TYPE (result_type) = index_type;
872 if (TYPE_STUB (index_type))
873 TYPE_TARGET_STUB (result_type) = 1;
874 else
875 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
876
877 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
878 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
879 TYPE_RANGE_DATA (result_type)->low = *low_bound;
880 TYPE_RANGE_DATA (result_type)->high = *high_bound;
881
882 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
883 TYPE_UNSIGNED (result_type) = 1;
884
885 /* Ada allows the declaration of range types whose upper bound is
886 less than the lower bound, so checking the lower bound is not
887 enough. Make sure we do not mark a range type whose upper bound
888 is negative as unsigned. */
889 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
890 TYPE_UNSIGNED (result_type) = 0;
891
892 return result_type;
893 }
894
895 /* Create a range type using either a blank type supplied in
896 RESULT_TYPE, or creating a new type, inheriting the objfile from
897 INDEX_TYPE.
898
899 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
900 to HIGH_BOUND, inclusive.
901
902 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
903 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
904
905 struct type *
906 create_static_range_type (struct type *result_type, struct type *index_type,
907 LONGEST low_bound, LONGEST high_bound)
908 {
909 struct dynamic_prop low, high;
910
911 low.kind = PROP_CONST;
912 low.data.const_val = low_bound;
913
914 high.kind = PROP_CONST;
915 high.data.const_val = high_bound;
916
917 result_type = create_range_type (result_type, index_type, &low, &high);
918
919 return result_type;
920 }
921
922 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
923 are static, otherwise returns 0. */
924
925 static int
926 has_static_range (const struct range_bounds *bounds)
927 {
928 return (bounds->low.kind == PROP_CONST
929 && bounds->high.kind == PROP_CONST);
930 }
931
932
933 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
934 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
935 bounds will fit in LONGEST), or -1 otherwise. */
936
937 int
938 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
939 {
940 type = check_typedef (type);
941 switch (TYPE_CODE (type))
942 {
943 case TYPE_CODE_RANGE:
944 *lowp = TYPE_LOW_BOUND (type);
945 *highp = TYPE_HIGH_BOUND (type);
946 return 1;
947 case TYPE_CODE_ENUM:
948 if (TYPE_NFIELDS (type) > 0)
949 {
950 /* The enums may not be sorted by value, so search all
951 entries. */
952 int i;
953
954 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
955 for (i = 0; i < TYPE_NFIELDS (type); i++)
956 {
957 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
958 *lowp = TYPE_FIELD_ENUMVAL (type, i);
959 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
960 *highp = TYPE_FIELD_ENUMVAL (type, i);
961 }
962
963 /* Set unsigned indicator if warranted. */
964 if (*lowp >= 0)
965 {
966 TYPE_UNSIGNED (type) = 1;
967 }
968 }
969 else
970 {
971 *lowp = 0;
972 *highp = -1;
973 }
974 return 0;
975 case TYPE_CODE_BOOL:
976 *lowp = 0;
977 *highp = 1;
978 return 0;
979 case TYPE_CODE_INT:
980 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
981 return -1;
982 if (!TYPE_UNSIGNED (type))
983 {
984 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
985 *highp = -*lowp - 1;
986 return 0;
987 }
988 /* ... fall through for unsigned ints ... */
989 case TYPE_CODE_CHAR:
990 *lowp = 0;
991 /* This round-about calculation is to avoid shifting by
992 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
993 if TYPE_LENGTH (type) == sizeof (LONGEST). */
994 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
995 *highp = (*highp - 1) | *highp;
996 return 0;
997 default:
998 return -1;
999 }
1000 }
1001
1002 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1003 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1004 Save the high bound into HIGH_BOUND if not NULL.
1005
1006 Return 1 if the operation was successful. Return zero otherwise,
1007 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1008
1009 We now simply use get_discrete_bounds call to get the values
1010 of the low and high bounds.
1011 get_discrete_bounds can return three values:
1012 1, meaning that index is a range,
1013 0, meaning that index is a discrete type,
1014 or -1 for failure. */
1015
1016 int
1017 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1018 {
1019 struct type *index = TYPE_INDEX_TYPE (type);
1020 LONGEST low = 0;
1021 LONGEST high = 0;
1022 int res;
1023
1024 if (index == NULL)
1025 return 0;
1026
1027 res = get_discrete_bounds (index, &low, &high);
1028 if (res == -1)
1029 return 0;
1030
1031 /* Check if the array bounds are undefined. */
1032 if (res == 1
1033 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1034 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1035 return 0;
1036
1037 if (low_bound)
1038 *low_bound = low;
1039
1040 if (high_bound)
1041 *high_bound = high;
1042
1043 return 1;
1044 }
1045
1046 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1047 representation of a value of this type, save the corresponding
1048 position number in POS.
1049
1050 Its differs from VAL only in the case of enumeration types. In
1051 this case, the position number of the value of the first listed
1052 enumeration literal is zero; the position number of the value of
1053 each subsequent enumeration literal is one more than that of its
1054 predecessor in the list.
1055
1056 Return 1 if the operation was successful. Return zero otherwise,
1057 in which case the value of POS is unmodified.
1058 */
1059
1060 int
1061 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1062 {
1063 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1064 {
1065 int i;
1066
1067 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1068 {
1069 if (val == TYPE_FIELD_ENUMVAL (type, i))
1070 {
1071 *pos = i;
1072 return 1;
1073 }
1074 }
1075 /* Invalid enumeration value. */
1076 return 0;
1077 }
1078 else
1079 {
1080 *pos = val;
1081 return 1;
1082 }
1083 }
1084
1085 /* Create an array type using either a blank type supplied in
1086 RESULT_TYPE, or creating a new type, inheriting the objfile from
1087 RANGE_TYPE.
1088
1089 Elements will be of type ELEMENT_TYPE, the indices will be of type
1090 RANGE_TYPE.
1091
1092 If BIT_STRIDE is not zero, build a packed array type whose element
1093 size is BIT_STRIDE. Otherwise, ignore this parameter.
1094
1095 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1096 sure it is TYPE_CODE_UNDEF before we bash it into an array
1097 type? */
1098
1099 struct type *
1100 create_array_type_with_stride (struct type *result_type,
1101 struct type *element_type,
1102 struct type *range_type,
1103 unsigned int bit_stride)
1104 {
1105 if (result_type == NULL)
1106 result_type = alloc_type_copy (range_type);
1107
1108 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1109 TYPE_TARGET_TYPE (result_type) = element_type;
1110 if (has_static_range (TYPE_RANGE_DATA (range_type))
1111 && (!type_not_associated (result_type)
1112 && !type_not_allocated (result_type)))
1113 {
1114 LONGEST low_bound, high_bound;
1115
1116 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1117 low_bound = high_bound = 0;
1118 element_type = check_typedef (element_type);
1119 /* Be careful when setting the array length. Ada arrays can be
1120 empty arrays with the high_bound being smaller than the low_bound.
1121 In such cases, the array length should be zero. */
1122 if (high_bound < low_bound)
1123 TYPE_LENGTH (result_type) = 0;
1124 else if (bit_stride > 0)
1125 TYPE_LENGTH (result_type) =
1126 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1127 else
1128 TYPE_LENGTH (result_type) =
1129 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1130 }
1131 else
1132 {
1133 /* This type is dynamic and its length needs to be computed
1134 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1135 undefined by setting it to zero. Although we are not expected
1136 to trust TYPE_LENGTH in this case, setting the size to zero
1137 allows us to avoid allocating objects of random sizes in case
1138 we accidently do. */
1139 TYPE_LENGTH (result_type) = 0;
1140 }
1141
1142 TYPE_NFIELDS (result_type) = 1;
1143 TYPE_FIELDS (result_type) =
1144 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1145 TYPE_INDEX_TYPE (result_type) = range_type;
1146 if (bit_stride > 0)
1147 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1148
1149 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1150 if (TYPE_LENGTH (result_type) == 0)
1151 TYPE_TARGET_STUB (result_type) = 1;
1152
1153 return result_type;
1154 }
1155
1156 /* Same as create_array_type_with_stride but with no bit_stride
1157 (BIT_STRIDE = 0), thus building an unpacked array. */
1158
1159 struct type *
1160 create_array_type (struct type *result_type,
1161 struct type *element_type,
1162 struct type *range_type)
1163 {
1164 return create_array_type_with_stride (result_type, element_type,
1165 range_type, 0);
1166 }
1167
1168 struct type *
1169 lookup_array_range_type (struct type *element_type,
1170 LONGEST low_bound, LONGEST high_bound)
1171 {
1172 struct gdbarch *gdbarch = get_type_arch (element_type);
1173 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1174 struct type *range_type
1175 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1176
1177 return create_array_type (NULL, element_type, range_type);
1178 }
1179
1180 /* Create a string type using either a blank type supplied in
1181 RESULT_TYPE, or creating a new type. String types are similar
1182 enough to array of char types that we can use create_array_type to
1183 build the basic type and then bash it into a string type.
1184
1185 For fixed length strings, the range type contains 0 as the lower
1186 bound and the length of the string minus one as the upper bound.
1187
1188 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1189 sure it is TYPE_CODE_UNDEF before we bash it into a string
1190 type? */
1191
1192 struct type *
1193 create_string_type (struct type *result_type,
1194 struct type *string_char_type,
1195 struct type *range_type)
1196 {
1197 result_type = create_array_type (result_type,
1198 string_char_type,
1199 range_type);
1200 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1201 return result_type;
1202 }
1203
1204 struct type *
1205 lookup_string_range_type (struct type *string_char_type,
1206 LONGEST low_bound, LONGEST high_bound)
1207 {
1208 struct type *result_type;
1209
1210 result_type = lookup_array_range_type (string_char_type,
1211 low_bound, high_bound);
1212 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1213 return result_type;
1214 }
1215
1216 struct type *
1217 create_set_type (struct type *result_type, struct type *domain_type)
1218 {
1219 if (result_type == NULL)
1220 result_type = alloc_type_copy (domain_type);
1221
1222 TYPE_CODE (result_type) = TYPE_CODE_SET;
1223 TYPE_NFIELDS (result_type) = 1;
1224 TYPE_FIELDS (result_type)
1225 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1226
1227 if (!TYPE_STUB (domain_type))
1228 {
1229 LONGEST low_bound, high_bound, bit_length;
1230
1231 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1232 low_bound = high_bound = 0;
1233 bit_length = high_bound - low_bound + 1;
1234 TYPE_LENGTH (result_type)
1235 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1236 if (low_bound >= 0)
1237 TYPE_UNSIGNED (result_type) = 1;
1238 }
1239 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1240
1241 return result_type;
1242 }
1243
1244 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1245 and any array types nested inside it. */
1246
1247 void
1248 make_vector_type (struct type *array_type)
1249 {
1250 struct type *inner_array, *elt_type;
1251 int flags;
1252
1253 /* Find the innermost array type, in case the array is
1254 multi-dimensional. */
1255 inner_array = array_type;
1256 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1257 inner_array = TYPE_TARGET_TYPE (inner_array);
1258
1259 elt_type = TYPE_TARGET_TYPE (inner_array);
1260 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1261 {
1262 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1263 elt_type = make_qualified_type (elt_type, flags, NULL);
1264 TYPE_TARGET_TYPE (inner_array) = elt_type;
1265 }
1266
1267 TYPE_VECTOR (array_type) = 1;
1268 }
1269
1270 struct type *
1271 init_vector_type (struct type *elt_type, int n)
1272 {
1273 struct type *array_type;
1274
1275 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1276 make_vector_type (array_type);
1277 return array_type;
1278 }
1279
1280 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1281 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1282 confusing. "self" is a common enough replacement for "this".
1283 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1284 TYPE_CODE_METHOD. */
1285
1286 struct type *
1287 internal_type_self_type (struct type *type)
1288 {
1289 switch (TYPE_CODE (type))
1290 {
1291 case TYPE_CODE_METHODPTR:
1292 case TYPE_CODE_MEMBERPTR:
1293 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1294 return NULL;
1295 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1296 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 return NULL;
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1302 default:
1303 gdb_assert_not_reached ("bad type");
1304 }
1305 }
1306
1307 /* Set the type of the class that TYPE belongs to.
1308 In c++ this is the class of "this".
1309 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1310 TYPE_CODE_METHOD. */
1311
1312 void
1313 set_type_self_type (struct type *type, struct type *self_type)
1314 {
1315 switch (TYPE_CODE (type))
1316 {
1317 case TYPE_CODE_METHODPTR:
1318 case TYPE_CODE_MEMBERPTR:
1319 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1320 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1321 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1322 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1323 break;
1324 case TYPE_CODE_METHOD:
1325 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1326 INIT_FUNC_SPECIFIC (type);
1327 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1328 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1329 break;
1330 default:
1331 gdb_assert_not_reached ("bad type");
1332 }
1333 }
1334
1335 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1336 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1337 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1338 TYPE doesn't include the offset (that's the value of the MEMBER
1339 itself), but does include the structure type into which it points
1340 (for some reason).
1341
1342 When "smashing" the type, we preserve the objfile that the old type
1343 pointed to, since we aren't changing where the type is actually
1344 allocated. */
1345
1346 void
1347 smash_to_memberptr_type (struct type *type, struct type *self_type,
1348 struct type *to_type)
1349 {
1350 smash_type (type);
1351 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1352 TYPE_TARGET_TYPE (type) = to_type;
1353 set_type_self_type (type, self_type);
1354 /* Assume that a data member pointer is the same size as a normal
1355 pointer. */
1356 TYPE_LENGTH (type)
1357 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1358 }
1359
1360 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1361
1362 When "smashing" the type, we preserve the objfile that the old type
1363 pointed to, since we aren't changing where the type is actually
1364 allocated. */
1365
1366 void
1367 smash_to_methodptr_type (struct type *type, struct type *to_type)
1368 {
1369 smash_type (type);
1370 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1371 TYPE_TARGET_TYPE (type) = to_type;
1372 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1373 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1374 }
1375
1376 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1377 METHOD just means `function that gets an extra "this" argument'.
1378
1379 When "smashing" the type, we preserve the objfile that the old type
1380 pointed to, since we aren't changing where the type is actually
1381 allocated. */
1382
1383 void
1384 smash_to_method_type (struct type *type, struct type *self_type,
1385 struct type *to_type, struct field *args,
1386 int nargs, int varargs)
1387 {
1388 smash_type (type);
1389 TYPE_CODE (type) = TYPE_CODE_METHOD;
1390 TYPE_TARGET_TYPE (type) = to_type;
1391 set_type_self_type (type, self_type);
1392 TYPE_FIELDS (type) = args;
1393 TYPE_NFIELDS (type) = nargs;
1394 if (varargs)
1395 TYPE_VARARGS (type) = 1;
1396 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1397 }
1398
1399 /* Return a typename for a struct/union/enum type without "struct ",
1400 "union ", or "enum ". If the type has a NULL name, return NULL. */
1401
1402 const char *
1403 type_name_no_tag (const struct type *type)
1404 {
1405 if (TYPE_TAG_NAME (type) != NULL)
1406 return TYPE_TAG_NAME (type);
1407
1408 /* Is there code which expects this to return the name if there is
1409 no tag name? My guess is that this is mainly used for C++ in
1410 cases where the two will always be the same. */
1411 return TYPE_NAME (type);
1412 }
1413
1414 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1415 Since GCC PR debug/47510 DWARF provides associated information to detect the
1416 anonymous class linkage name from its typedef.
