Target FP: Introduce target-float.{c,h}
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* See gdbtypes.h. */
258
259 unsigned int
260 type_length_units (struct type *type)
261 {
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266 }
267
268 /* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272 static struct type *
273 alloc_type_instance (struct type *oldtype)
274 {
275 struct type *type;
276
277 /* Allocate the structure. */
278
279 if (! TYPE_OBJFILE_OWNED (oldtype))
280 type = XCNEW (struct type);
281 else
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
289 return type;
290 }
291
292 /* Clear all remnants of the previous type at TYPE, in preparation for
293 replacing it with something else. Preserve owner information. */
294
295 static void
296 smash_type (struct type *type)
297 {
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311 }
312
313 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318 struct type *
319 make_pointer_type (struct type *type, struct type **typeptr)
320 {
321 struct type *ntype; /* New type */
322 struct type *chain;
323
324 ntype = TYPE_POINTER_TYPE (type);
325
326 if (ntype)
327 {
328 if (typeptr == 0)
329 return ntype; /* Don't care about alloc,
330 and have new type. */
331 else if (*typeptr == 0)
332 {
333 *typeptr = ntype; /* Tracking alloc, and have new type. */
334 return ntype;
335 }
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
340 ntype = alloc_type_copy (type);
341 if (typeptr)
342 *typeptr = ntype;
343 }
344 else /* We have storage, but need to reset it. */
345 {
346 ntype = *typeptr;
347 chain = TYPE_CHAIN (ntype);
348 smash_type (ntype);
349 TYPE_CHAIN (ntype) = chain;
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
355 /* FIXME! Assumes the machine has only one representation for pointers! */
356
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
361 /* Mark pointers as unsigned. The target converts between pointers
362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
363 gdbarch_address_to_pointer. */
364 TYPE_UNSIGNED (ntype) = 1;
365
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
374 return ntype;
375 }
376
377 /* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380 struct type *
381 lookup_pointer_type (struct type *type)
382 {
383 return make_pointer_type (type, (struct type **) 0);
384 }
385
386 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
391
392 struct type *
393 make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
395 {
396 struct type *ntype; /* New type */
397 struct type **reftype;
398 struct type *chain;
399
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
404
405 if (ntype)
406 {
407 if (typeptr == 0)
408 return ntype; /* Don't care about alloc,
409 and have new type. */
410 else if (*typeptr == 0)
411 {
412 *typeptr = ntype; /* Tracking alloc, and have new type. */
413 return ntype;
414 }
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
419 ntype = alloc_type_copy (type);
420 if (typeptr)
421 *typeptr = ntype;
422 }
423 else /* We have storage, but need to reset it. */
424 {
425 ntype = *typeptr;
426 chain = TYPE_CHAIN (ntype);
427 smash_type (ntype);
428 TYPE_CHAIN (ntype) = chain;
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
436
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
440
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
443 TYPE_CODE (ntype) = refcode;
444
445 *reftype = ntype;
446
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
455 return ntype;
456 }
457
458 /* Same as above, but caller doesn't care about memory allocation
459 details. */
460
461 struct type *
462 lookup_reference_type (struct type *type, enum type_code refcode)
463 {
464 return make_reference_type (type, (struct type **) 0, refcode);
465 }
466
467 /* Lookup the lvalue reference type for the type TYPE. */
468
469 struct type *
470 lookup_lvalue_reference_type (struct type *type)
471 {
472 return lookup_reference_type (type, TYPE_CODE_REF);
473 }
474
475 /* Lookup the rvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_rvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
481 }
482
483 /* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
486 function type we return. We allocate new memory if needed. */
487
488 struct type *
489 make_function_type (struct type *type, struct type **typeptr)
490 {
491 struct type *ntype; /* New type */
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
495 ntype = alloc_type_copy (type);
496 if (typeptr)
497 *typeptr = ntype;
498 }
499 else /* We have storage, but need to reset it. */
500 {
501 ntype = *typeptr;
502 smash_type (ntype);
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
509
510 INIT_FUNC_SPECIFIC (ntype);
511
512 return ntype;
513 }
514
515 /* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518 struct type *
519 lookup_function_type (struct type *type)
520 {
521 return make_function_type (type, (struct type **) 0);
522 }
523
524 /* Given a type TYPE and argument types, return the appropriate
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
527
528 struct type *
529 lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532 {
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
536 if (nparams > 0)
537 {
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
551 else
552 TYPE_PROTOTYPED (fn) = 1;
553 }
554
555 TYPE_NFIELDS (fn) = nparams;
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562 }
563
564 /* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
566
567 int
568 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
569 {
570 int type_flags;
571
572 /* Check for known address space delimiters. */
573 if (!strcmp (space_identifier, "code"))
574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
575 else if (!strcmp (space_identifier, "data"))
576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
581 return type_flags;
582 else
583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
584 }
585
586 /* Identify address space identifier by integer flag as defined in
587 gdbtypes.h -- return the string version of the adress space name. */
588
589 const char *
590 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
591 {
592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
593 return "code";
594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
595 return "data";
596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
599 else
600 return NULL;
601 }
602
603 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
607
608 static struct type *
609 make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
611 {
612 struct type *ntype;
613
614 ntype = type;
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
622
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
638
639 /* Pointers or references to the original type are not relevant to
640 the new type. */
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
643
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
650
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
654 return ntype;
655 }
656
657 /* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
665
666 struct type *
667 make_type_with_address_space (struct type *type, int space_flag)
668 {
669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676 }
677
678 /* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
683
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
689
690 struct type *
691 make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
694 {
695 struct type *ntype; /* New type */
696
697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
700
701 if (cnst)
702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
703
704 if (voltl)
705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
706
707 if (typeptr && *typeptr != NULL)
708 {
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
722 }
723
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
726
727 if (typeptr != NULL)
728 *typeptr = ntype;
729
730 return ntype;
731 }
732
733 /* Make a 'restrict'-qualified version of TYPE. */
734
735 struct type *
736 make_restrict_type (struct type *type)
737 {
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742 }
743
744 /* Make a type without const, volatile, or restrict. */
745
746 struct type *
747 make_unqualified_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755 }
756
757 /* Make a '_Atomic'-qualified version of TYPE. */
758
759 struct type *
760 make_atomic_type (struct type *type)
761 {
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766 }
767
768 /* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
771
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
777
778 void
779 replace_type (struct type *ntype, struct type *type)
780 {
781 struct type *chain;
782
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
788
789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
790
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
793 chain = ntype;
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
808
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
812 }
813
814 /* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819 struct type *
820 lookup_memberptr_type (struct type *type, struct type *domain)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 smash_to_memberptr_type (mtype, domain, type);
826 return mtype;
827 }
828
829 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831 struct type *
832 lookup_methodptr_type (struct type *to_type)
833 {
834 struct type *mtype;
835
836 mtype = alloc_type_copy (to_type);
837 smash_to_methodptr_type (mtype, to_type);
838 return mtype;
839 }
840
841 /* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
846
847 struct type *
848 allocate_stub_method (struct type *type)
849 {
850 struct type *mtype;
851
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
856 TYPE_TARGET_TYPE (mtype) = type;
857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
858 return mtype;
859 }
860
861 /* Create a range type with a dynamic range from LOW_BOUND to
862 HIGH_BOUND, inclusive. See create_range_type for further details. */
863
864 struct type *
865 create_range_type (struct type *result_type, struct type *index_type,
866 const struct dynamic_prop *low_bound,
867 const struct dynamic_prop *high_bound)
868 {
869 if (result_type == NULL)
870 result_type = alloc_type_copy (index_type);
871 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
872 TYPE_TARGET_TYPE (result_type) = index_type;
873 if (TYPE_STUB (index_type))
874 TYPE_TARGET_STUB (result_type) = 1;
875 else
876 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
877
878 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
879 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
880 TYPE_RANGE_DATA (result_type)->low = *low_bound;
881 TYPE_RANGE_DATA (result_type)->high = *high_bound;
882
883 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
884 TYPE_UNSIGNED (result_type) = 1;
885
886 /* Ada allows the declaration of range types whose upper bound is
887 less than the lower bound, so checking the lower bound is not
888 enough. Make sure we do not mark a range type whose upper bound
889 is negative as unsigned. */
890 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
891 TYPE_UNSIGNED (result_type) = 0;
892
893 return result_type;
894 }
895
896 /* Create a range type using either a blank type supplied in
897 RESULT_TYPE, or creating a new type, inheriting the objfile from
898 INDEX_TYPE.
899
900 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
901 to HIGH_BOUND, inclusive.
902
903 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
904 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
905
906 struct type *
907 create_static_range_type (struct type *result_type, struct type *index_type,
908 LONGEST low_bound, LONGEST high_bound)
909 {
910 struct dynamic_prop low, high;
911
912 low.kind = PROP_CONST;
913 low.data.const_val = low_bound;
914
915 high.kind = PROP_CONST;
916 high.data.const_val = high_bound;
917
918 result_type = create_range_type (result_type, index_type, &low, &high);
919
920 return result_type;
921 }
922
923 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
924 are static, otherwise returns 0. */
925
926 static int
927 has_static_range (const struct range_bounds *bounds)
928 {
929 return (bounds->low.kind == PROP_CONST
930 && bounds->high.kind == PROP_CONST);
931 }
932
933
934 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
935 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
936 bounds will fit in LONGEST), or -1 otherwise. */
937
938 int
939 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
940 {
941 type = check_typedef (type);
942 switch (TYPE_CODE (type))
943 {
944 case TYPE_CODE_RANGE:
945 *lowp = TYPE_LOW_BOUND (type);
946 *highp = TYPE_HIGH_BOUND (type);
947 return 1;
948 case TYPE_CODE_ENUM:
949 if (TYPE_NFIELDS (type) > 0)
950 {
951 /* The enums may not be sorted by value, so search all
952 entries. */
953 int i;
954
955 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
956 for (i = 0; i < TYPE_NFIELDS (type); i++)
957 {
958 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
959 *lowp = TYPE_FIELD_ENUMVAL (type, i);
960 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
961 *highp = TYPE_FIELD_ENUMVAL (type, i);
962 }
963
964 /* Set unsigned indicator if warranted. */
965 if (*lowp >= 0)
966 {
967 TYPE_UNSIGNED (type) = 1;
968 }
969 }
970 else
971 {
972 *lowp = 0;
973 *highp = -1;
974 }
975 return 0;
976 case TYPE_CODE_BOOL:
977 *lowp = 0;
978 *highp = 1;
979 return 0;
980 case TYPE_CODE_INT:
981 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
982 return -1;
983 if (!TYPE_UNSIGNED (type))
984 {
985 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
986 *highp = -*lowp - 1;
987 return 0;
988 }
989 /* ... fall through for unsigned ints ... */
990 case TYPE_CODE_CHAR:
991 *lowp = 0;
992 /* This round-about calculation is to avoid shifting by
993 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
994 if TYPE_LENGTH (type) == sizeof (LONGEST). */
995 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
996 *highp = (*highp - 1) | *highp;
997 return 0;
998 default:
999 return -1;
1000 }
1001 }
1002
1003 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1004 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1005 Save the high bound into HIGH_BOUND if not NULL.
1006
1007 Return 1 if the operation was successful. Return zero otherwise,
1008 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1009
1010 We now simply use get_discrete_bounds call to get the values
1011 of the low and high bounds.
1012 get_discrete_bounds can return three values:
1013 1, meaning that index is a range,
1014 0, meaning that index is a discrete type,
1015 or -1 for failure. */
1016
1017 int
1018 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1019 {
1020 struct type *index = TYPE_INDEX_TYPE (type);
1021 LONGEST low = 0;
1022 LONGEST high = 0;
1023 int res;
1024
1025 if (index == NULL)
1026 return 0;
1027
1028 res = get_discrete_bounds (index, &low, &high);
1029 if (res == -1)
1030 return 0;
1031
1032 /* Check if the array bounds are undefined. */
1033 if (res == 1
1034 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1035 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1036 return 0;
1037
1038 if (low_bound)
1039 *low_bound = low;
1040
1041 if (high_bound)
1042 *high_bound = high;
1043
1044 return 1;
1045 }
1046
1047 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1048 representation of a value of this type, save the corresponding
1049 position number in POS.
1050
1051 Its differs from VAL only in the case of enumeration types. In
1052 this case, the position number of the value of the first listed
1053 enumeration literal is zero; the position number of the value of
1054 each subsequent enumeration literal is one more than that of its
1055 predecessor in the list.
1056
1057 Return 1 if the operation was successful. Return zero otherwise,
1058 in which case the value of POS is unmodified.
1059 */
1060
1061 int
1062 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1063 {
1064 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1065 {
1066 int i;
1067
1068 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1069 {
1070 if (val == TYPE_FIELD_ENUMVAL (type, i))
1071 {
1072 *pos = i;
1073 return 1;
1074 }
1075 }
1076 /* Invalid enumeration value. */
1077 return 0;
1078 }
1079 else
1080 {
1081 *pos = val;
1082 return 1;
1083 }
1084 }
1085
1086 /* Create an array type using either a blank type supplied in
1087 RESULT_TYPE, or creating a new type, inheriting the objfile from
1088 RANGE_TYPE.
1089
1090 Elements will be of type ELEMENT_TYPE, the indices will be of type
1091 RANGE_TYPE.
1092
1093 If BIT_STRIDE is not zero, build a packed array type whose element
1094 size is BIT_STRIDE. Otherwise, ignore this parameter.
1095
1096 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1097 sure it is TYPE_CODE_UNDEF before we bash it into an array
1098 type? */
1099
1100 struct type *
1101 create_array_type_with_stride (struct type *result_type,
1102 struct type *element_type,
1103 struct type *range_type,
1104 unsigned int bit_stride)
1105 {
1106 if (result_type == NULL)
1107 result_type = alloc_type_copy (range_type);
1108
1109 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1110 TYPE_TARGET_TYPE (result_type) = element_type;
1111 if (has_static_range (TYPE_RANGE_DATA (range_type))
1112 && (!type_not_associated (result_type)
1113 && !type_not_allocated (result_type)))
1114 {
1115 LONGEST low_bound, high_bound;
1116
1117 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1118 low_bound = high_bound = 0;
1119 element_type = check_typedef (element_type);
1120 /* Be careful when setting the array length. Ada arrays can be
1121 empty arrays with the high_bound being smaller than the low_bound.
1122 In such cases, the array length should be zero. */
1123 if (high_bound < low_bound)
1124 TYPE_LENGTH (result_type) = 0;
1125 else if (bit_stride > 0)
1126 TYPE_LENGTH (result_type) =
1127 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1128 else
1129 TYPE_LENGTH (result_type) =
1130 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1131 }
1132 else
1133 {
1134 /* This type is dynamic and its length needs to be computed
1135 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1136 undefined by setting it to zero. Although we are not expected
1137 to trust TYPE_LENGTH in this case, setting the size to zero
1138 allows us to avoid allocating objects of random sizes in case
1139 we accidently do. */
1140 TYPE_LENGTH (result_type) = 0;
1141 }
1142
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) =
1145 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1146 TYPE_INDEX_TYPE (result_type) = range_type;
1147 if (bit_stride > 0)
1148 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1149
1150 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1151 if (TYPE_LENGTH (result_type) == 0)
1152 TYPE_TARGET_STUB (result_type) = 1;
1153
1154 return result_type;
1155 }
1156
1157 /* Same as create_array_type_with_stride but with no bit_stride
1158 (BIT_STRIDE = 0), thus building an unpacked array. */
1159
1160 struct type *
1161 create_array_type (struct type *result_type,
1162 struct type *element_type,
1163 struct type *range_type)
1164 {
1165 return create_array_type_with_stride (result_type, element_type,
1166 range_type, 0);
1167 }
1168
1169 struct type *
1170 lookup_array_range_type (struct type *element_type,
1171 LONGEST low_bound, LONGEST high_bound)
1172 {
1173 struct gdbarch *gdbarch = get_type_arch (element_type);
1174 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1175 struct type *range_type
1176 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1177
1178 return create_array_type (NULL, element_type, range_type);
1179 }
1180
1181 /* Create a string type using either a blank type supplied in
1182 RESULT_TYPE, or creating a new type. String types are similar
1183 enough to array of char types that we can use create_array_type to
1184 build the basic type and then bash it into a string type.
1185
1186 For fixed length strings, the range type contains 0 as the lower
1187 bound and the length of the string minus one as the upper bound.
