Convert lvalue reference type check to general reference type check
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. REFCODE denotes
388 the kind of reference type to lookup (lvalue or rvalue reference). */
389
390 struct type *
391 make_reference_type (struct type *type, struct type **typeptr,
392 enum type_code refcode)
393 {
394 struct type *ntype; /* New type */
395 struct type **reftype;
396 struct type *chain;
397
398 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
399
400 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
401 : TYPE_RVALUE_REFERENCE_TYPE (type));
402
403 if (ntype)
404 {
405 if (typeptr == 0)
406 return ntype; /* Don't care about alloc,
407 and have new type. */
408 else if (*typeptr == 0)
409 {
410 *typeptr = ntype; /* Tracking alloc, and have new type. */
411 return ntype;
412 }
413 }
414
415 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
416 {
417 ntype = alloc_type_copy (type);
418 if (typeptr)
419 *typeptr = ntype;
420 }
421 else /* We have storage, but need to reset it. */
422 {
423 ntype = *typeptr;
424 chain = TYPE_CHAIN (ntype);
425 smash_type (ntype);
426 TYPE_CHAIN (ntype) = chain;
427 }
428
429 TYPE_TARGET_TYPE (ntype) = type;
430 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
431 : &TYPE_RVALUE_REFERENCE_TYPE (type));
432
433 *reftype = ntype;
434
435 /* FIXME! Assume the machine has only one representation for
436 references, and that it matches the (only) representation for
437 pointers! */
438
439 TYPE_LENGTH (ntype) =
440 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
441 TYPE_CODE (ntype) = refcode;
442
443 *reftype = ntype;
444
445 /* Update the length of all the other variants of this type. */
446 chain = TYPE_CHAIN (ntype);
447 while (chain != ntype)
448 {
449 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
450 chain = TYPE_CHAIN (chain);
451 }
452
453 return ntype;
454 }
455
456 /* Same as above, but caller doesn't care about memory allocation
457 details. */
458
459 struct type *
460 lookup_reference_type (struct type *type, enum type_code refcode)
461 {
462 return make_reference_type (type, (struct type **) 0, refcode);
463 }
464
465 /* Lookup the lvalue reference type for the type TYPE. */
466
467 struct type *
468 lookup_lvalue_reference_type (struct type *type)
469 {
470 return lookup_reference_type (type, TYPE_CODE_REF);
471 }
472
473 /* Lookup the rvalue reference type for the type TYPE. */
474
475 struct type *
476 lookup_rvalue_reference_type (struct type *type)
477 {
478 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
479 }
480
481 /* Lookup a function type that returns type TYPE. TYPEPTR, if
482 nonzero, points to a pointer to memory where the function type
483 should be stored. If *TYPEPTR is zero, update it to point to the
484 function type we return. We allocate new memory if needed. */
485
486 struct type *
487 make_function_type (struct type *type, struct type **typeptr)
488 {
489 struct type *ntype; /* New type */
490
491 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
492 {
493 ntype = alloc_type_copy (type);
494 if (typeptr)
495 *typeptr = ntype;
496 }
497 else /* We have storage, but need to reset it. */
498 {
499 ntype = *typeptr;
500 smash_type (ntype);
501 }
502
503 TYPE_TARGET_TYPE (ntype) = type;
504
505 TYPE_LENGTH (ntype) = 1;
506 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
507
508 INIT_FUNC_SPECIFIC (ntype);
509
510 return ntype;
511 }
512
513 /* Given a type TYPE, return a type of functions that return that type.
514 May need to construct such a type if this is the first use. */
515
516 struct type *
517 lookup_function_type (struct type *type)
518 {
519 return make_function_type (type, (struct type **) 0);
520 }
521
522 /* Given a type TYPE and argument types, return the appropriate
523 function type. If the final type in PARAM_TYPES is NULL, make a
524 varargs function. */
525
526 struct type *
527 lookup_function_type_with_arguments (struct type *type,
528 int nparams,
529 struct type **param_types)
530 {
531 struct type *fn = make_function_type (type, (struct type **) 0);
532 int i;
533
534 if (nparams > 0)
535 {
536 if (param_types[nparams - 1] == NULL)
537 {
538 --nparams;
539 TYPE_VARARGS (fn) = 1;
540 }
541 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
542 == TYPE_CODE_VOID)
543 {
544 --nparams;
545 /* Caller should have ensured this. */
546 gdb_assert (nparams == 0);
547 TYPE_PROTOTYPED (fn) = 1;
548 }
549 }
550
551 TYPE_NFIELDS (fn) = nparams;
552 TYPE_FIELDS (fn)
553 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
554 for (i = 0; i < nparams; ++i)
555 TYPE_FIELD_TYPE (fn, i) = param_types[i];
556
557 return fn;
558 }
559
560 /* Identify address space identifier by name --
561 return the integer flag defined in gdbtypes.h. */
562
563 int
564 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
565 {
566 int type_flags;
567
568 /* Check for known address space delimiters. */
569 if (!strcmp (space_identifier, "code"))
570 return TYPE_INSTANCE_FLAG_CODE_SPACE;
571 else if (!strcmp (space_identifier, "data"))
572 return TYPE_INSTANCE_FLAG_DATA_SPACE;
573 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
574 && gdbarch_address_class_name_to_type_flags (gdbarch,
575 space_identifier,
576 &type_flags))
577 return type_flags;
578 else
579 error (_("Unknown address space specifier: \"%s\""), space_identifier);
580 }
581
582 /* Identify address space identifier by integer flag as defined in
583 gdbtypes.h -- return the string version of the adress space name. */
584
585 const char *
586 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
587 {
588 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
589 return "code";
590 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
591 return "data";
592 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
593 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
594 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
595 else
596 return NULL;
597 }
598
599 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
600
601 If STORAGE is non-NULL, create the new type instance there.
602 STORAGE must be in the same obstack as TYPE. */
603
604 static struct type *
605 make_qualified_type (struct type *type, int new_flags,
606 struct type *storage)
607 {
608 struct type *ntype;
609
610 ntype = type;
611 do
612 {
613 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
614 return ntype;
615 ntype = TYPE_CHAIN (ntype);
616 }
617 while (ntype != type);
618
619 /* Create a new type instance. */
620 if (storage == NULL)
621 ntype = alloc_type_instance (type);
622 else
623 {
624 /* If STORAGE was provided, it had better be in the same objfile
625 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
626 if one objfile is freed and the other kept, we'd have
627 dangling pointers. */
628 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
629
630 ntype = storage;
631 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
632 TYPE_CHAIN (ntype) = ntype;
633 }
634
635 /* Pointers or references to the original type are not relevant to
636 the new type. */
637 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
638 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
639
640 /* Chain the new qualified type to the old type. */
641 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
642 TYPE_CHAIN (type) = ntype;
643
644 /* Now set the instance flags and return the new type. */
645 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
646
647 /* Set length of new type to that of the original type. */
648 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
649
650 return ntype;
651 }
652
653 /* Make an address-space-delimited variant of a type -- a type that
654 is identical to the one supplied except that it has an address
655 space attribute attached to it (such as "code" or "data").
656
657 The space attributes "code" and "data" are for Harvard
658 architectures. The address space attributes are for architectures
659 which have alternately sized pointers or pointers with alternate
660 representations. */
661
662 struct type *
663 make_type_with_address_space (struct type *type, int space_flag)
664 {
665 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
666 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
667 | TYPE_INSTANCE_FLAG_DATA_SPACE
668 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
669 | space_flag);
670
671 return make_qualified_type (type, new_flags, NULL);
672 }
673
674 /* Make a "c-v" variant of a type -- a type that is identical to the
675 one supplied except that it may have const or volatile attributes
676 CNST is a flag for setting the const attribute
677 VOLTL is a flag for setting the volatile attribute
678 TYPE is the base type whose variant we are creating.
679
680 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
681 storage to hold the new qualified type; *TYPEPTR and TYPE must be
682 in the same objfile. Otherwise, allocate fresh memory for the new
683 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
684 new type we construct. */
685
686 struct type *
687 make_cv_type (int cnst, int voltl,
688 struct type *type,
689 struct type **typeptr)
690 {
691 struct type *ntype; /* New type */
692
693 int new_flags = (TYPE_INSTANCE_FLAGS (type)
694 & ~(TYPE_INSTANCE_FLAG_CONST
695 | TYPE_INSTANCE_FLAG_VOLATILE));
696
697 if (cnst)
698 new_flags |= TYPE_INSTANCE_FLAG_CONST;
699
700 if (voltl)
701 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
702
703 if (typeptr && *typeptr != NULL)
704 {
705 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
706 a C-V variant chain that threads across objfiles: if one
707 objfile gets freed, then the other has a broken C-V chain.
708
709 This code used to try to copy over the main type from TYPE to
710 *TYPEPTR if they were in different objfiles, but that's
711 wrong, too: TYPE may have a field list or member function
712 lists, which refer to types of their own, etc. etc. The
713 whole shebang would need to be copied over recursively; you
714 can't have inter-objfile pointers. The only thing to do is
715 to leave stub types as stub types, and look them up afresh by
716 name each time you encounter them. */
717 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
718 }
719
720 ntype = make_qualified_type (type, new_flags,
721 typeptr ? *typeptr : NULL);
722
723 if (typeptr != NULL)
724 *typeptr = ntype;
725
726 return ntype;
727 }
728
729 /* Make a 'restrict'-qualified version of TYPE. */
730
731 struct type *
732 make_restrict_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_RESTRICT),
737 NULL);
738 }
739
740 /* Make a type without const, volatile, or restrict. */
741
742 struct type *
743 make_unqualified_type (struct type *type)
744 {
745 return make_qualified_type (type,
746 (TYPE_INSTANCE_FLAGS (type)
747 & ~(TYPE_INSTANCE_FLAG_CONST
748 | TYPE_INSTANCE_FLAG_VOLATILE
749 | TYPE_INSTANCE_FLAG_RESTRICT)),
750 NULL);
751 }
752
753 /* Make a '_Atomic'-qualified version of TYPE. */
754
755 struct type *
756 make_atomic_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 | TYPE_INSTANCE_FLAG_ATOMIC),
761 NULL);
762 }
763
764 /* Replace the contents of ntype with the type *type. This changes the
765 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
766 the changes are propogated to all types in the TYPE_CHAIN.
767
768 In order to build recursive types, it's inevitable that we'll need
769 to update types in place --- but this sort of indiscriminate
770 smashing is ugly, and needs to be replaced with something more
771 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
772 clear if more steps are needed. */
773
774 void
775 replace_type (struct type *ntype, struct type *type)
776 {
777 struct type *chain;
778
779 /* These two types had better be in the same objfile. Otherwise,
780 the assignment of one type's main type structure to the other
781 will produce a type with references to objects (names; field
782 lists; etc.) allocated on an objfile other than its own. */
783 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
784
785 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
786
787 /* The type length is not a part of the main type. Update it for
788 each type on the variant chain. */
789 chain = ntype;
790 do
791 {
792 /* Assert that this element of the chain has no address-class bits
793 set in its flags. Such type variants might have type lengths
794 which are supposed to be different from the non-address-class
795 variants. This assertion shouldn't ever be triggered because
796 symbol readers which do construct address-class variants don't
797 call replace_type(). */
798 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
799
800 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
801 chain = TYPE_CHAIN (chain);
802 }
803 while (ntype != chain);
804
805 /* Assert that the two types have equivalent instance qualifiers.
806 This should be true for at least all of our debug readers. */
807 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
808 }
809
810 /* Implement direct support for MEMBER_TYPE in GNU C++.
811 May need to construct such a type if this is the first use.
812 The TYPE is the type of the member. The DOMAIN is the type
813 of the aggregate that the member belongs to. */
814
815 struct type *
816 lookup_memberptr_type (struct type *type, struct type *domain)
817 {
818 struct type *mtype;
819
820 mtype = alloc_type_copy (type);
821 smash_to_memberptr_type (mtype, domain, type);
822 return mtype;
823 }
824
825 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
826
827 struct type *
828 lookup_methodptr_type (struct type *to_type)
829 {
830 struct type *mtype;
831
832 mtype = alloc_type_copy (to_type);
833 smash_to_methodptr_type (mtype, to_type);
834 return mtype;
835 }
836
837 /* Allocate a stub method whose return type is TYPE. This apparently
838 happens for speed of symbol reading, since parsing out the
839 arguments to the method is cpu-intensive, the way we are doing it.
840 So, we will fill in arguments later. This always returns a fresh
841 type. */
842
843 struct type *
844 allocate_stub_method (struct type *type)
845 {
846 struct type *mtype;
847
848 mtype = alloc_type_copy (type);
849 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
850 TYPE_LENGTH (mtype) = 1;
851 TYPE_STUB (mtype) = 1;
852 TYPE_TARGET_TYPE (mtype) = type;
853 /* TYPE_SELF_TYPE (mtype) = unknown yet */
854 return mtype;
855 }
856
857 /* Create a range type with a dynamic range from LOW_BOUND to
858 HIGH_BOUND, inclusive. See create_range_type for further details. */
859
860 struct type *
861 create_range_type (struct type *result_type, struct type *index_type,
862 const struct dynamic_prop *low_bound,
863 const struct dynamic_prop *high_bound)
864 {
865 if (result_type == NULL)
866 result_type = alloc_type_copy (index_type);
867 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
868 TYPE_TARGET_TYPE (result_type) = index_type;
869 if (TYPE_STUB (index_type))
870 TYPE_TARGET_STUB (result_type) = 1;
871 else
872 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
873
874 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
875 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
876 TYPE_RANGE_DATA (result_type)->low = *low_bound;
877 TYPE_RANGE_DATA (result_type)->high = *high_bound;
878
879 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
880 TYPE_UNSIGNED (result_type) = 1;
881
882 /* Ada allows the declaration of range types whose upper bound is
883 less than the lower bound, so checking the lower bound is not
884 enough. Make sure we do not mark a range type whose upper bound
885 is negative as unsigned. */
886 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
887 TYPE_UNSIGNED (result_type) = 0;
888
889 return result_type;
890 }
891
892 /* Create a range type using either a blank type supplied in
893 RESULT_TYPE, or creating a new type, inheriting the objfile from
894 INDEX_TYPE.
895
896 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
897 to HIGH_BOUND, inclusive.
898
899 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
900 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
901
902 struct type *
903 create_static_range_type (struct type *result_type, struct type *index_type,
904 LONGEST low_bound, LONGEST high_bound)
905 {
906 struct dynamic_prop low, high;
907
908 low.kind = PROP_CONST;
909 low.data.const_val = low_bound;
910
911 high.kind = PROP_CONST;
912 high.data.const_val = high_bound;
913
914 result_type = create_range_type (result_type, index_type, &low, &high);
915
916 return result_type;
917 }
918
919 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
920 are static, otherwise returns 0. */
921
922 static int
923 has_static_range (const struct range_bounds *bounds)
924 {
925 return (bounds->low.kind == PROP_CONST
926 && bounds->high.kind == PROP_CONST);
927 }
928
929
930 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
931 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
932 bounds will fit in LONGEST), or -1 otherwise. */
933
934 int
935 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
936 {
937 type = check_typedef (type);
938 switch (TYPE_CODE (type))
939 {
940 case TYPE_CODE_RANGE:
941 *lowp = TYPE_LOW_BOUND (type);
942 *highp = TYPE_HIGH_BOUND (type);
943 return 1;
944 case TYPE_CODE_ENUM:
945 if (TYPE_NFIELDS (type) > 0)
946 {
947 /* The enums may not be sorted by value, so search all
948 entries. */
949 int i;
950
951 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
952 for (i = 0; i < TYPE_NFIELDS (type); i++)
953 {
954 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
955 *lowp = TYPE_FIELD_ENUMVAL (type, i);
956 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
957 *highp = TYPE_FIELD_ENUMVAL (type, i);
958 }
959
960 /* Set unsigned indicator if warranted. */
961 if (*lowp >= 0)
962 {
963 TYPE_UNSIGNED (type) = 1;
964 }
965 }
966 else
967 {
968 *lowp = 0;
969 *highp = -1;
970 }
971 return 0;
972 case TYPE_CODE_BOOL:
973 *lowp = 0;
974 *highp = 1;
975 return 0;
976 case TYPE_CODE_INT:
977 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
978 return -1;
979 if (!TYPE_UNSIGNED (type))
980 {
981 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
982 *highp = -*lowp - 1;
983 return 0;
984 }
985 /* ... fall through for unsigned ints ... */
986 case TYPE_CODE_CHAR:
987 *lowp = 0;
988 /* This round-about calculation is to avoid shifting by
989 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
990 if TYPE_LENGTH (type) == sizeof (LONGEST). */
991 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
992 *highp = (*highp - 1) | *highp;
993 return 0;
994 default:
995 return -1;
996 }
997 }
998
999 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1000 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1001 Save the high bound into HIGH_BOUND if not NULL.
1002
1003 Return 1 if the operation was successful. Return zero otherwise,
1004 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1005
1006 We now simply use get_discrete_bounds call to get the values
1007 of the low and high bounds.
1008 get_discrete_bounds can return three values:
1009 1, meaning that index is a range,
1010 0, meaning that index is a discrete type,
1011 or -1 for failure. */
1012
1013 int
1014 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1015 {
1016 struct type *index = TYPE_INDEX_TYPE (type);
1017 LONGEST low = 0;
1018 LONGEST high = 0;
1019 int res;
1020
1021 if (index == NULL)
1022 return 0;
1023
1024 res = get_discrete_bounds (index, &low, &high);
1025 if (res == -1)
1026 return 0;
1027
1028 /* Check if the array bounds are undefined. */
1029 if (res == 1
1030 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1031 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1032 return 0;
1033
1034 if (low_bound)
1035 *low_bound = low;
1036
1037 if (high_bound)
1038 *high_bound = high;
1039
1040 return 1;
1041 }
1042
1043 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1044 representation of a value of this type, save the corresponding
1045 position number in POS.
1046
1047 Its differs from VAL only in the case of enumeration types. In
1048 this case, the position number of the value of the first listed
1049 enumeration literal is zero; the position number of the value of
1050 each subsequent enumeration literal is one more than that of its
1051 predecessor in the list.
