Remove TYPE_NOSIGN "char" hack
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534 }
535
536 /* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
538
539 int
540 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
541 {
542 int type_flags;
543
544 /* Check for known address space delimiters. */
545 if (!strcmp (space_identifier, "code"))
546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
547 else if (!strcmp (space_identifier, "data"))
548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
553 return type_flags;
554 else
555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
556 }
557
558 /* Identify address space identifier by integer flag as defined in
559 gdbtypes.h -- return the string version of the adress space name. */
560
561 const char *
562 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
563 {
564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
565 return "code";
566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
567 return "data";
568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
571 else
572 return NULL;
573 }
574
575 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
579
580 static struct type *
581 make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
583 {
584 struct type *ntype;
585
586 ntype = type;
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
594
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
610
611 /* Pointers or references to the original type are not relevant to
612 the new type. */
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
615
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
622
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
626 return ntype;
627 }
628
629 /* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
637
638 struct type *
639 make_type_with_address_space (struct type *type, int space_flag)
640 {
641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648 }
649
650 /* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
655
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
661
662 struct type *
663 make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
666 {
667 struct type *ntype; /* New type */
668
669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
672
673 if (cnst)
674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
675
676 if (voltl)
677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
678
679 if (typeptr && *typeptr != NULL)
680 {
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
694 }
695
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
698
699 if (typeptr != NULL)
700 *typeptr = ntype;
701
702 return ntype;
703 }
704
705 /* Make a 'restrict'-qualified version of TYPE. */
706
707 struct type *
708 make_restrict_type (struct type *type)
709 {
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714 }
715
716 /* Make a type without const, volatile, or restrict. */
717
718 struct type *
719 make_unqualified_type (struct type *type)
720 {
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727 }
728
729 /* Make a '_Atomic'-qualified version of TYPE. */
730
731 struct type *
732 make_atomic_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738 }
739
740 /* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
743
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
749
750 void
751 replace_type (struct type *ntype, struct type *type)
752 {
753 struct type *chain;
754
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
760
761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
762
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
765 chain = ntype;
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
780
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
784 }
785
786 /* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791 struct type *
792 lookup_memberptr_type (struct type *type, struct type *domain)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (type);
797 smash_to_memberptr_type (mtype, domain, type);
798 return mtype;
799 }
800
801 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803 struct type *
804 lookup_methodptr_type (struct type *to_type)
805 {
806 struct type *mtype;
807
808 mtype = alloc_type_copy (to_type);
809 smash_to_methodptr_type (mtype, to_type);
810 return mtype;
811 }
812
813 /* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
818
819 struct type *
820 allocate_stub_method (struct type *type)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
828 TYPE_TARGET_TYPE (mtype) = type;
829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
830 return mtype;
831 }
832
833 /* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
835
836 struct type *
837 create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
840 {
841 if (result_type == NULL)
842 result_type = alloc_type_copy (index_type);
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
845 if (TYPE_STUB (index_type))
846 TYPE_TARGET_STUB (result_type) = 1;
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
849
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
854
855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
856 TYPE_UNSIGNED (result_type) = 1;
857
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
865 return result_type;
866 }
867
868 /* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878 struct type *
879 create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881 {
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893 }
894
895 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898 static int
899 has_static_range (const struct range_bounds *bounds)
900 {
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903 }
904
905
906 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
909
910 int
911 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
912 {
913 type = check_typedef (type);
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
924 entries. */
925 int i;
926
927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
934 }
935
936 /* Set unsigned indicator if warranted. */
937 if (*lowp >= 0)
938 {
939 TYPE_UNSIGNED (type) = 1;
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
958 *highp = -*lowp - 1;
959 return 0;
960 }
961 /* ... fall through for unsigned ints ... */
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973 }
974
975 /* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
979 Return 1 if the operation was successful. Return zero otherwise,
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989 int
990 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991 {
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017 }
1018
1019 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031 */
1032
1033 int
1034 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035 {
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056 }
1057
1058 /* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
1071
1072 struct type *
1073 create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
1077 {
1078 if (result_type == NULL)
1079 result_type = alloc_type_copy (range_type);
1080
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
1091 element_type = check_typedef (element_type);
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
1104 else
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1118 TYPE_INDEX_TYPE (result_type) = range_type;
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1121
1122 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1123 if (TYPE_LENGTH (result_type) == 0)
1124 TYPE_TARGET_STUB (result_type) = 1;
1125
1126 return result_type;
1127 }
1128
1129 /* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132 struct type *
1133 create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136 {
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139 }
1140
1141 struct type *
1142 lookup_array_range_type (struct type *element_type,
1143 LONGEST low_bound, LONGEST high_bound)
1144 {
1145 struct gdbarch *gdbarch = get_type_arch (element_type);
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1149
1150 return create_array_type (NULL, element_type, range_type);
1151 }
1152
1153 /* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
1164
1165 struct type *
1166 create_string_type (struct type *result_type,
1167 struct type *string_char_type,
1168 struct type *range_type)
1169 {
1170 result_type = create_array_type (result_type,
1171 string_char_type,
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1174 return result_type;
1175 }
1176
1177 struct type *
1178 lookup_string_range_type (struct type *string_char_type,
1179 LONGEST low_bound, LONGEST high_bound)
1180 {
1181 struct type *result_type;
1182
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187 }
1188
1189 struct type *
1190 create_set_type (struct type *result_type, struct type *domain_type)
1191 {
1192 if (result_type == NULL)
1193 result_type = alloc_type_copy (domain_type);
1194
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1199
1200 if (!TYPE_STUB (domain_type))
1201 {
1202 LONGEST low_bound, high_bound, bit_length;
1203
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1209 if (low_bound >= 0)
1210 TYPE_UNSIGNED (result_type) = 1;
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
1214 return result_type;
1215 }
1216
1217 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220 void
1221 make_vector_type (struct type *array_type)
1222 {
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
1240 TYPE_VECTOR (array_type) = 1;
1241 }
1242
1243 struct type *
1244 init_vector_type (struct type *elt_type, int n)
1245 {
1246 struct type *array_type;
1247
1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1249 make_vector_type (array_type);
1250 return array_type;
1251 }
1252
1253 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259 struct type *
1260 internal_type_self_type (struct type *type)
1261 {
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278 }
1279
1280 /* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285 void
1286 set_type_self_type (struct type *type, struct type *self_type)
1287 {
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306 }
1307
1308 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
1314
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
1317 allocated. */
1318
1319 void
1320 smash_to_memberptr_type (struct type *type, struct type *self_type,
1321 struct type *to_type)
1322 {
1323 smash_type (type);
1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1325 TYPE_TARGET_TYPE (type) = to_type;
1326 set_type_self_type (type, self_type);
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1331 }
1332
1333 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339 void
1340 smash_to_methodptr_type (struct type *type, struct type *to_type)
1341 {
1342 smash_type (type);
1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1344 TYPE_TARGET_TYPE (type) = to_type;
1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1347 }
1348
1349 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1350 METHOD just means `function that gets an extra "this" argument'.
1351
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
1354 allocated. */
1355
1356 void
1357 smash_to_method_type (struct type *type, struct type *self_type,
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
1360 {
1361 smash_type (type);
1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
1363 TYPE_TARGET_TYPE (type) = to_type;
1364 set_type_self_type (type, self_type);
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
1368 TYPE_VARARGS (type) = 1;
1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1370 }
1371
1372 /* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
1375 const char *
1376 type_name_no_tag (const struct type *type)
1377 {
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
1384 return TYPE_NAME (type);
1385 }
1386
1387 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394 const char *
1395 type_name_no_tag_or_error (struct type *type)
1396 {
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
1401 type = check_typedef (type);
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
1412 }
1413
1414 /* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
1417
1418 struct type *
1419 lookup_typename (const struct language_defn *language,
1420 struct gdbarch *gdbarch, const char *name,
1421 const struct block *block, int noerr)
1422 {
1423 struct symbol *sym;
1424
1425 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1426 language->la_language, NULL).symbol;
1427 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1428 return SYMBOL_TYPE (sym);
1429
1430 if (noerr)
1431 return NULL;
1432 error (_("No type named %s."), name);
1433 }
1434
1435 struct type *
1436 lookup_unsigned_typename (const struct language_defn *language,
1437 struct gdbarch *gdbarch, const char *name)
1438 {
1439 char *uns = (char *) alloca (strlen (name) + 10);
1440
1441 strcpy (uns, "unsigned ");
1442 strcpy (uns + 9, name);
1443 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1444 }
1445
1446 struct type *
1447 lookup_signed_typename (const struct language_defn *language,
1448 struct gdbarch *gdbarch, const char *name)
1449 {
1450 struct type *t;
1451 char *uns = (char *) alloca (strlen (name) + 8);
1452
1453 strcpy (uns, "signed ");
1454 strcpy (uns + 7, name);
1455 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1456 /* If we don't find "signed FOO" just try again with plain "FOO". */
1457 if (t != NULL)
1458 return t;
1459 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1460 }
1461
1462 /* Lookup a structure type named "struct NAME",
1463 visible in lexical block BLOCK. */
1464
1465 struct type *
1466 lookup_struct (const char *name, const struct block *block)
1467 {
1468 struct symbol *sym;
1469
1470 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1471
1472 if (sym == NULL)
1473 {
1474 error (_("No struct type named %s."), name);
1475 }
1476 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1477 {
1478 error (_("This context has class, union or enum %s, not a struct."),
1479 name);
1480 }
1481 return (SYMBOL_TYPE (sym));
1482 }
1483
1484 /* Lookup a union type named "union NAME",
1485 visible in lexical block BLOCK. */
1486
1487 struct type *
1488 lookup_union (const char *name, const struct block *block)
1489 {
1490 struct symbol *sym;
1491 struct type *t;
1492
1493 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1494
1495 if (sym == NULL)
1496 error (_("No union type named %s."), name);
1497
1498 t = SYMBOL_TYPE (sym);
1499
1500 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1501 return t;
1502
1503 /* If we get here, it's not a union. */
1504 error (_("This context has class, struct or enum %s, not a union."),
1505 name);
1506 }
1507
1508 /* Lookup an enum type named "enum NAME",
1509 visible in lexical block BLOCK. */
1510
1511 struct type *
1512 lookup_enum (const char *name, const struct block *block)
1513 {
1514 struct symbol *sym;
1515
1516 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1517 if (sym == NULL)
1518 {
1519 error (_("No enum type named %s."), name);
1520 }
1521 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1522 {
1523 error (_("This context has class, struct or union %s, not an enum."),
1524 name);
1525 }
1526 return (SYMBOL_TYPE (sym));
1527 }
1528
1529 /* Lookup a template type named "template NAME<TYPE>",
1530 visible in lexical block BLOCK. */
1531
1532 struct type *
1533 lookup_template_type (char *name, struct type *type,
1534 const struct block *block)
1535 {
1536 struct symbol *sym;
1537 char *nam = (char *)
1538 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1539
1540 strcpy (nam, name);
1541 strcat (nam, "<");
1542 strcat (nam, TYPE_NAME (type));
1543 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1544
1545 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1546
1547 if (sym == NULL)
1548 {
1549 error (_("No template type named %s."), name);
1550 }
1551 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1552 {
1553 error (_("This context has class, union or enum %s, not a struct."),
1554 name);
1555 }
1556 return (SYMBOL_TYPE (sym));
1557 }
1558
1559 /* Given a type TYPE, lookup the type of the component of type named
1560 NAME.
1561
1562 TYPE can be either a struct or union, or a pointer or reference to
1563 a struct or union. If it is a pointer or reference, its target
1564 type is automatically used. Thus '.' and '->' are interchangable,
1565 as specified for the definitions of the expression element types
1566 STRUCTOP_STRUCT and STRUCTOP_PTR.
1567
1568 If NOERR is nonzero, return zero if NAME is not suitably defined.
1569 If NAME is the name of a baseclass type, return that type. */
1570
1571 struct type *
1572 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1573 {
1574 int i;
1575 char *type_name;
1576
1577 for (;;)
1578 {
1579 type = check_typedef (type);
1580 if (TYPE_CODE (type) != TYPE_CODE_PTR
1581 && TYPE_CODE (type) != TYPE_CODE_REF)
1582 break;
1583 type = TYPE_TARGET_TYPE (type);
1584 }
1585
1586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1587 && TYPE_CODE (type) != TYPE_CODE_UNION)
1588 {
1589 type_name = type_to_string (type);
1590 make_cleanup (xfree, type_name);
1591 error (_("Type %s is not a structure or union type."), type_name);
1592 }
1593
1594 #if 0
1595 /* FIXME: This change put in by Michael seems incorrect for the case
1596 where the structure tag name is the same as the member name.
1597 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1598 foo; } bell;" Disabled by fnf. */
1599 {
1600 char *type_name;
1601
1602 type_name = type_name_no_tag (type);
1603 if (type_name != NULL && strcmp (type_name, name) == 0)
1604 return type;
1605 }
1606 #endif
1607
1608 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1609 {
1610 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1611
1612 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1613 {
1614 return TYPE_FIELD_TYPE (type, i);
1615 }
1616 else if (!t_field_name || *t_field_name == '\0')
1617 {
1618 struct type *subtype
1619 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1620
1621 if (subtype != NULL)
1622 return subtype;
1623 }
1624 }
1625
1626 /* OK, it's not in this class. Recursively check the baseclasses. */
1627 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1628 {
1629 struct type *t;
1630
1631 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1632 if (t != NULL)
1633 {
1634 return t;
1635 }
1636 }
1637
1638 if (noerr)
1639 {
1640 return NULL;
1641 }
1642
1643 type_name = type_to_string (type);
1644 make_cleanup (xfree, type_name);
1645 error (_("Type %s has no component named %s."), type_name, name);
1646 }
1647
1648 /* Store in *MAX the largest number representable by unsigned integer type
1649 TYPE. */
1650
1651 void
1652 get_unsigned_type_max (struct type *type, ULONGEST *max)
1653 {
1654 unsigned int n;
1655
1656 type = check_typedef (type);
1657 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1658 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1659
1660 /* Written this way to avoid overflow. */
1661 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1662 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1663 }
1664
1665 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1666 signed integer type TYPE. */
1667
1668 void
1669 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1670 {
1671 unsigned int n;
1672
1673 type = check_typedef (type);
1674 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1675 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1676
1677 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1678 *min = -((ULONGEST) 1 << (n - 1));
1679 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1680 }
1681
1682 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1683 cplus_stuff.vptr_fieldno.
1684
1685 cplus_stuff is initialized to cplus_struct_default which does not
1686 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1687 designated initializers). We cope with that here. */
1688
1689 int
1690 internal_type_vptr_fieldno (struct type *type)
1691 {
1692 type = check_typedef (type);
1693 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1694 || TYPE_CODE (type) == TYPE_CODE_UNION);
1695 if (!HAVE_CPLUS_STRUCT (type))
1696 return -1;
1697 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1698 }
1699
1700 /* Set the value of cplus_stuff.vptr_fieldno. */
1701
1702 void
1703 set_type_vptr_fieldno (struct type *type, int fieldno)
1704 {
1705 type = check_typedef (type);
1706 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1707 || TYPE_CODE (type) == TYPE_CODE_UNION);
1708 if (!HAVE_CPLUS_STRUCT (type))
1709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1710 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1711 }
1712
1713 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1714 cplus_stuff.vptr_basetype. */
1715
1716 struct type *
1717 internal_type_vptr_basetype (struct type *type)
1718 {
1719 type = check_typedef (type);
1720 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1721 || TYPE_CODE (type) == TYPE_CODE_UNION);
1722 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1723 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1724 }
1725
1726 /* Set the value of cplus_stuff.vptr_basetype. */
1727
1728 void
1729 set_type_vptr_basetype (struct type *type, struct type *basetype)
1730 {
1731 type = check_typedef (type);
1732 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1733 || TYPE_CODE (type) == TYPE_CODE_UNION);
1734 if (!HAVE_CPLUS_STRUCT (type))
1735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1736 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1737 }
1738
1739 /* Lookup the vptr basetype/fieldno values for TYPE.