1188
1189 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1190 sure it is TYPE_CODE_UNDEF before we bash it into a string
1191 type? */
1192
1193 struct type *
1194 create_string_type (struct type *result_type,
1195 struct type *string_char_type,
1196 struct type *range_type)
1197 {
1198 result_type = create_array_type (result_type,
1199 string_char_type,
1200 range_type);
1201 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1202 return result_type;
1203 }
1204
1205 struct type *
1206 lookup_string_range_type (struct type *string_char_type,
1207 LONGEST low_bound, LONGEST high_bound)
1208 {
1209 struct type *result_type;
1210
1211 result_type = lookup_array_range_type (string_char_type,
1212 low_bound, high_bound);
1213 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1214 return result_type;
1215 }
1216
1217 struct type *
1218 create_set_type (struct type *result_type, struct type *domain_type)
1219 {
1220 if (result_type == NULL)
1221 result_type = alloc_type_copy (domain_type);
1222
1223 TYPE_CODE (result_type) = TYPE_CODE_SET;
1224 TYPE_NFIELDS (result_type) = 1;
1225 TYPE_FIELDS (result_type)
1226 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1227
1228 if (!TYPE_STUB (domain_type))
1229 {
1230 LONGEST low_bound, high_bound, bit_length;
1231
1232 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1233 low_bound = high_bound = 0;
1234 bit_length = high_bound - low_bound + 1;
1235 TYPE_LENGTH (result_type)
1236 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1237 if (low_bound >= 0)
1238 TYPE_UNSIGNED (result_type) = 1;
1239 }
1240 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1241
1242 return result_type;
1243 }
1244
1245 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1246 and any array types nested inside it. */
1247
1248 void
1249 make_vector_type (struct type *array_type)
1250 {
1251 struct type *inner_array, *elt_type;
1252 int flags;
1253
1254 /* Find the innermost array type, in case the array is
1255 multi-dimensional. */
1256 inner_array = array_type;
1257 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1258 inner_array = TYPE_TARGET_TYPE (inner_array);
1259
1260 elt_type = TYPE_TARGET_TYPE (inner_array);
1261 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1262 {
1263 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1264 elt_type = make_qualified_type (elt_type, flags, NULL);
1265 TYPE_TARGET_TYPE (inner_array) = elt_type;
1266 }
1267
1268 TYPE_VECTOR (array_type) = 1;
1269 }
1270
1271 struct type *
1272 init_vector_type (struct type *elt_type, int n)
1273 {
1274 struct type *array_type;
1275
1276 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1277 make_vector_type (array_type);
1278 return array_type;
1279 }
1280
1281 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1282 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1283 confusing. "self" is a common enough replacement for "this".
1284 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1285 TYPE_CODE_METHOD. */
1286
1287 struct type *
1288 internal_type_self_type (struct type *type)
1289 {
1290 switch (TYPE_CODE (type))
1291 {
1292 case TYPE_CODE_METHODPTR:
1293 case TYPE_CODE_MEMBERPTR:
1294 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1295 return NULL;
1296 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1297 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1298 case TYPE_CODE_METHOD:
1299 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1300 return NULL;
1301 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1302 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306 }
1307
1308 /* Set the type of the class that TYPE belongs to.
1309 In c++ this is the class of "this".
1310 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1311 TYPE_CODE_METHOD. */
1312
1313 void
1314 set_type_self_type (struct type *type, struct type *self_type)
1315 {
1316 switch (TYPE_CODE (type))
1317 {
1318 case TYPE_CODE_METHODPTR:
1319 case TYPE_CODE_MEMBERPTR:
1320 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1321 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1322 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1323 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1324 break;
1325 case TYPE_CODE_METHOD:
1326 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1327 INIT_FUNC_SPECIFIC (type);
1328 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1329 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1330 break;
1331 default:
1332 gdb_assert_not_reached ("bad type");
1333 }
1334 }
1335
1336 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1337 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1338 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1339 TYPE doesn't include the offset (that's the value of the MEMBER
1340 itself), but does include the structure type into which it points
1341 (for some reason).
1342
1343 When "smashing" the type, we preserve the objfile that the old type
1344 pointed to, since we aren't changing where the type is actually
1345 allocated. */
1346
1347 void
1348 smash_to_memberptr_type (struct type *type, struct type *self_type,
1349 struct type *to_type)
1350 {
1351 smash_type (type);
1352 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1353 TYPE_TARGET_TYPE (type) = to_type;
1354 set_type_self_type (type, self_type);
1355 /* Assume that a data member pointer is the same size as a normal
1356 pointer. */
1357 TYPE_LENGTH (type)
1358 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1359 }
1360
1361 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1362
1363 When "smashing" the type, we preserve the objfile that the old type
1364 pointed to, since we aren't changing where the type is actually
1365 allocated. */
1366
1367 void
1368 smash_to_methodptr_type (struct type *type, struct type *to_type)
1369 {
1370 smash_type (type);
1371 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1372 TYPE_TARGET_TYPE (type) = to_type;
1373 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1374 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1375 }
1376
1377 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1378 METHOD just means `function that gets an extra "this" argument'.
1379
1380 When "smashing" the type, we preserve the objfile that the old type
1381 pointed to, since we aren't changing where the type is actually
1382 allocated. */
1383
1384 void
1385 smash_to_method_type (struct type *type, struct type *self_type,
1386 struct type *to_type, struct field *args,
1387 int nargs, int varargs)
1388 {
1389 smash_type (type);
1390 TYPE_CODE (type) = TYPE_CODE_METHOD;
1391 TYPE_TARGET_TYPE (type) = to_type;
1392 set_type_self_type (type, self_type);
1393 TYPE_FIELDS (type) = args;
1394 TYPE_NFIELDS (type) = nargs;
1395 if (varargs)
1396 TYPE_VARARGS (type) = 1;
1397 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1398 }
1399
1400 /* Return a typename for a struct/union/enum type without "struct ",
1401 "union ", or "enum ". If the type has a NULL name, return NULL. */
1402
1403 const char *
1404 type_name_no_tag (const struct type *type)
1405 {
1406 if (TYPE_TAG_NAME (type) != NULL)
1407 return TYPE_TAG_NAME (type);
1408
1409 /* Is there code which expects this to return the name if there is
1410 no tag name? My guess is that this is mainly used for C++ in
1411 cases where the two will always be the same. */
1412 return TYPE_NAME (type);
1413 }
1414
1415 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1416 Since GCC PR debug/47510 DWARF provides associated information to detect the
1417 anonymous class linkage name from its typedef.
1418
1419 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1420 apply it itself. */
1421
1422 const char *
1423 type_name_no_tag_or_error (struct type *type)
1424 {
1425 struct type *saved_type = type;
1426 const char *name;
1427 struct objfile *objfile;
1428
1429 type = check_typedef (type);
1430
1431 name = type_name_no_tag (type);
1432 if (name != NULL)
1433 return name;
1434
1435 name = type_name_no_tag (saved_type);
1436 objfile = TYPE_OBJFILE (saved_type);
1437 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1438 name ? name : "<anonymous>",
1439 objfile ? objfile_name (objfile) : "<arch>");
1440 }
1441
1442 /* Lookup a typedef or primitive type named NAME, visible in lexical
1443 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1444 suitably defined. */
1445
1446 struct type *
1447 lookup_typename (const struct language_defn *language,
1448 struct gdbarch *gdbarch, const char *name,
1449 const struct block *block, int noerr)
1450 {
1451 struct symbol *sym;
1452
1453 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1454 language->la_language, NULL).symbol;
1455 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1456 return SYMBOL_TYPE (sym);
1457
1458 if (noerr)
1459 return NULL;
1460 error (_("No type named %s."), name);
1461 }
1462
1463 struct type *
1464 lookup_unsigned_typename (const struct language_defn *language,
1465 struct gdbarch *gdbarch, const char *name)
1466 {
1467 char *uns = (char *) alloca (strlen (name) + 10);
1468
1469 strcpy (uns, "unsigned ");
1470 strcpy (uns + 9, name);
1471 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1472 }
1473
1474 struct type *
1475 lookup_signed_typename (const struct language_defn *language,
1476 struct gdbarch *gdbarch, const char *name)
1477 {
1478 struct type *t;
1479 char *uns = (char *) alloca (strlen (name) + 8);
1480
1481 strcpy (uns, "signed ");
1482 strcpy (uns + 7, name);
1483 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1484 /* If we don't find "signed FOO" just try again with plain "FOO". */
1485 if (t != NULL)
1486 return t;
1487 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1488 }
1489
1490 /* Lookup a structure type named "struct NAME",
1491 visible in lexical block BLOCK. */
1492
1493 struct type *
1494 lookup_struct (const char *name, const struct block *block)
1495 {
1496 struct symbol *sym;
1497
1498 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1499
1500 if (sym == NULL)
1501 {
1502 error (_("No struct type named %s."), name);
1503 }
1504 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1505 {
1506 error (_("This context has class, union or enum %s, not a struct."),
1507 name);
1508 }
1509 return (SYMBOL_TYPE (sym));
1510 }
1511
1512 /* Lookup a union type named "union NAME",
1513 visible in lexical block BLOCK. */
1514
1515 struct type *
1516 lookup_union (const char *name, const struct block *block)
1517 {
1518 struct symbol *sym;
1519 struct type *t;
1520
1521 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1522
1523 if (sym == NULL)
1524 error (_("No union type named %s."), name);
1525
1526 t = SYMBOL_TYPE (sym);
1527
1528 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1529 return t;
1530
1531 /* If we get here, it's not a union. */
1532 error (_("This context has class, struct or enum %s, not a union."),
1533 name);
1534 }
1535
1536 /* Lookup an enum type named "enum NAME",
1537 visible in lexical block BLOCK. */
1538
1539 struct type *
1540 lookup_enum (const char *name, const struct block *block)
1541 {
1542 struct symbol *sym;
1543
1544 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1545 if (sym == NULL)
1546 {
1547 error (_("No enum type named %s."), name);
1548 }
1549 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1550 {
1551 error (_("This context has class, struct or union %s, not an enum."),
1552 name);
1553 }
1554 return (SYMBOL_TYPE (sym));
1555 }
1556
1557 /* Lookup a template type named "template NAME<TYPE>",
1558 visible in lexical block BLOCK. */
1559
1560 struct type *
1561 lookup_template_type (char *name, struct type *type,
1562 const struct block *block)
1563 {
1564 struct symbol *sym;
1565 char *nam = (char *)
1566 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1567
1568 strcpy (nam, name);
1569 strcat (nam, "<");
1570 strcat (nam, TYPE_NAME (type));
1571 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1572
1573 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1574
1575 if (sym == NULL)
1576 {
1577 error (_("No template type named %s."), name);
1578 }
1579 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1580 {
1581 error (_("This context has class, union or enum %s, not a struct."),
1582 name);
1583 }
1584 return (SYMBOL_TYPE (sym));
1585 }
1586
1587 /* Given a type TYPE, lookup the type of the component of type named
1588 NAME.
1589
1590 TYPE can be either a struct or union, or a pointer or reference to
1591 a struct or union. If it is a pointer or reference, its target
1592 type is automatically used. Thus '.' and '->' are interchangable,
1593 as specified for the definitions of the expression element types
1594 STRUCTOP_STRUCT and STRUCTOP_PTR.
1595
1596 If NOERR is nonzero, return zero if NAME is not suitably defined.
1597 If NAME is the name of a baseclass type, return that type. */
1598
1599 struct type *
1600 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1601 {
1602 int i;
1603
1604 for (;;)
1605 {
1606 type = check_typedef (type);
1607 if (TYPE_CODE (type) != TYPE_CODE_PTR
1608 && TYPE_CODE (type) != TYPE_CODE_REF)
1609 break;
1610 type = TYPE_TARGET_TYPE (type);
1611 }
1612
1613 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1614 && TYPE_CODE (type) != TYPE_CODE_UNION)
1615 {
1616 std::string type_name = type_to_string (type);
1617 error (_("Type %s is not a structure or union type."),
1618 type_name.c_str ());
1619 }
1620
1621 #if 0
1622 /* FIXME: This change put in by Michael seems incorrect for the case
1623 where the structure tag name is the same as the member name.
1624 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1625 foo; } bell;" Disabled by fnf. */
1626 {
1627 char *type_name;
1628
1629 type_name = type_name_no_tag (type);
1630 if (type_name != NULL && strcmp (type_name, name) == 0)
1631 return type;
1632 }
1633 #endif
1634
1635 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1636 {
1637 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1638
1639 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1640 {
1641 return TYPE_FIELD_TYPE (type, i);
1642 }
1643 else if (!t_field_name || *t_field_name == '\0')
1644 {
1645 struct type *subtype
1646 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1647
1648 if (subtype != NULL)
1649 return subtype;
1650 }
1651 }
1652
1653 /* OK, it's not in this class. Recursively check the baseclasses. */
1654 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1655 {
1656 struct type *t;
1657
1658 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1659 if (t != NULL)
1660 {
1661 return t;
1662 }
1663 }
1664
1665 if (noerr)
1666 {
1667 return NULL;
1668 }
1669
1670 std::string type_name = type_to_string (type);
1671 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1672 }
1673
1674 /* Store in *MAX the largest number representable by unsigned integer type
1675 TYPE. */
1676
1677 void
1678 get_unsigned_type_max (struct type *type, ULONGEST *max)
1679 {
1680 unsigned int n;
1681
1682 type = check_typedef (type);
1683 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1684 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1685
1686 /* Written this way to avoid overflow. */
1687 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1688 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1689 }
1690
1691 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1692 signed integer type TYPE. */
1693
1694 void
1695 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1696 {
1697 unsigned int n;
1698
1699 type = check_typedef (type);
1700 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1701 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1702
1703 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1704 *min = -((ULONGEST) 1 << (n - 1));
1705 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1706 }
1707
1708 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1709 cplus_stuff.vptr_fieldno.
1710
1711 cplus_stuff is initialized to cplus_struct_default which does not
1712 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1713 designated initializers). We cope with that here. */
1714
1715 int
1716 internal_type_vptr_fieldno (struct type *type)
1717 {
1718 type = check_typedef (type);
1719 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1720 || TYPE_CODE (type) == TYPE_CODE_UNION);
1721 if (!HAVE_CPLUS_STRUCT (type))
1722 return -1;
1723 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1724 }
1725
1726 /* Set the value of cplus_stuff.vptr_fieldno. */
1727
1728 void
1729 set_type_vptr_fieldno (struct type *type, int fieldno)
1730 {
1731 type = check_typedef (type);
1732 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1733 || TYPE_CODE (type) == TYPE_CODE_UNION);
1734 if (!HAVE_CPLUS_STRUCT (type))
1735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1736 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1737 }
1738
1739 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1740 cplus_stuff.vptr_basetype. */
1741
1742 struct type *
1743 internal_type_vptr_basetype (struct type *type)
1744 {
1745 type = check_typedef (type);
1746 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1747 || TYPE_CODE (type) == TYPE_CODE_UNION);
1748 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1749 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1750 }
1751
1752 /* Set the value of cplus_stuff.vptr_basetype. */
1753
1754 void
1755 set_type_vptr_basetype (struct type *type, struct type *basetype)
1756 {
1757 type = check_typedef (type);
1758 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1759 || TYPE_CODE (type) == TYPE_CODE_UNION);
1760 if (!HAVE_CPLUS_STRUCT (type))
1761 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1762 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1763 }
1764
1765 /* Lookup the vptr basetype/fieldno values for TYPE.
1766 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1767 vptr_fieldno. Also, if found and basetype is from the same objfile,
1768 cache the results.
1769 If not found, return -1 and ignore BASETYPEP.
1770 Callers should be aware that in some cases (for example,
1771 the type or one of its baseclasses is a stub type and we are
1772 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1773 this function will not be able to find the
1774 virtual function table pointer, and vptr_fieldno will remain -1 and
1775 vptr_basetype will remain NULL or incomplete. */
1776
1777 int
1778 get_vptr_fieldno (struct type *type, struct type **basetypep)
1779 {
1780 type = check_typedef (type);
1781
1782 if (TYPE_VPTR_FIELDNO (type) < 0)
1783 {
1784 int i;
1785
1786 /* We must start at zero in case the first (and only) baseclass
1787 is virtual (and hence we cannot share the table pointer). */
1788 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1789 {
1790 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1791 int fieldno;
1792 struct type *basetype;
1793
1794 fieldno = get_vptr_fieldno (baseclass, &basetype);
1795 if (fieldno >= 0)
1796 {
1797 /* If the type comes from a different objfile we can't cache
1798 it, it may have a different lifetime. PR 2384 */
1799 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1800 {
1801 set_type_vptr_fieldno (type, fieldno);
1802 set_type_vptr_basetype (type, basetype);
1803 }
1804 if (basetypep)
1805 *basetypep = basetype;
1806 return fieldno;
1807 }
1808 }
1809
1810 /* Not found. */
1811 return -1;
1812 }
1813 else
1814 {
1815 if (basetypep)
1816 *basetypep = TYPE_VPTR_BASETYPE (type);
1817 return TYPE_VPTR_FIELDNO (type);
1818 }
1819 }
1820
1821 static void
1822 stub_noname_complaint (void)
1823 {
1824 complaint (&symfile_complaints, _("stub type has NULL name"));
1825 }
1826
1827 /* Worker for is_dynamic_type. */
1828
1829 static int
1830 is_dynamic_type_internal (struct type *type, int top_level)
1831 {
1832 type = check_typedef (type);
1833
1834 /* We only want to recognize references at the outermost level. */
1835 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1836 type = check_typedef (TYPE_TARGET_TYPE (type));
1837
1838 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1839 dynamic, even if the type itself is statically defined.
