gdb: remove TYPE_CODE macro
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118
119 /* Should opaque types be resolved? */
120
121 static bool opaque_type_resolution = true;
122
123 /* See gdbtypes.h. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static bool strict_type_checking = true;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 type->set_code (TYPE_CODE_UNDEF);
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the obstack associated with GDBARCH. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 type->set_code (TYPE_CODE_UNDEF);
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216 }
217
218 /* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222 struct type *
223 alloc_type_copy (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 }
230
231 /* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234 struct gdbarch *
235 get_type_arch (const struct type *type)
236 {
237 struct gdbarch *arch;
238
239 if (TYPE_OBJFILE_OWNED (type))
240 arch = TYPE_OWNER (type).objfile->arch ();
241 else
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
250 }
251
252 /* See gdbtypes.h. */
253
254 struct type *
255 get_target_type (struct type *type)
256 {
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265 }
266
267 /* See gdbtypes.h. */
268
269 unsigned int
270 type_length_units (struct type *type)
271 {
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276 }
277
278 /* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282 static struct type *
283 alloc_type_instance (struct type *oldtype)
284 {
285 struct type *type;
286
287 /* Allocate the structure. */
288
289 if (! TYPE_OBJFILE_OWNED (oldtype))
290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
291 else
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
299 return type;
300 }
301
302 /* Clear all remnants of the previous type at TYPE, in preparation for
303 replacing it with something else. Preserve owner information. */
304
305 static void
306 smash_type (struct type *type)
307 {
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321 }
322
323 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328 struct type *
329 make_pointer_type (struct type *type, struct type **typeptr)
330 {
331 struct type *ntype; /* New type */
332 struct type *chain;
333
334 ntype = TYPE_POINTER_TYPE (type);
335
336 if (ntype)
337 {
338 if (typeptr == 0)
339 return ntype; /* Don't care about alloc,
340 and have new type. */
341 else if (*typeptr == 0)
342 {
343 *typeptr = ntype; /* Tracking alloc, and have new type. */
344 return ntype;
345 }
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
350 ntype = alloc_type_copy (type);
351 if (typeptr)
352 *typeptr = ntype;
353 }
354 else /* We have storage, but need to reset it. */
355 {
356 ntype = *typeptr;
357 chain = TYPE_CHAIN (ntype);
358 smash_type (ntype);
359 TYPE_CHAIN (ntype) = chain;
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
365 /* FIXME! Assumes the machine has only one representation for pointers! */
366
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
369 ntype->set_code (TYPE_CODE_PTR);
370
371 /* Mark pointers as unsigned. The target converts between pointers
372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
373 gdbarch_address_to_pointer. */
374 TYPE_UNSIGNED (ntype) = 1;
375
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
384 return ntype;
385 }
386
387 /* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390 struct type *
391 lookup_pointer_type (struct type *type)
392 {
393 return make_pointer_type (type, (struct type **) 0);
394 }
395
396 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
401
402 struct type *
403 make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
405 {
406 struct type *ntype; /* New type */
407 struct type **reftype;
408 struct type *chain;
409
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
414
415 if (ntype)
416 {
417 if (typeptr == 0)
418 return ntype; /* Don't care about alloc,
419 and have new type. */
420 else if (*typeptr == 0)
421 {
422 *typeptr = ntype; /* Tracking alloc, and have new type. */
423 return ntype;
424 }
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
429 ntype = alloc_type_copy (type);
430 if (typeptr)
431 *typeptr = ntype;
432 }
433 else /* We have storage, but need to reset it. */
434 {
435 ntype = *typeptr;
436 chain = TYPE_CHAIN (ntype);
437 smash_type (ntype);
438 TYPE_CHAIN (ntype) = chain;
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
446
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
450
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
453 ntype->set_code (refcode);
454
455 *reftype = ntype;
456
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
465 return ntype;
466 }
467
468 /* Same as above, but caller doesn't care about memory allocation
469 details. */
470
471 struct type *
472 lookup_reference_type (struct type *type, enum type_code refcode)
473 {
474 return make_reference_type (type, (struct type **) 0, refcode);
475 }
476
477 /* Lookup the lvalue reference type for the type TYPE. */
478
479 struct type *
480 lookup_lvalue_reference_type (struct type *type)
481 {
482 return lookup_reference_type (type, TYPE_CODE_REF);
483 }
484
485 /* Lookup the rvalue reference type for the type TYPE. */
486
487 struct type *
488 lookup_rvalue_reference_type (struct type *type)
489 {
490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
491 }
492
493 /* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
496 function type we return. We allocate new memory if needed. */
497
498 struct type *
499 make_function_type (struct type *type, struct type **typeptr)
500 {
501 struct type *ntype; /* New type */
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
505 ntype = alloc_type_copy (type);
506 if (typeptr)
507 *typeptr = ntype;
508 }
509 else /* We have storage, but need to reset it. */
510 {
511 ntype = *typeptr;
512 smash_type (ntype);
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 ntype->set_code (TYPE_CODE_FUNC);
519
520 INIT_FUNC_SPECIFIC (ntype);
521
522 return ntype;
523 }
524
525 /* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528 struct type *
529 lookup_function_type (struct type *type)
530 {
531 return make_function_type (type, (struct type **) 0);
532 }
533
534 /* Given a type TYPE and argument types, return the appropriate
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
537
538 struct type *
539 lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542 {
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
546 if (nparams > 0)
547 {
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (check_typedef (param_types[nparams - 1])->code ()
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
561 else
562 TYPE_PROTOTYPED (fn) = 1;
563 }
564
565 TYPE_NFIELDS (fn) = nparams;
566 TYPE_FIELDS (fn)
567 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572 }
573
574 /* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
576
577 int
578 address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
580 {
581 int type_flags;
582
583 /* Check for known address space delimiters. */
584 if (!strcmp (space_identifier, "code"))
585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
586 else if (!strcmp (space_identifier, "data"))
587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
592 return type_flags;
593 else
594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
595 }
596
597 /* Identify address space identifier by integer flag as defined in
598 gdbtypes.h -- return the string version of the adress space name. */
599
600 const char *
601 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
602 {
603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
604 return "code";
605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
606 return "data";
607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
610 else
611 return NULL;
612 }
613
614 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
618
619 static struct type *
620 make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
622 {
623 struct type *ntype;
624
625 ntype = type;
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
633
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
649
650 /* Pointers or references to the original type are not relevant to
651 the new type. */
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
654
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
661
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
665 return ntype;
666 }
667
668 /* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
676
677 struct type *
678 make_type_with_address_space (struct type *type, int space_flag)
679 {
680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687 }
688
689 /* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
694
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
700
701 struct type *
702 make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
705 {
706 struct type *ntype; /* New type */
707
708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
711
712 if (cnst)
713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
714
715 if (voltl)
716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
717
718 if (typeptr && *typeptr != NULL)
719 {
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
733 }
734
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
737
738 if (typeptr != NULL)
739 *typeptr = ntype;
740
741 return ntype;
742 }
743
744 /* Make a 'restrict'-qualified version of TYPE. */
745
746 struct type *
747 make_restrict_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753 }
754
755 /* Make a type without const, volatile, or restrict. */
756
757 struct type *
758 make_unqualified_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766 }
767
768 /* Make a '_Atomic'-qualified version of TYPE. */
769
770 struct type *
771 make_atomic_type (struct type *type)
772 {
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777 }
778
779 /* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
782
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
788
789 void
790 replace_type (struct type *ntype, struct type *type)
791 {
792 struct type *chain;
793
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
799
800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
801
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
804 chain = ntype;
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
819
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
823 }
824
825 /* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830 struct type *
831 lookup_memberptr_type (struct type *type, struct type *domain)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (type);
836 smash_to_memberptr_type (mtype, domain, type);
837 return mtype;
838 }
839
840 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842 struct type *
843 lookup_methodptr_type (struct type *to_type)
844 {
845 struct type *mtype;
846
847 mtype = alloc_type_copy (to_type);
848 smash_to_methodptr_type (mtype, to_type);
849 return mtype;
850 }
851
852 /* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
857
858 struct type *
859 allocate_stub_method (struct type *type)
860 {
861 struct type *mtype;
862
863 mtype = alloc_type_copy (type);
864 mtype->set_code (TYPE_CODE_METHOD);
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
867 TYPE_TARGET_TYPE (mtype) = type;
868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
869 return mtype;
870 }
871
872 /* See gdbtypes.h. */
873
874 bool
875 operator== (const dynamic_prop &l, const dynamic_prop &r)
876 {
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897 }
898
899 /* See gdbtypes.h. */
900
901 bool
902 operator== (const range_bounds &l, const range_bounds &r)
903 {
904 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
911
912 #undef FIELD_EQ
913 }
914
915 /* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
917
918 struct type *
919 create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
923 {
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (index_type->code () != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
929 if (result_type == NULL)
930 result_type = alloc_type_copy (index_type);
931 result_type->set_code (TYPE_CODE_RANGE);
932 TYPE_TARGET_TYPE (result_type) = index_type;
933 if (TYPE_STUB (index_type))
934 TYPE_TARGET_STUB (result_type) = 1;
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
937
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
942 TYPE_RANGE_DATA (result_type)->bias = bias;
943
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
949 TYPE_UNSIGNED (result_type) = 1;
950
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
961 return result_type;
962 }
963
964 /* See gdbtypes.h. */
965
966 struct type *
967 create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974 {
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983 }
984
985
986
987 /* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997 struct type *
998 create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000 {
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1010
1011 return result_type;
1012 }
1013
1014 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
1017 static bool
1018 has_static_range (const struct range_bounds *bounds)
1019 {
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind == PROP_CONST
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
1025 }
1026
1027
1028 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
1031
1032 int
1033 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1034 {
1035 type = check_typedef (type);
1036 switch (type->code ())
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (TYPE_NFIELDS (type) > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
1046 entries. */
1047 int i;
1048
1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1050 for (i = 0; i < TYPE_NFIELDS (type); i++)
1051 {
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
1056 }
1057
1058 /* Set unsigned indicator if warranted. */
1059 if (*lowp >= 0)
1060 {
1061 TYPE_UNSIGNED (type) = 1;
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
1083 /* fall through */
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095 }
1096
1097 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
1101 Return 1 if the operation was successful. Return zero otherwise,
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111 int
1112 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113 {
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139 }
1140
1141 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153 */
1154
1155 int
1156 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157 {
1158 if (type->code () == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178 }
1179
1180 /* If the array TYPE has static bounds calculate and update its
1181 size, then return true. Otherwise return false and leave TYPE
1182 unchanged. */
1183
1184 static bool
1185 update_static_array_size (struct type *type)
1186 {
1187 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1188
1189 struct type *range_type = TYPE_INDEX_TYPE (type);
1190
1191 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1192 && has_static_range (TYPE_RANGE_DATA (range_type))
1193 && (!type_not_associated (type)
1194 && !type_not_allocated (type)))
1195 {
1196 LONGEST low_bound, high_bound;
1197 int stride;
1198 struct type *element_type;
1199
1200 /* If the array itself doesn't provide a stride value then take
1201 whatever stride the range provides. Don't update BIT_STRIDE as
1202 we don't want to place the stride value from the range into this
1203 arrays bit size field. */
1204 stride = TYPE_FIELD_BITSIZE (type, 0);
1205 if (stride == 0)
1206 stride = TYPE_BIT_STRIDE (range_type);
1207
1208 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1209 low_bound = high_bound = 0;
1210 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1211 /* Be careful when setting the array length. Ada arrays can be
1212 empty arrays with the high_bound being smaller than the low_bound.
1213 In such cases, the array length should be zero. */
1214 if (high_bound < low_bound)
1215 TYPE_LENGTH (type) = 0;
1216 else if (stride != 0)
1217 {
1218 /* Ensure that the type length is always positive, even in the
1219 case where (for example in Fortran) we have a negative
1220 stride. It is possible to have a single element array with a
1221 negative stride in Fortran (this doesn't mean anything
1222 special, it's still just a single element array) so do
1223 consider that case when touching this code. */
1224 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1225 TYPE_LENGTH (type)
1226 = ((std::abs (stride) * element_count) + 7) / 8;
1227 }
1228 else
1229 TYPE_LENGTH (type) =
1230 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1231
1232 return true;
1233 }
1234
1235 return false;
1236 }
1237
1238 /* Create an array type using either a blank type supplied in
1239 RESULT_TYPE, or creating a new type, inheriting the objfile from
1240 RANGE_TYPE.
1241
1242 Elements will be of type ELEMENT_TYPE, the indices will be of type
1243 RANGE_TYPE.
1244
1245 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1246 This byte stride property is added to the resulting array type
1247 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1248 argument can only be used to create types that are objfile-owned
1249 (see add_dyn_prop), meaning that either this function must be called
1250 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1251
1252 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1253 If BIT_STRIDE is not zero, build a packed array type whose element
1254 size is BIT_STRIDE. Otherwise, ignore this parameter.
1255
1256 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1257 sure it is TYPE_CODE_UNDEF before we bash it into an array
1258 type? */
1259
1260 struct type *
1261 create_array_type_with_stride (struct type *result_type,
1262 struct type *element_type,
1263 struct type *range_type,
1264 struct dynamic_prop *byte_stride_prop,
1265 unsigned int bit_stride)
1266 {
1267 if (byte_stride_prop != NULL
1268 && byte_stride_prop->kind == PROP_CONST)
1269 {
1270 /* The byte stride is actually not dynamic. Pretend we were
1271 called with bit_stride set instead of byte_stride_prop.
1272 This will give us the same result type, while avoiding
1273 the need to handle this as a special case. */
1274 bit_stride = byte_stride_prop->data.const_val * 8;
1275 byte_stride_prop = NULL;
1276 }
1277
1278 if (result_type == NULL)
1279 result_type = alloc_type_copy (range_type);
1280
1281 result_type->set_code (TYPE_CODE_ARRAY);
1282 TYPE_TARGET_TYPE (result_type) = element_type;
1283
1284 TYPE_NFIELDS (result_type) = 1;
1285 TYPE_FIELDS (result_type) =
1286 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1287 TYPE_INDEX_TYPE (result_type) = range_type;
1288 if (byte_stride_prop != NULL)
1289 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1290 else if (bit_stride > 0)
1291 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1292
1293 if (!update_static_array_size (result_type))
1294 {
1295 /* This type is dynamic and its length needs to be computed
1296 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1297 undefined by setting it to zero. Although we are not expected
1298 to trust TYPE_LENGTH in this case, setting the size to zero
1299 allows us to avoid allocating objects of random sizes in case
1300 we accidently do. */
1301 TYPE_LENGTH (result_type) = 0;
1302 }
1303
1304 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1305 if (TYPE_LENGTH (result_type) == 0)
1306 TYPE_TARGET_STUB (result_type) = 1;
1307
1308 return result_type;
1309 }
1310
1311 /* Same as create_array_type_with_stride but with no bit_stride
1312 (BIT_STRIDE = 0), thus building an unpacked array. */
1313
1314 struct type *
1315 create_array_type (struct type *result_type,
1316 struct type *element_type,
1317 struct type *range_type)
1318 {
1319 return create_array_type_with_stride (result_type, element_type,
1320 range_type, NULL, 0);
1321 }
1322
1323 struct type *
1324 lookup_array_range_type (struct type *element_type,
1325 LONGEST low_bound, LONGEST high_bound)
1326 {
1327 struct type *index_type;
1328 struct type *range_type;
1329
1330 if (TYPE_OBJFILE_OWNED (element_type))
1331 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1332 else
1333 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1334 range_type = create_static_range_type (NULL, index_type,
1335 low_bound, high_bound);
1336
1337 return create_array_type (NULL, element_type, range_type);
1338 }
1339
1340 /* Create a string type using either a blank type supplied in
1341 RESULT_TYPE, or creating a new type. String types are similar
1342 enough to array of char types that we can use create_array_type to
1343 build the basic type and then bash it into a string type.
1344
1345 For fixed length strings, the range type contains 0 as the lower
1346 bound and the length of the string minus one as the upper bound.
1347
1348 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1349 sure it is TYPE_CODE_UNDEF before we bash it into a string
1350 type? */
1351
1352 struct type *
1353 create_string_type (struct type *result_type,
1354 struct type *string_char_type,
1355 struct type *range_type)
1356 {
1357 result_type = create_array_type (result_type,
1358 string_char_type,
1359 range_type);
1360 result_type->set_code (TYPE_CODE_STRING);
1361 return result_type;
1362 }
1363
1364 struct type *
1365 lookup_string_range_type (struct type *string_char_type,
1366 LONGEST low_bound, LONGEST high_bound)
1367 {
1368 struct type *result_type;
1369
1370 result_type = lookup_array_range_type (string_char_type,
1371 low_bound, high_bound);
1372 result_type->set_code (TYPE_CODE_STRING);
1373 return result_type;
1374 }
1375
1376 struct type *
1377 create_set_type (struct type *result_type, struct type *domain_type)
1378 {
1379 if (result_type == NULL)
1380 result_type = alloc_type_copy (domain_type);
1381
1382 result_type->set_code (TYPE_CODE_SET);
1383 TYPE_NFIELDS (result_type) = 1;
1384 TYPE_FIELDS (result_type)
1385 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1386
1387 if (!TYPE_STUB (domain_type))
1388 {
1389 LONGEST low_bound, high_bound, bit_length;
1390
1391 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1392 low_bound = high_bound = 0;
1393 bit_length = high_bound - low_bound + 1;
1394 TYPE_LENGTH (result_type)
1395 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1396 if (low_bound >= 0)
1397 TYPE_UNSIGNED (result_type) = 1;
1398 }
1399 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1400
1401 return result_type;
1402 }
1403
1404 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1405 and any array types nested inside it. */
1406
1407 void
1408 make_vector_type (struct type *array_type)
1409 {
1410 struct type *inner_array, *elt_type;
1411 int flags;
1412
1413 /* Find the innermost array type, in case the array is
1414 multi-dimensional. */
1415 inner_array = array_type;
1416 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1417 inner_array = TYPE_TARGET_TYPE (inner_array);
1418
1419 elt_type = TYPE_TARGET_TYPE (inner_array);
1420 if (elt_type->code () == TYPE_CODE_INT)
1421 {
1422 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1423 elt_type = make_qualified_type (elt_type, flags, NULL);
1424 TYPE_TARGET_TYPE (inner_array) = elt_type;
1425 }
1426
1427 TYPE_VECTOR (array_type) = 1;
1428 }
1429
1430 struct type *
1431 init_vector_type (struct type *elt_type, int n)
1432 {
1433 struct type *array_type;
1434
1435 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1436 make_vector_type (array_type);
1437 return array_type;
1438 }
1439
1440 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1441 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1442 confusing. "self" is a common enough replacement for "this".
1443 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1444 TYPE_CODE_METHOD. */
1445
1446 struct type *
1447 internal_type_self_type (struct type *type)
1448 {
1449 switch (type->code ())
1450 {
1451 case TYPE_CODE_METHODPTR:
1452 case TYPE_CODE_MEMBERPTR:
1453 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1454 return NULL;
1455 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1456 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1457 case TYPE_CODE_METHOD:
1458 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1459 return NULL;
1460 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1461 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1462 default:
1463 gdb_assert_not_reached ("bad type");
1464 }
1465 }
1466
1467 /* Set the type of the class that TYPE belongs to.