1417
1418 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1419 apply it itself. */
1420
1421 const char *
1422 type_name_no_tag_or_error (struct type *type)
1423 {
1424 struct type *saved_type = type;
1425 const char *name;
1426 struct objfile *objfile;
1427
1428 type = check_typedef (type);
1429
1430 name = type_name_no_tag (type);
1431 if (name != NULL)
1432 return name;
1433
1434 name = type_name_no_tag (saved_type);
1435 objfile = TYPE_OBJFILE (saved_type);
1436 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1437 name ? name : "<anonymous>",
1438 objfile ? objfile_name (objfile) : "<arch>");
1439 }
1440
1441 /* Lookup a typedef or primitive type named NAME, visible in lexical
1442 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1443 suitably defined. */
1444
1445 struct type *
1446 lookup_typename (const struct language_defn *language,
1447 struct gdbarch *gdbarch, const char *name,
1448 const struct block *block, int noerr)
1449 {
1450 struct symbol *sym;
1451
1452 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1453 language->la_language, NULL).symbol;
1454 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1455 return SYMBOL_TYPE (sym);
1456
1457 if (noerr)
1458 return NULL;
1459 error (_("No type named %s."), name);
1460 }
1461
1462 struct type *
1463 lookup_unsigned_typename (const struct language_defn *language,
1464 struct gdbarch *gdbarch, const char *name)
1465 {
1466 char *uns = (char *) alloca (strlen (name) + 10);
1467
1468 strcpy (uns, "unsigned ");
1469 strcpy (uns + 9, name);
1470 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1471 }
1472
1473 struct type *
1474 lookup_signed_typename (const struct language_defn *language,
1475 struct gdbarch *gdbarch, const char *name)
1476 {
1477 struct type *t;
1478 char *uns = (char *) alloca (strlen (name) + 8);
1479
1480 strcpy (uns, "signed ");
1481 strcpy (uns + 7, name);
1482 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1483 /* If we don't find "signed FOO" just try again with plain "FOO". */
1484 if (t != NULL)
1485 return t;
1486 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1487 }
1488
1489 /* Lookup a structure type named "struct NAME",
1490 visible in lexical block BLOCK. */
1491
1492 struct type *
1493 lookup_struct (const char *name, const struct block *block)
1494 {
1495 struct symbol *sym;
1496
1497 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1498
1499 if (sym == NULL)
1500 {
1501 error (_("No struct type named %s."), name);
1502 }
1503 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1504 {
1505 error (_("This context has class, union or enum %s, not a struct."),
1506 name);
1507 }
1508 return (SYMBOL_TYPE (sym));
1509 }
1510
1511 /* Lookup a union type named "union NAME",
1512 visible in lexical block BLOCK. */
1513
1514 struct type *
1515 lookup_union (const char *name, const struct block *block)
1516 {
1517 struct symbol *sym;
1518 struct type *t;
1519
1520 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1521
1522 if (sym == NULL)
1523 error (_("No union type named %s."), name);
1524
1525 t = SYMBOL_TYPE (sym);
1526
1527 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1528 return t;
1529
1530 /* If we get here, it's not a union. */
1531 error (_("This context has class, struct or enum %s, not a union."),
1532 name);
1533 }
1534
1535 /* Lookup an enum type named "enum NAME",
1536 visible in lexical block BLOCK. */
1537
1538 struct type *
1539 lookup_enum (const char *name, const struct block *block)
1540 {
1541 struct symbol *sym;
1542
1543 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1544 if (sym == NULL)
1545 {
1546 error (_("No enum type named %s."), name);
1547 }
1548 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1549 {
1550 error (_("This context has class, struct or union %s, not an enum."),
1551 name);
1552 }
1553 return (SYMBOL_TYPE (sym));
1554 }
1555
1556 /* Lookup a template type named "template NAME<TYPE>",
1557 visible in lexical block BLOCK. */
1558
1559 struct type *
1560 lookup_template_type (char *name, struct type *type,
1561 const struct block *block)
1562 {
1563 struct symbol *sym;
1564 char *nam = (char *)
1565 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1566
1567 strcpy (nam, name);
1568 strcat (nam, "<");
1569 strcat (nam, TYPE_NAME (type));
1570 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1571
1572 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1573
1574 if (sym == NULL)
1575 {
1576 error (_("No template type named %s."), name);
1577 }
1578 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1579 {
1580 error (_("This context has class, union or enum %s, not a struct."),
1581 name);
1582 }
1583 return (SYMBOL_TYPE (sym));
1584 }
1585
1586 /* Given a type TYPE, lookup the type of the component of type named
1587 NAME.
1588
1589 TYPE can be either a struct or union, or a pointer or reference to
1590 a struct or union. If it is a pointer or reference, its target
1591 type is automatically used. Thus '.' and '->' are interchangable,
1592 as specified for the definitions of the expression element types
1593 STRUCTOP_STRUCT and STRUCTOP_PTR.
1594
1595 If NOERR is nonzero, return zero if NAME is not suitably defined.
1596 If NAME is the name of a baseclass type, return that type. */
1597
1598 struct type *
1599 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1600 {
1601 int i;
1602
1603 for (;;)
1604 {
1605 type = check_typedef (type);
1606 if (TYPE_CODE (type) != TYPE_CODE_PTR
1607 && TYPE_CODE (type) != TYPE_CODE_REF)
1608 break;
1609 type = TYPE_TARGET_TYPE (type);
1610 }
1611
1612 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1613 && TYPE_CODE (type) != TYPE_CODE_UNION)
1614 {
1615 std::string type_name = type_to_string (type);
1616 error (_("Type %s is not a structure or union type."),
1617 type_name.c_str ());
1618 }
1619
1620 #if 0
1621 /* FIXME: This change put in by Michael seems incorrect for the case
1622 where the structure tag name is the same as the member name.
1623 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1624 foo; } bell;" Disabled by fnf. */
1625 {
1626 char *type_name;
1627
1628 type_name = type_name_no_tag (type);
1629 if (type_name != NULL && strcmp (type_name, name) == 0)
1630 return type;
1631 }
1632 #endif
1633
1634 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1635 {
1636 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1637
1638 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1639 {
1640 return TYPE_FIELD_TYPE (type, i);
1641 }
1642 else if (!t_field_name || *t_field_name == '\0')
1643 {
1644 struct type *subtype
1645 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1646
1647 if (subtype != NULL)
1648 return subtype;
1649 }
1650 }
1651
1652 /* OK, it's not in this class. Recursively check the baseclasses. */
1653 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1654 {
1655 struct type *t;
1656
1657 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1658 if (t != NULL)
1659 {
1660 return t;
1661 }
1662 }
1663
1664 if (noerr)
1665 {
1666 return NULL;
1667 }
1668
1669 std::string type_name = type_to_string (type);
1670 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1671 }
1672
1673 /* Store in *MAX the largest number representable by unsigned integer type
1674 TYPE. */
1675
1676 void
1677 get_unsigned_type_max (struct type *type, ULONGEST *max)
1678 {
1679 unsigned int n;
1680
1681 type = check_typedef (type);
1682 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1683 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1684
1685 /* Written this way to avoid overflow. */
1686 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1687 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1688 }
1689
1690 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1691 signed integer type TYPE. */
1692
1693 void
1694 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1695 {
1696 unsigned int n;
1697
1698 type = check_typedef (type);
1699 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1700 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1701
1702 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1703 *min = -((ULONGEST) 1 << (n - 1));
1704 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1705 }
1706
1707 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1708 cplus_stuff.vptr_fieldno.
1709
1710 cplus_stuff is initialized to cplus_struct_default which does not
1711 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1712 designated initializers). We cope with that here. */
1713
1714 int
1715 internal_type_vptr_fieldno (struct type *type)
1716 {
1717 type = check_typedef (type);
1718 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1719 || TYPE_CODE (type) == TYPE_CODE_UNION);
1720 if (!HAVE_CPLUS_STRUCT (type))
1721 return -1;
1722 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1723 }
1724
1725 /* Set the value of cplus_stuff.vptr_fieldno. */
1726
1727 void
1728 set_type_vptr_fieldno (struct type *type, int fieldno)
1729 {
1730 type = check_typedef (type);
1731 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1732 || TYPE_CODE (type) == TYPE_CODE_UNION);
1733 if (!HAVE_CPLUS_STRUCT (type))
1734 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1735 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1736 }
1737
1738 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1739 cplus_stuff.vptr_basetype. */
1740
1741 struct type *
1742 internal_type_vptr_basetype (struct type *type)
1743 {
1744 type = check_typedef (type);
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1746 || TYPE_CODE (type) == TYPE_CODE_UNION);
1747 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1748 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1749 }
1750
1751 /* Set the value of cplus_stuff.vptr_basetype. */
1752
1753 void
1754 set_type_vptr_basetype (struct type *type, struct type *basetype)
1755 {
1756 type = check_typedef (type);
1757 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1758 || TYPE_CODE (type) == TYPE_CODE_UNION);
1759 if (!HAVE_CPLUS_STRUCT (type))
1760 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1761 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1762 }
1763
1764 /* Lookup the vptr basetype/fieldno values for TYPE.
1765 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1766 vptr_fieldno. Also, if found and basetype is from the same objfile,
1767 cache the results.
1768 If not found, return -1 and ignore BASETYPEP.
1769 Callers should be aware that in some cases (for example,
1770 the type or one of its baseclasses is a stub type and we are
1771 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1772 this function will not be able to find the
1773 virtual function table pointer, and vptr_fieldno will remain -1 and
1774 vptr_basetype will remain NULL or incomplete. */
1775
1776 int
1777 get_vptr_fieldno (struct type *type, struct type **basetypep)
1778 {
1779 type = check_typedef (type);
1780
1781 if (TYPE_VPTR_FIELDNO (type) < 0)
1782 {
1783 int i;
1784
1785 /* We must start at zero in case the first (and only) baseclass
1786 is virtual (and hence we cannot share the table pointer). */
1787 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1788 {
1789 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1790 int fieldno;
1791 struct type *basetype;
1792
1793 fieldno = get_vptr_fieldno (baseclass, &basetype);
1794 if (fieldno >= 0)
1795 {
1796 /* If the type comes from a different objfile we can't cache
1797 it, it may have a different lifetime. PR 2384 */
1798 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1799 {
1800 set_type_vptr_fieldno (type, fieldno);
1801 set_type_vptr_basetype (type, basetype);
1802 }
1803 if (basetypep)
1804 *basetypep = basetype;
1805 return fieldno;
1806 }
1807 }
1808
1809 /* Not found. */
1810 return -1;
1811 }
1812 else
1813 {
1814 if (basetypep)
1815 *basetypep = TYPE_VPTR_BASETYPE (type);
1816 return TYPE_VPTR_FIELDNO (type);
1817 }
1818 }
1819
1820 static void
1821 stub_noname_complaint (void)
1822 {
1823 complaint (&symfile_complaints, _("stub type has NULL name"));
1824 }
1825
1826 /* Worker for is_dynamic_type. */
1827
1828 static int
1829 is_dynamic_type_internal (struct type *type, int top_level)
1830 {
1831 type = check_typedef (type);
1832
1833 /* We only want to recognize references at the outermost level. */
1834 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1835 type = check_typedef (TYPE_TARGET_TYPE (type));
1836
1837 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1838 dynamic, even if the type itself is statically defined.
1839 From a user's point of view, this may appear counter-intuitive;
1840 but it makes sense in this context, because the point is to determine
1841 whether any part of the type needs to be resolved before it can
1842 be exploited. */
1843 if (TYPE_DATA_LOCATION (type) != NULL
1844 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1845 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1846 return 1;
1847
1848 if (TYPE_ASSOCIATED_PROP (type))
1849 return 1;
1850
1851 if (TYPE_ALLOCATED_PROP (type))
1852 return 1;
1853
1854 switch (TYPE_CODE (type))
1855 {
1856 case TYPE_CODE_RANGE:
1857 {
1858 /* A range type is obviously dynamic if it has at least one
1859 dynamic bound. But also consider the range type to be
1860 dynamic when its subtype is dynamic, even if the bounds
1861 of the range type are static. It allows us to assume that
1862 the subtype of a static range type is also static. */
1863 return (!has_static_range (TYPE_RANGE_DATA (type))
1864 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1865 }
1866
1867 case TYPE_CODE_ARRAY:
1868 {
1869 gdb_assert (TYPE_NFIELDS (type) == 1);
1870
1871 /* The array is dynamic if either the bounds are dynamic,
1872 or the elements it contains have a dynamic contents. */
1873 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1874 return 1;
1875 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1876 }
1877
1878 case TYPE_CODE_STRUCT:
1879 case TYPE_CODE_UNION:
1880 {
1881 int i;
1882
1883 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1884 if (!field_is_static (&TYPE_FIELD (type, i))
1885 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1886 return 1;
1887 }
1888 break;
1889 }
1890
1891 return 0;
1892 }
1893
1894 /* See gdbtypes.h. */
1895
1896 int
1897 is_dynamic_type (struct type *type)
1898 {
1899 return is_dynamic_type_internal (type, 1);
1900 }
1901
1902 static struct type *resolve_dynamic_type_internal
1903 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1904
1905 /* Given a dynamic range type (dyn_range_type) and a stack of
1906 struct property_addr_info elements, return a static version
1907 of that type. */
1908
1909 static struct type *
1910 resolve_dynamic_range (struct type *dyn_range_type,
1911 struct property_addr_info *addr_stack)
1912 {
1913 CORE_ADDR value;
1914 struct type *static_range_type, *static_target_type;
1915 const struct dynamic_prop *prop;
1916 struct dynamic_prop low_bound, high_bound;
1917
1918 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1919
1920 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1921 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1922 {
1923 low_bound.kind = PROP_CONST;
1924 low_bound.data.const_val = value;
1925 }
1926 else
1927 {
1928 low_bound.kind = PROP_UNDEFINED;
1929 low_bound.data.const_val = 0;
1930 }
1931
1932 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1933 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1934 {
1935 high_bound.kind = PROP_CONST;
1936 high_bound.data.const_val = value;
1937
1938 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1939 high_bound.data.const_val
1940 = low_bound.data.const_val + high_bound.data.const_val - 1;
1941 }
1942 else
1943 {
1944 high_bound.kind = PROP_UNDEFINED;
1945 high_bound.data.const_val = 0;
1946 }
1947
1948 static_target_type
1949 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1950 addr_stack, 0);
1951 static_range_type = create_range_type (copy_type (dyn_range_type),
1952 static_target_type,
1953 &low_bound, &high_bound);
1954 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1955 return static_range_type;
1956 }
1957
1958 /* Resolves dynamic bound values of an array type TYPE to static ones.
1959 ADDR_STACK is a stack of struct property_addr_info to be used
1960 if needed during the dynamic resolution. */
1961
1962 static struct type *
1963 resolve_dynamic_array (struct type *type,
1964 struct property_addr_info *addr_stack)
1965 {
1966 CORE_ADDR value;
1967 struct type *elt_type;
1968 struct type *range_type;
1969 struct type *ary_dim;
1970 struct dynamic_prop *prop;
1971
1972 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1973
1974 type = copy_type (type);
1975
1976 elt_type = type;
1977 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1978 range_type = resolve_dynamic_range (range_type, addr_stack);
1979
1980 /* Resolve allocated/associated here before creating a new array type, which
1981 will update the length of the array accordingly. */
1982 prop = TYPE_ALLOCATED_PROP (type);
1983 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1984 {
1985 TYPE_DYN_PROP_ADDR (prop) = value;
1986 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1987 }
1988 prop = TYPE_ASSOCIATED_PROP (type);
1989 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1990 {
1991 TYPE_DYN_PROP_ADDR (prop) = value;
1992 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1993 }
1994
1995 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1996
1997 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1998 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1999 else
2000 elt_type = TYPE_TARGET_TYPE (type);
2001
2002 return create_array_type_with_stride (type, elt_type, range_type,
2003 TYPE_FIELD_BITSIZE (type, 0));
2004 }
2005
2006 /* Resolve dynamic bounds of members of the union TYPE to static
2007 bounds. ADDR_STACK is a stack of struct property_addr_info
2008 to be used if needed during the dynamic resolution. */
2009
2010 static struct type *
2011 resolve_dynamic_union (struct type *type,
2012 struct property_addr_info *addr_stack)
2013 {
2014 struct type *resolved_type;
2015 int i;
2016 unsigned int max_len = 0;
2017
2018 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2019
2020 resolved_type = copy_type (type);
2021 TYPE_FIELDS (resolved_type)
2022 = (struct field *) TYPE_ALLOC (resolved_type,
2023 TYPE_NFIELDS (resolved_type)
2024 * sizeof (struct field));
2025 memcpy (TYPE_FIELDS (resolved_type),
2026 TYPE_FIELDS (type),
2027 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2028 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2029 {
2030 struct type *t;
2031
2032 if (field_is_static (&TYPE_FIELD (type, i)))
2033 continue;
2034
2035 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2036 addr_stack, 0);
2037 TYPE_FIELD_TYPE (resolved_type, i) = t;
2038 if (TYPE_LENGTH (t) > max_len)
2039 max_len = TYPE_LENGTH (t);
2040 }
2041
2042 TYPE_LENGTH (resolved_type) = max_len;
2043 return resolved_type;
2044 }
2045
2046 /* Resolve dynamic bounds of members of the struct TYPE to static
2047 bounds. ADDR_STACK is a stack of struct property_addr_info to
2048 be used if needed during the dynamic resolution. */
2049
2050 static struct type *
2051 resolve_dynamic_struct (struct type *type,
2052 struct property_addr_info *addr_stack)
2053 {
2054 struct type *resolved_type;
2055 int i;
2056 unsigned resolved_type_bit_length = 0;
2057
2058 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2059 gdb_assert (TYPE_NFIELDS (type) > 0);
2060
2061 resolved_type = copy_type (type);
2062 TYPE_FIELDS (resolved_type)
2063 = (struct field *) TYPE_ALLOC (resolved_type,
2064 TYPE_NFIELDS (resolved_type)
2065 * sizeof (struct field));
2066 memcpy (TYPE_FIELDS (resolved_type),
2067 TYPE_FIELDS (type),
2068 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2069 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2070 {
2071 unsigned new_bit_length;
2072 struct property_addr_info pinfo;
2073
2074 if (field_is_static (&TYPE_FIELD (type, i)))
2075 continue;
2076
2077 /* As we know this field is not a static field, the field's
2078 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2079 this is the case, but only trigger a simple error rather
2080 than an internal error if that fails. While failing
2081 that verification indicates a bug in our code, the error
2082 is not severe enough to suggest to the user he stops
2083 his debugging session because of it. */
2084 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2085 error (_("Cannot determine struct field location"
2086 " (invalid location kind)"));
2087
2088 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2089 pinfo.valaddr = addr_stack->valaddr;
2090 pinfo.addr
2091 = (addr_stack->addr
2092 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2093 pinfo.next = addr_stack;
2094
2095 TYPE_FIELD_TYPE (resolved_type, i)
2096 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2097 &pinfo, 0);
2098 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2099 == FIELD_LOC_KIND_BITPOS);
2100
2101 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2102 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2103 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2104 else
2105 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2106 * TARGET_CHAR_BIT);
2107
2108 /* Normally, we would use the position and size of the last field
2109 to determine the size of the enclosing structure. But GCC seems
2110 to be encoding the position of some fields incorrectly when
2111 the struct contains a dynamic field that is not placed last.