1840 From a user's point of view, this may appear counter-intuitive;
1841 but it makes sense in this context, because the point is to determine
1842 whether any part of the type needs to be resolved before it can
1843 be exploited. */
1844 if (TYPE_DATA_LOCATION (type) != NULL
1845 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1846 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1847 return 1;
1848
1849 if (TYPE_ASSOCIATED_PROP (type))
1850 return 1;
1851
1852 if (TYPE_ALLOCATED_PROP (type))
1853 return 1;
1854
1855 switch (TYPE_CODE (type))
1856 {
1857 case TYPE_CODE_RANGE:
1858 {
1859 /* A range type is obviously dynamic if it has at least one
1860 dynamic bound. But also consider the range type to be
1861 dynamic when its subtype is dynamic, even if the bounds
1862 of the range type are static. It allows us to assume that
1863 the subtype of a static range type is also static. */
1864 return (!has_static_range (TYPE_RANGE_DATA (type))
1865 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1866 }
1867
1868 case TYPE_CODE_ARRAY:
1869 {
1870 gdb_assert (TYPE_NFIELDS (type) == 1);
1871
1872 /* The array is dynamic if either the bounds are dynamic,
1873 or the elements it contains have a dynamic contents. */
1874 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1875 return 1;
1876 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1877 }
1878
1879 case TYPE_CODE_STRUCT:
1880 case TYPE_CODE_UNION:
1881 {
1882 int i;
1883
1884 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1885 if (!field_is_static (&TYPE_FIELD (type, i))
1886 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1887 return 1;
1888 }
1889 break;
1890 }
1891
1892 return 0;
1893 }
1894
1895 /* See gdbtypes.h. */
1896
1897 int
1898 is_dynamic_type (struct type *type)
1899 {
1900 return is_dynamic_type_internal (type, 1);
1901 }
1902
1903 static struct type *resolve_dynamic_type_internal
1904 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1905
1906 /* Given a dynamic range type (dyn_range_type) and a stack of
1907 struct property_addr_info elements, return a static version
1908 of that type. */
1909
1910 static struct type *
1911 resolve_dynamic_range (struct type *dyn_range_type,
1912 struct property_addr_info *addr_stack)
1913 {
1914 CORE_ADDR value;
1915 struct type *static_range_type, *static_target_type;
1916 const struct dynamic_prop *prop;
1917 struct dynamic_prop low_bound, high_bound;
1918
1919 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1920
1921 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1922 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1923 {
1924 low_bound.kind = PROP_CONST;
1925 low_bound.data.const_val = value;
1926 }
1927 else
1928 {
1929 low_bound.kind = PROP_UNDEFINED;
1930 low_bound.data.const_val = 0;
1931 }
1932
1933 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1934 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1935 {
1936 high_bound.kind = PROP_CONST;
1937 high_bound.data.const_val = value;
1938
1939 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1940 high_bound.data.const_val
1941 = low_bound.data.const_val + high_bound.data.const_val - 1;
1942 }
1943 else
1944 {
1945 high_bound.kind = PROP_UNDEFINED;
1946 high_bound.data.const_val = 0;
1947 }
1948
1949 static_target_type
1950 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1951 addr_stack, 0);
1952 static_range_type = create_range_type (copy_type (dyn_range_type),
1953 static_target_type,
1954 &low_bound, &high_bound);
1955 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1956 return static_range_type;
1957 }
1958
1959 /* Resolves dynamic bound values of an array type TYPE to static ones.
1960 ADDR_STACK is a stack of struct property_addr_info to be used
1961 if needed during the dynamic resolution. */
1962
1963 static struct type *
1964 resolve_dynamic_array (struct type *type,
1965 struct property_addr_info *addr_stack)
1966 {
1967 CORE_ADDR value;
1968 struct type *elt_type;
1969 struct type *range_type;
1970 struct type *ary_dim;
1971 struct dynamic_prop *prop;
1972
1973 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1974
1975 type = copy_type (type);
1976
1977 elt_type = type;
1978 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1979 range_type = resolve_dynamic_range (range_type, addr_stack);
1980
1981 /* Resolve allocated/associated here before creating a new array type, which
1982 will update the length of the array accordingly. */
1983 prop = TYPE_ALLOCATED_PROP (type);
1984 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1985 {
1986 TYPE_DYN_PROP_ADDR (prop) = value;
1987 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1988 }
1989 prop = TYPE_ASSOCIATED_PROP (type);
1990 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1991 {
1992 TYPE_DYN_PROP_ADDR (prop) = value;
1993 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1994 }
1995
1996 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1997
1998 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1999 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2000 else
2001 elt_type = TYPE_TARGET_TYPE (type);
2002
2003 return create_array_type_with_stride (type, elt_type, range_type,
2004 TYPE_FIELD_BITSIZE (type, 0));
2005 }
2006
2007 /* Resolve dynamic bounds of members of the union TYPE to static
2008 bounds. ADDR_STACK is a stack of struct property_addr_info
2009 to be used if needed during the dynamic resolution. */
2010
2011 static struct type *
2012 resolve_dynamic_union (struct type *type,
2013 struct property_addr_info *addr_stack)
2014 {
2015 struct type *resolved_type;
2016 int i;
2017 unsigned int max_len = 0;
2018
2019 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2020
2021 resolved_type = copy_type (type);
2022 TYPE_FIELDS (resolved_type)
2023 = (struct field *) TYPE_ALLOC (resolved_type,
2024 TYPE_NFIELDS (resolved_type)
2025 * sizeof (struct field));
2026 memcpy (TYPE_FIELDS (resolved_type),
2027 TYPE_FIELDS (type),
2028 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2029 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2030 {
2031 struct type *t;
2032
2033 if (field_is_static (&TYPE_FIELD (type, i)))
2034 continue;
2035
2036 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2037 addr_stack, 0);
2038 TYPE_FIELD_TYPE (resolved_type, i) = t;
2039 if (TYPE_LENGTH (t) > max_len)
2040 max_len = TYPE_LENGTH (t);
2041 }
2042
2043 TYPE_LENGTH (resolved_type) = max_len;
2044 return resolved_type;
2045 }
2046
2047 /* Resolve dynamic bounds of members of the struct TYPE to static
2048 bounds. ADDR_STACK is a stack of struct property_addr_info to
2049 be used if needed during the dynamic resolution. */
2050
2051 static struct type *
2052 resolve_dynamic_struct (struct type *type,
2053 struct property_addr_info *addr_stack)
2054 {
2055 struct type *resolved_type;
2056 int i;
2057 unsigned resolved_type_bit_length = 0;
2058
2059 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2060 gdb_assert (TYPE_NFIELDS (type) > 0);
2061
2062 resolved_type = copy_type (type);
2063 TYPE_FIELDS (resolved_type)
2064 = (struct field *) TYPE_ALLOC (resolved_type,
2065 TYPE_NFIELDS (resolved_type)
2066 * sizeof (struct field));
2067 memcpy (TYPE_FIELDS (resolved_type),
2068 TYPE_FIELDS (type),
2069 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2070 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2071 {
2072 unsigned new_bit_length;
2073 struct property_addr_info pinfo;
2074
2075 if (field_is_static (&TYPE_FIELD (type, i)))
2076 continue;
2077
2078 /* As we know this field is not a static field, the field's
2079 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2080 this is the case, but only trigger a simple error rather
2081 than an internal error if that fails. While failing
2082 that verification indicates a bug in our code, the error
2083 is not severe enough to suggest to the user he stops
2084 his debugging session because of it. */
2085 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2086 error (_("Cannot determine struct field location"
2087 " (invalid location kind)"));
2088
2089 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2090 pinfo.valaddr = addr_stack->valaddr;
2091 pinfo.addr
2092 = (addr_stack->addr
2093 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2094 pinfo.next = addr_stack;
2095
2096 TYPE_FIELD_TYPE (resolved_type, i)
2097 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2098 &pinfo, 0);
2099 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2100 == FIELD_LOC_KIND_BITPOS);
2101
2102 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2103 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2104 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2105 else
2106 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2107 * TARGET_CHAR_BIT);
2108
2109 /* Normally, we would use the position and size of the last field
2110 to determine the size of the enclosing structure. But GCC seems
2111 to be encoding the position of some fields incorrectly when
2112 the struct contains a dynamic field that is not placed last.
2113 So we compute the struct size based on the field that has
2114 the highest position + size - probably the best we can do. */
2115 if (new_bit_length > resolved_type_bit_length)
2116 resolved_type_bit_length = new_bit_length;
2117 }
2118
2119 /* The length of a type won't change for fortran, but it does for C and Ada.
2120 For fortran the size of dynamic fields might change over time but not the
2121 type length of the structure. If we adapt it, we run into problems
2122 when calculating the element offset for arrays of structs. */
2123 if (current_language->la_language != language_fortran)
2124 TYPE_LENGTH (resolved_type)
2125 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2126
2127 /* The Ada language uses this field as a cache for static fixed types: reset
2128 it as RESOLVED_TYPE must have its own static fixed type. */
2129 TYPE_TARGET_TYPE (resolved_type) = NULL;
2130
2131 return resolved_type;
2132 }
2133
2134 /* Worker for resolved_dynamic_type. */
2135
2136 static struct type *
2137 resolve_dynamic_type_internal (struct type *type,
2138 struct property_addr_info *addr_stack,
2139 int top_level)
2140 {
2141 struct type *real_type = check_typedef (type);
2142 struct type *resolved_type = type;
2143 struct dynamic_prop *prop;
2144 CORE_ADDR value;
2145
2146 if (!is_dynamic_type_internal (real_type, top_level))
2147 return type;
2148
2149 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2150 {
2151 resolved_type = copy_type (type);
2152 TYPE_TARGET_TYPE (resolved_type)
2153 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2154 top_level);
2155 }
2156 else
2157 {
2158 /* Before trying to resolve TYPE, make sure it is not a stub. */
2159 type = real_type;
2160
2161 switch (TYPE_CODE (type))
2162 {
2163 case TYPE_CODE_REF:
2164 {
2165 struct property_addr_info pinfo;
2166
2167 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2168 pinfo.valaddr = NULL;
2169 if (addr_stack->valaddr != NULL)
2170 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2171 else
2172 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2173 pinfo.next = addr_stack;
2174
2175 resolved_type = copy_type (type);
2176 TYPE_TARGET_TYPE (resolved_type)
2177 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2178 &pinfo, top_level);
2179 break;
2180 }
2181
2182 case TYPE_CODE_ARRAY:
2183 resolved_type = resolve_dynamic_array (type, addr_stack);
2184 break;
2185
2186 case TYPE_CODE_RANGE:
2187 resolved_type = resolve_dynamic_range (type, addr_stack);
2188 break;
2189
2190 case TYPE_CODE_UNION:
2191 resolved_type = resolve_dynamic_union (type, addr_stack);
2192 break;
2193
2194 case TYPE_CODE_STRUCT:
2195 resolved_type = resolve_dynamic_struct (type, addr_stack);
2196 break;
2197 }
2198 }
2199
2200 /* Resolve data_location attribute. */
2201 prop = TYPE_DATA_LOCATION (resolved_type);
2202 if (prop != NULL
2203 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2204 {
2205 TYPE_DYN_PROP_ADDR (prop) = value;
2206 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2207 }
2208
2209 return resolved_type;
2210 }
2211
2212 /* See gdbtypes.h */
2213
2214 struct type *
2215 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2216 CORE_ADDR addr)
2217 {
2218 struct property_addr_info pinfo
2219 = {check_typedef (type), valaddr, addr, NULL};
2220
2221 return resolve_dynamic_type_internal (type, &pinfo, 1);
2222 }
2223
2224 /* See gdbtypes.h */
2225
2226 struct dynamic_prop *
2227 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2228 {
2229 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2230
2231 while (node != NULL)
2232 {
2233 if (node->prop_kind == prop_kind)
2234 return &node->prop;
2235 node = node->next;
2236 }
2237 return NULL;
2238 }
2239
2240 /* See gdbtypes.h */
2241
2242 void
2243 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2244 struct type *type, struct objfile *objfile)
2245 {
2246 struct dynamic_prop_list *temp;
2247
2248 gdb_assert (TYPE_OBJFILE_OWNED (type));
2249
2250 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2251 temp->prop_kind = prop_kind;
2252 temp->prop = prop;
2253 temp->next = TYPE_DYN_PROP_LIST (type);
2254
2255 TYPE_DYN_PROP_LIST (type) = temp;
2256 }
2257
2258 /* Remove dynamic property from TYPE in case it exists. */
2259
2260 void
2261 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2262 struct type *type)
2263 {
2264 struct dynamic_prop_list *prev_node, *curr_node;
2265
2266 curr_node = TYPE_DYN_PROP_LIST (type);
2267 prev_node = NULL;
2268
2269 while (NULL != curr_node)
2270 {
2271 if (curr_node->prop_kind == prop_kind)
2272 {
2273 /* Update the linked list but don't free anything.
2274 The property was allocated on objstack and it is not known
2275 if we are on top of it. Nevertheless, everything is released
2276 when the complete objstack is freed. */
2277 if (NULL == prev_node)
2278 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2279 else
2280 prev_node->next = curr_node->next;
2281
2282 return;
2283 }
2284
2285 prev_node = curr_node;
2286 curr_node = curr_node->next;
2287 }
2288 }
2289
2290 /* Find the real type of TYPE. This function returns the real type,
2291 after removing all layers of typedefs, and completing opaque or stub
2292 types. Completion changes the TYPE argument, but stripping of
2293 typedefs does not.
2294
2295 Instance flags (e.g. const/volatile) are preserved as typedefs are
2296 stripped. If necessary a new qualified form of the underlying type
2297 is created.
2298
2299 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2300 not been computed and we're either in the middle of reading symbols, or
2301 there was no name for the typedef in the debug info.
2302
2303 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2304 QUITs in the symbol reading code can also throw.
2305 Thus this function can throw an exception.
2306
2307 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2308 the target type.
2309
2310 If this is a stubbed struct (i.e. declared as struct foo *), see if
2311 we can find a full definition in some other file. If so, copy this
2312 definition, so we can use it in future. There used to be a comment
2313 (but not any code) that if we don't find a full definition, we'd
2314 set a flag so we don't spend time in the future checking the same
2315 type. That would be a mistake, though--we might load in more
2316 symbols which contain a full definition for the type. */
2317
2318 struct type *
2319 check_typedef (struct type *type)
2320 {
2321 struct type *orig_type = type;
2322 /* While we're removing typedefs, we don't want to lose qualifiers.
2323 E.g., const/volatile. */
2324 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2325
2326 gdb_assert (type);
2327
2328 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2329 {
2330 if (!TYPE_TARGET_TYPE (type))
2331 {
2332 const char *name;
2333 struct symbol *sym;
2334
2335 /* It is dangerous to call lookup_symbol if we are currently
2336 reading a symtab. Infinite recursion is one danger. */
2337 if (currently_reading_symtab)
2338 return make_qualified_type (type, instance_flags, NULL);
2339
2340 name = type_name_no_tag (type);
2341 /* FIXME: shouldn't we separately check the TYPE_NAME and
2342 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2343 VAR_DOMAIN as appropriate? (this code was written before
2344 TYPE_NAME and TYPE_TAG_NAME were separate). */
2345 if (name == NULL)
2346 {
2347 stub_noname_complaint ();
2348 return make_qualified_type (type, instance_flags, NULL);
2349 }
2350 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2351 if (sym)
2352 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2353 else /* TYPE_CODE_UNDEF */
2354 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2355 }
2356 type = TYPE_TARGET_TYPE (type);
2357
2358 /* Preserve the instance flags as we traverse down the typedef chain.
2359
2360 Handling address spaces/classes is nasty, what do we do if there's a
2361 conflict?
2362 E.g., what if an outer typedef marks the type as class_1 and an inner
2363 typedef marks the type as class_2?
2364 This is the wrong place to do such error checking. We leave it to
2365 the code that created the typedef in the first place to flag the
2366 error. We just pick the outer address space (akin to letting the
2367 outer cast in a chain of casting win), instead of assuming
2368 "it can't happen". */
2369 {
2370 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2371 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2372 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2373 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2374
2375 /* Treat code vs data spaces and address classes separately. */
2376 if ((instance_flags & ALL_SPACES) != 0)
2377 new_instance_flags &= ~ALL_SPACES;
2378 if ((instance_flags & ALL_CLASSES) != 0)
2379 new_instance_flags &= ~ALL_CLASSES;
2380
2381 instance_flags |= new_instance_flags;
2382 }
2383 }
2384
2385 /* If this is a struct/class/union with no fields, then check
2386 whether a full definition exists somewhere else. This is for
2387 systems where a type definition with no fields is issued for such
2388 types, instead of identifying them as stub types in the first
2389 place. */
2390
2391 if (TYPE_IS_OPAQUE (type)
2392 && opaque_type_resolution
2393 && !currently_reading_symtab)
2394 {
2395 const char *name = type_name_no_tag (type);
2396 struct type *newtype;
2397
2398 if (name == NULL)
2399 {
2400 stub_noname_complaint ();
2401 return make_qualified_type (type, instance_flags, NULL);
2402 }
2403 newtype = lookup_transparent_type (name);
2404
2405 if (newtype)
2406 {
2407 /* If the resolved type and the stub are in the same
2408 objfile, then replace the stub type with the real deal.