1468 In c++ this is the class of "this".
1469 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1470 TYPE_CODE_METHOD. */
1471
1472 void
1473 set_type_self_type (struct type *type, struct type *self_type)
1474 {
1475 switch (type->code ())
1476 {
1477 case TYPE_CODE_METHODPTR:
1478 case TYPE_CODE_MEMBERPTR:
1479 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1480 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1481 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1482 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1483 break;
1484 case TYPE_CODE_METHOD:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 INIT_FUNC_SPECIFIC (type);
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1488 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1489 break;
1490 default:
1491 gdb_assert_not_reached ("bad type");
1492 }
1493 }
1494
1495 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1496 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1497 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1498 TYPE doesn't include the offset (that's the value of the MEMBER
1499 itself), but does include the structure type into which it points
1500 (for some reason).
1501
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
1504 allocated. */
1505
1506 void
1507 smash_to_memberptr_type (struct type *type, struct type *self_type,
1508 struct type *to_type)
1509 {
1510 smash_type (type);
1511 type->set_code (TYPE_CODE_MEMBERPTR);
1512 TYPE_TARGET_TYPE (type) = to_type;
1513 set_type_self_type (type, self_type);
1514 /* Assume that a data member pointer is the same size as a normal
1515 pointer. */
1516 TYPE_LENGTH (type)
1517 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1518 }
1519
1520 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1521
1522 When "smashing" the type, we preserve the objfile that the old type
1523 pointed to, since we aren't changing where the type is actually
1524 allocated. */
1525
1526 void
1527 smash_to_methodptr_type (struct type *type, struct type *to_type)
1528 {
1529 smash_type (type);
1530 type->set_code (TYPE_CODE_METHODPTR);
1531 TYPE_TARGET_TYPE (type) = to_type;
1532 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1533 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1534 }
1535
1536 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1537 METHOD just means `function that gets an extra "this" argument'.
1538
1539 When "smashing" the type, we preserve the objfile that the old type
1540 pointed to, since we aren't changing where the type is actually
1541 allocated. */
1542
1543 void
1544 smash_to_method_type (struct type *type, struct type *self_type,
1545 struct type *to_type, struct field *args,
1546 int nargs, int varargs)
1547 {
1548 smash_type (type);
1549 type->set_code (TYPE_CODE_METHOD);
1550 TYPE_TARGET_TYPE (type) = to_type;
1551 set_type_self_type (type, self_type);
1552 TYPE_FIELDS (type) = args;
1553 TYPE_NFIELDS (type) = nargs;
1554 if (varargs)
1555 TYPE_VARARGS (type) = 1;
1556 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1557 }
1558
1559 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1560 Since GCC PR debug/47510 DWARF provides associated information to detect the
1561 anonymous class linkage name from its typedef.
1562
1563 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1564 apply it itself. */
1565
1566 const char *
1567 type_name_or_error (struct type *type)
1568 {
1569 struct type *saved_type = type;
1570 const char *name;
1571 struct objfile *objfile;
1572
1573 type = check_typedef (type);
1574
1575 name = TYPE_NAME (type);
1576 if (name != NULL)
1577 return name;
1578
1579 name = TYPE_NAME (saved_type);
1580 objfile = TYPE_OBJFILE (saved_type);
1581 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1582 name ? name : "<anonymous>",
1583 objfile ? objfile_name (objfile) : "<arch>");
1584 }
1585
1586 /* Lookup a typedef or primitive type named NAME, visible in lexical
1587 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1588 suitably defined. */
1589
1590 struct type *
1591 lookup_typename (const struct language_defn *language,
1592 const char *name,
1593 const struct block *block, int noerr)
1594 {
1595 struct symbol *sym;
1596
1597 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1598 language->la_language, NULL).symbol;
1599 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1600 return SYMBOL_TYPE (sym);
1601
1602 if (noerr)
1603 return NULL;
1604 error (_("No type named %s."), name);
1605 }
1606
1607 struct type *
1608 lookup_unsigned_typename (const struct language_defn *language,
1609 const char *name)
1610 {
1611 char *uns = (char *) alloca (strlen (name) + 10);
1612
1613 strcpy (uns, "unsigned ");
1614 strcpy (uns + 9, name);
1615 return lookup_typename (language, uns, NULL, 0);
1616 }
1617
1618 struct type *
1619 lookup_signed_typename (const struct language_defn *language, const char *name)
1620 {
1621 struct type *t;
1622 char *uns = (char *) alloca (strlen (name) + 8);
1623
1624 strcpy (uns, "signed ");
1625 strcpy (uns + 7, name);
1626 t = lookup_typename (language, uns, NULL, 1);
1627 /* If we don't find "signed FOO" just try again with plain "FOO". */
1628 if (t != NULL)
1629 return t;
1630 return lookup_typename (language, name, NULL, 0);
1631 }
1632
1633 /* Lookup a structure type named "struct NAME",
1634 visible in lexical block BLOCK. */
1635
1636 struct type *
1637 lookup_struct (const char *name, const struct block *block)
1638 {
1639 struct symbol *sym;
1640
1641 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1642
1643 if (sym == NULL)
1644 {
1645 error (_("No struct type named %s."), name);
1646 }
1647 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1648 {
1649 error (_("This context has class, union or enum %s, not a struct."),
1650 name);
1651 }
1652 return (SYMBOL_TYPE (sym));
1653 }
1654
1655 /* Lookup a union type named "union NAME",
1656 visible in lexical block BLOCK. */
1657
1658 struct type *
1659 lookup_union (const char *name, const struct block *block)
1660 {
1661 struct symbol *sym;
1662 struct type *t;
1663
1664 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1665
1666 if (sym == NULL)
1667 error (_("No union type named %s."), name);
1668
1669 t = SYMBOL_TYPE (sym);
1670
1671 if (t->code () == TYPE_CODE_UNION)
1672 return t;
1673
1674 /* If we get here, it's not a union. */
1675 error (_("This context has class, struct or enum %s, not a union."),
1676 name);
1677 }
1678
1679 /* Lookup an enum type named "enum NAME",
1680 visible in lexical block BLOCK. */
1681
1682 struct type *
1683 lookup_enum (const char *name, const struct block *block)
1684 {
1685 struct symbol *sym;
1686
1687 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1688 if (sym == NULL)
1689 {
1690 error (_("No enum type named %s."), name);
1691 }
1692 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1693 {
1694 error (_("This context has class, struct or union %s, not an enum."),
1695 name);
1696 }
1697 return (SYMBOL_TYPE (sym));
1698 }
1699
1700 /* Lookup a template type named "template NAME<TYPE>",
1701 visible in lexical block BLOCK. */
1702
1703 struct type *
1704 lookup_template_type (const char *name, struct type *type,
1705 const struct block *block)
1706 {
1707 struct symbol *sym;
1708 char *nam = (char *)
1709 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1710
1711 strcpy (nam, name);
1712 strcat (nam, "<");
1713 strcat (nam, TYPE_NAME (type));
1714 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1715
1716 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1717
1718 if (sym == NULL)
1719 {
1720 error (_("No template type named %s."), name);
1721 }
1722 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1723 {
1724 error (_("This context has class, union or enum %s, not a struct."),
1725 name);
1726 }
1727 return (SYMBOL_TYPE (sym));
1728 }
1729
1730 /* See gdbtypes.h. */
1731
1732 struct_elt
1733 lookup_struct_elt (struct type *type, const char *name, int noerr)
1734 {
1735 int i;
1736
1737 for (;;)
1738 {
1739 type = check_typedef (type);
1740 if (type->code () != TYPE_CODE_PTR
1741 && type->code () != TYPE_CODE_REF)
1742 break;
1743 type = TYPE_TARGET_TYPE (type);
1744 }
1745
1746 if (type->code () != TYPE_CODE_STRUCT
1747 && type->code () != TYPE_CODE_UNION)
1748 {
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s is not a structure or union type."),
1751 type_name.c_str ());
1752 }
1753
1754 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1755 {
1756 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1757
1758 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1759 {
1760 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1761 }
1762 else if (!t_field_name || *t_field_name == '\0')
1763 {
1764 struct_elt elt
1765 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1766 if (elt.field != NULL)
1767 {
1768 elt.offset += TYPE_FIELD_BITPOS (type, i);
1769 return elt;
1770 }
1771 }
1772 }
1773
1774 /* OK, it's not in this class. Recursively check the baseclasses. */
1775 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1776 {
1777 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1778 if (elt.field != NULL)
1779 return elt;
1780 }
1781
1782 if (noerr)
1783 return {nullptr, 0};
1784
1785 std::string type_name = type_to_string (type);
1786 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1787 }
1788
1789 /* See gdbtypes.h. */
1790
1791 struct type *
1792 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1793 {
1794 struct_elt elt = lookup_struct_elt (type, name, noerr);
1795 if (elt.field != NULL)
1796 return FIELD_TYPE (*elt.field);
1797 else
1798 return NULL;
1799 }
1800
1801 /* Store in *MAX the largest number representable by unsigned integer type
1802 TYPE. */
1803
1804 void
1805 get_unsigned_type_max (struct type *type, ULONGEST *max)
1806 {
1807 unsigned int n;
1808
1809 type = check_typedef (type);
1810 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1811 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1812
1813 /* Written this way to avoid overflow. */
1814 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1815 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1816 }
1817
1818 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1819 signed integer type TYPE. */
1820
1821 void
1822 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1823 {
1824 unsigned int n;
1825
1826 type = check_typedef (type);
1827 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1828 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1829
1830 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1831 *min = -((ULONGEST) 1 << (n - 1));
1832 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1833 }
1834
1835 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1836 cplus_stuff.vptr_fieldno.
1837
1838 cplus_stuff is initialized to cplus_struct_default which does not
1839 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1840 designated initializers). We cope with that here. */
1841
1842 int
1843 internal_type_vptr_fieldno (struct type *type)
1844 {
1845 type = check_typedef (type);
1846 gdb_assert (type->code () == TYPE_CODE_STRUCT
1847 || type->code () == TYPE_CODE_UNION);
1848 if (!HAVE_CPLUS_STRUCT (type))
1849 return -1;
1850 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1851 }
1852
1853 /* Set the value of cplus_stuff.vptr_fieldno. */
1854
1855 void
1856 set_type_vptr_fieldno (struct type *type, int fieldno)
1857 {
1858 type = check_typedef (type);
1859 gdb_assert (type->code () == TYPE_CODE_STRUCT
1860 || type->code () == TYPE_CODE_UNION);
1861 if (!HAVE_CPLUS_STRUCT (type))
1862 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1863 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1864 }
1865
1866 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1867 cplus_stuff.vptr_basetype. */
1868
1869 struct type *
1870 internal_type_vptr_basetype (struct type *type)
1871 {
1872 type = check_typedef (type);
1873 gdb_assert (type->code () == TYPE_CODE_STRUCT
1874 || type->code () == TYPE_CODE_UNION);
1875 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1876 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1877 }
1878
1879 /* Set the value of cplus_stuff.vptr_basetype. */
1880
1881 void
1882 set_type_vptr_basetype (struct type *type, struct type *basetype)
1883 {
1884 type = check_typedef (type);
1885 gdb_assert (type->code () == TYPE_CODE_STRUCT
1886 || type->code () == TYPE_CODE_UNION);
1887 if (!HAVE_CPLUS_STRUCT (type))
1888 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1889 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1890 }
1891
1892 /* Lookup the vptr basetype/fieldno values for TYPE.
1893 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1894 vptr_fieldno. Also, if found and basetype is from the same objfile,
1895 cache the results.
1896 If not found, return -1 and ignore BASETYPEP.
1897 Callers should be aware that in some cases (for example,
1898 the type or one of its baseclasses is a stub type and we are
1899 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1900 this function will not be able to find the
1901 virtual function table pointer, and vptr_fieldno will remain -1 and
1902 vptr_basetype will remain NULL or incomplete. */
1903
1904 int
1905 get_vptr_fieldno (struct type *type, struct type **basetypep)
1906 {
1907 type = check_typedef (type);
1908
1909 if (TYPE_VPTR_FIELDNO (type) < 0)
1910 {
1911 int i;
1912
1913 /* We must start at zero in case the first (and only) baseclass
1914 is virtual (and hence we cannot share the table pointer). */
1915 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1916 {
1917 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1918 int fieldno;
1919 struct type *basetype;
1920
1921 fieldno = get_vptr_fieldno (baseclass, &basetype);
1922 if (fieldno >= 0)
1923 {
1924 /* If the type comes from a different objfile we can't cache
1925 it, it may have a different lifetime. PR 2384 */
1926 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1927 {
1928 set_type_vptr_fieldno (type, fieldno);
1929 set_type_vptr_basetype (type, basetype);
1930 }
1931 if (basetypep)
1932 *basetypep = basetype;
1933 return fieldno;
1934 }
1935 }
1936
1937 /* Not found. */
1938 return -1;
1939 }
1940 else
1941 {
1942 if (basetypep)
1943 *basetypep = TYPE_VPTR_BASETYPE (type);
1944 return TYPE_VPTR_FIELDNO (type);
1945 }
1946 }
1947
1948 static void
1949 stub_noname_complaint (void)
1950 {
1951 complaint (_("stub type has NULL name"));
1952 }
1953
1954 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1955 attached to it, and that property has a non-constant value. */
1956
1957 static int
1958 array_type_has_dynamic_stride (struct type *type)
1959 {
1960 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1961
1962 return (prop != NULL && prop->kind != PROP_CONST);
1963 }
1964
1965 /* Worker for is_dynamic_type. */
1966
1967 static int
1968 is_dynamic_type_internal (struct type *type, int top_level)
1969 {
1970 type = check_typedef (type);
1971
1972 /* We only want to recognize references at the outermost level. */
1973 if (top_level && type->code () == TYPE_CODE_REF)
1974 type = check_typedef (TYPE_TARGET_TYPE (type));
1975
1976 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1977 dynamic, even if the type itself is statically defined.
1978 From a user's point of view, this may appear counter-intuitive;
1979 but it makes sense in this context, because the point is to determine
1980 whether any part of the type needs to be resolved before it can
1981 be exploited. */
1982 if (TYPE_DATA_LOCATION (type) != NULL
1983 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1984 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1985 return 1;
1986
1987 if (TYPE_ASSOCIATED_PROP (type))
1988 return 1;
1989
1990 if (TYPE_ALLOCATED_PROP (type))
1991 return 1;
1992
1993 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
1994 if (prop != nullptr && prop->kind != PROP_TYPE)
1995 return 1;
1996
1997 if (TYPE_HAS_DYNAMIC_LENGTH (type))
1998 return 1;
1999
2000 switch (type->code ())
2001 {
2002 case TYPE_CODE_RANGE:
2003 {
2004 /* A range type is obviously dynamic if it has at least one
2005 dynamic bound. But also consider the range type to be
2006 dynamic when its subtype is dynamic, even if the bounds
2007 of the range type are static. It allows us to assume that
2008 the subtype of a static range type is also static. */
2009 return (!has_static_range (TYPE_RANGE_DATA (type))
2010 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2011 }
2012
2013 case TYPE_CODE_STRING:
2014 /* Strings are very much like an array of characters, and can be
2015 treated as one here. */
2016 case TYPE_CODE_ARRAY:
2017 {
2018 gdb_assert (TYPE_NFIELDS (type) == 1);
2019
2020 /* The array is dynamic if either the bounds are dynamic... */
2021 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
2022 return 1;
2023 /* ... or the elements it contains have a dynamic contents... */
2024 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2025 return 1;
2026 /* ... or if it has a dynamic stride... */
2027 if (array_type_has_dynamic_stride (type))
2028 return 1;
2029 return 0;
2030 }
2031
2032 case TYPE_CODE_STRUCT:
2033 case TYPE_CODE_UNION:
2034 {
2035 int i;
2036
2037 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2038
2039 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2040 {
2041 /* Static fields can be ignored here. */
2042 if (field_is_static (&TYPE_FIELD (type, i)))
2043 continue;
2044 /* If the field has dynamic type, then so does TYPE. */
2045 if (is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2046 return 1;
2047 /* If the field is at a fixed offset, then it is not
2048 dynamic. */
2049 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2050 continue;
2051 /* Do not consider C++ virtual base types to be dynamic
2052 due to the field's offset being dynamic; these are
2053 handled via other means. */
2054 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2055 continue;
2056 return 1;
2057 }
2058 }
2059 break;
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* See gdbtypes.h. */
2066
2067 int
2068 is_dynamic_type (struct type *type)
2069 {
2070 return is_dynamic_type_internal (type, 1);
2071 }
2072
2073 static struct type *resolve_dynamic_type_internal
2074 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2075
2076 /* Given a dynamic range type (dyn_range_type) and a stack of
2077 struct property_addr_info elements, return a static version
2078 of that type. */
2079
2080 static struct type *
2081 resolve_dynamic_range (struct type *dyn_range_type,
2082 struct property_addr_info *addr_stack)
2083 {
2084 CORE_ADDR value;
2085 struct type *static_range_type, *static_target_type;
2086 const struct dynamic_prop *prop;
2087 struct dynamic_prop low_bound, high_bound, stride;
2088
2089 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2090
2091 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2092 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2093 {
2094 low_bound.kind = PROP_CONST;
2095 low_bound.data.const_val = value;
2096 }
2097 else
2098 {
2099 low_bound.kind = PROP_UNDEFINED;
2100 low_bound.data.const_val = 0;
2101 }
2102
2103 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2104 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2105 {
2106 high_bound.kind = PROP_CONST;
2107 high_bound.data.const_val = value;
2108
2109 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2110 high_bound.data.const_val
2111 = low_bound.data.const_val + high_bound.data.const_val - 1;
2112 }
2113 else
2114 {
2115 high_bound.kind = PROP_UNDEFINED;
2116 high_bound.data.const_val = 0;
2117 }
2118
2119 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2120 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2121 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2122 {
2123 stride.kind = PROP_CONST;
2124 stride.data.const_val = value;
2125
2126 /* If we have a bit stride that is not an exact number of bytes then
2127 I really don't think this is going to work with current GDB, the
2128 array indexing code in GDB seems to be pretty heavily tied to byte
2129 offsets right now. Assuming 8 bits in a byte. */
2130 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2131 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2132 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2133 error (_("bit strides that are not a multiple of the byte size "
2134 "are currently not supported"));
2135 }
2136 else
2137 {
2138 stride.kind = PROP_UNDEFINED;
2139 stride.data.const_val = 0;
2140 byte_stride_p = true;
2141 }
2142
2143 static_target_type
2144 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2145 addr_stack, 0);
2146 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2147 static_range_type = create_range_type_with_stride
2148 (copy_type (dyn_range_type), static_target_type,
2149 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2150 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2151 return static_range_type;
2152 }
2153
2154 /* Resolves dynamic bound values of an array or string type TYPE to static
2155 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2156 needed during the dynamic resolution. */
2157
2158 static struct type *
2159 resolve_dynamic_array_or_string (struct type *type,
2160 struct property_addr_info *addr_stack)
2161 {
2162 CORE_ADDR value;
2163 struct type *elt_type;
2164 struct type *range_type;
2165 struct type *ary_dim;
2166 struct dynamic_prop *prop;
2167 unsigned int bit_stride = 0;
2168
2169 /* For dynamic type resolution strings can be treated like arrays of
2170 characters. */
2171 gdb_assert (type->code () == TYPE_CODE_ARRAY
2172 || type->code () == TYPE_CODE_STRING);
2173
2174 type = copy_type (type);
2175
2176 elt_type = type;
2177 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2178 range_type = resolve_dynamic_range (range_type, addr_stack);
2179
2180 /* Resolve allocated/associated here before creating a new array type, which
2181 will update the length of the array accordingly. */
2182 prop = TYPE_ALLOCATED_PROP (type);
2183 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2184 {
2185 TYPE_DYN_PROP_ADDR (prop) = value;
2186 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2187 }
2188 prop = TYPE_ASSOCIATED_PROP (type);
2189 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2190 {
2191 TYPE_DYN_PROP_ADDR (prop) = value;
2192 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2193 }
2194
2195 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2196
2197 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2198 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2199 else
2200 elt_type = TYPE_TARGET_TYPE (type);
2201
2202 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2203 if (prop != NULL)
2204 {
2205 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2206 {
2207 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2208 bit_stride = (unsigned int) (value * 8);
2209 }
2210 else
2211 {
2212 /* Could be a bug in our code, but it could also happen
2213 if the DWARF info is not correct. Issue a warning,
2214 and assume no byte/bit stride (leave bit_stride = 0). */
2215 warning (_("cannot determine array stride for type %s"),
2216 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2217 }
2218 }
2219 else
2220 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2221
2222 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2223 bit_stride);
2224 }
2225
2226 /* Resolve dynamic bounds of members of the union TYPE to static
2227 bounds. ADDR_STACK is a stack of struct property_addr_info
2228 to be used if needed during the dynamic resolution. */
2229
2230 static struct type *
2231 resolve_dynamic_union (struct type *type,
2232 struct property_addr_info *addr_stack)
2233 {
2234 struct type *resolved_type;
2235 int i;
2236 unsigned int max_len = 0;
2237
2238 gdb_assert (type->code () == TYPE_CODE_UNION);
2239
2240 resolved_type = copy_type (type);
2241 TYPE_FIELDS (resolved_type)
2242 = (struct field *) TYPE_ALLOC (resolved_type,
2243 TYPE_NFIELDS (resolved_type)
2244 * sizeof (struct field));
2245 memcpy (TYPE_FIELDS (resolved_type),
2246 TYPE_FIELDS (type),
2247 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2248 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2249 {
2250 struct type *t;
2251
2252 if (field_is_static (&TYPE_FIELD (type, i)))
2253 continue;
2254
2255 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2256 addr_stack, 0);
2257 TYPE_FIELD_TYPE (resolved_type, i) = t;
2258 if (TYPE_LENGTH (t) > max_len)
2259 max_len = TYPE_LENGTH (t);
2260 }
2261
2262 TYPE_LENGTH (resolved_type) = max_len;
2263 return resolved_type;
2264 }
2265
2266 /* See gdbtypes.h. */
2267
2268 bool
2269 variant::matches (ULONGEST value, bool is_unsigned) const
2270 {
2271 for (const discriminant_range &range : discriminants)
2272 if (range.contains (value, is_unsigned))
2273 return true;
2274 return false;
2275 }
2276
2277 static void
2278 compute_variant_fields_inner (struct type *type,
2279 struct property_addr_info *addr_stack,
2280 const variant_part &part,
2281 std::vector<bool> &flags);
2282
2283 /* A helper function to determine which variant fields will be active.