1740 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1741 vptr_fieldno. Also, if found and basetype is from the same objfile,
1742 cache the results.
1743 If not found, return -1 and ignore BASETYPEP.
1744 Callers should be aware that in some cases (for example,
1745 the type or one of its baseclasses is a stub type and we are
1746 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1747 this function will not be able to find the
1748 virtual function table pointer, and vptr_fieldno will remain -1 and
1749 vptr_basetype will remain NULL or incomplete. */
1750
1751 int
1752 get_vptr_fieldno (struct type *type, struct type **basetypep)
1753 {
1754 type = check_typedef (type);
1755
1756 if (TYPE_VPTR_FIELDNO (type) < 0)
1757 {
1758 int i;
1759
1760 /* We must start at zero in case the first (and only) baseclass
1761 is virtual (and hence we cannot share the table pointer). */
1762 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1763 {
1764 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1765 int fieldno;
1766 struct type *basetype;
1767
1768 fieldno = get_vptr_fieldno (baseclass, &basetype);
1769 if (fieldno >= 0)
1770 {
1771 /* If the type comes from a different objfile we can't cache
1772 it, it may have a different lifetime. PR 2384 */
1773 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1774 {
1775 set_type_vptr_fieldno (type, fieldno);
1776 set_type_vptr_basetype (type, basetype);
1777 }
1778 if (basetypep)
1779 *basetypep = basetype;
1780 return fieldno;
1781 }
1782 }
1783
1784 /* Not found. */
1785 return -1;
1786 }
1787 else
1788 {
1789 if (basetypep)
1790 *basetypep = TYPE_VPTR_BASETYPE (type);
1791 return TYPE_VPTR_FIELDNO (type);
1792 }
1793 }
1794
1795 static void
1796 stub_noname_complaint (void)
1797 {
1798 complaint (&symfile_complaints, _("stub type has NULL name"));
1799 }
1800
1801 /* Worker for is_dynamic_type. */
1802
1803 static int
1804 is_dynamic_type_internal (struct type *type, int top_level)
1805 {
1806 type = check_typedef (type);
1807
1808 /* We only want to recognize references at the outermost level. */
1809 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1810 type = check_typedef (TYPE_TARGET_TYPE (type));
1811
1812 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1813 dynamic, even if the type itself is statically defined.
1814 From a user's point of view, this may appear counter-intuitive;
1815 but it makes sense in this context, because the point is to determine
1816 whether any part of the type needs to be resolved before it can
1817 be exploited. */
1818 if (TYPE_DATA_LOCATION (type) != NULL
1819 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1820 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1821 return 1;
1822
1823 if (TYPE_ASSOCIATED_PROP (type))
1824 return 1;
1825
1826 if (TYPE_ALLOCATED_PROP (type))
1827 return 1;
1828
1829 switch (TYPE_CODE (type))
1830 {
1831 case TYPE_CODE_RANGE:
1832 {
1833 /* A range type is obviously dynamic if it has at least one
1834 dynamic bound. But also consider the range type to be
1835 dynamic when its subtype is dynamic, even if the bounds
1836 of the range type are static. It allows us to assume that
1837 the subtype of a static range type is also static. */
1838 return (!has_static_range (TYPE_RANGE_DATA (type))
1839 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1840 }
1841
1842 case TYPE_CODE_ARRAY:
1843 {
1844 gdb_assert (TYPE_NFIELDS (type) == 1);
1845
1846 /* The array is dynamic if either the bounds are dynamic,
1847 or the elements it contains have a dynamic contents. */
1848 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1849 return 1;
1850 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1851 }
1852
1853 case TYPE_CODE_STRUCT:
1854 case TYPE_CODE_UNION:
1855 {
1856 int i;
1857
1858 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1859 if (!field_is_static (&TYPE_FIELD (type, i))
1860 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1861 return 1;
1862 }
1863 break;
1864 }
1865
1866 return 0;
1867 }
1868
1869 /* See gdbtypes.h. */
1870
1871 int
1872 is_dynamic_type (struct type *type)
1873 {
1874 return is_dynamic_type_internal (type, 1);
1875 }
1876
1877 static struct type *resolve_dynamic_type_internal
1878 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1879
1880 /* Given a dynamic range type (dyn_range_type) and a stack of
1881 struct property_addr_info elements, return a static version
1882 of that type. */
1883
1884 static struct type *
1885 resolve_dynamic_range (struct type *dyn_range_type,
1886 struct property_addr_info *addr_stack)
1887 {
1888 CORE_ADDR value;
1889 struct type *static_range_type, *static_target_type;
1890 const struct dynamic_prop *prop;
1891 struct dynamic_prop low_bound, high_bound;
1892
1893 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1894
1895 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1896 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1897 {
1898 low_bound.kind = PROP_CONST;
1899 low_bound.data.const_val = value;
1900 }
1901 else
1902 {
1903 low_bound.kind = PROP_UNDEFINED;
1904 low_bound.data.const_val = 0;
1905 }
1906
1907 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1908 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1909 {
1910 high_bound.kind = PROP_CONST;
1911 high_bound.data.const_val = value;
1912
1913 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1914 high_bound.data.const_val
1915 = low_bound.data.const_val + high_bound.data.const_val - 1;
1916 }
1917 else
1918 {
1919 high_bound.kind = PROP_UNDEFINED;
1920 high_bound.data.const_val = 0;
1921 }
1922
1923 static_target_type
1924 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1925 addr_stack, 0);
1926 static_range_type = create_range_type (copy_type (dyn_range_type),
1927 static_target_type,
1928 &low_bound, &high_bound);
1929 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1930 return static_range_type;
1931 }
1932
1933 /* Resolves dynamic bound values of an array type TYPE to static ones.
1934 ADDR_STACK is a stack of struct property_addr_info to be used
1935 if needed during the dynamic resolution. */
1936
1937 static struct type *
1938 resolve_dynamic_array (struct type *type,
1939 struct property_addr_info *addr_stack)
1940 {
1941 CORE_ADDR value;
1942 struct type *elt_type;
1943 struct type *range_type;
1944 struct type *ary_dim;
1945 struct dynamic_prop *prop;
1946
1947 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1948
1949 type = copy_type (type);
1950
1951 elt_type = type;
1952 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1953 range_type = resolve_dynamic_range (range_type, addr_stack);
1954
1955 /* Resolve allocated/associated here before creating a new array type, which
1956 will update the length of the array accordingly. */
1957 prop = TYPE_ALLOCATED_PROP (type);
1958 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1959 {
1960 TYPE_DYN_PROP_ADDR (prop) = value;
1961 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1962 }
1963 prop = TYPE_ASSOCIATED_PROP (type);
1964 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1965 {
1966 TYPE_DYN_PROP_ADDR (prop) = value;
1967 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1968 }
1969
1970 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1971
1972 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1973 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1974 else
1975 elt_type = TYPE_TARGET_TYPE (type);
1976
1977 return create_array_type_with_stride (type, elt_type, range_type,
1978 TYPE_FIELD_BITSIZE (type, 0));
1979 }
1980
1981 /* Resolve dynamic bounds of members of the union TYPE to static
1982 bounds. ADDR_STACK is a stack of struct property_addr_info
1983 to be used if needed during the dynamic resolution. */
1984
1985 static struct type *
1986 resolve_dynamic_union (struct type *type,
1987 struct property_addr_info *addr_stack)
1988 {
1989 struct type *resolved_type;
1990 int i;
1991 unsigned int max_len = 0;
1992
1993 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1994
1995 resolved_type = copy_type (type);
1996 TYPE_FIELDS (resolved_type)
1997 = (struct field *) TYPE_ALLOC (resolved_type,
1998 TYPE_NFIELDS (resolved_type)
1999 * sizeof (struct field));
2000 memcpy (TYPE_FIELDS (resolved_type),
2001 TYPE_FIELDS (type),
2002 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2003 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2004 {
2005 struct type *t;
2006
2007 if (field_is_static (&TYPE_FIELD (type, i)))
2008 continue;
2009
2010 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2011 addr_stack, 0);
2012 TYPE_FIELD_TYPE (resolved_type, i) = t;
2013 if (TYPE_LENGTH (t) > max_len)
2014 max_len = TYPE_LENGTH (t);
2015 }
2016
2017 TYPE_LENGTH (resolved_type) = max_len;
2018 return resolved_type;
2019 }
2020
2021 /* Resolve dynamic bounds of members of the struct TYPE to static
2022 bounds. ADDR_STACK is a stack of struct property_addr_info to
2023 be used if needed during the dynamic resolution. */
2024
2025 static struct type *
2026 resolve_dynamic_struct (struct type *type,
2027 struct property_addr_info *addr_stack)
2028 {
2029 struct type *resolved_type;
2030 int i;
2031 unsigned resolved_type_bit_length = 0;
2032
2033 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2034 gdb_assert (TYPE_NFIELDS (type) > 0);
2035
2036 resolved_type = copy_type (type);
2037 TYPE_FIELDS (resolved_type)
2038 = (struct field *) TYPE_ALLOC (resolved_type,
2039 TYPE_NFIELDS (resolved_type)
2040 * sizeof (struct field));
2041 memcpy (TYPE_FIELDS (resolved_type),
2042 TYPE_FIELDS (type),
2043 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2044 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2045 {
2046 unsigned new_bit_length;
2047 struct property_addr_info pinfo;
2048
2049 if (field_is_static (&TYPE_FIELD (type, i)))
2050 continue;
2051
2052 /* As we know this field is not a static field, the field's
2053 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2054 this is the case, but only trigger a simple error rather
2055 than an internal error if that fails. While failing
2056 that verification indicates a bug in our code, the error
2057 is not severe enough to suggest to the user he stops
2058 his debugging session because of it. */
2059 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2060 error (_("Cannot determine struct field location"
2061 " (invalid location kind)"));
2062
2063 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2064 pinfo.valaddr = addr_stack->valaddr;
2065 pinfo.addr
2066 = (addr_stack->addr
2067 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2068 pinfo.next = addr_stack;
2069
2070 TYPE_FIELD_TYPE (resolved_type, i)
2071 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2072 &pinfo, 0);
2073 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2074 == FIELD_LOC_KIND_BITPOS);
2075
2076 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2077 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2078 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2079 else
2080 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2081 * TARGET_CHAR_BIT);
2082
2083 /* Normally, we would use the position and size of the last field
2084 to determine the size of the enclosing structure. But GCC seems
2085 to be encoding the position of some fields incorrectly when
2086 the struct contains a dynamic field that is not placed last.
2087 So we compute the struct size based on the field that has
2088 the highest position + size - probably the best we can do. */
2089 if (new_bit_length > resolved_type_bit_length)
2090 resolved_type_bit_length = new_bit_length;
2091 }
2092
2093 /* The length of a type won't change for fortran, but it does for C and Ada.
2094 For fortran the size of dynamic fields might change over time but not the
2095 type length of the structure. If we adapt it, we run into problems
2096 when calculating the element offset for arrays of structs. */
2097 if (current_language->la_language != language_fortran)
2098 TYPE_LENGTH (resolved_type)
2099 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2100
2101 /* The Ada language uses this field as a cache for static fixed types: reset
2102 it as RESOLVED_TYPE must have its own static fixed type. */
2103 TYPE_TARGET_TYPE (resolved_type) = NULL;
2104
2105 return resolved_type;
2106 }
2107
2108 /* Worker for resolved_dynamic_type. */
2109
2110 static struct type *
2111 resolve_dynamic_type_internal (struct type *type,
2112 struct property_addr_info *addr_stack,
2113 int top_level)
2114 {
2115 struct type *real_type = check_typedef (type);
2116 struct type *resolved_type = type;
2117 struct dynamic_prop *prop;
2118 CORE_ADDR value;
2119
2120 if (!is_dynamic_type_internal (real_type, top_level))
2121 return type;
2122
2123 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2124 {
2125 resolved_type = copy_type (type);
2126 TYPE_TARGET_TYPE (resolved_type)
2127 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2128 top_level);
2129 }
2130 else
2131 {
2132 /* Before trying to resolve TYPE, make sure it is not a stub. */
2133 type = real_type;
2134
2135 switch (TYPE_CODE (type))
2136 {
2137 case TYPE_CODE_REF:
2138 {
2139 struct property_addr_info pinfo;
2140
2141 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2142 pinfo.valaddr = NULL;
2143 if (addr_stack->valaddr != NULL)
2144 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2145 else
2146 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2147 pinfo.next = addr_stack;
2148
2149 resolved_type = copy_type (type);
2150 TYPE_TARGET_TYPE (resolved_type)
2151 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2152 &pinfo, top_level);
2153 break;
2154 }
2155
2156 case TYPE_CODE_ARRAY:
2157 resolved_type = resolve_dynamic_array (type, addr_stack);
2158 break;
2159
2160 case TYPE_CODE_RANGE:
2161 resolved_type = resolve_dynamic_range (type, addr_stack);
2162 break;
2163
2164 case TYPE_CODE_UNION:
2165 resolved_type = resolve_dynamic_union (type, addr_stack);
2166 break;
2167
2168 case TYPE_CODE_STRUCT:
2169 resolved_type = resolve_dynamic_struct (type, addr_stack);
2170 break;
2171 }
2172 }
2173
2174 /* Resolve data_location attribute. */
2175 prop = TYPE_DATA_LOCATION (resolved_type);
2176 if (prop != NULL
2177 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2178 {
2179 TYPE_DYN_PROP_ADDR (prop) = value;
2180 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2181 }
2182
2183 return resolved_type;
2184 }
2185
2186 /* See gdbtypes.h */
2187
2188 struct type *
2189 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2190 CORE_ADDR addr)
2191 {
2192 struct property_addr_info pinfo
2193 = {check_typedef (type), valaddr, addr, NULL};
2194
2195 return resolve_dynamic_type_internal (type, &pinfo, 1);
2196 }
2197
2198 /* See gdbtypes.h */
2199
2200 struct dynamic_prop *
2201 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2202 {
2203 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2204
2205 while (node != NULL)
2206 {
2207 if (node->prop_kind == prop_kind)
2208 return &node->prop;
2209 node = node->next;
2210 }
2211 return NULL;
2212 }
2213
2214 /* See gdbtypes.h */
2215
2216 void
2217 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2218 struct type *type, struct objfile *objfile)
2219 {
2220 struct dynamic_prop_list *temp;
2221
2222 gdb_assert (TYPE_OBJFILE_OWNED (type));
2223
2224 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2225 temp->prop_kind = prop_kind;
2226 temp->prop = prop;
2227 temp->next = TYPE_DYN_PROP_LIST (type);
2228
2229 TYPE_DYN_PROP_LIST (type) = temp;
2230 }
2231
2232 /* Remove dynamic property from TYPE in case it exists. */
2233
2234 void
2235 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2236 struct type *type)
2237 {
2238 struct dynamic_prop_list *prev_node, *curr_node;
2239
2240 curr_node = TYPE_DYN_PROP_LIST (type);
2241 prev_node = NULL;
2242
2243 while (NULL != curr_node)
2244 {
2245 if (curr_node->prop_kind == prop_kind)
2246 {
2247 /* Update the linked list but don't free anything.