2409 But if they're in separate objfiles, leave the stub
2410 alone; we'll just look up the transparent type every time
2411 we call check_typedef. We can't create pointers between
2412 types allocated to different objfiles, since they may
2413 have different lifetimes. Trying to copy NEWTYPE over to
2414 TYPE's objfile is pointless, too, since you'll have to
2415 move over any other types NEWTYPE refers to, which could
2416 be an unbounded amount of stuff. */
2417 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2418 type = make_qualified_type (newtype,
2419 TYPE_INSTANCE_FLAGS (type),
2420 type);
2421 else
2422 type = newtype;
2423 }
2424 }
2425 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2426 types. */
2427 else if (TYPE_STUB (type) && !currently_reading_symtab)
2428 {
2429 const char *name = type_name_no_tag (type);
2430 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2431 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2432 as appropriate? (this code was written before TYPE_NAME and
2433 TYPE_TAG_NAME were separate). */
2434 struct symbol *sym;
2435
2436 if (name == NULL)
2437 {
2438 stub_noname_complaint ();
2439 return make_qualified_type (type, instance_flags, NULL);
2440 }
2441 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2442 if (sym)
2443 {
2444 /* Same as above for opaque types, we can replace the stub
2445 with the complete type only if they are in the same
2446 objfile. */
2447 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2448 type = make_qualified_type (SYMBOL_TYPE (sym),
2449 TYPE_INSTANCE_FLAGS (type),
2450 type);
2451 else
2452 type = SYMBOL_TYPE (sym);
2453 }
2454 }
2455
2456 if (TYPE_TARGET_STUB (type))
2457 {
2458 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2459
2460 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2461 {
2462 /* Nothing we can do. */
2463 }
2464 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2465 {
2466 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2467 TYPE_TARGET_STUB (type) = 0;
2468 }
2469 }
2470
2471 type = make_qualified_type (type, instance_flags, NULL);
2472
2473 /* Cache TYPE_LENGTH for future use. */
2474 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2475
2476 return type;
2477 }
2478
2479 /* Parse a type expression in the string [P..P+LENGTH). If an error
2480 occurs, silently return a void type. */
2481
2482 static struct type *
2483 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2484 {
2485 struct ui_file *saved_gdb_stderr;
2486 struct type *type = NULL; /* Initialize to keep gcc happy. */
2487
2488 /* Suppress error messages. */
2489 saved_gdb_stderr = gdb_stderr;
2490 gdb_stderr = &null_stream;
2491
2492 /* Call parse_and_eval_type() without fear of longjmp()s. */
2493 TRY
2494 {
2495 type = parse_and_eval_type (p, length);
2496 }
2497 CATCH (except, RETURN_MASK_ERROR)
2498 {
2499 type = builtin_type (gdbarch)->builtin_void;
2500 }
2501 END_CATCH
2502
2503 /* Stop suppressing error messages. */
2504 gdb_stderr = saved_gdb_stderr;
2505
2506 return type;
2507 }
2508
2509 /* Ugly hack to convert method stubs into method types.
2510
2511 He ain't kiddin'. This demangles the name of the method into a
2512 string including argument types, parses out each argument type,
2513 generates a string casting a zero to that type, evaluates the
2514 string, and stuffs the resulting type into an argtype vector!!!
2515 Then it knows the type of the whole function (including argument
2516 types for overloading), which info used to be in the stab's but was
2517 removed to hack back the space required for them. */
2518
2519 static void
2520 check_stub_method (struct type *type, int method_id, int signature_id)
2521 {
2522 struct gdbarch *gdbarch = get_type_arch (type);
2523 struct fn_field *f;
2524 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2525 char *demangled_name = gdb_demangle (mangled_name,
2526 DMGL_PARAMS | DMGL_ANSI);
2527 char *argtypetext, *p;
2528 int depth = 0, argcount = 1;
2529 struct field *argtypes;
2530 struct type *mtype;
2531
2532 /* Make sure we got back a function string that we can use. */
2533 if (demangled_name)
2534 p = strchr (demangled_name, '(');
2535 else
2536 p = NULL;
2537
2538 if (demangled_name == NULL || p == NULL)
2539 error (_("Internal: Cannot demangle mangled name `%s'."),
2540 mangled_name);
2541
2542 /* Now, read in the parameters that define this type. */
2543 p += 1;
2544 argtypetext = p;
2545 while (*p)
2546 {
2547 if (*p == '(' || *p == '<')
2548 {
2549 depth += 1;
2550 }
2551 else if (*p == ')' || *p == '>')
2552 {
2553 depth -= 1;
2554 }
2555 else if (*p == ',' && depth == 0)
2556 {
2557 argcount += 1;
2558 }
2559
2560 p += 1;
2561 }
2562
2563 /* If we read one argument and it was ``void'', don't count it. */
2564 if (startswith (argtypetext, "(void)"))
2565 argcount -= 1;
2566
2567 /* We need one extra slot, for the THIS pointer. */
2568
2569 argtypes = (struct field *)
2570 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2571 p = argtypetext;
2572
2573 /* Add THIS pointer for non-static methods. */
2574 f = TYPE_FN_FIELDLIST1 (type, method_id);
2575 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2576 argcount = 0;
2577 else
2578 {
2579 argtypes[0].type = lookup_pointer_type (type);
2580 argcount = 1;
2581 }
2582
2583 if (*p != ')') /* () means no args, skip while. */
2584 {
2585 depth = 0;
2586 while (*p)
2587 {
2588 if (depth <= 0 && (*p == ',' || *p == ')'))
2589 {
2590 /* Avoid parsing of ellipsis, they will be handled below.
2591 Also avoid ``void'' as above. */
2592 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2593 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2594 {
2595 argtypes[argcount].type =
2596 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2597 argcount += 1;
2598 }
2599 argtypetext = p + 1;
2600 }
2601
2602 if (*p == '(' || *p == '<')
2603 {
2604 depth += 1;
2605 }
2606 else if (*p == ')' || *p == '>')
2607 {
2608 depth -= 1;
2609 }
2610
2611 p += 1;
2612 }
2613 }
2614
2615 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2616
2617 /* Now update the old "stub" type into a real type. */
2618 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2619 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2620 We want a method (TYPE_CODE_METHOD). */
2621 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2622 argtypes, argcount, p[-2] == '.');
2623 TYPE_STUB (mtype) = 0;
2624 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2625
2626 xfree (demangled_name);
2627 }
2628
2629 /* This is the external interface to check_stub_method, above. This
2630 function unstubs all of the signatures for TYPE's METHOD_ID method
2631 name. After calling this function TYPE_FN_FIELD_STUB will be
2632 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2633 correct.
2634
2635 This function unfortunately can not die until stabs do. */
2636
2637 void
2638 check_stub_method_group (struct type *type, int method_id)
2639 {
2640 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2641 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2642 int j, found_stub = 0;
2643
2644 for (j = 0; j < len; j++)
2645 if (TYPE_FN_FIELD_STUB (f, j))
2646 {
2647 found_stub = 1;
2648 check_stub_method (type, method_id, j);
2649 }
2650
2651 /* GNU v3 methods with incorrect names were corrected when we read
2652 in type information, because it was cheaper to do it then. The
2653 only GNU v2 methods with incorrect method names are operators and
2654 destructors; destructors were also corrected when we read in type
2655 information.
2656
2657 Therefore the only thing we need to handle here are v2 operator
2658 names. */
2659 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2660 {
2661 int ret;
2662 char dem_opname[256];
2663
2664 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2665 method_id),
2666 dem_opname, DMGL_ANSI);
2667 if (!ret)
2668 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2669 method_id),
2670 dem_opname, 0);
2671 if (ret)
2672 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2673 }
2674 }
2675
2676 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2677 const struct cplus_struct_type cplus_struct_default = { };
2678
2679 void
2680 allocate_cplus_struct_type (struct type *type)
2681 {
2682 if (HAVE_CPLUS_STRUCT (type))
2683 /* Structure was already allocated. Nothing more to do. */
2684 return;
2685
2686 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2687 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2688 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2689 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2690 set_type_vptr_fieldno (type, -1);
2691 }
2692
2693 const struct gnat_aux_type gnat_aux_default =
2694 { NULL };
2695
2696 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2697 and allocate the associated gnat-specific data. The gnat-specific
2698 data is also initialized to gnat_aux_default. */
2699
2700 void
2701 allocate_gnat_aux_type (struct type *type)
2702 {
2703 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2704 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2705 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2706 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2707 }
2708
2709 /* Helper function to initialize a newly allocated type. Set type code
2710 to CODE and initialize the type-specific fields accordingly. */
2711
2712 static void
2713 set_type_code (struct type *type, enum type_code code)
2714 {
2715 TYPE_CODE (type) = code;
2716
2717 switch (code)
2718 {
2719 case TYPE_CODE_STRUCT:
2720 case TYPE_CODE_UNION:
2721 case TYPE_CODE_NAMESPACE:
2722 INIT_CPLUS_SPECIFIC (type);
2723 break;
2724 case TYPE_CODE_FLT:
2725 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2726 break;
2727 case TYPE_CODE_FUNC:
2728 INIT_FUNC_SPECIFIC (type);
2729 break;
2730 }
2731 }
2732
2733 /* Helper function to verify floating-point format and size.
2734 BIT is the type size in bits; if BIT equals -1, the size is
2735 determined by the floatformat. Returns size to be used. */
2736
2737 static int
2738 verify_floatformat (int bit, const struct floatformat *floatformat)
2739 {
2740 gdb_assert (floatformat != NULL);
2741
2742 if (bit == -1)
2743 bit = floatformat->totalsize;
2744
2745 gdb_assert (bit >= 0);
2746 gdb_assert (bit >= floatformat->totalsize);
2747
2748 return bit;
2749 }
2750
2751 /* Return the floating-point format for a floating-point variable of
2752 type TYPE. */
2753
2754 const struct floatformat *
2755 floatformat_from_type (const struct type *type)
2756 {
2757 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2758 gdb_assert (TYPE_FLOATFORMAT (type));
2759 return TYPE_FLOATFORMAT (type);
2760 }
2761
2762 /* Helper function to initialize the standard scalar types.
2763
2764 If NAME is non-NULL, then it is used to initialize the type name.
2765 Note that NAME is not copied; it is required to have a lifetime at
2766 least as long as OBJFILE. */
2767
2768 struct type *
2769 init_type (struct objfile *objfile, enum type_code code, int bit,
2770 const char *name)
2771 {
2772 struct type *type;
2773
2774 type = alloc_type (objfile);
2775 set_type_code (type, code);
2776 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2777 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2778 TYPE_NAME (type) = name;
2779
2780 return type;
2781 }
2782
2783 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2784 to use with variables that have no debug info. NAME is the type
2785 name. */
2786
2787 static struct type *
2788 init_nodebug_var_type (struct objfile *objfile, const char *name)
2789 {
2790 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2791 }
2792
2793 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2794 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2795 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2796
2797 struct type *
2798 init_integer_type (struct objfile *objfile,
2799 int bit, int unsigned_p, const char *name)
2800 {
2801 struct type *t;
2802
2803 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2804 if (unsigned_p)
2805 TYPE_UNSIGNED (t) = 1;
2806
2807 return t;
2808 }
2809
2810 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2811 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2812 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2813
2814 struct type *
2815 init_character_type (struct objfile *objfile,
2816 int bit, int unsigned_p, const char *name)
2817 {
2818 struct type *t;
2819
2820 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2821 if (unsigned_p)
2822 TYPE_UNSIGNED (t) = 1;
2823
2824 return t;
2825 }
2826
2827 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2828 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2829 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2830
2831 struct type *
2832 init_boolean_type (struct objfile *objfile,
2833 int bit, int unsigned_p, const char *name)
2834 {
2835 struct type *t;
2836
2837 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2838 if (unsigned_p)
2839 TYPE_UNSIGNED (t) = 1;
2840
2841 return t;
2842 }
2843
2844 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2845 BIT is the type size in bits; if BIT equals -1, the size is
2846 determined by the floatformat. NAME is the type name. Set the
2847 TYPE_FLOATFORMAT from FLOATFORMATS. */
2848
2849 struct type *
2850 init_float_type (struct objfile *objfile,
2851 int bit, const char *name,
2852 const struct floatformat **floatformats)
2853 {
2854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2855 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2856 struct type *t;
2857
2858 bit = verify_floatformat (bit, fmt);
2859 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2860 TYPE_FLOATFORMAT (t) = fmt;
2861
2862 return t;
2863 }
2864
2865 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2866 BIT is the type size in bits. NAME is the type name. */
2867
2868 struct type *
2869 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2870 {
2871 struct type *t;
2872
2873 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2874 return t;
2875 }
2876
2877 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2878 NAME is the type name. TARGET_TYPE is the component float type. */
2879
2880 struct type *
2881 init_complex_type (struct objfile *objfile,
2882 const char *name, struct type *target_type)
2883 {
2884 struct type *t;
2885
2886 t = init_type (objfile, TYPE_CODE_COMPLEX,
2887 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2888 TYPE_TARGET_TYPE (t) = target_type;
2889 return t;
2890 }
2891
2892 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2893 BIT is the pointer type size in bits. NAME is the type name.
2894 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2895 TYPE_UNSIGNED flag. */
2896
2897 struct type *
2898 init_pointer_type (struct objfile *objfile,
2899 int bit, const char *name, struct type *target_type)
2900 {
2901 struct type *t;
2902
2903 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2904 TYPE_TARGET_TYPE (t) = target_type;
2905 TYPE_UNSIGNED (t) = 1;
2906 return t;
2907 }
2908
2909 \f
2910 /* Queries on types. */
2911
2912 int
2913 can_dereference (struct type *t)
2914 {
2915 /* FIXME: Should we return true for references as well as
2916 pointers? */
2917 t = check_typedef (t);
2918 return
2919 (t != NULL
2920 && TYPE_CODE (t) == TYPE_CODE_PTR
2921 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2922 }
2923
2924 int
2925 is_integral_type (struct type *t)
2926 {
2927 t = check_typedef (t);
2928 return
2929 ((t != NULL)
2930 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2931 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2932 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2933 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2934 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2935 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2936 }
2937
2938 int
2939 is_floating_type (struct type *t)
2940 {
2941 t = check_typedef (t);
2942 return
2943 ((t != NULL)
2944 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
2945 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
2946 }
2947
2948 /* Return true if TYPE is scalar. */
2949
2950 int
2951 is_scalar_type (struct type *type)
2952 {
2953 type = check_typedef (type);
2954
2955 switch (TYPE_CODE (type))
2956 {
2957 case TYPE_CODE_ARRAY:
2958 case TYPE_CODE_STRUCT:
2959 case TYPE_CODE_UNION:
2960 case TYPE_CODE_SET:
2961 case TYPE_CODE_STRING:
2962 return 0;
2963 default:
2964 return 1;
2965 }
2966 }
2967
2968 /* Return true if T is scalar, or a composite type which in practice has
2969 the memory layout of a scalar type. E.g., an array or struct with only
2970 one scalar element inside it, or a union with only scalar elements. */
2971
2972 int
2973 is_scalar_type_recursive (struct type *t)
2974 {
2975 t = check_typedef (t);
2976
2977 if (is_scalar_type (t))
2978 return 1;
2979 /* Are we dealing with an array or string of known dimensions? */
2980 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2981 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2982 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2983 {
2984 LONGEST low_bound, high_bound;
2985 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2986
2987 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2988
2989 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2990 }
2991 /* Are we dealing with a struct with one element? */
2992 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2993 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2994 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2995 {
2996 int i, n = TYPE_NFIELDS (t);
2997
2998 /* If all elements of the union are scalar, then the union is scalar. */
2999 for (i = 0; i < n; i++)
3000 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3001 return 0;
3002
3003 return 1;
3004 }
3005
3006 return 0;
3007 }
3008
3009 /* Return true is T is a class or a union. False otherwise. */
3010
3011 int
3012 class_or_union_p (const struct type *t)
3013 {
3014 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3015 || TYPE_CODE (t) == TYPE_CODE_UNION);
3016 }
3017
3018 /* A helper function which returns true if types A and B represent the
3019 "same" class type. This is true if the types have the same main
3020 type, or the same name. */
3021
3022 int
3023 class_types_same_p (const struct type *a, const struct type *b)
3024 {
3025 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3026 || (TYPE_NAME (a) && TYPE_NAME (b)
3027 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3028 }
3029
3030 /* If BASE is an ancestor of DCLASS return the distance between them.
3031 otherwise return -1;
3032 eg:
3033
3034 class A {};
3035 class B: public A {};
3036 class C: public B {};
3037 class D: C {};
3038
3039 distance_to_ancestor (A, A, 0) = 0
3040 distance_to_ancestor (A, B, 0) = 1
3041 distance_to_ancestor (A, C, 0) = 2
3042 distance_to_ancestor (A, D, 0) = 3
3043
3044 If PUBLIC is 1 then only public ancestors are considered,
3045 and the function returns the distance only if BASE is a public ancestor
3046 of DCLASS.