2284 This handles both the variant's direct fields, and any variant
2285 parts embedded in this variant. TYPE is the type we're examining.
2286 ADDR_STACK holds information about the concrete object. VARIANT is
2287 the current variant to be handled. FLAGS is where the results are
2288 stored -- this function sets the Nth element in FLAGS if the
2289 corresponding field is enabled. ENABLED is whether this variant is
2290 enabled or not. */
2291
2292 static void
2293 compute_variant_fields_recurse (struct type *type,
2294 struct property_addr_info *addr_stack,
2295 const variant &variant,
2296 std::vector<bool> &flags,
2297 bool enabled)
2298 {
2299 for (int field = variant.first_field; field < variant.last_field; ++field)
2300 flags[field] = enabled;
2301
2302 for (const variant_part &new_part : variant.parts)
2303 {
2304 if (enabled)
2305 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2306 else
2307 {
2308 for (const auto &sub_variant : new_part.variants)
2309 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2310 flags, enabled);
2311 }
2312 }
2313 }
2314
2315 /* A helper function to determine which variant fields will be active.
2316 This evaluates the discriminant, decides which variant (if any) is
2317 active, and then updates FLAGS to reflect which fields should be
2318 available. TYPE is the type we're examining. ADDR_STACK holds
2319 information about the concrete object. VARIANT is the current
2320 variant to be handled. FLAGS is where the results are stored --
2321 this function sets the Nth element in FLAGS if the corresponding
2322 field is enabled. */
2323
2324 static void
2325 compute_variant_fields_inner (struct type *type,
2326 struct property_addr_info *addr_stack,
2327 const variant_part &part,
2328 std::vector<bool> &flags)
2329 {
2330 /* Evaluate the discriminant. */
2331 gdb::optional<ULONGEST> discr_value;
2332 if (part.discriminant_index != -1)
2333 {
2334 int idx = part.discriminant_index;
2335
2336 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2337 error (_("Cannot determine struct field location"
2338 " (invalid location kind)"));
2339
2340 if (addr_stack->valaddr.data () != NULL)
2341 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2342 idx);
2343 else
2344 {
2345 CORE_ADDR addr = (addr_stack->addr
2346 + (TYPE_FIELD_BITPOS (type, idx)
2347 / TARGET_CHAR_BIT));
2348
2349 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2350 LONGEST size = bitsize / 8;
2351 if (size == 0)
2352 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2353
2354 gdb_byte bits[sizeof (ULONGEST)];
2355 read_memory (addr, bits, size);
2356
2357 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2358 % TARGET_CHAR_BIT);
2359
2360 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2361 bits, bitpos, bitsize);
2362 }
2363 }
2364
2365 /* Go through each variant and see which applies. */
2366 const variant *default_variant = nullptr;
2367 const variant *applied_variant = nullptr;
2368 for (const auto &variant : part.variants)
2369 {
2370 if (variant.is_default ())
2371 default_variant = &variant;
2372 else if (discr_value.has_value ()
2373 && variant.matches (*discr_value, part.is_unsigned))
2374 {
2375 applied_variant = &variant;
2376 break;
2377 }
2378 }
2379 if (applied_variant == nullptr)
2380 applied_variant = default_variant;
2381
2382 for (const auto &variant : part.variants)
2383 compute_variant_fields_recurse (type, addr_stack, variant,
2384 flags, applied_variant == &variant);
2385 }
2386
2387 /* Determine which variant fields are available in TYPE. The enabled
2388 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2389 about the concrete object. PARTS describes the top-level variant
2390 parts for this type. */
2391
2392 static void
2393 compute_variant_fields (struct type *type,
2394 struct type *resolved_type,
2395 struct property_addr_info *addr_stack,
2396 const gdb::array_view<variant_part> &parts)
2397 {
2398 /* Assume all fields are included by default. */
2399 std::vector<bool> flags (TYPE_NFIELDS (resolved_type), true);
2400
2401 /* Now disable fields based on the variants that control them. */
2402 for (const auto &part : parts)
2403 compute_variant_fields_inner (type, addr_stack, part, flags);
2404
2405 TYPE_NFIELDS (resolved_type) = std::count (flags.begin (), flags.end (),
2406 true);
2407 TYPE_FIELDS (resolved_type)
2408 = (struct field *) TYPE_ALLOC (resolved_type,
2409 TYPE_NFIELDS (resolved_type)
2410 * sizeof (struct field));
2411 int out = 0;
2412 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
2413 {
2414 if (!flags[i])
2415 continue;
2416
2417 TYPE_FIELD (resolved_type, out) = TYPE_FIELD (type, i);
2418 ++out;
2419 }
2420 }
2421
2422 /* Resolve dynamic bounds of members of the struct TYPE to static
2423 bounds. ADDR_STACK is a stack of struct property_addr_info to
2424 be used if needed during the dynamic resolution. */
2425
2426 static struct type *
2427 resolve_dynamic_struct (struct type *type,
2428 struct property_addr_info *addr_stack)
2429 {
2430 struct type *resolved_type;
2431 int i;
2432 unsigned resolved_type_bit_length = 0;
2433
2434 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2435 gdb_assert (TYPE_NFIELDS (type) > 0);
2436
2437 resolved_type = copy_type (type);
2438
2439 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2440 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2441 {
2442 compute_variant_fields (type, resolved_type, addr_stack,
2443 *variant_prop->data.variant_parts);
2444 /* We want to leave the property attached, so that the Rust code
2445 can tell whether the type was originally an enum. */
2446 variant_prop->kind = PROP_TYPE;
2447 variant_prop->data.original_type = type;
2448 }
2449 else
2450 {
2451 TYPE_FIELDS (resolved_type)
2452 = (struct field *) TYPE_ALLOC (resolved_type,
2453 TYPE_NFIELDS (resolved_type)
2454 * sizeof (struct field));
2455 memcpy (TYPE_FIELDS (resolved_type),
2456 TYPE_FIELDS (type),
2457 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2458 }
2459
2460 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2461 {
2462 unsigned new_bit_length;
2463 struct property_addr_info pinfo;
2464
2465 if (field_is_static (&TYPE_FIELD (resolved_type, i)))
2466 continue;
2467
2468 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2469 {
2470 struct dwarf2_property_baton baton;
2471 baton.property_type
2472 = lookup_pointer_type (TYPE_FIELD_TYPE (resolved_type, i));
2473 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2474
2475 struct dynamic_prop prop;
2476 prop.kind = PROP_LOCEXPR;
2477 prop.data.baton = &baton;
2478
2479 CORE_ADDR addr;
2480 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2481 true))
2482 SET_FIELD_BITPOS (TYPE_FIELD (resolved_type, i),
2483 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2484 }
2485
2486 /* As we know this field is not a static field, the field's
2487 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2488 this is the case, but only trigger a simple error rather
2489 than an internal error if that fails. While failing
2490 that verification indicates a bug in our code, the error
2491 is not severe enough to suggest to the user he stops
2492 his debugging session because of it. */
2493 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2494 error (_("Cannot determine struct field location"
2495 " (invalid location kind)"));
2496
2497 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
2498 pinfo.valaddr = addr_stack->valaddr;
2499 pinfo.addr
2500 = (addr_stack->addr
2501 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2502 pinfo.next = addr_stack;
2503
2504 TYPE_FIELD_TYPE (resolved_type, i)
2505 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2506 &pinfo, 0);
2507 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2508 == FIELD_LOC_KIND_BITPOS);
2509
2510 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2511 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2512 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2513 else
2514 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2515 * TARGET_CHAR_BIT);
2516
2517 /* Normally, we would use the position and size of the last field
2518 to determine the size of the enclosing structure. But GCC seems
2519 to be encoding the position of some fields incorrectly when
2520 the struct contains a dynamic field that is not placed last.
2521 So we compute the struct size based on the field that has
2522 the highest position + size - probably the best we can do. */
2523 if (new_bit_length > resolved_type_bit_length)
2524 resolved_type_bit_length = new_bit_length;
2525 }
2526
2527 /* The length of a type won't change for fortran, but it does for C and Ada.
2528 For fortran the size of dynamic fields might change over time but not the
2529 type length of the structure. If we adapt it, we run into problems
2530 when calculating the element offset for arrays of structs. */
2531 if (current_language->la_language != language_fortran)
2532 TYPE_LENGTH (resolved_type)
2533 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2534
2535 /* The Ada language uses this field as a cache for static fixed types: reset
2536 it as RESOLVED_TYPE must have its own static fixed type. */
2537 TYPE_TARGET_TYPE (resolved_type) = NULL;
2538
2539 return resolved_type;
2540 }
2541
2542 /* Worker for resolved_dynamic_type. */
2543
2544 static struct type *
2545 resolve_dynamic_type_internal (struct type *type,
2546 struct property_addr_info *addr_stack,
2547 int top_level)
2548 {
2549 struct type *real_type = check_typedef (type);
2550 struct type *resolved_type = nullptr;
2551 struct dynamic_prop *prop;
2552 CORE_ADDR value;
2553
2554 if (!is_dynamic_type_internal (real_type, top_level))
2555 return type;
2556
2557 gdb::optional<CORE_ADDR> type_length;
2558 prop = TYPE_DYNAMIC_LENGTH (type);
2559 if (prop != NULL
2560 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2561 type_length = value;
2562
2563 if (type->code () == TYPE_CODE_TYPEDEF)
2564 {
2565 resolved_type = copy_type (type);
2566 TYPE_TARGET_TYPE (resolved_type)
2567 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2568 top_level);
2569 }
2570 else
2571 {
2572 /* Before trying to resolve TYPE, make sure it is not a stub. */
2573 type = real_type;
2574
2575 switch (type->code ())
2576 {
2577 case TYPE_CODE_REF:
2578 {
2579 struct property_addr_info pinfo;
2580
2581 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2582 pinfo.valaddr = {};
2583 if (addr_stack->valaddr.data () != NULL)
2584 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2585 type);
2586 else
2587 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2588 pinfo.next = addr_stack;
2589
2590 resolved_type = copy_type (type);
2591 TYPE_TARGET_TYPE (resolved_type)
2592 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2593 &pinfo, top_level);
2594 break;
2595 }
2596
2597 case TYPE_CODE_STRING:
2598 /* Strings are very much like an array of characters, and can be
2599 treated as one here. */
2600 case TYPE_CODE_ARRAY:
2601 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2602 break;
2603
2604 case TYPE_CODE_RANGE:
2605 resolved_type = resolve_dynamic_range (type, addr_stack);
2606 break;
2607
2608 case TYPE_CODE_UNION:
2609 resolved_type = resolve_dynamic_union (type, addr_stack);
2610 break;
2611
2612 case TYPE_CODE_STRUCT:
2613 resolved_type = resolve_dynamic_struct (type, addr_stack);
2614 break;
2615 }
2616 }
2617
2618 if (resolved_type == nullptr)
2619 return type;
2620
2621 if (type_length.has_value ())
2622 {
2623 TYPE_LENGTH (resolved_type) = *type_length;
2624 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2625 }
2626
2627 /* Resolve data_location attribute. */
2628 prop = TYPE_DATA_LOCATION (resolved_type);
2629 if (prop != NULL
2630 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2631 {
2632 TYPE_DYN_PROP_ADDR (prop) = value;
2633 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2634 }
2635
2636 return resolved_type;
2637 }
2638
2639 /* See gdbtypes.h */
2640
2641 struct type *
2642 resolve_dynamic_type (struct type *type,
2643 gdb::array_view<const gdb_byte> valaddr,
2644 CORE_ADDR addr)
2645 {
2646 struct property_addr_info pinfo
2647 = {check_typedef (type), valaddr, addr, NULL};
2648
2649 return resolve_dynamic_type_internal (type, &pinfo, 1);
2650 }
2651
2652 /* See gdbtypes.h */
2653
2654 dynamic_prop *
2655 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2656 {
2657 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2658
2659 while (node != NULL)
2660 {
2661 if (node->prop_kind == prop_kind)
2662 return &node->prop;
2663 node = node->next;
2664 }
2665 return NULL;
2666 }
2667
2668 /* See gdbtypes.h */
2669
2670 void
2671 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2672 {
2673 struct dynamic_prop_list *temp;
2674
2675 gdb_assert (TYPE_OBJFILE_OWNED (this));
2676
2677 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2678 struct dynamic_prop_list);
2679 temp->prop_kind = prop_kind;
2680 temp->prop = prop;
2681 temp->next = this->main_type->dyn_prop_list;
2682
2683 this->main_type->dyn_prop_list = temp;
2684 }
2685
2686 /* See gdbtypes.h. */
2687
2688 void
2689 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2690 {
2691 struct dynamic_prop_list *prev_node, *curr_node;
2692
2693 curr_node = this->main_type->dyn_prop_list;
2694 prev_node = NULL;
2695
2696 while (NULL != curr_node)
2697 {
2698 if (curr_node->prop_kind == kind)
2699 {
2700 /* Update the linked list but don't free anything.
2701 The property was allocated on objstack and it is not known
2702 if we are on top of it. Nevertheless, everything is released
2703 when the complete objstack is freed. */
2704 if (NULL == prev_node)
2705 this->main_type->dyn_prop_list = curr_node->next;
2706 else
2707 prev_node->next = curr_node->next;
2708
2709 return;
2710 }
2711
2712 prev_node = curr_node;
2713 curr_node = curr_node->next;
2714 }
2715 }
2716
2717 /* Find the real type of TYPE. This function returns the real type,
2718 after removing all layers of typedefs, and completing opaque or stub
2719 types. Completion changes the TYPE argument, but stripping of
2720 typedefs does not.
2721
2722 Instance flags (e.g. const/volatile) are preserved as typedefs are
2723 stripped. If necessary a new qualified form of the underlying type
2724 is created.
2725
2726 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2727 not been computed and we're either in the middle of reading symbols, or
2728 there was no name for the typedef in the debug info.
2729
2730 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2731 QUITs in the symbol reading code can also throw.
2732 Thus this function can throw an exception.
2733
2734 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2735 the target type.
2736
2737 If this is a stubbed struct (i.e. declared as struct foo *), see if
2738 we can find a full definition in some other file. If so, copy this
2739 definition, so we can use it in future. There used to be a comment
2740 (but not any code) that if we don't find a full definition, we'd
2741 set a flag so we don't spend time in the future checking the same
2742 type. That would be a mistake, though--we might load in more
2743 symbols which contain a full definition for the type. */
2744
2745 struct type *
2746 check_typedef (struct type *type)
2747 {
2748 struct type *orig_type = type;
2749 /* While we're removing typedefs, we don't want to lose qualifiers.
2750 E.g., const/volatile. */
2751 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2752
2753 gdb_assert (type);
2754
2755 while (type->code () == TYPE_CODE_TYPEDEF)
2756 {
2757 if (!TYPE_TARGET_TYPE (type))
2758 {
2759 const char *name;
2760 struct symbol *sym;
2761
2762 /* It is dangerous to call lookup_symbol if we are currently
2763 reading a symtab. Infinite recursion is one danger. */
2764 if (currently_reading_symtab)
2765 return make_qualified_type (type, instance_flags, NULL);
2766
2767 name = TYPE_NAME (type);
2768 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2769 VAR_DOMAIN as appropriate? */
2770 if (name == NULL)
2771 {
2772 stub_noname_complaint ();
2773 return make_qualified_type (type, instance_flags, NULL);
2774 }
2775 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2776 if (sym)
2777 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2778 else /* TYPE_CODE_UNDEF */
2779 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2780 }
2781 type = TYPE_TARGET_TYPE (type);
2782
2783 /* Preserve the instance flags as we traverse down the typedef chain.