2248 The property was allocated on objstack and it is not known
2249 if we are on top of it. Nevertheless, everything is released
2250 when the complete objstack is freed. */
2251 if (NULL == prev_node)
2252 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2253 else
2254 prev_node->next = curr_node->next;
2255
2256 return;
2257 }
2258
2259 prev_node = curr_node;
2260 curr_node = curr_node->next;
2261 }
2262 }
2263
2264 /* Find the real type of TYPE. This function returns the real type,
2265 after removing all layers of typedefs, and completing opaque or stub
2266 types. Completion changes the TYPE argument, but stripping of
2267 typedefs does not.
2268
2269 Instance flags (e.g. const/volatile) are preserved as typedefs are
2270 stripped. If necessary a new qualified form of the underlying type
2271 is created.
2272
2273 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2274 not been computed and we're either in the middle of reading symbols, or
2275 there was no name for the typedef in the debug info.
2276
2277 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2278 QUITs in the symbol reading code can also throw.
2279 Thus this function can throw an exception.
2280
2281 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2282 the target type.
2283
2284 If this is a stubbed struct (i.e. declared as struct foo *), see if
2285 we can find a full definition in some other file. If so, copy this
2286 definition, so we can use it in future. There used to be a comment
2287 (but not any code) that if we don't find a full definition, we'd
2288 set a flag so we don't spend time in the future checking the same
2289 type. That would be a mistake, though--we might load in more
2290 symbols which contain a full definition for the type. */
2291
2292 struct type *
2293 check_typedef (struct type *type)
2294 {
2295 struct type *orig_type = type;
2296 /* While we're removing typedefs, we don't want to lose qualifiers.
2297 E.g., const/volatile. */
2298 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2299
2300 gdb_assert (type);
2301
2302 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2303 {
2304 if (!TYPE_TARGET_TYPE (type))
2305 {
2306 const char *name;
2307 struct symbol *sym;
2308
2309 /* It is dangerous to call lookup_symbol if we are currently
2310 reading a symtab. Infinite recursion is one danger. */
2311 if (currently_reading_symtab)
2312 return make_qualified_type (type, instance_flags, NULL);
2313
2314 name = type_name_no_tag (type);
2315 /* FIXME: shouldn't we separately check the TYPE_NAME and
2316 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2317 VAR_DOMAIN as appropriate? (this code was written before
2318 TYPE_NAME and TYPE_TAG_NAME were separate). */
2319 if (name == NULL)
2320 {
2321 stub_noname_complaint ();
2322 return make_qualified_type (type, instance_flags, NULL);
2323 }
2324 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2325 if (sym)
2326 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2327 else /* TYPE_CODE_UNDEF */
2328 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2329 }
2330 type = TYPE_TARGET_TYPE (type);
2331
2332 /* Preserve the instance flags as we traverse down the typedef chain.
2333
2334 Handling address spaces/classes is nasty, what do we do if there's a
2335 conflict?
2336 E.g., what if an outer typedef marks the type as class_1 and an inner
2337 typedef marks the type as class_2?
2338 This is the wrong place to do such error checking. We leave it to
2339 the code that created the typedef in the first place to flag the
2340 error. We just pick the outer address space (akin to letting the
2341 outer cast in a chain of casting win), instead of assuming
2342 "it can't happen". */
2343 {
2344 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2345 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2346 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2347 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2348
2349 /* Treat code vs data spaces and address classes separately. */
2350 if ((instance_flags & ALL_SPACES) != 0)
2351 new_instance_flags &= ~ALL_SPACES;
2352 if ((instance_flags & ALL_CLASSES) != 0)
2353 new_instance_flags &= ~ALL_CLASSES;
2354
2355 instance_flags |= new_instance_flags;
2356 }
2357 }
2358
2359 /* If this is a struct/class/union with no fields, then check
2360 whether a full definition exists somewhere else. This is for
2361 systems where a type definition with no fields is issued for such
2362 types, instead of identifying them as stub types in the first
2363 place. */
2364
2365 if (TYPE_IS_OPAQUE (type)
2366 && opaque_type_resolution
2367 && !currently_reading_symtab)
2368 {
2369 const char *name = type_name_no_tag (type);
2370 struct type *newtype;
2371
2372 if (name == NULL)
2373 {
2374 stub_noname_complaint ();
2375 return make_qualified_type (type, instance_flags, NULL);
2376 }
2377 newtype = lookup_transparent_type (name);
2378
2379 if (newtype)
2380 {
2381 /* If the resolved type and the stub are in the same
2382 objfile, then replace the stub type with the real deal.
2383 But if they're in separate objfiles, leave the stub
2384 alone; we'll just look up the transparent type every time
2385 we call check_typedef. We can't create pointers between
2386 types allocated to different objfiles, since they may
2387 have different lifetimes. Trying to copy NEWTYPE over to
2388 TYPE's objfile is pointless, too, since you'll have to
2389 move over any other types NEWTYPE refers to, which could
2390 be an unbounded amount of stuff. */
2391 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2392 type = make_qualified_type (newtype,
2393 TYPE_INSTANCE_FLAGS (type),
2394 type);
2395 else
2396 type = newtype;
2397 }
2398 }
2399 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2400 types. */
2401 else if (TYPE_STUB (type) && !currently_reading_symtab)
2402 {
2403 const char *name = type_name_no_tag (type);
2404 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2405 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2406 as appropriate? (this code was written before TYPE_NAME and
2407 TYPE_TAG_NAME were separate). */
2408 struct symbol *sym;
2409
2410 if (name == NULL)
2411 {
2412 stub_noname_complaint ();
2413 return make_qualified_type (type, instance_flags, NULL);
2414 }
2415 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2416 if (sym)
2417 {
2418 /* Same as above for opaque types, we can replace the stub
2419 with the complete type only if they are in the same
2420 objfile. */
2421 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2422 type = make_qualified_type (SYMBOL_TYPE (sym),
2423 TYPE_INSTANCE_FLAGS (type),
2424 type);
2425 else
2426 type = SYMBOL_TYPE (sym);
2427 }
2428 }
2429
2430 if (TYPE_TARGET_STUB (type))
2431 {
2432 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2433
2434 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2435 {
2436 /* Nothing we can do. */
2437 }
2438 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2439 {
2440 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2441 TYPE_TARGET_STUB (type) = 0;
2442 }
2443 }
2444
2445 type = make_qualified_type (type, instance_flags, NULL);
2446
2447 /* Cache TYPE_LENGTH for future use. */
2448 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2449
2450 return type;
2451 }
2452
2453 /* Parse a type expression in the string [P..P+LENGTH). If an error
2454 occurs, silently return a void type. */
2455
2456 static struct type *
2457 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2458 {
2459 struct ui_file *saved_gdb_stderr;
2460 struct type *type = NULL; /* Initialize to keep gcc happy. */
2461
2462 /* Suppress error messages. */
2463 saved_gdb_stderr = gdb_stderr;
2464 gdb_stderr = ui_file_new ();
2465
2466 /* Call parse_and_eval_type() without fear of longjmp()s. */
2467 TRY
2468 {
2469 type = parse_and_eval_type (p, length);
2470 }
2471 CATCH (except, RETURN_MASK_ERROR)
2472 {
2473 type = builtin_type (gdbarch)->builtin_void;
2474 }
2475 END_CATCH
2476
2477 /* Stop suppressing error messages. */
2478 ui_file_delete (gdb_stderr);
2479 gdb_stderr = saved_gdb_stderr;
2480
2481 return type;
2482 }
2483
2484 /* Ugly hack to convert method stubs into method types.
2485
2486 He ain't kiddin'. This demangles the name of the method into a
2487 string including argument types, parses out each argument type,
2488 generates a string casting a zero to that type, evaluates the
2489 string, and stuffs the resulting type into an argtype vector!!!
2490 Then it knows the type of the whole function (including argument
2491 types for overloading), which info used to be in the stab's but was
2492 removed to hack back the space required for them. */
2493
2494 static void
2495 check_stub_method (struct type *type, int method_id, int signature_id)
2496 {
2497 struct gdbarch *gdbarch = get_type_arch (type);
2498 struct fn_field *f;
2499 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2500 char *demangled_name = gdb_demangle (mangled_name,
2501 DMGL_PARAMS | DMGL_ANSI);
2502 char *argtypetext, *p;
2503 int depth = 0, argcount = 1;
2504 struct field *argtypes;
2505 struct type *mtype;
2506
2507 /* Make sure we got back a function string that we can use. */
2508 if (demangled_name)
2509 p = strchr (demangled_name, '(');
2510 else
2511 p = NULL;
2512
2513 if (demangled_name == NULL || p == NULL)
2514 error (_("Internal: Cannot demangle mangled name `%s'."),
2515 mangled_name);
2516
2517 /* Now, read in the parameters that define this type. */
2518 p += 1;
2519 argtypetext = p;
2520 while (*p)
2521 {
2522 if (*p == '(' || *p == '<')
2523 {
2524 depth += 1;
2525 }
2526 else if (*p == ')' || *p == '>')
2527 {
2528 depth -= 1;
2529 }
2530 else if (*p == ',' && depth == 0)
2531 {
2532 argcount += 1;
2533 }
2534
2535 p += 1;
2536 }
2537
2538 /* If we read one argument and it was ``void'', don't count it. */
2539 if (startswith (argtypetext, "(void)"))
2540 argcount -= 1;
2541
2542 /* We need one extra slot, for the THIS pointer. */
2543
2544 argtypes = (struct field *)
2545 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2546 p = argtypetext;
2547
2548 /* Add THIS pointer for non-static methods. */
2549 f = TYPE_FN_FIELDLIST1 (type, method_id);
2550 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2551 argcount = 0;
2552 else
2553 {
2554 argtypes[0].type = lookup_pointer_type (type);
2555 argcount = 1;
2556 }
2557
2558 if (*p != ')') /* () means no args, skip while. */
2559 {
2560 depth = 0;
2561 while (*p)
2562 {
2563 if (depth <= 0 && (*p == ',' || *p == ')'))
2564 {
2565 /* Avoid parsing of ellipsis, they will be handled below.
2566 Also avoid ``void'' as above. */
2567 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2568 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2569 {
2570 argtypes[argcount].type =
2571 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2572 argcount += 1;
2573 }
2574 argtypetext = p + 1;
2575 }
2576
2577 if (*p == '(' || *p == '<')
2578 {
2579 depth += 1;
2580 }
2581 else if (*p == ')' || *p == '>')
2582 {
2583 depth -= 1;
2584 }
2585
2586 p += 1;
2587 }
2588 }
2589
2590 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2591
2592 /* Now update the old "stub" type into a real type. */
2593 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2594 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2595 We want a method (TYPE_CODE_METHOD). */
2596 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2597 argtypes, argcount, p[-2] == '.');
2598 TYPE_STUB (mtype) = 0;
2599 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2600
2601 xfree (demangled_name);
2602 }
2603
2604 /* This is the external interface to check_stub_method, above. This
2605 function unstubs all of the signatures for TYPE's METHOD_ID method
2606 name. After calling this function TYPE_FN_FIELD_STUB will be
2607 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2608 correct.
2609
2610 This function unfortunately can not die until stabs do. */
2611
2612 void
2613 check_stub_method_group (struct type *type, int method_id)
2614 {
2615 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2616 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2617 int j, found_stub = 0;
2618
2619 for (j = 0; j < len; j++)
2620 if (TYPE_FN_FIELD_STUB (f, j))
2621 {
2622 found_stub = 1;
2623 check_stub_method (type, method_id, j);
2624 }
2625
2626 /* GNU v3 methods with incorrect names were corrected when we read
2627 in type information, because it was cheaper to do it then. The
2628 only GNU v2 methods with incorrect method names are operators and
2629 destructors; destructors were also corrected when we read in type
2630 information.
2631
2632 Therefore the only thing we need to handle here are v2 operator
2633 names. */
2634 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2635 {
2636 int ret;
2637 char dem_opname[256];
2638
2639 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2640 method_id),
2641 dem_opname, DMGL_ANSI);
2642 if (!ret)
2643 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2644 method_id),
2645 dem_opname, 0);
2646 if (ret)
2647 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2648 }
2649 }
2650
2651 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2652 const struct cplus_struct_type cplus_struct_default = { };
2653
2654 void
2655 allocate_cplus_struct_type (struct type *type)
2656 {
2657 if (HAVE_CPLUS_STRUCT (type))
2658 /* Structure was already allocated. Nothing more to do. */
2659 return;
2660
2661 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2662 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2663 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2664 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2665 set_type_vptr_fieldno (type, -1);
2666 }
2667
2668 const struct gnat_aux_type gnat_aux_default =
2669 { NULL };
2670
2671 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2672 and allocate the associated gnat-specific data. The gnat-specific
2673 data is also initialized to gnat_aux_default. */
2674
2675 void
2676 allocate_gnat_aux_type (struct type *type)
2677 {
2678 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2679 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2680 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2681 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2682 }
2683
2684 /* Helper function to initialize a newly allocated type. Set type code
2685 to CODE and initialize the type-specific fields accordingly. */
2686
2687 static void
2688 set_type_code (struct type *type, enum type_code code)
2689 {
2690 TYPE_CODE (type) = code;
2691
2692 switch (code)
2693 {
2694 case TYPE_CODE_STRUCT:
2695 case TYPE_CODE_UNION:
2696 case TYPE_CODE_NAMESPACE:
2697 INIT_CPLUS_SPECIFIC (type);
2698 break;
2699 case TYPE_CODE_FLT:
2700 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2701 break;
2702 case TYPE_CODE_FUNC:
2703 INIT_FUNC_SPECIFIC (type);
2704 break;
2705 }
2706 }
2707
2708 /* Helper function to verify floating-point format and size.
2709 BIT is the type size in bits; if BIT equals -1, the size is
2710 determined by the floatformat. Returns size to be used. */
2711
2712 static int
2713 verify_floatformat (int bit, const struct floatformat **floatformats)
2714 {
2715 if (bit == -1)
2716 {
2717 gdb_assert (floatformats != NULL);
2718 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2719 bit = floatformats[0]->totalsize;
2720 }
2721 gdb_assert (bit >= 0);
2722
2723 if (floatformats != NULL)
2724 {
2725 size_t len = bit / TARGET_CHAR_BIT;
2726
2727 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2728 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2729 }
2730
2731 return bit;
2732 }
2733
2734 /* Helper function to initialize the standard scalar types.