1052
1053 Return 1 if the operation was successful. Return zero otherwise,
1054 in which case the value of POS is unmodified.
1055 */
1056
1057 int
1058 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1059 {
1060 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1061 {
1062 int i;
1063
1064 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1065 {
1066 if (val == TYPE_FIELD_ENUMVAL (type, i))
1067 {
1068 *pos = i;
1069 return 1;
1070 }
1071 }
1072 /* Invalid enumeration value. */
1073 return 0;
1074 }
1075 else
1076 {
1077 *pos = val;
1078 return 1;
1079 }
1080 }
1081
1082 /* Create an array type using either a blank type supplied in
1083 RESULT_TYPE, or creating a new type, inheriting the objfile from
1084 RANGE_TYPE.
1085
1086 Elements will be of type ELEMENT_TYPE, the indices will be of type
1087 RANGE_TYPE.
1088
1089 If BIT_STRIDE is not zero, build a packed array type whose element
1090 size is BIT_STRIDE. Otherwise, ignore this parameter.
1091
1092 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1093 sure it is TYPE_CODE_UNDEF before we bash it into an array
1094 type? */
1095
1096 struct type *
1097 create_array_type_with_stride (struct type *result_type,
1098 struct type *element_type,
1099 struct type *range_type,
1100 unsigned int bit_stride)
1101 {
1102 if (result_type == NULL)
1103 result_type = alloc_type_copy (range_type);
1104
1105 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1106 TYPE_TARGET_TYPE (result_type) = element_type;
1107 if (has_static_range (TYPE_RANGE_DATA (range_type))
1108 && (!type_not_associated (result_type)
1109 && !type_not_allocated (result_type)))
1110 {
1111 LONGEST low_bound, high_bound;
1112
1113 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1114 low_bound = high_bound = 0;
1115 element_type = check_typedef (element_type);
1116 /* Be careful when setting the array length. Ada arrays can be
1117 empty arrays with the high_bound being smaller than the low_bound.
1118 In such cases, the array length should be zero. */
1119 if (high_bound < low_bound)
1120 TYPE_LENGTH (result_type) = 0;
1121 else if (bit_stride > 0)
1122 TYPE_LENGTH (result_type) =
1123 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1124 else
1125 TYPE_LENGTH (result_type) =
1126 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1127 }
1128 else
1129 {
1130 /* This type is dynamic and its length needs to be computed
1131 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1132 undefined by setting it to zero. Although we are not expected
1133 to trust TYPE_LENGTH in this case, setting the size to zero
1134 allows us to avoid allocating objects of random sizes in case
1135 we accidently do. */
1136 TYPE_LENGTH (result_type) = 0;
1137 }
1138
1139 TYPE_NFIELDS (result_type) = 1;
1140 TYPE_FIELDS (result_type) =
1141 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1142 TYPE_INDEX_TYPE (result_type) = range_type;
1143 if (bit_stride > 0)
1144 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1145
1146 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1147 if (TYPE_LENGTH (result_type) == 0)
1148 TYPE_TARGET_STUB (result_type) = 1;
1149
1150 return result_type;
1151 }
1152
1153 /* Same as create_array_type_with_stride but with no bit_stride
1154 (BIT_STRIDE = 0), thus building an unpacked array. */
1155
1156 struct type *
1157 create_array_type (struct type *result_type,
1158 struct type *element_type,
1159 struct type *range_type)
1160 {
1161 return create_array_type_with_stride (result_type, element_type,
1162 range_type, 0);
1163 }
1164
1165 struct type *
1166 lookup_array_range_type (struct type *element_type,
1167 LONGEST low_bound, LONGEST high_bound)
1168 {
1169 struct gdbarch *gdbarch = get_type_arch (element_type);
1170 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1171 struct type *range_type
1172 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1173
1174 return create_array_type (NULL, element_type, range_type);
1175 }
1176
1177 /* Create a string type using either a blank type supplied in
1178 RESULT_TYPE, or creating a new type. String types are similar
1179 enough to array of char types that we can use create_array_type to
1180 build the basic type and then bash it into a string type.
1181
1182 For fixed length strings, the range type contains 0 as the lower
1183 bound and the length of the string minus one as the upper bound.
1184
1185 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1186 sure it is TYPE_CODE_UNDEF before we bash it into a string
1187 type? */
1188
1189 struct type *
1190 create_string_type (struct type *result_type,
1191 struct type *string_char_type,
1192 struct type *range_type)
1193 {
1194 result_type = create_array_type (result_type,
1195 string_char_type,
1196 range_type);
1197 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1198 return result_type;
1199 }
1200
1201 struct type *
1202 lookup_string_range_type (struct type *string_char_type,
1203 LONGEST low_bound, LONGEST high_bound)
1204 {
1205 struct type *result_type;
1206
1207 result_type = lookup_array_range_type (string_char_type,
1208 low_bound, high_bound);
1209 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1210 return result_type;
1211 }
1212
1213 struct type *
1214 create_set_type (struct type *result_type, struct type *domain_type)
1215 {
1216 if (result_type == NULL)
1217 result_type = alloc_type_copy (domain_type);
1218
1219 TYPE_CODE (result_type) = TYPE_CODE_SET;
1220 TYPE_NFIELDS (result_type) = 1;
1221 TYPE_FIELDS (result_type)
1222 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1223
1224 if (!TYPE_STUB (domain_type))
1225 {
1226 LONGEST low_bound, high_bound, bit_length;
1227
1228 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1229 low_bound = high_bound = 0;
1230 bit_length = high_bound - low_bound + 1;
1231 TYPE_LENGTH (result_type)
1232 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1233 if (low_bound >= 0)
1234 TYPE_UNSIGNED (result_type) = 1;
1235 }
1236 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1237
1238 return result_type;
1239 }
1240
1241 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1242 and any array types nested inside it. */
1243
1244 void
1245 make_vector_type (struct type *array_type)
1246 {
1247 struct type *inner_array, *elt_type;
1248 int flags;
1249
1250 /* Find the innermost array type, in case the array is
1251 multi-dimensional. */
1252 inner_array = array_type;
1253 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1254 inner_array = TYPE_TARGET_TYPE (inner_array);
1255
1256 elt_type = TYPE_TARGET_TYPE (inner_array);
1257 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1258 {
1259 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1260 elt_type = make_qualified_type (elt_type, flags, NULL);
1261 TYPE_TARGET_TYPE (inner_array) = elt_type;
1262 }
1263
1264 TYPE_VECTOR (array_type) = 1;
1265 }
1266
1267 struct type *
1268 init_vector_type (struct type *elt_type, int n)
1269 {
1270 struct type *array_type;
1271
1272 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1273 make_vector_type (array_type);
1274 return array_type;
1275 }
1276
1277 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1278 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1279 confusing. "self" is a common enough replacement for "this".
1280 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1281 TYPE_CODE_METHOD. */
1282
1283 struct type *
1284 internal_type_self_type (struct type *type)
1285 {
1286 switch (TYPE_CODE (type))
1287 {
1288 case TYPE_CODE_METHODPTR:
1289 case TYPE_CODE_MEMBERPTR:
1290 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1291 return NULL;
1292 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1293 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1294 case TYPE_CODE_METHOD:
1295 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1296 return NULL;
1297 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1298 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1299 default:
1300 gdb_assert_not_reached ("bad type");
1301 }
1302 }
1303
1304 /* Set the type of the class that TYPE belongs to.
1305 In c++ this is the class of "this".
1306 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1307 TYPE_CODE_METHOD. */
1308
1309 void
1310 set_type_self_type (struct type *type, struct type *self_type)
1311 {
1312 switch (TYPE_CODE (type))
1313 {
1314 case TYPE_CODE_METHODPTR:
1315 case TYPE_CODE_MEMBERPTR:
1316 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1317 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1318 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1319 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1320 break;
1321 case TYPE_CODE_METHOD:
1322 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1323 INIT_FUNC_SPECIFIC (type);
1324 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1325 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1326 break;
1327 default:
1328 gdb_assert_not_reached ("bad type");
1329 }
1330 }
1331
1332 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1333 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1334 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1335 TYPE doesn't include the offset (that's the value of the MEMBER
1336 itself), but does include the structure type into which it points
1337 (for some reason).
1338
1339 When "smashing" the type, we preserve the objfile that the old type
1340 pointed to, since we aren't changing where the type is actually
1341 allocated. */
1342
1343 void
1344 smash_to_memberptr_type (struct type *type, struct type *self_type,
1345 struct type *to_type)
1346 {
1347 smash_type (type);
1348 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1349 TYPE_TARGET_TYPE (type) = to_type;
1350 set_type_self_type (type, self_type);
1351 /* Assume that a data member pointer is the same size as a normal
1352 pointer. */
1353 TYPE_LENGTH (type)
1354 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1355 }
1356
1357 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1358
1359 When "smashing" the type, we preserve the objfile that the old type
1360 pointed to, since we aren't changing where the type is actually
1361 allocated. */
1362
1363 void
1364 smash_to_methodptr_type (struct type *type, struct type *to_type)
1365 {
1366 smash_type (type);
1367 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1368 TYPE_TARGET_TYPE (type) = to_type;
1369 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1370 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1371 }
1372
1373 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1374 METHOD just means `function that gets an extra "this" argument'.
1375
1376 When "smashing" the type, we preserve the objfile that the old type
1377 pointed to, since we aren't changing where the type is actually
1378 allocated. */
1379
1380 void
1381 smash_to_method_type (struct type *type, struct type *self_type,
1382 struct type *to_type, struct field *args,
1383 int nargs, int varargs)
1384 {
1385 smash_type (type);
1386 TYPE_CODE (type) = TYPE_CODE_METHOD;
1387 TYPE_TARGET_TYPE (type) = to_type;
1388 set_type_self_type (type, self_type);
1389 TYPE_FIELDS (type) = args;
1390 TYPE_NFIELDS (type) = nargs;
1391 if (varargs)
1392 TYPE_VARARGS (type) = 1;
1393 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1394 }
1395
1396 /* Return a typename for a struct/union/enum type without "struct ",
1397 "union ", or "enum ". If the type has a NULL name, return NULL. */
1398
1399 const char *
1400 type_name_no_tag (const struct type *type)
1401 {
1402 if (TYPE_TAG_NAME (type) != NULL)
1403 return TYPE_TAG_NAME (type);
1404
1405 /* Is there code which expects this to return the name if there is
1406 no tag name? My guess is that this is mainly used for C++ in
1407 cases where the two will always be the same. */
1408 return TYPE_NAME (type);
1409 }
1410
1411 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1412 Since GCC PR debug/47510 DWARF provides associated information to detect the
1413 anonymous class linkage name from its typedef.
1414
1415 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1416 apply it itself. */
1417
1418 const char *
1419 type_name_no_tag_or_error (struct type *type)
1420 {
1421 struct type *saved_type = type;
1422 const char *name;
1423 struct objfile *objfile;
1424
1425 type = check_typedef (type);
1426
1427 name = type_name_no_tag (type);
1428 if (name != NULL)
1429 return name;
1430
1431 name = type_name_no_tag (saved_type);
1432 objfile = TYPE_OBJFILE (saved_type);
1433 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1434 name ? name : "<anonymous>",
1435 objfile ? objfile_name (objfile) : "<arch>");
1436 }
1437
1438 /* Lookup a typedef or primitive type named NAME, visible in lexical
1439 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1440 suitably defined. */
1441
1442 struct type *
1443 lookup_typename (const struct language_defn *language,
1444 struct gdbarch *gdbarch, const char *name,
1445 const struct block *block, int noerr)
1446 {
1447 struct symbol *sym;
1448
1449 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1450 language->la_language, NULL).symbol;
1451 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1452 return SYMBOL_TYPE (sym);
1453
1454 if (noerr)
1455 return NULL;
1456 error (_("No type named %s."), name);
1457 }
1458
1459 struct type *
1460 lookup_unsigned_typename (const struct language_defn *language,
1461 struct gdbarch *gdbarch, const char *name)
1462 {
1463 char *uns = (char *) alloca (strlen (name) + 10);
1464
1465 strcpy (uns, "unsigned ");
1466 strcpy (uns + 9, name);
1467 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1468 }
1469
1470 struct type *
1471 lookup_signed_typename (const struct language_defn *language,
1472 struct gdbarch *gdbarch, const char *name)
1473 {
1474 struct type *t;
1475 char *uns = (char *) alloca (strlen (name) + 8);
1476
1477 strcpy (uns, "signed ");
1478 strcpy (uns + 7, name);
1479 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1480 /* If we don't find "signed FOO" just try again with plain "FOO". */
1481 if (t != NULL)
1482 return t;
1483 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1484 }
1485
1486 /* Lookup a structure type named "struct NAME",
1487 visible in lexical block BLOCK. */
1488
1489 struct type *
1490 lookup_struct (const char *name, const struct block *block)
1491 {
1492 struct symbol *sym;
1493
1494 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1495
1496 if (sym == NULL)
1497 {
1498 error (_("No struct type named %s."), name);
1499 }
1500 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1501 {
1502 error (_("This context has class, union or enum %s, not a struct."),
1503 name);
1504 }
1505 return (SYMBOL_TYPE (sym));
1506 }
1507
1508 /* Lookup a union type named "union NAME",
1509 visible in lexical block BLOCK. */
1510
1511 struct type *
1512 lookup_union (const char *name, const struct block *block)
1513 {
1514 struct symbol *sym;
1515 struct type *t;
1516
1517 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1518
1519 if (sym == NULL)
1520 error (_("No union type named %s."), name);
1521
1522 t = SYMBOL_TYPE (sym);
1523
1524 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1525 return t;
1526
1527 /* If we get here, it's not a union. */
1528 error (_("This context has class, struct or enum %s, not a union."),
1529 name);
1530 }
1531
1532 /* Lookup an enum type named "enum NAME",
1533 visible in lexical block BLOCK. */
1534
1535 struct type *
1536 lookup_enum (const char *name, const struct block *block)
1537 {
1538 struct symbol *sym;
1539
1540 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1541 if (sym == NULL)
1542 {
1543 error (_("No enum type named %s."), name);
1544 }
1545 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1546 {
1547 error (_("This context has class, struct or union %s, not an enum."),
1548 name);
1549 }
1550 return (SYMBOL_TYPE (sym));
1551 }
1552
1553 /* Lookup a template type named "template NAME<TYPE>",
1554 visible in lexical block BLOCK. */
1555
1556 struct type *
1557 lookup_template_type (char *name, struct type *type,
1558 const struct block *block)
1559 {
1560 struct symbol *sym;
1561 char *nam = (char *)
1562 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1563
1564 strcpy (nam, name);
1565 strcat (nam, "<");
1566 strcat (nam, TYPE_NAME (type));
1567 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1568
1569 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1570
1571 if (sym == NULL)
1572 {
1573 error (_("No template type named %s."), name);
1574 }
1575 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1576 {
1577 error (_("This context has class, union or enum %s, not a struct."),
1578 name);
1579 }
1580 return (SYMBOL_TYPE (sym));
1581 }
1582
1583 /* Given a type TYPE, lookup the type of the component of type named
1584 NAME.
1585
1586 TYPE can be either a struct or union, or a pointer or reference to
1587 a struct or union. If it is a pointer or reference, its target
1588 type is automatically used. Thus '.' and '->' are interchangable,
1589 as specified for the definitions of the expression element types
1590 STRUCTOP_STRUCT and STRUCTOP_PTR.
1591
1592 If NOERR is nonzero, return zero if NAME is not suitably defined.
1593 If NAME is the name of a baseclass type, return that type. */
1594
1595 struct type *
1596 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1597 {
1598 int i;
1599
1600 for (;;)
1601 {
1602 type = check_typedef (type);
1603 if (TYPE_CODE (type) != TYPE_CODE_PTR
1604 && TYPE_CODE (type) != TYPE_CODE_REF)
1605 break;
1606 type = TYPE_TARGET_TYPE (type);
1607 }
1608
1609 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1610 && TYPE_CODE (type) != TYPE_CODE_UNION)
1611 {
1612 std::string type_name = type_to_string (type);
1613 error (_("Type %s is not a structure or union type."),
1614 type_name.c_str ());
1615 }
1616
1617 #if 0
1618 /* FIXME: This change put in by Michael seems incorrect for the case
1619 where the structure tag name is the same as the member name.
1620 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1621 foo; } bell;" Disabled by fnf. */
1622 {
1623 char *type_name;
1624
1625 type_name = type_name_no_tag (type);
1626 if (type_name != NULL && strcmp (type_name, name) == 0)
1627 return type;
1628 }
1629 #endif
1630
1631 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1632 {
1633 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1634
1635 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1636 {
1637 return TYPE_FIELD_TYPE (type, i);
1638 }
1639 else if (!t_field_name || *t_field_name == '\0')
1640 {
1641 struct type *subtype
1642 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1643
1644 if (subtype != NULL)
1645 return subtype;
1646 }
1647 }
1648
1649 /* OK, it's not in this class. Recursively check the baseclasses. */
1650 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1651 {
1652 struct type *t;
1653
1654 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1655 if (t != NULL)
1656 {
1657 return t;
1658 }
1659 }
1660
1661 if (noerr)
1662 {
1663 return NULL;
1664 }
1665
1666 std::string type_name = type_to_string (type);
1667 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1668 }
1669
1670 /* Store in *MAX the largest number representable by unsigned integer type
1671 TYPE. */
1672
1673 void
1674 get_unsigned_type_max (struct type *type, ULONGEST *max)
1675 {
1676 unsigned int n;
1677
1678 type = check_typedef (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1680 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1681
1682 /* Written this way to avoid overflow. */
1683 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1684 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1685 }
1686
1687 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1688 signed integer type TYPE. */
1689
1690 void
1691 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1692 {
1693 unsigned int n;
1694
1695 type = check_typedef (type);
1696 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1697 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1698
1699 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1700 *min = -((ULONGEST) 1 << (n - 1));
1701 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1702 }
1703
1704 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1705 cplus_stuff.vptr_fieldno.