2784
2785 Handling address spaces/classes is nasty, what do we do if there's a
2786 conflict?
2787 E.g., what if an outer typedef marks the type as class_1 and an inner
2788 typedef marks the type as class_2?
2789 This is the wrong place to do such error checking. We leave it to
2790 the code that created the typedef in the first place to flag the
2791 error. We just pick the outer address space (akin to letting the
2792 outer cast in a chain of casting win), instead of assuming
2793 "it can't happen". */
2794 {
2795 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2796 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2797 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2798 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2799
2800 /* Treat code vs data spaces and address classes separately. */
2801 if ((instance_flags & ALL_SPACES) != 0)
2802 new_instance_flags &= ~ALL_SPACES;
2803 if ((instance_flags & ALL_CLASSES) != 0)
2804 new_instance_flags &= ~ALL_CLASSES;
2805
2806 instance_flags |= new_instance_flags;
2807 }
2808 }
2809
2810 /* If this is a struct/class/union with no fields, then check
2811 whether a full definition exists somewhere else. This is for
2812 systems where a type definition with no fields is issued for such
2813 types, instead of identifying them as stub types in the first
2814 place. */
2815
2816 if (TYPE_IS_OPAQUE (type)
2817 && opaque_type_resolution
2818 && !currently_reading_symtab)
2819 {
2820 const char *name = TYPE_NAME (type);
2821 struct type *newtype;
2822
2823 if (name == NULL)
2824 {
2825 stub_noname_complaint ();
2826 return make_qualified_type (type, instance_flags, NULL);
2827 }
2828 newtype = lookup_transparent_type (name);
2829
2830 if (newtype)
2831 {
2832 /* If the resolved type and the stub are in the same
2833 objfile, then replace the stub type with the real deal.
2834 But if they're in separate objfiles, leave the stub
2835 alone; we'll just look up the transparent type every time
2836 we call check_typedef. We can't create pointers between
2837 types allocated to different objfiles, since they may
2838 have different lifetimes. Trying to copy NEWTYPE over to
2839 TYPE's objfile is pointless, too, since you'll have to
2840 move over any other types NEWTYPE refers to, which could
2841 be an unbounded amount of stuff. */
2842 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2843 type = make_qualified_type (newtype,
2844 TYPE_INSTANCE_FLAGS (type),
2845 type);
2846 else
2847 type = newtype;
2848 }
2849 }
2850 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2851 types. */
2852 else if (TYPE_STUB (type) && !currently_reading_symtab)
2853 {
2854 const char *name = TYPE_NAME (type);
2855 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2856 as appropriate? */
2857 struct symbol *sym;
2858
2859 if (name == NULL)
2860 {
2861 stub_noname_complaint ();
2862 return make_qualified_type (type, instance_flags, NULL);
2863 }
2864 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2865 if (sym)
2866 {
2867 /* Same as above for opaque types, we can replace the stub
2868 with the complete type only if they are in the same
2869 objfile. */
2870 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2871 type = make_qualified_type (SYMBOL_TYPE (sym),
2872 TYPE_INSTANCE_FLAGS (type),
2873 type);
2874 else
2875 type = SYMBOL_TYPE (sym);
2876 }
2877 }
2878
2879 if (TYPE_TARGET_STUB (type))
2880 {
2881 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2882
2883 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2884 {
2885 /* Nothing we can do. */
2886 }
2887 else if (type->code () == TYPE_CODE_RANGE)
2888 {
2889 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2890 TYPE_TARGET_STUB (type) = 0;
2891 }
2892 else if (type->code () == TYPE_CODE_ARRAY
2893 && update_static_array_size (type))
2894 TYPE_TARGET_STUB (type) = 0;
2895 }
2896
2897 type = make_qualified_type (type, instance_flags, NULL);
2898
2899 /* Cache TYPE_LENGTH for future use. */
2900 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2901
2902 return type;
2903 }
2904
2905 /* Parse a type expression in the string [P..P+LENGTH). If an error
2906 occurs, silently return a void type. */
2907
2908 static struct type *
2909 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2910 {
2911 struct ui_file *saved_gdb_stderr;
2912 struct type *type = NULL; /* Initialize to keep gcc happy. */
2913
2914 /* Suppress error messages. */
2915 saved_gdb_stderr = gdb_stderr;
2916 gdb_stderr = &null_stream;
2917
2918 /* Call parse_and_eval_type() without fear of longjmp()s. */
2919 try
2920 {
2921 type = parse_and_eval_type (p, length);
2922 }
2923 catch (const gdb_exception_error &except)
2924 {
2925 type = builtin_type (gdbarch)->builtin_void;
2926 }
2927
2928 /* Stop suppressing error messages. */
2929 gdb_stderr = saved_gdb_stderr;
2930
2931 return type;
2932 }
2933
2934 /* Ugly hack to convert method stubs into method types.
2935
2936 He ain't kiddin'. This demangles the name of the method into a
2937 string including argument types, parses out each argument type,
2938 generates a string casting a zero to that type, evaluates the
2939 string, and stuffs the resulting type into an argtype vector!!!
2940 Then it knows the type of the whole function (including argument
2941 types for overloading), which info used to be in the stab's but was
2942 removed to hack back the space required for them. */
2943
2944 static void
2945 check_stub_method (struct type *type, int method_id, int signature_id)
2946 {
2947 struct gdbarch *gdbarch = get_type_arch (type);
2948 struct fn_field *f;
2949 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2950 char *demangled_name = gdb_demangle (mangled_name,
2951 DMGL_PARAMS | DMGL_ANSI);
2952 char *argtypetext, *p;
2953 int depth = 0, argcount = 1;
2954 struct field *argtypes;
2955 struct type *mtype;
2956
2957 /* Make sure we got back a function string that we can use. */
2958 if (demangled_name)
2959 p = strchr (demangled_name, '(');
2960 else
2961 p = NULL;
2962
2963 if (demangled_name == NULL || p == NULL)
2964 error (_("Internal: Cannot demangle mangled name `%s'."),
2965 mangled_name);
2966
2967 /* Now, read in the parameters that define this type. */
2968 p += 1;
2969 argtypetext = p;
2970 while (*p)
2971 {
2972 if (*p == '(' || *p == '<')
2973 {
2974 depth += 1;
2975 }
2976 else if (*p == ')' || *p == '>')
2977 {
2978 depth -= 1;
2979 }
2980 else if (*p == ',' && depth == 0)
2981 {
2982 argcount += 1;
2983 }
2984
2985 p += 1;
2986 }
2987
2988 /* If we read one argument and it was ``void'', don't count it. */
2989 if (startswith (argtypetext, "(void)"))
2990 argcount -= 1;
2991
2992 /* We need one extra slot, for the THIS pointer. */
2993
2994 argtypes = (struct field *)
2995 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2996 p = argtypetext;
2997
2998 /* Add THIS pointer for non-static methods. */
2999 f = TYPE_FN_FIELDLIST1 (type, method_id);
3000 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3001 argcount = 0;
3002 else
3003 {
3004 argtypes[0].type = lookup_pointer_type (type);
3005 argcount = 1;
3006 }
3007
3008 if (*p != ')') /* () means no args, skip while. */
3009 {
3010 depth = 0;
3011 while (*p)
3012 {
3013 if (depth <= 0 && (*p == ',' || *p == ')'))
3014 {
3015 /* Avoid parsing of ellipsis, they will be handled below.
3016 Also avoid ``void'' as above. */
3017 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3018 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3019 {
3020 argtypes[argcount].type =
3021 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
3022 argcount += 1;
3023 }
3024 argtypetext = p + 1;
3025 }
3026
3027 if (*p == '(' || *p == '<')
3028 {
3029 depth += 1;
3030 }
3031 else if (*p == ')' || *p == '>')
3032 {
3033 depth -= 1;
3034 }
3035
3036 p += 1;
3037 }
3038 }
3039
3040 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3041
3042 /* Now update the old "stub" type into a real type. */
3043 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3044 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3045 We want a method (TYPE_CODE_METHOD). */
3046 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3047 argtypes, argcount, p[-2] == '.');
3048 TYPE_STUB (mtype) = 0;
3049 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3050
3051 xfree (demangled_name);
3052 }
3053
3054 /* This is the external interface to check_stub_method, above. This
3055 function unstubs all of the signatures for TYPE's METHOD_ID method
3056 name. After calling this function TYPE_FN_FIELD_STUB will be
3057 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3058 correct.
3059
3060 This function unfortunately can not die until stabs do. */
3061
3062 void
3063 check_stub_method_group (struct type *type, int method_id)
3064 {
3065 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3066 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3067
3068 for (int j = 0; j < len; j++)
3069 {
3070 if (TYPE_FN_FIELD_STUB (f, j))
3071 check_stub_method (type, method_id, j);
3072 }
3073 }
3074
3075 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3076 const struct cplus_struct_type cplus_struct_default = { };
3077
3078 void
3079 allocate_cplus_struct_type (struct type *type)
3080 {
3081 if (HAVE_CPLUS_STRUCT (type))
3082 /* Structure was already allocated. Nothing more to do. */
3083 return;
3084
3085 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3086 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3087 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3088 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3089 set_type_vptr_fieldno (type, -1);
3090 }
3091
3092 const struct gnat_aux_type gnat_aux_default =
3093 { NULL };
3094
3095 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3096 and allocate the associated gnat-specific data. The gnat-specific
3097 data is also initialized to gnat_aux_default. */
3098
3099 void
3100 allocate_gnat_aux_type (struct type *type)
3101 {
3102 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3103 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3104 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3105 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3106 }
3107
3108 /* Helper function to initialize a newly allocated type. Set type code
3109 to CODE and initialize the type-specific fields accordingly. */
3110
3111 static void
3112 set_type_code (struct type *type, enum type_code code)
3113 {
3114 type->set_code (code);
3115
3116 switch (code)
3117 {
3118 case TYPE_CODE_STRUCT:
3119 case TYPE_CODE_UNION:
3120 case TYPE_CODE_NAMESPACE:
3121 INIT_CPLUS_SPECIFIC (type);
3122 break;
3123 case TYPE_CODE_FLT:
3124 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3125 break;
3126 case TYPE_CODE_FUNC:
3127 INIT_FUNC_SPECIFIC (type);
3128 break;
3129 }
3130 }
3131
3132 /* Helper function to verify floating-point format and size.
3133 BIT is the type size in bits; if BIT equals -1, the size is
3134 determined by the floatformat. Returns size to be used. */
3135
3136 static int
3137 verify_floatformat (int bit, const struct floatformat *floatformat)
3138 {
3139 gdb_assert (floatformat != NULL);
3140
3141 if (bit == -1)
3142 bit = floatformat->totalsize;
3143
3144 gdb_assert (bit >= 0);
3145 gdb_assert (bit >= floatformat->totalsize);
3146
3147 return bit;
3148 }
3149
3150 /* Return the floating-point format for a floating-point variable of
3151 type TYPE. */
3152
3153 const struct floatformat *
3154 floatformat_from_type (const struct type *type)
3155 {
3156 gdb_assert (type->code () == TYPE_CODE_FLT);
3157 gdb_assert (TYPE_FLOATFORMAT (type));
3158 return TYPE_FLOATFORMAT (type);
3159 }
3160
3161 /* Helper function to initialize the standard scalar types.
3162
3163 If NAME is non-NULL, then it is used to initialize the type name.
3164 Note that NAME is not copied; it is required to have a lifetime at
3165 least as long as OBJFILE. */
3166
3167 struct type *
3168 init_type (struct objfile *objfile, enum type_code code, int bit,
3169 const char *name)
3170 {
3171 struct type *type;
3172
3173 type = alloc_type (objfile);
3174 set_type_code (type, code);
3175 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3176 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3177 TYPE_NAME (type) = name;
3178
3179 return type;
3180 }
3181
3182 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3183 to use with variables that have no debug info. NAME is the type
3184 name. */
3185
3186 static struct type *
3187 init_nodebug_var_type (struct objfile *objfile, const char *name)
3188 {
3189 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3190 }
3191
3192 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3193 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3194 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3195
3196 struct type *
3197 init_integer_type (struct objfile *objfile,
3198 int bit, int unsigned_p, const char *name)
3199 {
3200 struct type *t;
3201
3202 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3203 if (unsigned_p)
3204 TYPE_UNSIGNED (t) = 1;
3205
3206 return t;
3207 }
3208
3209 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3210 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3211 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3212
3213 struct type *
3214 init_character_type (struct objfile *objfile,
3215 int bit, int unsigned_p, const char *name)
3216 {
3217 struct type *t;
3218
3219 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3220 if (unsigned_p)
3221 TYPE_UNSIGNED (t) = 1;
3222
3223 return t;
3224 }
3225
3226 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3227 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3228 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3229
3230 struct type *
3231 init_boolean_type (struct objfile *objfile,
3232 int bit, int unsigned_p, const char *name)
3233 {
3234 struct type *t;
3235
3236 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3237 if (unsigned_p)
3238 TYPE_UNSIGNED (t) = 1;
3239
3240 return t;
3241 }
3242
3243 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3244 BIT is the type size in bits; if BIT equals -1, the size is
3245 determined by the floatformat. NAME is the type name. Set the
3246 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3247 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3248 order of the objfile's architecture is used. */
3249
3250 struct type *
3251 init_float_type (struct objfile *objfile,
3252 int bit, const char *name,
3253 const struct floatformat **floatformats,
3254 enum bfd_endian byte_order)
3255 {
3256 if (byte_order == BFD_ENDIAN_UNKNOWN)
3257 {
3258 struct gdbarch *gdbarch = objfile->arch ();
3259 byte_order = gdbarch_byte_order (gdbarch);
3260 }
3261 const struct floatformat *fmt = floatformats[byte_order];
3262 struct type *t;
3263
3264 bit = verify_floatformat (bit, fmt);
3265 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3266 TYPE_FLOATFORMAT (t) = fmt;
3267
3268 return t;
3269 }
3270
3271 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3272 BIT is the type size in bits. NAME is the type name. */
3273
3274 struct type *
3275 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3276 {
3277 struct type *t;
3278
3279 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3280 return t;
3281 }
3282
3283 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3284 name. TARGET_TYPE is the component type. */
3285
3286 struct type *
3287 init_complex_type (const char *name, struct type *target_type)
3288 {
3289 struct type *t;
3290
3291 gdb_assert (target_type->code () == TYPE_CODE_INT
3292 || target_type->code () == TYPE_CODE_FLT);
3293
3294 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3295 {
3296 if (name == nullptr)
3297 {
3298 char *new_name
3299 = (char *) TYPE_ALLOC (target_type,
3300 strlen (TYPE_NAME (target_type))
3301 + strlen ("_Complex ") + 1);
3302 strcpy (new_name, "_Complex ");
3303 strcat (new_name, TYPE_NAME (target_type));
3304 name = new_name;
3305 }
3306
3307 t = alloc_type_copy (target_type);
3308 set_type_code (t, TYPE_CODE_COMPLEX);
3309 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3310 TYPE_NAME (t) = name;
3311
3312 TYPE_TARGET_TYPE (t) = target_type;
3313 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3314 }
3315
3316 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3317 }
3318
3319 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3320 BIT is the pointer type size in bits. NAME is the type name.
3321 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3322 TYPE_UNSIGNED flag. */
3323
3324 struct type *
3325 init_pointer_type (struct objfile *objfile,
3326 int bit, const char *name, struct type *target_type)
3327 {
3328 struct type *t;
3329
3330 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3331 TYPE_TARGET_TYPE (t) = target_type;
3332 TYPE_UNSIGNED (t) = 1;
3333 return t;
3334 }
3335
3336 /* See gdbtypes.h. */
3337
3338 unsigned
3339 type_raw_align (struct type *type)
3340 {
3341 if (type->align_log2 != 0)
3342 return 1 << (type->align_log2 - 1);
3343 return 0;
3344 }
3345
3346 /* See gdbtypes.h. */
3347
3348 unsigned
3349 type_align (struct type *type)
3350 {
3351 /* Check alignment provided in the debug information. */
3352 unsigned raw_align = type_raw_align (type);
3353 if (raw_align != 0)
3354 return raw_align;
3355
3356 /* Allow the architecture to provide an alignment. */
3357 struct gdbarch *arch = get_type_arch (type);
3358 ULONGEST align = gdbarch_type_align (arch, type);
3359 if (align != 0)
3360 return align;
3361
3362 switch (type->code ())
3363 {
3364 case TYPE_CODE_PTR:
3365 case TYPE_CODE_FUNC:
3366 case TYPE_CODE_FLAGS:
3367 case TYPE_CODE_INT:
3368 case TYPE_CODE_RANGE:
3369 case TYPE_CODE_FLT:
3370 case TYPE_CODE_ENUM:
3371 case TYPE_CODE_REF:
3372 case TYPE_CODE_RVALUE_REF:
3373 case TYPE_CODE_CHAR:
3374 case TYPE_CODE_BOOL:
3375 case TYPE_CODE_DECFLOAT:
3376 case TYPE_CODE_METHODPTR:
3377 case TYPE_CODE_MEMBERPTR:
3378 align = type_length_units (check_typedef (type));
3379 break;
3380
3381 case TYPE_CODE_ARRAY:
3382 case TYPE_CODE_COMPLEX:
3383 case TYPE_CODE_TYPEDEF:
3384 align = type_align (TYPE_TARGET_TYPE (type));
3385 break;
3386
3387 case TYPE_CODE_STRUCT:
3388 case TYPE_CODE_UNION:
3389 {
3390 int number_of_non_static_fields = 0;
3391 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3392 {
3393 if (!field_is_static (&TYPE_FIELD (type, i)))
3394 {
3395 number_of_non_static_fields++;
3396 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3397 if (f_align == 0)
3398 {
3399 /* Don't pretend we know something we don't. */
3400 align = 0;
3401 break;
3402 }
3403 if (f_align > align)
3404 align = f_align;
3405 }
3406 }
3407 /* A struct with no fields, or with only static fields has an
3408 alignment of 1. */
3409 if (number_of_non_static_fields == 0)
3410 align = 1;
3411 }
3412 break;
3413
3414 case TYPE_CODE_SET:
3415 case TYPE_CODE_STRING:
3416 /* Not sure what to do here, and these can't appear in C or C++
3417 anyway. */
3418 break;
3419
3420 case TYPE_CODE_VOID:
3421 align = 1;
3422 break;
3423
3424 case TYPE_CODE_ERROR:
3425 case TYPE_CODE_METHOD:
3426 default:
3427 break;
3428 }
3429
3430 if ((align & (align - 1)) != 0)
3431 {
3432 /* Not a power of 2, so pass. */
3433 align = 0;
3434 }
3435
3436 return align;
3437 }
3438
3439 /* See gdbtypes.h. */
3440
3441 bool
3442 set_type_align (struct type *type, ULONGEST align)
3443 {
3444 /* Must be a power of 2. Zero is ok. */
3445 gdb_assert ((align & (align - 1)) == 0);
3446
3447 unsigned result = 0;
3448 while (align != 0)
3449 {
3450 ++result;
3451 align >>= 1;
3452 }
3453
3454 if (result >= (1 << TYPE_ALIGN_BITS))
3455 return false;
3456
3457 type->align_log2 = result;
3458 return true;
3459 }
3460
3461 \f
3462 /* Queries on types. */
3463
3464 int
3465 can_dereference (struct type *t)
3466 {
3467 /* FIXME: Should we return true for references as well as
3468 pointers? */
3469 t = check_typedef (t);
3470 return
3471 (t != NULL
3472 && t->code () == TYPE_CODE_PTR
3473 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3474 }
3475
3476 int
3477 is_integral_type (struct type *t)
3478 {
3479 t = check_typedef (t);
3480 return
3481 ((t != NULL)
3482 && ((t->code () == TYPE_CODE_INT)
3483 || (t->code () == TYPE_CODE_ENUM)
3484 || (t->code () == TYPE_CODE_FLAGS)
3485 || (t->code () == TYPE_CODE_CHAR)
3486 || (t->code () == TYPE_CODE_RANGE)
3487 || (t->code () == TYPE_CODE_BOOL)));
3488 }
3489
3490 int
3491 is_floating_type (struct type *t)
3492 {
3493 t = check_typedef (t);
3494 return
3495 ((t != NULL)
3496 && ((t->code () == TYPE_CODE_FLT)
3497 || (t->code () == TYPE_CODE_DECFLOAT)));
3498 }
3499
3500 /* Return true if TYPE is scalar. */
3501
3502 int
3503 is_scalar_type (struct type *type)
3504 {
3505 type = check_typedef (type);
3506
3507 switch (type->code ())
3508 {
3509 case TYPE_CODE_ARRAY:
3510 case TYPE_CODE_STRUCT:
3511 case TYPE_CODE_UNION:
3512 case TYPE_CODE_SET:
3513 case TYPE_CODE_STRING:
3514 return 0;
3515 default:
3516 return 1;
3517 }
3518 }
3519
3520 /* Return true if T is scalar, or a composite type which in practice has
3521 the memory layout of a scalar type. E.g., an array or struct with only
3522 one scalar element inside it, or a union with only scalar elements. */
3523
3524 int
3525 is_scalar_type_recursive (struct type *t)
3526 {
3527 t = check_typedef (t);
3528
3529 if (is_scalar_type (t))
3530 return 1;
3531 /* Are we dealing with an array or string of known dimensions? */
3532 else if ((t->code () == TYPE_CODE_ARRAY
3533 || t->code () == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3534 && TYPE_INDEX_TYPE(t)->code () == TYPE_CODE_RANGE)
3535 {
3536 LONGEST low_bound, high_bound;
3537 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3538
3539 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3540
3541 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3542 }
3543 /* Are we dealing with a struct with one element? */
3544 else if (t->code () == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3545 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3546 else if (t->code () == TYPE_CODE_UNION)
3547 {
3548 int i, n = TYPE_NFIELDS (t);
3549
3550 /* If all elements of the union are scalar, then the union is scalar. */
3551 for (i = 0; i < n; i++)
3552 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3553 return 0;
3554
3555 return 1;
3556 }
3557
3558 return 0;
3559 }
3560
3561 /* Return true is T is a class or a union. False otherwise. */
3562
3563 int
3564 class_or_union_p (const struct type *t)
3565 {
3566 return (t->code () == TYPE_CODE_STRUCT
3567 || t->code () == TYPE_CODE_UNION);
3568 }
3569
3570 /* A helper function which returns true if types A and B represent the
3571 "same" class type. This is true if the types have the same main
3572 type, or the same name. */
3573
3574 int
3575 class_types_same_p (const struct type *a, const struct type *b)
3576 {
3577 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3578 || (TYPE_NAME (a) && TYPE_NAME (b)
3579 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3580 }
3581
3582 /* If BASE is an ancestor of DCLASS return the distance between them.