2735
2736 If NAME is non-NULL, then it is used to initialize the type name.
2737 Note that NAME is not copied; it is required to have a lifetime at
2738 least as long as OBJFILE. */
2739
2740 struct type *
2741 init_type (struct objfile *objfile, enum type_code code, int length,
2742 const char *name)
2743 {
2744 struct type *type;
2745
2746 type = alloc_type (objfile);
2747 set_type_code (type, code);
2748 TYPE_LENGTH (type) = length;
2749 TYPE_NAME (type) = name;
2750
2751 return type;
2752 }
2753
2754 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2755 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2756 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2757
2758 struct type *
2759 init_integer_type (struct objfile *objfile,
2760 int bit, int unsigned_p, const char *name)
2761 {
2762 struct type *t;
2763
2764 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2765 if (unsigned_p)
2766 TYPE_UNSIGNED (t) = 1;
2767
2768 return t;
2769 }
2770
2771 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2772 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2773 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2774
2775 struct type *
2776 init_character_type (struct objfile *objfile,
2777 int bit, int unsigned_p, const char *name)
2778 {
2779 struct type *t;
2780
2781 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2782 if (unsigned_p)
2783 TYPE_UNSIGNED (t) = 1;
2784
2785 return t;
2786 }
2787
2788 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2789 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2790 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2791
2792 struct type *
2793 init_boolean_type (struct objfile *objfile,
2794 int bit, int unsigned_p, const char *name)
2795 {
2796 struct type *t;
2797
2798 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2799 if (unsigned_p)
2800 TYPE_UNSIGNED (t) = 1;
2801
2802 return t;
2803 }
2804
2805 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2806 BIT is the type size in bits; if BIT equals -1, the size is
2807 determined by the floatformat. NAME is the type name. Set the
2808 TYPE_FLOATFORMAT from FLOATFORMATS. */
2809
2810 struct type *
2811 init_float_type (struct objfile *objfile,
2812 int bit, const char *name,
2813 const struct floatformat **floatformats)
2814 {
2815 struct type *t;
2816
2817 bit = verify_floatformat (bit, floatformats);
2818 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2819 TYPE_FLOATFORMAT (t) = floatformats;
2820
2821 return t;
2822 }
2823
2824 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2825 BIT is the type size in bits. NAME is the type name. */
2826
2827 struct type *
2828 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2829 {
2830 struct type *t;
2831
2832 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2833 return t;
2834 }
2835
2836 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2837 NAME is the type name. TARGET_TYPE is the component float type. */
2838
2839 struct type *
2840 init_complex_type (struct objfile *objfile,
2841 const char *name, struct type *target_type)
2842 {
2843 struct type *t;
2844
2845 t = init_type (objfile, TYPE_CODE_COMPLEX,
2846 2 * TYPE_LENGTH (target_type), name);
2847 TYPE_TARGET_TYPE (t) = target_type;
2848 return t;
2849 }
2850
2851 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2852 BIT is the pointer type size in bits. NAME is the type name.
2853 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2854 TYPE_UNSIGNED flag. */
2855
2856 struct type *
2857 init_pointer_type (struct objfile *objfile,
2858 int bit, const char *name, struct type *target_type)
2859 {
2860 struct type *t;
2861
2862 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2863 TYPE_TARGET_TYPE (t) = target_type;
2864 TYPE_UNSIGNED (t) = 1;
2865 return t;
2866 }
2867
2868 \f
2869 /* Queries on types. */
2870
2871 int
2872 can_dereference (struct type *t)
2873 {
2874 /* FIXME: Should we return true for references as well as
2875 pointers? */
2876 t = check_typedef (t);
2877 return
2878 (t != NULL
2879 && TYPE_CODE (t) == TYPE_CODE_PTR
2880 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2881 }
2882
2883 int
2884 is_integral_type (struct type *t)
2885 {
2886 t = check_typedef (t);
2887 return
2888 ((t != NULL)
2889 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2890 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2891 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2892 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2893 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2894 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2895 }
2896
2897 /* Return true if TYPE is scalar. */
2898
2899 int
2900 is_scalar_type (struct type *type)
2901 {
2902 type = check_typedef (type);
2903
2904 switch (TYPE_CODE (type))
2905 {
2906 case TYPE_CODE_ARRAY:
2907 case TYPE_CODE_STRUCT:
2908 case TYPE_CODE_UNION:
2909 case TYPE_CODE_SET:
2910 case TYPE_CODE_STRING:
2911 return 0;
2912 default:
2913 return 1;
2914 }
2915 }
2916
2917 /* Return true if T is scalar, or a composite type which in practice has
2918 the memory layout of a scalar type. E.g., an array or struct with only
2919 one scalar element inside it, or a union with only scalar elements. */
2920
2921 int
2922 is_scalar_type_recursive (struct type *t)
2923 {
2924 t = check_typedef (t);
2925
2926 if (is_scalar_type (t))
2927 return 1;
2928 /* Are we dealing with an array or string of known dimensions? */
2929 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2930 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2931 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2932 {
2933 LONGEST low_bound, high_bound;
2934 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2935
2936 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2937
2938 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2939 }
2940 /* Are we dealing with a struct with one element? */
2941 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2942 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2943 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2944 {
2945 int i, n = TYPE_NFIELDS (t);
2946
2947 /* If all elements of the union are scalar, then the union is scalar. */
2948 for (i = 0; i < n; i++)
2949 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2950 return 0;
2951
2952 return 1;
2953 }
2954
2955 return 0;
2956 }
2957
2958 /* Return true is T is a class or a union. False otherwise. */
2959
2960 int
2961 class_or_union_p (const struct type *t)
2962 {
2963 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2964 || TYPE_CODE (t) == TYPE_CODE_UNION);
2965 }
2966
2967 /* A helper function which returns true if types A and B represent the
2968 "same" class type. This is true if the types have the same main
2969 type, or the same name. */
2970
2971 int
2972 class_types_same_p (const struct type *a, const struct type *b)
2973 {
2974 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2975 || (TYPE_NAME (a) && TYPE_NAME (b)
2976 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2977 }
2978
2979 /* If BASE is an ancestor of DCLASS return the distance between them.
2980 otherwise return -1;
2981 eg:
2982
2983 class A {};
2984 class B: public A {};
2985 class C: public B {};
2986 class D: C {};
2987
2988 distance_to_ancestor (A, A, 0) = 0
2989 distance_to_ancestor (A, B, 0) = 1
2990 distance_to_ancestor (A, C, 0) = 2
2991 distance_to_ancestor (A, D, 0) = 3
2992
2993 If PUBLIC is 1 then only public ancestors are considered,
2994 and the function returns the distance only if BASE is a public ancestor
2995 of DCLASS.
2996 Eg:
2997
2998 distance_to_ancestor (A, D, 1) = -1. */
2999
3000 static int
3001 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3002 {
3003 int i;
3004 int d;
3005
3006 base = check_typedef (base);
3007 dclass = check_typedef (dclass);
3008
3009 if (class_types_same_p (base, dclass))
3010 return 0;
3011
3012 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3013 {
3014 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3015 continue;
3016
3017 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3018 if (d >= 0)
3019 return 1 + d;
3020 }
3021
3022 return -1;
3023 }
3024
3025 /* Check whether BASE is an ancestor or base class or DCLASS
3026 Return 1 if so, and 0 if not.
3027 Note: If BASE and DCLASS are of the same type, this function
3028 will return 1. So for some class A, is_ancestor (A, A) will
3029 return 1. */
3030
3031 int
3032 is_ancestor (struct type *base, struct type *dclass)
3033 {
3034 return distance_to_ancestor (base, dclass, 0) >= 0;
3035 }
3036
3037 /* Like is_ancestor, but only returns true when BASE is a public
3038 ancestor of DCLASS. */
3039
3040 int
3041 is_public_ancestor (struct type *base, struct type *dclass)
3042 {
3043 return distance_to_ancestor (base, dclass, 1) >= 0;
3044 }
3045
3046 /* A helper function for is_unique_ancestor. */
3047
3048 static int
3049 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3050 int *offset,
3051 const gdb_byte *valaddr, int embedded_offset,
3052 CORE_ADDR address, struct value *val)
3053 {
3054 int i, count = 0;
3055
3056 base = check_typedef (base);
3057 dclass = check_typedef (dclass);
3058
3059 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3060 {
3061 struct type *iter;
3062 int this_offset;
3063
3064 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3065
3066 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3067 address, val);
3068
3069 if (class_types_same_p (base, iter))
3070 {
3071 /* If this is the first subclass, set *OFFSET and set count
3072 to 1. Otherwise, if this is at the same offset as
3073 previous instances, do nothing. Otherwise, increment
3074 count. */
3075 if (*offset == -1)
3076 {
3077 *offset = this_offset;
3078 count = 1;
3079 }
3080 else if (this_offset == *offset)
3081 {
3082 /* Nothing. */
3083 }
3084 else
3085 ++count;
3086 }
3087 else
3088 count += is_unique_ancestor_worker (base, iter, offset,
3089 valaddr,
3090 embedded_offset + this_offset,
3091 address, val);
3092 }
3093
3094 return count;
3095 }
3096
3097 /* Like is_ancestor, but only returns true if BASE is a unique base
3098 class of the type of VAL. */
3099
3100 int
3101 is_unique_ancestor (struct type *base, struct value *val)
3102 {
3103 int offset = -1;
3104
3105 return is_unique_ancestor_worker (base, value_type (val), &offset,
3106 value_contents_for_printing (val),
3107 value_embedded_offset (val),
3108 value_address (val), val) == 1;
3109 }
3110
3111 \f
3112 /* Overload resolution. */
3113
3114 /* Return the sum of the rank of A with the rank of B. */
3115
3116 struct rank
3117 sum_ranks (struct rank a, struct rank b)
3118 {
3119 struct rank c;
3120 c.rank = a.rank + b.rank;
3121 c.subrank = a.subrank + b.subrank;
3122 return c;
3123 }
3124
3125 /* Compare rank A and B and return:
3126 0 if a = b
3127 1 if a is better than b
3128 -1 if b is better than a. */
3129
3130 int
3131 compare_ranks (struct rank a, struct rank b)
3132 {
3133 if (a.rank == b.rank)
3134 {
3135 if (a.subrank == b.subrank)
3136 return 0;
3137 if (a.subrank < b.subrank)
3138 return 1;
3139 if (a.subrank > b.subrank)
3140 return -1;
3141 }
3142
3143 if (a.rank < b.rank)
3144 return 1;
3145
3146 /* a.rank > b.rank */
3147 return -1;
3148 }
3149
3150 /* Functions for overload resolution begin here. */
3151
3152 /* Compare two badness vectors A and B and return the result.
3153 0 => A and B are identical
3154 1 => A and B are incomparable
3155 2 => A is better than B
3156 3 => A is worse than B */
3157
3158 int
3159 compare_badness (struct badness_vector *a, struct badness_vector *b)
3160 {
3161 int i;
3162 int tmp;
3163 short found_pos = 0; /* any positives in c? */
3164 short found_neg = 0; /* any negatives in c? */
3165
3166 /* differing lengths => incomparable */
3167 if (a->length != b->length)
3168 return 1;
3169
3170 /* Subtract b from a */
3171 for (i = 0; i < a->length; i++)
3172 {
3173 tmp = compare_ranks (b->rank[i], a->rank[i]);
3174 if (tmp > 0)
3175 found_pos = 1;
3176 else if (tmp < 0)
3177 found_neg = 1;
3178 }
3179
3180 if (found_pos)
3181 {
3182 if (found_neg)
3183 return 1; /* incomparable */
3184 else
3185 return 3; /* A > B */
3186 }
3187 else
3188 /* no positives */
3189 {
3190 if (found_neg)
3191 return 2; /* A < B */
3192 else
3193 return 0; /* A == B */
3194 }
3195 }
3196
3197 /* Rank a function by comparing its parameter types (PARMS, length
3198 NPARMS), to the types of an argument list (ARGS, length NARGS).
3199 Return a pointer to a badness vector. This has NARGS + 1
3200 entries. */
3201
3202 struct badness_vector *
3203 rank_function (struct type **parms, int nparms,
3204 struct value **args, int nargs)
3205 {
3206 int i;
3207 struct badness_vector *bv = XNEW (struct badness_vector);
3208 int min_len = nparms < nargs ? nparms : nargs;
3209
3210 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3211 bv->rank = XNEWVEC (struct rank, nargs + 1);
3212
3213 /* First compare the lengths of the supplied lists.