2112 So we compute the struct size based on the field that has
2113 the highest position + size - probably the best we can do. */
2114 if (new_bit_length > resolved_type_bit_length)
2115 resolved_type_bit_length = new_bit_length;
2116 }
2117
2118 /* The length of a type won't change for fortran, but it does for C and Ada.
2119 For fortran the size of dynamic fields might change over time but not the
2120 type length of the structure. If we adapt it, we run into problems
2121 when calculating the element offset for arrays of structs. */
2122 if (current_language->la_language != language_fortran)
2123 TYPE_LENGTH (resolved_type)
2124 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2125
2126 /* The Ada language uses this field as a cache for static fixed types: reset
2127 it as RESOLVED_TYPE must have its own static fixed type. */
2128 TYPE_TARGET_TYPE (resolved_type) = NULL;
2129
2130 return resolved_type;
2131 }
2132
2133 /* Worker for resolved_dynamic_type. */
2134
2135 static struct type *
2136 resolve_dynamic_type_internal (struct type *type,
2137 struct property_addr_info *addr_stack,
2138 int top_level)
2139 {
2140 struct type *real_type = check_typedef (type);
2141 struct type *resolved_type = type;
2142 struct dynamic_prop *prop;
2143 CORE_ADDR value;
2144
2145 if (!is_dynamic_type_internal (real_type, top_level))
2146 return type;
2147
2148 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2149 {
2150 resolved_type = copy_type (type);
2151 TYPE_TARGET_TYPE (resolved_type)
2152 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2153 top_level);
2154 }
2155 else
2156 {
2157 /* Before trying to resolve TYPE, make sure it is not a stub. */
2158 type = real_type;
2159
2160 switch (TYPE_CODE (type))
2161 {
2162 case TYPE_CODE_REF:
2163 {
2164 struct property_addr_info pinfo;
2165
2166 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2167 pinfo.valaddr = NULL;
2168 if (addr_stack->valaddr != NULL)
2169 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2170 else
2171 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2172 pinfo.next = addr_stack;
2173
2174 resolved_type = copy_type (type);
2175 TYPE_TARGET_TYPE (resolved_type)
2176 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2177 &pinfo, top_level);
2178 break;
2179 }
2180
2181 case TYPE_CODE_ARRAY:
2182 resolved_type = resolve_dynamic_array (type, addr_stack);
2183 break;
2184
2185 case TYPE_CODE_RANGE:
2186 resolved_type = resolve_dynamic_range (type, addr_stack);
2187 break;
2188
2189 case TYPE_CODE_UNION:
2190 resolved_type = resolve_dynamic_union (type, addr_stack);
2191 break;
2192
2193 case TYPE_CODE_STRUCT:
2194 resolved_type = resolve_dynamic_struct (type, addr_stack);
2195 break;
2196 }
2197 }
2198
2199 /* Resolve data_location attribute. */
2200 prop = TYPE_DATA_LOCATION (resolved_type);
2201 if (prop != NULL
2202 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2203 {
2204 TYPE_DYN_PROP_ADDR (prop) = value;
2205 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2206 }
2207
2208 return resolved_type;
2209 }
2210
2211 /* See gdbtypes.h */
2212
2213 struct type *
2214 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2215 CORE_ADDR addr)
2216 {
2217 struct property_addr_info pinfo
2218 = {check_typedef (type), valaddr, addr, NULL};
2219
2220 return resolve_dynamic_type_internal (type, &pinfo, 1);
2221 }
2222
2223 /* See gdbtypes.h */
2224
2225 struct dynamic_prop *
2226 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2227 {
2228 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2229
2230 while (node != NULL)
2231 {
2232 if (node->prop_kind == prop_kind)
2233 return &node->prop;
2234 node = node->next;
2235 }
2236 return NULL;
2237 }
2238
2239 /* See gdbtypes.h */
2240
2241 void
2242 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2243 struct type *type, struct objfile *objfile)
2244 {
2245 struct dynamic_prop_list *temp;
2246
2247 gdb_assert (TYPE_OBJFILE_OWNED (type));
2248
2249 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2250 temp->prop_kind = prop_kind;
2251 temp->prop = prop;
2252 temp->next = TYPE_DYN_PROP_LIST (type);
2253
2254 TYPE_DYN_PROP_LIST (type) = temp;
2255 }
2256
2257 /* Remove dynamic property from TYPE in case it exists. */
2258
2259 void
2260 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2261 struct type *type)
2262 {
2263 struct dynamic_prop_list *prev_node, *curr_node;
2264
2265 curr_node = TYPE_DYN_PROP_LIST (type);
2266 prev_node = NULL;
2267
2268 while (NULL != curr_node)
2269 {
2270 if (curr_node->prop_kind == prop_kind)
2271 {
2272 /* Update the linked list but don't free anything.
2273 The property was allocated on objstack and it is not known
2274 if we are on top of it. Nevertheless, everything is released
2275 when the complete objstack is freed. */
2276 if (NULL == prev_node)
2277 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2278 else
2279 prev_node->next = curr_node->next;
2280
2281 return;
2282 }
2283
2284 prev_node = curr_node;
2285 curr_node = curr_node->next;
2286 }
2287 }
2288
2289 /* Find the real type of TYPE. This function returns the real type,
2290 after removing all layers of typedefs, and completing opaque or stub
2291 types. Completion changes the TYPE argument, but stripping of
2292 typedefs does not.
2293
2294 Instance flags (e.g. const/volatile) are preserved as typedefs are
2295 stripped. If necessary a new qualified form of the underlying type
2296 is created.
2297
2298 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2299 not been computed and we're either in the middle of reading symbols, or
2300 there was no name for the typedef in the debug info.
2301
2302 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2303 QUITs in the symbol reading code can also throw.
2304 Thus this function can throw an exception.
2305
2306 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2307 the target type.
2308
2309 If this is a stubbed struct (i.e. declared as struct foo *), see if
2310 we can find a full definition in some other file. If so, copy this
2311 definition, so we can use it in future. There used to be a comment
2312 (but not any code) that if we don't find a full definition, we'd
2313 set a flag so we don't spend time in the future checking the same
2314 type. That would be a mistake, though--we might load in more
2315 symbols which contain a full definition for the type. */
2316
2317 struct type *
2318 check_typedef (struct type *type)
2319 {
2320 struct type *orig_type = type;
2321 /* While we're removing typedefs, we don't want to lose qualifiers.
2322 E.g., const/volatile. */
2323 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2324
2325 gdb_assert (type);
2326
2327 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2328 {
2329 if (!TYPE_TARGET_TYPE (type))
2330 {
2331 const char *name;
2332 struct symbol *sym;
2333
2334 /* It is dangerous to call lookup_symbol if we are currently
2335 reading a symtab. Infinite recursion is one danger. */
2336 if (currently_reading_symtab)
2337 return make_qualified_type (type, instance_flags, NULL);
2338
2339 name = type_name_no_tag (type);
2340 /* FIXME: shouldn't we separately check the TYPE_NAME and
2341 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2342 VAR_DOMAIN as appropriate? (this code was written before
2343 TYPE_NAME and TYPE_TAG_NAME were separate). */
2344 if (name == NULL)
2345 {
2346 stub_noname_complaint ();
2347 return make_qualified_type (type, instance_flags, NULL);
2348 }
2349 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2350 if (sym)
2351 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2352 else /* TYPE_CODE_UNDEF */
2353 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2354 }
2355 type = TYPE_TARGET_TYPE (type);
2356
2357 /* Preserve the instance flags as we traverse down the typedef chain.
2358
2359 Handling address spaces/classes is nasty, what do we do if there's a
2360 conflict?
2361 E.g., what if an outer typedef marks the type as class_1 and an inner
2362 typedef marks the type as class_2?
2363 This is the wrong place to do such error checking. We leave it to
2364 the code that created the typedef in the first place to flag the
2365 error. We just pick the outer address space (akin to letting the
2366 outer cast in a chain of casting win), instead of assuming
2367 "it can't happen". */
2368 {
2369 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2370 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2371 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2372 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2373
2374 /* Treat code vs data spaces and address classes separately. */
2375 if ((instance_flags & ALL_SPACES) != 0)
2376 new_instance_flags &= ~ALL_SPACES;
2377 if ((instance_flags & ALL_CLASSES) != 0)
2378 new_instance_flags &= ~ALL_CLASSES;
2379
2380 instance_flags |= new_instance_flags;
2381 }
2382 }
2383
2384 /* If this is a struct/class/union with no fields, then check
2385 whether a full definition exists somewhere else. This is for
2386 systems where a type definition with no fields is issued for such
2387 types, instead of identifying them as stub types in the first
2388 place. */
2389
2390 if (TYPE_IS_OPAQUE (type)
2391 && opaque_type_resolution
2392 && !currently_reading_symtab)
2393 {
2394 const char *name = type_name_no_tag (type);
2395 struct type *newtype;
2396
2397 if (name == NULL)
2398 {
2399 stub_noname_complaint ();
2400 return make_qualified_type (type, instance_flags, NULL);
2401 }
2402 newtype = lookup_transparent_type (name);
2403
2404 if (newtype)
2405 {
2406 /* If the resolved type and the stub are in the same
2407 objfile, then replace the stub type with the real deal.
2408 But if they're in separate objfiles, leave the stub
2409 alone; we'll just look up the transparent type every time
2410 we call check_typedef. We can't create pointers between
2411 types allocated to different objfiles, since they may
2412 have different lifetimes. Trying to copy NEWTYPE over to
2413 TYPE's objfile is pointless, too, since you'll have to
2414 move over any other types NEWTYPE refers to, which could
2415 be an unbounded amount of stuff. */
2416 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2417 type = make_qualified_type (newtype,
2418 TYPE_INSTANCE_FLAGS (type),
2419 type);
2420 else
2421 type = newtype;
2422 }
2423 }
2424 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2425 types. */
2426 else if (TYPE_STUB (type) && !currently_reading_symtab)
2427 {
2428 const char *name = type_name_no_tag (type);
2429 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2430 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2431 as appropriate? (this code was written before TYPE_NAME and
2432 TYPE_TAG_NAME were separate). */
2433 struct symbol *sym;
2434
2435 if (name == NULL)
2436 {
2437 stub_noname_complaint ();
2438 return make_qualified_type (type, instance_flags, NULL);
2439 }
2440 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2441 if (sym)
2442 {
2443 /* Same as above for opaque types, we can replace the stub
2444 with the complete type only if they are in the same
2445 objfile. */
2446 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2447 type = make_qualified_type (SYMBOL_TYPE (sym),
2448 TYPE_INSTANCE_FLAGS (type),
2449 type);
2450 else
2451 type = SYMBOL_TYPE (sym);
2452 }
2453 }
2454
2455 if (TYPE_TARGET_STUB (type))
2456 {
2457 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2458
2459 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2460 {
2461 /* Nothing we can do. */
2462 }
2463 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2464 {
2465 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2466 TYPE_TARGET_STUB (type) = 0;
2467 }
2468 }
2469
2470 type = make_qualified_type (type, instance_flags, NULL);
2471
2472 /* Cache TYPE_LENGTH for future use. */
2473 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2474
2475 return type;
2476 }
2477
2478 /* Parse a type expression in the string [P..P+LENGTH). If an error
2479 occurs, silently return a void type. */
2480
2481 static struct type *
2482 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2483 {
2484 struct ui_file *saved_gdb_stderr;
2485 struct type *type = NULL; /* Initialize to keep gcc happy. */
2486
2487 /* Suppress error messages. */
2488 saved_gdb_stderr = gdb_stderr;
2489 gdb_stderr = &null_stream;
2490
2491 /* Call parse_and_eval_type() without fear of longjmp()s. */
2492 TRY
2493 {
2494 type = parse_and_eval_type (p, length);
2495 }
2496 CATCH (except, RETURN_MASK_ERROR)
2497 {
2498 type = builtin_type (gdbarch)->builtin_void;
2499 }
2500 END_CATCH
2501
2502 /* Stop suppressing error messages. */
2503 gdb_stderr = saved_gdb_stderr;
2504
2505 return type;
2506 }
2507
2508 /* Ugly hack to convert method stubs into method types.
2509
2510 He ain't kiddin'. This demangles the name of the method into a
2511 string including argument types, parses out each argument type,
2512 generates a string casting a zero to that type, evaluates the
2513 string, and stuffs the resulting type into an argtype vector!!!
2514 Then it knows the type of the whole function (including argument
2515 types for overloading), which info used to be in the stab's but was
2516 removed to hack back the space required for them. */
2517
2518 static void
2519 check_stub_method (struct type *type, int method_id, int signature_id)
2520 {
2521 struct gdbarch *gdbarch = get_type_arch (type);
2522 struct fn_field *f;
2523 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2524 char *demangled_name = gdb_demangle (mangled_name,
2525 DMGL_PARAMS | DMGL_ANSI);
2526 char *argtypetext, *p;
2527 int depth = 0, argcount = 1;
2528 struct field *argtypes;
2529 struct type *mtype;
2530
2531 /* Make sure we got back a function string that we can use. */
2532 if (demangled_name)
2533 p = strchr (demangled_name, '(');
2534 else
2535 p = NULL;
2536
2537 if (demangled_name == NULL || p == NULL)
2538 error (_("Internal: Cannot demangle mangled name `%s'."),
2539 mangled_name);
2540
2541 /* Now, read in the parameters that define this type. */
2542 p += 1;
2543 argtypetext = p;
2544 while (*p)
2545 {
2546 if (*p == '(' || *p == '<')
2547 {
2548 depth += 1;
2549 }
2550 else if (*p == ')' || *p == '>')
2551 {
2552 depth -= 1;
2553 }
2554 else if (*p == ',' && depth == 0)
2555 {
2556 argcount += 1;
2557 }
2558
2559 p += 1;
2560 }
2561
2562 /* If we read one argument and it was ``void'', don't count it. */
2563 if (startswith (argtypetext, "(void)"))
2564 argcount -= 1;
2565
2566 /* We need one extra slot, for the THIS pointer. */
2567
2568 argtypes = (struct field *)
2569 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2570 p = argtypetext;
2571
2572 /* Add THIS pointer for non-static methods. */
2573 f = TYPE_FN_FIELDLIST1 (type, method_id);
2574 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2575 argcount = 0;
2576 else
2577 {
2578 argtypes[0].type = lookup_pointer_type (type);
2579 argcount = 1;
2580 }
2581
2582 if (*p != ')') /* () means no args, skip while. */
2583 {
2584 depth = 0;
2585 while (*p)
2586 {
2587 if (depth <= 0 && (*p == ',' || *p == ')'))
2588 {
2589 /* Avoid parsing of ellipsis, they will be handled below.