3583 otherwise return -1;
3584 eg:
3585
3586 class A {};
3587 class B: public A {};
3588 class C: public B {};
3589 class D: C {};
3590
3591 distance_to_ancestor (A, A, 0) = 0
3592 distance_to_ancestor (A, B, 0) = 1
3593 distance_to_ancestor (A, C, 0) = 2
3594 distance_to_ancestor (A, D, 0) = 3
3595
3596 If PUBLIC is 1 then only public ancestors are considered,
3597 and the function returns the distance only if BASE is a public ancestor
3598 of DCLASS.
3599 Eg:
3600
3601 distance_to_ancestor (A, D, 1) = -1. */
3602
3603 static int
3604 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3605 {
3606 int i;
3607 int d;
3608
3609 base = check_typedef (base);
3610 dclass = check_typedef (dclass);
3611
3612 if (class_types_same_p (base, dclass))
3613 return 0;
3614
3615 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3616 {
3617 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3618 continue;
3619
3620 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3621 if (d >= 0)
3622 return 1 + d;
3623 }
3624
3625 return -1;
3626 }
3627
3628 /* Check whether BASE is an ancestor or base class or DCLASS
3629 Return 1 if so, and 0 if not.
3630 Note: If BASE and DCLASS are of the same type, this function
3631 will return 1. So for some class A, is_ancestor (A, A) will
3632 return 1. */
3633
3634 int
3635 is_ancestor (struct type *base, struct type *dclass)
3636 {
3637 return distance_to_ancestor (base, dclass, 0) >= 0;
3638 }
3639
3640 /* Like is_ancestor, but only returns true when BASE is a public
3641 ancestor of DCLASS. */
3642
3643 int
3644 is_public_ancestor (struct type *base, struct type *dclass)
3645 {
3646 return distance_to_ancestor (base, dclass, 1) >= 0;
3647 }
3648
3649 /* A helper function for is_unique_ancestor. */
3650
3651 static int
3652 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3653 int *offset,
3654 const gdb_byte *valaddr, int embedded_offset,
3655 CORE_ADDR address, struct value *val)
3656 {
3657 int i, count = 0;
3658
3659 base = check_typedef (base);
3660 dclass = check_typedef (dclass);
3661
3662 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3663 {
3664 struct type *iter;
3665 int this_offset;
3666
3667 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3668
3669 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3670 address, val);
3671
3672 if (class_types_same_p (base, iter))
3673 {
3674 /* If this is the first subclass, set *OFFSET and set count
3675 to 1. Otherwise, if this is at the same offset as
3676 previous instances, do nothing. Otherwise, increment
3677 count. */
3678 if (*offset == -1)
3679 {
3680 *offset = this_offset;
3681 count = 1;
3682 }
3683 else if (this_offset == *offset)
3684 {
3685 /* Nothing. */
3686 }
3687 else
3688 ++count;
3689 }
3690 else
3691 count += is_unique_ancestor_worker (base, iter, offset,
3692 valaddr,
3693 embedded_offset + this_offset,
3694 address, val);
3695 }
3696
3697 return count;
3698 }
3699
3700 /* Like is_ancestor, but only returns true if BASE is a unique base
3701 class of the type of VAL. */
3702
3703 int
3704 is_unique_ancestor (struct type *base, struct value *val)
3705 {
3706 int offset = -1;
3707
3708 return is_unique_ancestor_worker (base, value_type (val), &offset,
3709 value_contents_for_printing (val),
3710 value_embedded_offset (val),
3711 value_address (val), val) == 1;
3712 }
3713
3714 /* See gdbtypes.h. */
3715
3716 enum bfd_endian
3717 type_byte_order (const struct type *type)
3718 {
3719 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3720 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3721 {
3722 if (byteorder == BFD_ENDIAN_BIG)
3723 return BFD_ENDIAN_LITTLE;
3724 else
3725 {
3726 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3727 return BFD_ENDIAN_BIG;
3728 }
3729 }
3730
3731 return byteorder;
3732 }
3733
3734 \f
3735 /* Overload resolution. */
3736
3737 /* Return the sum of the rank of A with the rank of B. */
3738
3739 struct rank
3740 sum_ranks (struct rank a, struct rank b)
3741 {
3742 struct rank c;
3743 c.rank = a.rank + b.rank;
3744 c.subrank = a.subrank + b.subrank;
3745 return c;
3746 }
3747
3748 /* Compare rank A and B and return:
3749 0 if a = b
3750 1 if a is better than b
3751 -1 if b is better than a. */
3752
3753 int
3754 compare_ranks (struct rank a, struct rank b)
3755 {
3756 if (a.rank == b.rank)
3757 {
3758 if (a.subrank == b.subrank)
3759 return 0;
3760 if (a.subrank < b.subrank)
3761 return 1;
3762 if (a.subrank > b.subrank)
3763 return -1;
3764 }
3765
3766 if (a.rank < b.rank)
3767 return 1;
3768
3769 /* a.rank > b.rank */
3770 return -1;
3771 }
3772
3773 /* Functions for overload resolution begin here. */
3774
3775 /* Compare two badness vectors A and B and return the result.
3776 0 => A and B are identical
3777 1 => A and B are incomparable
3778 2 => A is better than B
3779 3 => A is worse than B */
3780
3781 int
3782 compare_badness (const badness_vector &a, const badness_vector &b)
3783 {
3784 int i;
3785 int tmp;
3786 short found_pos = 0; /* any positives in c? */
3787 short found_neg = 0; /* any negatives in c? */
3788
3789 /* differing sizes => incomparable */
3790 if (a.size () != b.size ())
3791 return 1;
3792
3793 /* Subtract b from a */
3794 for (i = 0; i < a.size (); i++)
3795 {
3796 tmp = compare_ranks (b[i], a[i]);
3797 if (tmp > 0)
3798 found_pos = 1;
3799 else if (tmp < 0)
3800 found_neg = 1;
3801 }
3802
3803 if (found_pos)
3804 {
3805 if (found_neg)
3806 return 1; /* incomparable */
3807 else
3808 return 3; /* A > B */
3809 }
3810 else
3811 /* no positives */
3812 {
3813 if (found_neg)
3814 return 2; /* A < B */
3815 else
3816 return 0; /* A == B */
3817 }
3818 }
3819
3820 /* Rank a function by comparing its parameter types (PARMS), to the
3821 types of an argument list (ARGS). Return the badness vector. This
3822 has ARGS.size() + 1 entries. */
3823
3824 badness_vector
3825 rank_function (gdb::array_view<type *> parms,
3826 gdb::array_view<value *> args)
3827 {
3828 /* add 1 for the length-match rank. */
3829 badness_vector bv;
3830 bv.reserve (1 + args.size ());
3831
3832 /* First compare the lengths of the supplied lists.
3833 If there is a mismatch, set it to a high value. */
3834
3835 /* pai/1997-06-03 FIXME: when we have debug info about default
3836 arguments and ellipsis parameter lists, we should consider those
3837 and rank the length-match more finely. */
3838
3839 bv.push_back ((args.size () != parms.size ())
3840 ? LENGTH_MISMATCH_BADNESS
3841 : EXACT_MATCH_BADNESS);
3842
3843 /* Now rank all the parameters of the candidate function. */
3844 size_t min_len = std::min (parms.size (), args.size ());
3845
3846 for (size_t i = 0; i < min_len; i++)
3847 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3848 args[i]));
3849
3850 /* If more arguments than parameters, add dummy entries. */
3851 for (size_t i = min_len; i < args.size (); i++)
3852 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3853
3854 return bv;
3855 }
3856
3857 /* Compare the names of two integer types, assuming that any sign
3858 qualifiers have been checked already. We do it this way because
3859 there may be an "int" in the name of one of the types. */
3860
3861 static int
3862 integer_types_same_name_p (const char *first, const char *second)
3863 {
3864 int first_p, second_p;
3865
3866 /* If both are shorts, return 1; if neither is a short, keep
3867 checking. */
3868 first_p = (strstr (first, "short") != NULL);
3869 second_p = (strstr (second, "short") != NULL);
3870 if (first_p && second_p)
3871 return 1;
3872 if (first_p || second_p)
3873 return 0;
3874
3875 /* Likewise for long. */
3876 first_p = (strstr (first, "long") != NULL);
3877 second_p = (strstr (second, "long") != NULL);
3878 if (first_p && second_p)
3879 return 1;
3880 if (first_p || second_p)
3881 return 0;
3882
3883 /* Likewise for char. */
3884 first_p = (strstr (first, "char") != NULL);
3885 second_p = (strstr (second, "char") != NULL);
3886 if (first_p && second_p)
3887 return 1;
3888 if (first_p || second_p)
3889 return 0;
3890
3891 /* They must both be ints. */
3892 return 1;
3893 }
3894
3895 /* Compares type A to type B. Returns true if they represent the same
3896 type, false otherwise. */
3897
3898 bool
3899 types_equal (struct type *a, struct type *b)
3900 {
3901 /* Identical type pointers. */
3902 /* However, this still doesn't catch all cases of same type for b
3903 and a. The reason is that builtin types are different from
3904 the same ones constructed from the object. */
3905 if (a == b)
3906 return true;
3907
3908 /* Resolve typedefs */
3909 if (a->code () == TYPE_CODE_TYPEDEF)
3910 a = check_typedef (a);
3911 if (b->code () == TYPE_CODE_TYPEDEF)
3912 b = check_typedef (b);
3913
3914 /* If after resolving typedefs a and b are not of the same type
3915 code then they are not equal. */
3916 if (a->code () != b->code ())
3917 return false;
3918
3919 /* If a and b are both pointers types or both reference types then
3920 they are equal of the same type iff the objects they refer to are
3921 of the same type. */
3922 if (a->code () == TYPE_CODE_PTR
3923 || a->code () == TYPE_CODE_REF)
3924 return types_equal (TYPE_TARGET_TYPE (a),
3925 TYPE_TARGET_TYPE (b));
3926
3927 /* Well, damnit, if the names are exactly the same, I'll say they
3928 are exactly the same. This happens when we generate method
3929 stubs. The types won't point to the same address, but they
3930 really are the same. */
3931
3932 if (TYPE_NAME (a) && TYPE_NAME (b)
3933 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3934 return true;
3935
3936 /* Check if identical after resolving typedefs. */
3937 if (a == b)
3938 return true;
3939
3940 /* Two function types are equal if their argument and return types
3941 are equal. */
3942 if (a->code () == TYPE_CODE_FUNC)
3943 {
3944 int i;
3945
3946 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3947 return false;
3948
3949 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3950 return false;
3951
3952 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3953 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3954 return false;
3955
3956 return true;
3957 }
3958
3959 return false;
3960 }
3961 \f
3962 /* Deep comparison of types. */
3963
3964 /* An entry in the type-equality bcache. */
3965
3966 struct type_equality_entry
3967 {
3968 type_equality_entry (struct type *t1, struct type *t2)
3969 : type1 (t1),
3970 type2 (t2)
3971 {
3972 }
3973
3974 struct type *type1, *type2;
3975 };
3976
3977 /* A helper function to compare two strings. Returns true if they are
3978 the same, false otherwise. Handles NULLs properly. */
3979
3980 static bool
3981 compare_maybe_null_strings (const char *s, const char *t)
3982 {
3983 if (s == NULL || t == NULL)
3984 return s == t;
3985 return strcmp (s, t) == 0;
3986 }
3987
3988 /* A helper function for check_types_worklist that checks two types for
3989 "deep" equality. Returns true if the types are considered the
3990 same, false otherwise. */
3991
3992 static bool
3993 check_types_equal (struct type *type1, struct type *type2,
3994 std::vector<type_equality_entry> *worklist)
3995 {
3996 type1 = check_typedef (type1);
3997 type2 = check_typedef (type2);
3998
3999 if (type1 == type2)
4000 return true;
4001
4002 if (type1->code () != type2->code ()
4003 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4004 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4005 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
4006 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
4007 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4008 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4009 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4010 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4011 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
4012 return false;
4013
4014 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
4015 return false;
4016 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
4017 return false;
4018
4019 if (type1->code () == TYPE_CODE_RANGE)
4020 {
4021 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
4022 return false;
4023 }
4024 else
4025 {
4026 int i;
4027
4028 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
4029 {
4030 const struct field *field1 = &TYPE_FIELD (type1, i);
4031 const struct field *field2 = &TYPE_FIELD (type2, i);
4032
4033 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4034 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4035 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4036 return false;
4037 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4038 FIELD_NAME (*field2)))
4039 return false;
4040 switch (FIELD_LOC_KIND (*field1))
4041 {
4042 case FIELD_LOC_KIND_BITPOS:
4043 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4044 return false;
4045 break;
4046 case FIELD_LOC_KIND_ENUMVAL:
4047 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4048 return false;
4049 break;
4050 case FIELD_LOC_KIND_PHYSADDR:
4051 if (FIELD_STATIC_PHYSADDR (*field1)
4052 != FIELD_STATIC_PHYSADDR (*field2))
4053 return false;
4054 break;
4055 case FIELD_LOC_KIND_PHYSNAME:
4056 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4057 FIELD_STATIC_PHYSNAME (*field2)))
4058 return false;
4059 break;
4060 case FIELD_LOC_KIND_DWARF_BLOCK:
4061 {
4062 struct dwarf2_locexpr_baton *block1, *block2;
4063
4064 block1 = FIELD_DWARF_BLOCK (*field1);
4065 block2 = FIELD_DWARF_BLOCK (*field2);
4066 if (block1->per_cu != block2->per_cu
4067 || block1->size != block2->size
4068 || memcmp (block1->data, block2->data, block1->size) != 0)
4069 return false;
4070 }
4071 break;
4072 default:
4073 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4074 "%d by check_types_equal"),
4075 FIELD_LOC_KIND (*field1));
4076 }
4077
4078 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
4079 }
4080 }
4081
4082 if (TYPE_TARGET_TYPE (type1) != NULL)
4083 {
4084 if (TYPE_TARGET_TYPE (type2) == NULL)
4085 return false;
4086
4087 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4088 TYPE_TARGET_TYPE (type2));
4089 }
4090 else if (TYPE_TARGET_TYPE (type2) != NULL)
4091 return false;
4092
4093 return true;
4094 }
4095
4096 /* Check types on a worklist for equality. Returns false if any pair
4097 is not equal, true if they are all considered equal. */
4098
4099 static bool
4100 check_types_worklist (std::vector<type_equality_entry> *worklist,
4101 gdb::bcache *cache)
4102 {
4103 while (!worklist->empty ())
4104 {
4105 int added;
4106
4107 struct type_equality_entry entry = std::move (worklist->back ());
4108 worklist->pop_back ();
4109
4110 /* If the type pair has already been visited, we know it is
4111 ok. */
4112 cache->insert (&entry, sizeof (entry), &added);
4113 if (!added)
4114 continue;
4115
4116 if (!check_types_equal (entry.type1, entry.type2, worklist))
4117 return false;
4118 }
4119
4120 return true;
4121 }
4122
4123 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4124 "deep comparison". Otherwise return false. */
4125
4126 bool
4127 types_deeply_equal (struct type *type1, struct type *type2)
4128 {
4129 std::vector<type_equality_entry> worklist;
4130
4131 gdb_assert (type1 != NULL && type2 != NULL);
4132
4133 /* Early exit for the simple case. */
4134 if (type1 == type2)
4135 return true;
4136
4137 gdb::bcache cache (nullptr, nullptr);
4138 worklist.emplace_back (type1, type2);
4139 return check_types_worklist (&worklist, &cache);
4140 }
4141
4142 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4143 Otherwise return one. */
4144
4145 int
4146 type_not_allocated (const struct type *type)
4147 {
4148 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4149
4150 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4151 && !TYPE_DYN_PROP_ADDR (prop));
4152 }
4153
4154 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4155 Otherwise return one. */
4156
4157 int
4158 type_not_associated (const struct type *type)
4159 {
4160 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4161
4162 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4163 && !TYPE_DYN_PROP_ADDR (prop));
4164 }
4165
4166 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4167
4168 static struct rank
4169 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4170 {
4171 struct rank rank = {0,0};
4172
4173 switch (arg->code ())
4174 {
4175 case TYPE_CODE_PTR:
4176
4177 /* Allowed pointer conversions are:
4178 (a) pointer to void-pointer conversion. */
4179 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4180 return VOID_PTR_CONVERSION_BADNESS;
4181
4182 /* (b) pointer to ancestor-pointer conversion. */
4183 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4184 TYPE_TARGET_TYPE (arg),
4185 0);
4186 if (rank.subrank >= 0)
4187 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4188
4189 return INCOMPATIBLE_TYPE_BADNESS;
4190 case TYPE_CODE_ARRAY:
4191 {
4192 struct type *t1 = TYPE_TARGET_TYPE (parm);
4193 struct type *t2 = TYPE_TARGET_TYPE (arg);
4194
4195 if (types_equal (t1, t2))
4196 {
4197 /* Make sure they are CV equal. */
4198 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4199 rank.subrank |= CV_CONVERSION_CONST;
4200 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4201 rank.subrank |= CV_CONVERSION_VOLATILE;
4202 if (rank.subrank != 0)
4203 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4204 return EXACT_MATCH_BADNESS;
4205 }
4206 return INCOMPATIBLE_TYPE_BADNESS;
4207 }
4208 case TYPE_CODE_FUNC:
4209 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4210 case TYPE_CODE_INT:
4211 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4212 {
4213 if (value_as_long (value) == 0)
4214 {
4215 /* Null pointer conversion: allow it to be cast to a pointer.