1706
1707 cplus_stuff is initialized to cplus_struct_default which does not
1708 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1709 designated initializers). We cope with that here. */
1710
1711 int
1712 internal_type_vptr_fieldno (struct type *type)
1713 {
1714 type = check_typedef (type);
1715 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1716 || TYPE_CODE (type) == TYPE_CODE_UNION);
1717 if (!HAVE_CPLUS_STRUCT (type))
1718 return -1;
1719 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1720 }
1721
1722 /* Set the value of cplus_stuff.vptr_fieldno. */
1723
1724 void
1725 set_type_vptr_fieldno (struct type *type, int fieldno)
1726 {
1727 type = check_typedef (type);
1728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1729 || TYPE_CODE (type) == TYPE_CODE_UNION);
1730 if (!HAVE_CPLUS_STRUCT (type))
1731 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1732 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1733 }
1734
1735 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1736 cplus_stuff.vptr_basetype. */
1737
1738 struct type *
1739 internal_type_vptr_basetype (struct type *type)
1740 {
1741 type = check_typedef (type);
1742 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1743 || TYPE_CODE (type) == TYPE_CODE_UNION);
1744 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1745 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1746 }
1747
1748 /* Set the value of cplus_stuff.vptr_basetype. */
1749
1750 void
1751 set_type_vptr_basetype (struct type *type, struct type *basetype)
1752 {
1753 type = check_typedef (type);
1754 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1755 || TYPE_CODE (type) == TYPE_CODE_UNION);
1756 if (!HAVE_CPLUS_STRUCT (type))
1757 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1758 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1759 }
1760
1761 /* Lookup the vptr basetype/fieldno values for TYPE.
1762 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1763 vptr_fieldno. Also, if found and basetype is from the same objfile,
1764 cache the results.
1765 If not found, return -1 and ignore BASETYPEP.
1766 Callers should be aware that in some cases (for example,
1767 the type or one of its baseclasses is a stub type and we are
1768 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1769 this function will not be able to find the
1770 virtual function table pointer, and vptr_fieldno will remain -1 and
1771 vptr_basetype will remain NULL or incomplete. */
1772
1773 int
1774 get_vptr_fieldno (struct type *type, struct type **basetypep)
1775 {
1776 type = check_typedef (type);
1777
1778 if (TYPE_VPTR_FIELDNO (type) < 0)
1779 {
1780 int i;
1781
1782 /* We must start at zero in case the first (and only) baseclass
1783 is virtual (and hence we cannot share the table pointer). */
1784 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1785 {
1786 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1787 int fieldno;
1788 struct type *basetype;
1789
1790 fieldno = get_vptr_fieldno (baseclass, &basetype);
1791 if (fieldno >= 0)
1792 {
1793 /* If the type comes from a different objfile we can't cache
1794 it, it may have a different lifetime. PR 2384 */
1795 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1796 {
1797 set_type_vptr_fieldno (type, fieldno);
1798 set_type_vptr_basetype (type, basetype);
1799 }
1800 if (basetypep)
1801 *basetypep = basetype;
1802 return fieldno;
1803 }
1804 }
1805
1806 /* Not found. */
1807 return -1;
1808 }
1809 else
1810 {
1811 if (basetypep)
1812 *basetypep = TYPE_VPTR_BASETYPE (type);
1813 return TYPE_VPTR_FIELDNO (type);
1814 }
1815 }
1816
1817 static void
1818 stub_noname_complaint (void)
1819 {
1820 complaint (&symfile_complaints, _("stub type has NULL name"));
1821 }
1822
1823 /* Worker for is_dynamic_type. */
1824
1825 static int
1826 is_dynamic_type_internal (struct type *type, int top_level)
1827 {
1828 type = check_typedef (type);
1829
1830 /* We only want to recognize references at the outermost level. */
1831 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1832 type = check_typedef (TYPE_TARGET_TYPE (type));
1833
1834 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1835 dynamic, even if the type itself is statically defined.
1836 From a user's point of view, this may appear counter-intuitive;
1837 but it makes sense in this context, because the point is to determine
1838 whether any part of the type needs to be resolved before it can
1839 be exploited. */
1840 if (TYPE_DATA_LOCATION (type) != NULL
1841 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1842 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1843 return 1;
1844
1845 if (TYPE_ASSOCIATED_PROP (type))
1846 return 1;
1847
1848 if (TYPE_ALLOCATED_PROP (type))
1849 return 1;
1850
1851 switch (TYPE_CODE (type))
1852 {
1853 case TYPE_CODE_RANGE:
1854 {
1855 /* A range type is obviously dynamic if it has at least one
1856 dynamic bound. But also consider the range type to be
1857 dynamic when its subtype is dynamic, even if the bounds
1858 of the range type are static. It allows us to assume that
1859 the subtype of a static range type is also static. */
1860 return (!has_static_range (TYPE_RANGE_DATA (type))
1861 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1862 }
1863
1864 case TYPE_CODE_ARRAY:
1865 {
1866 gdb_assert (TYPE_NFIELDS (type) == 1);
1867
1868 /* The array is dynamic if either the bounds are dynamic,
1869 or the elements it contains have a dynamic contents. */
1870 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1871 return 1;
1872 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1873 }
1874
1875 case TYPE_CODE_STRUCT:
1876 case TYPE_CODE_UNION:
1877 {
1878 int i;
1879
1880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1881 if (!field_is_static (&TYPE_FIELD (type, i))
1882 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1883 return 1;
1884 }
1885 break;
1886 }
1887
1888 return 0;
1889 }
1890
1891 /* See gdbtypes.h. */
1892
1893 int
1894 is_dynamic_type (struct type *type)
1895 {
1896 return is_dynamic_type_internal (type, 1);
1897 }
1898
1899 static struct type *resolve_dynamic_type_internal
1900 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1901
1902 /* Given a dynamic range type (dyn_range_type) and a stack of
1903 struct property_addr_info elements, return a static version
1904 of that type. */
1905
1906 static struct type *
1907 resolve_dynamic_range (struct type *dyn_range_type,
1908 struct property_addr_info *addr_stack)
1909 {
1910 CORE_ADDR value;
1911 struct type *static_range_type, *static_target_type;
1912 const struct dynamic_prop *prop;
1913 struct dynamic_prop low_bound, high_bound;
1914
1915 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1916
1917 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1918 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1919 {
1920 low_bound.kind = PROP_CONST;
1921 low_bound.data.const_val = value;
1922 }
1923 else
1924 {
1925 low_bound.kind = PROP_UNDEFINED;
1926 low_bound.data.const_val = 0;
1927 }
1928
1929 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1930 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1931 {
1932 high_bound.kind = PROP_CONST;
1933 high_bound.data.const_val = value;
1934
1935 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1936 high_bound.data.const_val
1937 = low_bound.data.const_val + high_bound.data.const_val - 1;
1938 }
1939 else
1940 {
1941 high_bound.kind = PROP_UNDEFINED;
1942 high_bound.data.const_val = 0;
1943 }
1944
1945 static_target_type
1946 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1947 addr_stack, 0);
1948 static_range_type = create_range_type (copy_type (dyn_range_type),
1949 static_target_type,
1950 &low_bound, &high_bound);
1951 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1952 return static_range_type;
1953 }
1954
1955 /* Resolves dynamic bound values of an array type TYPE to static ones.
1956 ADDR_STACK is a stack of struct property_addr_info to be used
1957 if needed during the dynamic resolution. */
1958
1959 static struct type *
1960 resolve_dynamic_array (struct type *type,
1961 struct property_addr_info *addr_stack)
1962 {
1963 CORE_ADDR value;
1964 struct type *elt_type;
1965 struct type *range_type;
1966 struct type *ary_dim;
1967 struct dynamic_prop *prop;
1968
1969 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1970
1971 type = copy_type (type);
1972
1973 elt_type = type;
1974 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1975 range_type = resolve_dynamic_range (range_type, addr_stack);
1976
1977 /* Resolve allocated/associated here before creating a new array type, which
1978 will update the length of the array accordingly. */
1979 prop = TYPE_ALLOCATED_PROP (type);
1980 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1981 {
1982 TYPE_DYN_PROP_ADDR (prop) = value;
1983 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1984 }
1985 prop = TYPE_ASSOCIATED_PROP (type);
1986 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1987 {
1988 TYPE_DYN_PROP_ADDR (prop) = value;
1989 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1990 }
1991
1992 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1993
1994 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1995 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1996 else
1997 elt_type = TYPE_TARGET_TYPE (type);
1998
1999 return create_array_type_with_stride (type, elt_type, range_type,
2000 TYPE_FIELD_BITSIZE (type, 0));
2001 }
2002
2003 /* Resolve dynamic bounds of members of the union TYPE to static
2004 bounds. ADDR_STACK is a stack of struct property_addr_info
2005 to be used if needed during the dynamic resolution. */
2006
2007 static struct type *
2008 resolve_dynamic_union (struct type *type,
2009 struct property_addr_info *addr_stack)
2010 {
2011 struct type *resolved_type;
2012 int i;
2013 unsigned int max_len = 0;
2014
2015 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2016
2017 resolved_type = copy_type (type);
2018 TYPE_FIELDS (resolved_type)
2019 = (struct field *) TYPE_ALLOC (resolved_type,
2020 TYPE_NFIELDS (resolved_type)
2021 * sizeof (struct field));
2022 memcpy (TYPE_FIELDS (resolved_type),
2023 TYPE_FIELDS (type),
2024 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2025 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2026 {
2027 struct type *t;
2028
2029 if (field_is_static (&TYPE_FIELD (type, i)))
2030 continue;
2031
2032 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2033 addr_stack, 0);
2034 TYPE_FIELD_TYPE (resolved_type, i) = t;
2035 if (TYPE_LENGTH (t) > max_len)
2036 max_len = TYPE_LENGTH (t);
2037 }
2038
2039 TYPE_LENGTH (resolved_type) = max_len;
2040 return resolved_type;
2041 }
2042
2043 /* Resolve dynamic bounds of members of the struct TYPE to static
2044 bounds. ADDR_STACK is a stack of struct property_addr_info to
2045 be used if needed during the dynamic resolution. */
2046
2047 static struct type *
2048 resolve_dynamic_struct (struct type *type,
2049 struct property_addr_info *addr_stack)
2050 {
2051 struct type *resolved_type;
2052 int i;
2053 unsigned resolved_type_bit_length = 0;
2054
2055 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2056 gdb_assert (TYPE_NFIELDS (type) > 0);
2057
2058 resolved_type = copy_type (type);
2059 TYPE_FIELDS (resolved_type)
2060 = (struct field *) TYPE_ALLOC (resolved_type,
2061 TYPE_NFIELDS (resolved_type)
2062 * sizeof (struct field));
2063 memcpy (TYPE_FIELDS (resolved_type),
2064 TYPE_FIELDS (type),
2065 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2066 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2067 {
2068 unsigned new_bit_length;
2069 struct property_addr_info pinfo;
2070
2071 if (field_is_static (&TYPE_FIELD (type, i)))
2072 continue;
2073
2074 /* As we know this field is not a static field, the field's
2075 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2076 this is the case, but only trigger a simple error rather
2077 than an internal error if that fails. While failing
2078 that verification indicates a bug in our code, the error
2079 is not severe enough to suggest to the user he stops
2080 his debugging session because of it. */
2081 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2082 error (_("Cannot determine struct field location"
2083 " (invalid location kind)"));
2084
2085 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2086 pinfo.valaddr = addr_stack->valaddr;
2087 pinfo.addr
2088 = (addr_stack->addr
2089 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2090 pinfo.next = addr_stack;
2091
2092 TYPE_FIELD_TYPE (resolved_type, i)
2093 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2094 &pinfo, 0);
2095 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2096 == FIELD_LOC_KIND_BITPOS);
2097
2098 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2099 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2100 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2101 else
2102 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2103 * TARGET_CHAR_BIT);
2104
2105 /* Normally, we would use the position and size of the last field
2106 to determine the size of the enclosing structure. But GCC seems
2107 to be encoding the position of some fields incorrectly when
2108 the struct contains a dynamic field that is not placed last.
2109 So we compute the struct size based on the field that has
2110 the highest position + size - probably the best we can do. */
2111 if (new_bit_length > resolved_type_bit_length)
2112 resolved_type_bit_length = new_bit_length;
2113 }
2114
2115 /* The length of a type won't change for fortran, but it does for C and Ada.
2116 For fortran the size of dynamic fields might change over time but not the
2117 type length of the structure. If we adapt it, we run into problems
2118 when calculating the element offset for arrays of structs. */
2119 if (current_language->la_language != language_fortran)
2120 TYPE_LENGTH (resolved_type)
2121 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2122
2123 /* The Ada language uses this field as a cache for static fixed types: reset
2124 it as RESOLVED_TYPE must have its own static fixed type. */
2125 TYPE_TARGET_TYPE (resolved_type) = NULL;
2126
2127 return resolved_type;
2128 }
2129
2130 /* Worker for resolved_dynamic_type. */
2131
2132 static struct type *
2133 resolve_dynamic_type_internal (struct type *type,
2134 struct property_addr_info *addr_stack,
2135 int top_level)
2136 {
2137 struct type *real_type = check_typedef (type);
2138 struct type *resolved_type = type;
2139 struct dynamic_prop *prop;
2140 CORE_ADDR value;
2141
2142 if (!is_dynamic_type_internal (real_type, top_level))
2143 return type;
2144
2145 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2146 {
2147 resolved_type = copy_type (type);
2148 TYPE_TARGET_TYPE (resolved_type)
2149 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2150 top_level);
2151 }
2152 else
2153 {
2154 /* Before trying to resolve TYPE, make sure it is not a stub. */
2155 type = real_type;
2156
2157 switch (TYPE_CODE (type))
2158 {
2159 case TYPE_CODE_REF:
2160 {
2161 struct property_addr_info pinfo;
2162
2163 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2164 pinfo.valaddr = NULL;
2165 if (addr_stack->valaddr != NULL)
2166 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2167 else
2168 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2169 pinfo.next = addr_stack;
2170
2171 resolved_type = copy_type (type);
2172 TYPE_TARGET_TYPE (resolved_type)
2173 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2174 &pinfo, top_level);
2175 break;
2176 }
2177
2178 case TYPE_CODE_ARRAY:
2179 resolved_type = resolve_dynamic_array (type, addr_stack);
2180 break;
2181
2182 case TYPE_CODE_RANGE:
2183 resolved_type = resolve_dynamic_range (type, addr_stack);
2184 break;
2185
2186 case TYPE_CODE_UNION:
2187 resolved_type = resolve_dynamic_union (type, addr_stack);
2188 break;
2189
2190 case TYPE_CODE_STRUCT:
2191 resolved_type = resolve_dynamic_struct (type, addr_stack);
2192 break;
2193 }
2194 }
2195
2196 /* Resolve data_location attribute. */
2197 prop = TYPE_DATA_LOCATION (resolved_type);
2198 if (prop != NULL
2199 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2200 {
2201 TYPE_DYN_PROP_ADDR (prop) = value;
2202 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2203 }
2204
2205 return resolved_type;
2206 }
2207
2208 /* See gdbtypes.h */
2209
2210 struct type *
2211 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2212 CORE_ADDR addr)
2213 {
2214 struct property_addr_info pinfo
2215 = {check_typedef (type), valaddr, addr, NULL};
2216
2217 return resolve_dynamic_type_internal (type, &pinfo, 1);
2218 }
2219
2220 /* See gdbtypes.h */
2221
2222 struct dynamic_prop *
2223 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2224 {
2225 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2226
2227 while (node != NULL)
2228 {
2229 if (node->prop_kind == prop_kind)
2230 return &node->prop;
2231 node = node->next;
2232 }
2233 return NULL;
2234 }
2235
2236 /* See gdbtypes.h */
2237
2238 void
2239 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2240 struct type *type, struct objfile *objfile)
2241 {
2242 struct dynamic_prop_list *temp;
2243
2244 gdb_assert (TYPE_OBJFILE_OWNED (type));
2245
2246 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2247 temp->prop_kind = prop_kind;
2248 temp->prop = prop;
2249 temp->next = TYPE_DYN_PROP_LIST (type);
2250
2251 TYPE_DYN_PROP_LIST (type) = temp;
2252 }
2253
2254 /* Remove dynamic property from TYPE in case it exists. */
2255
2256 void
2257 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2258 struct type *type)
2259 {
2260 struct dynamic_prop_list *prev_node, *curr_node;
2261
2262 curr_node = TYPE_DYN_PROP_LIST (type);
2263 prev_node = NULL;
2264
2265 while (NULL != curr_node)
2266 {
2267 if (curr_node->prop_kind == prop_kind)
2268 {
2269 /* Update the linked list but don't free anything.
2270 The property was allocated on objstack and it is not known
2271 if we are on top of it. Nevertheless, everything is released
2272 when the complete objstack is freed. */
2273 if (NULL == prev_node)
2274 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2275 else
2276 prev_node->next = curr_node->next;
2277
2278 return;
2279 }
2280
2281 prev_node = curr_node;
2282 curr_node = curr_node->next;
2283 }
2284 }
2285
2286 /* Find the real type of TYPE. This function returns the real type,
2287 after removing all layers of typedefs, and completing opaque or stub
2288 types. Completion changes the TYPE argument, but stripping of
2289 typedefs does not.
2290
2291 Instance flags (e.g. const/volatile) are preserved as typedefs are
2292 stripped. If necessary a new qualified form of the underlying type
2293 is created.
2294
2295 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2296 not been computed and we're either in the middle of reading symbols, or
2297 there was no name for the typedef in the debug info.
2298
2299 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2300 QUITs in the symbol reading code can also throw.
2301 Thus this function can throw an exception.
2302
2303 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2304 the target type.
2305
2306 If this is a stubbed struct (i.e. declared as struct foo *), see if
2307 we can find a full definition in some other file. If so, copy this
2308 definition, so we can use it in future. There used to be a comment
2309 (but not any code) that if we don't find a full definition, we'd
2310 set a flag so we don't spend time in the future checking the same
2311 type. That would be a mistake, though--we might load in more
2312 symbols which contain a full definition for the type. */
2313
2314 struct type *
2315 check_typedef (struct type *type)
2316 {
2317 struct type *orig_type = type;
2318 /* While we're removing typedefs, we don't want to lose qualifiers.