2590 Also avoid ``void'' as above. */
2591 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2592 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2593 {
2594 argtypes[argcount].type =
2595 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2596 argcount += 1;
2597 }
2598 argtypetext = p + 1;
2599 }
2600
2601 if (*p == '(' || *p == '<')
2602 {
2603 depth += 1;
2604 }
2605 else if (*p == ')' || *p == '>')
2606 {
2607 depth -= 1;
2608 }
2609
2610 p += 1;
2611 }
2612 }
2613
2614 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2615
2616 /* Now update the old "stub" type into a real type. */
2617 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2618 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2619 We want a method (TYPE_CODE_METHOD). */
2620 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2621 argtypes, argcount, p[-2] == '.');
2622 TYPE_STUB (mtype) = 0;
2623 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2624
2625 xfree (demangled_name);
2626 }
2627
2628 /* This is the external interface to check_stub_method, above. This
2629 function unstubs all of the signatures for TYPE's METHOD_ID method
2630 name. After calling this function TYPE_FN_FIELD_STUB will be
2631 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2632 correct.
2633
2634 This function unfortunately can not die until stabs do. */
2635
2636 void
2637 check_stub_method_group (struct type *type, int method_id)
2638 {
2639 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2640 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2641 int j, found_stub = 0;
2642
2643 for (j = 0; j < len; j++)
2644 if (TYPE_FN_FIELD_STUB (f, j))
2645 {
2646 found_stub = 1;
2647 check_stub_method (type, method_id, j);
2648 }
2649
2650 /* GNU v3 methods with incorrect names were corrected when we read
2651 in type information, because it was cheaper to do it then. The
2652 only GNU v2 methods with incorrect method names are operators and
2653 destructors; destructors were also corrected when we read in type
2654 information.
2655
2656 Therefore the only thing we need to handle here are v2 operator
2657 names. */
2658 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2659 {
2660 int ret;
2661 char dem_opname[256];
2662
2663 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2664 method_id),
2665 dem_opname, DMGL_ANSI);
2666 if (!ret)
2667 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2668 method_id),
2669 dem_opname, 0);
2670 if (ret)
2671 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2672 }
2673 }
2674
2675 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2676 const struct cplus_struct_type cplus_struct_default = { };
2677
2678 void
2679 allocate_cplus_struct_type (struct type *type)
2680 {
2681 if (HAVE_CPLUS_STRUCT (type))
2682 /* Structure was already allocated. Nothing more to do. */
2683 return;
2684
2685 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2686 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2687 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2688 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2689 set_type_vptr_fieldno (type, -1);
2690 }
2691
2692 const struct gnat_aux_type gnat_aux_default =
2693 { NULL };
2694
2695 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2696 and allocate the associated gnat-specific data. The gnat-specific
2697 data is also initialized to gnat_aux_default. */
2698
2699 void
2700 allocate_gnat_aux_type (struct type *type)
2701 {
2702 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2703 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2704 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2705 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2706 }
2707
2708 /* Helper function to initialize a newly allocated type. Set type code
2709 to CODE and initialize the type-specific fields accordingly. */
2710
2711 static void
2712 set_type_code (struct type *type, enum type_code code)
2713 {
2714 TYPE_CODE (type) = code;
2715
2716 switch (code)
2717 {
2718 case TYPE_CODE_STRUCT:
2719 case TYPE_CODE_UNION:
2720 case TYPE_CODE_NAMESPACE:
2721 INIT_CPLUS_SPECIFIC (type);
2722 break;
2723 case TYPE_CODE_FLT:
2724 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2725 break;
2726 case TYPE_CODE_FUNC:
2727 INIT_FUNC_SPECIFIC (type);
2728 break;
2729 }
2730 }
2731
2732 /* Helper function to verify floating-point format and size.
2733 BIT is the type size in bits; if BIT equals -1, the size is
2734 determined by the floatformat. Returns size to be used. */
2735
2736 static int
2737 verify_floatformat (int bit, const struct floatformat **floatformats)
2738 {
2739 gdb_assert (floatformats != NULL);
2740 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2741
2742 if (bit == -1)
2743 bit = floatformats[0]->totalsize;
2744 gdb_assert (bit >= 0);
2745
2746 size_t len = bit / TARGET_CHAR_BIT;
2747 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2748 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2749
2750 return bit;
2751 }
2752
2753 /* Helper function to initialize the standard scalar types.
2754
2755 If NAME is non-NULL, then it is used to initialize the type name.
2756 Note that NAME is not copied; it is required to have a lifetime at
2757 least as long as OBJFILE. */
2758
2759 struct type *
2760 init_type (struct objfile *objfile, enum type_code code, int length,
2761 const char *name)
2762 {
2763 struct type *type;
2764
2765 type = alloc_type (objfile);
2766 set_type_code (type, code);
2767 TYPE_LENGTH (type) = length;
2768 TYPE_NAME (type) = name;
2769
2770 return type;
2771 }
2772
2773 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2774 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2775 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2776
2777 struct type *
2778 init_integer_type (struct objfile *objfile,
2779 int bit, int unsigned_p, const char *name)
2780 {
2781 struct type *t;
2782
2783 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2784 if (unsigned_p)
2785 TYPE_UNSIGNED (t) = 1;
2786
2787 return t;
2788 }
2789
2790 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2791 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2792 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2793
2794 struct type *
2795 init_character_type (struct objfile *objfile,
2796 int bit, int unsigned_p, const char *name)
2797 {
2798 struct type *t;
2799
2800 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2801 if (unsigned_p)
2802 TYPE_UNSIGNED (t) = 1;
2803
2804 return t;
2805 }
2806
2807 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2808 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2809 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2810
2811 struct type *
2812 init_boolean_type (struct objfile *objfile,
2813 int bit, int unsigned_p, const char *name)
2814 {
2815 struct type *t;
2816
2817 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2818 if (unsigned_p)
2819 TYPE_UNSIGNED (t) = 1;
2820
2821 return t;
2822 }
2823
2824 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2825 BIT is the type size in bits; if BIT equals -1, the size is
2826 determined by the floatformat. NAME is the type name. Set the
2827 TYPE_FLOATFORMAT from FLOATFORMATS. */
2828
2829 struct type *
2830 init_float_type (struct objfile *objfile,
2831 int bit, const char *name,
2832 const struct floatformat **floatformats)
2833 {
2834 struct type *t;
2835
2836 bit = verify_floatformat (bit, floatformats);
2837 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2838 TYPE_FLOATFORMAT (t) = floatformats;
2839
2840 return t;
2841 }
2842
2843 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2844 BIT is the type size in bits. NAME is the type name. */
2845
2846 struct type *
2847 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2848 {
2849 struct type *t;
2850
2851 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2852 return t;
2853 }
2854
2855 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2856 NAME is the type name. TARGET_TYPE is the component float type. */
2857
2858 struct type *
2859 init_complex_type (struct objfile *objfile,
2860 const char *name, struct type *target_type)
2861 {
2862 struct type *t;
2863
2864 t = init_type (objfile, TYPE_CODE_COMPLEX,
2865 2 * TYPE_LENGTH (target_type), name);
2866 TYPE_TARGET_TYPE (t) = target_type;
2867 return t;
2868 }
2869
2870 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2871 BIT is the pointer type size in bits. NAME is the type name.
2872 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2873 TYPE_UNSIGNED flag. */
2874
2875 struct type *
2876 init_pointer_type (struct objfile *objfile,
2877 int bit, const char *name, struct type *target_type)
2878 {
2879 struct type *t;
2880
2881 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2882 TYPE_TARGET_TYPE (t) = target_type;
2883 TYPE_UNSIGNED (t) = 1;
2884 return t;
2885 }
2886
2887 \f
2888 /* Queries on types. */
2889
2890 int
2891 can_dereference (struct type *t)
2892 {
2893 /* FIXME: Should we return true for references as well as
2894 pointers? */
2895 t = check_typedef (t);
2896 return
2897 (t != NULL
2898 && TYPE_CODE (t) == TYPE_CODE_PTR
2899 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2900 }
2901
2902 int
2903 is_integral_type (struct type *t)
2904 {
2905 t = check_typedef (t);
2906 return
2907 ((t != NULL)
2908 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2909 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2910 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2911 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2912 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2913 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2914 }
2915
2916 /* Return true if TYPE is scalar. */
2917
2918 int
2919 is_scalar_type (struct type *type)
2920 {
2921 type = check_typedef (type);
2922
2923 switch (TYPE_CODE (type))
2924 {
2925 case TYPE_CODE_ARRAY:
2926 case TYPE_CODE_STRUCT:
2927 case TYPE_CODE_UNION:
2928 case TYPE_CODE_SET:
2929 case TYPE_CODE_STRING:
2930 return 0;
2931 default:
2932 return 1;
2933 }
2934 }
2935
2936 /* Return true if T is scalar, or a composite type which in practice has
2937 the memory layout of a scalar type. E.g., an array or struct with only
2938 one scalar element inside it, or a union with only scalar elements. */
2939
2940 int
2941 is_scalar_type_recursive (struct type *t)
2942 {
2943 t = check_typedef (t);
2944
2945 if (is_scalar_type (t))
2946 return 1;
2947 /* Are we dealing with an array or string of known dimensions? */
2948 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2949 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2950 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2951 {
2952 LONGEST low_bound, high_bound;
2953 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2954
2955 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2956
2957 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2958 }
2959 /* Are we dealing with a struct with one element? */
2960 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2961 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2962 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2963 {
2964 int i, n = TYPE_NFIELDS (t);
2965
2966 /* If all elements of the union are scalar, then the union is scalar. */
2967 for (i = 0; i < n; i++)
2968 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2969 return 0;
2970
2971 return 1;
2972 }
2973
2974 return 0;
2975 }
2976
2977 /* Return true is T is a class or a union. False otherwise. */
2978
2979 int
2980 class_or_union_p (const struct type *t)
2981 {
2982 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2983 || TYPE_CODE (t) == TYPE_CODE_UNION);
2984 }
2985
2986 /* A helper function which returns true if types A and B represent the
2987 "same" class type. This is true if the types have the same main
2988 type, or the same name. */
2989
2990 int
2991 class_types_same_p (const struct type *a, const struct type *b)
2992 {
2993 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2994 || (TYPE_NAME (a) && TYPE_NAME (b)
2995 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2996 }
2997
2998 /* If BASE is an ancestor of DCLASS return the distance between them.
2999 otherwise return -1;
3000 eg:
3001
3002 class A {};
3003 class B: public A {};
3004 class C: public B {};
3005 class D: C {};
3006
3007 distance_to_ancestor (A, A, 0) = 0
3008 distance_to_ancestor (A, B, 0) = 1
3009 distance_to_ancestor (A, C, 0) = 2
3010 distance_to_ancestor (A, D, 0) = 3
3011
3012 If PUBLIC is 1 then only public ancestors are considered,
3013 and the function returns the distance only if BASE is a public ancestor
3014 of DCLASS.
3015 Eg:
3016
3017 distance_to_ancestor (A, D, 1) = -1. */
3018
3019 static int
3020 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3021 {
3022 int i;
3023 int d;
3024
3025 base = check_typedef (base);
3026 dclass = check_typedef (dclass);
3027
3028 if (class_types_same_p (base, dclass))
3029 return 0;
3030
3031 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3032 {
3033 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3034 continue;
3035
3036 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3037 if (d >= 0)
3038 return 1 + d;
3039 }
3040
3041 return -1;
3042 }
3043
3044 /* Check whether BASE is an ancestor or base class or DCLASS
3045 Return 1 if so, and 0 if not.
3046 Note: If BASE and DCLASS are of the same type, this function
3047 will return 1. So for some class A, is_ancestor (A, A) will
3048 return 1. */
3049
3050 int
3051 is_ancestor (struct type *base, struct type *dclass)
3052 {
3053 return distance_to_ancestor (base, dclass, 0) >= 0;
3054 }
3055
3056 /* Like is_ancestor, but only returns true when BASE is a public
3057 ancestor of DCLASS. */
3058
3059 int
3060 is_public_ancestor (struct type *base, struct type *dclass)
3061 {
3062 return distance_to_ancestor (base, dclass, 1) >= 0;
3063 }
3064
3065 /* A helper function for is_unique_ancestor. */
3066
3067 static int
3068 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3069 int *offset,
3070 const gdb_byte *valaddr, int embedded_offset,
3071 CORE_ADDR address, struct value *val)
3072 {
3073 int i, count = 0;
3074
3075 base = check_typedef (base);
3076 dclass = check_typedef (dclass);
3077
3078 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3079 {
3080 struct type *iter;
3081 int this_offset;
3082
3083 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3084
3085 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3086 address, val);
3087
3088 if (class_types_same_p (base, iter))
3089 {
3090 /* If this is the first subclass, set *OFFSET and set count
3091 to 1. Otherwise, if this is at the same offset as
3092 previous instances, do nothing. Otherwise, increment
3093 count. */
3094 if (*offset == -1)
3095 {
3096 *offset = this_offset;
3097 count = 1;
3098 }
3099 else if (this_offset == *offset)
3100 {
3101 /* Nothing. */
3102 }
3103 else
3104 ++count;
3105 }
3106 else
3107 count += is_unique_ancestor_worker (base, iter, offset,
3108 valaddr,
3109 embedded_offset + this_offset,
3110 address, val);
3111 }
3112
3113 return count;
3114 }
3115
3116 /* Like is_ancestor, but only returns true if BASE is a unique base
3117 class of the type of VAL. */
3118
3119 int
3120 is_unique_ancestor (struct type *base, struct value *val)
3121 {
3122 int offset = -1;
3123
3124 return is_unique_ancestor_worker (base, value_type (val), &offset,
3125 value_contents_for_printing (val),
3126 value_embedded_offset (val),
3127 value_address (val), val) == 1;
3128 }
3129
3130 \f
3131 /* Overload resolution. */
3132
3133 /* Return the sum of the rank of A with the rank of B. */
3134
3135 struct rank
3136 sum_ranks (struct rank a, struct rank b)
3137 {
3138 struct rank c;
3139 c.rank = a.rank + b.rank;
3140 c.subrank = a.subrank + b.subrank;
3141 return c;
3142 }
3143
3144 /* Compare rank A and B and return:
3145 0 if a = b
3146 1 if a is better than b
3147 -1 if b is better than a. */
3148
3149 int
3150 compare_ranks (struct rank a, struct rank b)
3151 {
3152 if (a.rank == b.rank)
3153 {
3154 if (a.subrank == b.subrank)
3155 return 0;
3156 if (a.subrank < b.subrank)
3157 return 1;
3158 if (a.subrank > b.subrank)
3159 return -1;
3160 }
3161
3162 if (a.rank < b.rank)
3163 return 1;
3164
3165 /* a.rank > b.rank */
3166 return -1;
3167 }
3168
3169 /* Functions for overload resolution begin here. */
3170
3171 /* Compare two badness vectors A and B and return the result.
3172 0 => A and B are identical
3173 1 => A and B are incomparable
3174 2 => A is better than B
3175 3 => A is worse than B */
3176
3177 int
3178 compare_badness (struct badness_vector *a, struct badness_vector *b)
3179 {
3180 int i;
3181 int tmp;
3182 short found_pos = 0; /* any positives in c? */
3183 short found_neg = 0; /* any negatives in c? */
3184
3185 /* differing lengths => incomparable */
3186 if (a->length != b->length)
3187 return 1;
3188
3189 /* Subtract b from a */
3190 for (i = 0; i < a->length; i++)
3191 {
3192 tmp = compare_ranks (b->rank[i], a->rank[i]);
3193 if (tmp > 0)
3194 found_pos = 1;
3195 else if (tmp < 0)
3196 found_neg = 1;
3197 }
3198
3199 if (found_pos)
3200 {
3201 if (found_neg)
3202 return 1; /* incomparable */
3203 else
3204 return 3; /* A > B */
3205 }
3206 else
3207 /* no positives */
3208 {
3209 if (found_neg)
3210 return 2; /* A < B */
3211 else
3212 return 0; /* A == B */
3213 }
3214 }
3215
3216 /* Rank a function by comparing its parameter types (PARMS, length
3217 NPARMS), to the types of an argument list (ARGS, length NARGS).
3218 Return a pointer to a badness vector. This has NARGS + 1
3219 entries. */
3220
3221 struct badness_vector *
3222 rank_function (struct type **parms, int nparms,
3223 struct value **args, int nargs)
3224 {
3225 int i;
3226 struct badness_vector *bv = XNEW (struct badness_vector);
3227 int min_len = nparms < nargs ? nparms : nargs;
3228
3229 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3230 bv->rank = XNEWVEC (struct rank, nargs + 1);
3231
3232 /* First compare the lengths of the supplied lists.
