remove trivialy unused variables
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534 }
535
536 /* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
538
539 int
540 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
541 {
542 int type_flags;
543
544 /* Check for known address space delimiters. */
545 if (!strcmp (space_identifier, "code"))
546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
547 else if (!strcmp (space_identifier, "data"))
548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
553 return type_flags;
554 else
555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
556 }
557
558 /* Identify address space identifier by integer flag as defined in
559 gdbtypes.h -- return the string version of the adress space name. */
560
561 const char *
562 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
563 {
564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
565 return "code";
566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
567 return "data";
568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
571 else
572 return NULL;
573 }
574
575 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
579
580 static struct type *
581 make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
583 {
584 struct type *ntype;
585
586 ntype = type;
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
594
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
610
611 /* Pointers or references to the original type are not relevant to
612 the new type. */
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
615
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
622
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
626 return ntype;
627 }
628
629 /* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
637
638 struct type *
639 make_type_with_address_space (struct type *type, int space_flag)
640 {
641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648 }
649
650 /* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
655
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
661
662 struct type *
663 make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
666 {
667 struct type *ntype; /* New type */
668
669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
672
673 if (cnst)
674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
675
676 if (voltl)
677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
678
679 if (typeptr && *typeptr != NULL)
680 {
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
694 }
695
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
698
699 if (typeptr != NULL)
700 *typeptr = ntype;
701
702 return ntype;
703 }
704
705 /* Make a 'restrict'-qualified version of TYPE. */
706
707 struct type *
708 make_restrict_type (struct type *type)
709 {
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714 }
715
716 /* Make a type without const, volatile, or restrict. */
717
718 struct type *
719 make_unqualified_type (struct type *type)
720 {
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727 }
728
729 /* Make a '_Atomic'-qualified version of TYPE. */
730
731 struct type *
732 make_atomic_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738 }
739
740 /* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
743
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
749
750 void
751 replace_type (struct type *ntype, struct type *type)
752 {
753 struct type *chain;
754
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
760
761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
762
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
765 chain = ntype;
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
780
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
784 }
785
786 /* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791 struct type *
792 lookup_memberptr_type (struct type *type, struct type *domain)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (type);
797 smash_to_memberptr_type (mtype, domain, type);
798 return mtype;
799 }
800
801 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803 struct type *
804 lookup_methodptr_type (struct type *to_type)
805 {
806 struct type *mtype;
807
808 mtype = alloc_type_copy (to_type);
809 smash_to_methodptr_type (mtype, to_type);
810 return mtype;
811 }
812
813 /* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
818
819 struct type *
820 allocate_stub_method (struct type *type)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
828 TYPE_TARGET_TYPE (mtype) = type;
829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
830 return mtype;
831 }
832
833 /* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
835
836 struct type *
837 create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
840 {
841 if (result_type == NULL)
842 result_type = alloc_type_copy (index_type);
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
845 if (TYPE_STUB (index_type))
846 TYPE_TARGET_STUB (result_type) = 1;
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
849
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
854
855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
856 TYPE_UNSIGNED (result_type) = 1;
857
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
865 return result_type;
866 }
867
868 /* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878 struct type *
879 create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881 {
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893 }
894
895 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898 static int
899 has_static_range (const struct range_bounds *bounds)
900 {
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903 }
904
905
906 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
909
910 int
911 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
912 {
913 type = check_typedef (type);
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
924 entries. */
925 int i;
926
927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
934 }
935
936 /* Set unsigned indicator if warranted. */
937 if (*lowp >= 0)
938 {
939 TYPE_UNSIGNED (type) = 1;
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
958 *highp = -*lowp - 1;
959 return 0;
960 }
961 /* ... fall through for unsigned ints ... */
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973 }
974
975 /* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
979 Return 1 if the operation was successful. Return zero otherwise,
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989 int
990 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991 {
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017 }
1018
1019 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031 */
1032
1033 int
1034 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035 {
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056 }
1057
1058 /* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
1071
1072 struct type *
1073 create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
1077 {
1078 if (result_type == NULL)
1079 result_type = alloc_type_copy (range_type);
1080
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
1091 element_type = check_typedef (element_type);
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
1104 else
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1118 TYPE_INDEX_TYPE (result_type) = range_type;
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1121
1122 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1123 if (TYPE_LENGTH (result_type) == 0)
1124 TYPE_TARGET_STUB (result_type) = 1;
1125
1126 return result_type;
1127 }
1128
1129 /* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132 struct type *
1133 create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136 {
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139 }
1140
1141 struct type *
1142 lookup_array_range_type (struct type *element_type,
1143 LONGEST low_bound, LONGEST high_bound)
1144 {
1145 struct gdbarch *gdbarch = get_type_arch (element_type);
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1149
1150 return create_array_type (NULL, element_type, range_type);
1151 }
1152
1153 /* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
1164
1165 struct type *
1166 create_string_type (struct type *result_type,
1167 struct type *string_char_type,
1168 struct type *range_type)
1169 {
1170 result_type = create_array_type (result_type,
1171 string_char_type,
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1174 return result_type;
1175 }
1176
1177 struct type *
1178 lookup_string_range_type (struct type *string_char_type,
1179 LONGEST low_bound, LONGEST high_bound)
1180 {
1181 struct type *result_type;
1182
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187 }
1188
1189 struct type *
1190 create_set_type (struct type *result_type, struct type *domain_type)
1191 {
1192 if (result_type == NULL)
1193 result_type = alloc_type_copy (domain_type);
1194
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1199
1200 if (!TYPE_STUB (domain_type))
1201 {
1202 LONGEST low_bound, high_bound, bit_length;
1203
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1209 if (low_bound >= 0)
1210 TYPE_UNSIGNED (result_type) = 1;
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
1214 return result_type;
1215 }
1216
1217 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220 void
1221 make_vector_type (struct type *array_type)
1222 {
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
1240 TYPE_VECTOR (array_type) = 1;
1241 }
1242
1243 struct type *
1244 init_vector_type (struct type *elt_type, int n)
1245 {
1246 struct type *array_type;
1247
1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1249 make_vector_type (array_type);
1250 return array_type;
1251 }
1252
1253 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259 struct type *
1260 internal_type_self_type (struct type *type)
1261 {
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278 }
1279
1280 /* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285 void
1286 set_type_self_type (struct type *type, struct type *self_type)
1287 {
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306 }
1307
1308 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
1314
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
1317 allocated. */
1318
1319 void
1320 smash_to_memberptr_type (struct type *type, struct type *self_type,
1321 struct type *to_type)
1322 {
1323 smash_type (type);
1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1325 TYPE_TARGET_TYPE (type) = to_type;
1326 set_type_self_type (type, self_type);
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1331 }
1332
1333 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339 void
1340 smash_to_methodptr_type (struct type *type, struct type *to_type)
1341 {
1342 smash_type (type);
1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1344 TYPE_TARGET_TYPE (type) = to_type;
1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1347 }
1348
1349 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1350 METHOD just means `function that gets an extra "this" argument'.
1351
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
1354 allocated. */
1355
1356 void
1357 smash_to_method_type (struct type *type, struct type *self_type,
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
1360 {
1361 smash_type (type);
1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
1363 TYPE_TARGET_TYPE (type) = to_type;
1364 set_type_self_type (type, self_type);
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
1368 TYPE_VARARGS (type) = 1;
1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1370 }
1371
1372 /* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
1375 const char *
1376 type_name_no_tag (const struct type *type)
1377 {
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
1384 return TYPE_NAME (type);
1385 }
1386
1387 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394 const char *
1395 type_name_no_tag_or_error (struct type *type)
1396 {
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
1401 type = check_typedef (type);
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
1412 }
1413
1414 /* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
1417
1418 struct type *
1419 lookup_typename (const struct language_defn *language,
1420 struct gdbarch *gdbarch, const char *name,
1421 const struct block *block, int noerr)
1422 {
1423 struct symbol *sym;
1424
1425 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1426 language->la_language, NULL).symbol;
1427 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1428 return SYMBOL_TYPE (sym);
1429
1430 if (noerr)
1431 return NULL;
1432 error (_("No type named %s."), name);
1433 }
1434
1435 struct type *
1436 lookup_unsigned_typename (const struct language_defn *language,
1437 struct gdbarch *gdbarch, const char *name)
1438 {
1439 char *uns = (char *) alloca (strlen (name) + 10);
1440
1441 strcpy (uns, "unsigned ");
1442 strcpy (uns + 9, name);
1443 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1444 }
1445
1446 struct type *
1447 lookup_signed_typename (const struct language_defn *language,
1448 struct gdbarch *gdbarch, const char *name)
1449 {
1450 struct type *t;
1451 char *uns = (char *) alloca (strlen (name) + 8);
1452
1453 strcpy (uns, "signed ");
1454 strcpy (uns + 7, name);
1455 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1456 /* If we don't find "signed FOO" just try again with plain "FOO". */
1457 if (t != NULL)
1458 return t;
1459 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1460 }
1461
1462 /* Lookup a structure type named "struct NAME",
1463 visible in lexical block BLOCK. */
1464
1465 struct type *
1466 lookup_struct (const char *name, const struct block *block)
1467 {
1468 struct symbol *sym;
1469
1470 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1471
1472 if (sym == NULL)
1473 {
1474 error (_("No struct type named %s."), name);
1475 }
1476 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1477 {
1478 error (_("This context has class, union or enum %s, not a struct."),
1479 name);
1480 }
1481 return (SYMBOL_TYPE (sym));
1482 }
1483
1484 /* Lookup a union type named "union NAME",
1485 visible in lexical block BLOCK. */
1486
1487 struct type *
1488 lookup_union (const char *name, const struct block *block)
1489 {
1490 struct symbol *sym;
1491 struct type *t;
1492
1493 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1494
1495 if (sym == NULL)
1496 error (_("No union type named %s."), name);
1497
1498 t = SYMBOL_TYPE (sym);
1499
1500 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1501 return t;
1502
1503 /* If we get here, it's not a union. */
1504 error (_("This context has class, struct or enum %s, not a union."),
1505 name);
1506 }
1507
1508 /* Lookup an enum type named "enum NAME",
1509 visible in lexical block BLOCK. */
1510
1511 struct type *
1512 lookup_enum (const char *name, const struct block *block)
1513 {
1514 struct symbol *sym;
1515
1516 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1517 if (sym == NULL)
1518 {
1519 error (_("No enum type named %s."), name);
1520 }
1521 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1522 {
1523 error (_("This context has class, struct or union %s, not an enum."),
1524 name);
1525 }
1526 return (SYMBOL_TYPE (sym));
1527 }
1528
1529 /* Lookup a template type named "template NAME<TYPE>",
1530 visible in lexical block BLOCK. */
1531
1532 struct type *
1533 lookup_template_type (char *name, struct type *type,
1534 const struct block *block)
1535 {
1536 struct symbol *sym;
1537 char *nam = (char *)
1538 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1539
1540 strcpy (nam, name);
1541 strcat (nam, "<");
1542 strcat (nam, TYPE_NAME (type));
1543 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1544
1545 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1546
1547 if (sym == NULL)
1548 {
1549 error (_("No template type named %s."), name);
1550 }
1551 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1552 {
1553 error (_("This context has class, union or enum %s, not a struct."),
1554 name);
1555 }
1556 return (SYMBOL_TYPE (sym));
1557 }
1558
1559 /* Given a type TYPE, lookup the type of the component of type named
1560 NAME.
1561
1562 TYPE can be either a struct or union, or a pointer or reference to
1563 a struct or union. If it is a pointer or reference, its target
1564 type is automatically used. Thus '.' and '->' are interchangable,
1565 as specified for the definitions of the expression element types
1566 STRUCTOP_STRUCT and STRUCTOP_PTR.
1567
1568 If NOERR is nonzero, return zero if NAME is not suitably defined.
1569 If NAME is the name of a baseclass type, return that type. */
1570
1571 struct type *
1572 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1573 {
1574 int i;
1575 char *type_name;
1576
1577 for (;;)
1578 {
1579 type = check_typedef (type);
1580 if (TYPE_CODE (type) != TYPE_CODE_PTR
1581 && TYPE_CODE (type) != TYPE_CODE_REF)
1582 break;
1583 type = TYPE_TARGET_TYPE (type);
1584 }
1585
1586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1587 && TYPE_CODE (type) != TYPE_CODE_UNION)
1588 {
1589 type_name = type_to_string (type);
1590 make_cleanup (xfree, type_name);
1591 error (_("Type %s is not a structure or union type."), type_name);
1592 }
1593
1594 #if 0
1595 /* FIXME: This change put in by Michael seems incorrect for the case
1596 where the structure tag name is the same as the member name.
1597 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1598 foo; } bell;" Disabled by fnf. */
1599 {
1600 char *type_name;
1601
1602 type_name = type_name_no_tag (type);
1603 if (type_name != NULL && strcmp (type_name, name) == 0)
1604 return type;
1605 }
1606 #endif
1607
1608 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1609 {
1610 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1611
1612 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1613 {
1614 return TYPE_FIELD_TYPE (type, i);
1615 }
1616 else if (!t_field_name || *t_field_name == '\0')
1617 {
1618 struct type *subtype
1619 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1620
1621 if (subtype != NULL)
1622 return subtype;
1623 }
1624 }
1625
1626 /* OK, it's not in this class. Recursively check the baseclasses. */
1627 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1628 {
1629 struct type *t;
1630
1631 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1632 if (t != NULL)
1633 {
1634 return t;
1635 }
1636 }
1637
1638 if (noerr)
1639 {
1640 return NULL;
1641 }
1642
1643 type_name = type_to_string (type);
1644 make_cleanup (xfree, type_name);
1645 error (_("Type %s has no component named %s."), type_name, name);
1646 }
1647
1648 /* Store in *MAX the largest number representable by unsigned integer type
1649 TYPE. */
1650
1651 void
1652 get_unsigned_type_max (struct type *type, ULONGEST *max)
1653 {
1654 unsigned int n;
1655
1656 type = check_typedef (type);
1657 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1658 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1659
1660 /* Written this way to avoid overflow. */
1661 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1662 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1663 }
1664
1665 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1666 signed integer type TYPE. */
1667
1668 void
1669 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1670 {
1671 unsigned int n;
1672
1673 type = check_typedef (type);
1674 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1675 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1676
1677 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1678 *min = -((ULONGEST) 1 << (n - 1));
1679 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1680 }
1681
1682 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1683 cplus_stuff.vptr_fieldno.
1684
1685 cplus_stuff is initialized to cplus_struct_default which does not
1686 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1687 designated initializers). We cope with that here. */
1688
1689 int
1690 internal_type_vptr_fieldno (struct type *type)
1691 {
1692 type = check_typedef (type);
1693 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1694 || TYPE_CODE (type) == TYPE_CODE_UNION);
1695 if (!HAVE_CPLUS_STRUCT (type))
1696 return -1;
1697 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1698 }
1699
1700 /* Set the value of cplus_stuff.vptr_fieldno. */
1701
1702 void
1703 set_type_vptr_fieldno (struct type *type, int fieldno)
1704 {
1705 type = check_typedef (type);
1706 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1707 || TYPE_CODE (type) == TYPE_CODE_UNION);
1708 if (!HAVE_CPLUS_STRUCT (type))
1709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1710 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1711 }
1712
1713 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1714 cplus_stuff.vptr_basetype. */
1715
1716 struct type *
1717 internal_type_vptr_basetype (struct type *type)
1718 {
1719 type = check_typedef (type);
1720 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1721 || TYPE_CODE (type) == TYPE_CODE_UNION);
1722 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1723 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1724 }
1725
1726 /* Set the value of cplus_stuff.vptr_basetype. */
1727
1728 void
1729 set_type_vptr_basetype (struct type *type, struct type *basetype)
1730 {
1731 type = check_typedef (type);
1732 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1733 || TYPE_CODE (type) == TYPE_CODE_UNION);
1734 if (!HAVE_CPLUS_STRUCT (type))
1735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1736 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1737 }
1738
1739 /* Lookup the vptr basetype/fieldno values for TYPE.