2319 E.g., const/volatile. */
2320 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2321
2322 gdb_assert (type);
2323
2324 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2325 {
2326 if (!TYPE_TARGET_TYPE (type))
2327 {
2328 const char *name;
2329 struct symbol *sym;
2330
2331 /* It is dangerous to call lookup_symbol if we are currently
2332 reading a symtab. Infinite recursion is one danger. */
2333 if (currently_reading_symtab)
2334 return make_qualified_type (type, instance_flags, NULL);
2335
2336 name = type_name_no_tag (type);
2337 /* FIXME: shouldn't we separately check the TYPE_NAME and
2338 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2339 VAR_DOMAIN as appropriate? (this code was written before
2340 TYPE_NAME and TYPE_TAG_NAME were separate). */
2341 if (name == NULL)
2342 {
2343 stub_noname_complaint ();
2344 return make_qualified_type (type, instance_flags, NULL);
2345 }
2346 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2347 if (sym)
2348 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2349 else /* TYPE_CODE_UNDEF */
2350 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2351 }
2352 type = TYPE_TARGET_TYPE (type);
2353
2354 /* Preserve the instance flags as we traverse down the typedef chain.
2355
2356 Handling address spaces/classes is nasty, what do we do if there's a
2357 conflict?
2358 E.g., what if an outer typedef marks the type as class_1 and an inner
2359 typedef marks the type as class_2?
2360 This is the wrong place to do such error checking. We leave it to
2361 the code that created the typedef in the first place to flag the
2362 error. We just pick the outer address space (akin to letting the
2363 outer cast in a chain of casting win), instead of assuming
2364 "it can't happen". */
2365 {
2366 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2367 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2368 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2369 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2370
2371 /* Treat code vs data spaces and address classes separately. */
2372 if ((instance_flags & ALL_SPACES) != 0)
2373 new_instance_flags &= ~ALL_SPACES;
2374 if ((instance_flags & ALL_CLASSES) != 0)
2375 new_instance_flags &= ~ALL_CLASSES;
2376
2377 instance_flags |= new_instance_flags;
2378 }
2379 }
2380
2381 /* If this is a struct/class/union with no fields, then check
2382 whether a full definition exists somewhere else. This is for
2383 systems where a type definition with no fields is issued for such
2384 types, instead of identifying them as stub types in the first
2385 place. */
2386
2387 if (TYPE_IS_OPAQUE (type)
2388 && opaque_type_resolution
2389 && !currently_reading_symtab)
2390 {
2391 const char *name = type_name_no_tag (type);
2392 struct type *newtype;
2393
2394 if (name == NULL)
2395 {
2396 stub_noname_complaint ();
2397 return make_qualified_type (type, instance_flags, NULL);
2398 }
2399 newtype = lookup_transparent_type (name);
2400
2401 if (newtype)
2402 {
2403 /* If the resolved type and the stub are in the same
2404 objfile, then replace the stub type with the real deal.
2405 But if they're in separate objfiles, leave the stub
2406 alone; we'll just look up the transparent type every time
2407 we call check_typedef. We can't create pointers between
2408 types allocated to different objfiles, since they may
2409 have different lifetimes. Trying to copy NEWTYPE over to
2410 TYPE's objfile is pointless, too, since you'll have to
2411 move over any other types NEWTYPE refers to, which could
2412 be an unbounded amount of stuff. */
2413 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2414 type = make_qualified_type (newtype,
2415 TYPE_INSTANCE_FLAGS (type),
2416 type);
2417 else
2418 type = newtype;
2419 }
2420 }
2421 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2422 types. */
2423 else if (TYPE_STUB (type) && !currently_reading_symtab)
2424 {
2425 const char *name = type_name_no_tag (type);
2426 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2427 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2428 as appropriate? (this code was written before TYPE_NAME and
2429 TYPE_TAG_NAME were separate). */
2430 struct symbol *sym;
2431
2432 if (name == NULL)
2433 {
2434 stub_noname_complaint ();
2435 return make_qualified_type (type, instance_flags, NULL);
2436 }
2437 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2438 if (sym)
2439 {
2440 /* Same as above for opaque types, we can replace the stub
2441 with the complete type only if they are in the same
2442 objfile. */
2443 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2444 type = make_qualified_type (SYMBOL_TYPE (sym),
2445 TYPE_INSTANCE_FLAGS (type),
2446 type);
2447 else
2448 type = SYMBOL_TYPE (sym);
2449 }
2450 }
2451
2452 if (TYPE_TARGET_STUB (type))
2453 {
2454 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2455
2456 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2457 {
2458 /* Nothing we can do. */
2459 }
2460 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2461 {
2462 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2463 TYPE_TARGET_STUB (type) = 0;
2464 }
2465 }
2466
2467 type = make_qualified_type (type, instance_flags, NULL);
2468
2469 /* Cache TYPE_LENGTH for future use. */
2470 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2471
2472 return type;
2473 }
2474
2475 /* Parse a type expression in the string [P..P+LENGTH). If an error
2476 occurs, silently return a void type. */
2477
2478 static struct type *
2479 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2480 {
2481 struct ui_file *saved_gdb_stderr;
2482 struct type *type = NULL; /* Initialize to keep gcc happy. */
2483
2484 /* Suppress error messages. */
2485 saved_gdb_stderr = gdb_stderr;
2486 gdb_stderr = &null_stream;
2487
2488 /* Call parse_and_eval_type() without fear of longjmp()s. */
2489 TRY
2490 {
2491 type = parse_and_eval_type (p, length);
2492 }
2493 CATCH (except, RETURN_MASK_ERROR)
2494 {
2495 type = builtin_type (gdbarch)->builtin_void;
2496 }
2497 END_CATCH
2498
2499 /* Stop suppressing error messages. */
2500 gdb_stderr = saved_gdb_stderr;
2501
2502 return type;
2503 }
2504
2505 /* Ugly hack to convert method stubs into method types.
2506
2507 He ain't kiddin'. This demangles the name of the method into a
2508 string including argument types, parses out each argument type,
2509 generates a string casting a zero to that type, evaluates the
2510 string, and stuffs the resulting type into an argtype vector!!!
2511 Then it knows the type of the whole function (including argument
2512 types for overloading), which info used to be in the stab's but was
2513 removed to hack back the space required for them. */
2514
2515 static void
2516 check_stub_method (struct type *type, int method_id, int signature_id)
2517 {
2518 struct gdbarch *gdbarch = get_type_arch (type);
2519 struct fn_field *f;
2520 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2521 char *demangled_name = gdb_demangle (mangled_name,
2522 DMGL_PARAMS | DMGL_ANSI);
2523 char *argtypetext, *p;
2524 int depth = 0, argcount = 1;
2525 struct field *argtypes;
2526 struct type *mtype;
2527
2528 /* Make sure we got back a function string that we can use. */
2529 if (demangled_name)
2530 p = strchr (demangled_name, '(');
2531 else
2532 p = NULL;
2533
2534 if (demangled_name == NULL || p == NULL)
2535 error (_("Internal: Cannot demangle mangled name `%s'."),
2536 mangled_name);
2537
2538 /* Now, read in the parameters that define this type. */
2539 p += 1;
2540 argtypetext = p;
2541 while (*p)
2542 {
2543 if (*p == '(' || *p == '<')
2544 {
2545 depth += 1;
2546 }
2547 else if (*p == ')' || *p == '>')
2548 {
2549 depth -= 1;
2550 }
2551 else if (*p == ',' && depth == 0)
2552 {
2553 argcount += 1;
2554 }
2555
2556 p += 1;
2557 }
2558
2559 /* If we read one argument and it was ``void'', don't count it. */
2560 if (startswith (argtypetext, "(void)"))
2561 argcount -= 1;
2562
2563 /* We need one extra slot, for the THIS pointer. */
2564
2565 argtypes = (struct field *)
2566 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2567 p = argtypetext;
2568
2569 /* Add THIS pointer for non-static methods. */
2570 f = TYPE_FN_FIELDLIST1 (type, method_id);
2571 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2572 argcount = 0;
2573 else
2574 {
2575 argtypes[0].type = lookup_pointer_type (type);
2576 argcount = 1;
2577 }
2578
2579 if (*p != ')') /* () means no args, skip while. */
2580 {
2581 depth = 0;
2582 while (*p)
2583 {
2584 if (depth <= 0 && (*p == ',' || *p == ')'))
2585 {
2586 /* Avoid parsing of ellipsis, they will be handled below.
2587 Also avoid ``void'' as above. */
2588 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2589 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2590 {
2591 argtypes[argcount].type =
2592 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2593 argcount += 1;
2594 }
2595 argtypetext = p + 1;
2596 }
2597
2598 if (*p == '(' || *p == '<')
2599 {
2600 depth += 1;
2601 }
2602 else if (*p == ')' || *p == '>')
2603 {
2604 depth -= 1;
2605 }
2606
2607 p += 1;
2608 }
2609 }
2610
2611 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2612
2613 /* Now update the old "stub" type into a real type. */
2614 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2615 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2616 We want a method (TYPE_CODE_METHOD). */
2617 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2618 argtypes, argcount, p[-2] == '.');
2619 TYPE_STUB (mtype) = 0;
2620 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2621
2622 xfree (demangled_name);
2623 }
2624
2625 /* This is the external interface to check_stub_method, above. This
2626 function unstubs all of the signatures for TYPE's METHOD_ID method
2627 name. After calling this function TYPE_FN_FIELD_STUB will be
2628 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2629 correct.
2630
2631 This function unfortunately can not die until stabs do. */
2632
2633 void
2634 check_stub_method_group (struct type *type, int method_id)
2635 {
2636 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2637 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2638 int j, found_stub = 0;
2639
2640 for (j = 0; j < len; j++)
2641 if (TYPE_FN_FIELD_STUB (f, j))
2642 {
2643 found_stub = 1;
2644 check_stub_method (type, method_id, j);
2645 }
2646
2647 /* GNU v3 methods with incorrect names were corrected when we read
2648 in type information, because it was cheaper to do it then. The
2649 only GNU v2 methods with incorrect method names are operators and
2650 destructors; destructors were also corrected when we read in type
2651 information.
2652
2653 Therefore the only thing we need to handle here are v2 operator
2654 names. */
2655 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2656 {
2657 int ret;
2658 char dem_opname[256];
2659
2660 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2661 method_id),
2662 dem_opname, DMGL_ANSI);
2663 if (!ret)
2664 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2665 method_id),
2666 dem_opname, 0);
2667 if (ret)
2668 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2669 }
2670 }
2671
2672 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2673 const struct cplus_struct_type cplus_struct_default = { };
2674
2675 void
2676 allocate_cplus_struct_type (struct type *type)
2677 {
2678 if (HAVE_CPLUS_STRUCT (type))
2679 /* Structure was already allocated. Nothing more to do. */
2680 return;
2681
2682 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2683 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2684 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2685 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2686 set_type_vptr_fieldno (type, -1);
2687 }
2688
2689 const struct gnat_aux_type gnat_aux_default =
2690 { NULL };
2691
2692 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2693 and allocate the associated gnat-specific data. The gnat-specific
2694 data is also initialized to gnat_aux_default. */
2695
2696 void
2697 allocate_gnat_aux_type (struct type *type)
2698 {
2699 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2700 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2701 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2702 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2703 }
2704
2705 /* Helper function to initialize a newly allocated type. Set type code
2706 to CODE and initialize the type-specific fields accordingly. */
2707
2708 static void
2709 set_type_code (struct type *type, enum type_code code)
2710 {
2711 TYPE_CODE (type) = code;
2712
2713 switch (code)
2714 {
2715 case TYPE_CODE_STRUCT:
2716 case TYPE_CODE_UNION:
2717 case TYPE_CODE_NAMESPACE:
2718 INIT_CPLUS_SPECIFIC (type);
2719 break;
2720 case TYPE_CODE_FLT:
2721 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2722 break;
2723 case TYPE_CODE_FUNC:
2724 INIT_FUNC_SPECIFIC (type);
2725 break;
2726 }
2727 }
2728
2729 /* Helper function to verify floating-point format and size.
2730 BIT is the type size in bits; if BIT equals -1, the size is
2731 determined by the floatformat. Returns size to be used. */
2732
2733 static int
2734 verify_floatformat (int bit, const struct floatformat **floatformats)
2735 {
2736 gdb_assert (floatformats != NULL);
2737 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2738
2739 if (bit == -1)
2740 bit = floatformats[0]->totalsize;
2741 gdb_assert (bit >= 0);
2742
2743 size_t len = bit / TARGET_CHAR_BIT;
2744 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2745 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2746
2747 return bit;
2748 }
2749
2750 /* Helper function to initialize the standard scalar types.
2751
2752 If NAME is non-NULL, then it is used to initialize the type name.
2753 Note that NAME is not copied; it is required to have a lifetime at
2754 least as long as OBJFILE. */
2755
2756 struct type *
2757 init_type (struct objfile *objfile, enum type_code code, int length,
2758 const char *name)
2759 {
2760 struct type *type;
2761
2762 type = alloc_type (objfile);
2763 set_type_code (type, code);
2764 TYPE_LENGTH (type) = length;
2765 TYPE_NAME (type) = name;
2766
2767 return type;
2768 }
2769
2770 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2771 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2772 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2773
2774 struct type *
2775 init_integer_type (struct objfile *objfile,
2776 int bit, int unsigned_p, const char *name)
2777 {
2778 struct type *t;
2779
2780 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2781 if (unsigned_p)
2782 TYPE_UNSIGNED (t) = 1;
2783
2784 return t;
2785 }
2786
2787 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2788 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2789 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2790
2791 struct type *
2792 init_character_type (struct objfile *objfile,
2793 int bit, int unsigned_p, const char *name)
2794 {
2795 struct type *t;
2796
2797 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2798 if (unsigned_p)
2799 TYPE_UNSIGNED (t) = 1;
2800
2801 return t;
2802 }
2803
2804 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2805 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2806 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2807
2808 struct type *
2809 init_boolean_type (struct objfile *objfile,
2810 int bit, int unsigned_p, const char *name)
2811 {
2812 struct type *t;
2813
2814 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2815 if (unsigned_p)
2816 TYPE_UNSIGNED (t) = 1;
2817
2818 return t;
2819 }
2820
2821 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2822 BIT is the type size in bits; if BIT equals -1, the size is
2823 determined by the floatformat. NAME is the type name. Set the
2824 TYPE_FLOATFORMAT from FLOATFORMATS. */
2825
2826 struct type *
2827 init_float_type (struct objfile *objfile,
2828 int bit, const char *name,
2829 const struct floatformat **floatformats)
2830 {
2831 struct type *t;
2832
2833 bit = verify_floatformat (bit, floatformats);
2834 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2835 TYPE_FLOATFORMAT (t) = floatformats;
2836
2837 return t;
2838 }
2839
2840 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2841 BIT is the type size in bits. NAME is the type name. */
2842
2843 struct type *
2844 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2845 {
2846 struct type *t;
2847
2848 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2849 return t;
2850 }
2851
2852 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2853 NAME is the type name. TARGET_TYPE is the component float type. */
2854
2855 struct type *
2856 init_complex_type (struct objfile *objfile,
2857 const char *name, struct type *target_type)
2858 {
2859 struct type *t;
2860
2861 t = init_type (objfile, TYPE_CODE_COMPLEX,
2862 2 * TYPE_LENGTH (target_type), name);
2863 TYPE_TARGET_TYPE (t) = target_type;
2864 return t;
2865 }
2866
2867 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2868 BIT is the pointer type size in bits. NAME is the type name.
2869 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2870 TYPE_UNSIGNED flag. */
2871
2872 struct type *
2873 init_pointer_type (struct objfile *objfile,
2874 int bit, const char *name, struct type *target_type)
2875 {
2876 struct type *t;
2877
2878 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2879 TYPE_TARGET_TYPE (t) = target_type;
2880 TYPE_UNSIGNED (t) = 1;
2881 return t;
2882 }
2883
2884 \f
2885 /* Queries on types. */
2886
2887 int
2888 can_dereference (struct type *t)
2889 {
2890 /* FIXME: Should we return true for references as well as
2891 pointers? */
2892 t = check_typedef (t);
2893 return
2894 (t != NULL
2895 && TYPE_CODE (t) == TYPE_CODE_PTR
2896 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2897 }
2898
2899 int
2900 is_integral_type (struct type *t)
2901 {
2902 t = check_typedef (t);
2903 return
2904 ((t != NULL)
2905 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2906 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2907 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2908 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2909 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2910 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2911 }
2912
2913 /* Return true if TYPE is scalar. */
2914
2915 int
2916 is_scalar_type (struct type *type)
2917 {
2918 type = check_typedef (type);
2919
2920 switch (TYPE_CODE (type))
2921 {
2922 case TYPE_CODE_ARRAY:
2923 case TYPE_CODE_STRUCT:
2924 case TYPE_CODE_UNION:
2925 case TYPE_CODE_SET:
2926 case TYPE_CODE_STRING:
2927 return 0;
2928 default:
2929 return 1;
2930 }
2931 }
2932
2933 /* Return true if T is scalar, or a composite type which in practice has
2934 the memory layout of a scalar type. E.g., an array or struct with only
2935 one scalar element inside it, or a union with only scalar elements. */
2936
2937 int
2938 is_scalar_type_recursive (struct type *t)
2939 {
2940 t = check_typedef (t);
2941
2942 if (is_scalar_type (t))
2943 return 1;
2944 /* Are we dealing with an array or string of known dimensions? */
2945 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2946 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2947 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2948 {
2949 LONGEST low_bound, high_bound;
2950 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2951
2952 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2953
2954 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2955 }
2956 /* Are we dealing with a struct with one element? */
2957 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2958 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2959 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2960 {
2961 int i, n = TYPE_NFIELDS (t);
2962
2963 /* If all elements of the union are scalar, then the union is scalar. */
2964 for (i = 0; i < n; i++)
2965 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2966 return 0;
2967
2968 return 1;
2969 }
2970
2971 return 0;
2972 }
2973
2974 /* Return true is T is a class or a union. False otherwise. */
2975
2976 int
2977 class_or_union_p (const struct type *t)
2978 {
2979 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2980 || TYPE_CODE (t) == TYPE_CODE_UNION);
2981 }
2982
2983 /* A helper function which returns true if types A and B represent the
2984 "same" class type. This is true if the types have the same main
2985 type, or the same name. */
2986
2987 int
2988 class_types_same_p (const struct type *a, const struct type *b)
2989 {
2990 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2991 || (TYPE_NAME (a) && TYPE_NAME (b)
2992 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2993 }
2994
2995 /* If BASE is an ancestor of DCLASS return the distance between them.