3233 If there is a mismatch, set it to a high value. */
3234
3235 /* pai/1997-06-03 FIXME: when we have debug info about default
3236 arguments and ellipsis parameter lists, we should consider those
3237 and rank the length-match more finely. */
3238
3239 LENGTH_MATCH (bv) = (nargs != nparms)
3240 ? LENGTH_MISMATCH_BADNESS
3241 : EXACT_MATCH_BADNESS;
3242
3243 /* Now rank all the parameters of the candidate function. */
3244 for (i = 1; i <= min_len; i++)
3245 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3246 args[i - 1]);
3247
3248 /* If more arguments than parameters, add dummy entries. */
3249 for (i = min_len + 1; i <= nargs; i++)
3250 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3251
3252 return bv;
3253 }
3254
3255 /* Compare the names of two integer types, assuming that any sign
3256 qualifiers have been checked already. We do it this way because
3257 there may be an "int" in the name of one of the types. */
3258
3259 static int
3260 integer_types_same_name_p (const char *first, const char *second)
3261 {
3262 int first_p, second_p;
3263
3264 /* If both are shorts, return 1; if neither is a short, keep
3265 checking. */
3266 first_p = (strstr (first, "short") != NULL);
3267 second_p = (strstr (second, "short") != NULL);
3268 if (first_p && second_p)
3269 return 1;
3270 if (first_p || second_p)
3271 return 0;
3272
3273 /* Likewise for long. */
3274 first_p = (strstr (first, "long") != NULL);
3275 second_p = (strstr (second, "long") != NULL);
3276 if (first_p && second_p)
3277 return 1;
3278 if (first_p || second_p)
3279 return 0;
3280
3281 /* Likewise for char. */
3282 first_p = (strstr (first, "char") != NULL);
3283 second_p = (strstr (second, "char") != NULL);
3284 if (first_p && second_p)
3285 return 1;
3286 if (first_p || second_p)
3287 return 0;
3288
3289 /* They must both be ints. */
3290 return 1;
3291 }
3292
3293 /* Compares type A to type B returns 1 if the represent the same type
3294 0 otherwise. */
3295
3296 int
3297 types_equal (struct type *a, struct type *b)
3298 {
3299 /* Identical type pointers. */
3300 /* However, this still doesn't catch all cases of same type for b
3301 and a. The reason is that builtin types are different from
3302 the same ones constructed from the object. */
3303 if (a == b)
3304 return 1;
3305
3306 /* Resolve typedefs */
3307 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3308 a = check_typedef (a);
3309 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3310 b = check_typedef (b);
3311
3312 /* If after resolving typedefs a and b are not of the same type
3313 code then they are not equal. */
3314 if (TYPE_CODE (a) != TYPE_CODE (b))
3315 return 0;
3316
3317 /* If a and b are both pointers types or both reference types then
3318 they are equal of the same type iff the objects they refer to are
3319 of the same type. */
3320 if (TYPE_CODE (a) == TYPE_CODE_PTR
3321 || TYPE_CODE (a) == TYPE_CODE_REF)
3322 return types_equal (TYPE_TARGET_TYPE (a),
3323 TYPE_TARGET_TYPE (b));
3324
3325 /* Well, damnit, if the names are exactly the same, I'll say they
3326 are exactly the same. This happens when we generate method
3327 stubs. The types won't point to the same address, but they
3328 really are the same. */
3329
3330 if (TYPE_NAME (a) && TYPE_NAME (b)
3331 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3332 return 1;
3333
3334 /* Check if identical after resolving typedefs. */
3335 if (a == b)
3336 return 1;
3337
3338 /* Two function types are equal if their argument and return types
3339 are equal. */
3340 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3341 {
3342 int i;
3343
3344 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3345 return 0;
3346
3347 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3348 return 0;
3349
3350 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3351 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3352 return 0;
3353
3354 return 1;
3355 }
3356
3357 return 0;
3358 }
3359 \f
3360 /* Deep comparison of types. */
3361
3362 /* An entry in the type-equality bcache. */
3363
3364 typedef struct type_equality_entry
3365 {
3366 struct type *type1, *type2;
3367 } type_equality_entry_d;
3368
3369 DEF_VEC_O (type_equality_entry_d);
3370
3371 /* A helper function to compare two strings. Returns 1 if they are
3372 the same, 0 otherwise. Handles NULLs properly. */
3373
3374 static int
3375 compare_maybe_null_strings (const char *s, const char *t)
3376 {
3377 if (s == NULL && t != NULL)
3378 return 0;
3379 else if (s != NULL && t == NULL)
3380 return 0;
3381 else if (s == NULL && t== NULL)
3382 return 1;
3383 return strcmp (s, t) == 0;
3384 }
3385
3386 /* A helper function for check_types_worklist that checks two types for
3387 "deep" equality. Returns non-zero if the types are considered the
3388 same, zero otherwise. */
3389
3390 static int
3391 check_types_equal (struct type *type1, struct type *type2,
3392 VEC (type_equality_entry_d) **worklist)
3393 {
3394 type1 = check_typedef (type1);
3395 type2 = check_typedef (type2);
3396
3397 if (type1 == type2)
3398 return 1;
3399
3400 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3401 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3402 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3403 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3404 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3405 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3406 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3407 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3408 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3409 return 0;
3410
3411 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3412 TYPE_TAG_NAME (type2)))
3413 return 0;
3414 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3415 return 0;
3416
3417 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3418 {
3419 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3420 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3421 return 0;
3422 }
3423 else
3424 {
3425 int i;
3426
3427 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3428 {
3429 const struct field *field1 = &TYPE_FIELD (type1, i);
3430 const struct field *field2 = &TYPE_FIELD (type2, i);
3431 struct type_equality_entry entry;
3432
3433 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3434 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3435 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3436 return 0;
3437 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3438 FIELD_NAME (*field2)))
3439 return 0;
3440 switch (FIELD_LOC_KIND (*field1))
3441 {
3442 case FIELD_LOC_KIND_BITPOS:
3443 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3444 return 0;
3445 break;
3446 case FIELD_LOC_KIND_ENUMVAL:
3447 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3448 return 0;
3449 break;
3450 case FIELD_LOC_KIND_PHYSADDR:
3451 if (FIELD_STATIC_PHYSADDR (*field1)
3452 != FIELD_STATIC_PHYSADDR (*field2))
3453 return 0;
3454 break;
3455 case FIELD_LOC_KIND_PHYSNAME:
3456 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3457 FIELD_STATIC_PHYSNAME (*field2)))
3458 return 0;
3459 break;
3460 case FIELD_LOC_KIND_DWARF_BLOCK:
3461 {
3462 struct dwarf2_locexpr_baton *block1, *block2;
3463
3464 block1 = FIELD_DWARF_BLOCK (*field1);
3465 block2 = FIELD_DWARF_BLOCK (*field2);
3466 if (block1->per_cu != block2->per_cu
3467 || block1->size != block2->size
3468 || memcmp (block1->data, block2->data, block1->size) != 0)
3469 return 0;
3470 }
3471 break;
3472 default:
3473 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3474 "%d by check_types_equal"),
3475 FIELD_LOC_KIND (*field1));
3476 }
3477
3478 entry.type1 = FIELD_TYPE (*field1);
3479 entry.type2 = FIELD_TYPE (*field2);
3480 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3481 }
3482 }
3483
3484 if (TYPE_TARGET_TYPE (type1) != NULL)
3485 {
3486 struct type_equality_entry entry;
3487
3488 if (TYPE_TARGET_TYPE (type2) == NULL)
3489 return 0;
3490
3491 entry.type1 = TYPE_TARGET_TYPE (type1);
3492 entry.type2 = TYPE_TARGET_TYPE (type2);
3493 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3494 }
3495 else if (TYPE_TARGET_TYPE (type2) != NULL)
3496 return 0;
3497
3498 return 1;
3499 }
3500
3501 /* Check types on a worklist for equality. Returns zero if any pair
3502 is not equal, non-zero if they are all considered equal. */
3503
3504 static int
3505 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3506 struct bcache *cache)
3507 {
3508 while (!VEC_empty (type_equality_entry_d, *worklist))
3509 {
3510 struct type_equality_entry entry;
3511 int added;
3512
3513 entry = *VEC_last (type_equality_entry_d, *worklist);
3514 VEC_pop (type_equality_entry_d, *worklist);
3515
3516 /* If the type pair has already been visited, we know it is
3517 ok. */
3518 bcache_full (&entry, sizeof (entry), cache, &added);
3519 if (!added)
3520 continue;
3521
3522 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3523 return 0;
3524 }
3525
3526 return 1;
3527 }
3528
3529 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3530 "deep comparison". Otherwise return zero. */
3531
3532 int
3533 types_deeply_equal (struct type *type1, struct type *type2)
3534 {
3535 struct gdb_exception except = exception_none;
3536 int result = 0;
3537 struct bcache *cache;
3538 VEC (type_equality_entry_d) *worklist = NULL;
3539 struct type_equality_entry entry;
3540
3541 gdb_assert (type1 != NULL && type2 != NULL);
3542
3543 /* Early exit for the simple case. */
3544 if (type1 == type2)
3545 return 1;
3546
3547 cache = bcache_xmalloc (NULL, NULL);
3548
3549 entry.type1 = type1;
3550 entry.type2 = type2;
3551 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3552
3553 /* check_types_worklist calls several nested helper functions, some
3554 of which can raise a GDB exception, so we just check and rethrow
3555 here. If there is a GDB exception, a comparison is not capable
3556 (or trusted), so exit. */
3557 TRY
3558 {
3559 result = check_types_worklist (&worklist, cache);
3560 }
3561 CATCH (ex, RETURN_MASK_ALL)
3562 {
3563 except = ex;
3564 }
3565 END_CATCH
3566
3567 bcache_xfree (cache);
3568 VEC_free (type_equality_entry_d, worklist);
3569
3570 /* Rethrow if there was a problem. */
3571 if (except.reason < 0)
3572 throw_exception (except);
3573
3574 return result;
3575 }
3576
3577 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3578 Otherwise return one. */
3579
3580 int
3581 type_not_allocated (const struct type *type)
3582 {
3583 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3584
3585 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3586 && !TYPE_DYN_PROP_ADDR (prop));
3587 }
3588
3589 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3590 Otherwise return one. */
3591
3592 int
3593 type_not_associated (const struct type *type)
3594 {
3595 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3596
3597 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3598 && !TYPE_DYN_PROP_ADDR (prop));
3599 }
3600 \f
3601 /* Compare one type (PARM) for compatibility with another (ARG).
3602 * PARM is intended to be the parameter type of a function; and
3603 * ARG is the supplied argument's type. This function tests if
3604 * the latter can be converted to the former.
3605 * VALUE is the argument's value or NULL if none (or called recursively)
3606 *
3607 * Return 0 if they are identical types;
3608 * Otherwise, return an integer which corresponds to how compatible
3609 * PARM is to ARG. The higher the return value, the worse the match.
3610 * Generally the "bad" conversions are all uniformly assigned a 100. */
3611
3612 struct rank
3613 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3614 {
3615 struct rank rank = {0,0};
3616
3617 /* Resolve typedefs */
3618 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3619 parm = check_typedef (parm);
3620 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3621 arg = check_typedef (arg);
3622
3623 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3624 {
3625 if (VALUE_LVAL (value) == not_lval)
3626 {
3627 /* Rvalues should preferably bind to rvalue references or const
3628 lvalue references. */
3629 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3630 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3631 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3632 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3633 else
3634 return INCOMPATIBLE_TYPE_BADNESS;
3635 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3636 }
3637 else
3638 {
3639 /* Lvalues should prefer lvalue overloads. */
3640 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3641 {
3642 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3643 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3644 }
3645 }
3646 }
3647
3648 if (types_equal (parm, arg))
3649 {
3650 struct type *t1 = parm;
3651 struct type *t2 = arg;
3652
3653 /* For pointers and references, compare target type. */
3654 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3655 {
3656 t1 = TYPE_TARGET_TYPE (parm);
3657 t2 = TYPE_TARGET_TYPE (arg);
3658 }
3659
3660 /* Make sure they are CV equal, too. */
3661 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3662 rank.subrank |= CV_CONVERSION_CONST;
3663 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3664 rank.subrank |= CV_CONVERSION_VOLATILE;
3665 if (rank.subrank != 0)
3666 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3667 return EXACT_MATCH_BADNESS;
3668 }
3669
3670 /* See through references, since we can almost make non-references
3671 references. */
3672
3673 if (TYPE_IS_REFERENCE (arg))
3674 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3675 REFERENCE_CONVERSION_BADNESS));
3676 if (TYPE_IS_REFERENCE (parm))
3677 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3678 REFERENCE_CONVERSION_BADNESS));
3679 if (overload_debug)
3680 /* Debugging only. */
3681 fprintf_filtered (gdb_stderr,
3682 "------ Arg is %s [%d], parm is %s [%d]\n",
3683 TYPE_NAME (arg), TYPE_CODE (arg),
3684 TYPE_NAME (parm), TYPE_CODE (parm));
3685
3686 /* x -> y means arg of type x being supplied for parameter of type y. */
3687
3688 switch (TYPE_CODE (parm))
3689 {
3690 case TYPE_CODE_PTR:
3691 switch (TYPE_CODE (arg))
3692 {
3693 case TYPE_CODE_PTR:
3694
3695 /* Allowed pointer conversions are:
3696 (a) pointer to void-pointer conversion. */
3697 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3698 return VOID_PTR_CONVERSION_BADNESS;
3699
3700 /* (b) pointer to ancestor-pointer conversion. */
3701 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3702 TYPE_TARGET_TYPE (arg),
3703 0);
3704 if (rank.subrank >= 0)
3705 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3706
3707 return INCOMPATIBLE_TYPE_BADNESS;
3708 case TYPE_CODE_ARRAY:
3709 {
3710 struct type *t1 = TYPE_TARGET_TYPE (parm);
3711 struct type *t2 = TYPE_TARGET_TYPE (arg);
3712
3713 if (types_equal (t1, t2))
3714 {
3715 /* Make sure they are CV equal. */
3716 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3717 rank.subrank |= CV_CONVERSION_CONST;
3718 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3719 rank.subrank |= CV_CONVERSION_VOLATILE;
3720 if (rank.subrank != 0)
3721 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3722 return EXACT_MATCH_BADNESS;
3723 }
3724 return INCOMPATIBLE_TYPE_BADNESS;
3725 }
3726 case TYPE_CODE_FUNC:
3727 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3728 case TYPE_CODE_INT:
3729 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3730 {
3731 if (value_as_long (value) == 0)
3732 {
3733 /* Null pointer conversion: allow it to be cast to a pointer.