1740 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1741 vptr_fieldno. Also, if found and basetype is from the same objfile,
1742 cache the results.
1743 If not found, return -1 and ignore BASETYPEP.
1744 Callers should be aware that in some cases (for example,
1745 the type or one of its baseclasses is a stub type and we are
1746 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1747 this function will not be able to find the
1748 virtual function table pointer, and vptr_fieldno will remain -1 and
1749 vptr_basetype will remain NULL or incomplete. */
1750
1751 int
1752 get_vptr_fieldno (struct type *type, struct type **basetypep)
1753 {
1754 type = check_typedef (type);
1755
1756 if (TYPE_VPTR_FIELDNO (type) < 0)
1757 {
1758 int i;
1759
1760 /* We must start at zero in case the first (and only) baseclass
1761 is virtual (and hence we cannot share the table pointer). */
1762 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1763 {
1764 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1765 int fieldno;
1766 struct type *basetype;
1767
1768 fieldno = get_vptr_fieldno (baseclass, &basetype);
1769 if (fieldno >= 0)
1770 {
1771 /* If the type comes from a different objfile we can't cache
1772 it, it may have a different lifetime. PR 2384 */
1773 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1774 {
1775 set_type_vptr_fieldno (type, fieldno);
1776 set_type_vptr_basetype (type, basetype);
1777 }
1778 if (basetypep)
1779 *basetypep = basetype;
1780 return fieldno;
1781 }
1782 }
1783
1784 /* Not found. */
1785 return -1;
1786 }
1787 else
1788 {
1789 if (basetypep)
1790 *basetypep = TYPE_VPTR_BASETYPE (type);
1791 return TYPE_VPTR_FIELDNO (type);
1792 }
1793 }
1794
1795 static void
1796 stub_noname_complaint (void)
1797 {
1798 complaint (&symfile_complaints, _("stub type has NULL name"));
1799 }
1800
1801 /* Worker for is_dynamic_type. */
1802
1803 static int
1804 is_dynamic_type_internal (struct type *type, int top_level)
1805 {
1806 type = check_typedef (type);
1807
1808 /* We only want to recognize references at the outermost level. */
1809 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1810 type = check_typedef (TYPE_TARGET_TYPE (type));
1811
1812 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1813 dynamic, even if the type itself is statically defined.
1814 From a user's point of view, this may appear counter-intuitive;
1815 but it makes sense in this context, because the point is to determine
1816 whether any part of the type needs to be resolved before it can
1817 be exploited. */
1818 if (TYPE_DATA_LOCATION (type) != NULL
1819 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1820 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1821 return 1;
1822
1823 if (TYPE_ASSOCIATED_PROP (type))
1824 return 1;
1825
1826 if (TYPE_ALLOCATED_PROP (type))
1827 return 1;
1828
1829 switch (TYPE_CODE (type))
1830 {
1831 case TYPE_CODE_RANGE:
1832 {
1833 /* A range type is obviously dynamic if it has at least one
1834 dynamic bound. But also consider the range type to be
1835 dynamic when its subtype is dynamic, even if the bounds
1836 of the range type are static. It allows us to assume that
1837 the subtype of a static range type is also static. */
1838 return (!has_static_range (TYPE_RANGE_DATA (type))
1839 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1840 }
1841
1842 case TYPE_CODE_ARRAY:
1843 {
1844 gdb_assert (TYPE_NFIELDS (type) == 1);
1845
1846 /* The array is dynamic if either the bounds are dynamic,
1847 or the elements it contains have a dynamic contents. */
1848 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1849 return 1;
1850 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1851 }
1852
1853 case TYPE_CODE_STRUCT:
1854 case TYPE_CODE_UNION:
1855 {
1856 int i;
1857
1858 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1859 if (!field_is_static (&TYPE_FIELD (type, i))
1860 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1861 return 1;
1862 }
1863 break;
1864 }
1865
1866 return 0;
1867 }
1868
1869 /* See gdbtypes.h. */
1870
1871 int
1872 is_dynamic_type (struct type *type)
1873 {
1874 return is_dynamic_type_internal (type, 1);
1875 }
1876
1877 static struct type *resolve_dynamic_type_internal
1878 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1879
1880 /* Given a dynamic range type (dyn_range_type) and a stack of
1881 struct property_addr_info elements, return a static version
1882 of that type. */
1883
1884 static struct type *
1885 resolve_dynamic_range (struct type *dyn_range_type,
1886 struct property_addr_info *addr_stack)
1887 {
1888 CORE_ADDR value;
1889 struct type *static_range_type, *static_target_type;
1890 const struct dynamic_prop *prop;
1891 struct dynamic_prop low_bound, high_bound;
1892
1893 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1894
1895 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1896 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1897 {
1898 low_bound.kind = PROP_CONST;
1899 low_bound.data.const_val = value;
1900 }
1901 else
1902 {
1903 low_bound.kind = PROP_UNDEFINED;
1904 low_bound.data.const_val = 0;
1905 }
1906
1907 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1908 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1909 {
1910 high_bound.kind = PROP_CONST;
1911 high_bound.data.const_val = value;
1912
1913 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1914 high_bound.data.const_val
1915 = low_bound.data.const_val + high_bound.data.const_val - 1;
1916 }
1917 else
1918 {
1919 high_bound.kind = PROP_UNDEFINED;
1920 high_bound.data.const_val = 0;
1921 }
1922
1923 static_target_type
1924 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1925 addr_stack, 0);
1926 static_range_type = create_range_type (copy_type (dyn_range_type),
1927 static_target_type,
1928 &low_bound, &high_bound);
1929 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1930 return static_range_type;
1931 }
1932
1933 /* Resolves dynamic bound values of an array type TYPE to static ones.
1934 ADDR_STACK is a stack of struct property_addr_info to be used
1935 if needed during the dynamic resolution. */
1936
1937 static struct type *
1938 resolve_dynamic_array (struct type *type,
1939 struct property_addr_info *addr_stack)
1940 {
1941 CORE_ADDR value;
1942 struct type *elt_type;
1943 struct type *range_type;
1944 struct type *ary_dim;
1945 struct dynamic_prop *prop;
1946
1947 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1948
1949 type = copy_type (type);
1950
1951 elt_type = type;
1952 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1953 range_type = resolve_dynamic_range (range_type, addr_stack);
1954
1955 /* Resolve allocated/associated here before creating a new array type, which
1956 will update the length of the array accordingly. */
1957 prop = TYPE_ALLOCATED_PROP (type);
1958 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1959 {
1960 TYPE_DYN_PROP_ADDR (prop) = value;
1961 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1962 }
1963 prop = TYPE_ASSOCIATED_PROP (type);
1964 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1965 {
1966 TYPE_DYN_PROP_ADDR (prop) = value;
1967 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1968 }
1969
1970 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1971
1972 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1973 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1974 else
1975 elt_type = TYPE_TARGET_TYPE (type);
1976
1977 return create_array_type_with_stride (type, elt_type, range_type,
1978 TYPE_FIELD_BITSIZE (type, 0));
1979 }
1980
1981 /* Resolve dynamic bounds of members of the union TYPE to static
1982 bounds. ADDR_STACK is a stack of struct property_addr_info
1983 to be used if needed during the dynamic resolution. */
1984
1985 static struct type *
1986 resolve_dynamic_union (struct type *type,
1987 struct property_addr_info *addr_stack)
1988 {
1989 struct type *resolved_type;
1990 int i;
1991 unsigned int max_len = 0;
1992
1993 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1994
1995 resolved_type = copy_type (type);
1996 TYPE_FIELDS (resolved_type)
1997 = (struct field *) TYPE_ALLOC (resolved_type,
1998 TYPE_NFIELDS (resolved_type)
1999 * sizeof (struct field));
2000 memcpy (TYPE_FIELDS (resolved_type),
2001 TYPE_FIELDS (type),
2002 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2003 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2004 {
2005 struct type *t;
2006
2007 if (field_is_static (&TYPE_FIELD (type, i)))
2008 continue;
2009
2010 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2011 addr_stack, 0);
2012 TYPE_FIELD_TYPE (resolved_type, i) = t;
2013 if (TYPE_LENGTH (t) > max_len)
2014 max_len = TYPE_LENGTH (t);
2015 }
2016
2017 TYPE_LENGTH (resolved_type) = max_len;
2018 return resolved_type;
2019 }
2020
2021 /* Resolve dynamic bounds of members of the struct TYPE to static
2022 bounds. ADDR_STACK is a stack of struct property_addr_info to
2023 be used if needed during the dynamic resolution. */
2024
2025 static struct type *
2026 resolve_dynamic_struct (struct type *type,
2027 struct property_addr_info *addr_stack)
2028 {
2029 struct type *resolved_type;
2030 int i;
2031 unsigned resolved_type_bit_length = 0;
2032
2033 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2034 gdb_assert (TYPE_NFIELDS (type) > 0);
2035
2036 resolved_type = copy_type (type);
2037 TYPE_FIELDS (resolved_type)
2038 = (struct field *) TYPE_ALLOC (resolved_type,
2039 TYPE_NFIELDS (resolved_type)
2040 * sizeof (struct field));
2041 memcpy (TYPE_FIELDS (resolved_type),
2042 TYPE_FIELDS (type),
2043 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2044 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2045 {
2046 unsigned new_bit_length;
2047 struct property_addr_info pinfo;
2048
2049 if (field_is_static (&TYPE_FIELD (type, i)))
2050 continue;
2051
2052 /* As we know this field is not a static field, the field's
2053 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2054 this is the case, but only trigger a simple error rather
2055 than an internal error if that fails. While failing
2056 that verification indicates a bug in our code, the error
2057 is not severe enough to suggest to the user he stops
2058 his debugging session because of it. */
2059 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2060 error (_("Cannot determine struct field location"
2061 " (invalid location kind)"));
2062
2063 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2064 pinfo.valaddr = addr_stack->valaddr;
2065 pinfo.addr
2066 = (addr_stack->addr
2067 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2068 pinfo.next = addr_stack;
2069
2070 TYPE_FIELD_TYPE (resolved_type, i)
2071 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2072 &pinfo, 0);
2073 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2074 == FIELD_LOC_KIND_BITPOS);
2075
2076 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2077 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2078 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2079 else
2080 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2081 * TARGET_CHAR_BIT);
2082
2083 /* Normally, we would use the position and size of the last field
2084 to determine the size of the enclosing structure. But GCC seems
2085 to be encoding the position of some fields incorrectly when
2086 the struct contains a dynamic field that is not placed last.
2087 So we compute the struct size based on the field that has
2088 the highest position + size - probably the best we can do. */
2089 if (new_bit_length > resolved_type_bit_length)
2090 resolved_type_bit_length = new_bit_length;
2091 }
2092
2093 /* The length of a type won't change for fortran, but it does for C and Ada.
2094 For fortran the size of dynamic fields might change over time but not the
2095 type length of the structure. If we adapt it, we run into problems
2096 when calculating the element offset for arrays of structs. */
2097 if (current_language->la_language != language_fortran)
2098 TYPE_LENGTH (resolved_type)
2099 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2100
2101 /* The Ada language uses this field as a cache for static fixed types: reset
2102 it as RESOLVED_TYPE must have its own static fixed type. */
2103 TYPE_TARGET_TYPE (resolved_type) = NULL;
2104
2105 return resolved_type;
2106 }
2107
2108 /* Worker for resolved_dynamic_type. */
2109
2110 static struct type *
2111 resolve_dynamic_type_internal (struct type *type,
2112 struct property_addr_info *addr_stack,
2113 int top_level)
2114 {
2115 struct type *real_type = check_typedef (type);
2116 struct type *resolved_type = type;
2117 struct dynamic_prop *prop;
2118 CORE_ADDR value;
2119
2120 if (!is_dynamic_type_internal (real_type, top_level))
2121 return type;
2122
2123 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2124 {
2125 resolved_type = copy_type (type);
2126 TYPE_TARGET_TYPE (resolved_type)
2127 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2128 top_level);
2129 }
2130 else
2131 {
2132 /* Before trying to resolve TYPE, make sure it is not a stub. */
2133 type = real_type;
2134
2135 switch (TYPE_CODE (type))
2136 {
2137 case TYPE_CODE_REF:
2138 {
2139 struct property_addr_info pinfo;
2140
2141 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2142 pinfo.valaddr = NULL;
2143 if (addr_stack->valaddr != NULL)
2144 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2145 else
2146 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2147 pinfo.next = addr_stack;
2148
2149 resolved_type = copy_type (type);
2150 TYPE_TARGET_TYPE (resolved_type)
2151 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2152 &pinfo, top_level);
2153 break;
2154 }
2155
2156 case TYPE_CODE_ARRAY:
2157 resolved_type = resolve_dynamic_array (type, addr_stack);
2158 break;
2159
2160 case TYPE_CODE_RANGE:
2161 resolved_type = resolve_dynamic_range (type, addr_stack);
2162 break;
2163
2164 case TYPE_CODE_UNION:
2165 resolved_type = resolve_dynamic_union (type, addr_stack);
2166 break;
2167
2168 case TYPE_CODE_STRUCT:
2169 resolved_type = resolve_dynamic_struct (type, addr_stack);
2170 break;
2171 }
2172 }
2173
2174 /* Resolve data_location attribute. */
2175 prop = TYPE_DATA_LOCATION (resolved_type);
2176 if (prop != NULL
2177 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2178 {
2179 TYPE_DYN_PROP_ADDR (prop) = value;
2180 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2181 }
2182
2183 return resolved_type;
2184 }
2185
2186 /* See gdbtypes.h */
2187
2188 struct type *
2189 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2190 CORE_ADDR addr)
2191 {
2192 struct property_addr_info pinfo
2193 = {check_typedef (type), valaddr, addr, NULL};
2194
2195 return resolve_dynamic_type_internal (type, &pinfo, 1);
2196 }
2197
2198 /* See gdbtypes.h */
2199
2200 struct dynamic_prop *
2201 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2202 {
2203 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2204
2205 while (node != NULL)
2206 {
2207 if (node->prop_kind == prop_kind)
2208 return &node->prop;
2209 node = node->next;
2210 }
2211 return NULL;
2212 }
2213
2214 /* See gdbtypes.h */
2215
2216 void
2217 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2218 struct type *type, struct objfile *objfile)
2219 {
2220 struct dynamic_prop_list *temp;
2221
2222 gdb_assert (TYPE_OBJFILE_OWNED (type));
2223
2224 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2225 temp->prop_kind = prop_kind;
2226 temp->prop = prop;
2227 temp->next = TYPE_DYN_PROP_LIST (type);
2228
2229 TYPE_DYN_PROP_LIST (type) = temp;
2230 }
2231
2232 /* Remove dynamic property from TYPE in case it exists. */
2233
2234 void
2235 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2236 struct type *type)
2237 {
2238 struct dynamic_prop_list *prev_node, *curr_node;
2239
2240 curr_node = TYPE_DYN_PROP_LIST (type);
2241 prev_node = NULL;
2242
2243 while (NULL != curr_node)
2244 {
2245 if (curr_node->prop_kind == prop_kind)
2246 {
2247 /* Update the linked list but don't free anything.