3214 If there is a mismatch, set it to a high value. */
3215
3216 /* pai/1997-06-03 FIXME: when we have debug info about default
3217 arguments and ellipsis parameter lists, we should consider those
3218 and rank the length-match more finely. */
3219
3220 LENGTH_MATCH (bv) = (nargs != nparms)
3221 ? LENGTH_MISMATCH_BADNESS
3222 : EXACT_MATCH_BADNESS;
3223
3224 /* Now rank all the parameters of the candidate function. */
3225 for (i = 1; i <= min_len; i++)
3226 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3227 args[i - 1]);
3228
3229 /* If more arguments than parameters, add dummy entries. */
3230 for (i = min_len + 1; i <= nargs; i++)
3231 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3232
3233 return bv;
3234 }
3235
3236 /* Compare the names of two integer types, assuming that any sign
3237 qualifiers have been checked already. We do it this way because
3238 there may be an "int" in the name of one of the types. */
3239
3240 static int
3241 integer_types_same_name_p (const char *first, const char *second)
3242 {
3243 int first_p, second_p;
3244
3245 /* If both are shorts, return 1; if neither is a short, keep
3246 checking. */
3247 first_p = (strstr (first, "short") != NULL);
3248 second_p = (strstr (second, "short") != NULL);
3249 if (first_p && second_p)
3250 return 1;
3251 if (first_p || second_p)
3252 return 0;
3253
3254 /* Likewise for long. */
3255 first_p = (strstr (first, "long") != NULL);
3256 second_p = (strstr (second, "long") != NULL);
3257 if (first_p && second_p)
3258 return 1;
3259 if (first_p || second_p)
3260 return 0;
3261
3262 /* Likewise for char. */
3263 first_p = (strstr (first, "char") != NULL);
3264 second_p = (strstr (second, "char") != NULL);
3265 if (first_p && second_p)
3266 return 1;
3267 if (first_p || second_p)
3268 return 0;
3269
3270 /* They must both be ints. */
3271 return 1;
3272 }
3273
3274 /* Compares type A to type B returns 1 if the represent the same type
3275 0 otherwise. */
3276
3277 int
3278 types_equal (struct type *a, struct type *b)
3279 {
3280 /* Identical type pointers. */
3281 /* However, this still doesn't catch all cases of same type for b
3282 and a. The reason is that builtin types are different from
3283 the same ones constructed from the object. */
3284 if (a == b)
3285 return 1;
3286
3287 /* Resolve typedefs */
3288 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3289 a = check_typedef (a);
3290 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3291 b = check_typedef (b);
3292
3293 /* If after resolving typedefs a and b are not of the same type
3294 code then they are not equal. */
3295 if (TYPE_CODE (a) != TYPE_CODE (b))
3296 return 0;
3297
3298 /* If a and b are both pointers types or both reference types then
3299 they are equal of the same type iff the objects they refer to are
3300 of the same type. */
3301 if (TYPE_CODE (a) == TYPE_CODE_PTR
3302 || TYPE_CODE (a) == TYPE_CODE_REF)
3303 return types_equal (TYPE_TARGET_TYPE (a),
3304 TYPE_TARGET_TYPE (b));
3305
3306 /* Well, damnit, if the names are exactly the same, I'll say they
3307 are exactly the same. This happens when we generate method
3308 stubs. The types won't point to the same address, but they
3309 really are the same. */
3310
3311 if (TYPE_NAME (a) && TYPE_NAME (b)
3312 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3313 return 1;
3314
3315 /* Check if identical after resolving typedefs. */
3316 if (a == b)
3317 return 1;
3318
3319 /* Two function types are equal if their argument and return types
3320 are equal. */
3321 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3322 {
3323 int i;
3324
3325 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3326 return 0;
3327
3328 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3329 return 0;
3330
3331 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3332 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3333 return 0;
3334
3335 return 1;
3336 }
3337
3338 return 0;
3339 }
3340 \f
3341 /* Deep comparison of types. */
3342
3343 /* An entry in the type-equality bcache. */
3344
3345 typedef struct type_equality_entry
3346 {
3347 struct type *type1, *type2;
3348 } type_equality_entry_d;
3349
3350 DEF_VEC_O (type_equality_entry_d);
3351
3352 /* A helper function to compare two strings. Returns 1 if they are
3353 the same, 0 otherwise. Handles NULLs properly. */
3354
3355 static int
3356 compare_maybe_null_strings (const char *s, const char *t)
3357 {
3358 if (s == NULL && t != NULL)
3359 return 0;
3360 else if (s != NULL && t == NULL)
3361 return 0;
3362 else if (s == NULL && t== NULL)
3363 return 1;
3364 return strcmp (s, t) == 0;
3365 }
3366
3367 /* A helper function for check_types_worklist that checks two types for
3368 "deep" equality. Returns non-zero if the types are considered the
3369 same, zero otherwise. */
3370
3371 static int
3372 check_types_equal (struct type *type1, struct type *type2,
3373 VEC (type_equality_entry_d) **worklist)
3374 {
3375 type1 = check_typedef (type1);
3376 type2 = check_typedef (type2);
3377
3378 if (type1 == type2)
3379 return 1;
3380
3381 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3382 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3383 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3384 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3385 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3386 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3387 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3388 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3389 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3390 return 0;
3391
3392 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3393 TYPE_TAG_NAME (type2)))
3394 return 0;
3395 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3396 return 0;
3397
3398 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3399 {
3400 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3401 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3402 return 0;
3403 }
3404 else
3405 {
3406 int i;
3407
3408 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3409 {
3410 const struct field *field1 = &TYPE_FIELD (type1, i);
3411 const struct field *field2 = &TYPE_FIELD (type2, i);
3412 struct type_equality_entry entry;
3413
3414 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3415 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3416 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3417 return 0;
3418 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3419 FIELD_NAME (*field2)))
3420 return 0;
3421 switch (FIELD_LOC_KIND (*field1))
3422 {
3423 case FIELD_LOC_KIND_BITPOS:
3424 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3425 return 0;
3426 break;
3427 case FIELD_LOC_KIND_ENUMVAL:
3428 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3429 return 0;
3430 break;
3431 case FIELD_LOC_KIND_PHYSADDR:
3432 if (FIELD_STATIC_PHYSADDR (*field1)
3433 != FIELD_STATIC_PHYSADDR (*field2))
3434 return 0;
3435 break;
3436 case FIELD_LOC_KIND_PHYSNAME:
3437 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3438 FIELD_STATIC_PHYSNAME (*field2)))
3439 return 0;
3440 break;
3441 case FIELD_LOC_KIND_DWARF_BLOCK:
3442 {
3443 struct dwarf2_locexpr_baton *block1, *block2;
3444
3445 block1 = FIELD_DWARF_BLOCK (*field1);
3446 block2 = FIELD_DWARF_BLOCK (*field2);
3447 if (block1->per_cu != block2->per_cu
3448 || block1->size != block2->size
3449 || memcmp (block1->data, block2->data, block1->size) != 0)
3450 return 0;
3451 }
3452 break;
3453 default:
3454 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3455 "%d by check_types_equal"),
3456 FIELD_LOC_KIND (*field1));
3457 }
3458
3459 entry.type1 = FIELD_TYPE (*field1);
3460 entry.type2 = FIELD_TYPE (*field2);
3461 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3462 }
3463 }
3464
3465 if (TYPE_TARGET_TYPE (type1) != NULL)
3466 {
3467 struct type_equality_entry entry;
3468
3469 if (TYPE_TARGET_TYPE (type2) == NULL)
3470 return 0;
3471
3472 entry.type1 = TYPE_TARGET_TYPE (type1);
3473 entry.type2 = TYPE_TARGET_TYPE (type2);
3474 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3475 }
3476 else if (TYPE_TARGET_TYPE (type2) != NULL)
3477 return 0;
3478
3479 return 1;
3480 }
3481
3482 /* Check types on a worklist for equality. Returns zero if any pair
3483 is not equal, non-zero if they are all considered equal. */
3484
3485 static int
3486 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3487 struct bcache *cache)
3488 {
3489 while (!VEC_empty (type_equality_entry_d, *worklist))
3490 {
3491 struct type_equality_entry entry;
3492 int added;
3493
3494 entry = *VEC_last (type_equality_entry_d, *worklist);
3495 VEC_pop (type_equality_entry_d, *worklist);
3496
3497 /* If the type pair has already been visited, we know it is
3498 ok. */
3499 bcache_full (&entry, sizeof (entry), cache, &added);
3500 if (!added)
3501 continue;
3502
3503 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3504 return 0;
3505 }
3506
3507 return 1;
3508 }
3509
3510 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3511 "deep comparison". Otherwise return zero. */
3512
3513 int
3514 types_deeply_equal (struct type *type1, struct type *type2)
3515 {
3516 struct gdb_exception except = exception_none;
3517 int result = 0;
3518 struct bcache *cache;
3519 VEC (type_equality_entry_d) *worklist = NULL;
3520 struct type_equality_entry entry;
3521
3522 gdb_assert (type1 != NULL && type2 != NULL);
3523
3524 /* Early exit for the simple case. */
3525 if (type1 == type2)
3526 return 1;
3527
3528 cache = bcache_xmalloc (NULL, NULL);
3529
3530 entry.type1 = type1;
3531 entry.type2 = type2;
3532 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3533
3534 /* check_types_worklist calls several nested helper functions, some
3535 of which can raise a GDB exception, so we just check and rethrow
3536 here. If there is a GDB exception, a comparison is not capable
3537 (or trusted), so exit. */
3538 TRY
3539 {
3540 result = check_types_worklist (&worklist, cache);
3541 }
3542 CATCH (ex, RETURN_MASK_ALL)
3543 {
3544 except = ex;
3545 }
3546 END_CATCH
3547
3548 bcache_xfree (cache);
3549 VEC_free (type_equality_entry_d, worklist);
3550
3551 /* Rethrow if there was a problem. */
3552 if (except.reason < 0)
3553 throw_exception (except);
3554
3555 return result;
3556 }
3557
3558 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3559 Otherwise return one. */
3560
3561 int
3562 type_not_allocated (const struct type *type)
3563 {
3564 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3565
3566 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3567 && !TYPE_DYN_PROP_ADDR (prop));
3568 }
3569
3570 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3571 Otherwise return one. */
3572
3573 int
3574 type_not_associated (const struct type *type)
3575 {
3576 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3577
3578 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3579 && !TYPE_DYN_PROP_ADDR (prop));
3580 }
3581 \f
3582 /* Compare one type (PARM) for compatibility with another (ARG).
3583 * PARM is intended to be the parameter type of a function; and
3584 * ARG is the supplied argument's type. This function tests if
3585 * the latter can be converted to the former.
3586 * VALUE is the argument's value or NULL if none (or called recursively)
3587 *
3588 * Return 0 if they are identical types;
3589 * Otherwise, return an integer which corresponds to how compatible
3590 * PARM is to ARG. The higher the return value, the worse the match.
3591 * Generally the "bad" conversions are all uniformly assigned a 100. */
3592
3593 struct rank
3594 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3595 {
3596 struct rank rank = {0,0};
3597
3598 if (types_equal (parm, arg))
3599 return EXACT_MATCH_BADNESS;
3600
3601 /* Resolve typedefs */
3602 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3603 parm = check_typedef (parm);
3604 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3605 arg = check_typedef (arg);
3606
3607 /* See through references, since we can almost make non-references
3608 references. */
3609 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3610 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3611 REFERENCE_CONVERSION_BADNESS));
3612 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3613 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3614 REFERENCE_CONVERSION_BADNESS));
3615 if (overload_debug)
3616 /* Debugging only. */
3617 fprintf_filtered (gdb_stderr,
3618 "------ Arg is %s [%d], parm is %s [%d]\n",
3619 TYPE_NAME (arg), TYPE_CODE (arg),
3620 TYPE_NAME (parm), TYPE_CODE (parm));
3621
3622 /* x -> y means arg of type x being supplied for parameter of type y. */
3623
3624 switch (TYPE_CODE (parm))
3625 {
3626 case TYPE_CODE_PTR:
3627 switch (TYPE_CODE (arg))
3628 {
3629 case TYPE_CODE_PTR:
3630
3631 /* Allowed pointer conversions are:
3632 (a) pointer to void-pointer conversion. */
3633 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3634 return VOID_PTR_CONVERSION_BADNESS;
3635
3636 /* (b) pointer to ancestor-pointer conversion. */
3637 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3638 TYPE_TARGET_TYPE (arg),
3639 0);
3640 if (rank.subrank >= 0)
3641 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3642
3643 return INCOMPATIBLE_TYPE_BADNESS;
3644 case TYPE_CODE_ARRAY:
3645 if (types_equal (TYPE_TARGET_TYPE (parm),
3646 TYPE_TARGET_TYPE (arg)))
3647 return EXACT_MATCH_BADNESS;
3648 return INCOMPATIBLE_TYPE_BADNESS;
3649 case TYPE_CODE_FUNC:
3650 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3651 case TYPE_CODE_INT:
3652 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3653 {
3654 if (value_as_long (value) == 0)
3655 {
3656 /* Null pointer conversion: allow it to be cast to a pointer.
3657 [4.10.1 of C++ standard draft n3290] */
3658 return NULL_POINTER_CONVERSION_BADNESS;
3659 }
3660 else
3661 {
3662 /* If type checking is disabled, allow the conversion. */
3663 if (!strict_type_checking)
3664 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3665 }
3666 }
3667 /* fall through */
3668 case TYPE_CODE_ENUM:
3669 case TYPE_CODE_FLAGS:
3670 case TYPE_CODE_CHAR:
3671 case TYPE_CODE_RANGE:
3672 case TYPE_CODE_BOOL:
3673 default:
3674 return INCOMPATIBLE_TYPE_BADNESS;
3675 }
3676 case TYPE_CODE_ARRAY:
3677 switch (TYPE_CODE (arg))
3678 {
3679 case TYPE_CODE_PTR:
3680 case TYPE_CODE_ARRAY:
3681 return rank_one_type (TYPE_TARGET_TYPE (parm),
3682 TYPE_TARGET_TYPE (arg), NULL);
3683 default:
3684 return INCOMPATIBLE_TYPE_BADNESS;
3685 }
3686 case TYPE_CODE_FUNC:
3687 switch (TYPE_CODE (arg))
3688 {
3689 case TYPE_CODE_PTR: /* funcptr -> func */
3690 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3691 default:
3692 return INCOMPATIBLE_TYPE_BADNESS;
3693 }
3694 case TYPE_CODE_INT:
3695 switch (TYPE_CODE (arg))
3696 {
3697 case TYPE_CODE_INT:
3698 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3699 {
3700 /* Deal with signed, unsigned, and plain chars and
3701 signed and unsigned ints. */
3702 if (TYPE_NOSIGN (parm))
3703 {
3704 /* This case only for character types. */
3705 if (TYPE_NOSIGN (arg))