2996 otherwise return -1;
2997 eg:
2998
2999 class A {};
3000 class B: public A {};
3001 class C: public B {};
3002 class D: C {};
3003
3004 distance_to_ancestor (A, A, 0) = 0
3005 distance_to_ancestor (A, B, 0) = 1
3006 distance_to_ancestor (A, C, 0) = 2
3007 distance_to_ancestor (A, D, 0) = 3
3008
3009 If PUBLIC is 1 then only public ancestors are considered,
3010 and the function returns the distance only if BASE is a public ancestor
3011 of DCLASS.
3012 Eg:
3013
3014 distance_to_ancestor (A, D, 1) = -1. */
3015
3016 static int
3017 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3018 {
3019 int i;
3020 int d;
3021
3022 base = check_typedef (base);
3023 dclass = check_typedef (dclass);
3024
3025 if (class_types_same_p (base, dclass))
3026 return 0;
3027
3028 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3029 {
3030 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3031 continue;
3032
3033 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3034 if (d >= 0)
3035 return 1 + d;
3036 }
3037
3038 return -1;
3039 }
3040
3041 /* Check whether BASE is an ancestor or base class or DCLASS
3042 Return 1 if so, and 0 if not.
3043 Note: If BASE and DCLASS are of the same type, this function
3044 will return 1. So for some class A, is_ancestor (A, A) will
3045 return 1. */
3046
3047 int
3048 is_ancestor (struct type *base, struct type *dclass)
3049 {
3050 return distance_to_ancestor (base, dclass, 0) >= 0;
3051 }
3052
3053 /* Like is_ancestor, but only returns true when BASE is a public
3054 ancestor of DCLASS. */
3055
3056 int
3057 is_public_ancestor (struct type *base, struct type *dclass)
3058 {
3059 return distance_to_ancestor (base, dclass, 1) >= 0;
3060 }
3061
3062 /* A helper function for is_unique_ancestor. */
3063
3064 static int
3065 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3066 int *offset,
3067 const gdb_byte *valaddr, int embedded_offset,
3068 CORE_ADDR address, struct value *val)
3069 {
3070 int i, count = 0;
3071
3072 base = check_typedef (base);
3073 dclass = check_typedef (dclass);
3074
3075 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3076 {
3077 struct type *iter;
3078 int this_offset;
3079
3080 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3081
3082 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3083 address, val);
3084
3085 if (class_types_same_p (base, iter))
3086 {
3087 /* If this is the first subclass, set *OFFSET and set count
3088 to 1. Otherwise, if this is at the same offset as
3089 previous instances, do nothing. Otherwise, increment
3090 count. */
3091 if (*offset == -1)
3092 {
3093 *offset = this_offset;
3094 count = 1;
3095 }
3096 else if (this_offset == *offset)
3097 {
3098 /* Nothing. */
3099 }
3100 else
3101 ++count;
3102 }
3103 else
3104 count += is_unique_ancestor_worker (base, iter, offset,
3105 valaddr,
3106 embedded_offset + this_offset,
3107 address, val);
3108 }
3109
3110 return count;
3111 }
3112
3113 /* Like is_ancestor, but only returns true if BASE is a unique base
3114 class of the type of VAL. */
3115
3116 int
3117 is_unique_ancestor (struct type *base, struct value *val)
3118 {
3119 int offset = -1;
3120
3121 return is_unique_ancestor_worker (base, value_type (val), &offset,
3122 value_contents_for_printing (val),
3123 value_embedded_offset (val),
3124 value_address (val), val) == 1;
3125 }
3126
3127 \f
3128 /* Overload resolution. */
3129
3130 /* Return the sum of the rank of A with the rank of B. */
3131
3132 struct rank
3133 sum_ranks (struct rank a, struct rank b)
3134 {
3135 struct rank c;
3136 c.rank = a.rank + b.rank;
3137 c.subrank = a.subrank + b.subrank;
3138 return c;
3139 }
3140
3141 /* Compare rank A and B and return:
3142 0 if a = b
3143 1 if a is better than b
3144 -1 if b is better than a. */
3145
3146 int
3147 compare_ranks (struct rank a, struct rank b)
3148 {
3149 if (a.rank == b.rank)
3150 {
3151 if (a.subrank == b.subrank)
3152 return 0;
3153 if (a.subrank < b.subrank)
3154 return 1;
3155 if (a.subrank > b.subrank)
3156 return -1;
3157 }
3158
3159 if (a.rank < b.rank)
3160 return 1;
3161
3162 /* a.rank > b.rank */
3163 return -1;
3164 }
3165
3166 /* Functions for overload resolution begin here. */
3167
3168 /* Compare two badness vectors A and B and return the result.
3169 0 => A and B are identical
3170 1 => A and B are incomparable
3171 2 => A is better than B
3172 3 => A is worse than B */
3173
3174 int
3175 compare_badness (struct badness_vector *a, struct badness_vector *b)
3176 {
3177 int i;
3178 int tmp;
3179 short found_pos = 0; /* any positives in c? */
3180 short found_neg = 0; /* any negatives in c? */
3181
3182 /* differing lengths => incomparable */
3183 if (a->length != b->length)
3184 return 1;
3185
3186 /* Subtract b from a */
3187 for (i = 0; i < a->length; i++)
3188 {
3189 tmp = compare_ranks (b->rank[i], a->rank[i]);
3190 if (tmp > 0)
3191 found_pos = 1;
3192 else if (tmp < 0)
3193 found_neg = 1;
3194 }
3195
3196 if (found_pos)
3197 {
3198 if (found_neg)
3199 return 1; /* incomparable */
3200 else
3201 return 3; /* A > B */
3202 }
3203 else
3204 /* no positives */
3205 {
3206 if (found_neg)
3207 return 2; /* A < B */
3208 else
3209 return 0; /* A == B */
3210 }
3211 }
3212
3213 /* Rank a function by comparing its parameter types (PARMS, length
3214 NPARMS), to the types of an argument list (ARGS, length NARGS).
3215 Return a pointer to a badness vector. This has NARGS + 1
3216 entries. */
3217
3218 struct badness_vector *
3219 rank_function (struct type **parms, int nparms,
3220 struct value **args, int nargs)
3221 {
3222 int i;
3223 struct badness_vector *bv = XNEW (struct badness_vector);
3224 int min_len = nparms < nargs ? nparms : nargs;
3225
3226 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3227 bv->rank = XNEWVEC (struct rank, nargs + 1);
3228
3229 /* First compare the lengths of the supplied lists.
3230 If there is a mismatch, set it to a high value. */
3231
3232 /* pai/1997-06-03 FIXME: when we have debug info about default
3233 arguments and ellipsis parameter lists, we should consider those
3234 and rank the length-match more finely. */
3235
3236 LENGTH_MATCH (bv) = (nargs != nparms)
3237 ? LENGTH_MISMATCH_BADNESS
3238 : EXACT_MATCH_BADNESS;
3239
3240 /* Now rank all the parameters of the candidate function. */
3241 for (i = 1; i <= min_len; i++)
3242 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3243 args[i - 1]);
3244
3245 /* If more arguments than parameters, add dummy entries. */
3246 for (i = min_len + 1; i <= nargs; i++)
3247 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3248
3249 return bv;
3250 }
3251
3252 /* Compare the names of two integer types, assuming that any sign
3253 qualifiers have been checked already. We do it this way because
3254 there may be an "int" in the name of one of the types. */
3255
3256 static int
3257 integer_types_same_name_p (const char *first, const char *second)
3258 {
3259 int first_p, second_p;
3260
3261 /* If both are shorts, return 1; if neither is a short, keep
3262 checking. */
3263 first_p = (strstr (first, "short") != NULL);
3264 second_p = (strstr (second, "short") != NULL);
3265 if (first_p && second_p)
3266 return 1;
3267 if (first_p || second_p)
3268 return 0;
3269
3270 /* Likewise for long. */
3271 first_p = (strstr (first, "long") != NULL);
3272 second_p = (strstr (second, "long") != NULL);
3273 if (first_p && second_p)
3274 return 1;
3275 if (first_p || second_p)
3276 return 0;
3277
3278 /* Likewise for char. */
3279 first_p = (strstr (first, "char") != NULL);
3280 second_p = (strstr (second, "char") != NULL);
3281 if (first_p && second_p)
3282 return 1;
3283 if (first_p || second_p)
3284 return 0;
3285
3286 /* They must both be ints. */
3287 return 1;
3288 }
3289
3290 /* Compares type A to type B returns 1 if the represent the same type
3291 0 otherwise. */
3292
3293 int
3294 types_equal (struct type *a, struct type *b)
3295 {
3296 /* Identical type pointers. */
3297 /* However, this still doesn't catch all cases of same type for b
3298 and a. The reason is that builtin types are different from
3299 the same ones constructed from the object. */
3300 if (a == b)
3301 return 1;
3302
3303 /* Resolve typedefs */
3304 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3305 a = check_typedef (a);
3306 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3307 b = check_typedef (b);
3308
3309 /* If after resolving typedefs a and b are not of the same type
3310 code then they are not equal. */
3311 if (TYPE_CODE (a) != TYPE_CODE (b))
3312 return 0;
3313
3314 /* If a and b are both pointers types or both reference types then
3315 they are equal of the same type iff the objects they refer to are
3316 of the same type. */
3317 if (TYPE_CODE (a) == TYPE_CODE_PTR
3318 || TYPE_CODE (a) == TYPE_CODE_REF)
3319 return types_equal (TYPE_TARGET_TYPE (a),
3320 TYPE_TARGET_TYPE (b));
3321
3322 /* Well, damnit, if the names are exactly the same, I'll say they
3323 are exactly the same. This happens when we generate method
3324 stubs. The types won't point to the same address, but they
3325 really are the same. */
3326
3327 if (TYPE_NAME (a) && TYPE_NAME (b)
3328 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3329 return 1;
3330
3331 /* Check if identical after resolving typedefs. */
3332 if (a == b)
3333 return 1;
3334
3335 /* Two function types are equal if their argument and return types
3336 are equal. */
3337 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3338 {
3339 int i;
3340
3341 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3342 return 0;
3343
3344 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3345 return 0;
3346
3347 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3348 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3349 return 0;
3350
3351 return 1;
3352 }
3353
3354 return 0;
3355 }
3356 \f
3357 /* Deep comparison of types. */
3358
3359 /* An entry in the type-equality bcache. */
3360
3361 typedef struct type_equality_entry
3362 {
3363 struct type *type1, *type2;
3364 } type_equality_entry_d;
3365
3366 DEF_VEC_O (type_equality_entry_d);
3367
3368 /* A helper function to compare two strings. Returns 1 if they are
3369 the same, 0 otherwise. Handles NULLs properly. */
3370
3371 static int
3372 compare_maybe_null_strings (const char *s, const char *t)
3373 {
3374 if (s == NULL && t != NULL)
3375 return 0;
3376 else if (s != NULL && t == NULL)
3377 return 0;
3378 else if (s == NULL && t== NULL)
3379 return 1;
3380 return strcmp (s, t) == 0;
3381 }
3382
3383 /* A helper function for check_types_worklist that checks two types for
3384 "deep" equality. Returns non-zero if the types are considered the
3385 same, zero otherwise. */
3386
3387 static int
3388 check_types_equal (struct type *type1, struct type *type2,
3389 VEC (type_equality_entry_d) **worklist)
3390 {
3391 type1 = check_typedef (type1);
3392 type2 = check_typedef (type2);
3393
3394 if (type1 == type2)
3395 return 1;
3396
3397 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3398 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3399 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3400 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3401 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3402 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3403 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3404 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3405 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3406 return 0;
3407
3408 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3409 TYPE_TAG_NAME (type2)))
3410 return 0;
3411 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3412 return 0;
3413
3414 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3415 {
3416 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3417 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3418 return 0;
3419 }
3420 else
3421 {
3422 int i;
3423
3424 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3425 {
3426 const struct field *field1 = &TYPE_FIELD (type1, i);
3427 const struct field *field2 = &TYPE_FIELD (type2, i);
3428 struct type_equality_entry entry;
3429
3430 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3431 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3432 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3433 return 0;
3434 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3435 FIELD_NAME (*field2)))
3436 return 0;
3437 switch (FIELD_LOC_KIND (*field1))
3438 {
3439 case FIELD_LOC_KIND_BITPOS:
3440 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3441 return 0;
3442 break;
3443 case FIELD_LOC_KIND_ENUMVAL:
3444 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3445 return 0;
3446 break;
3447 case FIELD_LOC_KIND_PHYSADDR:
3448 if (FIELD_STATIC_PHYSADDR (*field1)
3449 != FIELD_STATIC_PHYSADDR (*field2))
3450 return 0;
3451 break;
3452 case FIELD_LOC_KIND_PHYSNAME:
3453 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3454 FIELD_STATIC_PHYSNAME (*field2)))
3455 return 0;
3456 break;
3457 case FIELD_LOC_KIND_DWARF_BLOCK:
3458 {
3459 struct dwarf2_locexpr_baton *block1, *block2;
3460
3461 block1 = FIELD_DWARF_BLOCK (*field1);
3462 block2 = FIELD_DWARF_BLOCK (*field2);
3463 if (block1->per_cu != block2->per_cu
3464 || block1->size != block2->size
3465 || memcmp (block1->data, block2->data, block1->size) != 0)
3466 return 0;
3467 }
3468 break;
3469 default:
3470 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3471 "%d by check_types_equal"),
3472 FIELD_LOC_KIND (*field1));
3473 }
3474
3475 entry.type1 = FIELD_TYPE (*field1);
3476 entry.type2 = FIELD_TYPE (*field2);
3477 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3478 }
3479 }
3480
3481 if (TYPE_TARGET_TYPE (type1) != NULL)
3482 {
3483 struct type_equality_entry entry;
3484
3485 if (TYPE_TARGET_TYPE (type2) == NULL)
3486 return 0;
3487
3488 entry.type1 = TYPE_TARGET_TYPE (type1);
3489 entry.type2 = TYPE_TARGET_TYPE (type2);
3490 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3491 }
3492 else if (TYPE_TARGET_TYPE (type2) != NULL)
3493 return 0;
3494
3495 return 1;
3496 }
3497
3498 /* Check types on a worklist for equality. Returns zero if any pair
3499 is not equal, non-zero if they are all considered equal. */
3500
3501 static int
3502 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3503 struct bcache *cache)
3504 {
3505 while (!VEC_empty (type_equality_entry_d, *worklist))
3506 {
3507 struct type_equality_entry entry;
3508 int added;
3509
3510 entry = *VEC_last (type_equality_entry_d, *worklist);
3511 VEC_pop (type_equality_entry_d, *worklist);
3512
3513 /* If the type pair has already been visited, we know it is
3514 ok. */
3515 bcache_full (&entry, sizeof (entry), cache, &added);
3516 if (!added)
3517 continue;
3518
3519 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3520 return 0;
3521 }
3522
3523 return 1;
3524 }
3525
3526 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3527 "deep comparison". Otherwise return zero. */
3528
3529 int
3530 types_deeply_equal (struct type *type1, struct type *type2)
3531 {
3532 struct gdb_exception except = exception_none;
3533 int result = 0;
3534 struct bcache *cache;
3535 VEC (type_equality_entry_d) *worklist = NULL;
3536 struct type_equality_entry entry;
3537
3538 gdb_assert (type1 != NULL && type2 != NULL);
3539
3540 /* Early exit for the simple case. */
3541 if (type1 == type2)
3542 return 1;
3543
3544 cache = bcache_xmalloc (NULL, NULL);
3545
3546 entry.type1 = type1;
3547 entry.type2 = type2;
3548 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3549
3550 /* check_types_worklist calls several nested helper functions, some
3551 of which can raise a GDB exception, so we just check and rethrow
3552 here. If there is a GDB exception, a comparison is not capable
3553 (or trusted), so exit. */
3554 TRY
3555 {
3556 result = check_types_worklist (&worklist, cache);
3557 }
3558 CATCH (ex, RETURN_MASK_ALL)
3559 {
3560 except = ex;
3561 }
3562 END_CATCH
3563
3564 bcache_xfree (cache);
3565 VEC_free (type_equality_entry_d, worklist);
3566
3567 /* Rethrow if there was a problem. */
3568 if (except.reason < 0)
3569 throw_exception (except);
3570
3571 return result;
3572 }
3573
3574 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3575 Otherwise return one. */
3576
3577 int
3578 type_not_allocated (const struct type *type)
3579 {
3580 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3581
3582 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3583 && !TYPE_DYN_PROP_ADDR (prop));
3584 }
3585
3586 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3587 Otherwise return one. */
3588
3589 int
3590 type_not_associated (const struct type *type)
3591 {
3592 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3593
3594 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3595 && !TYPE_DYN_PROP_ADDR (prop));
3596 }
3597 \f
3598 /* Compare one type (PARM) for compatibility with another (ARG).
3599 * PARM is intended to be the parameter type of a function; and
3600 * ARG is the supplied argument's type. This function tests if
3601 * the latter can be converted to the former.
3602 * VALUE is the argument's value or NULL if none (or called recursively)
3603 *
3604 * Return 0 if they are identical types;
3605 * Otherwise, return an integer which corresponds to how compatible
3606 * PARM is to ARG. The higher the return value, the worse the match.