2248 The property was allocated on objstack and it is not known
2249 if we are on top of it. Nevertheless, everything is released
2250 when the complete objstack is freed. */
2251 if (NULL == prev_node)
2252 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2253 else
2254 prev_node->next = curr_node->next;
2255
2256 return;
2257 }
2258
2259 prev_node = curr_node;
2260 curr_node = curr_node->next;
2261 }
2262 }
2263
2264 /* Find the real type of TYPE. This function returns the real type,
2265 after removing all layers of typedefs, and completing opaque or stub
2266 types. Completion changes the TYPE argument, but stripping of
2267 typedefs does not.
2268
2269 Instance flags (e.g. const/volatile) are preserved as typedefs are
2270 stripped. If necessary a new qualified form of the underlying type
2271 is created.
2272
2273 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2274 not been computed and we're either in the middle of reading symbols, or
2275 there was no name for the typedef in the debug info.
2276
2277 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2278 QUITs in the symbol reading code can also throw.
2279 Thus this function can throw an exception.
2280
2281 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2282 the target type.
2283
2284 If this is a stubbed struct (i.e. declared as struct foo *), see if
2285 we can find a full definition in some other file. If so, copy this
2286 definition, so we can use it in future. There used to be a comment
2287 (but not any code) that if we don't find a full definition, we'd
2288 set a flag so we don't spend time in the future checking the same
2289 type. That would be a mistake, though--we might load in more
2290 symbols which contain a full definition for the type. */
2291
2292 struct type *
2293 check_typedef (struct type *type)
2294 {
2295 struct type *orig_type = type;
2296 /* While we're removing typedefs, we don't want to lose qualifiers.
2297 E.g., const/volatile. */
2298 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2299
2300 gdb_assert (type);
2301
2302 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2303 {
2304 if (!TYPE_TARGET_TYPE (type))
2305 {
2306 const char *name;
2307 struct symbol *sym;
2308
2309 /* It is dangerous to call lookup_symbol if we are currently
2310 reading a symtab. Infinite recursion is one danger. */
2311 if (currently_reading_symtab)
2312 return make_qualified_type (type, instance_flags, NULL);
2313
2314 name = type_name_no_tag (type);
2315 /* FIXME: shouldn't we separately check the TYPE_NAME and
2316 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2317 VAR_DOMAIN as appropriate? (this code was written before
2318 TYPE_NAME and TYPE_TAG_NAME were separate). */
2319 if (name == NULL)
2320 {
2321 stub_noname_complaint ();
2322 return make_qualified_type (type, instance_flags, NULL);
2323 }
2324 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2325 if (sym)
2326 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2327 else /* TYPE_CODE_UNDEF */
2328 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2329 }
2330 type = TYPE_TARGET_TYPE (type);
2331
2332 /* Preserve the instance flags as we traverse down the typedef chain.
2333
2334 Handling address spaces/classes is nasty, what do we do if there's a
2335 conflict?
2336 E.g., what if an outer typedef marks the type as class_1 and an inner
2337 typedef marks the type as class_2?
2338 This is the wrong place to do such error checking. We leave it to
2339 the code that created the typedef in the first place to flag the
2340 error. We just pick the outer address space (akin to letting the
2341 outer cast in a chain of casting win), instead of assuming
2342 "it can't happen". */
2343 {
2344 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2345 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2346 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2347 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2348
2349 /* Treat code vs data spaces and address classes separately. */
2350 if ((instance_flags & ALL_SPACES) != 0)
2351 new_instance_flags &= ~ALL_SPACES;
2352 if ((instance_flags & ALL_CLASSES) != 0)
2353 new_instance_flags &= ~ALL_CLASSES;
2354
2355 instance_flags |= new_instance_flags;
2356 }
2357 }
2358
2359 /* If this is a struct/class/union with no fields, then check
2360 whether a full definition exists somewhere else. This is for
2361 systems where a type definition with no fields is issued for such
2362 types, instead of identifying them as stub types in the first
2363 place. */
2364
2365 if (TYPE_IS_OPAQUE (type)
2366 && opaque_type_resolution
2367 && !currently_reading_symtab)
2368 {
2369 const char *name = type_name_no_tag (type);
2370 struct type *newtype;
2371
2372 if (name == NULL)
2373 {
2374 stub_noname_complaint ();
2375 return make_qualified_type (type, instance_flags, NULL);
2376 }
2377 newtype = lookup_transparent_type (name);
2378
2379 if (newtype)
2380 {
2381 /* If the resolved type and the stub are in the same
2382 objfile, then replace the stub type with the real deal.
2383 But if they're in separate objfiles, leave the stub
2384 alone; we'll just look up the transparent type every time
2385 we call check_typedef. We can't create pointers between
2386 types allocated to different objfiles, since they may
2387 have different lifetimes. Trying to copy NEWTYPE over to
2388 TYPE's objfile is pointless, too, since you'll have to
2389 move over any other types NEWTYPE refers to, which could
2390 be an unbounded amount of stuff. */
2391 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2392 type = make_qualified_type (newtype,
2393 TYPE_INSTANCE_FLAGS (type),
2394 type);
2395 else
2396 type = newtype;
2397 }
2398 }
2399 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2400 types. */
2401 else if (TYPE_STUB (type) && !currently_reading_symtab)
2402 {
2403 const char *name = type_name_no_tag (type);
2404 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2405 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2406 as appropriate? (this code was written before TYPE_NAME and
2407 TYPE_TAG_NAME were separate). */
2408 struct symbol *sym;
2409
2410 if (name == NULL)
2411 {
2412 stub_noname_complaint ();
2413 return make_qualified_type (type, instance_flags, NULL);
2414 }
2415 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2416 if (sym)
2417 {
2418 /* Same as above for opaque types, we can replace the stub
2419 with the complete type only if they are in the same
2420 objfile. */
2421 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2422 type = make_qualified_type (SYMBOL_TYPE (sym),
2423 TYPE_INSTANCE_FLAGS (type),
2424 type);
2425 else
2426 type = SYMBOL_TYPE (sym);
2427 }
2428 }
2429
2430 if (TYPE_TARGET_STUB (type))
2431 {
2432 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2433
2434 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2435 {
2436 /* Nothing we can do. */
2437 }
2438 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2439 {
2440 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2441 TYPE_TARGET_STUB (type) = 0;
2442 }
2443 }
2444
2445 type = make_qualified_type (type, instance_flags, NULL);
2446
2447 /* Cache TYPE_LENGTH for future use. */
2448 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2449
2450 return type;
2451 }
2452
2453 /* Parse a type expression in the string [P..P+LENGTH). If an error
2454 occurs, silently return a void type. */
2455
2456 static struct type *
2457 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2458 {
2459 struct ui_file *saved_gdb_stderr;
2460 struct type *type = NULL; /* Initialize to keep gcc happy. */
2461
2462 /* Suppress error messages. */
2463 saved_gdb_stderr = gdb_stderr;
2464 gdb_stderr = ui_file_new ();
2465
2466 /* Call parse_and_eval_type() without fear of longjmp()s. */
2467 TRY
2468 {
2469 type = parse_and_eval_type (p, length);
2470 }
2471 CATCH (except, RETURN_MASK_ERROR)
2472 {
2473 type = builtin_type (gdbarch)->builtin_void;
2474 }
2475 END_CATCH
2476
2477 /* Stop suppressing error messages. */
2478 ui_file_delete (gdb_stderr);
2479 gdb_stderr = saved_gdb_stderr;
2480
2481 return type;
2482 }
2483
2484 /* Ugly hack to convert method stubs into method types.
2485
2486 He ain't kiddin'. This demangles the name of the method into a
2487 string including argument types, parses out each argument type,
2488 generates a string casting a zero to that type, evaluates the
2489 string, and stuffs the resulting type into an argtype vector!!!
2490 Then it knows the type of the whole function (including argument
2491 types for overloading), which info used to be in the stab's but was
2492 removed to hack back the space required for them. */
2493
2494 static void
2495 check_stub_method (struct type *type, int method_id, int signature_id)
2496 {
2497 struct gdbarch *gdbarch = get_type_arch (type);
2498 struct fn_field *f;
2499 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2500 char *demangled_name = gdb_demangle (mangled_name,
2501 DMGL_PARAMS | DMGL_ANSI);
2502 char *argtypetext, *p;
2503 int depth = 0, argcount = 1;
2504 struct field *argtypes;
2505 struct type *mtype;
2506
2507 /* Make sure we got back a function string that we can use. */
2508 if (demangled_name)
2509 p = strchr (demangled_name, '(');
2510 else
2511 p = NULL;
2512
2513 if (demangled_name == NULL || p == NULL)
2514 error (_("Internal: Cannot demangle mangled name `%s'."),
2515 mangled_name);
2516
2517 /* Now, read in the parameters that define this type. */
2518 p += 1;
2519 argtypetext = p;
2520 while (*p)
2521 {
2522 if (*p == '(' || *p == '<')
2523 {
2524 depth += 1;
2525 }
2526 else if (*p == ')' || *p == '>')
2527 {
2528 depth -= 1;
2529 }
2530 else if (*p == ',' && depth == 0)
2531 {
2532 argcount += 1;
2533 }
2534
2535 p += 1;
2536 }
2537
2538 /* If we read one argument and it was ``void'', don't count it. */
2539 if (startswith (argtypetext, "(void)"))
2540 argcount -= 1;
2541
2542 /* We need one extra slot, for the THIS pointer. */
2543
2544 argtypes = (struct field *)
2545 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2546 p = argtypetext;
2547
2548 /* Add THIS pointer for non-static methods. */
2549 f = TYPE_FN_FIELDLIST1 (type, method_id);
2550 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2551 argcount = 0;
2552 else
2553 {
2554 argtypes[0].type = lookup_pointer_type (type);
2555 argcount = 1;
2556 }
2557
2558 if (*p != ')') /* () means no args, skip while. */
2559 {
2560 depth = 0;
2561 while (*p)
2562 {
2563 if (depth <= 0 && (*p == ',' || *p == ')'))
2564 {
2565 /* Avoid parsing of ellipsis, they will be handled below.
2566 Also avoid ``void'' as above. */
2567 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2568 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2569 {
2570 argtypes[argcount].type =
2571 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2572 argcount += 1;
2573 }
2574 argtypetext = p + 1;
2575 }
2576
2577 if (*p == '(' || *p == '<')
2578 {
2579 depth += 1;
2580 }
2581 else if (*p == ')' || *p == '>')
2582 {
2583 depth -= 1;
2584 }
2585
2586 p += 1;
2587 }
2588 }
2589
2590 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2591
2592 /* Now update the old "stub" type into a real type. */
2593 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2594 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2595 We want a method (TYPE_CODE_METHOD). */
2596 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2597 argtypes, argcount, p[-2] == '.');
2598 TYPE_STUB (mtype) = 0;
2599 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2600
2601 xfree (demangled_name);
2602 }
2603
2604 /* This is the external interface to check_stub_method, above. This
2605 function unstubs all of the signatures for TYPE's METHOD_ID method
2606 name. After calling this function TYPE_FN_FIELD_STUB will be
2607 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2608 correct.
2609
2610 This function unfortunately can not die until stabs do. */
2611
2612 void
2613 check_stub_method_group (struct type *type, int method_id)
2614 {
2615 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2616 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2617 int j, found_stub = 0;
2618
2619 for (j = 0; j < len; j++)
2620 if (TYPE_FN_FIELD_STUB (f, j))
2621 {
2622 found_stub = 1;
2623 check_stub_method (type, method_id, j);
2624 }
2625
2626 /* GNU v3 methods with incorrect names were corrected when we read
2627 in type information, because it was cheaper to do it then. The
2628 only GNU v2 methods with incorrect method names are operators and
2629 destructors; destructors were also corrected when we read in type
2630 information.
2631
2632 Therefore the only thing we need to handle here are v2 operator
2633 names. */
2634 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2635 {
2636 int ret;
2637 char dem_opname[256];
2638
2639 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2640 method_id),
2641 dem_opname, DMGL_ANSI);
2642 if (!ret)
2643 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2644 method_id),
2645 dem_opname, 0);
2646 if (ret)
2647 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2648 }
2649 }
2650
2651 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2652 const struct cplus_struct_type cplus_struct_default = { };
2653
2654 void
2655 allocate_cplus_struct_type (struct type *type)
2656 {
2657 if (HAVE_CPLUS_STRUCT (type))
2658 /* Structure was already allocated. Nothing more to do. */
2659 return;
2660
2661 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2662 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2663 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2664 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2665 set_type_vptr_fieldno (type, -1);
2666 }
2667
2668 const struct gnat_aux_type gnat_aux_default =
2669 { NULL };
2670
2671 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2672 and allocate the associated gnat-specific data. The gnat-specific
2673 data is also initialized to gnat_aux_default. */
2674
2675 void
2676 allocate_gnat_aux_type (struct type *type)
2677 {
2678 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2679 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2680 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2681 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2682 }
2683
2684 /* Helper function to initialize the standard scalar types.