3706 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3707 else /* signed/unsigned char -> plain char */
3708 return INTEGER_CONVERSION_BADNESS;
3709 }
3710 else if (TYPE_UNSIGNED (parm))
3711 {
3712 if (TYPE_UNSIGNED (arg))
3713 {
3714 /* unsigned int -> unsigned int, or
3715 unsigned long -> unsigned long */
3716 if (integer_types_same_name_p (TYPE_NAME (parm),
3717 TYPE_NAME (arg)))
3718 return EXACT_MATCH_BADNESS;
3719 else if (integer_types_same_name_p (TYPE_NAME (arg),
3720 "int")
3721 && integer_types_same_name_p (TYPE_NAME (parm),
3722 "long"))
3723 /* unsigned int -> unsigned long */
3724 return INTEGER_PROMOTION_BADNESS;
3725 else
3726 /* unsigned long -> unsigned int */
3727 return INTEGER_CONVERSION_BADNESS;
3728 }
3729 else
3730 {
3731 if (integer_types_same_name_p (TYPE_NAME (arg),
3732 "long")
3733 && integer_types_same_name_p (TYPE_NAME (parm),
3734 "int"))
3735 /* signed long -> unsigned int */
3736 return INTEGER_CONVERSION_BADNESS;
3737 else
3738 /* signed int/long -> unsigned int/long */
3739 return INTEGER_CONVERSION_BADNESS;
3740 }
3741 }
3742 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3743 {
3744 if (integer_types_same_name_p (TYPE_NAME (parm),
3745 TYPE_NAME (arg)))
3746 return EXACT_MATCH_BADNESS;
3747 else if (integer_types_same_name_p (TYPE_NAME (arg),
3748 "int")
3749 && integer_types_same_name_p (TYPE_NAME (parm),
3750 "long"))
3751 return INTEGER_PROMOTION_BADNESS;
3752 else
3753 return INTEGER_CONVERSION_BADNESS;
3754 }
3755 else
3756 return INTEGER_CONVERSION_BADNESS;
3757 }
3758 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3759 return INTEGER_PROMOTION_BADNESS;
3760 else
3761 return INTEGER_CONVERSION_BADNESS;
3762 case TYPE_CODE_ENUM:
3763 case TYPE_CODE_FLAGS:
3764 case TYPE_CODE_CHAR:
3765 case TYPE_CODE_RANGE:
3766 case TYPE_CODE_BOOL:
3767 if (TYPE_DECLARED_CLASS (arg))
3768 return INCOMPATIBLE_TYPE_BADNESS;
3769 return INTEGER_PROMOTION_BADNESS;
3770 case TYPE_CODE_FLT:
3771 return INT_FLOAT_CONVERSION_BADNESS;
3772 case TYPE_CODE_PTR:
3773 return NS_POINTER_CONVERSION_BADNESS;
3774 default:
3775 return INCOMPATIBLE_TYPE_BADNESS;
3776 }
3777 break;
3778 case TYPE_CODE_ENUM:
3779 switch (TYPE_CODE (arg))
3780 {
3781 case TYPE_CODE_INT:
3782 case TYPE_CODE_CHAR:
3783 case TYPE_CODE_RANGE:
3784 case TYPE_CODE_BOOL:
3785 case TYPE_CODE_ENUM:
3786 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3787 return INCOMPATIBLE_TYPE_BADNESS;
3788 return INTEGER_CONVERSION_BADNESS;
3789 case TYPE_CODE_FLT:
3790 return INT_FLOAT_CONVERSION_BADNESS;
3791 default:
3792 return INCOMPATIBLE_TYPE_BADNESS;
3793 }
3794 break;
3795 case TYPE_CODE_CHAR:
3796 switch (TYPE_CODE (arg))
3797 {
3798 case TYPE_CODE_RANGE:
3799 case TYPE_CODE_BOOL:
3800 case TYPE_CODE_ENUM:
3801 if (TYPE_DECLARED_CLASS (arg))
3802 return INCOMPATIBLE_TYPE_BADNESS;
3803 return INTEGER_CONVERSION_BADNESS;
3804 case TYPE_CODE_FLT:
3805 return INT_FLOAT_CONVERSION_BADNESS;
3806 case TYPE_CODE_INT:
3807 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3808 return INTEGER_CONVERSION_BADNESS;
3809 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3810 return INTEGER_PROMOTION_BADNESS;
3811 /* >>> !! else fall through !! <<< */
3812 case TYPE_CODE_CHAR:
3813 /* Deal with signed, unsigned, and plain chars for C++ and
3814 with int cases falling through from previous case. */
3815 if (TYPE_NOSIGN (parm))
3816 {
3817 if (TYPE_NOSIGN (arg))
3818 return EXACT_MATCH_BADNESS;
3819 else
3820 return INTEGER_CONVERSION_BADNESS;
3821 }
3822 else if (TYPE_UNSIGNED (parm))
3823 {
3824 if (TYPE_UNSIGNED (arg))
3825 return EXACT_MATCH_BADNESS;
3826 else
3827 return INTEGER_PROMOTION_BADNESS;
3828 }
3829 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3830 return EXACT_MATCH_BADNESS;
3831 else
3832 return INTEGER_CONVERSION_BADNESS;
3833 default:
3834 return INCOMPATIBLE_TYPE_BADNESS;
3835 }
3836 break;
3837 case TYPE_CODE_RANGE:
3838 switch (TYPE_CODE (arg))
3839 {
3840 case TYPE_CODE_INT:
3841 case TYPE_CODE_CHAR:
3842 case TYPE_CODE_RANGE:
3843 case TYPE_CODE_BOOL:
3844 case TYPE_CODE_ENUM:
3845 return INTEGER_CONVERSION_BADNESS;
3846 case TYPE_CODE_FLT:
3847 return INT_FLOAT_CONVERSION_BADNESS;
3848 default:
3849 return INCOMPATIBLE_TYPE_BADNESS;
3850 }
3851 break;
3852 case TYPE_CODE_BOOL:
3853 switch (TYPE_CODE (arg))
3854 {
3855 /* n3290 draft, section 4.12.1 (conv.bool):
3856
3857 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3858 pointer to member type can be converted to a prvalue of type
3859 bool. A zero value, null pointer value, or null member pointer
3860 value is converted to false; any other value is converted to
3861 true. A prvalue of type std::nullptr_t can be converted to a
3862 prvalue of type bool; the resulting value is false." */
3863 case TYPE_CODE_INT:
3864 case TYPE_CODE_CHAR:
3865 case TYPE_CODE_ENUM:
3866 case TYPE_CODE_FLT:
3867 case TYPE_CODE_MEMBERPTR:
3868 case TYPE_CODE_PTR:
3869 return BOOL_CONVERSION_BADNESS;
3870 case TYPE_CODE_RANGE:
3871 return INCOMPATIBLE_TYPE_BADNESS;
3872 case TYPE_CODE_BOOL:
3873 return EXACT_MATCH_BADNESS;
3874 default:
3875 return INCOMPATIBLE_TYPE_BADNESS;
3876 }
3877 break;
3878 case TYPE_CODE_FLT:
3879 switch (TYPE_CODE (arg))
3880 {
3881 case TYPE_CODE_FLT:
3882 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3883 return FLOAT_PROMOTION_BADNESS;
3884 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3885 return EXACT_MATCH_BADNESS;
3886 else
3887 return FLOAT_CONVERSION_BADNESS;
3888 case TYPE_CODE_INT:
3889 case TYPE_CODE_BOOL:
3890 case TYPE_CODE_ENUM:
3891 case TYPE_CODE_RANGE:
3892 case TYPE_CODE_CHAR:
3893 return INT_FLOAT_CONVERSION_BADNESS;
3894 default:
3895 return INCOMPATIBLE_TYPE_BADNESS;
3896 }
3897 break;
3898 case TYPE_CODE_COMPLEX:
3899 switch (TYPE_CODE (arg))
3900 { /* Strictly not needed for C++, but... */
3901 case TYPE_CODE_FLT:
3902 return FLOAT_PROMOTION_BADNESS;
3903 case TYPE_CODE_COMPLEX:
3904 return EXACT_MATCH_BADNESS;
3905 default:
3906 return INCOMPATIBLE_TYPE_BADNESS;
3907 }
3908 break;
3909 case TYPE_CODE_STRUCT:
3910 switch (TYPE_CODE (arg))
3911 {
3912 case TYPE_CODE_STRUCT:
3913 /* Check for derivation */
3914 rank.subrank = distance_to_ancestor (parm, arg, 0);
3915 if (rank.subrank >= 0)
3916 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3917 /* else fall through */
3918 default:
3919 return INCOMPATIBLE_TYPE_BADNESS;
3920 }
3921 break;
3922 case TYPE_CODE_UNION:
3923 switch (TYPE_CODE (arg))
3924 {
3925 case TYPE_CODE_UNION:
3926 default:
3927 return INCOMPATIBLE_TYPE_BADNESS;
3928 }
3929 break;
3930 case TYPE_CODE_MEMBERPTR:
3931 switch (TYPE_CODE (arg))
3932 {
3933 default:
3934 return INCOMPATIBLE_TYPE_BADNESS;
3935 }
3936 break;
3937 case TYPE_CODE_METHOD:
3938 switch (TYPE_CODE (arg))
3939 {
3940
3941 default:
3942 return INCOMPATIBLE_TYPE_BADNESS;
3943 }
3944 break;
3945 case TYPE_CODE_REF:
3946 switch (TYPE_CODE (arg))
3947 {
3948
3949 default:
3950 return INCOMPATIBLE_TYPE_BADNESS;
3951 }
3952
3953 break;
3954 case TYPE_CODE_SET:
3955 switch (TYPE_CODE (arg))
3956 {
3957 /* Not in C++ */
3958 case TYPE_CODE_SET:
3959 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3960 TYPE_FIELD_TYPE (arg, 0), NULL);
3961 default:
3962 return INCOMPATIBLE_TYPE_BADNESS;
3963 }
3964 break;
3965 case TYPE_CODE_VOID:
3966 default:
3967 return INCOMPATIBLE_TYPE_BADNESS;
3968 } /* switch (TYPE_CODE (arg)) */
3969 }
3970
3971 /* End of functions for overload resolution. */
3972 \f
3973 /* Routines to pretty-print types. */
3974
3975 static void
3976 print_bit_vector (B_TYPE *bits, int nbits)
3977 {
3978 int bitno;
3979
3980 for (bitno = 0; bitno < nbits; bitno++)
3981 {
3982 if ((bitno % 8) == 0)
3983 {
3984 puts_filtered (" ");
3985 }
3986 if (B_TST (bits, bitno))
3987 printf_filtered (("1"));
3988 else
3989 printf_filtered (("0"));
3990 }
3991 }
3992
3993 /* Note the first arg should be the "this" pointer, we may not want to
3994 include it since we may get into a infinitely recursive
3995 situation. */
3996
3997 static void
3998 print_args (struct field *args, int nargs, int spaces)
3999 {
4000 if (args != NULL)
4001 {
4002 int i;
4003
4004 for (i = 0; i < nargs; i++)
4005 {
4006 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4007 args[i].name != NULL ? args[i].name : "<NULL>");
4008 recursive_dump_type (args[i].type, spaces + 2);
4009 }
4010 }
4011 }
4012
4013 int
4014 field_is_static (struct field *f)
4015 {
4016 /* "static" fields are the fields whose location is not relative
4017 to the address of the enclosing struct. It would be nice to
4018 have a dedicated flag that would be set for static fields when
4019 the type is being created. But in practice, checking the field
4020 loc_kind should give us an accurate answer. */
4021 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4022 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4023 }
4024
4025 static void
4026 dump_fn_fieldlists (struct type *type, int spaces)
4027 {
4028 int method_idx;
4029 int overload_idx;
4030 struct fn_field *f;
4031
4032 printfi_filtered (spaces, "fn_fieldlists ");
4033 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4034 printf_filtered ("\n");
4035 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4036 {
4037 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4038 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4039 method_idx,
4040 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4041 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4042 gdb_stdout);
4043 printf_filtered (_(") length %d\n"),
4044 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4045 for (overload_idx = 0;
4046 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4047 overload_idx++)
4048 {
4049 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4050 overload_idx,
4051 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4052 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4053 gdb_stdout);
4054 printf_filtered (")\n");
4055 printfi_filtered (spaces + 8, "type ");
4056 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4057 gdb_stdout);
4058 printf_filtered ("\n");
4059
4060 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4061 spaces + 8 + 2);
4062
4063 printfi_filtered (spaces + 8, "args ");
4064 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4065 gdb_stdout);
4066 printf_filtered ("\n");
4067 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4068 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4069 spaces + 8 + 2);
4070 printfi_filtered (spaces + 8, "fcontext ");
4071 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4072 gdb_stdout);
4073 printf_filtered ("\n");
4074
4075 printfi_filtered (spaces + 8, "is_const %d\n",
4076 TYPE_FN_FIELD_CONST (f, overload_idx));
4077 printfi_filtered (spaces + 8, "is_volatile %d\n",
4078 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4079 printfi_filtered (spaces + 8, "is_private %d\n",
4080 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4081 printfi_filtered (spaces + 8, "is_protected %d\n",
4082 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4083 printfi_filtered (spaces + 8, "is_stub %d\n",
4084 TYPE_FN_FIELD_STUB (f, overload_idx));
4085 printfi_filtered (spaces + 8, "voffset %u\n",
4086 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4087 }
4088 }
4089 }
4090
4091 static void
4092 print_cplus_stuff (struct type *type, int spaces)
4093 {
4094 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4095 printfi_filtered (spaces, "vptr_basetype ");
4096 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4097 puts_filtered ("\n");
4098 if (TYPE_VPTR_BASETYPE (type) != NULL)
4099 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4100
4101 printfi_filtered (spaces, "n_baseclasses %d\n",
4102 TYPE_N_BASECLASSES (type));
4103 printfi_filtered (spaces, "nfn_fields %d\n",
4104 TYPE_NFN_FIELDS (type));
4105 if (TYPE_N_BASECLASSES (type) > 0)
4106 {
4107 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4108 TYPE_N_BASECLASSES (type));
4109 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4110 gdb_stdout);
4111 printf_filtered (")");
4112
4113 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4114 TYPE_N_BASECLASSES (type));
4115 puts_filtered ("\n");
4116 }
4117 if (TYPE_NFIELDS (type) > 0)
4118 {
4119 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4120 {
4121 printfi_filtered (spaces,
4122 "private_field_bits (%d bits at *",
4123 TYPE_NFIELDS (type));
4124 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4125 gdb_stdout);
4126 printf_filtered (")");
4127 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4128 TYPE_NFIELDS (type));
4129 puts_filtered ("\n");
4130 }
4131 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4132 {
4133 printfi_filtered (spaces,
4134 "protected_field_bits (%d bits at *",
4135 TYPE_NFIELDS (type));
4136 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4137 gdb_stdout);
4138 printf_filtered (")");
4139 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4140 TYPE_NFIELDS (type));
4141 puts_filtered ("\n");
4142 }
4143 }
4144 if (TYPE_NFN_FIELDS (type) > 0)
4145 {
4146 dump_fn_fieldlists (type, spaces);
4147 }
4148 }
4149
4150 /* Print the contents of the TYPE's type_specific union, assuming that
4151 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4152
4153 static void
4154 print_gnat_stuff (struct type *type, int spaces)
4155 {
4156 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4157
4158 if (descriptive_type == NULL)
4159 printfi_filtered (spaces + 2, "no descriptive type\n");
4160 else
4161 {
4162 printfi_filtered (spaces + 2, "descriptive type\n");
4163 recursive_dump_type (descriptive_type, spaces + 4);
4164 }
4165 }
4166
4167 static struct obstack dont_print_type_obstack;
4168
4169 void
4170 recursive_dump_type (struct type *type, int spaces)
4171 {
4172 int idx;
4173
4174 if (spaces == 0)
4175 obstack_begin (&dont_print_type_obstack, 0);
4176
4177 if (TYPE_NFIELDS (type) > 0
4178 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4179 {
4180 struct type **first_dont_print
4181 = (struct type **) obstack_base (&dont_print_type_obstack);
4182
4183 int i = (struct type **)
4184 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4185
4186 while (--i >= 0)
4187 {
4188 if (type == first_dont_print[i])
4189 {
4190 printfi_filtered (spaces, "type node ");
4191 gdb_print_host_address (type, gdb_stdout);
4192 printf_filtered (_(" <same as already seen type>\n"));
4193 return;
4194 }
4195 }
4196
4197 obstack_ptr_grow (&dont_print_type_obstack, type);
4198 }
4199
4200 printfi_filtered (spaces, "type node ");
4201 gdb_print_host_address (type, gdb_stdout);
4202 printf_filtered ("\n");
4203 printfi_filtered (spaces, "name '%s' (",
4204 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4205 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4206 printf_filtered (")\n");
4207 printfi_filtered (spaces, "tagname '%s' (",
4208 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4209 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4210 printf_filtered (")\n");
4211 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4212 switch (TYPE_CODE (type))
4213 {
4214 case TYPE_CODE_UNDEF:
4215 printf_filtered ("(TYPE_CODE_UNDEF)");
4216 break;
4217 case TYPE_CODE_PTR:
4218 printf_filtered ("(TYPE_CODE_PTR)");
4219 break;
4220 case TYPE_CODE_ARRAY:
4221 printf_filtered ("(TYPE_CODE_ARRAY)");
4222 break;
4223 case TYPE_CODE_STRUCT:
4224 printf_filtered ("(TYPE_CODE_STRUCT)");
4225 break;
4226 case TYPE_CODE_UNION:
4227 printf_filtered ("(TYPE_CODE_UNION)");
4228 break;
4229 case TYPE_CODE_ENUM:
4230 printf_filtered ("(TYPE_CODE_ENUM)");
4231 break;
4232 case TYPE_CODE_FLAGS:
4233 printf_filtered ("(TYPE_CODE_FLAGS)");
4234 break;
4235 case TYPE_CODE_FUNC:
4236 printf_filtered ("(TYPE_CODE_FUNC)");
4237 break;
4238 case TYPE_CODE_INT:
4239 printf_filtered ("(TYPE_CODE_INT)");
4240 break;
4241 case TYPE_CODE_FLT:
4242 printf_filtered ("(TYPE_CODE_FLT)");
4243 break;
4244 case TYPE_CODE_VOID:
4245 printf_filtered ("(TYPE_CODE_VOID)");
4246 break;
4247 case TYPE_CODE_SET:
4248 printf_filtered ("(TYPE_CODE_SET)");
4249 break;
4250 case TYPE_CODE_RANGE:
4251 printf_filtered ("(TYPE_CODE_RANGE)");
4252 break;
4253 case TYPE_CODE_STRING:
4254 printf_filtered ("(TYPE_CODE_STRING)");
4255 break;
4256 case TYPE_CODE_ERROR:
4257 printf_filtered ("(TYPE_CODE_ERROR)");
4258 break;
4259 case TYPE_CODE_MEMBERPTR:
4260 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4261 break;
4262 case TYPE_CODE_METHODPTR:
4263 printf_filtered ("(TYPE_CODE_METHODPTR)");
4264 break;
4265 case TYPE_CODE_METHOD:
4266 printf_filtered ("(TYPE_CODE_METHOD)");
4267 break;
4268 case TYPE_CODE_REF:
4269 printf_filtered ("(TYPE_CODE_REF)");
4270 break;
4271 case TYPE_CODE_CHAR:
4272 printf_filtered ("(TYPE_CODE_CHAR)");
4273 break;
4274 case TYPE_CODE_BOOL:
4275 printf_filtered ("(TYPE_CODE_BOOL)");
4276 break;
4277 case TYPE_CODE_COMPLEX:
4278 printf_filtered ("(TYPE_CODE_COMPLEX)");
4279 break;
4280 case TYPE_CODE_TYPEDEF:
4281 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4282 break;
4283 case TYPE_CODE_NAMESPACE:
4284 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4285 break;
4286 default:
4287 printf_filtered ("(UNKNOWN TYPE CODE)");
4288 break;
4289 }
4290 puts_filtered ("\n");
4291 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4292 if (TYPE_OBJFILE_OWNED (type))
4293 {
4294 printfi_filtered (spaces, "objfile ");
4295 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4296 }
4297 else
4298 {
4299 printfi_filtered (spaces, "gdbarch ");
4300 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4301 }
4302 printf_filtered ("\n");
4303 printfi_filtered (spaces, "target_type ");
4304 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4305 printf_filtered ("\n");
4306 if (TYPE_TARGET_TYPE (type) != NULL)
4307 {
4308 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4309 }
4310 printfi_filtered (spaces, "pointer_type ");
4311 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4312 printf_filtered ("\n");
4313 printfi_filtered (spaces, "reference_type ");
4314 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4315 printf_filtered ("\n");
4316 printfi_filtered (spaces, "type_chain ");
4317 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4318 printf_filtered ("\n");
4319 printfi_filtered (spaces, "instance_flags 0x%x",
4320 TYPE_INSTANCE_FLAGS (type));
4321 if (TYPE_CONST (type))
4322 {
4323 puts_filtered (" TYPE_CONST");
4324 }
4325 if (TYPE_VOLATILE (type))
4326 {
4327 puts_filtered (" TYPE_VOLATILE");
4328 }
4329 if (TYPE_CODE_SPACE (type))
4330 {
4331 puts_filtered (" TYPE_CODE_SPACE");
4332 }
4333 if (TYPE_DATA_SPACE (type))
4334 {
4335 puts_filtered (" TYPE_DATA_SPACE");
4336 }
4337 if (TYPE_ADDRESS_CLASS_1 (type))
4338 {
4339 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4340 }
4341 if (TYPE_ADDRESS_CLASS_2 (type))
4342 {
4343 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4344 }
4345 if (TYPE_RESTRICT (type))
4346 {
4347 puts_filtered (" TYPE_RESTRICT");
4348 }
4349 if (TYPE_ATOMIC (type))
4350 {
4351 puts_filtered (" TYPE_ATOMIC");
4352 }
4353 puts_filtered ("\n");
4354
4355 printfi_filtered (spaces, "flags");
4356 if (TYPE_UNSIGNED (type))
4357 {
4358 puts_filtered (" TYPE_UNSIGNED");
4359 }
4360 if (TYPE_NOSIGN (type))
4361 {
4362 puts_filtered (" TYPE_NOSIGN");
4363 }
4364 if (TYPE_STUB (type))
4365 {
4366 puts_filtered (" TYPE_STUB");
4367 }
4368 if (TYPE_TARGET_STUB (type))
4369 {
4370 puts_filtered (" TYPE_TARGET_STUB");
4371 }
4372 if (TYPE_STATIC (type))
4373 {
4374 puts_filtered (" TYPE_STATIC");
4375 }
4376 if (TYPE_PROTOTYPED (type))
4377 {
4378 puts_filtered (" TYPE_PROTOTYPED");
4379 }
4380 if (TYPE_INCOMPLETE (type))
4381 {
4382 puts_filtered (" TYPE_INCOMPLETE");
4383 }
4384 if (TYPE_VARARGS (type))
4385 {
4386 puts_filtered (" TYPE_VARARGS");
4387 }
4388 /* This is used for things like AltiVec registers on ppc. Gcc emits
4389 an attribute for the array type, which tells whether or not we
4390 have a vector, instead of a regular array. */
4391 if (TYPE_VECTOR (type))
4392 {
4393 puts_filtered (" TYPE_VECTOR");
4394 }
4395 if (TYPE_FIXED_INSTANCE (type))
4396 {
4397 puts_filtered (" TYPE_FIXED_INSTANCE");
4398 }
4399 if (TYPE_STUB_SUPPORTED (type))
4400 {
4401 puts_filtered (" TYPE_STUB_SUPPORTED");
4402 }
4403 if (TYPE_NOTTEXT (type))
4404 {
4405 puts_filtered (" TYPE_NOTTEXT");
4406 }
4407 puts_filtered ("\n");
4408 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4409 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4410 puts_filtered ("\n");
4411 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4412 {
4413 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4414 printfi_filtered (spaces + 2,
4415 "[%d] enumval %s type ",
4416 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4417 else
4418 printfi_filtered (spaces + 2,
4419 "[%d] bitpos %s bitsize %d type ",
4420 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4421 TYPE_FIELD_BITSIZE (type, idx));
4422 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4423 printf_filtered (" name '%s' (",
4424 TYPE_FIELD_NAME (type, idx) != NULL
4425 ? TYPE_FIELD_NAME (type, idx)
4426 : "<NULL>");
4427 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4428 printf_filtered (")\n");
4429 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4430 {
4431 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4432 }
4433 }
4434 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4435 {
4436 printfi_filtered (spaces, "low %s%s high %s%s\n",
4437 plongest (TYPE_LOW_BOUND (type)),
4438 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4439 plongest (TYPE_HIGH_BOUND (type)),
4440 TYPE_HIGH_BOUND_UNDEFINED (type)
4441 ? " (undefined)" : "");
4442 }
4443
4444 switch (TYPE_SPECIFIC_FIELD (type))
4445 {
4446 case TYPE_SPECIFIC_CPLUS_STUFF:
4447 printfi_filtered (spaces, "cplus_stuff ");
4448 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4449 gdb_stdout);
4450 puts_filtered ("\n");
4451 print_cplus_stuff (type, spaces);
4452 break;
4453
4454 case TYPE_SPECIFIC_GNAT_STUFF:
4455 printfi_filtered (spaces, "gnat_stuff ");
4456 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4457 puts_filtered ("\n");
4458 print_gnat_stuff (type, spaces);
4459 break;
4460
4461 case TYPE_SPECIFIC_FLOATFORMAT:
4462 printfi_filtered (spaces, "floatformat ");
4463 if (TYPE_FLOATFORMAT (type) == NULL)
4464 puts_filtered ("(null)");
4465 else
4466 {
4467 puts_filtered ("{ ");
4468 if (TYPE_FLOATFORMAT (type)[0] == NULL
4469 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4470 puts_filtered ("(null)");
4471 else
4472 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4473
4474 puts_filtered (", ");
4475 if (TYPE_FLOATFORMAT (type)[1] == NULL
4476 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4477 puts_filtered ("(null)");
4478 else
4479 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4480
4481 puts_filtered (" }");
4482 }
4483 puts_filtered ("\n");
4484 break;
4485
4486 case TYPE_SPECIFIC_FUNC:
4487 printfi_filtered (spaces, "calling_convention %d\n",
4488 TYPE_CALLING_CONVENTION (type));
4489 /* tail_call_list is not printed. */
4490 break;
4491
4492 case TYPE_SPECIFIC_SELF_TYPE:
4493 printfi_filtered (spaces, "self_type ");
4494 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4495 puts_filtered ("\n");
4496 break;
4497 }
4498
4499 if (spaces == 0)
4500 obstack_free (&dont_print_type_obstack, NULL);
4501 }
4502 \f
4503 /* Trivial helpers for the libiberty hash table, for mapping one
4504 type to another. */
4505
4506 struct type_pair
4507 {
4508 struct type *old, *newobj;
4509 };
4510
4511 static hashval_t
4512 type_pair_hash (const void *item)
4513 {
4514 const struct type_pair *pair = (const struct type_pair *) item;
4515
4516 return htab_hash_pointer (pair->old);
4517 }
4518
4519 static int
4520 type_pair_eq (const void *item_lhs, const void *item_rhs)
4521 {
4522 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4523 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4524
4525 return lhs->old == rhs->old;
4526 }
4527
4528 /* Allocate the hash table used by copy_type_recursive to walk
4529 types without duplicates. We use OBJFILE's obstack, because
4530 OBJFILE is about to be deleted. */
4531
4532 htab_t
4533 create_copied_types_hash (struct objfile *objfile)
4534 {
4535 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4536 NULL, &objfile->objfile_obstack,
4537 hashtab_obstack_allocate,
4538 dummy_obstack_deallocate);
4539 }
4540
4541 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4542
4543 static struct dynamic_prop_list *
4544 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4545 struct dynamic_prop_list *list)
4546 {
4547 struct dynamic_prop_list *copy = list;
4548 struct dynamic_prop_list **node_ptr = &copy;
4549
4550 while (*node_ptr != NULL)
4551 {
4552 struct dynamic_prop_list *node_copy;
4553
4554 node_copy = ((struct dynamic_prop_list *)
4555 obstack_copy (objfile_obstack, *node_ptr,
4556 sizeof (struct dynamic_prop_list)));
4557 node_copy->prop = (*node_ptr)->prop;
4558 *node_ptr = node_copy;
4559
4560 node_ptr = &node_copy->next;
4561 }
4562
4563 return copy;
4564 }
4565
4566 /* Recursively copy (deep copy) TYPE, if it is associated with
4567 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4568 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4569 it is not associated with OBJFILE. */
4570
4571 struct type *
4572 copy_type_recursive (struct objfile *objfile,
4573 struct type *type,
4574 htab_t copied_types)
4575 {
4576 struct type_pair *stored, pair;
4577 void **slot;
4578 struct type *new_type;
4579
4580 if (! TYPE_OBJFILE_OWNED (type))
4581 return type;
4582
4583 /* This type shouldn't be pointing to any types in other objfiles;
4584 if it did, the type might disappear unexpectedly. */
4585 gdb_assert (TYPE_OBJFILE (type) == objfile);
4586
4587 pair.old = type;
4588 slot = htab_find_slot (copied_types, &pair, INSERT);
4589 if (*slot != NULL)
4590 return ((struct type_pair *) *slot)->newobj;
4591
4592 new_type = alloc_type_arch (get_type_arch (type));
4593
4594 /* We must add the new type to the hash table immediately, in case
4595 we encounter this type again during a recursive call below. */
4596 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4597 stored->old = type;
4598 stored->newobj = new_type;
4599 *slot = stored;
4600
4601 /* Copy the common fields of types. For the main type, we simply
4602 copy the entire thing and then update specific fields as needed. */
4603 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4604 TYPE_OBJFILE_OWNED (new_type) = 0;
4605 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4606
4607 if (TYPE_NAME (type))
4608 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4609 if (TYPE_TAG_NAME (type))
4610 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4611
4612 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4613 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4614
4615 /* Copy the fields. */
4616 if (TYPE_NFIELDS (type))
4617 {
4618 int i, nfields;
4619
4620 nfields = TYPE_NFIELDS (type);
4621 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4622 for (i = 0; i < nfields; i++)
4623 {
4624 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4625 TYPE_FIELD_ARTIFICIAL (type, i);
4626 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4627 if (TYPE_FIELD_TYPE (type, i))
4628 TYPE_FIELD_TYPE (new_type, i)
4629 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4630 copied_types);
4631 if (TYPE_FIELD_NAME (type, i))
4632 TYPE_FIELD_NAME (new_type, i) =
4633 xstrdup (TYPE_FIELD_NAME (type, i));
4634 switch (TYPE_FIELD_LOC_KIND (type, i))
4635 {
4636 case FIELD_LOC_KIND_BITPOS:
4637 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4638 TYPE_FIELD_BITPOS (type, i));
4639 break;
4640 case FIELD_LOC_KIND_ENUMVAL:
4641 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4642 TYPE_FIELD_ENUMVAL (type, i));
4643 break;
4644 case FIELD_LOC_KIND_PHYSADDR:
4645 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4646 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4647 break;
4648 case FIELD_LOC_KIND_PHYSNAME:
4649 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4650 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4651 i)));
4652 break;
4653 default:
4654 internal_error (__FILE__, __LINE__,
4655 _("Unexpected type field location kind: %d"),
4656 TYPE_FIELD_LOC_KIND (type, i));
4657 }
4658 }
4659 }
4660
4661 /* For range types, copy the bounds information. */
4662 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4663 {
4664 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4665 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4666 }
4667
4668 if (TYPE_DYN_PROP_LIST (type) != NULL)
4669 TYPE_DYN_PROP_LIST (new_type)
4670 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4671 TYPE_DYN_PROP_LIST (type));
4672
4673
4674 /* Copy pointers to other types. */
4675 if (TYPE_TARGET_TYPE (type))
4676 TYPE_TARGET_TYPE (new_type) =
4677 copy_type_recursive (objfile,
4678 TYPE_TARGET_TYPE (type),
4679 copied_types);
4680
4681 /* Maybe copy the type_specific bits.
4682
4683 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4684 base classes and methods. There's no fundamental reason why we
4685 can't, but at the moment it is not needed. */
4686
4687 switch (TYPE_SPECIFIC_FIELD (type))
4688 {
4689 case TYPE_SPECIFIC_NONE:
4690 break;
4691 case TYPE_SPECIFIC_FUNC:
4692 INIT_FUNC_SPECIFIC (new_type);
4693 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4694 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4695 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4696 break;
4697 case TYPE_SPECIFIC_FLOATFORMAT:
4698 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4699 break;
4700 case TYPE_SPECIFIC_CPLUS_STUFF:
4701 INIT_CPLUS_SPECIFIC (new_type);
4702 break;
4703 case TYPE_SPECIFIC_GNAT_STUFF:
4704 INIT_GNAT_SPECIFIC (new_type);
4705 break;
4706 case TYPE_SPECIFIC_SELF_TYPE:
4707 set_type_self_type (new_type,
4708 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4709 copied_types));
4710 break;
4711 default:
4712 gdb_assert_not_reached ("bad type_specific_kind");
4713 }
4714
4715 return new_type;
4716 }
4717
4718 /* Make a copy of the given TYPE, except that the pointer & reference
4719 types are not preserved.