3047 Eg:
3048
3049 distance_to_ancestor (A, D, 1) = -1. */
3050
3051 static int
3052 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3053 {
3054 int i;
3055 int d;
3056
3057 base = check_typedef (base);
3058 dclass = check_typedef (dclass);
3059
3060 if (class_types_same_p (base, dclass))
3061 return 0;
3062
3063 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3064 {
3065 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3066 continue;
3067
3068 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3069 if (d >= 0)
3070 return 1 + d;
3071 }
3072
3073 return -1;
3074 }
3075
3076 /* Check whether BASE is an ancestor or base class or DCLASS
3077 Return 1 if so, and 0 if not.
3078 Note: If BASE and DCLASS are of the same type, this function
3079 will return 1. So for some class A, is_ancestor (A, A) will
3080 return 1. */
3081
3082 int
3083 is_ancestor (struct type *base, struct type *dclass)
3084 {
3085 return distance_to_ancestor (base, dclass, 0) >= 0;
3086 }
3087
3088 /* Like is_ancestor, but only returns true when BASE is a public
3089 ancestor of DCLASS. */
3090
3091 int
3092 is_public_ancestor (struct type *base, struct type *dclass)
3093 {
3094 return distance_to_ancestor (base, dclass, 1) >= 0;
3095 }
3096
3097 /* A helper function for is_unique_ancestor. */
3098
3099 static int
3100 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3101 int *offset,
3102 const gdb_byte *valaddr, int embedded_offset,
3103 CORE_ADDR address, struct value *val)
3104 {
3105 int i, count = 0;
3106
3107 base = check_typedef (base);
3108 dclass = check_typedef (dclass);
3109
3110 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3111 {
3112 struct type *iter;
3113 int this_offset;
3114
3115 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3116
3117 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3118 address, val);
3119
3120 if (class_types_same_p (base, iter))
3121 {
3122 /* If this is the first subclass, set *OFFSET and set count
3123 to 1. Otherwise, if this is at the same offset as
3124 previous instances, do nothing. Otherwise, increment
3125 count. */
3126 if (*offset == -1)
3127 {
3128 *offset = this_offset;
3129 count = 1;
3130 }
3131 else if (this_offset == *offset)
3132 {
3133 /* Nothing. */
3134 }
3135 else
3136 ++count;
3137 }
3138 else
3139 count += is_unique_ancestor_worker (base, iter, offset,
3140 valaddr,
3141 embedded_offset + this_offset,
3142 address, val);
3143 }
3144
3145 return count;
3146 }
3147
3148 /* Like is_ancestor, but only returns true if BASE is a unique base
3149 class of the type of VAL. */
3150
3151 int
3152 is_unique_ancestor (struct type *base, struct value *val)
3153 {
3154 int offset = -1;
3155
3156 return is_unique_ancestor_worker (base, value_type (val), &offset,
3157 value_contents_for_printing (val),
3158 value_embedded_offset (val),
3159 value_address (val), val) == 1;
3160 }
3161
3162 \f
3163 /* Overload resolution. */
3164
3165 /* Return the sum of the rank of A with the rank of B. */
3166
3167 struct rank
3168 sum_ranks (struct rank a, struct rank b)
3169 {
3170 struct rank c;
3171 c.rank = a.rank + b.rank;
3172 c.subrank = a.subrank + b.subrank;
3173 return c;
3174 }
3175
3176 /* Compare rank A and B and return:
3177 0 if a = b
3178 1 if a is better than b
3179 -1 if b is better than a. */
3180
3181 int
3182 compare_ranks (struct rank a, struct rank b)
3183 {
3184 if (a.rank == b.rank)
3185 {
3186 if (a.subrank == b.subrank)
3187 return 0;
3188 if (a.subrank < b.subrank)
3189 return 1;
3190 if (a.subrank > b.subrank)
3191 return -1;
3192 }
3193
3194 if (a.rank < b.rank)
3195 return 1;
3196
3197 /* a.rank > b.rank */
3198 return -1;
3199 }
3200
3201 /* Functions for overload resolution begin here. */
3202
3203 /* Compare two badness vectors A and B and return the result.
3204 0 => A and B are identical
3205 1 => A and B are incomparable
3206 2 => A is better than B
3207 3 => A is worse than B */
3208
3209 int
3210 compare_badness (struct badness_vector *a, struct badness_vector *b)
3211 {
3212 int i;
3213 int tmp;
3214 short found_pos = 0; /* any positives in c? */
3215 short found_neg = 0; /* any negatives in c? */
3216
3217 /* differing lengths => incomparable */
3218 if (a->length != b->length)
3219 return 1;
3220
3221 /* Subtract b from a */
3222 for (i = 0; i < a->length; i++)
3223 {
3224 tmp = compare_ranks (b->rank[i], a->rank[i]);
3225 if (tmp > 0)
3226 found_pos = 1;
3227 else if (tmp < 0)
3228 found_neg = 1;
3229 }
3230
3231 if (found_pos)
3232 {
3233 if (found_neg)
3234 return 1; /* incomparable */
3235 else
3236 return 3; /* A > B */
3237 }
3238 else
3239 /* no positives */
3240 {
3241 if (found_neg)
3242 return 2; /* A < B */
3243 else
3244 return 0; /* A == B */
3245 }
3246 }
3247
3248 /* Rank a function by comparing its parameter types (PARMS, length
3249 NPARMS), to the types of an argument list (ARGS, length NARGS).
3250 Return a pointer to a badness vector. This has NARGS + 1
3251 entries. */
3252
3253 struct badness_vector *
3254 rank_function (struct type **parms, int nparms,
3255 struct value **args, int nargs)
3256 {
3257 int i;
3258 struct badness_vector *bv = XNEW (struct badness_vector);
3259 int min_len = nparms < nargs ? nparms : nargs;
3260
3261 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3262 bv->rank = XNEWVEC (struct rank, nargs + 1);
3263
3264 /* First compare the lengths of the supplied lists.
3265 If there is a mismatch, set it to a high value. */
3266
3267 /* pai/1997-06-03 FIXME: when we have debug info about default
3268 arguments and ellipsis parameter lists, we should consider those
3269 and rank the length-match more finely. */
3270
3271 LENGTH_MATCH (bv) = (nargs != nparms)
3272 ? LENGTH_MISMATCH_BADNESS
3273 : EXACT_MATCH_BADNESS;
3274
3275 /* Now rank all the parameters of the candidate function. */
3276 for (i = 1; i <= min_len; i++)
3277 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3278 args[i - 1]);
3279
3280 /* If more arguments than parameters, add dummy entries. */
3281 for (i = min_len + 1; i <= nargs; i++)
3282 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3283
3284 return bv;
3285 }
3286
3287 /* Compare the names of two integer types, assuming that any sign
3288 qualifiers have been checked already. We do it this way because
3289 there may be an "int" in the name of one of the types. */
3290
3291 static int
3292 integer_types_same_name_p (const char *first, const char *second)
3293 {
3294 int first_p, second_p;
3295
3296 /* If both are shorts, return 1; if neither is a short, keep
3297 checking. */
3298 first_p = (strstr (first, "short") != NULL);
3299 second_p = (strstr (second, "short") != NULL);
3300 if (first_p && second_p)
3301 return 1;
3302 if (first_p || second_p)
3303 return 0;
3304
3305 /* Likewise for long. */
3306 first_p = (strstr (first, "long") != NULL);
3307 second_p = (strstr (second, "long") != NULL);
3308 if (first_p && second_p)
3309 return 1;
3310 if (first_p || second_p)
3311 return 0;
3312
3313 /* Likewise for char. */
3314 first_p = (strstr (first, "char") != NULL);
3315 second_p = (strstr (second, "char") != NULL);
3316 if (first_p && second_p)
3317 return 1;
3318 if (first_p || second_p)
3319 return 0;
3320
3321 /* They must both be ints. */
3322 return 1;
3323 }
3324
3325 /* Compares type A to type B returns 1 if the represent the same type
3326 0 otherwise. */
3327
3328 int
3329 types_equal (struct type *a, struct type *b)
3330 {
3331 /* Identical type pointers. */
3332 /* However, this still doesn't catch all cases of same type for b
3333 and a. The reason is that builtin types are different from
3334 the same ones constructed from the object. */
3335 if (a == b)
3336 return 1;
3337
3338 /* Resolve typedefs */
3339 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3340 a = check_typedef (a);
3341 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3342 b = check_typedef (b);
3343
3344 /* If after resolving typedefs a and b are not of the same type
3345 code then they are not equal. */
3346 if (TYPE_CODE (a) != TYPE_CODE (b))
3347 return 0;
3348
3349 /* If a and b are both pointers types or both reference types then
3350 they are equal of the same type iff the objects they refer to are
3351 of the same type. */
3352 if (TYPE_CODE (a) == TYPE_CODE_PTR
3353 || TYPE_CODE (a) == TYPE_CODE_REF)
3354 return types_equal (TYPE_TARGET_TYPE (a),
3355 TYPE_TARGET_TYPE (b));
3356
3357 /* Well, damnit, if the names are exactly the same, I'll say they
3358 are exactly the same. This happens when we generate method
3359 stubs. The types won't point to the same address, but they
3360 really are the same. */
3361
3362 if (TYPE_NAME (a) && TYPE_NAME (b)
3363 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3364 return 1;
3365
3366 /* Check if identical after resolving typedefs. */
3367 if (a == b)
3368 return 1;
3369
3370 /* Two function types are equal if their argument and return types
3371 are equal. */
3372 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3373 {
3374 int i;
3375
3376 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3377 return 0;
3378
3379 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3380 return 0;
3381
3382 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3383 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3384 return 0;
3385
3386 return 1;
3387 }
3388
3389 return 0;
3390 }
3391 \f
3392 /* Deep comparison of types. */
3393
3394 /* An entry in the type-equality bcache. */
3395
3396 typedef struct type_equality_entry
3397 {
3398 struct type *type1, *type2;
3399 } type_equality_entry_d;
3400
3401 DEF_VEC_O (type_equality_entry_d);
3402
3403 /* A helper function to compare two strings. Returns 1 if they are
3404 the same, 0 otherwise. Handles NULLs properly. */
3405
3406 static int
3407 compare_maybe_null_strings (const char *s, const char *t)
3408 {
3409 if (s == NULL && t != NULL)
3410 return 0;
3411 else if (s != NULL && t == NULL)
3412 return 0;
3413 else if (s == NULL && t== NULL)
3414 return 1;
3415 return strcmp (s, t) == 0;
3416 }
3417
3418 /* A helper function for check_types_worklist that checks two types for
3419 "deep" equality. Returns non-zero if the types are considered the
3420 same, zero otherwise. */
3421
3422 static int
3423 check_types_equal (struct type *type1, struct type *type2,
3424 VEC (type_equality_entry_d) **worklist)
3425 {
3426 type1 = check_typedef (type1);
3427 type2 = check_typedef (type2);
3428
3429 if (type1 == type2)
3430 return 1;
3431
3432 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3433 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3434 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3435 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3436 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3437 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3438 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3439 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3440 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3441 return 0;
3442
3443 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3444 TYPE_TAG_NAME (type2)))
3445 return 0;
3446 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3447 return 0;
3448
3449 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3450 {
3451 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3452 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3453 return 0;
3454 }
3455 else
3456 {
3457 int i;
3458
3459 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3460 {
3461 const struct field *field1 = &TYPE_FIELD (type1, i);
3462 const struct field *field2 = &TYPE_FIELD (type2, i);
3463 struct type_equality_entry entry;
3464
3465 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3466 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3467 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3468 return 0;
3469 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3470 FIELD_NAME (*field2)))
3471 return 0;
3472 switch (FIELD_LOC_KIND (*field1))
3473 {
3474 case FIELD_LOC_KIND_BITPOS:
3475 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3476 return 0;
3477 break;
3478 case FIELD_LOC_KIND_ENUMVAL:
3479 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3480 return 0;
3481 break;
3482 case FIELD_LOC_KIND_PHYSADDR:
3483 if (FIELD_STATIC_PHYSADDR (*field1)
3484 != FIELD_STATIC_PHYSADDR (*field2))
3485 return 0;
3486 break;
3487 case FIELD_LOC_KIND_PHYSNAME:
3488 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3489 FIELD_STATIC_PHYSNAME (*field2)))
3490 return 0;
3491 break;
3492 case FIELD_LOC_KIND_DWARF_BLOCK:
3493 {
3494 struct dwarf2_locexpr_baton *block1, *block2;
3495
3496 block1 = FIELD_DWARF_BLOCK (*field1);
3497 block2 = FIELD_DWARF_BLOCK (*field2);
3498 if (block1->per_cu != block2->per_cu
3499 || block1->size != block2->size
3500 || memcmp (block1->data, block2->data, block1->size) != 0)
3501 return 0;
3502 }
3503 break;
3504 default:
3505 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3506 "%d by check_types_equal"),
3507 FIELD_LOC_KIND (*field1));
3508 }
3509
3510 entry.type1 = FIELD_TYPE (*field1);
3511 entry.type2 = FIELD_TYPE (*field2);
3512 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3513 }
3514 }
3515
3516 if (TYPE_TARGET_TYPE (type1) != NULL)
3517 {
3518 struct type_equality_entry entry;
3519
3520 if (TYPE_TARGET_TYPE (type2) == NULL)
3521 return 0;
3522
3523 entry.type1 = TYPE_TARGET_TYPE (type1);
3524 entry.type2 = TYPE_TARGET_TYPE (type2);
3525 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3526 }
3527 else if (TYPE_TARGET_TYPE (type2) != NULL)
3528 return 0;
3529
3530 return 1;
3531 }
3532
3533 /* Check types on a worklist for equality. Returns zero if any pair
3534 is not equal, non-zero if they are all considered equal. */
3535
3536 static int
3537 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3538 struct bcache *cache)
3539 {
3540 while (!VEC_empty (type_equality_entry_d, *worklist))
3541 {
3542 struct type_equality_entry entry;
3543 int added;
3544
3545 entry = *VEC_last (type_equality_entry_d, *worklist);
3546 VEC_pop (type_equality_entry_d, *worklist);
3547
3548 /* If the type pair has already been visited, we know it is
3549 ok. */
3550 bcache_full (&entry, sizeof (entry), cache, &added);
3551 if (!added)
3552 continue;
3553
3554 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3555 return 0;
3556 }
3557
3558 return 1;
3559 }
3560
3561 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3562 "deep comparison". Otherwise return zero. */
3563
3564 int
3565 types_deeply_equal (struct type *type1, struct type *type2)
3566 {
3567 struct gdb_exception except = exception_none;
3568 int result = 0;
3569 struct bcache *cache;
3570 VEC (type_equality_entry_d) *worklist = NULL;
3571 struct type_equality_entry entry;
3572
3573 gdb_assert (type1 != NULL && type2 != NULL);
3574
3575 /* Early exit for the simple case. */
3576 if (type1 == type2)
3577 return 1;
3578
3579 cache = bcache_xmalloc (NULL, NULL);
3580
3581 entry.type1 = type1;
3582 entry.type2 = type2;
3583 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3584
3585 /* check_types_worklist calls several nested helper functions, some
3586 of which can raise a GDB exception, so we just check and rethrow
3587 here. If there is a GDB exception, a comparison is not capable
3588 (or trusted), so exit. */
3589 TRY
3590 {
3591 result = check_types_worklist (&worklist, cache);
3592 }
3593 CATCH (ex, RETURN_MASK_ALL)
3594 {
3595 except = ex;
3596 }
3597 END_CATCH
3598
3599 bcache_xfree (cache);
3600 VEC_free (type_equality_entry_d, worklist);
3601
3602 /* Rethrow if there was a problem. */
3603 if (except.reason < 0)
3604 throw_exception (except);
3605
3606 return result;
3607 }
3608
3609 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3610 Otherwise return one. */
3611
3612 int
3613 type_not_allocated (const struct type *type)
3614 {
3615 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3616
3617 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3618 && !TYPE_DYN_PROP_ADDR (prop));
3619 }
3620
3621 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3622 Otherwise return one. */
3623
3624 int
3625 type_not_associated (const struct type *type)
3626 {
3627 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3628
3629 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3630 && !TYPE_DYN_PROP_ADDR (prop));
3631 }
3632 \f
3633 /* Compare one type (PARM) for compatibility with another (ARG).
3634 * PARM is intended to be the parameter type of a function; and
3635 * ARG is the supplied argument's type. This function tests if
3636 * the latter can be converted to the former.
3637 * VALUE is the argument's value or NULL if none (or called recursively)
3638 *
3639 * Return 0 if they are identical types;
3640 * Otherwise, return an integer which corresponds to how compatible
3641 * PARM is to ARG. The higher the return value, the worse the match.
3642 * Generally the "bad" conversions are all uniformly assigned a 100. */
3643
3644 struct rank
3645 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3646 {
3647 struct rank rank = {0,0};
3648
3649 /* Resolve typedefs */
3650 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3651 parm = check_typedef (parm);
3652 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3653 arg = check_typedef (arg);
3654
3655 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3656 {
3657 if (VALUE_LVAL (value) == not_lval)
3658 {
3659 /* Rvalues should preferably bind to rvalue references or const
3660 lvalue references. */
3661 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3662 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3663 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3664 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3665 else
3666 return INCOMPATIBLE_TYPE_BADNESS;
3667 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3668 }
3669 else
3670 {
3671 /* Lvalues should prefer lvalue overloads. */
3672 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3673 {
3674 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3675 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3676 }
3677 }
3678 }
3679
3680 if (types_equal (parm, arg))
3681 {
3682 struct type *t1 = parm;
3683 struct type *t2 = arg;
3684
3685 /* For pointers and references, compare target type. */
3686 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3687 {
3688 t1 = TYPE_TARGET_TYPE (parm);
3689 t2 = TYPE_TARGET_TYPE (arg);
3690 }
3691
3692 /* Make sure they are CV equal, too. */
3693 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3694 rank.subrank |= CV_CONVERSION_CONST;
3695 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3696 rank.subrank |= CV_CONVERSION_VOLATILE;
3697 if (rank.subrank != 0)
3698 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3699 return EXACT_MATCH_BADNESS;
3700 }
3701
3702 /* See through references, since we can almost make non-references
3703 references. */
3704
3705 if (TYPE_IS_REFERENCE (arg))
3706 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3707 REFERENCE_CONVERSION_BADNESS));
3708 if (TYPE_IS_REFERENCE (parm))
3709 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3710 REFERENCE_CONVERSION_BADNESS));
3711 if (overload_debug)
3712 /* Debugging only. */
3713 fprintf_filtered (gdb_stderr,
3714 "------ Arg is %s [%d], parm is %s [%d]\n",
3715 TYPE_NAME (arg), TYPE_CODE (arg),
3716 TYPE_NAME (parm), TYPE_CODE (parm));
3717
3718 /* x -> y means arg of type x being supplied for parameter of type y. */
3719
3720 switch (TYPE_CODE (parm))
3721 {
3722 case TYPE_CODE_PTR:
3723 switch (TYPE_CODE (arg))
3724 {
3725 case TYPE_CODE_PTR:
3726
3727 /* Allowed pointer conversions are:
3728 (a) pointer to void-pointer conversion. */
3729 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3730 return VOID_PTR_CONVERSION_BADNESS;
3731
3732 /* (b) pointer to ancestor-pointer conversion. */
3733 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3734 TYPE_TARGET_TYPE (arg),
3735 0);
3736 if (rank.subrank >= 0)
3737 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3738
3739 return INCOMPATIBLE_TYPE_BADNESS;
3740 case TYPE_CODE_ARRAY:
3741 {
3742 struct type *t1 = TYPE_TARGET_TYPE (parm);
3743 struct type *t2 = TYPE_TARGET_TYPE (arg);
3744
3745 if (types_equal (t1, t2))
3746 {
3747 /* Make sure they are CV equal. */
3748 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3749 rank.subrank |= CV_CONVERSION_CONST;
3750 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3751 rank.subrank |= CV_CONVERSION_VOLATILE;
3752 if (rank.subrank != 0)
3753 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3754 return EXACT_MATCH_BADNESS;
3755 }
3756 return INCOMPATIBLE_TYPE_BADNESS;
3757 }
3758 case TYPE_CODE_FUNC:
3759 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3760 case TYPE_CODE_INT:
3761 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3762 {
3763 if (value_as_long (value) == 0)
3764 {
3765 /* Null pointer conversion: allow it to be cast to a pointer.