2685
2686 If NAME is non-NULL, then it is used to initialize the type name.
2687 Note that NAME is not copied; it is required to have a lifetime at
2688 least as long as OBJFILE. */
2689
2690 struct type *
2691 init_type (enum type_code code, int length, int flags,
2692 const char *name, struct objfile *objfile)
2693 {
2694 struct type *type;
2695
2696 type = alloc_type (objfile);
2697 TYPE_CODE (type) = code;
2698 TYPE_LENGTH (type) = length;
2699
2700 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2701 if (flags & TYPE_FLAG_UNSIGNED)
2702 TYPE_UNSIGNED (type) = 1;
2703 if (flags & TYPE_FLAG_NOSIGN)
2704 TYPE_NOSIGN (type) = 1;
2705 if (flags & TYPE_FLAG_STUB)
2706 TYPE_STUB (type) = 1;
2707 if (flags & TYPE_FLAG_TARGET_STUB)
2708 TYPE_TARGET_STUB (type) = 1;
2709 if (flags & TYPE_FLAG_STATIC)
2710 TYPE_STATIC (type) = 1;
2711 if (flags & TYPE_FLAG_PROTOTYPED)
2712 TYPE_PROTOTYPED (type) = 1;
2713 if (flags & TYPE_FLAG_INCOMPLETE)
2714 TYPE_INCOMPLETE (type) = 1;
2715 if (flags & TYPE_FLAG_VARARGS)
2716 TYPE_VARARGS (type) = 1;
2717 if (flags & TYPE_FLAG_VECTOR)
2718 TYPE_VECTOR (type) = 1;
2719 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2720 TYPE_STUB_SUPPORTED (type) = 1;
2721 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2722 TYPE_FIXED_INSTANCE (type) = 1;
2723 if (flags & TYPE_FLAG_GNU_IFUNC)
2724 TYPE_GNU_IFUNC (type) = 1;
2725
2726 TYPE_NAME (type) = name;
2727
2728 /* C++ fancies. */
2729
2730 if (name && strcmp (name, "char") == 0)
2731 TYPE_NOSIGN (type) = 1;
2732
2733 switch (code)
2734 {
2735 case TYPE_CODE_STRUCT:
2736 case TYPE_CODE_UNION:
2737 case TYPE_CODE_NAMESPACE:
2738 INIT_CPLUS_SPECIFIC (type);
2739 break;
2740 case TYPE_CODE_FLT:
2741 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2742 break;
2743 case TYPE_CODE_FUNC:
2744 INIT_FUNC_SPECIFIC (type);
2745 break;
2746 }
2747 return type;
2748 }
2749 \f
2750 /* Queries on types. */
2751
2752 int
2753 can_dereference (struct type *t)
2754 {
2755 /* FIXME: Should we return true for references as well as
2756 pointers? */
2757 t = check_typedef (t);
2758 return
2759 (t != NULL
2760 && TYPE_CODE (t) == TYPE_CODE_PTR
2761 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2762 }
2763
2764 int
2765 is_integral_type (struct type *t)
2766 {
2767 t = check_typedef (t);
2768 return
2769 ((t != NULL)
2770 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2771 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2772 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2773 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2774 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2775 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2776 }
2777
2778 /* Return true if TYPE is scalar. */
2779
2780 int
2781 is_scalar_type (struct type *type)
2782 {
2783 type = check_typedef (type);
2784
2785 switch (TYPE_CODE (type))
2786 {
2787 case TYPE_CODE_ARRAY:
2788 case TYPE_CODE_STRUCT:
2789 case TYPE_CODE_UNION:
2790 case TYPE_CODE_SET:
2791 case TYPE_CODE_STRING:
2792 return 0;
2793 default:
2794 return 1;
2795 }
2796 }
2797
2798 /* Return true if T is scalar, or a composite type which in practice has
2799 the memory layout of a scalar type. E.g., an array or struct with only
2800 one scalar element inside it, or a union with only scalar elements. */
2801
2802 int
2803 is_scalar_type_recursive (struct type *t)
2804 {
2805 t = check_typedef (t);
2806
2807 if (is_scalar_type (t))
2808 return 1;
2809 /* Are we dealing with an array or string of known dimensions? */
2810 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2811 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2812 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2813 {
2814 LONGEST low_bound, high_bound;
2815 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2816
2817 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2818
2819 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2820 }
2821 /* Are we dealing with a struct with one element? */
2822 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2823 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2824 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2825 {
2826 int i, n = TYPE_NFIELDS (t);
2827
2828 /* If all elements of the union are scalar, then the union is scalar. */
2829 for (i = 0; i < n; i++)
2830 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2831 return 0;
2832
2833 return 1;
2834 }
2835
2836 return 0;
2837 }
2838
2839 /* Return true is T is a class or a union. False otherwise. */
2840
2841 int
2842 class_or_union_p (const struct type *t)
2843 {
2844 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2845 || TYPE_CODE (t) == TYPE_CODE_UNION);
2846 }
2847
2848 /* A helper function which returns true if types A and B represent the
2849 "same" class type. This is true if the types have the same main
2850 type, or the same name. */
2851
2852 int
2853 class_types_same_p (const struct type *a, const struct type *b)
2854 {
2855 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2856 || (TYPE_NAME (a) && TYPE_NAME (b)
2857 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2858 }
2859
2860 /* If BASE is an ancestor of DCLASS return the distance between them.
2861 otherwise return -1;
2862 eg:
2863
2864 class A {};
2865 class B: public A {};
2866 class C: public B {};
2867 class D: C {};
2868
2869 distance_to_ancestor (A, A, 0) = 0
2870 distance_to_ancestor (A, B, 0) = 1
2871 distance_to_ancestor (A, C, 0) = 2
2872 distance_to_ancestor (A, D, 0) = 3
2873
2874 If PUBLIC is 1 then only public ancestors are considered,
2875 and the function returns the distance only if BASE is a public ancestor
2876 of DCLASS.
2877 Eg:
2878
2879 distance_to_ancestor (A, D, 1) = -1. */
2880
2881 static int
2882 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2883 {
2884 int i;
2885 int d;
2886
2887 base = check_typedef (base);
2888 dclass = check_typedef (dclass);
2889
2890 if (class_types_same_p (base, dclass))
2891 return 0;
2892
2893 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2894 {
2895 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2896 continue;
2897
2898 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2899 if (d >= 0)
2900 return 1 + d;
2901 }
2902
2903 return -1;
2904 }
2905
2906 /* Check whether BASE is an ancestor or base class or DCLASS
2907 Return 1 if so, and 0 if not.
2908 Note: If BASE and DCLASS are of the same type, this function
2909 will return 1. So for some class A, is_ancestor (A, A) will
2910 return 1. */
2911
2912 int
2913 is_ancestor (struct type *base, struct type *dclass)
2914 {
2915 return distance_to_ancestor (base, dclass, 0) >= 0;
2916 }
2917
2918 /* Like is_ancestor, but only returns true when BASE is a public
2919 ancestor of DCLASS. */
2920
2921 int
2922 is_public_ancestor (struct type *base, struct type *dclass)
2923 {
2924 return distance_to_ancestor (base, dclass, 1) >= 0;
2925 }
2926
2927 /* A helper function for is_unique_ancestor. */
2928
2929 static int
2930 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2931 int *offset,
2932 const gdb_byte *valaddr, int embedded_offset,
2933 CORE_ADDR address, struct value *val)
2934 {
2935 int i, count = 0;
2936
2937 base = check_typedef (base);
2938 dclass = check_typedef (dclass);
2939
2940 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2941 {
2942 struct type *iter;
2943 int this_offset;
2944
2945 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2946
2947 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2948 address, val);
2949
2950 if (class_types_same_p (base, iter))
2951 {
2952 /* If this is the first subclass, set *OFFSET and set count
2953 to 1. Otherwise, if this is at the same offset as
2954 previous instances, do nothing. Otherwise, increment
2955 count. */
2956 if (*offset == -1)
2957 {
2958 *offset = this_offset;
2959 count = 1;
2960 }
2961 else if (this_offset == *offset)
2962 {
2963 /* Nothing. */
2964 }
2965 else
2966 ++count;
2967 }
2968 else
2969 count += is_unique_ancestor_worker (base, iter, offset,
2970 valaddr,
2971 embedded_offset + this_offset,
2972 address, val);
2973 }
2974
2975 return count;
2976 }
2977
2978 /* Like is_ancestor, but only returns true if BASE is a unique base
2979 class of the type of VAL. */
2980
2981 int
2982 is_unique_ancestor (struct type *base, struct value *val)
2983 {
2984 int offset = -1;
2985
2986 return is_unique_ancestor_worker (base, value_type (val), &offset,
2987 value_contents_for_printing (val),
2988 value_embedded_offset (val),
2989 value_address (val), val) == 1;
2990 }
2991
2992 \f
2993 /* Overload resolution. */
2994
2995 /* Return the sum of the rank of A with the rank of B. */
2996
2997 struct rank
2998 sum_ranks (struct rank a, struct rank b)
2999 {
3000 struct rank c;
3001 c.rank = a.rank + b.rank;
3002 c.subrank = a.subrank + b.subrank;
3003 return c;
3004 }
3005
3006 /* Compare rank A and B and return:
3007 0 if a = b
3008 1 if a is better than b
3009 -1 if b is better than a. */
3010
3011 int
3012 compare_ranks (struct rank a, struct rank b)
3013 {
3014 if (a.rank == b.rank)
3015 {
3016 if (a.subrank == b.subrank)
3017 return 0;
3018 if (a.subrank < b.subrank)
3019 return 1;
3020 if (a.subrank > b.subrank)
3021 return -1;
3022 }
3023
3024 if (a.rank < b.rank)
3025 return 1;
3026
3027 /* a.rank > b.rank */
3028 return -1;
3029 }
3030
3031 /* Functions for overload resolution begin here. */
3032
3033 /* Compare two badness vectors A and B and return the result.
3034 0 => A and B are identical
3035 1 => A and B are incomparable
3036 2 => A is better than B
3037 3 => A is worse than B */
3038
3039 int
3040 compare_badness (struct badness_vector *a, struct badness_vector *b)
3041 {
3042 int i;
3043 int tmp;
3044 short found_pos = 0; /* any positives in c? */
3045 short found_neg = 0; /* any negatives in c? */
3046
3047 /* differing lengths => incomparable */
3048 if (a->length != b->length)
3049 return 1;
3050
3051 /* Subtract b from a */
3052 for (i = 0; i < a->length; i++)
3053 {
3054 tmp = compare_ranks (b->rank[i], a->rank[i]);
3055 if (tmp > 0)
3056 found_pos = 1;
3057 else if (tmp < 0)
3058 found_neg = 1;
3059 }
3060
3061 if (found_pos)
3062 {
3063 if (found_neg)
3064 return 1; /* incomparable */
3065 else
3066 return 3; /* A > B */
3067 }
3068 else
3069 /* no positives */
3070 {
3071 if (found_neg)
3072 return 2; /* A < B */
3073 else
3074 return 0; /* A == B */
3075 }
3076 }
3077
3078 /* Rank a function by comparing its parameter types (PARMS, length
3079 NPARMS), to the types of an argument list (ARGS, length NARGS).
3080 Return a pointer to a badness vector. This has NARGS + 1
3081 entries. */
3082
3083 struct badness_vector *
3084 rank_function (struct type **parms, int nparms,
3085 struct value **args, int nargs)
3086 {
3087 int i;
3088 struct badness_vector *bv = XNEW (struct badness_vector);
3089 int min_len = nparms < nargs ? nparms : nargs;
3090
3091 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3092 bv->rank = XNEWVEC (struct rank, nargs + 1);
3093
3094 /* First compare the lengths of the supplied lists.
3095 If there is a mismatch, set it to a high value. */
3096
3097 /* pai/1997-06-03 FIXME: when we have debug info about default
3098 arguments and ellipsis parameter lists, we should consider those
3099 and rank the length-match more finely. */
3100
3101 LENGTH_MATCH (bv) = (nargs != nparms)
3102 ? LENGTH_MISMATCH_BADNESS
3103 : EXACT_MATCH_BADNESS;
3104
3105 /* Now rank all the parameters of the candidate function. */
3106 for (i = 1; i <= min_len; i++)
3107 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3108 args[i - 1]);
3109
3110 /* If more arguments than parameters, add dummy entries. */
3111 for (i = min_len + 1; i <= nargs; i++)
3112 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3113
3114 return bv;
3115 }
3116
3117 /* Compare the names of two integer types, assuming that any sign
3118 qualifiers have been checked already. We do it this way because
3119 there may be an "int" in the name of one of the types. */
3120
3121 static int
3122 integer_types_same_name_p (const char *first, const char *second)
3123 {
3124 int first_p, second_p;
3125
3126 /* If both are shorts, return 1; if neither is a short, keep
3127 checking. */
3128 first_p = (strstr (first, "short") != NULL);
3129 second_p = (strstr (second, "short") != NULL);
3130 if (first_p && second_p)
3131 return 1;
3132 if (first_p || second_p)
3133 return 0;
3134
3135 /* Likewise for long. */
3136 first_p = (strstr (first, "long") != NULL);
3137 second_p = (strstr (second, "long") != NULL);
3138 if (first_p && second_p)
3139 return 1;
3140 if (first_p || second_p)
3141 return 0;
3142
3143 /* Likewise for char. */
3144 first_p = (strstr (first, "char") != NULL);
3145 second_p = (strstr (second, "char") != NULL);
3146 if (first_p && second_p)
3147 return 1;
3148 if (first_p || second_p)
3149 return 0;
3150
3151 /* They must both be ints. */
3152 return 1;
3153 }
3154
3155 /* Compares type A to type B returns 1 if the represent the same type
3156 0 otherwise. */
3157
3158 int
3159 types_equal (struct type *a, struct type *b)
3160 {
3161 /* Identical type pointers. */
3162 /* However, this still doesn't catch all cases of same type for b
3163 and a. The reason is that builtin types are different from
3164 the same ones constructed from the object. */
3165 if (a == b)
3166 return 1;
3167
3168 /* Resolve typedefs */
3169 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3170 a = check_typedef (a);
3171 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3172 b = check_typedef (b);
3173
3174 /* If after resolving typedefs a and b are not of the same type
3175 code then they are not equal. */
3176 if (TYPE_CODE (a) != TYPE_CODE (b))
3177 return 0;
3178
3179 /* If a and b are both pointers types or both reference types then
3180 they are equal of the same type iff the objects they refer to are
3181 of the same type. */
3182 if (TYPE_CODE (a) == TYPE_CODE_PTR
3183 || TYPE_CODE (a) == TYPE_CODE_REF)
3184 return types_equal (TYPE_TARGET_TYPE (a),
3185 TYPE_TARGET_TYPE (b));
3186
3187 /* Well, damnit, if the names are exactly the same, I'll say they
3188 are exactly the same. This happens when we generate method
3189 stubs. The types won't point to the same address, but they
3190 really are the same. */
3191
3192 if (TYPE_NAME (a) && TYPE_NAME (b)
3193 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3194 return 1;
3195
3196 /* Check if identical after resolving typedefs. */
3197 if (a == b)
3198 return 1;
3199
3200 /* Two function types are equal if their argument and return types
3201 are equal. */
3202 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3203 {
3204 int i;
3205
3206 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3207 return 0;
3208
3209 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3210 return 0;
3211
3212 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3213 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3214 return 0;
3215
3216 return 1;
3217 }
3218
3219 return 0;
3220 }
3221 \f
3222 /* Deep comparison of types. */
3223
3224 /* An entry in the type-equality bcache. */
3225
3226 typedef struct type_equality_entry
3227 {
3228 struct type *type1, *type2;
3229 } type_equality_entry_d;
3230
3231 DEF_VEC_O (type_equality_entry_d);
3232
3233 /* A helper function to compare two strings. Returns 1 if they are
3234 the same, 0 otherwise. Handles NULLs properly. */
3235
3236 static int
3237 compare_maybe_null_strings (const char *s, const char *t)
3238 {
3239 if (s == NULL && t != NULL)
3240 return 0;
3241 else if (s != NULL && t == NULL)