4216 [4.10.1 of C++ standard draft n3290] */
4217 return NULL_POINTER_CONVERSION_BADNESS;
4218 }
4219 else
4220 {
4221 /* If type checking is disabled, allow the conversion. */
4222 if (!strict_type_checking)
4223 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4224 }
4225 }
4226 /* fall through */
4227 case TYPE_CODE_ENUM:
4228 case TYPE_CODE_FLAGS:
4229 case TYPE_CODE_CHAR:
4230 case TYPE_CODE_RANGE:
4231 case TYPE_CODE_BOOL:
4232 default:
4233 return INCOMPATIBLE_TYPE_BADNESS;
4234 }
4235 }
4236
4237 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4238
4239 static struct rank
4240 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4241 {
4242 switch (arg->code ())
4243 {
4244 case TYPE_CODE_PTR:
4245 case TYPE_CODE_ARRAY:
4246 return rank_one_type (TYPE_TARGET_TYPE (parm),
4247 TYPE_TARGET_TYPE (arg), NULL);
4248 default:
4249 return INCOMPATIBLE_TYPE_BADNESS;
4250 }
4251 }
4252
4253 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4254
4255 static struct rank
4256 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4257 {
4258 switch (arg->code ())
4259 {
4260 case TYPE_CODE_PTR: /* funcptr -> func */
4261 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4262 default:
4263 return INCOMPATIBLE_TYPE_BADNESS;
4264 }
4265 }
4266
4267 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4268
4269 static struct rank
4270 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4271 {
4272 switch (arg->code ())
4273 {
4274 case TYPE_CODE_INT:
4275 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4276 {
4277 /* Deal with signed, unsigned, and plain chars and
4278 signed and unsigned ints. */
4279 if (TYPE_NOSIGN (parm))
4280 {
4281 /* This case only for character types. */
4282 if (TYPE_NOSIGN (arg))
4283 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4284 else /* signed/unsigned char -> plain char */
4285 return INTEGER_CONVERSION_BADNESS;
4286 }
4287 else if (TYPE_UNSIGNED (parm))
4288 {
4289 if (TYPE_UNSIGNED (arg))
4290 {
4291 /* unsigned int -> unsigned int, or
4292 unsigned long -> unsigned long */
4293 if (integer_types_same_name_p (TYPE_NAME (parm),
4294 TYPE_NAME (arg)))
4295 return EXACT_MATCH_BADNESS;
4296 else if (integer_types_same_name_p (TYPE_NAME (arg),
4297 "int")
4298 && integer_types_same_name_p (TYPE_NAME (parm),
4299 "long"))
4300 /* unsigned int -> unsigned long */
4301 return INTEGER_PROMOTION_BADNESS;
4302 else
4303 /* unsigned long -> unsigned int */
4304 return INTEGER_CONVERSION_BADNESS;
4305 }
4306 else
4307 {
4308 if (integer_types_same_name_p (TYPE_NAME (arg),
4309 "long")
4310 && integer_types_same_name_p (TYPE_NAME (parm),
4311 "int"))
4312 /* signed long -> unsigned int */
4313 return INTEGER_CONVERSION_BADNESS;
4314 else
4315 /* signed int/long -> unsigned int/long */
4316 return INTEGER_CONVERSION_BADNESS;
4317 }
4318 }
4319 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4320 {
4321 if (integer_types_same_name_p (TYPE_NAME (parm),
4322 TYPE_NAME (arg)))
4323 return EXACT_MATCH_BADNESS;
4324 else if (integer_types_same_name_p (TYPE_NAME (arg),
4325 "int")
4326 && integer_types_same_name_p (TYPE_NAME (parm),
4327 "long"))
4328 return INTEGER_PROMOTION_BADNESS;
4329 else
4330 return INTEGER_CONVERSION_BADNESS;
4331 }
4332 else
4333 return INTEGER_CONVERSION_BADNESS;
4334 }
4335 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4336 return INTEGER_PROMOTION_BADNESS;
4337 else
4338 return INTEGER_CONVERSION_BADNESS;
4339 case TYPE_CODE_ENUM:
4340 case TYPE_CODE_FLAGS:
4341 case TYPE_CODE_CHAR:
4342 case TYPE_CODE_RANGE:
4343 case TYPE_CODE_BOOL:
4344 if (TYPE_DECLARED_CLASS (arg))
4345 return INCOMPATIBLE_TYPE_BADNESS;
4346 return INTEGER_PROMOTION_BADNESS;
4347 case TYPE_CODE_FLT:
4348 return INT_FLOAT_CONVERSION_BADNESS;
4349 case TYPE_CODE_PTR:
4350 return NS_POINTER_CONVERSION_BADNESS;
4351 default:
4352 return INCOMPATIBLE_TYPE_BADNESS;
4353 }
4354 }
4355
4356 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4357
4358 static struct rank
4359 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4360 {
4361 switch (arg->code ())
4362 {
4363 case TYPE_CODE_INT:
4364 case TYPE_CODE_CHAR:
4365 case TYPE_CODE_RANGE:
4366 case TYPE_CODE_BOOL:
4367 case TYPE_CODE_ENUM:
4368 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4369 return INCOMPATIBLE_TYPE_BADNESS;
4370 return INTEGER_CONVERSION_BADNESS;
4371 case TYPE_CODE_FLT:
4372 return INT_FLOAT_CONVERSION_BADNESS;
4373 default:
4374 return INCOMPATIBLE_TYPE_BADNESS;
4375 }
4376 }
4377
4378 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4379
4380 static struct rank
4381 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4382 {
4383 switch (arg->code ())
4384 {
4385 case TYPE_CODE_RANGE:
4386 case TYPE_CODE_BOOL:
4387 case TYPE_CODE_ENUM:
4388 if (TYPE_DECLARED_CLASS (arg))
4389 return INCOMPATIBLE_TYPE_BADNESS;
4390 return INTEGER_CONVERSION_BADNESS;
4391 case TYPE_CODE_FLT:
4392 return INT_FLOAT_CONVERSION_BADNESS;
4393 case TYPE_CODE_INT:
4394 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4395 return INTEGER_CONVERSION_BADNESS;
4396 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4397 return INTEGER_PROMOTION_BADNESS;
4398 /* fall through */
4399 case TYPE_CODE_CHAR:
4400 /* Deal with signed, unsigned, and plain chars for C++ and
4401 with int cases falling through from previous case. */
4402 if (TYPE_NOSIGN (parm))
4403 {
4404 if (TYPE_NOSIGN (arg))
4405 return EXACT_MATCH_BADNESS;
4406 else
4407 return INTEGER_CONVERSION_BADNESS;
4408 }
4409 else if (TYPE_UNSIGNED (parm))
4410 {
4411 if (TYPE_UNSIGNED (arg))
4412 return EXACT_MATCH_BADNESS;
4413 else
4414 return INTEGER_PROMOTION_BADNESS;
4415 }
4416 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4417 return EXACT_MATCH_BADNESS;
4418 else
4419 return INTEGER_CONVERSION_BADNESS;
4420 default:
4421 return INCOMPATIBLE_TYPE_BADNESS;
4422 }
4423 }
4424
4425 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4426
4427 static struct rank
4428 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4429 {
4430 switch (arg->code ())
4431 {
4432 case TYPE_CODE_INT:
4433 case TYPE_CODE_CHAR:
4434 case TYPE_CODE_RANGE:
4435 case TYPE_CODE_BOOL:
4436 case TYPE_CODE_ENUM:
4437 return INTEGER_CONVERSION_BADNESS;
4438 case TYPE_CODE_FLT:
4439 return INT_FLOAT_CONVERSION_BADNESS;
4440 default:
4441 return INCOMPATIBLE_TYPE_BADNESS;
4442 }
4443 }
4444
4445 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4446
4447 static struct rank
4448 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4449 {
4450 switch (arg->code ())
4451 {
4452 /* n3290 draft, section 4.12.1 (conv.bool):
4453
4454 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4455 pointer to member type can be converted to a prvalue of type
4456 bool. A zero value, null pointer value, or null member pointer
4457 value is converted to false; any other value is converted to
4458 true. A prvalue of type std::nullptr_t can be converted to a
4459 prvalue of type bool; the resulting value is false." */
4460 case TYPE_CODE_INT:
4461 case TYPE_CODE_CHAR:
4462 case TYPE_CODE_ENUM:
4463 case TYPE_CODE_FLT:
4464 case TYPE_CODE_MEMBERPTR:
4465 case TYPE_CODE_PTR:
4466 return BOOL_CONVERSION_BADNESS;
4467 case TYPE_CODE_RANGE:
4468 return INCOMPATIBLE_TYPE_BADNESS;
4469 case TYPE_CODE_BOOL:
4470 return EXACT_MATCH_BADNESS;
4471 default:
4472 return INCOMPATIBLE_TYPE_BADNESS;
4473 }
4474 }
4475
4476 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4477
4478 static struct rank
4479 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4480 {
4481 switch (arg->code ())
4482 {
4483 case TYPE_CODE_FLT:
4484 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4485 return FLOAT_PROMOTION_BADNESS;
4486 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4487 return EXACT_MATCH_BADNESS;
4488 else
4489 return FLOAT_CONVERSION_BADNESS;
4490 case TYPE_CODE_INT:
4491 case TYPE_CODE_BOOL:
4492 case TYPE_CODE_ENUM:
4493 case TYPE_CODE_RANGE:
4494 case TYPE_CODE_CHAR:
4495 return INT_FLOAT_CONVERSION_BADNESS;
4496 default:
4497 return INCOMPATIBLE_TYPE_BADNESS;
4498 }
4499 }
4500
4501 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4502
4503 static struct rank
4504 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4505 {
4506 switch (arg->code ())
4507 { /* Strictly not needed for C++, but... */
4508 case TYPE_CODE_FLT:
4509 return FLOAT_PROMOTION_BADNESS;
4510 case TYPE_CODE_COMPLEX:
4511 return EXACT_MATCH_BADNESS;
4512 default:
4513 return INCOMPATIBLE_TYPE_BADNESS;
4514 }
4515 }
4516
4517 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4518
4519 static struct rank
4520 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4521 {
4522 struct rank rank = {0, 0};
4523
4524 switch (arg->code ())
4525 {
4526 case TYPE_CODE_STRUCT:
4527 /* Check for derivation */
4528 rank.subrank = distance_to_ancestor (parm, arg, 0);
4529 if (rank.subrank >= 0)
4530 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4531 /* fall through */
4532 default:
4533 return INCOMPATIBLE_TYPE_BADNESS;
4534 }
4535 }
4536
4537 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4538
4539 static struct rank
4540 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4541 {
4542 switch (arg->code ())
4543 {
4544 /* Not in C++ */
4545 case TYPE_CODE_SET:
4546 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4547 TYPE_FIELD_TYPE (arg, 0), NULL);
4548 default:
4549 return INCOMPATIBLE_TYPE_BADNESS;
4550 }
4551 }
4552
4553 /* Compare one type (PARM) for compatibility with another (ARG).
4554 * PARM is intended to be the parameter type of a function; and
4555 * ARG is the supplied argument's type. This function tests if
4556 * the latter can be converted to the former.
4557 * VALUE is the argument's value or NULL if none (or called recursively)
4558 *
4559 * Return 0 if they are identical types;
4560 * Otherwise, return an integer which corresponds to how compatible
4561 * PARM is to ARG. The higher the return value, the worse the match.