3766 [4.10.1 of C++ standard draft n3290] */
3767 return NULL_POINTER_CONVERSION_BADNESS;
3768 }
3769 else
3770 {
3771 /* If type checking is disabled, allow the conversion. */
3772 if (!strict_type_checking)
3773 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3774 }
3775 }
3776 /* fall through */
3777 case TYPE_CODE_ENUM:
3778 case TYPE_CODE_FLAGS:
3779 case TYPE_CODE_CHAR:
3780 case TYPE_CODE_RANGE:
3781 case TYPE_CODE_BOOL:
3782 default:
3783 return INCOMPATIBLE_TYPE_BADNESS;
3784 }
3785 case TYPE_CODE_ARRAY:
3786 switch (TYPE_CODE (arg))
3787 {
3788 case TYPE_CODE_PTR:
3789 case TYPE_CODE_ARRAY:
3790 return rank_one_type (TYPE_TARGET_TYPE (parm),
3791 TYPE_TARGET_TYPE (arg), NULL);
3792 default:
3793 return INCOMPATIBLE_TYPE_BADNESS;
3794 }
3795 case TYPE_CODE_FUNC:
3796 switch (TYPE_CODE (arg))
3797 {
3798 case TYPE_CODE_PTR: /* funcptr -> func */
3799 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3800 default:
3801 return INCOMPATIBLE_TYPE_BADNESS;
3802 }
3803 case TYPE_CODE_INT:
3804 switch (TYPE_CODE (arg))
3805 {
3806 case TYPE_CODE_INT:
3807 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3808 {
3809 /* Deal with signed, unsigned, and plain chars and
3810 signed and unsigned ints. */
3811 if (TYPE_NOSIGN (parm))
3812 {
3813 /* This case only for character types. */
3814 if (TYPE_NOSIGN (arg))
3815 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3816 else /* signed/unsigned char -> plain char */
3817 return INTEGER_CONVERSION_BADNESS;
3818 }
3819 else if (TYPE_UNSIGNED (parm))
3820 {
3821 if (TYPE_UNSIGNED (arg))
3822 {
3823 /* unsigned int -> unsigned int, or
3824 unsigned long -> unsigned long */
3825 if (integer_types_same_name_p (TYPE_NAME (parm),
3826 TYPE_NAME (arg)))
3827 return EXACT_MATCH_BADNESS;
3828 else if (integer_types_same_name_p (TYPE_NAME (arg),
3829 "int")
3830 && integer_types_same_name_p (TYPE_NAME (parm),
3831 "long"))
3832 /* unsigned int -> unsigned long */
3833 return INTEGER_PROMOTION_BADNESS;
3834 else
3835 /* unsigned long -> unsigned int */
3836 return INTEGER_CONVERSION_BADNESS;
3837 }
3838 else
3839 {
3840 if (integer_types_same_name_p (TYPE_NAME (arg),
3841 "long")
3842 && integer_types_same_name_p (TYPE_NAME (parm),
3843 "int"))
3844 /* signed long -> unsigned int */
3845 return INTEGER_CONVERSION_BADNESS;
3846 else
3847 /* signed int/long -> unsigned int/long */
3848 return INTEGER_CONVERSION_BADNESS;
3849 }
3850 }
3851 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3852 {
3853 if (integer_types_same_name_p (TYPE_NAME (parm),
3854 TYPE_NAME (arg)))
3855 return EXACT_MATCH_BADNESS;
3856 else if (integer_types_same_name_p (TYPE_NAME (arg),
3857 "int")
3858 && integer_types_same_name_p (TYPE_NAME (parm),
3859 "long"))
3860 return INTEGER_PROMOTION_BADNESS;
3861 else
3862 return INTEGER_CONVERSION_BADNESS;
3863 }
3864 else
3865 return INTEGER_CONVERSION_BADNESS;
3866 }
3867 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3868 return INTEGER_PROMOTION_BADNESS;
3869 else
3870 return INTEGER_CONVERSION_BADNESS;
3871 case TYPE_CODE_ENUM:
3872 case TYPE_CODE_FLAGS:
3873 case TYPE_CODE_CHAR:
3874 case TYPE_CODE_RANGE:
3875 case TYPE_CODE_BOOL:
3876 if (TYPE_DECLARED_CLASS (arg))
3877 return INCOMPATIBLE_TYPE_BADNESS;
3878 return INTEGER_PROMOTION_BADNESS;
3879 case TYPE_CODE_FLT:
3880 return INT_FLOAT_CONVERSION_BADNESS;
3881 case TYPE_CODE_PTR:
3882 return NS_POINTER_CONVERSION_BADNESS;
3883 default:
3884 return INCOMPATIBLE_TYPE_BADNESS;
3885 }
3886 break;
3887 case TYPE_CODE_ENUM:
3888 switch (TYPE_CODE (arg))
3889 {
3890 case TYPE_CODE_INT:
3891 case TYPE_CODE_CHAR:
3892 case TYPE_CODE_RANGE:
3893 case TYPE_CODE_BOOL:
3894 case TYPE_CODE_ENUM:
3895 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3896 return INCOMPATIBLE_TYPE_BADNESS;
3897 return INTEGER_CONVERSION_BADNESS;
3898 case TYPE_CODE_FLT:
3899 return INT_FLOAT_CONVERSION_BADNESS;
3900 default:
3901 return INCOMPATIBLE_TYPE_BADNESS;
3902 }
3903 break;
3904 case TYPE_CODE_CHAR:
3905 switch (TYPE_CODE (arg))
3906 {
3907 case TYPE_CODE_RANGE:
3908 case TYPE_CODE_BOOL:
3909 case TYPE_CODE_ENUM:
3910 if (TYPE_DECLARED_CLASS (arg))
3911 return INCOMPATIBLE_TYPE_BADNESS;
3912 return INTEGER_CONVERSION_BADNESS;
3913 case TYPE_CODE_FLT:
3914 return INT_FLOAT_CONVERSION_BADNESS;
3915 case TYPE_CODE_INT:
3916 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3917 return INTEGER_CONVERSION_BADNESS;
3918 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3919 return INTEGER_PROMOTION_BADNESS;
3920 /* >>> !! else fall through !! <<< */
3921 case TYPE_CODE_CHAR:
3922 /* Deal with signed, unsigned, and plain chars for C++ and
3923 with int cases falling through from previous case. */
3924 if (TYPE_NOSIGN (parm))
3925 {
3926 if (TYPE_NOSIGN (arg))
3927 return EXACT_MATCH_BADNESS;
3928 else
3929 return INTEGER_CONVERSION_BADNESS;
3930 }
3931 else if (TYPE_UNSIGNED (parm))
3932 {
3933 if (TYPE_UNSIGNED (arg))
3934 return EXACT_MATCH_BADNESS;
3935 else
3936 return INTEGER_PROMOTION_BADNESS;
3937 }
3938 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3939 return EXACT_MATCH_BADNESS;
3940 else
3941 return INTEGER_CONVERSION_BADNESS;
3942 default:
3943 return INCOMPATIBLE_TYPE_BADNESS;
3944 }
3945 break;
3946 case TYPE_CODE_RANGE:
3947 switch (TYPE_CODE (arg))
3948 {
3949 case TYPE_CODE_INT:
3950 case TYPE_CODE_CHAR:
3951 case TYPE_CODE_RANGE:
3952 case TYPE_CODE_BOOL:
3953 case TYPE_CODE_ENUM:
3954 return INTEGER_CONVERSION_BADNESS;
3955 case TYPE_CODE_FLT:
3956 return INT_FLOAT_CONVERSION_BADNESS;
3957 default:
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 }
3960 break;
3961 case TYPE_CODE_BOOL:
3962 switch (TYPE_CODE (arg))
3963 {
3964 /* n3290 draft, section 4.12.1 (conv.bool):
3965
3966 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3967 pointer to member type can be converted to a prvalue of type
3968 bool. A zero value, null pointer value, or null member pointer
3969 value is converted to false; any other value is converted to
3970 true. A prvalue of type std::nullptr_t can be converted to a
3971 prvalue of type bool; the resulting value is false." */
3972 case TYPE_CODE_INT:
3973 case TYPE_CODE_CHAR:
3974 case TYPE_CODE_ENUM:
3975 case TYPE_CODE_FLT:
3976 case TYPE_CODE_MEMBERPTR:
3977 case TYPE_CODE_PTR:
3978 return BOOL_CONVERSION_BADNESS;
3979 case TYPE_CODE_RANGE:
3980 return INCOMPATIBLE_TYPE_BADNESS;
3981 case TYPE_CODE_BOOL:
3982 return EXACT_MATCH_BADNESS;
3983 default:
3984 return INCOMPATIBLE_TYPE_BADNESS;
3985 }
3986 break;
3987 case TYPE_CODE_FLT:
3988 switch (TYPE_CODE (arg))
3989 {
3990 case TYPE_CODE_FLT:
3991 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3992 return FLOAT_PROMOTION_BADNESS;
3993 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3994 return EXACT_MATCH_BADNESS;
3995 else
3996 return FLOAT_CONVERSION_BADNESS;
3997 case TYPE_CODE_INT:
3998 case TYPE_CODE_BOOL:
3999 case TYPE_CODE_ENUM:
4000 case TYPE_CODE_RANGE:
4001 case TYPE_CODE_CHAR:
4002 return INT_FLOAT_CONVERSION_BADNESS;
4003 default:
4004 return INCOMPATIBLE_TYPE_BADNESS;
4005 }
4006 break;
4007 case TYPE_CODE_COMPLEX:
4008 switch (TYPE_CODE (arg))
4009 { /* Strictly not needed for C++, but... */
4010 case TYPE_CODE_FLT:
4011 return FLOAT_PROMOTION_BADNESS;
4012 case TYPE_CODE_COMPLEX:
4013 return EXACT_MATCH_BADNESS;
4014 default:
4015 return INCOMPATIBLE_TYPE_BADNESS;
4016 }
4017 break;
4018 case TYPE_CODE_STRUCT:
4019 switch (TYPE_CODE (arg))
4020 {
4021 case TYPE_CODE_STRUCT:
4022 /* Check for derivation */
4023 rank.subrank = distance_to_ancestor (parm, arg, 0);
4024 if (rank.subrank >= 0)
4025 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4026 /* else fall through */
4027 default:
4028 return INCOMPATIBLE_TYPE_BADNESS;
4029 }
4030 break;
4031 case TYPE_CODE_UNION:
4032 switch (TYPE_CODE (arg))
4033 {
4034 case TYPE_CODE_UNION:
4035 default:
4036 return INCOMPATIBLE_TYPE_BADNESS;
4037 }
4038 break;
4039 case TYPE_CODE_MEMBERPTR:
4040 switch (TYPE_CODE (arg))
4041 {
4042 default:
4043 return INCOMPATIBLE_TYPE_BADNESS;
4044 }
4045 break;
4046 case TYPE_CODE_METHOD:
4047 switch (TYPE_CODE (arg))
4048 {
4049
4050 default:
4051 return INCOMPATIBLE_TYPE_BADNESS;
4052 }
4053 break;
4054 case TYPE_CODE_REF:
4055 switch (TYPE_CODE (arg))
4056 {
4057
4058 default:
4059 return INCOMPATIBLE_TYPE_BADNESS;
4060 }
4061
4062 break;
4063 case TYPE_CODE_SET:
4064 switch (TYPE_CODE (arg))
4065 {
4066 /* Not in C++ */
4067 case TYPE_CODE_SET:
4068 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4069 TYPE_FIELD_TYPE (arg, 0), NULL);
4070 default:
4071 return INCOMPATIBLE_TYPE_BADNESS;
4072 }
4073 break;
4074 case TYPE_CODE_VOID:
4075 default:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 } /* switch (TYPE_CODE (arg)) */
4078 }
4079
4080 /* End of functions for overload resolution. */
4081 \f
4082 /* Routines to pretty-print types. */
4083
4084 static void
4085 print_bit_vector (B_TYPE *bits, int nbits)
4086 {
4087 int bitno;
4088
4089 for (bitno = 0; bitno < nbits; bitno++)
4090 {
4091 if ((bitno % 8) == 0)
4092 {
4093 puts_filtered (" ");
4094 }
4095 if (B_TST (bits, bitno))
4096 printf_filtered (("1"));
4097 else
4098 printf_filtered (("0"));
4099 }
4100 }
4101
4102 /* Note the first arg should be the "this" pointer, we may not want to
4103 include it since we may get into a infinitely recursive
4104 situation. */
4105
4106 static void
4107 print_args (struct field *args, int nargs, int spaces)
4108 {
4109 if (args != NULL)
4110 {
4111 int i;
4112
4113 for (i = 0; i < nargs; i++)
4114 {
4115 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4116 args[i].name != NULL ? args[i].name : "<NULL>");
4117 recursive_dump_type (args[i].type, spaces + 2);
4118 }
4119 }
4120 }
4121
4122 int
4123 field_is_static (struct field *f)
4124 {
4125 /* "static" fields are the fields whose location is not relative
4126 to the address of the enclosing struct. It would be nice to
4127 have a dedicated flag that would be set for static fields when
4128 the type is being created. But in practice, checking the field
4129 loc_kind should give us an accurate answer. */
4130 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4131 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4132 }
4133
4134 static void
4135 dump_fn_fieldlists (struct type *type, int spaces)
4136 {
4137 int method_idx;
4138 int overload_idx;
4139 struct fn_field *f;
4140
4141 printfi_filtered (spaces, "fn_fieldlists ");
4142 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4143 printf_filtered ("\n");
4144 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4145 {
4146 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4147 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4148 method_idx,
4149 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4150 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4151 gdb_stdout);
4152 printf_filtered (_(") length %d\n"),
4153 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4154 for (overload_idx = 0;
4155 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4156 overload_idx++)
4157 {
4158 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4159 overload_idx,
4160 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4161 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4162 gdb_stdout);
4163 printf_filtered (")\n");
4164 printfi_filtered (spaces + 8, "type ");
4165 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4166 gdb_stdout);
4167 printf_filtered ("\n");
4168
4169 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4170 spaces + 8 + 2);
4171
4172 printfi_filtered (spaces + 8, "args ");
4173 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4174 gdb_stdout);
4175 printf_filtered ("\n");
4176 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4177 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4178 spaces + 8 + 2);
4179 printfi_filtered (spaces + 8, "fcontext ");
4180 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4181 gdb_stdout);
4182 printf_filtered ("\n");
4183
4184 printfi_filtered (spaces + 8, "is_const %d\n",
4185 TYPE_FN_FIELD_CONST (f, overload_idx));
4186 printfi_filtered (spaces + 8, "is_volatile %d\n",
4187 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4188 printfi_filtered (spaces + 8, "is_private %d\n",
4189 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4190 printfi_filtered (spaces + 8, "is_protected %d\n",
4191 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4192 printfi_filtered (spaces + 8, "is_stub %d\n",
4193 TYPE_FN_FIELD_STUB (f, overload_idx));
4194 printfi_filtered (spaces + 8, "voffset %u\n",
4195 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4196 }
4197 }
4198 }
4199
4200 static void
4201 print_cplus_stuff (struct type *type, int spaces)
4202 {
4203 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4204 printfi_filtered (spaces, "vptr_basetype ");
4205 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4206 puts_filtered ("\n");
4207 if (TYPE_VPTR_BASETYPE (type) != NULL)
4208 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4209
4210 printfi_filtered (spaces, "n_baseclasses %d\n",
4211 TYPE_N_BASECLASSES (type));
4212 printfi_filtered (spaces, "nfn_fields %d\n",
4213 TYPE_NFN_FIELDS (type));
4214 if (TYPE_N_BASECLASSES (type) > 0)
4215 {
4216 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4217 TYPE_N_BASECLASSES (type));
4218 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4219 gdb_stdout);
4220 printf_filtered (")");
4221
4222 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4223 TYPE_N_BASECLASSES (type));
4224 puts_filtered ("\n");
4225 }
4226 if (TYPE_NFIELDS (type) > 0)
4227 {
4228 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4229 {
4230 printfi_filtered (spaces,
4231 "private_field_bits (%d bits at *",
4232 TYPE_NFIELDS (type));
4233 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4234 gdb_stdout);
4235 printf_filtered (")");
4236 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4237 TYPE_NFIELDS (type));
4238 puts_filtered ("\n");
4239 }
4240 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4241 {
4242 printfi_filtered (spaces,
4243 "protected_field_bits (%d bits at *",
4244 TYPE_NFIELDS (type));
4245 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4246 gdb_stdout);
4247 printf_filtered (")");
4248 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4249 TYPE_NFIELDS (type));
4250 puts_filtered ("\n");
4251 }
4252 }
4253 if (TYPE_NFN_FIELDS (type) > 0)
4254 {
4255 dump_fn_fieldlists (type, spaces);
4256 }
4257 }
4258
4259 /* Print the contents of the TYPE's type_specific union, assuming that
4260 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4261
4262 static void
4263 print_gnat_stuff (struct type *type, int spaces)
4264 {
4265 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4266
4267 if (descriptive_type == NULL)
4268 printfi_filtered (spaces + 2, "no descriptive type\n");
4269 else
4270 {
4271 printfi_filtered (spaces + 2, "descriptive type\n");
4272 recursive_dump_type (descriptive_type, spaces + 4);