4720
4721 This function assumes that the given type has an associated objfile.
4722 This objfile is used to allocate the new type. */
4723
4724 struct type *
4725 copy_type (const struct type *type)
4726 {
4727 struct type *new_type;
4728
4729 gdb_assert (TYPE_OBJFILE_OWNED (type));
4730
4731 new_type = alloc_type_copy (type);
4732 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4733 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4734 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4735 sizeof (struct main_type));
4736 if (TYPE_DYN_PROP_LIST (type) != NULL)
4737 TYPE_DYN_PROP_LIST (new_type)
4738 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4739 TYPE_DYN_PROP_LIST (type));
4740
4741 return new_type;
4742 }
4743 \f
4744 /* Helper functions to initialize architecture-specific types. */
4745
4746 /* Allocate a type structure associated with GDBARCH and set its
4747 CODE, LENGTH, and NAME fields. */
4748
4749 struct type *
4750 arch_type (struct gdbarch *gdbarch,
4751 enum type_code code, int length, const char *name)
4752 {
4753 struct type *type;
4754
4755 type = alloc_type_arch (gdbarch);
4756 set_type_code (type, code);
4757 TYPE_LENGTH (type) = length;
4758
4759 if (name)
4760 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4761
4762 return type;
4763 }
4764
4765 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4766 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4767 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4768
4769 struct type *
4770 arch_integer_type (struct gdbarch *gdbarch,
4771 int bit, int unsigned_p, const char *name)
4772 {
4773 struct type *t;
4774
4775 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4776 if (unsigned_p)
4777 TYPE_UNSIGNED (t) = 1;
4778
4779 return t;
4780 }
4781
4782 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4783 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4784 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4785
4786 struct type *
4787 arch_character_type (struct gdbarch *gdbarch,
4788 int bit, int unsigned_p, const char *name)
4789 {
4790 struct type *t;
4791
4792 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4793 if (unsigned_p)
4794 TYPE_UNSIGNED (t) = 1;
4795
4796 return t;
4797 }
4798
4799 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4800 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4801 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4802
4803 struct type *
4804 arch_boolean_type (struct gdbarch *gdbarch,
4805 int bit, int unsigned_p, const char *name)
4806 {
4807 struct type *t;
4808
4809 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4810 if (unsigned_p)
4811 TYPE_UNSIGNED (t) = 1;
4812
4813 return t;
4814 }
4815
4816 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4817 BIT is the type size in bits; if BIT equals -1, the size is
4818 determined by the floatformat. NAME is the type name. Set the
4819 TYPE_FLOATFORMAT from FLOATFORMATS. */
4820
4821 struct type *
4822 arch_float_type (struct gdbarch *gdbarch,
4823 int bit, const char *name,
4824 const struct floatformat **floatformats)
4825 {
4826 struct type *t;
4827
4828 bit = verify_floatformat (bit, floatformats);
4829 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4830 TYPE_FLOATFORMAT (t) = floatformats;
4831
4832 return t;
4833 }
4834
4835 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4836 BIT is the type size in bits. NAME is the type name. */
4837
4838 struct type *
4839 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4840 {
4841 struct type *t;
4842
4843 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4844 return t;
4845 }
4846
4847 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4848 NAME is the type name. TARGET_TYPE is the component float type. */
4849
4850 struct type *
4851 arch_complex_type (struct gdbarch *gdbarch,
4852 const char *name, struct type *target_type)
4853 {
4854 struct type *t;
4855
4856 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4857 2 * TYPE_LENGTH (target_type), name);
4858 TYPE_TARGET_TYPE (t) = target_type;
4859 return t;
4860 }
4861
4862 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4863 BIT is the pointer type size in bits. NAME is the type name.
4864 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4865 TYPE_UNSIGNED flag. */
4866
4867 struct type *
4868 arch_pointer_type (struct gdbarch *gdbarch,
4869 int bit, const char *name, struct type *target_type)
4870 {
4871 struct type *t;
4872
4873 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4874 TYPE_TARGET_TYPE (t) = target_type;
4875 TYPE_UNSIGNED (t) = 1;
4876 return t;
4877 }
4878
4879 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4880 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4881
4882 struct type *
4883 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4884 {
4885 int max_nfields = length * TARGET_CHAR_BIT;
4886 struct type *type;
4887
4888 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4889 TYPE_UNSIGNED (type) = 1;
4890 TYPE_NFIELDS (type) = 0;
4891 /* Pre-allocate enough space assuming every field is one bit. */
4892 TYPE_FIELDS (type)
4893 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4894
4895 return type;
4896 }
4897
4898 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4899 position BITPOS is called NAME. Pass NAME as "" for fields that
4900 should not be printed. */
4901
4902 void
4903 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4904 struct type *field_type, const char *name)
4905 {
4906 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4907 int field_nr = TYPE_NFIELDS (type);
4908
4909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4910 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4911 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4912 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4913 gdb_assert (name != NULL);
4914
4915 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4916 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4917 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4918 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4919 ++TYPE_NFIELDS (type);
4920 }
4921
4922 /* Special version of append_flags_type_field to add a flag field.
4923 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4924 position BITPOS is called NAME. */
4925
4926 void
4927 append_flags_type_flag (struct type *type, int bitpos, const char *name)
4928 {
4929 struct gdbarch *gdbarch = get_type_arch (type);
4930
4931 append_flags_type_field (type, bitpos, 1,
4932 builtin_type (gdbarch)->builtin_bool,
4933 name);
4934 }
4935
4936 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4937 specified by CODE) associated with GDBARCH. NAME is the type name. */
4938
4939 struct type *
4940 arch_composite_type (struct gdbarch *gdbarch, const char *name,
4941 enum type_code code)
4942 {
4943 struct type *t;
4944
4945 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4946 t = arch_type (gdbarch, code, 0, NULL);
4947 TYPE_TAG_NAME (t) = name;
4948 INIT_CPLUS_SPECIFIC (t);
4949 return t;
4950 }
4951
4952 /* Add new field with name NAME and type FIELD to composite type T.
4953 Do not set the field's position or adjust the type's length;
4954 the caller should do so. Return the new field. */
4955
4956 struct field *
4957 append_composite_type_field_raw (struct type *t, const char *name,
4958 struct type *field)
4959 {
4960 struct field *f;
4961
4962 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4963 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4964 TYPE_NFIELDS (t));
4965 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4966 memset (f, 0, sizeof f[0]);
4967 FIELD_TYPE (f[0]) = field;
4968 FIELD_NAME (f[0]) = name;
4969 return f;
4970 }
4971
4972 /* Add new field with name NAME and type FIELD to composite type T.
4973 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4974
4975 void
4976 append_composite_type_field_aligned (struct type *t, const char *name,
4977 struct type *field, int alignment)
4978 {
4979 struct field *f = append_composite_type_field_raw (t, name, field);
4980
4981 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4982 {
4983 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4984 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4985 }
4986 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4987 {
4988 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4989 if (TYPE_NFIELDS (t) > 1)
4990 {
4991 SET_FIELD_BITPOS (f[0],
4992 (FIELD_BITPOS (f[-1])
4993 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4994 * TARGET_CHAR_BIT)));
4995
4996 if (alignment)
4997 {
4998 int left;
4999
5000 alignment *= TARGET_CHAR_BIT;
5001 left = FIELD_BITPOS (f[0]) % alignment;
5002
5003 if (left)
5004 {
5005 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5006 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5007 }
5008 }
5009 }
5010 }
5011 }
5012
5013 /* Add new field with name NAME and type FIELD to composite type T. */
5014
5015 void
5016 append_composite_type_field (struct type *t, const char *name,
5017 struct type *field)
5018 {
5019 append_composite_type_field_aligned (t, name, field, 0);
5020 }
5021
5022 static struct gdbarch_data *gdbtypes_data;
5023
5024 const struct builtin_type *
5025 builtin_type (struct gdbarch *gdbarch)
5026 {
5027 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5028 }
5029
5030 static void *
5031 gdbtypes_post_init (struct gdbarch *gdbarch)
5032 {
5033 struct builtin_type *builtin_type
5034 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5035
5036 /* Basic types. */
5037 builtin_type->builtin_void
5038 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5039 builtin_type->builtin_char
5040 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5041 !gdbarch_char_signed (gdbarch), "char");
5042 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5043 builtin_type->builtin_signed_char
5044 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5045 0, "signed char");
5046 builtin_type->builtin_unsigned_char
5047 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5048 1, "unsigned char");
5049 builtin_type->builtin_short
5050 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5051 0, "short");
5052 builtin_type->builtin_unsigned_short
5053 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5054 1, "unsigned short");
5055 builtin_type->builtin_int
5056 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5057 0, "int");
5058 builtin_type->builtin_unsigned_int
5059 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5060 1, "unsigned int");
5061 builtin_type->builtin_long
5062 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5063 0, "long");
5064 builtin_type->builtin_unsigned_long
5065 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5066 1, "unsigned long");
5067 builtin_type->builtin_long_long
5068 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5069 0, "long long");
5070 builtin_type->builtin_unsigned_long_long
5071 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5072 1, "unsigned long long");
5073 builtin_type->builtin_float
5074 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5075 "float", gdbarch_float_format (gdbarch));
5076 builtin_type->builtin_double
5077 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5078 "double", gdbarch_double_format (gdbarch));
5079 builtin_type->builtin_long_double
5080 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5081 "long double", gdbarch_long_double_format (gdbarch));
5082 builtin_type->builtin_complex
5083 = arch_complex_type (gdbarch, "complex",
5084 builtin_type->builtin_float);
5085 builtin_type->builtin_double_complex
5086 = arch_complex_type (gdbarch, "double complex",
5087 builtin_type->builtin_double);
5088 builtin_type->builtin_string
5089 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5090 builtin_type->builtin_bool
5091 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5092
5093 /* The following three are about decimal floating point types, which
5094 are 32-bits, 64-bits and 128-bits respectively. */
5095 builtin_type->builtin_decfloat
5096 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5097 builtin_type->builtin_decdouble
5098 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5099 builtin_type->builtin_declong
5100 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5101
5102 /* "True" character types. */
5103 builtin_type->builtin_true_char
5104 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5105 builtin_type->builtin_true_unsigned_char
5106 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5107
5108 /* Fixed-size integer types. */
5109 builtin_type->builtin_int0
5110 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5111 builtin_type->builtin_int8
5112 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5113 builtin_type->builtin_uint8
5114 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5115 builtin_type->builtin_int16
5116 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5117 builtin_type->builtin_uint16
5118 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5119 builtin_type->builtin_int32
5120 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5121 builtin_type->builtin_uint32
5122 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5123 builtin_type->builtin_int64
5124 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5125 builtin_type->builtin_uint64
5126 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5127 builtin_type->builtin_int128
5128 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5129 builtin_type->builtin_uint128
5130 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5131 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5132 TYPE_INSTANCE_FLAG_NOTTEXT;
5133 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5134 TYPE_INSTANCE_FLAG_NOTTEXT;
5135
5136 /* Wide character types. */
5137 builtin_type->builtin_char16
5138 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5139 builtin_type->builtin_char32
5140 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5141
5142
5143 /* Default data/code pointer types. */
5144 builtin_type->builtin_data_ptr
5145 = lookup_pointer_type (builtin_type->builtin_void);
5146 builtin_type->builtin_func_ptr
5147 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5148 builtin_type->builtin_func_func
5149 = lookup_function_type (builtin_type->builtin_func_ptr);
5150
5151 /* This type represents a GDB internal function. */
5152 builtin_type->internal_fn
5153 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5154 "<internal function>");
5155
5156 /* This type represents an xmethod. */
5157 builtin_type->xmethod
5158 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5159
5160 return builtin_type;
5161 }
5162
5163 /* This set of objfile-based types is intended to be used by symbol
5164 readers as basic types. */
5165
5166 static const struct objfile_data *objfile_type_data;
5167
5168 const struct objfile_type *
5169 objfile_type (struct objfile *objfile)
5170 {
5171 struct gdbarch *gdbarch;
5172 struct objfile_type *objfile_type
5173 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5174
5175 if (objfile_type)
5176 return objfile_type;
5177
5178 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5179 1, struct objfile_type);
5180
5181 /* Use the objfile architecture to determine basic type properties. */
5182 gdbarch = get_objfile_arch (objfile);
5183
5184 /* Basic types. */
5185 objfile_type->builtin_void
5186 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5187 objfile_type->builtin_char
5188 = init_integer_type (objfile, TARGET_CHAR_BIT,
5189 !gdbarch_char_signed (gdbarch), "char");
5190 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5191 objfile_type->builtin_signed_char
5192 = init_integer_type (objfile, TARGET_CHAR_BIT,
5193 0, "signed char");
5194 objfile_type->builtin_unsigned_char
5195 = init_integer_type (objfile, TARGET_CHAR_BIT,
5196 1, "unsigned char");
5197 objfile_type->builtin_short
5198 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5199 0, "short");
5200 objfile_type->builtin_unsigned_short
5201 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5202 1, "unsigned short");
5203 objfile_type->builtin_int
5204 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5205 0, "int");
5206 objfile_type->builtin_unsigned_int
5207 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5208 1, "unsigned int");
5209 objfile_type->builtin_long
5210 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5211 0, "long");
5212 objfile_type->builtin_unsigned_long
5213 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5214 1, "unsigned long");
5215 objfile_type->builtin_long_long
5216 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5217 0, "long long");
5218 objfile_type->builtin_unsigned_long_long
5219 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5220 1, "unsigned long long");
5221 objfile_type->builtin_float
5222 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5223 "float", gdbarch_float_format (gdbarch));
5224 objfile_type->builtin_double
5225 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5226 "double", gdbarch_double_format (gdbarch));
5227 objfile_type->builtin_long_double
5228 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5229 "long double", gdbarch_long_double_format (gdbarch));
5230
5231 /* This type represents a type that was unrecognized in symbol read-in. */
5232 objfile_type->builtin_error
5233 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5234
5235 /* The following set of types is used for symbols with no
5236 debug information. */
5237 objfile_type->nodebug_text_symbol
5238 = init_type (objfile, TYPE_CODE_FUNC, 1,
5239 "<text variable, no debug info>");
5240 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5241 = objfile_type->builtin_int;
5242 objfile_type->nodebug_text_gnu_ifunc_symbol
5243 = init_type (objfile, TYPE_CODE_FUNC, 1,
5244 "<text gnu-indirect-function variable, no debug info>");
5245 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5246 = objfile_type->nodebug_text_symbol;
5247 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5248 objfile_type->nodebug_got_plt_symbol
5249 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5250 "<text from jump slot in .got.plt, no debug info>",
5251 objfile_type->nodebug_text_symbol);
5252 objfile_type->nodebug_data_symbol
5253 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5254 "<data variable, no debug info>");
5255 objfile_type->nodebug_unknown_symbol
5256 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5257 "<variable (not text or data), no debug info>");
5258 objfile_type->nodebug_tls_symbol
5259 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5260 "<thread local variable, no debug info>");
5261
5262 /* NOTE: on some targets, addresses and pointers are not necessarily
5263 the same.
5264
5265 The upshot is:
5266 - gdb's `struct type' always describes the target's
5267 representation.
5268 - gdb's `struct value' objects should always hold values in
5269 target form.
5270 - gdb's CORE_ADDR values are addresses in the unified virtual
5271 address space that the assembler and linker work with. Thus,
5272 since target_read_memory takes a CORE_ADDR as an argument, it
5273 can access any memory on the target, even if the processor has
5274 separate code and data address spaces.
5275
5276 In this context, objfile_type->builtin_core_addr is a bit odd:
5277 it's a target type for a value the target will never see. It's
5278 only used to hold the values of (typeless) linker symbols, which
5279 are indeed in the unified virtual address space. */
5280
5281 objfile_type->builtin_core_addr
5282 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5283 "__CORE_ADDR");
5284
5285 set_objfile_data (objfile, objfile_type_data, objfile_type);
5286 return objfile_type;
5287 }
5288
5289 extern initialize_file_ftype _initialize_gdbtypes;
5290
5291 void
5292 _initialize_gdbtypes (void)
5293 {
5294 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5295 objfile_type_data = register_objfile_data ();
5296
5297 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5298 _("Set debugging of C++ overloading."),
5299 _("Show debugging of C++ overloading."),
5300 _("When enabled, ranking of the "
5301 "functions is displayed."),
5302 NULL,
5303 show_overload_debug,
5304 &setdebuglist, &showdebuglist);
5305
5306 /* Add user knob for controlling resolution of opaque types. */
5307 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5308 &opaque_type_resolution,
5309 _("Set resolution of opaque struct/class/union"
5310 " types (if set before loading symbols)."),
5311 _("Show resolution of opaque struct/class/union"
5312 " types (if set before loading symbols)."),
5313 NULL, NULL,
5314 show_opaque_type_resolution,
5315 &setlist, &showlist);
5316
5317 /* Add an option to permit non-strict type checking. */
5318 add_setshow_boolean_cmd ("type", class_support,
5319 &strict_type_checking,
5320 _("Set strict type checking."),
5321 _("Show strict type checking."),
5322 NULL, NULL,
5323 show_strict_type_checking,
5324 &setchecklist, &showchecklist);
5325 }
This page took 0.202863 seconds and 5 git commands to generate.