3734 [4.10.1 of C++ standard draft n3290] */
3735 return NULL_POINTER_CONVERSION_BADNESS;
3736 }
3737 else
3738 {
3739 /* If type checking is disabled, allow the conversion. */
3740 if (!strict_type_checking)
3741 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3742 }
3743 }
3744 /* fall through */
3745 case TYPE_CODE_ENUM:
3746 case TYPE_CODE_FLAGS:
3747 case TYPE_CODE_CHAR:
3748 case TYPE_CODE_RANGE:
3749 case TYPE_CODE_BOOL:
3750 default:
3751 return INCOMPATIBLE_TYPE_BADNESS;
3752 }
3753 case TYPE_CODE_ARRAY:
3754 switch (TYPE_CODE (arg))
3755 {
3756 case TYPE_CODE_PTR:
3757 case TYPE_CODE_ARRAY:
3758 return rank_one_type (TYPE_TARGET_TYPE (parm),
3759 TYPE_TARGET_TYPE (arg), NULL);
3760 default:
3761 return INCOMPATIBLE_TYPE_BADNESS;
3762 }
3763 case TYPE_CODE_FUNC:
3764 switch (TYPE_CODE (arg))
3765 {
3766 case TYPE_CODE_PTR: /* funcptr -> func */
3767 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3768 default:
3769 return INCOMPATIBLE_TYPE_BADNESS;
3770 }
3771 case TYPE_CODE_INT:
3772 switch (TYPE_CODE (arg))
3773 {
3774 case TYPE_CODE_INT:
3775 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3776 {
3777 /* Deal with signed, unsigned, and plain chars and
3778 signed and unsigned ints. */
3779 if (TYPE_NOSIGN (parm))
3780 {
3781 /* This case only for character types. */
3782 if (TYPE_NOSIGN (arg))
3783 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3784 else /* signed/unsigned char -> plain char */
3785 return INTEGER_CONVERSION_BADNESS;
3786 }
3787 else if (TYPE_UNSIGNED (parm))
3788 {
3789 if (TYPE_UNSIGNED (arg))
3790 {
3791 /* unsigned int -> unsigned int, or
3792 unsigned long -> unsigned long */
3793 if (integer_types_same_name_p (TYPE_NAME (parm),
3794 TYPE_NAME (arg)))
3795 return EXACT_MATCH_BADNESS;
3796 else if (integer_types_same_name_p (TYPE_NAME (arg),
3797 "int")
3798 && integer_types_same_name_p (TYPE_NAME (parm),
3799 "long"))
3800 /* unsigned int -> unsigned long */
3801 return INTEGER_PROMOTION_BADNESS;
3802 else
3803 /* unsigned long -> unsigned int */
3804 return INTEGER_CONVERSION_BADNESS;
3805 }
3806 else
3807 {
3808 if (integer_types_same_name_p (TYPE_NAME (arg),
3809 "long")
3810 && integer_types_same_name_p (TYPE_NAME (parm),
3811 "int"))
3812 /* signed long -> unsigned int */
3813 return INTEGER_CONVERSION_BADNESS;
3814 else
3815 /* signed int/long -> unsigned int/long */
3816 return INTEGER_CONVERSION_BADNESS;
3817 }
3818 }
3819 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3820 {
3821 if (integer_types_same_name_p (TYPE_NAME (parm),
3822 TYPE_NAME (arg)))
3823 return EXACT_MATCH_BADNESS;
3824 else if (integer_types_same_name_p (TYPE_NAME (arg),
3825 "int")
3826 && integer_types_same_name_p (TYPE_NAME (parm),
3827 "long"))
3828 return INTEGER_PROMOTION_BADNESS;
3829 else
3830 return INTEGER_CONVERSION_BADNESS;
3831 }
3832 else
3833 return INTEGER_CONVERSION_BADNESS;
3834 }
3835 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3836 return INTEGER_PROMOTION_BADNESS;
3837 else
3838 return INTEGER_CONVERSION_BADNESS;
3839 case TYPE_CODE_ENUM:
3840 case TYPE_CODE_FLAGS:
3841 case TYPE_CODE_CHAR:
3842 case TYPE_CODE_RANGE:
3843 case TYPE_CODE_BOOL:
3844 if (TYPE_DECLARED_CLASS (arg))
3845 return INCOMPATIBLE_TYPE_BADNESS;
3846 return INTEGER_PROMOTION_BADNESS;
3847 case TYPE_CODE_FLT:
3848 return INT_FLOAT_CONVERSION_BADNESS;
3849 case TYPE_CODE_PTR:
3850 return NS_POINTER_CONVERSION_BADNESS;
3851 default:
3852 return INCOMPATIBLE_TYPE_BADNESS;
3853 }
3854 break;
3855 case TYPE_CODE_ENUM:
3856 switch (TYPE_CODE (arg))
3857 {
3858 case TYPE_CODE_INT:
3859 case TYPE_CODE_CHAR:
3860 case TYPE_CODE_RANGE:
3861 case TYPE_CODE_BOOL:
3862 case TYPE_CODE_ENUM:
3863 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3864 return INCOMPATIBLE_TYPE_BADNESS;
3865 return INTEGER_CONVERSION_BADNESS;
3866 case TYPE_CODE_FLT:
3867 return INT_FLOAT_CONVERSION_BADNESS;
3868 default:
3869 return INCOMPATIBLE_TYPE_BADNESS;
3870 }
3871 break;
3872 case TYPE_CODE_CHAR:
3873 switch (TYPE_CODE (arg))
3874 {
3875 case TYPE_CODE_RANGE:
3876 case TYPE_CODE_BOOL:
3877 case TYPE_CODE_ENUM:
3878 if (TYPE_DECLARED_CLASS (arg))
3879 return INCOMPATIBLE_TYPE_BADNESS;
3880 return INTEGER_CONVERSION_BADNESS;
3881 case TYPE_CODE_FLT:
3882 return INT_FLOAT_CONVERSION_BADNESS;
3883 case TYPE_CODE_INT:
3884 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3885 return INTEGER_CONVERSION_BADNESS;
3886 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3887 return INTEGER_PROMOTION_BADNESS;
3888 /* >>> !! else fall through !! <<< */
3889 case TYPE_CODE_CHAR:
3890 /* Deal with signed, unsigned, and plain chars for C++ and
3891 with int cases falling through from previous case. */
3892 if (TYPE_NOSIGN (parm))
3893 {
3894 if (TYPE_NOSIGN (arg))
3895 return EXACT_MATCH_BADNESS;
3896 else
3897 return INTEGER_CONVERSION_BADNESS;
3898 }
3899 else if (TYPE_UNSIGNED (parm))
3900 {
3901 if (TYPE_UNSIGNED (arg))
3902 return EXACT_MATCH_BADNESS;
3903 else
3904 return INTEGER_PROMOTION_BADNESS;
3905 }
3906 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3907 return EXACT_MATCH_BADNESS;
3908 else
3909 return INTEGER_CONVERSION_BADNESS;
3910 default:
3911 return INCOMPATIBLE_TYPE_BADNESS;
3912 }
3913 break;
3914 case TYPE_CODE_RANGE:
3915 switch (TYPE_CODE (arg))
3916 {
3917 case TYPE_CODE_INT:
3918 case TYPE_CODE_CHAR:
3919 case TYPE_CODE_RANGE:
3920 case TYPE_CODE_BOOL:
3921 case TYPE_CODE_ENUM:
3922 return INTEGER_CONVERSION_BADNESS;
3923 case TYPE_CODE_FLT:
3924 return INT_FLOAT_CONVERSION_BADNESS;
3925 default:
3926 return INCOMPATIBLE_TYPE_BADNESS;
3927 }
3928 break;
3929 case TYPE_CODE_BOOL:
3930 switch (TYPE_CODE (arg))
3931 {
3932 /* n3290 draft, section 4.12.1 (conv.bool):
3933
3934 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3935 pointer to member type can be converted to a prvalue of type
3936 bool. A zero value, null pointer value, or null member pointer
3937 value is converted to false; any other value is converted to
3938 true. A prvalue of type std::nullptr_t can be converted to a
3939 prvalue of type bool; the resulting value is false." */
3940 case TYPE_CODE_INT:
3941 case TYPE_CODE_CHAR:
3942 case TYPE_CODE_ENUM:
3943 case TYPE_CODE_FLT:
3944 case TYPE_CODE_MEMBERPTR:
3945 case TYPE_CODE_PTR:
3946 return BOOL_CONVERSION_BADNESS;
3947 case TYPE_CODE_RANGE:
3948 return INCOMPATIBLE_TYPE_BADNESS;
3949 case TYPE_CODE_BOOL:
3950 return EXACT_MATCH_BADNESS;
3951 default:
3952 return INCOMPATIBLE_TYPE_BADNESS;
3953 }
3954 break;
3955 case TYPE_CODE_FLT:
3956 switch (TYPE_CODE (arg))
3957 {
3958 case TYPE_CODE_FLT:
3959 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3960 return FLOAT_PROMOTION_BADNESS;
3961 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3962 return EXACT_MATCH_BADNESS;
3963 else
3964 return FLOAT_CONVERSION_BADNESS;
3965 case TYPE_CODE_INT:
3966 case TYPE_CODE_BOOL:
3967 case TYPE_CODE_ENUM:
3968 case TYPE_CODE_RANGE:
3969 case TYPE_CODE_CHAR:
3970 return INT_FLOAT_CONVERSION_BADNESS;
3971 default:
3972 return INCOMPATIBLE_TYPE_BADNESS;
3973 }
3974 break;
3975 case TYPE_CODE_COMPLEX:
3976 switch (TYPE_CODE (arg))
3977 { /* Strictly not needed for C++, but... */
3978 case TYPE_CODE_FLT:
3979 return FLOAT_PROMOTION_BADNESS;
3980 case TYPE_CODE_COMPLEX:
3981 return EXACT_MATCH_BADNESS;
3982 default:
3983 return INCOMPATIBLE_TYPE_BADNESS;
3984 }
3985 break;
3986 case TYPE_CODE_STRUCT:
3987 switch (TYPE_CODE (arg))
3988 {
3989 case TYPE_CODE_STRUCT:
3990 /* Check for derivation */
3991 rank.subrank = distance_to_ancestor (parm, arg, 0);
3992 if (rank.subrank >= 0)
3993 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3994 /* else fall through */
3995 default:
3996 return INCOMPATIBLE_TYPE_BADNESS;
3997 }
3998 break;
3999 case TYPE_CODE_UNION:
4000 switch (TYPE_CODE (arg))
4001 {
4002 case TYPE_CODE_UNION:
4003 default:
4004 return INCOMPATIBLE_TYPE_BADNESS;
4005 }
4006 break;
4007 case TYPE_CODE_MEMBERPTR:
4008 switch (TYPE_CODE (arg))
4009 {
4010 default:
4011 return INCOMPATIBLE_TYPE_BADNESS;
4012 }
4013 break;
4014 case TYPE_CODE_METHOD:
4015 switch (TYPE_CODE (arg))
4016 {
4017
4018 default:
4019 return INCOMPATIBLE_TYPE_BADNESS;
4020 }
4021 break;
4022 case TYPE_CODE_REF:
4023 switch (TYPE_CODE (arg))
4024 {
4025
4026 default:
4027 return INCOMPATIBLE_TYPE_BADNESS;
4028 }
4029
4030 break;
4031 case TYPE_CODE_SET:
4032 switch (TYPE_CODE (arg))
4033 {
4034 /* Not in C++ */
4035 case TYPE_CODE_SET:
4036 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4037 TYPE_FIELD_TYPE (arg, 0), NULL);
4038 default:
4039 return INCOMPATIBLE_TYPE_BADNESS;
4040 }
4041 break;
4042 case TYPE_CODE_VOID:
4043 default:
4044 return INCOMPATIBLE_TYPE_BADNESS;
4045 } /* switch (TYPE_CODE (arg)) */
4046 }
4047
4048 /* End of functions for overload resolution. */
4049 \f
4050 /* Routines to pretty-print types. */
4051
4052 static void
4053 print_bit_vector (B_TYPE *bits, int nbits)
4054 {
4055 int bitno;
4056
4057 for (bitno = 0; bitno < nbits; bitno++)
4058 {
4059 if ((bitno % 8) == 0)
4060 {
4061 puts_filtered (" ");
4062 }
4063 if (B_TST (bits, bitno))
4064 printf_filtered (("1"));
4065 else
4066 printf_filtered (("0"));
4067 }
4068 }
4069
4070 /* Note the first arg should be the "this" pointer, we may not want to
4071 include it since we may get into a infinitely recursive
4072 situation. */
4073
4074 static void
4075 print_args (struct field *args, int nargs, int spaces)
4076 {
4077 if (args != NULL)
4078 {
4079 int i;
4080
4081 for (i = 0; i < nargs; i++)
4082 {
4083 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4084 args[i].name != NULL ? args[i].name : "<NULL>");
4085 recursive_dump_type (args[i].type, spaces + 2);
4086 }
4087 }
4088 }
4089
4090 int
4091 field_is_static (struct field *f)
4092 {
4093 /* "static" fields are the fields whose location is not relative
4094 to the address of the enclosing struct. It would be nice to
4095 have a dedicated flag that would be set for static fields when
4096 the type is being created. But in practice, checking the field
4097 loc_kind should give us an accurate answer. */
4098 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4099 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4100 }
4101
4102 static void
4103 dump_fn_fieldlists (struct type *type, int spaces)
4104 {
4105 int method_idx;
4106 int overload_idx;
4107 struct fn_field *f;
4108
4109 printfi_filtered (spaces, "fn_fieldlists ");
4110 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4111 printf_filtered ("\n");
4112 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4113 {
4114 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4115 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4116 method_idx,
4117 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4118 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4119 gdb_stdout);
4120 printf_filtered (_(") length %d\n"),
4121 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4122 for (overload_idx = 0;
4123 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4124 overload_idx++)
4125 {
4126 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4127 overload_idx,
4128 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4129 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4130 gdb_stdout);
4131 printf_filtered (")\n");
4132 printfi_filtered (spaces + 8, "type ");
4133 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4134 gdb_stdout);
4135 printf_filtered ("\n");
4136
4137 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4138 spaces + 8 + 2);
4139
4140 printfi_filtered (spaces + 8, "args ");
4141 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4142 gdb_stdout);
4143 printf_filtered ("\n");
4144 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4145 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4146 spaces + 8 + 2);
4147 printfi_filtered (spaces + 8, "fcontext ");
4148 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4149 gdb_stdout);
4150 printf_filtered ("\n");
4151
4152 printfi_filtered (spaces + 8, "is_const %d\n",
4153 TYPE_FN_FIELD_CONST (f, overload_idx));
4154 printfi_filtered (spaces + 8, "is_volatile %d\n",
4155 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4156 printfi_filtered (spaces + 8, "is_private %d\n",
4157 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4158 printfi_filtered (spaces + 8, "is_protected %d\n",
4159 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4160 printfi_filtered (spaces + 8, "is_stub %d\n",
4161 TYPE_FN_FIELD_STUB (f, overload_idx));
4162 printfi_filtered (spaces + 8, "voffset %u\n",
4163 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4164 }
4165 }
4166 }
4167
4168 static void
4169 print_cplus_stuff (struct type *type, int spaces)
4170 {
4171 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4172 printfi_filtered (spaces, "vptr_basetype ");
4173 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4174 puts_filtered ("\n");
4175 if (TYPE_VPTR_BASETYPE (type) != NULL)
4176 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4177
4178 printfi_filtered (spaces, "n_baseclasses %d\n",
4179 TYPE_N_BASECLASSES (type));
4180 printfi_filtered (spaces, "nfn_fields %d\n",
4181 TYPE_NFN_FIELDS (type));
4182 if (TYPE_N_BASECLASSES (type) > 0)
4183 {
4184 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4185 TYPE_N_BASECLASSES (type));
4186 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4187 gdb_stdout);
4188 printf_filtered (")");
4189
4190 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4191 TYPE_N_BASECLASSES (type));
4192 puts_filtered ("\n");
4193 }
4194 if (TYPE_NFIELDS (type) > 0)
4195 {
4196 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4197 {
4198 printfi_filtered (spaces,
4199 "private_field_bits (%d bits at *",
4200 TYPE_NFIELDS (type));
4201 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4202 gdb_stdout);
4203 printf_filtered (")");
4204 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4205 TYPE_NFIELDS (type));
4206 puts_filtered ("\n");
4207 }
4208 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4209 {
4210 printfi_filtered (spaces,
4211 "protected_field_bits (%d bits at *",
4212 TYPE_NFIELDS (type));
4213 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4214 gdb_stdout);
4215 printf_filtered (")");
4216 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4217 TYPE_NFIELDS (type));
4218 puts_filtered ("\n");
4219 }
4220 }
4221 if (TYPE_NFN_FIELDS (type) > 0)
4222 {
4223 dump_fn_fieldlists (type, spaces);
4224 }
4225 }
4226
4227 /* Print the contents of the TYPE's type_specific union, assuming that
4228 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4229
4230 static void
4231 print_gnat_stuff (struct type *type, int spaces)
4232 {
4233 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4234
4235 if (descriptive_type == NULL)
4236 printfi_filtered (spaces + 2, "no descriptive type\n");
4237 else
4238 {
4239 printfi_filtered (spaces + 2, "descriptive type\n");
4240 recursive_dump_type (descriptive_type, spaces + 4);
4241 }
4242 }
4243
4244 static struct obstack dont_print_type_obstack;
4245
4246 void
4247 recursive_dump_type (struct type *type, int spaces)
4248 {
4249 int idx;
4250
4251 if (spaces == 0)
4252 obstack_begin (&dont_print_type_obstack, 0);
4253
4254 if (TYPE_NFIELDS (type) > 0
4255 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4256 {
4257 struct type **first_dont_print
4258 = (struct type **) obstack_base (&dont_print_type_obstack);
4259
4260 int i = (struct type **)
4261 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4262
4263 while (--i >= 0)
4264 {
4265 if (type == first_dont_print[i])
4266 {
4267 printfi_filtered (spaces, "type node ");
4268 gdb_print_host_address (type, gdb_stdout);
4269 printf_filtered (_(" <same as already seen type>\n"));
4270 return;
4271 }