3242 return 0;
3243 else if (s == NULL && t== NULL)
3244 return 1;
3245 return strcmp (s, t) == 0;
3246 }
3247
3248 /* A helper function for check_types_worklist that checks two types for
3249 "deep" equality. Returns non-zero if the types are considered the
3250 same, zero otherwise. */
3251
3252 static int
3253 check_types_equal (struct type *type1, struct type *type2,
3254 VEC (type_equality_entry_d) **worklist)
3255 {
3256 type1 = check_typedef (type1);
3257 type2 = check_typedef (type2);
3258
3259 if (type1 == type2)
3260 return 1;
3261
3262 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3263 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3264 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3265 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3266 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3267 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3268 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3269 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3270 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3271 return 0;
3272
3273 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3274 TYPE_TAG_NAME (type2)))
3275 return 0;
3276 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3277 return 0;
3278
3279 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3280 {
3281 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3282 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3283 return 0;
3284 }
3285 else
3286 {
3287 int i;
3288
3289 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3290 {
3291 const struct field *field1 = &TYPE_FIELD (type1, i);
3292 const struct field *field2 = &TYPE_FIELD (type2, i);
3293 struct type_equality_entry entry;
3294
3295 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3296 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3297 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3298 return 0;
3299 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3300 FIELD_NAME (*field2)))
3301 return 0;
3302 switch (FIELD_LOC_KIND (*field1))
3303 {
3304 case FIELD_LOC_KIND_BITPOS:
3305 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3306 return 0;
3307 break;
3308 case FIELD_LOC_KIND_ENUMVAL:
3309 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3310 return 0;
3311 break;
3312 case FIELD_LOC_KIND_PHYSADDR:
3313 if (FIELD_STATIC_PHYSADDR (*field1)
3314 != FIELD_STATIC_PHYSADDR (*field2))
3315 return 0;
3316 break;
3317 case FIELD_LOC_KIND_PHYSNAME:
3318 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3319 FIELD_STATIC_PHYSNAME (*field2)))
3320 return 0;
3321 break;
3322 case FIELD_LOC_KIND_DWARF_BLOCK:
3323 {
3324 struct dwarf2_locexpr_baton *block1, *block2;
3325
3326 block1 = FIELD_DWARF_BLOCK (*field1);
3327 block2 = FIELD_DWARF_BLOCK (*field2);
3328 if (block1->per_cu != block2->per_cu
3329 || block1->size != block2->size
3330 || memcmp (block1->data, block2->data, block1->size) != 0)
3331 return 0;
3332 }
3333 break;
3334 default:
3335 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3336 "%d by check_types_equal"),
3337 FIELD_LOC_KIND (*field1));
3338 }
3339
3340 entry.type1 = FIELD_TYPE (*field1);
3341 entry.type2 = FIELD_TYPE (*field2);
3342 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3343 }
3344 }
3345
3346 if (TYPE_TARGET_TYPE (type1) != NULL)
3347 {
3348 struct type_equality_entry entry;
3349
3350 if (TYPE_TARGET_TYPE (type2) == NULL)
3351 return 0;
3352
3353 entry.type1 = TYPE_TARGET_TYPE (type1);
3354 entry.type2 = TYPE_TARGET_TYPE (type2);
3355 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3356 }
3357 else if (TYPE_TARGET_TYPE (type2) != NULL)
3358 return 0;
3359
3360 return 1;
3361 }
3362
3363 /* Check types on a worklist for equality. Returns zero if any pair
3364 is not equal, non-zero if they are all considered equal. */
3365
3366 static int
3367 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3368 struct bcache *cache)
3369 {
3370 while (!VEC_empty (type_equality_entry_d, *worklist))
3371 {
3372 struct type_equality_entry entry;
3373 int added;
3374
3375 entry = *VEC_last (type_equality_entry_d, *worklist);
3376 VEC_pop (type_equality_entry_d, *worklist);
3377
3378 /* If the type pair has already been visited, we know it is
3379 ok. */
3380 bcache_full (&entry, sizeof (entry), cache, &added);
3381 if (!added)
3382 continue;
3383
3384 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3385 return 0;
3386 }
3387
3388 return 1;
3389 }
3390
3391 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3392 "deep comparison". Otherwise return zero. */
3393
3394 int
3395 types_deeply_equal (struct type *type1, struct type *type2)
3396 {
3397 struct gdb_exception except = exception_none;
3398 int result = 0;
3399 struct bcache *cache;
3400 VEC (type_equality_entry_d) *worklist = NULL;
3401 struct type_equality_entry entry;
3402
3403 gdb_assert (type1 != NULL && type2 != NULL);
3404
3405 /* Early exit for the simple case. */
3406 if (type1 == type2)
3407 return 1;
3408
3409 cache = bcache_xmalloc (NULL, NULL);
3410
3411 entry.type1 = type1;
3412 entry.type2 = type2;
3413 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3414
3415 /* check_types_worklist calls several nested helper functions, some
3416 of which can raise a GDB exception, so we just check and rethrow
3417 here. If there is a GDB exception, a comparison is not capable
3418 (or trusted), so exit. */
3419 TRY
3420 {
3421 result = check_types_worklist (&worklist, cache);
3422 }
3423 CATCH (ex, RETURN_MASK_ALL)
3424 {
3425 except = ex;
3426 }
3427 END_CATCH
3428
3429 bcache_xfree (cache);
3430 VEC_free (type_equality_entry_d, worklist);
3431
3432 /* Rethrow if there was a problem. */
3433 if (except.reason < 0)
3434 throw_exception (except);
3435
3436 return result;
3437 }
3438
3439 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3440 Otherwise return one. */
3441
3442 int
3443 type_not_allocated (const struct type *type)
3444 {
3445 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3446
3447 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3448 && !TYPE_DYN_PROP_ADDR (prop));
3449 }
3450
3451 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3452 Otherwise return one. */
3453
3454 int
3455 type_not_associated (const struct type *type)
3456 {
3457 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3458
3459 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3460 && !TYPE_DYN_PROP_ADDR (prop));
3461 }
3462 \f
3463 /* Compare one type (PARM) for compatibility with another (ARG).
3464 * PARM is intended to be the parameter type of a function; and
3465 * ARG is the supplied argument's type. This function tests if
3466 * the latter can be converted to the former.
3467 * VALUE is the argument's value or NULL if none (or called recursively)
3468 *
3469 * Return 0 if they are identical types;
3470 * Otherwise, return an integer which corresponds to how compatible
3471 * PARM is to ARG. The higher the return value, the worse the match.
3472 * Generally the "bad" conversions are all uniformly assigned a 100. */
3473
3474 struct rank
3475 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3476 {
3477 struct rank rank = {0,0};
3478
3479 if (types_equal (parm, arg))
3480 return EXACT_MATCH_BADNESS;
3481
3482 /* Resolve typedefs */
3483 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3484 parm = check_typedef (parm);
3485 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3486 arg = check_typedef (arg);
3487
3488 /* See through references, since we can almost make non-references
3489 references. */
3490 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3491 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3492 REFERENCE_CONVERSION_BADNESS));
3493 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3494 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3495 REFERENCE_CONVERSION_BADNESS));
3496 if (overload_debug)
3497 /* Debugging only. */
3498 fprintf_filtered (gdb_stderr,
3499 "------ Arg is %s [%d], parm is %s [%d]\n",
3500 TYPE_NAME (arg), TYPE_CODE (arg),
3501 TYPE_NAME (parm), TYPE_CODE (parm));
3502
3503 /* x -> y means arg of type x being supplied for parameter of type y. */
3504
3505 switch (TYPE_CODE (parm))
3506 {
3507 case TYPE_CODE_PTR:
3508 switch (TYPE_CODE (arg))
3509 {
3510 case TYPE_CODE_PTR:
3511
3512 /* Allowed pointer conversions are:
3513 (a) pointer to void-pointer conversion. */
3514 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3515 return VOID_PTR_CONVERSION_BADNESS;
3516
3517 /* (b) pointer to ancestor-pointer conversion. */
3518 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3519 TYPE_TARGET_TYPE (arg),
3520 0);
3521 if (rank.subrank >= 0)
3522 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3523
3524 return INCOMPATIBLE_TYPE_BADNESS;
3525 case TYPE_CODE_ARRAY:
3526 if (types_equal (TYPE_TARGET_TYPE (parm),
3527 TYPE_TARGET_TYPE (arg)))
3528 return EXACT_MATCH_BADNESS;
3529 return INCOMPATIBLE_TYPE_BADNESS;
3530 case TYPE_CODE_FUNC:
3531 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3532 case TYPE_CODE_INT:
3533 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3534 {
3535 if (value_as_long (value) == 0)
3536 {
3537 /* Null pointer conversion: allow it to be cast to a pointer.
3538 [4.10.1 of C++ standard draft n3290] */
3539 return NULL_POINTER_CONVERSION_BADNESS;
3540 }
3541 else
3542 {
3543 /* If type checking is disabled, allow the conversion. */
3544 if (!strict_type_checking)
3545 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3546 }
3547 }
3548 /* fall through */
3549 case TYPE_CODE_ENUM:
3550 case TYPE_CODE_FLAGS:
3551 case TYPE_CODE_CHAR:
3552 case TYPE_CODE_RANGE:
3553 case TYPE_CODE_BOOL:
3554 default:
3555 return INCOMPATIBLE_TYPE_BADNESS;
3556 }
3557 case TYPE_CODE_ARRAY:
3558 switch (TYPE_CODE (arg))
3559 {
3560 case TYPE_CODE_PTR:
3561 case TYPE_CODE_ARRAY:
3562 return rank_one_type (TYPE_TARGET_TYPE (parm),
3563 TYPE_TARGET_TYPE (arg), NULL);
3564 default:
3565 return INCOMPATIBLE_TYPE_BADNESS;
3566 }
3567 case TYPE_CODE_FUNC:
3568 switch (TYPE_CODE (arg))
3569 {
3570 case TYPE_CODE_PTR: /* funcptr -> func */
3571 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3572 default:
3573 return INCOMPATIBLE_TYPE_BADNESS;
3574 }
3575 case TYPE_CODE_INT:
3576 switch (TYPE_CODE (arg))
3577 {
3578 case TYPE_CODE_INT:
3579 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3580 {
3581 /* Deal with signed, unsigned, and plain chars and
3582 signed and unsigned ints. */
3583 if (TYPE_NOSIGN (parm))
3584 {
3585 /* This case only for character types. */
3586 if (TYPE_NOSIGN (arg))
3587 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3588 else /* signed/unsigned char -> plain char */
3589 return INTEGER_CONVERSION_BADNESS;
3590 }
3591 else if (TYPE_UNSIGNED (parm))
3592 {
3593 if (TYPE_UNSIGNED (arg))
3594 {
3595 /* unsigned int -> unsigned int, or
3596 unsigned long -> unsigned long */
3597 if (integer_types_same_name_p (TYPE_NAME (parm),
3598 TYPE_NAME (arg)))
3599 return EXACT_MATCH_BADNESS;
3600 else if (integer_types_same_name_p (TYPE_NAME (arg),
3601 "int")
3602 && integer_types_same_name_p (TYPE_NAME (parm),
3603 "long"))
3604 /* unsigned int -> unsigned long */
3605 return INTEGER_PROMOTION_BADNESS;
3606 else
3607 /* unsigned long -> unsigned int */
3608 return INTEGER_CONVERSION_BADNESS;
3609 }
3610 else
3611 {
3612 if (integer_types_same_name_p (TYPE_NAME (arg),
3613 "long")
3614 && integer_types_same_name_p (TYPE_NAME (parm),
3615 "int"))
3616 /* signed long -> unsigned int */
3617 return INTEGER_CONVERSION_BADNESS;
3618 else
3619 /* signed int/long -> unsigned int/long */
3620 return INTEGER_CONVERSION_BADNESS;
3621 }
3622 }
3623 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3624 {
3625 if (integer_types_same_name_p (TYPE_NAME (parm),
3626 TYPE_NAME (arg)))
3627 return EXACT_MATCH_BADNESS;
3628 else if (integer_types_same_name_p (TYPE_NAME (arg),
3629 "int")
3630 && integer_types_same_name_p (TYPE_NAME (parm),
3631 "long"))
3632 return INTEGER_PROMOTION_BADNESS;
3633 else
3634 return INTEGER_CONVERSION_BADNESS;
3635 }
3636 else
3637 return INTEGER_CONVERSION_BADNESS;
3638 }
3639 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3640 return INTEGER_PROMOTION_BADNESS;
3641 else
3642 return INTEGER_CONVERSION_BADNESS;
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_FLAGS:
3645 case TYPE_CODE_CHAR:
3646 case TYPE_CODE_RANGE:
3647 case TYPE_CODE_BOOL:
3648 if (TYPE_DECLARED_CLASS (arg))
3649 return INCOMPATIBLE_TYPE_BADNESS;
3650 return INTEGER_PROMOTION_BADNESS;
3651 case TYPE_CODE_FLT:
3652 return INT_FLOAT_CONVERSION_BADNESS;
3653 case TYPE_CODE_PTR:
3654 return NS_POINTER_CONVERSION_BADNESS;
3655 default:
3656 return INCOMPATIBLE_TYPE_BADNESS;
3657 }
3658 break;
3659 case TYPE_CODE_ENUM:
3660 switch (TYPE_CODE (arg))
3661 {
3662 case TYPE_CODE_INT:
3663 case TYPE_CODE_CHAR:
3664 case TYPE_CODE_RANGE:
3665 case TYPE_CODE_BOOL:
3666 case TYPE_CODE_ENUM:
3667 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3668 return INCOMPATIBLE_TYPE_BADNESS;
3669 return INTEGER_CONVERSION_BADNESS;
3670 case TYPE_CODE_FLT:
3671 return INT_FLOAT_CONVERSION_BADNESS;
3672 default:
3673 return INCOMPATIBLE_TYPE_BADNESS;
3674 }
3675 break;
3676 case TYPE_CODE_CHAR:
3677 switch (TYPE_CODE (arg))
3678 {
3679 case TYPE_CODE_RANGE:
3680 case TYPE_CODE_BOOL:
3681 case TYPE_CODE_ENUM:
3682 if (TYPE_DECLARED_CLASS (arg))
3683 return INCOMPATIBLE_TYPE_BADNESS;
3684 return INTEGER_CONVERSION_BADNESS;
3685 case TYPE_CODE_FLT:
3686 return INT_FLOAT_CONVERSION_BADNESS;
3687 case TYPE_CODE_INT:
3688 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3689 return INTEGER_CONVERSION_BADNESS;
3690 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3691 return INTEGER_PROMOTION_BADNESS;
3692 /* >>> !! else fall through !! <<< */
3693 case TYPE_CODE_CHAR:
3694 /* Deal with signed, unsigned, and plain chars for C++ and
3695 with int cases falling through from previous case. */
3696 if (TYPE_NOSIGN (parm))
3697 {
3698 if (TYPE_NOSIGN (arg))
3699 return EXACT_MATCH_BADNESS;
3700 else
3701 return INTEGER_CONVERSION_BADNESS;
3702 }
3703 else if (TYPE_UNSIGNED (parm))
3704 {
3705 if (TYPE_UNSIGNED (arg))
3706 return EXACT_MATCH_BADNESS;
3707 else
3708 return INTEGER_PROMOTION_BADNESS;
3709 }
3710 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3711 return EXACT_MATCH_BADNESS;
3712 else
3713 return INTEGER_CONVERSION_BADNESS;
3714 default:
3715 return INCOMPATIBLE_TYPE_BADNESS;
3716 }
3717 break;
3718 case TYPE_CODE_RANGE:
3719 switch (TYPE_CODE (arg))
3720 {
3721 case TYPE_CODE_INT:
3722 case TYPE_CODE_CHAR:
3723 case TYPE_CODE_RANGE:
3724 case TYPE_CODE_BOOL:
3725 case TYPE_CODE_ENUM:
3726 return INTEGER_CONVERSION_BADNESS;
3727 case TYPE_CODE_FLT:
3728 return INT_FLOAT_CONVERSION_BADNESS;
3729 default:
3730 return INCOMPATIBLE_TYPE_BADNESS;
3731 }
3732 break;
3733 case TYPE_CODE_BOOL:
3734 switch (TYPE_CODE (arg))
3735 {
3736 /* n3290 draft, section 4.12.1 (conv.bool):
3737
3738 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3739 pointer to member type can be converted to a prvalue of type
3740 bool. A zero value, null pointer value, or null member pointer
3741 value is converted to false; any other value is converted to
3742 true. A prvalue of type std::nullptr_t can be converted to a
3743 prvalue of type bool; the resulting value is false." */
3744 case TYPE_CODE_INT:
3745 case TYPE_CODE_CHAR:
3746 case TYPE_CODE_ENUM:
3747 case TYPE_CODE_FLT:
3748 case TYPE_CODE_MEMBERPTR:
3749 case TYPE_CODE_PTR:
3750 return BOOL_CONVERSION_BADNESS;
3751 case TYPE_CODE_RANGE:
3752 return INCOMPATIBLE_TYPE_BADNESS;
3753 case TYPE_CODE_BOOL:
3754 return EXACT_MATCH_BADNESS;
3755 default:
3756 return INCOMPATIBLE_TYPE_BADNESS;
3757 }
3758 break;
3759 case TYPE_CODE_FLT:
3760 switch (TYPE_CODE (arg))
3761 {
3762 case TYPE_CODE_FLT:
3763 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3764 return FLOAT_PROMOTION_BADNESS;
3765 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3766 return EXACT_MATCH_BADNESS;
3767 else
3768 return FLOAT_CONVERSION_BADNESS;
3769 case TYPE_CODE_INT:
3770 case TYPE_CODE_BOOL:
3771 case TYPE_CODE_ENUM:
3772 case TYPE_CODE_RANGE:
3773 case TYPE_CODE_CHAR:
3774 return INT_FLOAT_CONVERSION_BADNESS;
3775 default:
3776 return INCOMPATIBLE_TYPE_BADNESS;
3777 }
3778 break;
3779 case TYPE_CODE_COMPLEX:
3780 switch (TYPE_CODE (arg))
3781 { /* Strictly not needed for C++, but... */
3782 case TYPE_CODE_FLT:
3783 return FLOAT_PROMOTION_BADNESS;
3784 case TYPE_CODE_COMPLEX:
3785 return EXACT_MATCH_BADNESS;
3786 default:
3787 return INCOMPATIBLE_TYPE_BADNESS;
3788 }
3789 break;
3790 case TYPE_CODE_STRUCT:
3791 switch (TYPE_CODE (arg))
3792 {
3793 case TYPE_CODE_STRUCT:
3794 /* Check for derivation */
3795 rank.subrank = distance_to_ancestor (parm, arg, 0);
3796 if (rank.subrank >= 0)
3797 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3798 /* else fall through */
3799 default:
3800 return INCOMPATIBLE_TYPE_BADNESS;
3801 }
3802 break;
3803 case TYPE_CODE_UNION:
3804 switch (TYPE_CODE (arg))
3805 {
3806 case TYPE_CODE_UNION:
3807 default:
3808 return INCOMPATIBLE_TYPE_BADNESS;
3809 }
3810 break;
3811 case TYPE_CODE_MEMBERPTR:
3812 switch (TYPE_CODE (arg))
3813 {
3814 default:
3815 return INCOMPATIBLE_TYPE_BADNESS;
3816 }
3817 break;
3818 case TYPE_CODE_METHOD:
3819 switch (TYPE_CODE (arg))
3820 {
3821
3822 default:
3823 return INCOMPATIBLE_TYPE_BADNESS;
3824 }
3825 break;
3826 case TYPE_CODE_REF:
3827 switch (TYPE_CODE (arg))
3828 {
3829
3830 default:
3831 return INCOMPATIBLE_TYPE_BADNESS;
3832 }
3833
3834 break;
3835 case TYPE_CODE_SET:
3836 switch (TYPE_CODE (arg))
3837 {
3838 /* Not in C++ */
3839 case TYPE_CODE_SET:
3840 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3841 TYPE_FIELD_TYPE (arg, 0), NULL);
3842 default:
3843 return INCOMPATIBLE_TYPE_BADNESS;
3844 }
3845 break;
3846 case TYPE_CODE_VOID:
3847 default:
3848 return INCOMPATIBLE_TYPE_BADNESS;
3849 } /* switch (TYPE_CODE (arg)) */
3850 }
3851
3852 /* End of functions for overload resolution. */
3853 \f
3854 /* Routines to pretty-print types. */
3855
3856 static void
3857 print_bit_vector (B_TYPE *bits, int nbits)
3858 {
3859 int bitno;
3860
3861 for (bitno = 0; bitno < nbits; bitno++)
3862 {
3863 if ((bitno % 8) == 0)
3864 {
3865 puts_filtered (" ");
3866 }
3867 if (B_TST (bits, bitno))
3868 printf_filtered (("1"));
3869 else
3870 printf_filtered (("0"));
3871 }
3872 }
3873
3874 /* Note the first arg should be the "this" pointer, we may not want to
3875 include it since we may get into a infinitely recursive
3876 situation. */
3877
3878 static void
3879 print_args (struct field *args, int nargs, int spaces)
3880 {
3881 if (args != NULL)
3882 {
3883 int i;
3884
3885 for (i = 0; i < nargs; i++)
3886 {
3887 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3888 args[i].name != NULL ? args[i].name : "<NULL>");
3889 recursive_dump_type (args[i].type, spaces + 2);
3890 }
3891 }
3892 }
3893
3894 int
3895 field_is_static (struct field *f)
3896 {
3897 /* "static" fields are the fields whose location is not relative
3898 to the address of the enclosing struct. It would be nice to
3899 have a dedicated flag that would be set for static fields when
3900 the type is being created. But in practice, checking the field
3901 loc_kind should give us an accurate answer. */
3902 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3903 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3904 }
3905
3906 static void
3907 dump_fn_fieldlists (struct type *type, int spaces)
3908 {
3909 int method_idx;
3910 int overload_idx;
3911 struct fn_field *f;
3912
3913 printfi_filtered (spaces, "fn_fieldlists ");
3914 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3915 printf_filtered ("\n");
3916 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3917 {
3918 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3919 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3920 method_idx,
3921 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3922 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3923 gdb_stdout);
3924 printf_filtered (_(") length %d\n"),
3925 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3926 for (overload_idx = 0;
3927 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3928 overload_idx++)
3929 {
3930 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3931 overload_idx,
3932 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3933 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3934 gdb_stdout);
3935 printf_filtered (")\n");
3936 printfi_filtered (spaces + 8, "type ");
3937 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3938 gdb_stdout);
3939 printf_filtered ("\n");
3940
3941 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3942 spaces + 8 + 2);
3943
3944 printfi_filtered (spaces + 8, "args ");
3945 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3946 gdb_stdout);
3947 printf_filtered ("\n");
3948 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3949 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3950 spaces + 8 + 2);
3951 printfi_filtered (spaces + 8, "fcontext ");
3952 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3953 gdb_stdout);
3954 printf_filtered ("\n");
3955
3956 printfi_filtered (spaces + 8, "is_const %d\n",
3957 TYPE_FN_FIELD_CONST (f, overload_idx));
3958 printfi_filtered (spaces + 8, "is_volatile %d\n",
3959 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3960 printfi_filtered (spaces + 8, "is_private %d\n",
3961 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3962 printfi_filtered (spaces + 8, "is_protected %d\n",
3963 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3964 printfi_filtered (spaces + 8, "is_stub %d\n",
3965 TYPE_FN_FIELD_STUB (f, overload_idx));
3966 printfi_filtered (spaces + 8, "voffset %u\n",
3967 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3968 }
3969 }
3970 }
3971
3972 static void
3973 print_cplus_stuff (struct type *type, int spaces)
3974 {
3975 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3976 printfi_filtered (spaces, "vptr_basetype ");
3977 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3978 puts_filtered ("\n");
3979 if (TYPE_VPTR_BASETYPE (type) != NULL)
3980 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3981
3982 printfi_filtered (spaces, "n_baseclasses %d\n",
3983 TYPE_N_BASECLASSES (type));
3984 printfi_filtered (spaces, "nfn_fields %d\n",
3985 TYPE_NFN_FIELDS (type));
3986 if (TYPE_N_BASECLASSES (type) > 0)
3987 {
3988 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3989 TYPE_N_BASECLASSES (type));
3990 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3991 gdb_stdout);
3992 printf_filtered (")");
3993
3994 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3995 TYPE_N_BASECLASSES (type));
3996 puts_filtered ("\n");
3997 }
3998 if (TYPE_NFIELDS (type) > 0)
3999 {
4000 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4001 {
4002 printfi_filtered (spaces,
4003 "private_field_bits (%d bits at *",
4004 TYPE_NFIELDS (type));
4005 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4006 gdb_stdout);
4007 printf_filtered (")");
4008 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4009 TYPE_NFIELDS (type));
4010 puts_filtered ("\n");
4011 }
4012 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4013 {
4014 printfi_filtered (spaces,
4015 "protected_field_bits (%d bits at *",
4016 TYPE_NFIELDS (type));
4017 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4018 gdb_stdout);
4019 printf_filtered (")");
4020 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4021 TYPE_NFIELDS (type));
4022 puts_filtered ("\n");
4023 }
4024 }
4025 if (TYPE_NFN_FIELDS (type) > 0)
4026 {
4027 dump_fn_fieldlists (type, spaces);
4028 }
4029 }
4030
4031 /* Print the contents of the TYPE's type_specific union, assuming that
4032 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4033
4034 static void
4035 print_gnat_stuff (struct type *type, int spaces)
4036 {
4037 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4038
4039 if (descriptive_type == NULL)
4040 printfi_filtered (spaces + 2, "no descriptive type\n");
4041 else
4042 {
4043 printfi_filtered (spaces + 2, "descriptive type\n");
4044 recursive_dump_type (descriptive_type, spaces + 4);
4045 }
4046 }
4047
4048 static struct obstack dont_print_type_obstack;
4049
4050 void
4051 recursive_dump_type (struct type *type, int spaces)
4052 {
4053 int idx;
4054
4055 if (spaces == 0)
4056 obstack_begin (&dont_print_type_obstack, 0);
4057
4058 if (TYPE_NFIELDS (type) > 0
4059 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4060 {
4061 struct type **first_dont_print
4062 = (struct type **) obstack_base (&dont_print_type_obstack);
4063
4064 int i = (struct type **)
4065 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4066
4067 while (--i >= 0)
4068 {
4069 if (type == first_dont_print[i])
4070 {
4071 printfi_filtered (spaces, "type node ");
4072 gdb_print_host_address (type, gdb_stdout);
4073 printf_filtered (_(" <same as already seen type>\n"));
4074 return;
4075 }
4076 }
4077
4078 obstack_ptr_grow (&dont_print_type_obstack, type);
4079 }
4080
4081 printfi_filtered (spaces, "type node ");
4082 gdb_print_host_address (type, gdb_stdout);
4083 printf_filtered ("\n");
4084 printfi_filtered (spaces, "name '%s' (",
4085 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4086 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4087 printf_filtered (")\n");
4088 printfi_filtered (spaces, "tagname '%s' (",
4089 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4090 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4091 printf_filtered (")\n");
4092 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4093 switch (TYPE_CODE (type))
4094 {
4095 case TYPE_CODE_UNDEF:
4096 printf_filtered ("(TYPE_CODE_UNDEF)");
4097 break;
4098 case TYPE_CODE_PTR:
4099 printf_filtered ("(TYPE_CODE_PTR)");
4100 break;
4101 case TYPE_CODE_ARRAY:
4102 printf_filtered ("(TYPE_CODE_ARRAY)");
4103 break;
4104 case TYPE_CODE_STRUCT:
4105 printf_filtered ("(TYPE_CODE_STRUCT)");
4106 break;
4107 case TYPE_CODE_UNION:
4108 printf_filtered ("(TYPE_CODE_UNION)");
4109 break;
4110 case TYPE_CODE_ENUM:
4111 printf_filtered ("(TYPE_CODE_ENUM)");
4112 break;
4113 case TYPE_CODE_FLAGS:
4114 printf_filtered ("(TYPE_CODE_FLAGS)");
4115 break;
4116 case TYPE_CODE_FUNC:
4117 printf_filtered ("(TYPE_CODE_FUNC)");
4118 break;
4119 case TYPE_CODE_INT:
4120 printf_filtered ("(TYPE_CODE_INT)");
4121 break;
4122 case TYPE_CODE_FLT:
4123 printf_filtered ("(TYPE_CODE_FLT)");
4124 break;
4125 case TYPE_CODE_VOID:
4126 printf_filtered ("(TYPE_CODE_VOID)");
4127 break;
4128 case TYPE_CODE_SET:
4129 printf_filtered ("(TYPE_CODE_SET)");
4130 break;
4131 case TYPE_CODE_RANGE:
4132 printf_filtered ("(TYPE_CODE_RANGE)");
4133 break;
4134 case TYPE_CODE_STRING:
4135 printf_filtered ("(TYPE_CODE_STRING)");
4136 break;
4137 case TYPE_CODE_ERROR:
4138 printf_filtered ("(TYPE_CODE_ERROR)");
4139 break;
4140 case TYPE_CODE_MEMBERPTR:
4141 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4142 break;
4143 case TYPE_CODE_METHODPTR:
4144 printf_filtered ("(TYPE_CODE_METHODPTR)");
4145 break;
4146 case TYPE_CODE_METHOD:
4147 printf_filtered ("(TYPE_CODE_METHOD)");
4148 break;
4149 case TYPE_CODE_REF:
4150 printf_filtered ("(TYPE_CODE_REF)");
4151 break;
4152 case TYPE_CODE_CHAR:
4153 printf_filtered ("(TYPE_CODE_CHAR)");
4154 break;
4155 case TYPE_CODE_BOOL:
4156 printf_filtered ("(TYPE_CODE_BOOL)");
4157 break;
4158 case TYPE_CODE_COMPLEX:
4159 printf_filtered ("(TYPE_CODE_COMPLEX)");
4160 break;
4161 case TYPE_CODE_TYPEDEF:
4162 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4163 break;
4164 case TYPE_CODE_NAMESPACE:
4165 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4166 break;
4167 default:
4168 printf_filtered ("(UNKNOWN TYPE CODE)");
4169 break;
4170 }
4171 puts_filtered ("\n");
4172 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4173 if (TYPE_OBJFILE_OWNED (type))
4174 {
4175 printfi_filtered (spaces, "objfile ");
4176 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4177 }
4178 else
4179 {
4180 printfi_filtered (spaces, "gdbarch ");
4181 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4182 }
4183 printf_filtered ("\n");
4184 printfi_filtered (spaces, "target_type ");
4185 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4186 printf_filtered ("\n");
4187 if (TYPE_TARGET_TYPE (type) != NULL)
4188 {
4189 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4190 }
4191 printfi_filtered (spaces, "pointer_type ");
4192 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4193 printf_filtered ("\n");
4194 printfi_filtered (spaces, "reference_type ");
4195 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4196 printf_filtered ("\n");
4197 printfi_filtered (spaces, "type_chain ");
4198 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4199 printf_filtered ("\n");
4200 printfi_filtered (spaces, "instance_flags 0x%x",
4201 TYPE_INSTANCE_FLAGS (type));
4202 if (TYPE_CONST (type))
4203 {
4204 puts_filtered (" TYPE_FLAG_CONST");
4205 }
4206 if (TYPE_VOLATILE (type))
4207 {
4208 puts_filtered (" TYPE_FLAG_VOLATILE");
4209 }
4210 if (TYPE_CODE_SPACE (type))
4211 {
4212 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4213 }
4214 if (TYPE_DATA_SPACE (type))
4215 {
4216 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4217 }
4218 if (TYPE_ADDRESS_CLASS_1 (type))
4219 {
4220 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4221 }
4222 if (TYPE_ADDRESS_CLASS_2 (type))
4223 {
4224 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4225 }
4226 if (TYPE_RESTRICT (type))
4227 {
4228 puts_filtered (" TYPE_FLAG_RESTRICT");
4229 }
4230 if (TYPE_ATOMIC (type))
4231 {
4232 puts_filtered (" TYPE_FLAG_ATOMIC");
4233 }
4234 puts_filtered ("\n");
4235
4236 printfi_filtered (spaces, "flags");
4237 if (TYPE_UNSIGNED (type))
4238 {
4239 puts_filtered (" TYPE_FLAG_UNSIGNED");
4240 }
4241 if (TYPE_NOSIGN (type))
4242 {
4243 puts_filtered (" TYPE_FLAG_NOSIGN");
4244 }
4245 if (TYPE_STUB (type))
4246 {
4247 puts_filtered (" TYPE_FLAG_STUB");
4248 }
4249 if (TYPE_TARGET_STUB (type))
4250 {
4251 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4252 }
4253 if (TYPE_STATIC (type))
4254 {
4255 puts_filtered (" TYPE_FLAG_STATIC");
4256 }
4257 if (TYPE_PROTOTYPED (type))
4258 {
4259 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4260 }
4261 if (TYPE_INCOMPLETE (type))
4262 {
4263 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4264 }
4265 if (TYPE_VARARGS (type))
4266 {
4267 puts_filtered (" TYPE_FLAG_VARARGS");
4268 }
4269 /* This is used for things like AltiVec registers on ppc. Gcc emits
4270 an attribute for the array type, which tells whether or not we
4271 have a vector, instead of a regular array. */
4272 if (TYPE_VECTOR (type))
4273 {
4274 puts_filtered (" TYPE_FLAG_VECTOR");
4275 }
4276 if (TYPE_FIXED_INSTANCE (type))
4277 {
4278 puts_filtered (" TYPE_FIXED_INSTANCE");
4279 }
4280 if (TYPE_STUB_SUPPORTED (type))
4281 {
4282 puts_filtered (" TYPE_STUB_SUPPORTED");
4283 }
4284 if (TYPE_NOTTEXT (type))
4285 {
4286 puts_filtered (" TYPE_NOTTEXT");
4287 }
4288 puts_filtered ("\n");