3607 * Generally the "bad" conversions are all uniformly assigned a 100. */
3608
3609 struct rank
3610 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3611 {
3612 struct rank rank = {0,0};
3613
3614 if (types_equal (parm, arg))
3615 return EXACT_MATCH_BADNESS;
3616
3617 /* Resolve typedefs */
3618 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3619 parm = check_typedef (parm);
3620 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3621 arg = check_typedef (arg);
3622
3623 /* See through references, since we can almost make non-references
3624 references. */
3625
3626 if (TYPE_IS_REFERENCE (arg))
3627 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3628 REFERENCE_CONVERSION_BADNESS));
3629 if (TYPE_IS_REFERENCE (parm))
3630 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3631 REFERENCE_CONVERSION_BADNESS));
3632 if (overload_debug)
3633 /* Debugging only. */
3634 fprintf_filtered (gdb_stderr,
3635 "------ Arg is %s [%d], parm is %s [%d]\n",
3636 TYPE_NAME (arg), TYPE_CODE (arg),
3637 TYPE_NAME (parm), TYPE_CODE (parm));
3638
3639 /* x -> y means arg of type x being supplied for parameter of type y. */
3640
3641 switch (TYPE_CODE (parm))
3642 {
3643 case TYPE_CODE_PTR:
3644 switch (TYPE_CODE (arg))
3645 {
3646 case TYPE_CODE_PTR:
3647
3648 /* Allowed pointer conversions are:
3649 (a) pointer to void-pointer conversion. */
3650 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3651 return VOID_PTR_CONVERSION_BADNESS;
3652
3653 /* (b) pointer to ancestor-pointer conversion. */
3654 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3655 TYPE_TARGET_TYPE (arg),
3656 0);
3657 if (rank.subrank >= 0)
3658 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3659
3660 return INCOMPATIBLE_TYPE_BADNESS;
3661 case TYPE_CODE_ARRAY:
3662 if (types_equal (TYPE_TARGET_TYPE (parm),
3663 TYPE_TARGET_TYPE (arg)))
3664 return EXACT_MATCH_BADNESS;
3665 return INCOMPATIBLE_TYPE_BADNESS;
3666 case TYPE_CODE_FUNC:
3667 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3668 case TYPE_CODE_INT:
3669 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3670 {
3671 if (value_as_long (value) == 0)
3672 {
3673 /* Null pointer conversion: allow it to be cast to a pointer.
3674 [4.10.1 of C++ standard draft n3290] */
3675 return NULL_POINTER_CONVERSION_BADNESS;
3676 }
3677 else
3678 {
3679 /* If type checking is disabled, allow the conversion. */
3680 if (!strict_type_checking)
3681 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3682 }
3683 }
3684 /* fall through */
3685 case TYPE_CODE_ENUM:
3686 case TYPE_CODE_FLAGS:
3687 case TYPE_CODE_CHAR:
3688 case TYPE_CODE_RANGE:
3689 case TYPE_CODE_BOOL:
3690 default:
3691 return INCOMPATIBLE_TYPE_BADNESS;
3692 }
3693 case TYPE_CODE_ARRAY:
3694 switch (TYPE_CODE (arg))
3695 {
3696 case TYPE_CODE_PTR:
3697 case TYPE_CODE_ARRAY:
3698 return rank_one_type (TYPE_TARGET_TYPE (parm),
3699 TYPE_TARGET_TYPE (arg), NULL);
3700 default:
3701 return INCOMPATIBLE_TYPE_BADNESS;
3702 }
3703 case TYPE_CODE_FUNC:
3704 switch (TYPE_CODE (arg))
3705 {
3706 case TYPE_CODE_PTR: /* funcptr -> func */
3707 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3708 default:
3709 return INCOMPATIBLE_TYPE_BADNESS;
3710 }
3711 case TYPE_CODE_INT:
3712 switch (TYPE_CODE (arg))
3713 {
3714 case TYPE_CODE_INT:
3715 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3716 {
3717 /* Deal with signed, unsigned, and plain chars and
3718 signed and unsigned ints. */
3719 if (TYPE_NOSIGN (parm))
3720 {
3721 /* This case only for character types. */
3722 if (TYPE_NOSIGN (arg))
3723 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3724 else /* signed/unsigned char -> plain char */
3725 return INTEGER_CONVERSION_BADNESS;
3726 }
3727 else if (TYPE_UNSIGNED (parm))
3728 {
3729 if (TYPE_UNSIGNED (arg))
3730 {
3731 /* unsigned int -> unsigned int, or
3732 unsigned long -> unsigned long */
3733 if (integer_types_same_name_p (TYPE_NAME (parm),
3734 TYPE_NAME (arg)))
3735 return EXACT_MATCH_BADNESS;
3736 else if (integer_types_same_name_p (TYPE_NAME (arg),
3737 "int")
3738 && integer_types_same_name_p (TYPE_NAME (parm),
3739 "long"))
3740 /* unsigned int -> unsigned long */
3741 return INTEGER_PROMOTION_BADNESS;
3742 else
3743 /* unsigned long -> unsigned int */
3744 return INTEGER_CONVERSION_BADNESS;
3745 }
3746 else
3747 {
3748 if (integer_types_same_name_p (TYPE_NAME (arg),
3749 "long")
3750 && integer_types_same_name_p (TYPE_NAME (parm),
3751 "int"))
3752 /* signed long -> unsigned int */
3753 return INTEGER_CONVERSION_BADNESS;
3754 else
3755 /* signed int/long -> unsigned int/long */
3756 return INTEGER_CONVERSION_BADNESS;
3757 }
3758 }
3759 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3760 {
3761 if (integer_types_same_name_p (TYPE_NAME (parm),
3762 TYPE_NAME (arg)))
3763 return EXACT_MATCH_BADNESS;
3764 else if (integer_types_same_name_p (TYPE_NAME (arg),
3765 "int")
3766 && integer_types_same_name_p (TYPE_NAME (parm),
3767 "long"))
3768 return INTEGER_PROMOTION_BADNESS;
3769 else
3770 return INTEGER_CONVERSION_BADNESS;
3771 }
3772 else
3773 return INTEGER_CONVERSION_BADNESS;
3774 }
3775 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3776 return INTEGER_PROMOTION_BADNESS;
3777 else
3778 return INTEGER_CONVERSION_BADNESS;
3779 case TYPE_CODE_ENUM:
3780 case TYPE_CODE_FLAGS:
3781 case TYPE_CODE_CHAR:
3782 case TYPE_CODE_RANGE:
3783 case TYPE_CODE_BOOL:
3784 if (TYPE_DECLARED_CLASS (arg))
3785 return INCOMPATIBLE_TYPE_BADNESS;
3786 return INTEGER_PROMOTION_BADNESS;
3787 case TYPE_CODE_FLT:
3788 return INT_FLOAT_CONVERSION_BADNESS;
3789 case TYPE_CODE_PTR:
3790 return NS_POINTER_CONVERSION_BADNESS;
3791 default:
3792 return INCOMPATIBLE_TYPE_BADNESS;
3793 }
3794 break;
3795 case TYPE_CODE_ENUM:
3796 switch (TYPE_CODE (arg))
3797 {
3798 case TYPE_CODE_INT:
3799 case TYPE_CODE_CHAR:
3800 case TYPE_CODE_RANGE:
3801 case TYPE_CODE_BOOL:
3802 case TYPE_CODE_ENUM:
3803 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3804 return INCOMPATIBLE_TYPE_BADNESS;
3805 return INTEGER_CONVERSION_BADNESS;
3806 case TYPE_CODE_FLT:
3807 return INT_FLOAT_CONVERSION_BADNESS;
3808 default:
3809 return INCOMPATIBLE_TYPE_BADNESS;
3810 }
3811 break;
3812 case TYPE_CODE_CHAR:
3813 switch (TYPE_CODE (arg))
3814 {
3815 case TYPE_CODE_RANGE:
3816 case TYPE_CODE_BOOL:
3817 case TYPE_CODE_ENUM:
3818 if (TYPE_DECLARED_CLASS (arg))
3819 return INCOMPATIBLE_TYPE_BADNESS;
3820 return INTEGER_CONVERSION_BADNESS;
3821 case TYPE_CODE_FLT:
3822 return INT_FLOAT_CONVERSION_BADNESS;
3823 case TYPE_CODE_INT:
3824 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3825 return INTEGER_CONVERSION_BADNESS;
3826 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3827 return INTEGER_PROMOTION_BADNESS;
3828 /* >>> !! else fall through !! <<< */
3829 case TYPE_CODE_CHAR:
3830 /* Deal with signed, unsigned, and plain chars for C++ and
3831 with int cases falling through from previous case. */
3832 if (TYPE_NOSIGN (parm))
3833 {
3834 if (TYPE_NOSIGN (arg))
3835 return EXACT_MATCH_BADNESS;
3836 else
3837 return INTEGER_CONVERSION_BADNESS;
3838 }
3839 else if (TYPE_UNSIGNED (parm))
3840 {
3841 if (TYPE_UNSIGNED (arg))
3842 return EXACT_MATCH_BADNESS;
3843 else
3844 return INTEGER_PROMOTION_BADNESS;
3845 }
3846 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3847 return EXACT_MATCH_BADNESS;
3848 else
3849 return INTEGER_CONVERSION_BADNESS;
3850 default:
3851 return INCOMPATIBLE_TYPE_BADNESS;
3852 }
3853 break;
3854 case TYPE_CODE_RANGE:
3855 switch (TYPE_CODE (arg))
3856 {
3857 case TYPE_CODE_INT:
3858 case TYPE_CODE_CHAR:
3859 case TYPE_CODE_RANGE:
3860 case TYPE_CODE_BOOL:
3861 case TYPE_CODE_ENUM:
3862 return INTEGER_CONVERSION_BADNESS;
3863 case TYPE_CODE_FLT:
3864 return INT_FLOAT_CONVERSION_BADNESS;
3865 default:
3866 return INCOMPATIBLE_TYPE_BADNESS;
3867 }
3868 break;
3869 case TYPE_CODE_BOOL:
3870 switch (TYPE_CODE (arg))
3871 {
3872 /* n3290 draft, section 4.12.1 (conv.bool):
3873
3874 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3875 pointer to member type can be converted to a prvalue of type
3876 bool. A zero value, null pointer value, or null member pointer
3877 value is converted to false; any other value is converted to
3878 true. A prvalue of type std::nullptr_t can be converted to a
3879 prvalue of type bool; the resulting value is false." */
3880 case TYPE_CODE_INT:
3881 case TYPE_CODE_CHAR:
3882 case TYPE_CODE_ENUM:
3883 case TYPE_CODE_FLT:
3884 case TYPE_CODE_MEMBERPTR:
3885 case TYPE_CODE_PTR:
3886 return BOOL_CONVERSION_BADNESS;
3887 case TYPE_CODE_RANGE:
3888 return INCOMPATIBLE_TYPE_BADNESS;
3889 case TYPE_CODE_BOOL:
3890 return EXACT_MATCH_BADNESS;
3891 default:
3892 return INCOMPATIBLE_TYPE_BADNESS;
3893 }
3894 break;
3895 case TYPE_CODE_FLT:
3896 switch (TYPE_CODE (arg))
3897 {
3898 case TYPE_CODE_FLT:
3899 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3900 return FLOAT_PROMOTION_BADNESS;
3901 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3902 return EXACT_MATCH_BADNESS;
3903 else
3904 return FLOAT_CONVERSION_BADNESS;
3905 case TYPE_CODE_INT:
3906 case TYPE_CODE_BOOL:
3907 case TYPE_CODE_ENUM:
3908 case TYPE_CODE_RANGE:
3909 case TYPE_CODE_CHAR:
3910 return INT_FLOAT_CONVERSION_BADNESS;
3911 default:
3912 return INCOMPATIBLE_TYPE_BADNESS;
3913 }
3914 break;
3915 case TYPE_CODE_COMPLEX:
3916 switch (TYPE_CODE (arg))
3917 { /* Strictly not needed for C++, but... */
3918 case TYPE_CODE_FLT:
3919 return FLOAT_PROMOTION_BADNESS;
3920 case TYPE_CODE_COMPLEX:
3921 return EXACT_MATCH_BADNESS;
3922 default:
3923 return INCOMPATIBLE_TYPE_BADNESS;
3924 }
3925 break;
3926 case TYPE_CODE_STRUCT:
3927 switch (TYPE_CODE (arg))
3928 {
3929 case TYPE_CODE_STRUCT:
3930 /* Check for derivation */
3931 rank.subrank = distance_to_ancestor (parm, arg, 0);
3932 if (rank.subrank >= 0)
3933 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3934 /* else fall through */
3935 default:
3936 return INCOMPATIBLE_TYPE_BADNESS;
3937 }
3938 break;
3939 case TYPE_CODE_UNION:
3940 switch (TYPE_CODE (arg))
3941 {
3942 case TYPE_CODE_UNION:
3943 default:
3944 return INCOMPATIBLE_TYPE_BADNESS;
3945 }
3946 break;
3947 case TYPE_CODE_MEMBERPTR:
3948 switch (TYPE_CODE (arg))
3949 {
3950 default:
3951 return INCOMPATIBLE_TYPE_BADNESS;
3952 }
3953 break;
3954 case TYPE_CODE_METHOD:
3955 switch (TYPE_CODE (arg))
3956 {
3957
3958 default:
3959 return INCOMPATIBLE_TYPE_BADNESS;
3960 }
3961 break;
3962 case TYPE_CODE_REF:
3963 switch (TYPE_CODE (arg))
3964 {
3965
3966 default:
3967 return INCOMPATIBLE_TYPE_BADNESS;
3968 }
3969
3970 break;
3971 case TYPE_CODE_SET:
3972 switch (TYPE_CODE (arg))
3973 {
3974 /* Not in C++ */
3975 case TYPE_CODE_SET:
3976 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3977 TYPE_FIELD_TYPE (arg, 0), NULL);
3978 default:
3979 return INCOMPATIBLE_TYPE_BADNESS;
3980 }
3981 break;
3982 case TYPE_CODE_VOID:
3983 default:
3984 return INCOMPATIBLE_TYPE_BADNESS;
3985 } /* switch (TYPE_CODE (arg)) */
3986 }
3987
3988 /* End of functions for overload resolution. */
3989 \f
3990 /* Routines to pretty-print types. */
3991
3992 static void
3993 print_bit_vector (B_TYPE *bits, int nbits)
3994 {
3995 int bitno;
3996
3997 for (bitno = 0; bitno < nbits; bitno++)
3998 {
3999 if ((bitno % 8) == 0)
4000 {
4001 puts_filtered (" ");
4002 }
4003 if (B_TST (bits, bitno))
4004 printf_filtered (("1"));
4005 else
4006 printf_filtered (("0"));
4007 }
4008 }
4009
4010 /* Note the first arg should be the "this" pointer, we may not want to
4011 include it since we may get into a infinitely recursive
4012 situation. */
4013
4014 static void
4015 print_args (struct field *args, int nargs, int spaces)
4016 {
4017 if (args != NULL)
4018 {
4019 int i;
4020
4021 for (i = 0; i < nargs; i++)
4022 {
4023 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4024 args[i].name != NULL ? args[i].name : "<NULL>");
4025 recursive_dump_type (args[i].type, spaces + 2);
4026 }
4027 }
4028 }
4029
4030 int
4031 field_is_static (struct field *f)
4032 {
4033 /* "static" fields are the fields whose location is not relative
4034 to the address of the enclosing struct. It would be nice to
4035 have a dedicated flag that would be set for static fields when
4036 the type is being created. But in practice, checking the field
4037 loc_kind should give us an accurate answer. */
4038 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4039 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4040 }
4041
4042 static void
4043 dump_fn_fieldlists (struct type *type, int spaces)
4044 {
4045 int method_idx;
4046 int overload_idx;
4047 struct fn_field *f;
4048
4049 printfi_filtered (spaces, "fn_fieldlists ");
4050 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4051 printf_filtered ("\n");
4052 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4053 {
4054 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4055 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4056 method_idx,
4057 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4058 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4059 gdb_stdout);
4060 printf_filtered (_(") length %d\n"),
4061 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4062 for (overload_idx = 0;
4063 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4064 overload_idx++)
4065 {
4066 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4067 overload_idx,
4068 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4069 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4070 gdb_stdout);
4071 printf_filtered (")\n");
4072 printfi_filtered (spaces + 8, "type ");
4073 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4074 gdb_stdout);
4075 printf_filtered ("\n");
4076
4077 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4078 spaces + 8 + 2);
4079
4080 printfi_filtered (spaces + 8, "args ");
4081 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4082 gdb_stdout);
4083 printf_filtered ("\n");
4084 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4085 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4086 spaces + 8 + 2);
4087 printfi_filtered (spaces + 8, "fcontext ");
4088 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4089 gdb_stdout);
4090 printf_filtered ("\n");
4091
4092 printfi_filtered (spaces + 8, "is_const %d\n",
4093 TYPE_FN_FIELD_CONST (f, overload_idx));
4094 printfi_filtered (spaces + 8, "is_volatile %d\n",
4095 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4096 printfi_filtered (spaces + 8, "is_private %d\n",
4097 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4098 printfi_filtered (spaces + 8, "is_protected %d\n",
4099 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4100 printfi_filtered (spaces + 8, "is_stub %d\n",
4101 TYPE_FN_FIELD_STUB (f, overload_idx));
4102 printfi_filtered (spaces + 8, "voffset %u\n",
4103 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4104 }
4105 }
4106 }
4107
4108 static void
4109 print_cplus_stuff (struct type *type, int spaces)
4110 {
4111 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4112 printfi_filtered (spaces, "vptr_basetype ");
4113 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4114 puts_filtered ("\n");
4115 if (TYPE_VPTR_BASETYPE (type) != NULL)
4116 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4117
4118 printfi_filtered (spaces, "n_baseclasses %d\n",
4119 TYPE_N_BASECLASSES (type));
4120 printfi_filtered (spaces, "nfn_fields %d\n",
4121 TYPE_NFN_FIELDS (type));
4122 if (TYPE_N_BASECLASSES (type) > 0)
4123 {
4124 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4125 TYPE_N_BASECLASSES (type));
4126 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4127 gdb_stdout);
4128 printf_filtered (")");
4129
4130 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4131 TYPE_N_BASECLASSES (type));
4132 puts_filtered ("\n");
4133 }
4134 if (TYPE_NFIELDS (type) > 0)
4135 {
4136 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4137 {
4138 printfi_filtered (spaces,
4139 "private_field_bits (%d bits at *",
4140 TYPE_NFIELDS (type));
4141 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4142 gdb_stdout);
4143 printf_filtered (")");
4144 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4145 TYPE_NFIELDS (type));
4146 puts_filtered ("\n");
4147 }
4148 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4149 {
4150 printfi_filtered (spaces,
4151 "protected_field_bits (%d bits at *",