4272 }
4273
4274 obstack_ptr_grow (&dont_print_type_obstack, type);
4275 }
4276
4277 printfi_filtered (spaces, "type node ");
4278 gdb_print_host_address (type, gdb_stdout);
4279 printf_filtered ("\n");
4280 printfi_filtered (spaces, "name '%s' (",
4281 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4282 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4283 printf_filtered (")\n");
4284 printfi_filtered (spaces, "tagname '%s' (",
4285 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4286 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4287 printf_filtered (")\n");
4288 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4289 switch (TYPE_CODE (type))
4290 {
4291 case TYPE_CODE_UNDEF:
4292 printf_filtered ("(TYPE_CODE_UNDEF)");
4293 break;
4294 case TYPE_CODE_PTR:
4295 printf_filtered ("(TYPE_CODE_PTR)");
4296 break;
4297 case TYPE_CODE_ARRAY:
4298 printf_filtered ("(TYPE_CODE_ARRAY)");
4299 break;
4300 case TYPE_CODE_STRUCT:
4301 printf_filtered ("(TYPE_CODE_STRUCT)");
4302 break;
4303 case TYPE_CODE_UNION:
4304 printf_filtered ("(TYPE_CODE_UNION)");
4305 break;
4306 case TYPE_CODE_ENUM:
4307 printf_filtered ("(TYPE_CODE_ENUM)");
4308 break;
4309 case TYPE_CODE_FLAGS:
4310 printf_filtered ("(TYPE_CODE_FLAGS)");
4311 break;
4312 case TYPE_CODE_FUNC:
4313 printf_filtered ("(TYPE_CODE_FUNC)");
4314 break;
4315 case TYPE_CODE_INT:
4316 printf_filtered ("(TYPE_CODE_INT)");
4317 break;
4318 case TYPE_CODE_FLT:
4319 printf_filtered ("(TYPE_CODE_FLT)");
4320 break;
4321 case TYPE_CODE_VOID:
4322 printf_filtered ("(TYPE_CODE_VOID)");
4323 break;
4324 case TYPE_CODE_SET:
4325 printf_filtered ("(TYPE_CODE_SET)");
4326 break;
4327 case TYPE_CODE_RANGE:
4328 printf_filtered ("(TYPE_CODE_RANGE)");
4329 break;
4330 case TYPE_CODE_STRING:
4331 printf_filtered ("(TYPE_CODE_STRING)");
4332 break;
4333 case TYPE_CODE_ERROR:
4334 printf_filtered ("(TYPE_CODE_ERROR)");
4335 break;
4336 case TYPE_CODE_MEMBERPTR:
4337 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4338 break;
4339 case TYPE_CODE_METHODPTR:
4340 printf_filtered ("(TYPE_CODE_METHODPTR)");
4341 break;
4342 case TYPE_CODE_METHOD:
4343 printf_filtered ("(TYPE_CODE_METHOD)");
4344 break;
4345 case TYPE_CODE_REF:
4346 printf_filtered ("(TYPE_CODE_REF)");
4347 break;
4348 case TYPE_CODE_CHAR:
4349 printf_filtered ("(TYPE_CODE_CHAR)");
4350 break;
4351 case TYPE_CODE_BOOL:
4352 printf_filtered ("(TYPE_CODE_BOOL)");
4353 break;
4354 case TYPE_CODE_COMPLEX:
4355 printf_filtered ("(TYPE_CODE_COMPLEX)");
4356 break;
4357 case TYPE_CODE_TYPEDEF:
4358 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4359 break;
4360 case TYPE_CODE_NAMESPACE:
4361 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4362 break;
4363 default:
4364 printf_filtered ("(UNKNOWN TYPE CODE)");
4365 break;
4366 }
4367 puts_filtered ("\n");
4368 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4369 if (TYPE_OBJFILE_OWNED (type))
4370 {
4371 printfi_filtered (spaces, "objfile ");
4372 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4373 }
4374 else
4375 {
4376 printfi_filtered (spaces, "gdbarch ");
4377 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4378 }
4379 printf_filtered ("\n");
4380 printfi_filtered (spaces, "target_type ");
4381 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4382 printf_filtered ("\n");
4383 if (TYPE_TARGET_TYPE (type) != NULL)
4384 {
4385 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4386 }
4387 printfi_filtered (spaces, "pointer_type ");
4388 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4389 printf_filtered ("\n");
4390 printfi_filtered (spaces, "reference_type ");
4391 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4392 printf_filtered ("\n");
4393 printfi_filtered (spaces, "type_chain ");
4394 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4395 printf_filtered ("\n");
4396 printfi_filtered (spaces, "instance_flags 0x%x",
4397 TYPE_INSTANCE_FLAGS (type));
4398 if (TYPE_CONST (type))
4399 {
4400 puts_filtered (" TYPE_CONST");
4401 }
4402 if (TYPE_VOLATILE (type))
4403 {
4404 puts_filtered (" TYPE_VOLATILE");
4405 }
4406 if (TYPE_CODE_SPACE (type))
4407 {
4408 puts_filtered (" TYPE_CODE_SPACE");
4409 }
4410 if (TYPE_DATA_SPACE (type))
4411 {
4412 puts_filtered (" TYPE_DATA_SPACE");
4413 }
4414 if (TYPE_ADDRESS_CLASS_1 (type))
4415 {
4416 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4417 }
4418 if (TYPE_ADDRESS_CLASS_2 (type))
4419 {
4420 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4421 }
4422 if (TYPE_RESTRICT (type))
4423 {
4424 puts_filtered (" TYPE_RESTRICT");
4425 }
4426 if (TYPE_ATOMIC (type))
4427 {
4428 puts_filtered (" TYPE_ATOMIC");
4429 }
4430 puts_filtered ("\n");
4431
4432 printfi_filtered (spaces, "flags");
4433 if (TYPE_UNSIGNED (type))
4434 {
4435 puts_filtered (" TYPE_UNSIGNED");
4436 }
4437 if (TYPE_NOSIGN (type))
4438 {
4439 puts_filtered (" TYPE_NOSIGN");
4440 }
4441 if (TYPE_STUB (type))
4442 {
4443 puts_filtered (" TYPE_STUB");
4444 }
4445 if (TYPE_TARGET_STUB (type))
4446 {
4447 puts_filtered (" TYPE_TARGET_STUB");
4448 }
4449 if (TYPE_PROTOTYPED (type))
4450 {
4451 puts_filtered (" TYPE_PROTOTYPED");
4452 }
4453 if (TYPE_INCOMPLETE (type))
4454 {
4455 puts_filtered (" TYPE_INCOMPLETE");
4456 }
4457 if (TYPE_VARARGS (type))
4458 {
4459 puts_filtered (" TYPE_VARARGS");
4460 }
4461 /* This is used for things like AltiVec registers on ppc. Gcc emits
4462 an attribute for the array type, which tells whether or not we
4463 have a vector, instead of a regular array. */
4464 if (TYPE_VECTOR (type))
4465 {
4466 puts_filtered (" TYPE_VECTOR");
4467 }
4468 if (TYPE_FIXED_INSTANCE (type))
4469 {
4470 puts_filtered (" TYPE_FIXED_INSTANCE");
4471 }
4472 if (TYPE_STUB_SUPPORTED (type))
4473 {
4474 puts_filtered (" TYPE_STUB_SUPPORTED");
4475 }
4476 if (TYPE_NOTTEXT (type))
4477 {
4478 puts_filtered (" TYPE_NOTTEXT");
4479 }
4480 puts_filtered ("\n");
4481 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4482 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4483 puts_filtered ("\n");
4484 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4485 {
4486 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4487 printfi_filtered (spaces + 2,
4488 "[%d] enumval %s type ",
4489 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4490 else
4491 printfi_filtered (spaces + 2,
4492 "[%d] bitpos %s bitsize %d type ",
4493 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4494 TYPE_FIELD_BITSIZE (type, idx));
4495 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4496 printf_filtered (" name '%s' (",
4497 TYPE_FIELD_NAME (type, idx) != NULL
4498 ? TYPE_FIELD_NAME (type, idx)
4499 : "<NULL>");
4500 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4501 printf_filtered (")\n");
4502 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4503 {
4504 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4505 }
4506 }
4507 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4508 {
4509 printfi_filtered (spaces, "low %s%s high %s%s\n",
4510 plongest (TYPE_LOW_BOUND (type)),
4511 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4512 plongest (TYPE_HIGH_BOUND (type)),
4513 TYPE_HIGH_BOUND_UNDEFINED (type)
4514 ? " (undefined)" : "");
4515 }
4516
4517 switch (TYPE_SPECIFIC_FIELD (type))
4518 {
4519 case TYPE_SPECIFIC_CPLUS_STUFF:
4520 printfi_filtered (spaces, "cplus_stuff ");
4521 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4522 gdb_stdout);
4523 puts_filtered ("\n");
4524 print_cplus_stuff (type, spaces);
4525 break;
4526
4527 case TYPE_SPECIFIC_GNAT_STUFF:
4528 printfi_filtered (spaces, "gnat_stuff ");
4529 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4530 puts_filtered ("\n");
4531 print_gnat_stuff (type, spaces);
4532 break;
4533
4534 case TYPE_SPECIFIC_FLOATFORMAT:
4535 printfi_filtered (spaces, "floatformat ");
4536 if (TYPE_FLOATFORMAT (type) == NULL)
4537 puts_filtered ("(null)");
4538 else
4539 {
4540 puts_filtered ("{ ");
4541 if (TYPE_FLOATFORMAT (type)[0] == NULL
4542 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4543 puts_filtered ("(null)");
4544 else
4545 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4546
4547 puts_filtered (", ");
4548 if (TYPE_FLOATFORMAT (type)[1] == NULL
4549 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4550 puts_filtered ("(null)");
4551 else
4552 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4553
4554 puts_filtered (" }");
4555 }
4556 puts_filtered ("\n");
4557 break;
4558
4559 case TYPE_SPECIFIC_FUNC:
4560 printfi_filtered (spaces, "calling_convention %d\n",
4561 TYPE_CALLING_CONVENTION (type));
4562 /* tail_call_list is not printed. */
4563 break;
4564
4565 case TYPE_SPECIFIC_SELF_TYPE:
4566 printfi_filtered (spaces, "self_type ");
4567 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4568 puts_filtered ("\n");
4569 break;
4570 }
4571
4572 if (spaces == 0)
4573 obstack_free (&dont_print_type_obstack, NULL);
4574 }
4575 \f
4576 /* Trivial helpers for the libiberty hash table, for mapping one
4577 type to another. */
4578
4579 struct type_pair
4580 {
4581 struct type *old, *newobj;
4582 };
4583
4584 static hashval_t
4585 type_pair_hash (const void *item)
4586 {
4587 const struct type_pair *pair = (const struct type_pair *) item;
4588
4589 return htab_hash_pointer (pair->old);
4590 }
4591
4592 static int
4593 type_pair_eq (const void *item_lhs, const void *item_rhs)
4594 {
4595 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4596 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4597
4598 return lhs->old == rhs->old;
4599 }
4600
4601 /* Allocate the hash table used by copy_type_recursive to walk
4602 types without duplicates. We use OBJFILE's obstack, because
4603 OBJFILE is about to be deleted. */
4604
4605 htab_t
4606 create_copied_types_hash (struct objfile *objfile)
4607 {
4608 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4609 NULL, &objfile->objfile_obstack,
4610 hashtab_obstack_allocate,
4611 dummy_obstack_deallocate);
4612 }
4613
4614 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4615
4616 static struct dynamic_prop_list *
4617 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4618 struct dynamic_prop_list *list)
4619 {
4620 struct dynamic_prop_list *copy = list;
4621 struct dynamic_prop_list **node_ptr = &copy;
4622
4623 while (*node_ptr != NULL)
4624 {
4625 struct dynamic_prop_list *node_copy;
4626
4627 node_copy = ((struct dynamic_prop_list *)
4628 obstack_copy (objfile_obstack, *node_ptr,
4629 sizeof (struct dynamic_prop_list)));
4630 node_copy->prop = (*node_ptr)->prop;
4631 *node_ptr = node_copy;
4632
4633 node_ptr = &node_copy->next;
4634 }
4635
4636 return copy;
4637 }
4638
4639 /* Recursively copy (deep copy) TYPE, if it is associated with
4640 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4641 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4642 it is not associated with OBJFILE. */
4643
4644 struct type *
4645 copy_type_recursive (struct objfile *objfile,
4646 struct type *type,
4647 htab_t copied_types)
4648 {
4649 struct type_pair *stored, pair;
4650 void **slot;
4651 struct type *new_type;
4652
4653 if (! TYPE_OBJFILE_OWNED (type))
4654 return type;
4655
4656 /* This type shouldn't be pointing to any types in other objfiles;
4657 if it did, the type might disappear unexpectedly. */
4658 gdb_assert (TYPE_OBJFILE (type) == objfile);
4659
4660 pair.old = type;
4661 slot = htab_find_slot (copied_types, &pair, INSERT);
4662 if (*slot != NULL)
4663 return ((struct type_pair *) *slot)->newobj;
4664
4665 new_type = alloc_type_arch (get_type_arch (type));
4666
4667 /* We must add the new type to the hash table immediately, in case
4668 we encounter this type again during a recursive call below. */
4669 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4670 stored->old = type;
4671 stored->newobj = new_type;
4672 *slot = stored;
4673
4674 /* Copy the common fields of types. For the main type, we simply
4675 copy the entire thing and then update specific fields as needed. */
4676 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4677 TYPE_OBJFILE_OWNED (new_type) = 0;
4678 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4679
4680 if (TYPE_NAME (type))
4681 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4682 if (TYPE_TAG_NAME (type))
4683 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4684
4685 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4686 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4687
4688 /* Copy the fields. */
4689 if (TYPE_NFIELDS (type))
4690 {
4691 int i, nfields;
4692
4693 nfields = TYPE_NFIELDS (type);
4694 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4695 for (i = 0; i < nfields; i++)
4696 {
4697 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4698 TYPE_FIELD_ARTIFICIAL (type, i);
4699 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4700 if (TYPE_FIELD_TYPE (type, i))
4701 TYPE_FIELD_TYPE (new_type, i)
4702 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4703 copied_types);
4704 if (TYPE_FIELD_NAME (type, i))
4705 TYPE_FIELD_NAME (new_type, i) =
4706 xstrdup (TYPE_FIELD_NAME (type, i));
4707 switch (TYPE_FIELD_LOC_KIND (type, i))
4708 {
4709 case FIELD_LOC_KIND_BITPOS:
4710 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4711 TYPE_FIELD_BITPOS (type, i));
4712 break;
4713 case FIELD_LOC_KIND_ENUMVAL:
4714 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4715 TYPE_FIELD_ENUMVAL (type, i));
4716 break;
4717 case FIELD_LOC_KIND_PHYSADDR:
4718 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4719 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4720 break;
4721 case FIELD_LOC_KIND_PHYSNAME:
4722 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4723 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4724 i)));
4725 break;
4726 default:
4727 internal_error (__FILE__, __LINE__,
4728 _("Unexpected type field location kind: %d"),
4729 TYPE_FIELD_LOC_KIND (type, i));
4730 }
4731 }
4732 }
4733
4734 /* For range types, copy the bounds information. */
4735 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4736 {
4737 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4738 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4739 }
4740
4741 if (TYPE_DYN_PROP_LIST (type) != NULL)
4742 TYPE_DYN_PROP_LIST (new_type)
4743 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4744 TYPE_DYN_PROP_LIST (type));
4745
4746
4747 /* Copy pointers to other types. */
4748 if (TYPE_TARGET_TYPE (type))
4749 TYPE_TARGET_TYPE (new_type) =
4750 copy_type_recursive (objfile,
4751 TYPE_TARGET_TYPE (type),
4752 copied_types);
4753
4754 /* Maybe copy the type_specific bits.
4755
4756 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4757 base classes and methods. There's no fundamental reason why we
4758 can't, but at the moment it is not needed. */
4759
4760 switch (TYPE_SPECIFIC_FIELD (type))
4761 {
4762 case TYPE_SPECIFIC_NONE:
4763 break;
4764 case TYPE_SPECIFIC_FUNC:
4765 INIT_FUNC_SPECIFIC (new_type);
4766 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4767 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4768 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4769 break;
4770 case TYPE_SPECIFIC_FLOATFORMAT:
4771 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4772 break;
4773 case TYPE_SPECIFIC_CPLUS_STUFF:
4774 INIT_CPLUS_SPECIFIC (new_type);
4775 break;
4776 case TYPE_SPECIFIC_GNAT_STUFF:
4777 INIT_GNAT_SPECIFIC (new_type);
4778 break;
4779 case TYPE_SPECIFIC_SELF_TYPE:
4780 set_type_self_type (new_type,
4781 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4782 copied_types));
4783 break;
4784 default:
4785 gdb_assert_not_reached ("bad type_specific_kind");
4786 }
4787
4788 return new_type;
4789 }
4790
4791 /* Make a copy of the given TYPE, except that the pointer & reference
4792 types are not preserved.