4289 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4290 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4291 puts_filtered ("\n");
4292 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4293 {
4294 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4295 printfi_filtered (spaces + 2,
4296 "[%d] enumval %s type ",
4297 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4298 else
4299 printfi_filtered (spaces + 2,
4300 "[%d] bitpos %d bitsize %d type ",
4301 idx, TYPE_FIELD_BITPOS (type, idx),
4302 TYPE_FIELD_BITSIZE (type, idx));
4303 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4304 printf_filtered (" name '%s' (",
4305 TYPE_FIELD_NAME (type, idx) != NULL
4306 ? TYPE_FIELD_NAME (type, idx)
4307 : "<NULL>");
4308 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4309 printf_filtered (")\n");
4310 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4311 {
4312 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4313 }
4314 }
4315 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4316 {
4317 printfi_filtered (spaces, "low %s%s high %s%s\n",
4318 plongest (TYPE_LOW_BOUND (type)),
4319 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4320 plongest (TYPE_HIGH_BOUND (type)),
4321 TYPE_HIGH_BOUND_UNDEFINED (type)
4322 ? " (undefined)" : "");
4323 }
4324
4325 switch (TYPE_SPECIFIC_FIELD (type))
4326 {
4327 case TYPE_SPECIFIC_CPLUS_STUFF:
4328 printfi_filtered (spaces, "cplus_stuff ");
4329 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4330 gdb_stdout);
4331 puts_filtered ("\n");
4332 print_cplus_stuff (type, spaces);
4333 break;
4334
4335 case TYPE_SPECIFIC_GNAT_STUFF:
4336 printfi_filtered (spaces, "gnat_stuff ");
4337 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4338 puts_filtered ("\n");
4339 print_gnat_stuff (type, spaces);
4340 break;
4341
4342 case TYPE_SPECIFIC_FLOATFORMAT:
4343 printfi_filtered (spaces, "floatformat ");
4344 if (TYPE_FLOATFORMAT (type) == NULL)
4345 puts_filtered ("(null)");
4346 else
4347 {
4348 puts_filtered ("{ ");
4349 if (TYPE_FLOATFORMAT (type)[0] == NULL
4350 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4351 puts_filtered ("(null)");
4352 else
4353 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4354
4355 puts_filtered (", ");
4356 if (TYPE_FLOATFORMAT (type)[1] == NULL
4357 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4358 puts_filtered ("(null)");
4359 else
4360 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4361
4362 puts_filtered (" }");
4363 }
4364 puts_filtered ("\n");
4365 break;
4366
4367 case TYPE_SPECIFIC_FUNC:
4368 printfi_filtered (spaces, "calling_convention %d\n",
4369 TYPE_CALLING_CONVENTION (type));
4370 /* tail_call_list is not printed. */
4371 break;
4372
4373 case TYPE_SPECIFIC_SELF_TYPE:
4374 printfi_filtered (spaces, "self_type ");
4375 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4376 puts_filtered ("\n");
4377 break;
4378 }
4379
4380 if (spaces == 0)
4381 obstack_free (&dont_print_type_obstack, NULL);
4382 }
4383 \f
4384 /* Trivial helpers for the libiberty hash table, for mapping one
4385 type to another. */
4386
4387 struct type_pair
4388 {
4389 struct type *old, *newobj;
4390 };
4391
4392 static hashval_t
4393 type_pair_hash (const void *item)
4394 {
4395 const struct type_pair *pair = (const struct type_pair *) item;
4396
4397 return htab_hash_pointer (pair->old);
4398 }
4399
4400 static int
4401 type_pair_eq (const void *item_lhs, const void *item_rhs)
4402 {
4403 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4404 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4405
4406 return lhs->old == rhs->old;
4407 }
4408
4409 /* Allocate the hash table used by copy_type_recursive to walk
4410 types without duplicates. We use OBJFILE's obstack, because
4411 OBJFILE is about to be deleted. */
4412
4413 htab_t
4414 create_copied_types_hash (struct objfile *objfile)
4415 {
4416 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4417 NULL, &objfile->objfile_obstack,
4418 hashtab_obstack_allocate,
4419 dummy_obstack_deallocate);
4420 }
4421
4422 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4423
4424 static struct dynamic_prop_list *
4425 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4426 struct dynamic_prop_list *list)
4427 {
4428 struct dynamic_prop_list *copy = list;
4429 struct dynamic_prop_list **node_ptr = &copy;
4430
4431 while (*node_ptr != NULL)
4432 {
4433 struct dynamic_prop_list *node_copy;
4434
4435 node_copy = ((struct dynamic_prop_list *)
4436 obstack_copy (objfile_obstack, *node_ptr,
4437 sizeof (struct dynamic_prop_list)));
4438 node_copy->prop = (*node_ptr)->prop;
4439 *node_ptr = node_copy;
4440
4441 node_ptr = &node_copy->next;
4442 }
4443
4444 return copy;
4445 }
4446
4447 /* Recursively copy (deep copy) TYPE, if it is associated with
4448 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4449 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4450 it is not associated with OBJFILE. */
4451
4452 struct type *
4453 copy_type_recursive (struct objfile *objfile,
4454 struct type *type,
4455 htab_t copied_types)
4456 {
4457 struct type_pair *stored, pair;
4458 void **slot;
4459 struct type *new_type;
4460
4461 if (! TYPE_OBJFILE_OWNED (type))
4462 return type;
4463
4464 /* This type shouldn't be pointing to any types in other objfiles;
4465 if it did, the type might disappear unexpectedly. */
4466 gdb_assert (TYPE_OBJFILE (type) == objfile);
4467
4468 pair.old = type;
4469 slot = htab_find_slot (copied_types, &pair, INSERT);
4470 if (*slot != NULL)
4471 return ((struct type_pair *) *slot)->newobj;
4472
4473 new_type = alloc_type_arch (get_type_arch (type));
4474
4475 /* We must add the new type to the hash table immediately, in case
4476 we encounter this type again during a recursive call below. */
4477 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4478 stored->old = type;
4479 stored->newobj = new_type;
4480 *slot = stored;
4481
4482 /* Copy the common fields of types. For the main type, we simply
4483 copy the entire thing and then update specific fields as needed. */
4484 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4485 TYPE_OBJFILE_OWNED (new_type) = 0;
4486 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4487
4488 if (TYPE_NAME (type))
4489 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4490 if (TYPE_TAG_NAME (type))
4491 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4492
4493 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4494 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4495
4496 /* Copy the fields. */
4497 if (TYPE_NFIELDS (type))
4498 {
4499 int i, nfields;
4500
4501 nfields = TYPE_NFIELDS (type);
4502 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4503 for (i = 0; i < nfields; i++)
4504 {
4505 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4506 TYPE_FIELD_ARTIFICIAL (type, i);
4507 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4508 if (TYPE_FIELD_TYPE (type, i))
4509 TYPE_FIELD_TYPE (new_type, i)
4510 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4511 copied_types);
4512 if (TYPE_FIELD_NAME (type, i))
4513 TYPE_FIELD_NAME (new_type, i) =
4514 xstrdup (TYPE_FIELD_NAME (type, i));
4515 switch (TYPE_FIELD_LOC_KIND (type, i))
4516 {
4517 case FIELD_LOC_KIND_BITPOS:
4518 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4519 TYPE_FIELD_BITPOS (type, i));
4520 break;
4521 case FIELD_LOC_KIND_ENUMVAL:
4522 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4523 TYPE_FIELD_ENUMVAL (type, i));
4524 break;
4525 case FIELD_LOC_KIND_PHYSADDR:
4526 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4527 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4528 break;
4529 case FIELD_LOC_KIND_PHYSNAME:
4530 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4531 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4532 i)));
4533 break;
4534 default:
4535 internal_error (__FILE__, __LINE__,
4536 _("Unexpected type field location kind: %d"),
4537 TYPE_FIELD_LOC_KIND (type, i));
4538 }
4539 }
4540 }
4541
4542 /* For range types, copy the bounds information. */
4543 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4544 {
4545 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4546 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4547 }
4548
4549 if (TYPE_DYN_PROP_LIST (type) != NULL)
4550 TYPE_DYN_PROP_LIST (new_type)
4551 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4552 TYPE_DYN_PROP_LIST (type));
4553
4554
4555 /* Copy pointers to other types. */
4556 if (TYPE_TARGET_TYPE (type))
4557 TYPE_TARGET_TYPE (new_type) =
4558 copy_type_recursive (objfile,
4559 TYPE_TARGET_TYPE (type),
4560 copied_types);
4561
4562 /* Maybe copy the type_specific bits.
4563
4564 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4565 base classes and methods. There's no fundamental reason why we
4566 can't, but at the moment it is not needed. */
4567
4568 switch (TYPE_SPECIFIC_FIELD (type))
4569 {
4570 case TYPE_SPECIFIC_NONE:
4571 break;
4572 case TYPE_SPECIFIC_FUNC:
4573 INIT_FUNC_SPECIFIC (new_type);
4574 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4575 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4576 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4577 break;
4578 case TYPE_SPECIFIC_FLOATFORMAT:
4579 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4580 break;
4581 case TYPE_SPECIFIC_CPLUS_STUFF:
4582 INIT_CPLUS_SPECIFIC (new_type);
4583 break;
4584 case TYPE_SPECIFIC_GNAT_STUFF:
4585 INIT_GNAT_SPECIFIC (new_type);
4586 break;
4587 case TYPE_SPECIFIC_SELF_TYPE:
4588 set_type_self_type (new_type,
4589 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4590 copied_types));
4591 break;
4592 default:
4593 gdb_assert_not_reached ("bad type_specific_kind");
4594 }
4595
4596 return new_type;
4597 }
4598
4599 /* Make a copy of the given TYPE, except that the pointer & reference
4600 types are not preserved.
4601
4602 This function assumes that the given type has an associated objfile.
4603 This objfile is used to allocate the new type. */
4604
4605 struct type *
4606 copy_type (const struct type *type)
4607 {
4608 struct type *new_type;
4609
4610 gdb_assert (TYPE_OBJFILE_OWNED (type));
4611
4612 new_type = alloc_type_copy (type);
4613 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4614 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4615 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4616 sizeof (struct main_type));
4617 if (TYPE_DYN_PROP_LIST (type) != NULL)
4618 TYPE_DYN_PROP_LIST (new_type)
4619 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4620 TYPE_DYN_PROP_LIST (type));
4621
4622 return new_type;
4623 }
4624 \f
4625 /* Helper functions to initialize architecture-specific types. */
4626
4627 /* Allocate a type structure associated with GDBARCH and set its
4628 CODE, LENGTH, and NAME fields. */
4629
4630 struct type *
4631 arch_type (struct gdbarch *gdbarch,
4632 enum type_code code, int length, char *name)
4633 {
4634 struct type *type;
4635
4636 type = alloc_type_arch (gdbarch);
4637 TYPE_CODE (type) = code;
4638 TYPE_LENGTH (type) = length;
4639
4640 if (name)
4641 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4642
4643 return type;
4644 }
4645
4646 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4647 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4648 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4649
4650 struct type *
4651 arch_integer_type (struct gdbarch *gdbarch,
4652 int bit, int unsigned_p, char *name)
4653 {
4654 struct type *t;
4655
4656 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4657 if (unsigned_p)
4658 TYPE_UNSIGNED (t) = 1;
4659 if (name && strcmp (name, "char") == 0)
4660 TYPE_NOSIGN (t) = 1;
4661
4662 return t;
4663 }
4664
4665 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4666 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4667 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4668
4669 struct type *
4670 arch_character_type (struct gdbarch *gdbarch,
4671 int bit, int unsigned_p, char *name)
4672 {
4673 struct type *t;
4674
4675 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4676 if (unsigned_p)
4677 TYPE_UNSIGNED (t) = 1;
4678
4679 return t;
4680 }
4681
4682 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4683 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4684 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4685
4686 struct type *
4687 arch_boolean_type (struct gdbarch *gdbarch,
4688 int bit, int unsigned_p, char *name)
4689 {
4690 struct type *t;
4691
4692 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4693 if (unsigned_p)
4694 TYPE_UNSIGNED (t) = 1;
4695
4696 return t;
4697 }
4698
4699 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4700 BIT is the type size in bits; if BIT equals -1, the size is
4701 determined by the floatformat. NAME is the type name. Set the
4702 TYPE_FLOATFORMAT from FLOATFORMATS. */
4703
4704 struct type *
4705 arch_float_type (struct gdbarch *gdbarch,
4706 int bit, char *name, const struct floatformat **floatformats)
4707 {
4708 struct type *t;
4709
4710 if (bit == -1)
4711 {
4712 gdb_assert (floatformats != NULL);
4713 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4714 bit = floatformats[0]->totalsize;
4715 }
4716 gdb_assert (bit >= 0);
4717
4718 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4719 TYPE_FLOATFORMAT (t) = floatformats;
4720
4721 if (floatformats != NULL)
4722 {
4723 size_t len = TYPE_LENGTH (t);
4724
4725 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
4726 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
4727 }
4728
4729 return t;
4730 }
4731
4732 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4733 NAME is the type name. TARGET_TYPE is the component float type. */
4734
4735 struct type *
4736 arch_complex_type (struct gdbarch *gdbarch,
4737 char *name, struct type *target_type)
4738 {
4739 struct type *t;
4740
4741 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4742 2 * TYPE_LENGTH (target_type), name);
4743 TYPE_TARGET_TYPE (t) = target_type;
4744 return t;
4745 }
4746
4747 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4748 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4749
4750 struct type *
4751 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4752 {
4753 int max_nfields = length * TARGET_CHAR_BIT;
4754 struct type *type;
4755
4756 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4757 TYPE_UNSIGNED (type) = 1;
4758 TYPE_NFIELDS (type) = 0;
4759 /* Pre-allocate enough space assuming every field is one bit. */
4760 TYPE_FIELDS (type)
4761 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4762
4763 return type;
4764 }
4765
4766 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4767 position BITPOS is called NAME. Pass NAME as "" for fields that
4768 should not be printed. */
4769
4770 void
4771 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4772 struct type *field_type, char *name)
4773 {
4774 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4775 int field_nr = TYPE_NFIELDS (type);
4776
4777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4778 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4779 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4780 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4781 gdb_assert (name != NULL);
4782
4783 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4784 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4785 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4786 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4787 ++TYPE_NFIELDS (type);
4788 }
4789
4790 /* Special version of append_flags_type_field to add a flag field.