4562 * Generally the "bad" conversions are all uniformly assigned a 100. */
4563
4564 struct rank
4565 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4566 {
4567 struct rank rank = {0,0};
4568
4569 /* Resolve typedefs */
4570 if (parm->code () == TYPE_CODE_TYPEDEF)
4571 parm = check_typedef (parm);
4572 if (arg->code () == TYPE_CODE_TYPEDEF)
4573 arg = check_typedef (arg);
4574
4575 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4576 {
4577 if (VALUE_LVAL (value) == not_lval)
4578 {
4579 /* Rvalues should preferably bind to rvalue references or const
4580 lvalue references. */
4581 if (parm->code () == TYPE_CODE_RVALUE_REF)
4582 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4583 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4584 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4585 else
4586 return INCOMPATIBLE_TYPE_BADNESS;
4587 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4588 }
4589 else
4590 {
4591 /* It's illegal to pass an lvalue as an rvalue. */
4592 if (parm->code () == TYPE_CODE_RVALUE_REF)
4593 return INCOMPATIBLE_TYPE_BADNESS;
4594 }
4595 }
4596
4597 if (types_equal (parm, arg))
4598 {
4599 struct type *t1 = parm;
4600 struct type *t2 = arg;
4601
4602 /* For pointers and references, compare target type. */
4603 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4604 {
4605 t1 = TYPE_TARGET_TYPE (parm);
4606 t2 = TYPE_TARGET_TYPE (arg);
4607 }
4608
4609 /* Make sure they are CV equal, too. */
4610 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4611 rank.subrank |= CV_CONVERSION_CONST;
4612 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4613 rank.subrank |= CV_CONVERSION_VOLATILE;
4614 if (rank.subrank != 0)
4615 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4616 return EXACT_MATCH_BADNESS;
4617 }
4618
4619 /* See through references, since we can almost make non-references
4620 references. */
4621
4622 if (TYPE_IS_REFERENCE (arg))
4623 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4624 REFERENCE_SEE_THROUGH_BADNESS));
4625 if (TYPE_IS_REFERENCE (parm))
4626 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4627 REFERENCE_SEE_THROUGH_BADNESS));
4628 if (overload_debug)
4629 /* Debugging only. */
4630 fprintf_filtered (gdb_stderr,
4631 "------ Arg is %s [%d], parm is %s [%d]\n",
4632 TYPE_NAME (arg), arg->code (),
4633 TYPE_NAME (parm), parm->code ());
4634
4635 /* x -> y means arg of type x being supplied for parameter of type y. */
4636
4637 switch (parm->code ())
4638 {
4639 case TYPE_CODE_PTR:
4640 return rank_one_type_parm_ptr (parm, arg, value);
4641 case TYPE_CODE_ARRAY:
4642 return rank_one_type_parm_array (parm, arg, value);
4643 case TYPE_CODE_FUNC:
4644 return rank_one_type_parm_func (parm, arg, value);
4645 case TYPE_CODE_INT:
4646 return rank_one_type_parm_int (parm, arg, value);
4647 case TYPE_CODE_ENUM:
4648 return rank_one_type_parm_enum (parm, arg, value);
4649 case TYPE_CODE_CHAR:
4650 return rank_one_type_parm_char (parm, arg, value);
4651 case TYPE_CODE_RANGE:
4652 return rank_one_type_parm_range (parm, arg, value);
4653 case TYPE_CODE_BOOL:
4654 return rank_one_type_parm_bool (parm, arg, value);
4655 case TYPE_CODE_FLT:
4656 return rank_one_type_parm_float (parm, arg, value);
4657 case TYPE_CODE_COMPLEX:
4658 return rank_one_type_parm_complex (parm, arg, value);
4659 case TYPE_CODE_STRUCT:
4660 return rank_one_type_parm_struct (parm, arg, value);
4661 case TYPE_CODE_SET:
4662 return rank_one_type_parm_set (parm, arg, value);
4663 default:
4664 return INCOMPATIBLE_TYPE_BADNESS;
4665 } /* switch (arg->code ()) */
4666 }
4667
4668 /* End of functions for overload resolution. */
4669 \f
4670 /* Routines to pretty-print types. */
4671
4672 static void
4673 print_bit_vector (B_TYPE *bits, int nbits)
4674 {
4675 int bitno;
4676
4677 for (bitno = 0; bitno < nbits; bitno++)
4678 {
4679 if ((bitno % 8) == 0)
4680 {
4681 puts_filtered (" ");
4682 }
4683 if (B_TST (bits, bitno))
4684 printf_filtered (("1"));
4685 else
4686 printf_filtered (("0"));
4687 }
4688 }
4689
4690 /* Note the first arg should be the "this" pointer, we may not want to
4691 include it since we may get into a infinitely recursive
4692 situation. */
4693
4694 static void
4695 print_args (struct field *args, int nargs, int spaces)
4696 {
4697 if (args != NULL)
4698 {
4699 int i;
4700
4701 for (i = 0; i < nargs; i++)
4702 {
4703 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4704 args[i].name != NULL ? args[i].name : "<NULL>");
4705 recursive_dump_type (args[i].type, spaces + 2);
4706 }
4707 }
4708 }
4709
4710 int
4711 field_is_static (struct field *f)
4712 {
4713 /* "static" fields are the fields whose location is not relative
4714 to the address of the enclosing struct. It would be nice to
4715 have a dedicated flag that would be set for static fields when
4716 the type is being created. But in practice, checking the field
4717 loc_kind should give us an accurate answer. */
4718 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4719 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4720 }
4721
4722 static void
4723 dump_fn_fieldlists (struct type *type, int spaces)
4724 {
4725 int method_idx;
4726 int overload_idx;
4727 struct fn_field *f;
4728
4729 printfi_filtered (spaces, "fn_fieldlists ");
4730 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4731 printf_filtered ("\n");
4732 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4733 {
4734 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4735 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4736 method_idx,
4737 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4738 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4739 gdb_stdout);
4740 printf_filtered (_(") length %d\n"),
4741 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4742 for (overload_idx = 0;
4743 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4744 overload_idx++)
4745 {
4746 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4747 overload_idx,
4748 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4749 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4750 gdb_stdout);
4751 printf_filtered (")\n");
4752 printfi_filtered (spaces + 8, "type ");
4753 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4754 gdb_stdout);
4755 printf_filtered ("\n");
4756
4757 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4758 spaces + 8 + 2);
4759
4760 printfi_filtered (spaces + 8, "args ");
4761 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4762 gdb_stdout);
4763 printf_filtered ("\n");
4764 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4765 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4766 spaces + 8 + 2);
4767 printfi_filtered (spaces + 8, "fcontext ");
4768 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4769 gdb_stdout);
4770 printf_filtered ("\n");
4771
4772 printfi_filtered (spaces + 8, "is_const %d\n",
4773 TYPE_FN_FIELD_CONST (f, overload_idx));
4774 printfi_filtered (spaces + 8, "is_volatile %d\n",
4775 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4776 printfi_filtered (spaces + 8, "is_private %d\n",
4777 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4778 printfi_filtered (spaces + 8, "is_protected %d\n",
4779 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4780 printfi_filtered (spaces + 8, "is_stub %d\n",
4781 TYPE_FN_FIELD_STUB (f, overload_idx));
4782 printfi_filtered (spaces + 8, "defaulted %d\n",
4783 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4784 printfi_filtered (spaces + 8, "is_deleted %d\n",
4785 TYPE_FN_FIELD_DELETED (f, overload_idx));
4786 printfi_filtered (spaces + 8, "voffset %u\n",
4787 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4788 }
4789 }
4790 }
4791
4792 static void
4793 print_cplus_stuff (struct type *type, int spaces)
4794 {
4795 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4796 printfi_filtered (spaces, "vptr_basetype ");
4797 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4798 puts_filtered ("\n");
4799 if (TYPE_VPTR_BASETYPE (type) != NULL)
4800 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4801
4802 printfi_filtered (spaces, "n_baseclasses %d\n",
4803 TYPE_N_BASECLASSES (type));
4804 printfi_filtered (spaces, "nfn_fields %d\n",
4805 TYPE_NFN_FIELDS (type));
4806 if (TYPE_N_BASECLASSES (type) > 0)
4807 {
4808 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4809 TYPE_N_BASECLASSES (type));
4810 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4811 gdb_stdout);
4812 printf_filtered (")");
4813
4814 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4815 TYPE_N_BASECLASSES (type));
4816 puts_filtered ("\n");
4817 }
4818 if (TYPE_NFIELDS (type) > 0)
4819 {
4820 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4821 {
4822 printfi_filtered (spaces,
4823 "private_field_bits (%d bits at *",
4824 TYPE_NFIELDS (type));
4825 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4826 gdb_stdout);
4827 printf_filtered (")");
4828 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4829 TYPE_NFIELDS (type));
4830 puts_filtered ("\n");
4831 }
4832 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4833 {
4834 printfi_filtered (spaces,
4835 "protected_field_bits (%d bits at *",
4836 TYPE_NFIELDS (type));
4837 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4838 gdb_stdout);
4839 printf_filtered (")");
4840 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4841 TYPE_NFIELDS (type));
4842 puts_filtered ("\n");
4843 }
4844 }
4845 if (TYPE_NFN_FIELDS (type) > 0)
4846 {
4847 dump_fn_fieldlists (type, spaces);
4848 }
4849
4850 printfi_filtered (spaces, "calling_convention %d\n",
4851 TYPE_CPLUS_CALLING_CONVENTION (type));
4852 }
4853
4854 /* Print the contents of the TYPE's type_specific union, assuming that
4855 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4856
4857 static void
4858 print_gnat_stuff (struct type *type, int spaces)
4859 {
4860 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4861
4862 if (descriptive_type == NULL)
4863 printfi_filtered (spaces + 2, "no descriptive type\n");
4864 else
4865 {
4866 printfi_filtered (spaces + 2, "descriptive type\n");
4867 recursive_dump_type (descriptive_type, spaces + 4);
4868 }
4869 }
4870
4871 static struct obstack dont_print_type_obstack;
4872
4873 void
4874 recursive_dump_type (struct type *type, int spaces)
4875 {
4876 int idx;
4877
4878 if (spaces == 0)
4879 obstack_begin (&dont_print_type_obstack, 0);
4880
4881 if (TYPE_NFIELDS (type) > 0
4882 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4883 {
4884 struct type **first_dont_print
4885 = (struct type **) obstack_base (&dont_print_type_obstack);
4886
4887 int i = (struct type **)
4888 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4889
4890 while (--i >= 0)
4891 {
4892 if (type == first_dont_print[i])
4893 {
4894 printfi_filtered (spaces, "type node ");
4895 gdb_print_host_address (type, gdb_stdout);
4896 printf_filtered (_(" <same as already seen type>\n"));
4897 return;
4898 }
4899 }
4900
4901 obstack_ptr_grow (&dont_print_type_obstack, type);
4902 }
4903
4904 printfi_filtered (spaces, "type node ");
4905 gdb_print_host_address (type, gdb_stdout);
4906 printf_filtered ("\n");
4907 printfi_filtered (spaces, "name '%s' (",
4908 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4909 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4910 printf_filtered (")\n");
4911 printfi_filtered (spaces, "code 0x%x ", type->code ());
4912 switch (type->code ())
4913 {
4914 case TYPE_CODE_UNDEF:
4915 printf_filtered ("(TYPE_CODE_UNDEF)");
4916 break;
4917 case TYPE_CODE_PTR:
4918 printf_filtered ("(TYPE_CODE_PTR)");
4919 break;
4920 case TYPE_CODE_ARRAY:
4921 printf_filtered ("(TYPE_CODE_ARRAY)");
4922 break;
4923 case TYPE_CODE_STRUCT:
4924 printf_filtered ("(TYPE_CODE_STRUCT)");
4925 break;
4926 case TYPE_CODE_UNION:
4927 printf_filtered ("(TYPE_CODE_UNION)");
4928 break;
4929 case TYPE_CODE_ENUM:
4930 printf_filtered ("(TYPE_CODE_ENUM)");
4931 break;
4932 case TYPE_CODE_FLAGS:
4933 printf_filtered ("(TYPE_CODE_FLAGS)");
4934 break;
4935 case TYPE_CODE_FUNC:
4936 printf_filtered ("(TYPE_CODE_FUNC)");
4937 break;
4938 case TYPE_CODE_INT:
4939 printf_filtered ("(TYPE_CODE_INT)");
4940 break;
4941 case TYPE_CODE_FLT:
4942 printf_filtered ("(TYPE_CODE_FLT)");
4943 break;
4944 case TYPE_CODE_VOID:
4945 printf_filtered ("(TYPE_CODE_VOID)");
4946 break;
4947 case TYPE_CODE_SET:
4948 printf_filtered ("(TYPE_CODE_SET)");
4949 break;
4950 case TYPE_CODE_RANGE:
4951 printf_filtered ("(TYPE_CODE_RANGE)");
4952 break;
4953 case TYPE_CODE_STRING:
4954 printf_filtered ("(TYPE_CODE_STRING)");
4955 break;
4956 case TYPE_CODE_ERROR:
4957 printf_filtered ("(TYPE_CODE_ERROR)");
4958 break;
4959 case TYPE_CODE_MEMBERPTR:
4960 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4961 break;
4962 case TYPE_CODE_METHODPTR:
4963 printf_filtered ("(TYPE_CODE_METHODPTR)");
4964 break;
4965 case TYPE_CODE_METHOD:
4966 printf_filtered ("(TYPE_CODE_METHOD)");
4967 break;
4968 case TYPE_CODE_REF:
4969 printf_filtered ("(TYPE_CODE_REF)");
4970 break;
4971 case TYPE_CODE_CHAR:
4972 printf_filtered ("(TYPE_CODE_CHAR)");
4973 break;
4974 case TYPE_CODE_BOOL:
4975 printf_filtered ("(TYPE_CODE_BOOL)");
4976 break;
4977 case TYPE_CODE_COMPLEX:
4978 printf_filtered ("(TYPE_CODE_COMPLEX)");
4979 break;
4980 case TYPE_CODE_TYPEDEF:
4981 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4982 break;
4983 case TYPE_CODE_NAMESPACE:
4984 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4985 break;
4986 default:
4987 printf_filtered ("(UNKNOWN TYPE CODE)");
4988 break;
4989 }
4990 puts_filtered ("\n");
4991 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4992 if (TYPE_OBJFILE_OWNED (type))
4993 {
4994 printfi_filtered (spaces, "objfile ");
4995 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4996 }
4997 else
4998 {
4999 printfi_filtered (spaces, "gdbarch ");
5000 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5001 }
5002 printf_filtered ("\n");
5003 printfi_filtered (spaces, "target_type ");
5004 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5005 printf_filtered ("\n");
5006 if (TYPE_TARGET_TYPE (type) != NULL)
5007 {
5008 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5009 }
5010 printfi_filtered (spaces, "pointer_type ");
5011 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5012 printf_filtered ("\n");
5013 printfi_filtered (spaces, "reference_type ");
5014 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5015 printf_filtered ("\n");
5016 printfi_filtered (spaces, "type_chain ");
5017 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5018 printf_filtered ("\n");
5019 printfi_filtered (spaces, "instance_flags 0x%x",
5020 TYPE_INSTANCE_FLAGS (type));
5021 if (TYPE_CONST (type))
5022 {
5023 puts_filtered (" TYPE_CONST");
5024 }
5025 if (TYPE_VOLATILE (type))
5026 {
5027 puts_filtered (" TYPE_VOLATILE");
5028 }
5029 if (TYPE_CODE_SPACE (type))
5030 {
5031 puts_filtered (" TYPE_CODE_SPACE");
5032 }
5033 if (TYPE_DATA_SPACE (type))
5034 {
5035 puts_filtered (" TYPE_DATA_SPACE");
5036 }
5037 if (TYPE_ADDRESS_CLASS_1 (type))
5038 {
5039 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5040 }
5041 if (TYPE_ADDRESS_CLASS_2 (type))
5042 {
5043 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5044 }
5045 if (TYPE_RESTRICT (type))
5046 {
5047 puts_filtered (" TYPE_RESTRICT");
5048 }
5049 if (TYPE_ATOMIC (type))
5050 {
5051 puts_filtered (" TYPE_ATOMIC");
5052 }
5053 puts_filtered ("\n");
5054
5055 printfi_filtered (spaces, "flags");
5056 if (TYPE_UNSIGNED (type))
5057 {
5058 puts_filtered (" TYPE_UNSIGNED");
5059 }
5060 if (TYPE_NOSIGN (type))
5061 {
5062 puts_filtered (" TYPE_NOSIGN");
5063 }
5064 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5065 {
5066 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5067 }
5068 if (TYPE_STUB (type))
5069 {
5070 puts_filtered (" TYPE_STUB");
5071 }
5072 if (TYPE_TARGET_STUB (type))
5073 {
5074 puts_filtered (" TYPE_TARGET_STUB");
5075 }
5076 if (TYPE_PROTOTYPED (type))
5077 {
5078 puts_filtered (" TYPE_PROTOTYPED");
5079 }
5080 if (TYPE_VARARGS (type))
5081 {
5082 puts_filtered (" TYPE_VARARGS");
5083 }
5084 /* This is used for things like AltiVec registers on ppc. Gcc emits
5085 an attribute for the array type, which tells whether or not we
5086 have a vector, instead of a regular array. */
5087 if (TYPE_VECTOR (type))
5088 {
5089 puts_filtered (" TYPE_VECTOR");
5090 }
5091 if (TYPE_FIXED_INSTANCE (type))
5092 {
5093 puts_filtered (" TYPE_FIXED_INSTANCE");
5094 }
5095 if (TYPE_STUB_SUPPORTED (type))
5096 {
5097 puts_filtered (" TYPE_STUB_SUPPORTED");
5098 }
5099 if (TYPE_NOTTEXT (type))
5100 {
5101 puts_filtered (" TYPE_NOTTEXT");
5102 }
5103 puts_filtered ("\n");
5104 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
5105 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
5106 puts_filtered ("\n");
5107 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
5108 {
5109 if (type->code () == TYPE_CODE_ENUM)
5110 printfi_filtered (spaces + 2,
5111 "[%d] enumval %s type ",
5112 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5113 else
5114 printfi_filtered (spaces + 2,
5115 "[%d] bitpos %s bitsize %d type ",
5116 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5117 TYPE_FIELD_BITSIZE (type, idx));
5118 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
5119 printf_filtered (" name '%s' (",
5120 TYPE_FIELD_NAME (type, idx) != NULL
5121 ? TYPE_FIELD_NAME (type, idx)
5122 : "<NULL>");
5123 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5124 printf_filtered (")\n");
5125 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5126 {
5127 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5128 }
5129 }
5130 if (type->code () == TYPE_CODE_RANGE)
5131 {
5132 printfi_filtered (spaces, "low %s%s high %s%s\n",
5133 plongest (TYPE_LOW_BOUND (type)),
5134 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5135 plongest (TYPE_HIGH_BOUND (type)),
5136 TYPE_HIGH_BOUND_UNDEFINED (type)
5137 ? " (undefined)" : "");
5138 }
5139
5140 switch (TYPE_SPECIFIC_FIELD (type))
5141 {
5142 case TYPE_SPECIFIC_CPLUS_STUFF:
5143 printfi_filtered (spaces, "cplus_stuff ");
5144 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5145 gdb_stdout);
5146 puts_filtered ("\n");
5147 print_cplus_stuff (type, spaces);
5148 break;
5149
5150 case TYPE_SPECIFIC_GNAT_STUFF:
5151 printfi_filtered (spaces, "gnat_stuff ");
5152 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5153 puts_filtered ("\n");
5154 print_gnat_stuff (type, spaces);
5155 break;
5156
5157 case TYPE_SPECIFIC_FLOATFORMAT:
5158 printfi_filtered (spaces, "floatformat ");
5159 if (TYPE_FLOATFORMAT (type) == NULL
5160 || TYPE_FLOATFORMAT (type)->name == NULL)
5161 puts_filtered ("(null)");
5162 else
5163 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5164 puts_filtered ("\n");
5165 break;
5166
5167 case TYPE_SPECIFIC_FUNC:
5168 printfi_filtered (spaces, "calling_convention %d\n",
5169 TYPE_CALLING_CONVENTION (type));
5170 /* tail_call_list is not printed. */
5171 break;
5172
5173 case TYPE_SPECIFIC_SELF_TYPE:
5174 printfi_filtered (spaces, "self_type ");
5175 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5176 puts_filtered ("\n");
5177 break;
5178 }
5179
5180 if (spaces == 0)
5181 obstack_free (&dont_print_type_obstack, NULL);
5182 }
5183 \f
5184 /* Trivial helpers for the libiberty hash table, for mapping one
5185 type to another. */
5186
5187 struct type_pair : public allocate_on_obstack
5188 {
5189 type_pair (struct type *old_, struct type *newobj_)
5190 : old (old_), newobj (newobj_)
5191 {}
5192
5193 struct type * const old, * const newobj;
5194 };
5195
5196 static hashval_t
5197 type_pair_hash (const void *item)
5198 {
5199 const struct type_pair *pair = (const struct type_pair *) item;
5200
5201 return htab_hash_pointer (pair->old);
5202 }
5203
5204 static int
5205 type_pair_eq (const void *item_lhs, const void *item_rhs)
5206 {
5207 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5208 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5209
5210 return lhs->old == rhs->old;
5211 }
5212
5213 /* Allocate the hash table used by copy_type_recursive to walk
5214 types without duplicates. We use OBJFILE's obstack, because
5215 OBJFILE is about to be deleted. */
5216
5217 htab_t
5218 create_copied_types_hash (struct objfile *objfile)
5219 {
5220 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5221 NULL, &objfile->objfile_obstack,
5222 hashtab_obstack_allocate,
5223 dummy_obstack_deallocate);
5224 }
5225
5226 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5227
5228 static struct dynamic_prop_list *
5229 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5230 struct dynamic_prop_list *list)
5231 {
5232 struct dynamic_prop_list *copy = list;
5233 struct dynamic_prop_list **node_ptr = &copy;
5234
5235 while (*node_ptr != NULL)
5236 {
5237 struct dynamic_prop_list *node_copy;
5238
5239 node_copy = ((struct dynamic_prop_list *)
5240 obstack_copy (objfile_obstack, *node_ptr,
5241 sizeof (struct dynamic_prop_list)));
5242 node_copy->prop = (*node_ptr)->prop;
5243 *node_ptr = node_copy;
5244
5245 node_ptr = &node_copy->next;
5246 }
5247
5248 return copy;
5249 }
5250
5251 /* Recursively copy (deep copy) TYPE, if it is associated with
5252 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5253 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5254 it is not associated with OBJFILE. */
5255
5256 struct type *
5257 copy_type_recursive (struct objfile *objfile,
5258 struct type *type,
5259 htab_t copied_types)
5260 {
5261 void **slot;
5262 struct type *new_type;
5263
5264 if (! TYPE_OBJFILE_OWNED (type))
5265 return type;
5266
5267 /* This type shouldn't be pointing to any types in other objfiles;
5268 if it did, the type might disappear unexpectedly. */
5269 gdb_assert (TYPE_OBJFILE (type) == objfile);
5270
5271 struct type_pair pair (type, nullptr);
5272
5273 slot = htab_find_slot (copied_types, &pair, INSERT);
5274 if (*slot != NULL)
5275 return ((struct type_pair *) *slot)->newobj;
5276
5277 new_type = alloc_type_arch (get_type_arch (type));
5278
5279 /* We must add the new type to the hash table immediately, in case
5280 we encounter this type again during a recursive call below. */
5281 struct type_pair *stored
5282 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5283
5284 *slot = stored;
5285
5286 /* Copy the common fields of types. For the main type, we simply
5287 copy the entire thing and then update specific fields as needed. */
5288 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5289 TYPE_OBJFILE_OWNED (new_type) = 0;
5290 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5291
5292 if (TYPE_NAME (type))
5293 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5294
5295 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5296 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5297
5298 /* Copy the fields. */
5299 if (TYPE_NFIELDS (type))
5300 {
5301 int i, nfields;
5302
5303 nfields = TYPE_NFIELDS (type);
5304 TYPE_FIELDS (new_type) = (struct field *)
5305 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5306 for (i = 0; i < nfields; i++)
5307 {
5308 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5309 TYPE_FIELD_ARTIFICIAL (type, i);
5310 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5311 if (TYPE_FIELD_TYPE (type, i))
5312 TYPE_FIELD_TYPE (new_type, i)
5313 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5314 copied_types);
5315 if (TYPE_FIELD_NAME (type, i))
5316 TYPE_FIELD_NAME (new_type, i) =
5317 xstrdup (TYPE_FIELD_NAME (type, i));
5318 switch (TYPE_FIELD_LOC_KIND (type, i))
5319 {
5320 case FIELD_LOC_KIND_BITPOS:
5321 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5322 TYPE_FIELD_BITPOS (type, i));
5323 break;
5324 case FIELD_LOC_KIND_ENUMVAL:
5325 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5326 TYPE_FIELD_ENUMVAL (type, i));
5327 break;
5328 case FIELD_LOC_KIND_PHYSADDR:
5329 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5330 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5331 break;
5332 case FIELD_LOC_KIND_PHYSNAME:
5333 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5334 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5335 i)));
5336 break;
5337 default:
5338 internal_error (__FILE__, __LINE__,
5339 _("Unexpected type field location kind: %d"),
5340 TYPE_FIELD_LOC_KIND (type, i));
5341 }
5342 }
5343 }
5344
5345 /* For range types, copy the bounds information. */
5346 if (type->code () == TYPE_CODE_RANGE)
5347 {
5348 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5349 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5350 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5351 }
5352
5353 if (type->main_type->dyn_prop_list != NULL)
5354 new_type->main_type->dyn_prop_list
5355 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5356 type->main_type->dyn_prop_list);
5357
5358
5359 /* Copy pointers to other types. */
5360 if (TYPE_TARGET_TYPE (type))
5361 TYPE_TARGET_TYPE (new_type) =
5362 copy_type_recursive (objfile,
5363 TYPE_TARGET_TYPE (type),
5364 copied_types);
5365
5366 /* Maybe copy the type_specific bits.