4273 }
4274 }
4275
4276 static struct obstack dont_print_type_obstack;
4277
4278 void
4279 recursive_dump_type (struct type *type, int spaces)
4280 {
4281 int idx;
4282
4283 if (spaces == 0)
4284 obstack_begin (&dont_print_type_obstack, 0);
4285
4286 if (TYPE_NFIELDS (type) > 0
4287 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4288 {
4289 struct type **first_dont_print
4290 = (struct type **) obstack_base (&dont_print_type_obstack);
4291
4292 int i = (struct type **)
4293 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4294
4295 while (--i >= 0)
4296 {
4297 if (type == first_dont_print[i])
4298 {
4299 printfi_filtered (spaces, "type node ");
4300 gdb_print_host_address (type, gdb_stdout);
4301 printf_filtered (_(" <same as already seen type>\n"));
4302 return;
4303 }
4304 }
4305
4306 obstack_ptr_grow (&dont_print_type_obstack, type);
4307 }
4308
4309 printfi_filtered (spaces, "type node ");
4310 gdb_print_host_address (type, gdb_stdout);
4311 printf_filtered ("\n");
4312 printfi_filtered (spaces, "name '%s' (",
4313 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4314 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4315 printf_filtered (")\n");
4316 printfi_filtered (spaces, "tagname '%s' (",
4317 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4318 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4319 printf_filtered (")\n");
4320 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4321 switch (TYPE_CODE (type))
4322 {
4323 case TYPE_CODE_UNDEF:
4324 printf_filtered ("(TYPE_CODE_UNDEF)");
4325 break;
4326 case TYPE_CODE_PTR:
4327 printf_filtered ("(TYPE_CODE_PTR)");
4328 break;
4329 case TYPE_CODE_ARRAY:
4330 printf_filtered ("(TYPE_CODE_ARRAY)");
4331 break;
4332 case TYPE_CODE_STRUCT:
4333 printf_filtered ("(TYPE_CODE_STRUCT)");
4334 break;
4335 case TYPE_CODE_UNION:
4336 printf_filtered ("(TYPE_CODE_UNION)");
4337 break;
4338 case TYPE_CODE_ENUM:
4339 printf_filtered ("(TYPE_CODE_ENUM)");
4340 break;
4341 case TYPE_CODE_FLAGS:
4342 printf_filtered ("(TYPE_CODE_FLAGS)");
4343 break;
4344 case TYPE_CODE_FUNC:
4345 printf_filtered ("(TYPE_CODE_FUNC)");
4346 break;
4347 case TYPE_CODE_INT:
4348 printf_filtered ("(TYPE_CODE_INT)");
4349 break;
4350 case TYPE_CODE_FLT:
4351 printf_filtered ("(TYPE_CODE_FLT)");
4352 break;
4353 case TYPE_CODE_VOID:
4354 printf_filtered ("(TYPE_CODE_VOID)");
4355 break;
4356 case TYPE_CODE_SET:
4357 printf_filtered ("(TYPE_CODE_SET)");
4358 break;
4359 case TYPE_CODE_RANGE:
4360 printf_filtered ("(TYPE_CODE_RANGE)");
4361 break;
4362 case TYPE_CODE_STRING:
4363 printf_filtered ("(TYPE_CODE_STRING)");
4364 break;
4365 case TYPE_CODE_ERROR:
4366 printf_filtered ("(TYPE_CODE_ERROR)");
4367 break;
4368 case TYPE_CODE_MEMBERPTR:
4369 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4370 break;
4371 case TYPE_CODE_METHODPTR:
4372 printf_filtered ("(TYPE_CODE_METHODPTR)");
4373 break;
4374 case TYPE_CODE_METHOD:
4375 printf_filtered ("(TYPE_CODE_METHOD)");
4376 break;
4377 case TYPE_CODE_REF:
4378 printf_filtered ("(TYPE_CODE_REF)");
4379 break;
4380 case TYPE_CODE_CHAR:
4381 printf_filtered ("(TYPE_CODE_CHAR)");
4382 break;
4383 case TYPE_CODE_BOOL:
4384 printf_filtered ("(TYPE_CODE_BOOL)");
4385 break;
4386 case TYPE_CODE_COMPLEX:
4387 printf_filtered ("(TYPE_CODE_COMPLEX)");
4388 break;
4389 case TYPE_CODE_TYPEDEF:
4390 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4391 break;
4392 case TYPE_CODE_NAMESPACE:
4393 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4394 break;
4395 default:
4396 printf_filtered ("(UNKNOWN TYPE CODE)");
4397 break;
4398 }
4399 puts_filtered ("\n");
4400 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4401 if (TYPE_OBJFILE_OWNED (type))
4402 {
4403 printfi_filtered (spaces, "objfile ");
4404 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4405 }
4406 else
4407 {
4408 printfi_filtered (spaces, "gdbarch ");
4409 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4410 }
4411 printf_filtered ("\n");
4412 printfi_filtered (spaces, "target_type ");
4413 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4414 printf_filtered ("\n");
4415 if (TYPE_TARGET_TYPE (type) != NULL)
4416 {
4417 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4418 }
4419 printfi_filtered (spaces, "pointer_type ");
4420 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4421 printf_filtered ("\n");
4422 printfi_filtered (spaces, "reference_type ");
4423 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4424 printf_filtered ("\n");
4425 printfi_filtered (spaces, "type_chain ");
4426 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4427 printf_filtered ("\n");
4428 printfi_filtered (spaces, "instance_flags 0x%x",
4429 TYPE_INSTANCE_FLAGS (type));
4430 if (TYPE_CONST (type))
4431 {
4432 puts_filtered (" TYPE_CONST");
4433 }
4434 if (TYPE_VOLATILE (type))
4435 {
4436 puts_filtered (" TYPE_VOLATILE");
4437 }
4438 if (TYPE_CODE_SPACE (type))
4439 {
4440 puts_filtered (" TYPE_CODE_SPACE");
4441 }
4442 if (TYPE_DATA_SPACE (type))
4443 {
4444 puts_filtered (" TYPE_DATA_SPACE");
4445 }
4446 if (TYPE_ADDRESS_CLASS_1 (type))
4447 {
4448 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4449 }
4450 if (TYPE_ADDRESS_CLASS_2 (type))
4451 {
4452 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4453 }
4454 if (TYPE_RESTRICT (type))
4455 {
4456 puts_filtered (" TYPE_RESTRICT");
4457 }
4458 if (TYPE_ATOMIC (type))
4459 {
4460 puts_filtered (" TYPE_ATOMIC");
4461 }
4462 puts_filtered ("\n");
4463
4464 printfi_filtered (spaces, "flags");
4465 if (TYPE_UNSIGNED (type))
4466 {
4467 puts_filtered (" TYPE_UNSIGNED");
4468 }
4469 if (TYPE_NOSIGN (type))
4470 {
4471 puts_filtered (" TYPE_NOSIGN");
4472 }
4473 if (TYPE_STUB (type))
4474 {
4475 puts_filtered (" TYPE_STUB");
4476 }
4477 if (TYPE_TARGET_STUB (type))
4478 {
4479 puts_filtered (" TYPE_TARGET_STUB");
4480 }
4481 if (TYPE_PROTOTYPED (type))
4482 {
4483 puts_filtered (" TYPE_PROTOTYPED");
4484 }
4485 if (TYPE_INCOMPLETE (type))
4486 {
4487 puts_filtered (" TYPE_INCOMPLETE");
4488 }
4489 if (TYPE_VARARGS (type))
4490 {
4491 puts_filtered (" TYPE_VARARGS");
4492 }
4493 /* This is used for things like AltiVec registers on ppc. Gcc emits
4494 an attribute for the array type, which tells whether or not we
4495 have a vector, instead of a regular array. */
4496 if (TYPE_VECTOR (type))
4497 {
4498 puts_filtered (" TYPE_VECTOR");
4499 }
4500 if (TYPE_FIXED_INSTANCE (type))
4501 {
4502 puts_filtered (" TYPE_FIXED_INSTANCE");
4503 }
4504 if (TYPE_STUB_SUPPORTED (type))
4505 {
4506 puts_filtered (" TYPE_STUB_SUPPORTED");
4507 }
4508 if (TYPE_NOTTEXT (type))
4509 {
4510 puts_filtered (" TYPE_NOTTEXT");
4511 }
4512 puts_filtered ("\n");
4513 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4514 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4515 puts_filtered ("\n");
4516 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4517 {
4518 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4519 printfi_filtered (spaces + 2,
4520 "[%d] enumval %s type ",
4521 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4522 else
4523 printfi_filtered (spaces + 2,
4524 "[%d] bitpos %s bitsize %d type ",
4525 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4526 TYPE_FIELD_BITSIZE (type, idx));
4527 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4528 printf_filtered (" name '%s' (",
4529 TYPE_FIELD_NAME (type, idx) != NULL
4530 ? TYPE_FIELD_NAME (type, idx)
4531 : "<NULL>");
4532 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4533 printf_filtered (")\n");
4534 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4535 {
4536 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4537 }
4538 }
4539 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4540 {
4541 printfi_filtered (spaces, "low %s%s high %s%s\n",
4542 plongest (TYPE_LOW_BOUND (type)),
4543 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4544 plongest (TYPE_HIGH_BOUND (type)),
4545 TYPE_HIGH_BOUND_UNDEFINED (type)
4546 ? " (undefined)" : "");
4547 }
4548
4549 switch (TYPE_SPECIFIC_FIELD (type))
4550 {
4551 case TYPE_SPECIFIC_CPLUS_STUFF:
4552 printfi_filtered (spaces, "cplus_stuff ");
4553 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4554 gdb_stdout);
4555 puts_filtered ("\n");
4556 print_cplus_stuff (type, spaces);
4557 break;
4558
4559 case TYPE_SPECIFIC_GNAT_STUFF:
4560 printfi_filtered (spaces, "gnat_stuff ");
4561 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4562 puts_filtered ("\n");
4563 print_gnat_stuff (type, spaces);
4564 break;
4565
4566 case TYPE_SPECIFIC_FLOATFORMAT:
4567 printfi_filtered (spaces, "floatformat ");
4568 if (TYPE_FLOATFORMAT (type) == NULL
4569 || TYPE_FLOATFORMAT (type)->name == NULL)
4570 puts_filtered ("(null)");
4571 else
4572 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4573 puts_filtered ("\n");
4574 break;
4575
4576 case TYPE_SPECIFIC_FUNC:
4577 printfi_filtered (spaces, "calling_convention %d\n",
4578 TYPE_CALLING_CONVENTION (type));
4579 /* tail_call_list is not printed. */
4580 break;
4581
4582 case TYPE_SPECIFIC_SELF_TYPE:
4583 printfi_filtered (spaces, "self_type ");
4584 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4585 puts_filtered ("\n");
4586 break;
4587 }
4588
4589 if (spaces == 0)
4590 obstack_free (&dont_print_type_obstack, NULL);
4591 }
4592 \f
4593 /* Trivial helpers for the libiberty hash table, for mapping one
4594 type to another. */
4595
4596 struct type_pair
4597 {
4598 struct type *old, *newobj;
4599 };
4600
4601 static hashval_t
4602 type_pair_hash (const void *item)
4603 {
4604 const struct type_pair *pair = (const struct type_pair *) item;
4605
4606 return htab_hash_pointer (pair->old);
4607 }
4608
4609 static int
4610 type_pair_eq (const void *item_lhs, const void *item_rhs)
4611 {
4612 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4613 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4614
4615 return lhs->old == rhs->old;
4616 }
4617
4618 /* Allocate the hash table used by copy_type_recursive to walk
4619 types without duplicates. We use OBJFILE's obstack, because
4620 OBJFILE is about to be deleted. */
4621
4622 htab_t
4623 create_copied_types_hash (struct objfile *objfile)
4624 {
4625 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4626 NULL, &objfile->objfile_obstack,
4627 hashtab_obstack_allocate,
4628 dummy_obstack_deallocate);
4629 }
4630
4631 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4632
4633 static struct dynamic_prop_list *
4634 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4635 struct dynamic_prop_list *list)
4636 {
4637 struct dynamic_prop_list *copy = list;
4638 struct dynamic_prop_list **node_ptr = &copy;
4639
4640 while (*node_ptr != NULL)
4641 {
4642 struct dynamic_prop_list *node_copy;
4643
4644 node_copy = ((struct dynamic_prop_list *)
4645 obstack_copy (objfile_obstack, *node_ptr,
4646 sizeof (struct dynamic_prop_list)));
4647 node_copy->prop = (*node_ptr)->prop;
4648 *node_ptr = node_copy;
4649
4650 node_ptr = &node_copy->next;
4651 }
4652
4653 return copy;
4654 }
4655
4656 /* Recursively copy (deep copy) TYPE, if it is associated with
4657 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4658 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4659 it is not associated with OBJFILE. */
4660
4661 struct type *
4662 copy_type_recursive (struct objfile *objfile,
4663 struct type *type,
4664 htab_t copied_types)
4665 {
4666 struct type_pair *stored, pair;
4667 void **slot;
4668 struct type *new_type;
4669
4670 if (! TYPE_OBJFILE_OWNED (type))
4671 return type;
4672
4673 /* This type shouldn't be pointing to any types in other objfiles;
4674 if it did, the type might disappear unexpectedly. */
4675 gdb_assert (TYPE_OBJFILE (type) == objfile);
4676
4677 pair.old = type;
4678 slot = htab_find_slot (copied_types, &pair, INSERT);
4679 if (*slot != NULL)
4680 return ((struct type_pair *) *slot)->newobj;
4681
4682 new_type = alloc_type_arch (get_type_arch (type));
4683
4684 /* We must add the new type to the hash table immediately, in case
4685 we encounter this type again during a recursive call below. */
4686 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4687 stored->old = type;
4688 stored->newobj = new_type;
4689 *slot = stored;
4690
4691 /* Copy the common fields of types. For the main type, we simply
4692 copy the entire thing and then update specific fields as needed. */
4693 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4694 TYPE_OBJFILE_OWNED (new_type) = 0;
4695 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4696
4697 if (TYPE_NAME (type))
4698 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4699 if (TYPE_TAG_NAME (type))
4700 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4701
4702 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4703 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4704
4705 /* Copy the fields. */
4706 if (TYPE_NFIELDS (type))
4707 {
4708 int i, nfields;
4709
4710 nfields = TYPE_NFIELDS (type);
4711 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4712 for (i = 0; i < nfields; i++)
4713 {
4714 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4715 TYPE_FIELD_ARTIFICIAL (type, i);
4716 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4717 if (TYPE_FIELD_TYPE (type, i))
4718 TYPE_FIELD_TYPE (new_type, i)
4719 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4720 copied_types);
4721 if (TYPE_FIELD_NAME (type, i))
4722 TYPE_FIELD_NAME (new_type, i) =
4723 xstrdup (TYPE_FIELD_NAME (type, i));
4724 switch (TYPE_FIELD_LOC_KIND (type, i))
4725 {
4726 case FIELD_LOC_KIND_BITPOS:
4727 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4728 TYPE_FIELD_BITPOS (type, i));
4729 break;
4730 case FIELD_LOC_KIND_ENUMVAL:
4731 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4732 TYPE_FIELD_ENUMVAL (type, i));
4733 break;
4734 case FIELD_LOC_KIND_PHYSADDR:
4735 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4736 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4737 break;
4738 case FIELD_LOC_KIND_PHYSNAME:
4739 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4740 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4741 i)));
4742 break;
4743 default:
4744 internal_error (__FILE__, __LINE__,
4745 _("Unexpected type field location kind: %d"),
4746 TYPE_FIELD_LOC_KIND (type, i));
4747 }
4748 }
4749 }
4750
4751 /* For range types, copy the bounds information. */
4752 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4753 {
4754 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4755 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4756 }
4757
4758 if (TYPE_DYN_PROP_LIST (type) != NULL)
4759 TYPE_DYN_PROP_LIST (new_type)
4760 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4761 TYPE_DYN_PROP_LIST (type));
4762
4763
4764 /* Copy pointers to other types. */
4765 if (TYPE_TARGET_TYPE (type))
4766 TYPE_TARGET_TYPE (new_type) =
4767 copy_type_recursive (objfile,
4768 TYPE_TARGET_TYPE (type),
4769 copied_types);
4770
4771 /* Maybe copy the type_specific bits.