4791 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4792 position BITPOS is called NAME. */
4793
4794 void
4795 append_flags_type_flag (struct type *type, int bitpos, char *name)
4796 {
4797 struct gdbarch *gdbarch = get_type_arch (type);
4798
4799 append_flags_type_field (type, bitpos, 1,
4800 builtin_type (gdbarch)->builtin_bool,
4801 name);
4802 }
4803
4804 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4805 specified by CODE) associated with GDBARCH. NAME is the type name. */
4806
4807 struct type *
4808 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4809 {
4810 struct type *t;
4811
4812 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4813 t = arch_type (gdbarch, code, 0, NULL);
4814 TYPE_TAG_NAME (t) = name;
4815 INIT_CPLUS_SPECIFIC (t);
4816 return t;
4817 }
4818
4819 /* Add new field with name NAME and type FIELD to composite type T.
4820 Do not set the field's position or adjust the type's length;
4821 the caller should do so. Return the new field. */
4822
4823 struct field *
4824 append_composite_type_field_raw (struct type *t, char *name,
4825 struct type *field)
4826 {
4827 struct field *f;
4828
4829 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4830 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4831 TYPE_NFIELDS (t));
4832 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4833 memset (f, 0, sizeof f[0]);
4834 FIELD_TYPE (f[0]) = field;
4835 FIELD_NAME (f[0]) = name;
4836 return f;
4837 }
4838
4839 /* Add new field with name NAME and type FIELD to composite type T.
4840 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4841
4842 void
4843 append_composite_type_field_aligned (struct type *t, char *name,
4844 struct type *field, int alignment)
4845 {
4846 struct field *f = append_composite_type_field_raw (t, name, field);
4847
4848 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4849 {
4850 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4851 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4852 }
4853 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4854 {
4855 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4856 if (TYPE_NFIELDS (t) > 1)
4857 {
4858 SET_FIELD_BITPOS (f[0],
4859 (FIELD_BITPOS (f[-1])
4860 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4861 * TARGET_CHAR_BIT)));
4862
4863 if (alignment)
4864 {
4865 int left;
4866
4867 alignment *= TARGET_CHAR_BIT;
4868 left = FIELD_BITPOS (f[0]) % alignment;
4869
4870 if (left)
4871 {
4872 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4873 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4874 }
4875 }
4876 }
4877 }
4878 }
4879
4880 /* Add new field with name NAME and type FIELD to composite type T. */
4881
4882 void
4883 append_composite_type_field (struct type *t, char *name,
4884 struct type *field)
4885 {
4886 append_composite_type_field_aligned (t, name, field, 0);
4887 }
4888
4889 static struct gdbarch_data *gdbtypes_data;
4890
4891 const struct builtin_type *
4892 builtin_type (struct gdbarch *gdbarch)
4893 {
4894 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
4895 }
4896
4897 static void *
4898 gdbtypes_post_init (struct gdbarch *gdbarch)
4899 {
4900 struct builtin_type *builtin_type
4901 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4902
4903 /* Basic types. */
4904 builtin_type->builtin_void
4905 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4906 builtin_type->builtin_char
4907 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4908 !gdbarch_char_signed (gdbarch), "char");
4909 builtin_type->builtin_signed_char
4910 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4911 0, "signed char");
4912 builtin_type->builtin_unsigned_char
4913 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4914 1, "unsigned char");
4915 builtin_type->builtin_short
4916 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4917 0, "short");
4918 builtin_type->builtin_unsigned_short
4919 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4920 1, "unsigned short");
4921 builtin_type->builtin_int
4922 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4923 0, "int");
4924 builtin_type->builtin_unsigned_int
4925 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4926 1, "unsigned int");
4927 builtin_type->builtin_long
4928 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4929 0, "long");
4930 builtin_type->builtin_unsigned_long
4931 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4932 1, "unsigned long");
4933 builtin_type->builtin_long_long
4934 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4935 0, "long long");
4936 builtin_type->builtin_unsigned_long_long
4937 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4938 1, "unsigned long long");
4939 builtin_type->builtin_float
4940 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4941 "float", gdbarch_float_format (gdbarch));
4942 builtin_type->builtin_double
4943 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4944 "double", gdbarch_double_format (gdbarch));
4945 builtin_type->builtin_long_double
4946 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4947 "long double", gdbarch_long_double_format (gdbarch));
4948 builtin_type->builtin_complex
4949 = arch_complex_type (gdbarch, "complex",
4950 builtin_type->builtin_float);
4951 builtin_type->builtin_double_complex
4952 = arch_complex_type (gdbarch, "double complex",
4953 builtin_type->builtin_double);
4954 builtin_type->builtin_string
4955 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4956 builtin_type->builtin_bool
4957 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4958
4959 /* The following three are about decimal floating point types, which
4960 are 32-bits, 64-bits and 128-bits respectively. */
4961 builtin_type->builtin_decfloat
4962 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4963 builtin_type->builtin_decdouble
4964 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4965 builtin_type->builtin_declong
4966 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4967
4968 /* "True" character types. */
4969 builtin_type->builtin_true_char
4970 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4971 builtin_type->builtin_true_unsigned_char
4972 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4973
4974 /* Fixed-size integer types. */
4975 builtin_type->builtin_int0
4976 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4977 builtin_type->builtin_int8
4978 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4979 builtin_type->builtin_uint8
4980 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4981 builtin_type->builtin_int16
4982 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4983 builtin_type->builtin_uint16
4984 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4985 builtin_type->builtin_int32
4986 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4987 builtin_type->builtin_uint32
4988 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4989 builtin_type->builtin_int64
4990 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4991 builtin_type->builtin_uint64
4992 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4993 builtin_type->builtin_int128
4994 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4995 builtin_type->builtin_uint128
4996 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4997 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4998 TYPE_INSTANCE_FLAG_NOTTEXT;
4999 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5000 TYPE_INSTANCE_FLAG_NOTTEXT;
5001
5002 /* Wide character types. */
5003 builtin_type->builtin_char16
5004 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5005 builtin_type->builtin_char32
5006 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5007
5008
5009 /* Default data/code pointer types. */
5010 builtin_type->builtin_data_ptr
5011 = lookup_pointer_type (builtin_type->builtin_void);
5012 builtin_type->builtin_func_ptr
5013 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5014 builtin_type->builtin_func_func
5015 = lookup_function_type (builtin_type->builtin_func_ptr);
5016
5017 /* This type represents a GDB internal function. */
5018 builtin_type->internal_fn
5019 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5020 "<internal function>");
5021
5022 /* This type represents an xmethod. */
5023 builtin_type->xmethod
5024 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5025
5026 return builtin_type;
5027 }
5028
5029 /* This set of objfile-based types is intended to be used by symbol
5030 readers as basic types. */
5031
5032 static const struct objfile_data *objfile_type_data;
5033
5034 const struct objfile_type *
5035 objfile_type (struct objfile *objfile)
5036 {
5037 struct gdbarch *gdbarch;
5038 struct objfile_type *objfile_type
5039 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5040
5041 if (objfile_type)
5042 return objfile_type;
5043
5044 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5045 1, struct objfile_type);
5046
5047 /* Use the objfile architecture to determine basic type properties. */
5048 gdbarch = get_objfile_arch (objfile);
5049
5050 /* Basic types. */
5051 objfile_type->builtin_void
5052 = init_type (TYPE_CODE_VOID, 1,
5053 0,
5054 "void", objfile);
5055
5056 objfile_type->builtin_char
5057 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5058 (TYPE_FLAG_NOSIGN
5059 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
5060 "char", objfile);
5061 objfile_type->builtin_signed_char
5062 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5063 0,
5064 "signed char", objfile);
5065 objfile_type->builtin_unsigned_char
5066 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5067 TYPE_FLAG_UNSIGNED,
5068 "unsigned char", objfile);
5069 objfile_type->builtin_short
5070 = init_type (TYPE_CODE_INT,
5071 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
5072 0, "short", objfile);
5073 objfile_type->builtin_unsigned_short
5074 = init_type (TYPE_CODE_INT,
5075 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
5076 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
5077 objfile_type->builtin_int
5078 = init_type (TYPE_CODE_INT,
5079 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
5080 0, "int", objfile);
5081 objfile_type->builtin_unsigned_int
5082 = init_type (TYPE_CODE_INT,
5083 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
5084 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
5085 objfile_type->builtin_long
5086 = init_type (TYPE_CODE_INT,
5087 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
5088 0, "long", objfile);
5089 objfile_type->builtin_unsigned_long
5090 = init_type (TYPE_CODE_INT,
5091 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
5092 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
5093 objfile_type->builtin_long_long
5094 = init_type (TYPE_CODE_INT,
5095 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
5096 0, "long long", objfile);
5097 objfile_type->builtin_unsigned_long_long
5098 = init_type (TYPE_CODE_INT,
5099 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
5100 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
5101
5102 objfile_type->builtin_float
5103 = init_type (TYPE_CODE_FLT,
5104 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
5105 0, "float", objfile);
5106 TYPE_FLOATFORMAT (objfile_type->builtin_float)
5107 = gdbarch_float_format (gdbarch);
5108 objfile_type->builtin_double
5109 = init_type (TYPE_CODE_FLT,
5110 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
5111 0, "double", objfile);
5112 TYPE_FLOATFORMAT (objfile_type->builtin_double)
5113 = gdbarch_double_format (gdbarch);
5114 objfile_type->builtin_long_double
5115 = init_type (TYPE_CODE_FLT,
5116 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
5117 0, "long double", objfile);
5118 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
5119 = gdbarch_long_double_format (gdbarch);
5120
5121 /* This type represents a type that was unrecognized in symbol read-in. */
5122 objfile_type->builtin_error
5123 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
5124
5125 /* The following set of types is used for symbols with no
5126 debug information. */
5127 objfile_type->nodebug_text_symbol
5128 = init_type (TYPE_CODE_FUNC, 1, 0,
5129 "<text variable, no debug info>", objfile);
5130 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5131 = objfile_type->builtin_int;
5132 objfile_type->nodebug_text_gnu_ifunc_symbol
5133 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
5134 "<text gnu-indirect-function variable, no debug info>",
5135 objfile);
5136 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5137 = objfile_type->nodebug_text_symbol;
5138 objfile_type->nodebug_got_plt_symbol
5139 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
5140 "<text from jump slot in .got.plt, no debug info>",
5141 objfile);
5142 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
5143 = objfile_type->nodebug_text_symbol;
5144 objfile_type->nodebug_data_symbol
5145 = init_type (TYPE_CODE_INT,
5146 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5147 "<data variable, no debug info>", objfile);
5148 objfile_type->nodebug_unknown_symbol
5149 = init_type (TYPE_CODE_INT, 1, 0,
5150 "<variable (not text or data), no debug info>", objfile);
5151 objfile_type->nodebug_tls_symbol
5152 = init_type (TYPE_CODE_INT,
5153 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5154 "<thread local variable, no debug info>", objfile);
5155
5156 /* NOTE: on some targets, addresses and pointers are not necessarily
5157 the same.
5158
5159 The upshot is:
5160 - gdb's `struct type' always describes the target's
5161 representation.
5162 - gdb's `struct value' objects should always hold values in
5163 target form.
5164 - gdb's CORE_ADDR values are addresses in the unified virtual
5165 address space that the assembler and linker work with. Thus,
5166 since target_read_memory takes a CORE_ADDR as an argument, it
5167 can access any memory on the target, even if the processor has
5168 separate code and data address spaces.
5169
5170 In this context, objfile_type->builtin_core_addr is a bit odd:
5171 it's a target type for a value the target will never see. It's
5172 only used to hold the values of (typeless) linker symbols, which
5173 are indeed in the unified virtual address space. */
5174
5175 objfile_type->builtin_core_addr
5176 = init_type (TYPE_CODE_INT,
5177 gdbarch_addr_bit (gdbarch) / 8,
5178 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
5179
5180 set_objfile_data (objfile, objfile_type_data, objfile_type);
5181 return objfile_type;
5182 }
5183
5184 extern initialize_file_ftype _initialize_gdbtypes;
5185
5186 void
5187 _initialize_gdbtypes (void)
5188 {
5189 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5190 objfile_type_data = register_objfile_data ();
5191
5192 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5193 _("Set debugging of C++ overloading."),
5194 _("Show debugging of C++ overloading."),
5195 _("When enabled, ranking of the "
5196 "functions is displayed."),
5197 NULL,
5198 show_overload_debug,
5199 &setdebuglist, &showdebuglist);
5200
5201 /* Add user knob for controlling resolution of opaque types. */
5202 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5203 &opaque_type_resolution,
5204 _("Set resolution of opaque struct/class/union"
5205 " types (if set before loading symbols)."),
5206 _("Show resolution of opaque struct/class/union"
5207 " types (if set before loading symbols)."),
5208 NULL, NULL,
5209 show_opaque_type_resolution,
5210 &setlist, &showlist);
5211
5212 /* Add an option to permit non-strict type checking. */
5213 add_setshow_boolean_cmd ("type", class_support,
5214 &strict_type_checking,
5215 _("Set strict type checking."),
5216 _("Show strict type checking."),
5217 NULL, NULL,
5218 show_strict_type_checking,
5219 &setchecklist, &showchecklist);
5220 }
This page took 0.197968 seconds and 5 git commands to generate.