4793
4794 This function assumes that the given type has an associated objfile.
4795 This objfile is used to allocate the new type. */
4796
4797 struct type *
4798 copy_type (const struct type *type)
4799 {
4800 struct type *new_type;
4801
4802 gdb_assert (TYPE_OBJFILE_OWNED (type));
4803
4804 new_type = alloc_type_copy (type);
4805 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4806 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4807 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4808 sizeof (struct main_type));
4809 if (TYPE_DYN_PROP_LIST (type) != NULL)
4810 TYPE_DYN_PROP_LIST (new_type)
4811 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4812 TYPE_DYN_PROP_LIST (type));
4813
4814 return new_type;
4815 }
4816 \f
4817 /* Helper functions to initialize architecture-specific types. */
4818
4819 /* Allocate a type structure associated with GDBARCH and set its
4820 CODE, LENGTH, and NAME fields. */
4821
4822 struct type *
4823 arch_type (struct gdbarch *gdbarch,
4824 enum type_code code, int length, const char *name)
4825 {
4826 struct type *type;
4827
4828 type = alloc_type_arch (gdbarch);
4829 set_type_code (type, code);
4830 TYPE_LENGTH (type) = length;
4831
4832 if (name)
4833 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4834
4835 return type;
4836 }
4837
4838 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4839 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4840 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4841
4842 struct type *
4843 arch_integer_type (struct gdbarch *gdbarch,
4844 int bit, int unsigned_p, const char *name)
4845 {
4846 struct type *t;
4847
4848 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4849 if (unsigned_p)
4850 TYPE_UNSIGNED (t) = 1;
4851
4852 return t;
4853 }
4854
4855 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4856 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4857 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4858
4859 struct type *
4860 arch_character_type (struct gdbarch *gdbarch,
4861 int bit, int unsigned_p, const char *name)
4862 {
4863 struct type *t;
4864
4865 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4866 if (unsigned_p)
4867 TYPE_UNSIGNED (t) = 1;
4868
4869 return t;
4870 }
4871
4872 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4873 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4874 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4875
4876 struct type *
4877 arch_boolean_type (struct gdbarch *gdbarch,
4878 int bit, int unsigned_p, const char *name)
4879 {
4880 struct type *t;
4881
4882 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4883 if (unsigned_p)
4884 TYPE_UNSIGNED (t) = 1;
4885
4886 return t;
4887 }
4888
4889 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4890 BIT is the type size in bits; if BIT equals -1, the size is
4891 determined by the floatformat. NAME is the type name. Set the
4892 TYPE_FLOATFORMAT from FLOATFORMATS. */
4893
4894 struct type *
4895 arch_float_type (struct gdbarch *gdbarch,
4896 int bit, const char *name,
4897 const struct floatformat **floatformats)
4898 {
4899 struct type *t;
4900
4901 bit = verify_floatformat (bit, floatformats);
4902 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4903 TYPE_FLOATFORMAT (t) = floatformats;
4904
4905 return t;
4906 }
4907
4908 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4909 BIT is the type size in bits. NAME is the type name. */
4910
4911 struct type *
4912 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4913 {
4914 struct type *t;
4915
4916 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4917 return t;
4918 }
4919
4920 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4921 NAME is the type name. TARGET_TYPE is the component float type. */
4922
4923 struct type *
4924 arch_complex_type (struct gdbarch *gdbarch,
4925 const char *name, struct type *target_type)
4926 {
4927 struct type *t;
4928
4929 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4930 2 * TYPE_LENGTH (target_type), name);
4931 TYPE_TARGET_TYPE (t) = target_type;
4932 return t;
4933 }
4934
4935 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4936 BIT is the pointer type size in bits. NAME is the type name.
4937 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4938 TYPE_UNSIGNED flag. */
4939
4940 struct type *
4941 arch_pointer_type (struct gdbarch *gdbarch,
4942 int bit, const char *name, struct type *target_type)
4943 {
4944 struct type *t;
4945
4946 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4947 TYPE_TARGET_TYPE (t) = target_type;
4948 TYPE_UNSIGNED (t) = 1;
4949 return t;
4950 }
4951
4952 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4953 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4954
4955 struct type *
4956 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4957 {
4958 int max_nfields = length * TARGET_CHAR_BIT;
4959 struct type *type;
4960
4961 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4962 TYPE_UNSIGNED (type) = 1;
4963 TYPE_NFIELDS (type) = 0;
4964 /* Pre-allocate enough space assuming every field is one bit. */
4965 TYPE_FIELDS (type)
4966 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4967
4968 return type;
4969 }
4970
4971 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4972 position BITPOS is called NAME. Pass NAME as "" for fields that
4973 should not be printed. */
4974
4975 void
4976 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4977 struct type *field_type, const char *name)
4978 {
4979 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4980 int field_nr = TYPE_NFIELDS (type);
4981
4982 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4983 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4984 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4985 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4986 gdb_assert (name != NULL);
4987
4988 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4989 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4990 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4991 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4992 ++TYPE_NFIELDS (type);
4993 }
4994
4995 /* Special version of append_flags_type_field to add a flag field.
4996 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4997 position BITPOS is called NAME. */
4998
4999 void
5000 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5001 {
5002 struct gdbarch *gdbarch = get_type_arch (type);
5003
5004 append_flags_type_field (type, bitpos, 1,
5005 builtin_type (gdbarch)->builtin_bool,
5006 name);
5007 }
5008
5009 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5010 specified by CODE) associated with GDBARCH. NAME is the type name. */
5011
5012 struct type *
5013 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5014 enum type_code code)
5015 {
5016 struct type *t;
5017
5018 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5019 t = arch_type (gdbarch, code, 0, NULL);
5020 TYPE_TAG_NAME (t) = name;
5021 INIT_CPLUS_SPECIFIC (t);
5022 return t;
5023 }
5024
5025 /* Add new field with name NAME and type FIELD to composite type T.
5026 Do not set the field's position or adjust the type's length;
5027 the caller should do so. Return the new field. */
5028
5029 struct field *
5030 append_composite_type_field_raw (struct type *t, const char *name,
5031 struct type *field)
5032 {
5033 struct field *f;
5034
5035 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5036 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5037 TYPE_NFIELDS (t));
5038 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5039 memset (f, 0, sizeof f[0]);
5040 FIELD_TYPE (f[0]) = field;
5041 FIELD_NAME (f[0]) = name;
5042 return f;
5043 }
5044
5045 /* Add new field with name NAME and type FIELD to composite type T.
5046 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5047
5048 void
5049 append_composite_type_field_aligned (struct type *t, const char *name,
5050 struct type *field, int alignment)
5051 {
5052 struct field *f = append_composite_type_field_raw (t, name, field);
5053
5054 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5055 {
5056 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5057 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5058 }
5059 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5060 {
5061 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5062 if (TYPE_NFIELDS (t) > 1)
5063 {
5064 SET_FIELD_BITPOS (f[0],
5065 (FIELD_BITPOS (f[-1])
5066 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5067 * TARGET_CHAR_BIT)));
5068
5069 if (alignment)
5070 {
5071 int left;
5072
5073 alignment *= TARGET_CHAR_BIT;
5074 left = FIELD_BITPOS (f[0]) % alignment;
5075
5076 if (left)
5077 {
5078 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5079 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5080 }
5081 }
5082 }
5083 }
5084 }
5085
5086 /* Add new field with name NAME and type FIELD to composite type T. */
5087
5088 void
5089 append_composite_type_field (struct type *t, const char *name,
5090 struct type *field)
5091 {
5092 append_composite_type_field_aligned (t, name, field, 0);
5093 }
5094
5095 static struct gdbarch_data *gdbtypes_data;
5096
5097 const struct builtin_type *
5098 builtin_type (struct gdbarch *gdbarch)
5099 {
5100 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5101 }
5102
5103 static void *
5104 gdbtypes_post_init (struct gdbarch *gdbarch)
5105 {
5106 struct builtin_type *builtin_type
5107 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5108
5109 /* Basic types. */
5110 builtin_type->builtin_void
5111 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5112 builtin_type->builtin_char
5113 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5114 !gdbarch_char_signed (gdbarch), "char");
5115 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5116 builtin_type->builtin_signed_char
5117 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5118 0, "signed char");
5119 builtin_type->builtin_unsigned_char
5120 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5121 1, "unsigned char");
5122 builtin_type->builtin_short
5123 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5124 0, "short");
5125 builtin_type->builtin_unsigned_short
5126 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5127 1, "unsigned short");
5128 builtin_type->builtin_int
5129 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5130 0, "int");
5131 builtin_type->builtin_unsigned_int
5132 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5133 1, "unsigned int");
5134 builtin_type->builtin_long
5135 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5136 0, "long");
5137 builtin_type->builtin_unsigned_long
5138 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5139 1, "unsigned long");
5140 builtin_type->builtin_long_long
5141 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5142 0, "long long");
5143 builtin_type->builtin_unsigned_long_long
5144 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5145 1, "unsigned long long");
5146 builtin_type->builtin_float
5147 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5148 "float", gdbarch_float_format (gdbarch));
5149 builtin_type->builtin_double
5150 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5151 "double", gdbarch_double_format (gdbarch));
5152 builtin_type->builtin_long_double
5153 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5154 "long double", gdbarch_long_double_format (gdbarch));
5155 builtin_type->builtin_complex
5156 = arch_complex_type (gdbarch, "complex",
5157 builtin_type->builtin_float);
5158 builtin_type->builtin_double_complex
5159 = arch_complex_type (gdbarch, "double complex",
5160 builtin_type->builtin_double);
5161 builtin_type->builtin_string
5162 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5163 builtin_type->builtin_bool
5164 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5165
5166 /* The following three are about decimal floating point types, which
5167 are 32-bits, 64-bits and 128-bits respectively. */
5168 builtin_type->builtin_decfloat
5169 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5170 builtin_type->builtin_decdouble
5171 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5172 builtin_type->builtin_declong
5173 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5174
5175 /* "True" character types. */
5176 builtin_type->builtin_true_char
5177 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5178 builtin_type->builtin_true_unsigned_char
5179 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5180
5181 /* Fixed-size integer types. */
5182 builtin_type->builtin_int0
5183 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5184 builtin_type->builtin_int8
5185 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5186 builtin_type->builtin_uint8
5187 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5188 builtin_type->builtin_int16
5189 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5190 builtin_type->builtin_uint16
5191 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5192 builtin_type->builtin_int32
5193 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5194 builtin_type->builtin_uint32
5195 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5196 builtin_type->builtin_int64
5197 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5198 builtin_type->builtin_uint64
5199 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5200 builtin_type->builtin_int128
5201 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5202 builtin_type->builtin_uint128
5203 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5204 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5205 TYPE_INSTANCE_FLAG_NOTTEXT;
5206 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5207 TYPE_INSTANCE_FLAG_NOTTEXT;
5208
5209 /* Wide character types. */
5210 builtin_type->builtin_char16
5211 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5212 builtin_type->builtin_char32
5213 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5214 builtin_type->builtin_wchar
5215 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5216 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5217
5218 /* Default data/code pointer types. */
5219 builtin_type->builtin_data_ptr
5220 = lookup_pointer_type (builtin_type->builtin_void);
5221 builtin_type->builtin_func_ptr
5222 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5223 builtin_type->builtin_func_func
5224 = lookup_function_type (builtin_type->builtin_func_ptr);
5225
5226 /* This type represents a GDB internal function. */
5227 builtin_type->internal_fn
5228 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5229 "<internal function>");
5230
5231 /* This type represents an xmethod. */
5232 builtin_type->xmethod
5233 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5234
5235 return builtin_type;
5236 }
5237
5238 /* This set of objfile-based types is intended to be used by symbol
5239 readers as basic types. */
5240
5241 static const struct objfile_data *objfile_type_data;
5242
5243 const struct objfile_type *
5244 objfile_type (struct objfile *objfile)
5245 {
5246 struct gdbarch *gdbarch;
5247 struct objfile_type *objfile_type
5248 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5249
5250 if (objfile_type)
5251 return objfile_type;
5252
5253 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5254 1, struct objfile_type);
5255
5256 /* Use the objfile architecture to determine basic type properties. */
5257 gdbarch = get_objfile_arch (objfile);
5258
5259 /* Basic types. */
5260 objfile_type->builtin_void
5261 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5262 objfile_type->builtin_char
5263 = init_integer_type (objfile, TARGET_CHAR_BIT,
5264 !gdbarch_char_signed (gdbarch), "char");
5265 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5266 objfile_type->builtin_signed_char
5267 = init_integer_type (objfile, TARGET_CHAR_BIT,
5268 0, "signed char");
5269 objfile_type->builtin_unsigned_char
5270 = init_integer_type (objfile, TARGET_CHAR_BIT,
5271 1, "unsigned char");
5272 objfile_type->builtin_short
5273 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5274 0, "short");
5275 objfile_type->builtin_unsigned_short
5276 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5277 1, "unsigned short");
5278 objfile_type->builtin_int
5279 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5280 0, "int");
5281 objfile_type->builtin_unsigned_int
5282 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5283 1, "unsigned int");
5284 objfile_type->builtin_long
5285 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5286 0, "long");
5287 objfile_type->builtin_unsigned_long
5288 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5289 1, "unsigned long");
5290 objfile_type->builtin_long_long
5291 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5292 0, "long long");
5293 objfile_type->builtin_unsigned_long_long
5294 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5295 1, "unsigned long long");
5296 objfile_type->builtin_float
5297 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5298 "float", gdbarch_float_format (gdbarch));
5299 objfile_type->builtin_double
5300 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5301 "double", gdbarch_double_format (gdbarch));
5302 objfile_type->builtin_long_double
5303 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5304 "long double", gdbarch_long_double_format (gdbarch));
5305
5306 /* This type represents a type that was unrecognized in symbol read-in. */
5307 objfile_type->builtin_error
5308 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5309
5310 /* The following set of types is used for symbols with no
5311 debug information. */
5312 objfile_type->nodebug_text_symbol
5313 = init_type (objfile, TYPE_CODE_FUNC, 1,
5314 "<text variable, no debug info>");
5315 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5316 = objfile_type->builtin_int;
5317 objfile_type->nodebug_text_gnu_ifunc_symbol
5318 = init_type (objfile, TYPE_CODE_FUNC, 1,
5319 "<text gnu-indirect-function variable, no debug info>");
5320 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5321 = objfile_type->nodebug_text_symbol;
5322 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5323 objfile_type->nodebug_got_plt_symbol
5324 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5325 "<text from jump slot in .got.plt, no debug info>",
5326 objfile_type->nodebug_text_symbol);
5327 objfile_type->nodebug_data_symbol
5328 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5329 "<data variable, no debug info>");
5330 objfile_type->nodebug_unknown_symbol
5331 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5332 "<variable (not text or data), no debug info>");
5333 objfile_type->nodebug_tls_symbol
5334 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5335 "<thread local variable, no debug info>");
5336
5337 /* NOTE: on some targets, addresses and pointers are not necessarily
5338 the same.
5339
5340 The upshot is:
5341 - gdb's `struct type' always describes the target's
5342 representation.
5343 - gdb's `struct value' objects should always hold values in
5344 target form.
5345 - gdb's CORE_ADDR values are addresses in the unified virtual
5346 address space that the assembler and linker work with. Thus,
5347 since target_read_memory takes a CORE_ADDR as an argument, it
5348 can access any memory on the target, even if the processor has
5349 separate code and data address spaces.
5350
5351 In this context, objfile_type->builtin_core_addr is a bit odd:
5352 it's a target type for a value the target will never see. It's
5353 only used to hold the values of (typeless) linker symbols, which
5354 are indeed in the unified virtual address space. */
5355
5356 objfile_type->builtin_core_addr
5357 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5358 "__CORE_ADDR");
5359
5360 set_objfile_data (objfile, objfile_type_data, objfile_type);
5361 return objfile_type;
5362 }
5363
5364 extern initialize_file_ftype _initialize_gdbtypes;
5365
5366 void
5367 _initialize_gdbtypes (void)
5368 {
5369 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5370 objfile_type_data = register_objfile_data ();
5371
5372 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5373 _("Set debugging of C++ overloading."),
5374 _("Show debugging of C++ overloading."),
5375 _("When enabled, ranking of the "
5376 "functions is displayed."),
5377 NULL,
5378 show_overload_debug,
5379 &setdebuglist, &showdebuglist);
5380
5381 /* Add user knob for controlling resolution of opaque types. */
5382 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5383 &opaque_type_resolution,
5384 _("Set resolution of opaque struct/class/union"
5385 " types (if set before loading symbols)."),
5386 _("Show resolution of opaque struct/class/union"
5387 " types (if set before loading symbols)."),
5388 NULL, NULL,
5389 show_opaque_type_resolution,
5390 &setlist, &showlist);
5391
5392 /* Add an option to permit non-strict type checking. */
5393 add_setshow_boolean_cmd ("type", class_support,
5394 &strict_type_checking,
5395 _("Set strict type checking."),
5396 _("Show strict type checking."),
5397 NULL, NULL,
5398 show_strict_type_checking,
5399 &setchecklist, &showchecklist);
5400 }
This page took 0.205892 seconds and 5 git commands to generate.