4772
4773 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4774 base classes and methods. There's no fundamental reason why we
4775 can't, but at the moment it is not needed. */
4776
4777 switch (TYPE_SPECIFIC_FIELD (type))
4778 {
4779 case TYPE_SPECIFIC_NONE:
4780 break;
4781 case TYPE_SPECIFIC_FUNC:
4782 INIT_FUNC_SPECIFIC (new_type);
4783 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4784 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4785 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4786 break;
4787 case TYPE_SPECIFIC_FLOATFORMAT:
4788 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4789 break;
4790 case TYPE_SPECIFIC_CPLUS_STUFF:
4791 INIT_CPLUS_SPECIFIC (new_type);
4792 break;
4793 case TYPE_SPECIFIC_GNAT_STUFF:
4794 INIT_GNAT_SPECIFIC (new_type);
4795 break;
4796 case TYPE_SPECIFIC_SELF_TYPE:
4797 set_type_self_type (new_type,
4798 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4799 copied_types));
4800 break;
4801 default:
4802 gdb_assert_not_reached ("bad type_specific_kind");
4803 }
4804
4805 return new_type;
4806 }
4807
4808 /* Make a copy of the given TYPE, except that the pointer & reference
4809 types are not preserved.
4810
4811 This function assumes that the given type has an associated objfile.
4812 This objfile is used to allocate the new type. */
4813
4814 struct type *
4815 copy_type (const struct type *type)
4816 {
4817 struct type *new_type;
4818
4819 gdb_assert (TYPE_OBJFILE_OWNED (type));
4820
4821 new_type = alloc_type_copy (type);
4822 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4823 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4824 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4825 sizeof (struct main_type));
4826 if (TYPE_DYN_PROP_LIST (type) != NULL)
4827 TYPE_DYN_PROP_LIST (new_type)
4828 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4829 TYPE_DYN_PROP_LIST (type));
4830
4831 return new_type;
4832 }
4833 \f
4834 /* Helper functions to initialize architecture-specific types. */
4835
4836 /* Allocate a type structure associated with GDBARCH and set its
4837 CODE, LENGTH, and NAME fields. */
4838
4839 struct type *
4840 arch_type (struct gdbarch *gdbarch,
4841 enum type_code code, int bit, const char *name)
4842 {
4843 struct type *type;
4844
4845 type = alloc_type_arch (gdbarch);
4846 set_type_code (type, code);
4847 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
4848 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
4849
4850 if (name)
4851 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4852
4853 return type;
4854 }
4855
4856 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4857 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4858 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4859
4860 struct type *
4861 arch_integer_type (struct gdbarch *gdbarch,
4862 int bit, int unsigned_p, const char *name)
4863 {
4864 struct type *t;
4865
4866 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
4867 if (unsigned_p)
4868 TYPE_UNSIGNED (t) = 1;
4869
4870 return t;
4871 }
4872
4873 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4874 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4875 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4876
4877 struct type *
4878 arch_character_type (struct gdbarch *gdbarch,
4879 int bit, int unsigned_p, const char *name)
4880 {
4881 struct type *t;
4882
4883 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
4884 if (unsigned_p)
4885 TYPE_UNSIGNED (t) = 1;
4886
4887 return t;
4888 }
4889
4890 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4891 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4892 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4893
4894 struct type *
4895 arch_boolean_type (struct gdbarch *gdbarch,
4896 int bit, int unsigned_p, const char *name)
4897 {
4898 struct type *t;
4899
4900 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
4901 if (unsigned_p)
4902 TYPE_UNSIGNED (t) = 1;
4903
4904 return t;
4905 }
4906
4907 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4908 BIT is the type size in bits; if BIT equals -1, the size is
4909 determined by the floatformat. NAME is the type name. Set the
4910 TYPE_FLOATFORMAT from FLOATFORMATS. */
4911
4912 struct type *
4913 arch_float_type (struct gdbarch *gdbarch,
4914 int bit, const char *name,
4915 const struct floatformat **floatformats)
4916 {
4917 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
4918 struct type *t;
4919
4920 bit = verify_floatformat (bit, fmt);
4921 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
4922 TYPE_FLOATFORMAT (t) = fmt;
4923
4924 return t;
4925 }
4926
4927 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4928 BIT is the type size in bits. NAME is the type name. */
4929
4930 struct type *
4931 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4932 {
4933 struct type *t;
4934
4935 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
4936 return t;
4937 }
4938
4939 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4940 NAME is the type name. TARGET_TYPE is the component float type. */
4941
4942 struct type *
4943 arch_complex_type (struct gdbarch *gdbarch,
4944 const char *name, struct type *target_type)
4945 {
4946 struct type *t;
4947
4948 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4949 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
4950 TYPE_TARGET_TYPE (t) = target_type;
4951 return t;
4952 }
4953
4954 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4955 BIT is the pointer type size in bits. NAME is the type name.
4956 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4957 TYPE_UNSIGNED flag. */
4958
4959 struct type *
4960 arch_pointer_type (struct gdbarch *gdbarch,
4961 int bit, const char *name, struct type *target_type)
4962 {
4963 struct type *t;
4964
4965 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
4966 TYPE_TARGET_TYPE (t) = target_type;
4967 TYPE_UNSIGNED (t) = 1;
4968 return t;
4969 }
4970
4971 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4972 NAME is the type name. BIT is the size of the flag word in bits. */
4973
4974 struct type *
4975 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
4976 {
4977 struct type *type;
4978
4979 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
4980 TYPE_UNSIGNED (type) = 1;
4981 TYPE_NFIELDS (type) = 0;
4982 /* Pre-allocate enough space assuming every field is one bit. */
4983 TYPE_FIELDS (type)
4984 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
4985
4986 return type;
4987 }
4988
4989 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4990 position BITPOS is called NAME. Pass NAME as "" for fields that
4991 should not be printed. */
4992
4993 void
4994 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4995 struct type *field_type, const char *name)
4996 {
4997 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4998 int field_nr = TYPE_NFIELDS (type);
4999
5000 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5001 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5002 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5003 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5004 gdb_assert (name != NULL);
5005
5006 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5007 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5008 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5009 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5010 ++TYPE_NFIELDS (type);
5011 }
5012
5013 /* Special version of append_flags_type_field to add a flag field.
5014 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5015 position BITPOS is called NAME. */
5016
5017 void
5018 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5019 {
5020 struct gdbarch *gdbarch = get_type_arch (type);
5021
5022 append_flags_type_field (type, bitpos, 1,
5023 builtin_type (gdbarch)->builtin_bool,
5024 name);
5025 }
5026
5027 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5028 specified by CODE) associated with GDBARCH. NAME is the type name. */
5029
5030 struct type *
5031 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5032 enum type_code code)
5033 {
5034 struct type *t;
5035
5036 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5037 t = arch_type (gdbarch, code, 0, NULL);
5038 TYPE_TAG_NAME (t) = name;
5039 INIT_CPLUS_SPECIFIC (t);
5040 return t;
5041 }
5042
5043 /* Add new field with name NAME and type FIELD to composite type T.
5044 Do not set the field's position or adjust the type's length;
5045 the caller should do so. Return the new field. */
5046
5047 struct field *
5048 append_composite_type_field_raw (struct type *t, const char *name,
5049 struct type *field)
5050 {
5051 struct field *f;
5052
5053 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5054 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5055 TYPE_NFIELDS (t));
5056 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5057 memset (f, 0, sizeof f[0]);
5058 FIELD_TYPE (f[0]) = field;
5059 FIELD_NAME (f[0]) = name;
5060 return f;
5061 }
5062
5063 /* Add new field with name NAME and type FIELD to composite type T.
5064 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5065
5066 void
5067 append_composite_type_field_aligned (struct type *t, const char *name,
5068 struct type *field, int alignment)
5069 {
5070 struct field *f = append_composite_type_field_raw (t, name, field);
5071
5072 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5073 {
5074 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5075 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5076 }
5077 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5078 {
5079 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5080 if (TYPE_NFIELDS (t) > 1)
5081 {
5082 SET_FIELD_BITPOS (f[0],
5083 (FIELD_BITPOS (f[-1])
5084 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5085 * TARGET_CHAR_BIT)));
5086
5087 if (alignment)
5088 {
5089 int left;
5090
5091 alignment *= TARGET_CHAR_BIT;
5092 left = FIELD_BITPOS (f[0]) % alignment;
5093
5094 if (left)
5095 {
5096 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5097 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5098 }
5099 }
5100 }
5101 }
5102 }
5103
5104 /* Add new field with name NAME and type FIELD to composite type T. */
5105
5106 void
5107 append_composite_type_field (struct type *t, const char *name,
5108 struct type *field)
5109 {
5110 append_composite_type_field_aligned (t, name, field, 0);
5111 }
5112
5113 static struct gdbarch_data *gdbtypes_data;
5114
5115 const struct builtin_type *
5116 builtin_type (struct gdbarch *gdbarch)
5117 {
5118 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5119 }
5120
5121 static void *
5122 gdbtypes_post_init (struct gdbarch *gdbarch)
5123 {
5124 struct builtin_type *builtin_type
5125 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5126
5127 /* Basic types. */
5128 builtin_type->builtin_void
5129 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5130 builtin_type->builtin_char
5131 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5132 !gdbarch_char_signed (gdbarch), "char");
5133 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5134 builtin_type->builtin_signed_char
5135 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5136 0, "signed char");
5137 builtin_type->builtin_unsigned_char
5138 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5139 1, "unsigned char");
5140 builtin_type->builtin_short
5141 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5142 0, "short");
5143 builtin_type->builtin_unsigned_short
5144 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5145 1, "unsigned short");
5146 builtin_type->builtin_int
5147 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5148 0, "int");
5149 builtin_type->builtin_unsigned_int
5150 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5151 1, "unsigned int");
5152 builtin_type->builtin_long
5153 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5154 0, "long");
5155 builtin_type->builtin_unsigned_long
5156 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5157 1, "unsigned long");
5158 builtin_type->builtin_long_long
5159 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5160 0, "long long");
5161 builtin_type->builtin_unsigned_long_long
5162 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5163 1, "unsigned long long");
5164 builtin_type->builtin_float
5165 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5166 "float", gdbarch_float_format (gdbarch));
5167 builtin_type->builtin_double
5168 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5169 "double", gdbarch_double_format (gdbarch));
5170 builtin_type->builtin_long_double
5171 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5172 "long double", gdbarch_long_double_format (gdbarch));
5173 builtin_type->builtin_complex
5174 = arch_complex_type (gdbarch, "complex",
5175 builtin_type->builtin_float);
5176 builtin_type->builtin_double_complex
5177 = arch_complex_type (gdbarch, "double complex",
5178 builtin_type->builtin_double);
5179 builtin_type->builtin_string
5180 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5181 builtin_type->builtin_bool
5182 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5183
5184 /* The following three are about decimal floating point types, which
5185 are 32-bits, 64-bits and 128-bits respectively. */
5186 builtin_type->builtin_decfloat
5187 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5188 builtin_type->builtin_decdouble
5189 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5190 builtin_type->builtin_declong
5191 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5192
5193 /* "True" character types. */
5194 builtin_type->builtin_true_char
5195 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5196 builtin_type->builtin_true_unsigned_char
5197 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5198
5199 /* Fixed-size integer types. */
5200 builtin_type->builtin_int0
5201 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5202 builtin_type->builtin_int8
5203 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5204 builtin_type->builtin_uint8
5205 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5206 builtin_type->builtin_int16
5207 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5208 builtin_type->builtin_uint16
5209 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5210 builtin_type->builtin_int32
5211 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5212 builtin_type->builtin_uint32
5213 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5214 builtin_type->builtin_int64
5215 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5216 builtin_type->builtin_uint64
5217 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5218 builtin_type->builtin_int128
5219 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5220 builtin_type->builtin_uint128
5221 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5222 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5223 TYPE_INSTANCE_FLAG_NOTTEXT;
5224 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5225 TYPE_INSTANCE_FLAG_NOTTEXT;
5226
5227 /* Wide character types. */
5228 builtin_type->builtin_char16
5229 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5230 builtin_type->builtin_char32
5231 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5232 builtin_type->builtin_wchar
5233 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5234 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5235
5236 /* Default data/code pointer types. */
5237 builtin_type->builtin_data_ptr
5238 = lookup_pointer_type (builtin_type->builtin_void);
5239 builtin_type->builtin_func_ptr
5240 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5241 builtin_type->builtin_func_func
5242 = lookup_function_type (builtin_type->builtin_func_ptr);
5243
5244 /* This type represents a GDB internal function. */
5245 builtin_type->internal_fn
5246 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5247 "<internal function>");
5248
5249 /* This type represents an xmethod. */
5250 builtin_type->xmethod
5251 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5252
5253 return builtin_type;
5254 }
5255
5256 /* This set of objfile-based types is intended to be used by symbol
5257 readers as basic types. */
5258
5259 static const struct objfile_data *objfile_type_data;
5260
5261 const struct objfile_type *
5262 objfile_type (struct objfile *objfile)
5263 {
5264 struct gdbarch *gdbarch;
5265 struct objfile_type *objfile_type
5266 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5267
5268 if (objfile_type)
5269 return objfile_type;
5270
5271 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5272 1, struct objfile_type);
5273
5274 /* Use the objfile architecture to determine basic type properties. */
5275 gdbarch = get_objfile_arch (objfile);
5276
5277 /* Basic types. */
5278 objfile_type->builtin_void
5279 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5280 objfile_type->builtin_char
5281 = init_integer_type (objfile, TARGET_CHAR_BIT,
5282 !gdbarch_char_signed (gdbarch), "char");
5283 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5284 objfile_type->builtin_signed_char
5285 = init_integer_type (objfile, TARGET_CHAR_BIT,
5286 0, "signed char");
5287 objfile_type->builtin_unsigned_char
5288 = init_integer_type (objfile, TARGET_CHAR_BIT,
5289 1, "unsigned char");
5290 objfile_type->builtin_short
5291 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5292 0, "short");
5293 objfile_type->builtin_unsigned_short
5294 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5295 1, "unsigned short");
5296 objfile_type->builtin_int
5297 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5298 0, "int");
5299 objfile_type->builtin_unsigned_int
5300 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5301 1, "unsigned int");
5302 objfile_type->builtin_long
5303 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5304 0, "long");
5305 objfile_type->builtin_unsigned_long
5306 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5307 1, "unsigned long");
5308 objfile_type->builtin_long_long
5309 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5310 0, "long long");
5311 objfile_type->builtin_unsigned_long_long
5312 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5313 1, "unsigned long long");
5314 objfile_type->builtin_float
5315 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5316 "float", gdbarch_float_format (gdbarch));
5317 objfile_type->builtin_double
5318 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5319 "double", gdbarch_double_format (gdbarch));
5320 objfile_type->builtin_long_double
5321 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5322 "long double", gdbarch_long_double_format (gdbarch));
5323
5324 /* This type represents a type that was unrecognized in symbol read-in. */
5325 objfile_type->builtin_error
5326 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5327
5328 /* The following set of types is used for symbols with no
5329 debug information. */
5330 objfile_type->nodebug_text_symbol
5331 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5332 "<text variable, no debug info>");
5333 objfile_type->nodebug_text_gnu_ifunc_symbol
5334 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5335 "<text gnu-indirect-function variable, no debug info>");
5336 /* Ifunc resolvers return a function address. */
5337 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5338 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5339 "__IFUNC_RESOLVER_RET");
5340 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5341 objfile_type->nodebug_got_plt_symbol
5342 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5343 "<text from jump slot in .got.plt, no debug info>",
5344 objfile_type->nodebug_text_symbol);
5345 objfile_type->nodebug_data_symbol
5346 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5347 objfile_type->nodebug_unknown_symbol
5348 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5349 objfile_type->nodebug_tls_symbol
5350 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5351
5352 /* NOTE: on some targets, addresses and pointers are not necessarily
5353 the same.
5354
5355 The upshot is:
5356 - gdb's `struct type' always describes the target's
5357 representation.
5358 - gdb's `struct value' objects should always hold values in
5359 target form.
5360 - gdb's CORE_ADDR values are addresses in the unified virtual
5361 address space that the assembler and linker work with. Thus,
5362 since target_read_memory takes a CORE_ADDR as an argument, it
5363 can access any memory on the target, even if the processor has
5364 separate code and data address spaces.
5365
5366 In this context, objfile_type->builtin_core_addr is a bit odd:
5367 it's a target type for a value the target will never see. It's
5368 only used to hold the values of (typeless) linker symbols, which
5369 are indeed in the unified virtual address space. */
5370
5371 objfile_type->builtin_core_addr
5372 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5373 "__CORE_ADDR");
5374
5375 set_objfile_data (objfile, objfile_type_data, objfile_type);
5376 return objfile_type;
5377 }
5378
5379 void
5380 _initialize_gdbtypes (void)
5381 {
5382 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5383 objfile_type_data = register_objfile_data ();
5384
5385 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5386 _("Set debugging of C++ overloading."),
5387 _("Show debugging of C++ overloading."),
5388 _("When enabled, ranking of the "
5389 "functions is displayed."),
5390 NULL,
5391 show_overload_debug,
5392 &setdebuglist, &showdebuglist);
5393
5394 /* Add user knob for controlling resolution of opaque types. */
5395 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5396 &opaque_type_resolution,
5397 _("Set resolution of opaque struct/class/union"
5398 " types (if set before loading symbols)."),
5399 _("Show resolution of opaque struct/class/union"
5400 " types (if set before loading symbols)."),
5401 NULL, NULL,
5402 show_opaque_type_resolution,
5403 &setlist, &showlist);
5404
5405 /* Add an option to permit non-strict type checking. */
5406 add_setshow_boolean_cmd ("type", class_support,
5407 &strict_type_checking,
5408 _("Set strict type checking."),
5409 _("Show strict type checking."),
5410 NULL, NULL,
5411 show_strict_type_checking,
5412 &setchecklist, &showchecklist);
5413 }
This page took 0.193165 seconds and 5 git commands to generate.