5367
5368 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5369 base classes and methods. There's no fundamental reason why we
5370 can't, but at the moment it is not needed. */
5371
5372 switch (TYPE_SPECIFIC_FIELD (type))
5373 {
5374 case TYPE_SPECIFIC_NONE:
5375 break;
5376 case TYPE_SPECIFIC_FUNC:
5377 INIT_FUNC_SPECIFIC (new_type);
5378 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5379 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5380 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5381 break;
5382 case TYPE_SPECIFIC_FLOATFORMAT:
5383 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5384 break;
5385 case TYPE_SPECIFIC_CPLUS_STUFF:
5386 INIT_CPLUS_SPECIFIC (new_type);
5387 break;
5388 case TYPE_SPECIFIC_GNAT_STUFF:
5389 INIT_GNAT_SPECIFIC (new_type);
5390 break;
5391 case TYPE_SPECIFIC_SELF_TYPE:
5392 set_type_self_type (new_type,
5393 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5394 copied_types));
5395 break;
5396 default:
5397 gdb_assert_not_reached ("bad type_specific_kind");
5398 }
5399
5400 return new_type;
5401 }
5402
5403 /* Make a copy of the given TYPE, except that the pointer & reference
5404 types are not preserved.
5405
5406 This function assumes that the given type has an associated objfile.
5407 This objfile is used to allocate the new type. */
5408
5409 struct type *
5410 copy_type (const struct type *type)
5411 {
5412 struct type *new_type;
5413
5414 gdb_assert (TYPE_OBJFILE_OWNED (type));
5415
5416 new_type = alloc_type_copy (type);
5417 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5418 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5419 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5420 sizeof (struct main_type));
5421 if (type->main_type->dyn_prop_list != NULL)
5422 new_type->main_type->dyn_prop_list
5423 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5424 type->main_type->dyn_prop_list);
5425
5426 return new_type;
5427 }
5428 \f
5429 /* Helper functions to initialize architecture-specific types. */
5430
5431 /* Allocate a type structure associated with GDBARCH and set its
5432 CODE, LENGTH, and NAME fields. */
5433
5434 struct type *
5435 arch_type (struct gdbarch *gdbarch,
5436 enum type_code code, int bit, const char *name)
5437 {
5438 struct type *type;
5439
5440 type = alloc_type_arch (gdbarch);
5441 set_type_code (type, code);
5442 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5443 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5444
5445 if (name)
5446 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5447
5448 return type;
5449 }
5450
5451 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5452 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5453 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5454
5455 struct type *
5456 arch_integer_type (struct gdbarch *gdbarch,
5457 int bit, int unsigned_p, const char *name)
5458 {
5459 struct type *t;
5460
5461 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5462 if (unsigned_p)
5463 TYPE_UNSIGNED (t) = 1;
5464
5465 return t;
5466 }
5467
5468 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5469 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5470 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5471
5472 struct type *
5473 arch_character_type (struct gdbarch *gdbarch,
5474 int bit, int unsigned_p, const char *name)
5475 {
5476 struct type *t;
5477
5478 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5479 if (unsigned_p)
5480 TYPE_UNSIGNED (t) = 1;
5481
5482 return t;
5483 }
5484
5485 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5486 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5487 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5488
5489 struct type *
5490 arch_boolean_type (struct gdbarch *gdbarch,
5491 int bit, int unsigned_p, const char *name)
5492 {
5493 struct type *t;
5494
5495 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5496 if (unsigned_p)
5497 TYPE_UNSIGNED (t) = 1;
5498
5499 return t;
5500 }
5501
5502 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5503 BIT is the type size in bits; if BIT equals -1, the size is
5504 determined by the floatformat. NAME is the type name. Set the
5505 TYPE_FLOATFORMAT from FLOATFORMATS. */
5506
5507 struct type *
5508 arch_float_type (struct gdbarch *gdbarch,
5509 int bit, const char *name,
5510 const struct floatformat **floatformats)
5511 {
5512 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5513 struct type *t;
5514
5515 bit = verify_floatformat (bit, fmt);
5516 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5517 TYPE_FLOATFORMAT (t) = fmt;
5518
5519 return t;
5520 }
5521
5522 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5523 BIT is the type size in bits. NAME is the type name. */
5524
5525 struct type *
5526 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5527 {
5528 struct type *t;
5529
5530 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5531 return t;
5532 }
5533
5534 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5535 BIT is the pointer type size in bits. NAME is the type name.
5536 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5537 TYPE_UNSIGNED flag. */
5538
5539 struct type *
5540 arch_pointer_type (struct gdbarch *gdbarch,
5541 int bit, const char *name, struct type *target_type)
5542 {
5543 struct type *t;
5544
5545 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5546 TYPE_TARGET_TYPE (t) = target_type;
5547 TYPE_UNSIGNED (t) = 1;
5548 return t;
5549 }
5550
5551 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5552 NAME is the type name. BIT is the size of the flag word in bits. */
5553
5554 struct type *
5555 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5556 {
5557 struct type *type;
5558
5559 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5560 TYPE_UNSIGNED (type) = 1;
5561 TYPE_NFIELDS (type) = 0;
5562 /* Pre-allocate enough space assuming every field is one bit. */
5563 TYPE_FIELDS (type)
5564 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5565
5566 return type;
5567 }
5568
5569 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5570 position BITPOS is called NAME. Pass NAME as "" for fields that
5571 should not be printed. */
5572
5573 void
5574 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5575 struct type *field_type, const char *name)
5576 {
5577 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5578 int field_nr = TYPE_NFIELDS (type);
5579
5580 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5581 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5582 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5583 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5584 gdb_assert (name != NULL);
5585
5586 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5587 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5588 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5589 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5590 ++TYPE_NFIELDS (type);
5591 }
5592
5593 /* Special version of append_flags_type_field to add a flag field.
5594 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5595 position BITPOS is called NAME. */
5596
5597 void
5598 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5599 {
5600 struct gdbarch *gdbarch = get_type_arch (type);
5601
5602 append_flags_type_field (type, bitpos, 1,
5603 builtin_type (gdbarch)->builtin_bool,
5604 name);
5605 }
5606
5607 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5608 specified by CODE) associated with GDBARCH. NAME is the type name. */
5609
5610 struct type *
5611 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5612 enum type_code code)
5613 {
5614 struct type *t;
5615
5616 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5617 t = arch_type (gdbarch, code, 0, NULL);
5618 TYPE_NAME (t) = name;
5619 INIT_CPLUS_SPECIFIC (t);
5620 return t;
5621 }
5622
5623 /* Add new field with name NAME and type FIELD to composite type T.
5624 Do not set the field's position or adjust the type's length;
5625 the caller should do so. Return the new field. */
5626
5627 struct field *
5628 append_composite_type_field_raw (struct type *t, const char *name,
5629 struct type *field)
5630 {
5631 struct field *f;
5632
5633 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5634 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5635 TYPE_NFIELDS (t));
5636 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5637 memset (f, 0, sizeof f[0]);
5638 FIELD_TYPE (f[0]) = field;
5639 FIELD_NAME (f[0]) = name;
5640 return f;
5641 }
5642
5643 /* Add new field with name NAME and type FIELD to composite type T.
5644 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5645
5646 void
5647 append_composite_type_field_aligned (struct type *t, const char *name,
5648 struct type *field, int alignment)
5649 {
5650 struct field *f = append_composite_type_field_raw (t, name, field);
5651
5652 if (t->code () == TYPE_CODE_UNION)
5653 {
5654 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5655 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5656 }
5657 else if (t->code () == TYPE_CODE_STRUCT)
5658 {
5659 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5660 if (TYPE_NFIELDS (t) > 1)
5661 {
5662 SET_FIELD_BITPOS (f[0],
5663 (FIELD_BITPOS (f[-1])
5664 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5665 * TARGET_CHAR_BIT)));
5666
5667 if (alignment)
5668 {
5669 int left;
5670
5671 alignment *= TARGET_CHAR_BIT;
5672 left = FIELD_BITPOS (f[0]) % alignment;
5673
5674 if (left)
5675 {
5676 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5677 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5678 }
5679 }
5680 }
5681 }
5682 }
5683
5684 /* Add new field with name NAME and type FIELD to composite type T. */
5685
5686 void
5687 append_composite_type_field (struct type *t, const char *name,
5688 struct type *field)
5689 {
5690 append_composite_type_field_aligned (t, name, field, 0);
5691 }
5692
5693 static struct gdbarch_data *gdbtypes_data;
5694
5695 const struct builtin_type *
5696 builtin_type (struct gdbarch *gdbarch)
5697 {
5698 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5699 }
5700
5701 static void *
5702 gdbtypes_post_init (struct gdbarch *gdbarch)
5703 {
5704 struct builtin_type *builtin_type
5705 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5706
5707 /* Basic types. */
5708 builtin_type->builtin_void
5709 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5710 builtin_type->builtin_char
5711 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5712 !gdbarch_char_signed (gdbarch), "char");
5713 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5714 builtin_type->builtin_signed_char
5715 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5716 0, "signed char");
5717 builtin_type->builtin_unsigned_char
5718 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5719 1, "unsigned char");
5720 builtin_type->builtin_short
5721 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5722 0, "short");
5723 builtin_type->builtin_unsigned_short
5724 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5725 1, "unsigned short");
5726 builtin_type->builtin_int
5727 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5728 0, "int");
5729 builtin_type->builtin_unsigned_int
5730 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5731 1, "unsigned int");
5732 builtin_type->builtin_long
5733 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5734 0, "long");
5735 builtin_type->builtin_unsigned_long
5736 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5737 1, "unsigned long");
5738 builtin_type->builtin_long_long
5739 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5740 0, "long long");
5741 builtin_type->builtin_unsigned_long_long
5742 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5743 1, "unsigned long long");
5744 builtin_type->builtin_half
5745 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5746 "half", gdbarch_half_format (gdbarch));
5747 builtin_type->builtin_float
5748 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5749 "float", gdbarch_float_format (gdbarch));
5750 builtin_type->builtin_double
5751 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5752 "double", gdbarch_double_format (gdbarch));
5753 builtin_type->builtin_long_double
5754 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5755 "long double", gdbarch_long_double_format (gdbarch));
5756 builtin_type->builtin_complex
5757 = init_complex_type ("complex", builtin_type->builtin_float);
5758 builtin_type->builtin_double_complex
5759 = init_complex_type ("double complex", builtin_type->builtin_double);
5760 builtin_type->builtin_string
5761 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5762 builtin_type->builtin_bool
5763 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5764
5765 /* The following three are about decimal floating point types, which
5766 are 32-bits, 64-bits and 128-bits respectively. */
5767 builtin_type->builtin_decfloat
5768 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5769 builtin_type->builtin_decdouble
5770 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5771 builtin_type->builtin_declong
5772 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5773
5774 /* "True" character types. */
5775 builtin_type->builtin_true_char
5776 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5777 builtin_type->builtin_true_unsigned_char
5778 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5779
5780 /* Fixed-size integer types. */
5781 builtin_type->builtin_int0
5782 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5783 builtin_type->builtin_int8
5784 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5785 builtin_type->builtin_uint8
5786 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5787 builtin_type->builtin_int16
5788 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5789 builtin_type->builtin_uint16
5790 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5791 builtin_type->builtin_int24
5792 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5793 builtin_type->builtin_uint24
5794 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5795 builtin_type->builtin_int32
5796 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5797 builtin_type->builtin_uint32
5798 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5799 builtin_type->builtin_int64
5800 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5801 builtin_type->builtin_uint64
5802 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5803 builtin_type->builtin_int128
5804 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5805 builtin_type->builtin_uint128
5806 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5807 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5808 TYPE_INSTANCE_FLAG_NOTTEXT;
5809 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5810 TYPE_INSTANCE_FLAG_NOTTEXT;
5811
5812 /* Wide character types. */
5813 builtin_type->builtin_char16
5814 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5815 builtin_type->builtin_char32
5816 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5817 builtin_type->builtin_wchar
5818 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5819 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5820
5821 /* Default data/code pointer types. */
5822 builtin_type->builtin_data_ptr
5823 = lookup_pointer_type (builtin_type->builtin_void);
5824 builtin_type->builtin_func_ptr
5825 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5826 builtin_type->builtin_func_func
5827 = lookup_function_type (builtin_type->builtin_func_ptr);
5828
5829 /* This type represents a GDB internal function. */
5830 builtin_type->internal_fn
5831 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5832 "<internal function>");
5833
5834 /* This type represents an xmethod. */
5835 builtin_type->xmethod
5836 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5837
5838 return builtin_type;
5839 }
5840
5841 /* This set of objfile-based types is intended to be used by symbol
5842 readers as basic types. */
5843
5844 static const struct objfile_key<struct objfile_type,
5845 gdb::noop_deleter<struct objfile_type>>
5846 objfile_type_data;
5847
5848 const struct objfile_type *
5849 objfile_type (struct objfile *objfile)
5850 {
5851 struct gdbarch *gdbarch;
5852 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5853
5854 if (objfile_type)
5855 return objfile_type;
5856
5857 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5858 1, struct objfile_type);
5859
5860 /* Use the objfile architecture to determine basic type properties. */
5861 gdbarch = objfile->arch ();
5862
5863 /* Basic types. */
5864 objfile_type->builtin_void
5865 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5866 objfile_type->builtin_char
5867 = init_integer_type (objfile, TARGET_CHAR_BIT,
5868 !gdbarch_char_signed (gdbarch), "char");
5869 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5870 objfile_type->builtin_signed_char
5871 = init_integer_type (objfile, TARGET_CHAR_BIT,
5872 0, "signed char");
5873 objfile_type->builtin_unsigned_char
5874 = init_integer_type (objfile, TARGET_CHAR_BIT,
5875 1, "unsigned char");
5876 objfile_type->builtin_short
5877 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5878 0, "short");
5879 objfile_type->builtin_unsigned_short
5880 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5881 1, "unsigned short");
5882 objfile_type->builtin_int
5883 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5884 0, "int");
5885 objfile_type->builtin_unsigned_int
5886 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5887 1, "unsigned int");
5888 objfile_type->builtin_long
5889 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5890 0, "long");
5891 objfile_type->builtin_unsigned_long
5892 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5893 1, "unsigned long");
5894 objfile_type->builtin_long_long
5895 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5896 0, "long long");
5897 objfile_type->builtin_unsigned_long_long
5898 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5899 1, "unsigned long long");
5900 objfile_type->builtin_float
5901 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5902 "float", gdbarch_float_format (gdbarch));
5903 objfile_type->builtin_double
5904 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5905 "double", gdbarch_double_format (gdbarch));
5906 objfile_type->builtin_long_double
5907 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5908 "long double", gdbarch_long_double_format (gdbarch));
5909
5910 /* This type represents a type that was unrecognized in symbol read-in. */
5911 objfile_type->builtin_error
5912 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5913
5914 /* The following set of types is used for symbols with no
5915 debug information. */
5916 objfile_type->nodebug_text_symbol
5917 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5918 "<text variable, no debug info>");
5919 objfile_type->nodebug_text_gnu_ifunc_symbol
5920 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5921 "<text gnu-indirect-function variable, no debug info>");
5922 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5923 objfile_type->nodebug_got_plt_symbol
5924 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5925 "<text from jump slot in .got.plt, no debug info>",
5926 objfile_type->nodebug_text_symbol);
5927 objfile_type->nodebug_data_symbol
5928 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5929 objfile_type->nodebug_unknown_symbol
5930 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5931 objfile_type->nodebug_tls_symbol
5932 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5933
5934 /* NOTE: on some targets, addresses and pointers are not necessarily
5935 the same.
5936
5937 The upshot is:
5938 - gdb's `struct type' always describes the target's
5939 representation.
5940 - gdb's `struct value' objects should always hold values in
5941 target form.
5942 - gdb's CORE_ADDR values are addresses in the unified virtual
5943 address space that the assembler and linker work with. Thus,
5944 since target_read_memory takes a CORE_ADDR as an argument, it
5945 can access any memory on the target, even if the processor has
5946 separate code and data address spaces.
5947
5948 In this context, objfile_type->builtin_core_addr is a bit odd:
5949 it's a target type for a value the target will never see. It's
5950 only used to hold the values of (typeless) linker symbols, which
5951 are indeed in the unified virtual address space. */
5952
5953 objfile_type->builtin_core_addr
5954 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5955 "__CORE_ADDR");
5956
5957 objfile_type_data.set (objfile, objfile_type);
5958 return objfile_type;
5959 }
5960
5961 void _initialize_gdbtypes ();
5962 void
5963 _initialize_gdbtypes ()
5964 {
5965 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5966
5967 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5968 _("Set debugging of C++ overloading."),
5969 _("Show debugging of C++ overloading."),
5970 _("When enabled, ranking of the "
5971 "functions is displayed."),
5972 NULL,
5973 show_overload_debug,
5974 &setdebuglist, &showdebuglist);
5975
5976 /* Add user knob for controlling resolution of opaque types. */
5977 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5978 &opaque_type_resolution,
5979 _("Set resolution of opaque struct/class/union"
5980 " types (if set before loading symbols)."),
5981 _("Show resolution of opaque struct/class/union"
5982 " types (if set before loading symbols)."),
5983 NULL, NULL,
5984 show_opaque_type_resolution,
5985 &setlist, &showlist);
5986
5987 /* Add an option to permit non-strict type checking. */
5988 add_setshow_boolean_cmd ("type", class_support,
5989 &strict_type_checking,
5990 _("Set strict type checking."),
5991 _("Show strict type checking."),
5992 NULL, NULL,
5993 show_strict_type_checking,
5994 &setchecklist, &showchecklist);
5995 }
This page took 0.203293 seconds and 5 git commands to generate.