4152 TYPE_NFIELDS (type));
4153 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4154 gdb_stdout);
4155 printf_filtered (")");
4156 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4157 TYPE_NFIELDS (type));
4158 puts_filtered ("\n");
4159 }
4160 }
4161 if (TYPE_NFN_FIELDS (type) > 0)
4162 {
4163 dump_fn_fieldlists (type, spaces);
4164 }
4165 }
4166
4167 /* Print the contents of the TYPE's type_specific union, assuming that
4168 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4169
4170 static void
4171 print_gnat_stuff (struct type *type, int spaces)
4172 {
4173 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4174
4175 if (descriptive_type == NULL)
4176 printfi_filtered (spaces + 2, "no descriptive type\n");
4177 else
4178 {
4179 printfi_filtered (spaces + 2, "descriptive type\n");
4180 recursive_dump_type (descriptive_type, spaces + 4);
4181 }
4182 }
4183
4184 static struct obstack dont_print_type_obstack;
4185
4186 void
4187 recursive_dump_type (struct type *type, int spaces)
4188 {
4189 int idx;
4190
4191 if (spaces == 0)
4192 obstack_begin (&dont_print_type_obstack, 0);
4193
4194 if (TYPE_NFIELDS (type) > 0
4195 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4196 {
4197 struct type **first_dont_print
4198 = (struct type **) obstack_base (&dont_print_type_obstack);
4199
4200 int i = (struct type **)
4201 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4202
4203 while (--i >= 0)
4204 {
4205 if (type == first_dont_print[i])
4206 {
4207 printfi_filtered (spaces, "type node ");
4208 gdb_print_host_address (type, gdb_stdout);
4209 printf_filtered (_(" <same as already seen type>\n"));
4210 return;
4211 }
4212 }
4213
4214 obstack_ptr_grow (&dont_print_type_obstack, type);
4215 }
4216
4217 printfi_filtered (spaces, "type node ");
4218 gdb_print_host_address (type, gdb_stdout);
4219 printf_filtered ("\n");
4220 printfi_filtered (spaces, "name '%s' (",
4221 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4222 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4223 printf_filtered (")\n");
4224 printfi_filtered (spaces, "tagname '%s' (",
4225 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4226 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4227 printf_filtered (")\n");
4228 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4229 switch (TYPE_CODE (type))
4230 {
4231 case TYPE_CODE_UNDEF:
4232 printf_filtered ("(TYPE_CODE_UNDEF)");
4233 break;
4234 case TYPE_CODE_PTR:
4235 printf_filtered ("(TYPE_CODE_PTR)");
4236 break;
4237 case TYPE_CODE_ARRAY:
4238 printf_filtered ("(TYPE_CODE_ARRAY)");
4239 break;
4240 case TYPE_CODE_STRUCT:
4241 printf_filtered ("(TYPE_CODE_STRUCT)");
4242 break;
4243 case TYPE_CODE_UNION:
4244 printf_filtered ("(TYPE_CODE_UNION)");
4245 break;
4246 case TYPE_CODE_ENUM:
4247 printf_filtered ("(TYPE_CODE_ENUM)");
4248 break;
4249 case TYPE_CODE_FLAGS:
4250 printf_filtered ("(TYPE_CODE_FLAGS)");
4251 break;
4252 case TYPE_CODE_FUNC:
4253 printf_filtered ("(TYPE_CODE_FUNC)");
4254 break;
4255 case TYPE_CODE_INT:
4256 printf_filtered ("(TYPE_CODE_INT)");
4257 break;
4258 case TYPE_CODE_FLT:
4259 printf_filtered ("(TYPE_CODE_FLT)");
4260 break;
4261 case TYPE_CODE_VOID:
4262 printf_filtered ("(TYPE_CODE_VOID)");
4263 break;
4264 case TYPE_CODE_SET:
4265 printf_filtered ("(TYPE_CODE_SET)");
4266 break;
4267 case TYPE_CODE_RANGE:
4268 printf_filtered ("(TYPE_CODE_RANGE)");
4269 break;
4270 case TYPE_CODE_STRING:
4271 printf_filtered ("(TYPE_CODE_STRING)");
4272 break;
4273 case TYPE_CODE_ERROR:
4274 printf_filtered ("(TYPE_CODE_ERROR)");
4275 break;
4276 case TYPE_CODE_MEMBERPTR:
4277 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4278 break;
4279 case TYPE_CODE_METHODPTR:
4280 printf_filtered ("(TYPE_CODE_METHODPTR)");
4281 break;
4282 case TYPE_CODE_METHOD:
4283 printf_filtered ("(TYPE_CODE_METHOD)");
4284 break;
4285 case TYPE_CODE_REF:
4286 printf_filtered ("(TYPE_CODE_REF)");
4287 break;
4288 case TYPE_CODE_CHAR:
4289 printf_filtered ("(TYPE_CODE_CHAR)");
4290 break;
4291 case TYPE_CODE_BOOL:
4292 printf_filtered ("(TYPE_CODE_BOOL)");
4293 break;
4294 case TYPE_CODE_COMPLEX:
4295 printf_filtered ("(TYPE_CODE_COMPLEX)");
4296 break;
4297 case TYPE_CODE_TYPEDEF:
4298 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4299 break;
4300 case TYPE_CODE_NAMESPACE:
4301 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4302 break;
4303 default:
4304 printf_filtered ("(UNKNOWN TYPE CODE)");
4305 break;
4306 }
4307 puts_filtered ("\n");
4308 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4309 if (TYPE_OBJFILE_OWNED (type))
4310 {
4311 printfi_filtered (spaces, "objfile ");
4312 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4313 }
4314 else
4315 {
4316 printfi_filtered (spaces, "gdbarch ");
4317 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4318 }
4319 printf_filtered ("\n");
4320 printfi_filtered (spaces, "target_type ");
4321 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4322 printf_filtered ("\n");
4323 if (TYPE_TARGET_TYPE (type) != NULL)
4324 {
4325 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4326 }
4327 printfi_filtered (spaces, "pointer_type ");
4328 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4329 printf_filtered ("\n");
4330 printfi_filtered (spaces, "reference_type ");
4331 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4332 printf_filtered ("\n");
4333 printfi_filtered (spaces, "type_chain ");
4334 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4335 printf_filtered ("\n");
4336 printfi_filtered (spaces, "instance_flags 0x%x",
4337 TYPE_INSTANCE_FLAGS (type));
4338 if (TYPE_CONST (type))
4339 {
4340 puts_filtered (" TYPE_CONST");
4341 }
4342 if (TYPE_VOLATILE (type))
4343 {
4344 puts_filtered (" TYPE_VOLATILE");
4345 }
4346 if (TYPE_CODE_SPACE (type))
4347 {
4348 puts_filtered (" TYPE_CODE_SPACE");
4349 }
4350 if (TYPE_DATA_SPACE (type))
4351 {
4352 puts_filtered (" TYPE_DATA_SPACE");
4353 }
4354 if (TYPE_ADDRESS_CLASS_1 (type))
4355 {
4356 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4357 }
4358 if (TYPE_ADDRESS_CLASS_2 (type))
4359 {
4360 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4361 }
4362 if (TYPE_RESTRICT (type))
4363 {
4364 puts_filtered (" TYPE_RESTRICT");
4365 }
4366 if (TYPE_ATOMIC (type))
4367 {
4368 puts_filtered (" TYPE_ATOMIC");
4369 }
4370 puts_filtered ("\n");
4371
4372 printfi_filtered (spaces, "flags");
4373 if (TYPE_UNSIGNED (type))
4374 {
4375 puts_filtered (" TYPE_UNSIGNED");
4376 }
4377 if (TYPE_NOSIGN (type))
4378 {
4379 puts_filtered (" TYPE_NOSIGN");
4380 }
4381 if (TYPE_STUB (type))
4382 {
4383 puts_filtered (" TYPE_STUB");
4384 }
4385 if (TYPE_TARGET_STUB (type))
4386 {
4387 puts_filtered (" TYPE_TARGET_STUB");
4388 }
4389 if (TYPE_STATIC (type))
4390 {
4391 puts_filtered (" TYPE_STATIC");
4392 }
4393 if (TYPE_PROTOTYPED (type))
4394 {
4395 puts_filtered (" TYPE_PROTOTYPED");
4396 }
4397 if (TYPE_INCOMPLETE (type))
4398 {
4399 puts_filtered (" TYPE_INCOMPLETE");
4400 }
4401 if (TYPE_VARARGS (type))
4402 {
4403 puts_filtered (" TYPE_VARARGS");
4404 }
4405 /* This is used for things like AltiVec registers on ppc. Gcc emits
4406 an attribute for the array type, which tells whether or not we
4407 have a vector, instead of a regular array. */
4408 if (TYPE_VECTOR (type))
4409 {
4410 puts_filtered (" TYPE_VECTOR");
4411 }
4412 if (TYPE_FIXED_INSTANCE (type))
4413 {
4414 puts_filtered (" TYPE_FIXED_INSTANCE");
4415 }
4416 if (TYPE_STUB_SUPPORTED (type))
4417 {
4418 puts_filtered (" TYPE_STUB_SUPPORTED");
4419 }
4420 if (TYPE_NOTTEXT (type))
4421 {
4422 puts_filtered (" TYPE_NOTTEXT");
4423 }
4424 puts_filtered ("\n");
4425 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4426 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4427 puts_filtered ("\n");
4428 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4429 {
4430 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4431 printfi_filtered (spaces + 2,
4432 "[%d] enumval %s type ",
4433 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4434 else
4435 printfi_filtered (spaces + 2,
4436 "[%d] bitpos %s bitsize %d type ",
4437 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4438 TYPE_FIELD_BITSIZE (type, idx));
4439 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4440 printf_filtered (" name '%s' (",
4441 TYPE_FIELD_NAME (type, idx) != NULL
4442 ? TYPE_FIELD_NAME (type, idx)
4443 : "<NULL>");
4444 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4445 printf_filtered (")\n");
4446 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4447 {
4448 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4449 }
4450 }
4451 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4452 {
4453 printfi_filtered (spaces, "low %s%s high %s%s\n",
4454 plongest (TYPE_LOW_BOUND (type)),
4455 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4456 plongest (TYPE_HIGH_BOUND (type)),
4457 TYPE_HIGH_BOUND_UNDEFINED (type)
4458 ? " (undefined)" : "");
4459 }
4460
4461 switch (TYPE_SPECIFIC_FIELD (type))
4462 {
4463 case TYPE_SPECIFIC_CPLUS_STUFF:
4464 printfi_filtered (spaces, "cplus_stuff ");
4465 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4466 gdb_stdout);
4467 puts_filtered ("\n");
4468 print_cplus_stuff (type, spaces);
4469 break;
4470
4471 case TYPE_SPECIFIC_GNAT_STUFF:
4472 printfi_filtered (spaces, "gnat_stuff ");
4473 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4474 puts_filtered ("\n");
4475 print_gnat_stuff (type, spaces);
4476 break;
4477
4478 case TYPE_SPECIFIC_FLOATFORMAT:
4479 printfi_filtered (spaces, "floatformat ");
4480 if (TYPE_FLOATFORMAT (type) == NULL)
4481 puts_filtered ("(null)");
4482 else
4483 {
4484 puts_filtered ("{ ");
4485 if (TYPE_FLOATFORMAT (type)[0] == NULL
4486 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4487 puts_filtered ("(null)");
4488 else
4489 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4490
4491 puts_filtered (", ");
4492 if (TYPE_FLOATFORMAT (type)[1] == NULL
4493 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4494 puts_filtered ("(null)");
4495 else
4496 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4497
4498 puts_filtered (" }");
4499 }
4500 puts_filtered ("\n");
4501 break;
4502
4503 case TYPE_SPECIFIC_FUNC:
4504 printfi_filtered (spaces, "calling_convention %d\n",
4505 TYPE_CALLING_CONVENTION (type));
4506 /* tail_call_list is not printed. */
4507 break;
4508
4509 case TYPE_SPECIFIC_SELF_TYPE:
4510 printfi_filtered (spaces, "self_type ");
4511 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4512 puts_filtered ("\n");
4513 break;
4514 }
4515
4516 if (spaces == 0)
4517 obstack_free (&dont_print_type_obstack, NULL);
4518 }
4519 \f
4520 /* Trivial helpers for the libiberty hash table, for mapping one
4521 type to another. */
4522
4523 struct type_pair
4524 {
4525 struct type *old, *newobj;
4526 };
4527
4528 static hashval_t
4529 type_pair_hash (const void *item)
4530 {
4531 const struct type_pair *pair = (const struct type_pair *) item;
4532
4533 return htab_hash_pointer (pair->old);
4534 }
4535
4536 static int
4537 type_pair_eq (const void *item_lhs, const void *item_rhs)
4538 {
4539 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4540 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4541
4542 return lhs->old == rhs->old;
4543 }
4544
4545 /* Allocate the hash table used by copy_type_recursive to walk
4546 types without duplicates. We use OBJFILE's obstack, because
4547 OBJFILE is about to be deleted. */
4548
4549 htab_t
4550 create_copied_types_hash (struct objfile *objfile)
4551 {
4552 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4553 NULL, &objfile->objfile_obstack,
4554 hashtab_obstack_allocate,
4555 dummy_obstack_deallocate);
4556 }
4557
4558 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4559
4560 static struct dynamic_prop_list *
4561 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4562 struct dynamic_prop_list *list)
4563 {
4564 struct dynamic_prop_list *copy = list;
4565 struct dynamic_prop_list **node_ptr = &copy;
4566
4567 while (*node_ptr != NULL)
4568 {
4569 struct dynamic_prop_list *node_copy;
4570
4571 node_copy = ((struct dynamic_prop_list *)
4572 obstack_copy (objfile_obstack, *node_ptr,
4573 sizeof (struct dynamic_prop_list)));
4574 node_copy->prop = (*node_ptr)->prop;
4575 *node_ptr = node_copy;
4576
4577 node_ptr = &node_copy->next;
4578 }
4579
4580 return copy;
4581 }
4582
4583 /* Recursively copy (deep copy) TYPE, if it is associated with
4584 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4585 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4586 it is not associated with OBJFILE. */
4587
4588 struct type *
4589 copy_type_recursive (struct objfile *objfile,
4590 struct type *type,
4591 htab_t copied_types)
4592 {
4593 struct type_pair *stored, pair;
4594 void **slot;
4595 struct type *new_type;
4596
4597 if (! TYPE_OBJFILE_OWNED (type))
4598 return type;
4599
4600 /* This type shouldn't be pointing to any types in other objfiles;
4601 if it did, the type might disappear unexpectedly. */
4602 gdb_assert (TYPE_OBJFILE (type) == objfile);
4603
4604 pair.old = type;
4605 slot = htab_find_slot (copied_types, &pair, INSERT);
4606 if (*slot != NULL)
4607 return ((struct type_pair *) *slot)->newobj;
4608
4609 new_type = alloc_type_arch (get_type_arch (type));
4610
4611 /* We must add the new type to the hash table immediately, in case
4612 we encounter this type again during a recursive call below. */
4613 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4614 stored->old = type;
4615 stored->newobj = new_type;
4616 *slot = stored;
4617
4618 /* Copy the common fields of types. For the main type, we simply
4619 copy the entire thing and then update specific fields as needed. */
4620 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4621 TYPE_OBJFILE_OWNED (new_type) = 0;
4622 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4623
4624 if (TYPE_NAME (type))
4625 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4626 if (TYPE_TAG_NAME (type))
4627 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4628
4629 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4630 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4631
4632 /* Copy the fields. */
4633 if (TYPE_NFIELDS (type))
4634 {
4635 int i, nfields;
4636
4637 nfields = TYPE_NFIELDS (type);
4638 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4639 for (i = 0; i < nfields; i++)
4640 {
4641 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4642 TYPE_FIELD_ARTIFICIAL (type, i);
4643 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4644 if (TYPE_FIELD_TYPE (type, i))
4645 TYPE_FIELD_TYPE (new_type, i)
4646 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4647 copied_types);
4648 if (TYPE_FIELD_NAME (type, i))
4649 TYPE_FIELD_NAME (new_type, i) =
4650 xstrdup (TYPE_FIELD_NAME (type, i));
4651 switch (TYPE_FIELD_LOC_KIND (type, i))
4652 {
4653 case FIELD_LOC_KIND_BITPOS:
4654 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4655 TYPE_FIELD_BITPOS (type, i));
4656 break;
4657 case FIELD_LOC_KIND_ENUMVAL:
4658 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4659 TYPE_FIELD_ENUMVAL (type, i));
4660 break;
4661 case FIELD_LOC_KIND_PHYSADDR:
4662 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4663 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4664 break;
4665 case FIELD_LOC_KIND_PHYSNAME:
4666 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4667 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4668 i)));
4669 break;
4670 default:
4671 internal_error (__FILE__, __LINE__,
4672 _("Unexpected type field location kind: %d"),
4673 TYPE_FIELD_LOC_KIND (type, i));
4674 }
4675 }
4676 }
4677
4678 /* For range types, copy the bounds information. */
4679 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4680 {
4681 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4682 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4683 }
4684
4685 if (TYPE_DYN_PROP_LIST (type) != NULL)
4686 TYPE_DYN_PROP_LIST (new_type)
4687 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4688 TYPE_DYN_PROP_LIST (type));
4689
4690
4691 /* Copy pointers to other types. */
4692 if (TYPE_TARGET_TYPE (type))
4693 TYPE_TARGET_TYPE (new_type) =
4694 copy_type_recursive (objfile,
4695 TYPE_TARGET_TYPE (type),
4696 copied_types);
4697
4698 /* Maybe copy the type_specific bits.
4699
4700 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4701 base classes and methods. There's no fundamental reason why we
4702 can't, but at the moment it is not needed. */
4703
4704 switch (TYPE_SPECIFIC_FIELD (type))
4705 {
4706 case TYPE_SPECIFIC_NONE:
4707 break;
4708 case TYPE_SPECIFIC_FUNC:
4709 INIT_FUNC_SPECIFIC (new_type);
4710 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4711 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4712 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4713 break;
4714 case TYPE_SPECIFIC_FLOATFORMAT:
4715 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4716 break;
4717 case TYPE_SPECIFIC_CPLUS_STUFF:
4718 INIT_CPLUS_SPECIFIC (new_type);
4719 break;
4720 case TYPE_SPECIFIC_GNAT_STUFF:
4721 INIT_GNAT_SPECIFIC (new_type);
4722 break;
4723 case TYPE_SPECIFIC_SELF_TYPE:
4724 set_type_self_type (new_type,
4725 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4726 copied_types));
4727 break;
4728 default:
4729 gdb_assert_not_reached ("bad type_specific_kind");
4730 }
4731
4732 return new_type;
4733 }
4734
4735 /* Make a copy of the given TYPE, except that the pointer & reference
4736 types are not preserved.
4737
4738 This function assumes that the given type has an associated objfile.
4739 This objfile is used to allocate the new type. */
4740
4741 struct type *
4742 copy_type (const struct type *type)
4743 {
4744 struct type *new_type;
4745
4746 gdb_assert (TYPE_OBJFILE_OWNED (type));
4747
4748 new_type = alloc_type_copy (type);
4749 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4750 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4751 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4752 sizeof (struct main_type));
4753 if (TYPE_DYN_PROP_LIST (type) != NULL)
4754 TYPE_DYN_PROP_LIST (new_type)
4755 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4756 TYPE_DYN_PROP_LIST (type));
4757
4758 return new_type;
4759 }
4760 \f
4761 /* Helper functions to initialize architecture-specific types. */
4762
4763 /* Allocate a type structure associated with GDBARCH and set its
4764 CODE, LENGTH, and NAME fields. */
4765
4766 struct type *
4767 arch_type (struct gdbarch *gdbarch,
4768 enum type_code code, int length, const char *name)
4769 {
4770 struct type *type;
4771
4772 type = alloc_type_arch (gdbarch);
4773 set_type_code (type, code);
4774 TYPE_LENGTH (type) = length;
4775
4776 if (name)
4777 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4778
4779 return type;
4780 }
4781
4782 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4783 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4784 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4785
4786 struct type *
4787 arch_integer_type (struct gdbarch *gdbarch,
4788 int bit, int unsigned_p, const char *name)
4789 {
4790 struct type *t;
4791
4792 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4793 if (unsigned_p)
4794 TYPE_UNSIGNED (t) = 1;
4795
4796 return t;
4797 }
4798
4799 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4800 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4801 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4802
4803 struct type *
4804 arch_character_type (struct gdbarch *gdbarch,
4805 int bit, int unsigned_p, const char *name)
4806 {
4807 struct type *t;
4808
4809 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4810 if (unsigned_p)
4811 TYPE_UNSIGNED (t) = 1;
4812
4813 return t;
4814 }
4815
4816 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4817 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4818 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4819
4820 struct type *
4821 arch_boolean_type (struct gdbarch *gdbarch,
4822 int bit, int unsigned_p, const char *name)
4823 {
4824 struct type *t;
4825
4826 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4827 if (unsigned_p)
4828 TYPE_UNSIGNED (t) = 1;
4829
4830 return t;
4831 }
4832
4833 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4834 BIT is the type size in bits; if BIT equals -1, the size is
4835 determined by the floatformat. NAME is the type name. Set the
4836 TYPE_FLOATFORMAT from FLOATFORMATS. */
4837
4838 struct type *
4839 arch_float_type (struct gdbarch *gdbarch,
4840 int bit, const char *name,
4841 const struct floatformat **floatformats)
4842 {
4843 struct type *t;
4844
4845 bit = verify_floatformat (bit, floatformats);
4846 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4847 TYPE_FLOATFORMAT (t) = floatformats;
4848
4849 return t;
4850 }
4851
4852 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4853 BIT is the type size in bits. NAME is the type name. */
4854
4855 struct type *
4856 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4857 {
4858 struct type *t;
4859
4860 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4861 return t;
4862 }
4863
4864 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4865 NAME is the type name. TARGET_TYPE is the component float type. */
4866
4867 struct type *
4868 arch_complex_type (struct gdbarch *gdbarch,
4869 const char *name, struct type *target_type)
4870 {
4871 struct type *t;
4872
4873 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4874 2 * TYPE_LENGTH (target_type), name);
4875 TYPE_TARGET_TYPE (t) = target_type;
4876 return t;
4877 }
4878
4879 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4880 BIT is the pointer type size in bits. NAME is the type name.
4881 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4882 TYPE_UNSIGNED flag. */
4883
4884 struct type *
4885 arch_pointer_type (struct gdbarch *gdbarch,
4886 int bit, const char *name, struct type *target_type)
4887 {
4888 struct type *t;
4889
4890 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4891 TYPE_TARGET_TYPE (t) = target_type;
4892 TYPE_UNSIGNED (t) = 1;
4893 return t;
4894 }
4895
4896 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4897 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4898
4899 struct type *
4900 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4901 {
4902 int max_nfields = length * TARGET_CHAR_BIT;
4903 struct type *type;
4904
4905 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4906 TYPE_UNSIGNED (type) = 1;
4907 TYPE_NFIELDS (type) = 0;
4908 /* Pre-allocate enough space assuming every field is one bit. */
4909 TYPE_FIELDS (type)
4910 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4911
4912 return type;
4913 }
4914
4915 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4916 position BITPOS is called NAME. Pass NAME as "" for fields that
4917 should not be printed. */
4918
4919 void
4920 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4921 struct type *field_type, const char *name)
4922 {
4923 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4924 int field_nr = TYPE_NFIELDS (type);
4925
4926 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4927 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4928 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4929 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4930 gdb_assert (name != NULL);
4931
4932 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4933 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4934 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4935 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4936 ++TYPE_NFIELDS (type);
4937 }
4938
4939 /* Special version of append_flags_type_field to add a flag field.
4940 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4941 position BITPOS is called NAME. */
4942
4943 void
4944 append_flags_type_flag (struct type *type, int bitpos, const char *name)
4945 {
4946 struct gdbarch *gdbarch = get_type_arch (type);
4947
4948 append_flags_type_field (type, bitpos, 1,
4949 builtin_type (gdbarch)->builtin_bool,
4950 name);
4951 }
4952
4953 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4954 specified by CODE) associated with GDBARCH. NAME is the type name. */
4955
4956 struct type *
4957 arch_composite_type (struct gdbarch *gdbarch, const char *name,
4958 enum type_code code)
4959 {
4960 struct type *t;
4961
4962 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4963 t = arch_type (gdbarch, code, 0, NULL);
4964 TYPE_TAG_NAME (t) = name;
4965 INIT_CPLUS_SPECIFIC (t);
4966 return t;
4967 }
4968
4969 /* Add new field with name NAME and type FIELD to composite type T.
4970 Do not set the field's position or adjust the type's length;
4971 the caller should do so. Return the new field. */
4972
4973 struct field *
4974 append_composite_type_field_raw (struct type *t, const char *name,
4975 struct type *field)
4976 {
4977 struct field *f;
4978
4979 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4980 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4981 TYPE_NFIELDS (t));
4982 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4983 memset (f, 0, sizeof f[0]);
4984 FIELD_TYPE (f[0]) = field;
4985 FIELD_NAME (f[0]) = name;
4986 return f;
4987 }
4988
4989 /* Add new field with name NAME and type FIELD to composite type T.
4990 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4991
4992 void
4993 append_composite_type_field_aligned (struct type *t, const char *name,
4994 struct type *field, int alignment)
4995 {
4996 struct field *f = append_composite_type_field_raw (t, name, field);
4997
4998 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4999 {
5000 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5001 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5002 }
5003 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5004 {
5005 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5006 if (TYPE_NFIELDS (t) > 1)
5007 {
5008 SET_FIELD_BITPOS (f[0],
5009 (FIELD_BITPOS (f[-1])
5010 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5011 * TARGET_CHAR_BIT)));
5012
5013 if (alignment)
5014 {
5015 int left;
5016
5017 alignment *= TARGET_CHAR_BIT;
5018 left = FIELD_BITPOS (f[0]) % alignment;
5019
5020 if (left)
5021 {
5022 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5023 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5024 }
5025 }
5026 }
5027 }
5028 }
5029
5030 /* Add new field with name NAME and type FIELD to composite type T. */
5031
5032 void
5033 append_composite_type_field (struct type *t, const char *name,
5034 struct type *field)
5035 {
5036 append_composite_type_field_aligned (t, name, field, 0);
5037 }
5038
5039 static struct gdbarch_data *gdbtypes_data;
5040
5041 const struct builtin_type *
5042 builtin_type (struct gdbarch *gdbarch)
5043 {
5044 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5045 }
5046
5047 static void *
5048 gdbtypes_post_init (struct gdbarch *gdbarch)
5049 {
5050 struct builtin_type *builtin_type
5051 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5052
5053 /* Basic types. */
5054 builtin_type->builtin_void
5055 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5056 builtin_type->builtin_char
5057 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5058 !gdbarch_char_signed (gdbarch), "char");
5059 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5060 builtin_type->builtin_signed_char
5061 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5062 0, "signed char");
5063 builtin_type->builtin_unsigned_char
5064 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5065 1, "unsigned char");
5066 builtin_type->builtin_short
5067 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5068 0, "short");
5069 builtin_type->builtin_unsigned_short
5070 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5071 1, "unsigned short");
5072 builtin_type->builtin_int
5073 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5074 0, "int");
5075 builtin_type->builtin_unsigned_int
5076 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5077 1, "unsigned int");
5078 builtin_type->builtin_long
5079 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5080 0, "long");
5081 builtin_type->builtin_unsigned_long
5082 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5083 1, "unsigned long");
5084 builtin_type->builtin_long_long
5085 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5086 0, "long long");
5087 builtin_type->builtin_unsigned_long_long
5088 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5089 1, "unsigned long long");
5090 builtin_type->builtin_float
5091 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5092 "float", gdbarch_float_format (gdbarch));
5093 builtin_type->builtin_double
5094 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5095 "double", gdbarch_double_format (gdbarch));
5096 builtin_type->builtin_long_double
5097 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5098 "long double", gdbarch_long_double_format (gdbarch));
5099 builtin_type->builtin_complex
5100 = arch_complex_type (gdbarch, "complex",
5101 builtin_type->builtin_float);
5102 builtin_type->builtin_double_complex
5103 = arch_complex_type (gdbarch, "double complex",
5104 builtin_type->builtin_double);
5105 builtin_type->builtin_string
5106 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5107 builtin_type->builtin_bool
5108 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5109
5110 /* The following three are about decimal floating point types, which
5111 are 32-bits, 64-bits and 128-bits respectively. */
5112 builtin_type->builtin_decfloat
5113 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5114 builtin_type->builtin_decdouble
5115 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5116 builtin_type->builtin_declong
5117 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5118
5119 /* "True" character types. */
5120 builtin_type->builtin_true_char
5121 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5122 builtin_type->builtin_true_unsigned_char
5123 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5124
5125 /* Fixed-size integer types. */
5126 builtin_type->builtin_int0
5127 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5128 builtin_type->builtin_int8
5129 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5130 builtin_type->builtin_uint8
5131 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5132 builtin_type->builtin_int16
5133 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5134 builtin_type->builtin_uint16
5135 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5136 builtin_type->builtin_int32
5137 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5138 builtin_type->builtin_uint32
5139 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5140 builtin_type->builtin_int64
5141 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5142 builtin_type->builtin_uint64
5143 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5144 builtin_type->builtin_int128
5145 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5146 builtin_type->builtin_uint128
5147 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5148 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5149 TYPE_INSTANCE_FLAG_NOTTEXT;
5150 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5151 TYPE_INSTANCE_FLAG_NOTTEXT;
5152
5153 /* Wide character types. */
5154 builtin_type->builtin_char16
5155 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5156 builtin_type->builtin_char32
5157 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5158
5159
5160 /* Default data/code pointer types. */
5161 builtin_type->builtin_data_ptr
5162 = lookup_pointer_type (builtin_type->builtin_void);
5163 builtin_type->builtin_func_ptr
5164 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5165 builtin_type->builtin_func_func
5166 = lookup_function_type (builtin_type->builtin_func_ptr);
5167
5168 /* This type represents a GDB internal function. */
5169 builtin_type->internal_fn
5170 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5171 "<internal function>");
5172
5173 /* This type represents an xmethod. */
5174 builtin_type->xmethod
5175 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5176
5177 return builtin_type;
5178 }
5179
5180 /* This set of objfile-based types is intended to be used by symbol
5181 readers as basic types. */
5182
5183 static const struct objfile_data *objfile_type_data;
5184
5185 const struct objfile_type *
5186 objfile_type (struct objfile *objfile)
5187 {
5188 struct gdbarch *gdbarch;
5189 struct objfile_type *objfile_type
5190 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5191
5192 if (objfile_type)
5193 return objfile_type;
5194
5195 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5196 1, struct objfile_type);
5197
5198 /* Use the objfile architecture to determine basic type properties. */
5199 gdbarch = get_objfile_arch (objfile);
5200
5201 /* Basic types. */
5202 objfile_type->builtin_void
5203 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5204 objfile_type->builtin_char
5205 = init_integer_type (objfile, TARGET_CHAR_BIT,
5206 !gdbarch_char_signed (gdbarch), "char");
5207 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5208 objfile_type->builtin_signed_char
5209 = init_integer_type (objfile, TARGET_CHAR_BIT,
5210 0, "signed char");
5211 objfile_type->builtin_unsigned_char
5212 = init_integer_type (objfile, TARGET_CHAR_BIT,
5213 1, "unsigned char");
5214 objfile_type->builtin_short
5215 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5216 0, "short");
5217 objfile_type->builtin_unsigned_short
5218 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5219 1, "unsigned short");
5220 objfile_type->builtin_int
5221 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5222 0, "int");
5223 objfile_type->builtin_unsigned_int
5224 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5225 1, "unsigned int");
5226 objfile_type->builtin_long
5227 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5228 0, "long");
5229 objfile_type->builtin_unsigned_long
5230 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5231 1, "unsigned long");
5232 objfile_type->builtin_long_long
5233 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5234 0, "long long");
5235 objfile_type->builtin_unsigned_long_long
5236 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5237 1, "unsigned long long");
5238 objfile_type->builtin_float
5239 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5240 "float", gdbarch_float_format (gdbarch));
5241 objfile_type->builtin_double
5242 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5243 "double", gdbarch_double_format (gdbarch));
5244 objfile_type->builtin_long_double
5245 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5246 "long double", gdbarch_long_double_format (gdbarch));
5247
5248 /* This type represents a type that was unrecognized in symbol read-in. */
5249 objfile_type->builtin_error
5250 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5251
5252 /* The following set of types is used for symbols with no
5253 debug information. */
5254 objfile_type->nodebug_text_symbol
5255 = init_type (objfile, TYPE_CODE_FUNC, 1,
5256 "<text variable, no debug info>");
5257 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5258 = objfile_type->builtin_int;
5259 objfile_type->nodebug_text_gnu_ifunc_symbol
5260 = init_type (objfile, TYPE_CODE_FUNC, 1,
5261 "<text gnu-indirect-function variable, no debug info>");
5262 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5263 = objfile_type->nodebug_text_symbol;
5264 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5265 objfile_type->nodebug_got_plt_symbol
5266 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5267 "<text from jump slot in .got.plt, no debug info>",
5268 objfile_type->nodebug_text_symbol);
5269 objfile_type->nodebug_data_symbol
5270 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5271 "<data variable, no debug info>");
5272 objfile_type->nodebug_unknown_symbol
5273 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5274 "<variable (not text or data), no debug info>");
5275 objfile_type->nodebug_tls_symbol
5276 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5277 "<thread local variable, no debug info>");
5278
5279 /* NOTE: on some targets, addresses and pointers are not necessarily
5280 the same.
5281
5282 The upshot is:
5283 - gdb's `struct type' always describes the target's
5284 representation.
5285 - gdb's `struct value' objects should always hold values in
5286 target form.
5287 - gdb's CORE_ADDR values are addresses in the unified virtual
5288 address space that the assembler and linker work with. Thus,
5289 since target_read_memory takes a CORE_ADDR as an argument, it
5290 can access any memory on the target, even if the processor has
5291 separate code and data address spaces.
5292
5293 In this context, objfile_type->builtin_core_addr is a bit odd:
5294 it's a target type for a value the target will never see. It's
5295 only used to hold the values of (typeless) linker symbols, which
5296 are indeed in the unified virtual address space. */
5297
5298 objfile_type->builtin_core_addr
5299 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5300 "__CORE_ADDR");
5301
5302 set_objfile_data (objfile, objfile_type_data, objfile_type);
5303 return objfile_type;
5304 }
5305
5306 extern initialize_file_ftype _initialize_gdbtypes;
5307
5308 void
5309 _initialize_gdbtypes (void)
5310 {
5311 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5312 objfile_type_data = register_objfile_data ();
5313
5314 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5315 _("Set debugging of C++ overloading."),
5316 _("Show debugging of C++ overloading."),
5317 _("When enabled, ranking of the "
5318 "functions is displayed."),
5319 NULL,
5320 show_overload_debug,
5321 &setdebuglist, &showdebuglist);
5322
5323 /* Add user knob for controlling resolution of opaque types. */
5324 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5325 &opaque_type_resolution,
5326 _("Set resolution of opaque struct/class/union"
5327 " types (if set before loading symbols)."),
5328 _("Show resolution of opaque struct/class/union"
5329 " types (if set before loading symbols)."),
5330 NULL, NULL,
5331 show_opaque_type_resolution,
5332 &setlist, &showlist);
5333
5334 /* Add an option to permit non-strict type checking. */
5335 add_setshow_boolean_cmd ("type", class_support,
5336 &strict_type_checking,
5337 _("Set strict type checking."),
5338 _("Show strict type checking."),
5339 NULL, NULL,
5340 show_strict_type_checking,
5341 &setchecklist, &showchecklist);
5342 }
This page took 0.154364 seconds and 5 git commands to generate.