gdb: Add builtin types for 24 bit integers.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* See gdbtypes.h. */
258
259 unsigned int
260 type_length_units (struct type *type)
261 {
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266 }
267
268 /* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272 static struct type *
273 alloc_type_instance (struct type *oldtype)
274 {
275 struct type *type;
276
277 /* Allocate the structure. */
278
279 if (! TYPE_OBJFILE_OWNED (oldtype))
280 type = XCNEW (struct type);
281 else
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
289 return type;
290 }
291
292 /* Clear all remnants of the previous type at TYPE, in preparation for
293 replacing it with something else. Preserve owner information. */
294
295 static void
296 smash_type (struct type *type)
297 {
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311 }
312
313 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318 struct type *
319 make_pointer_type (struct type *type, struct type **typeptr)
320 {
321 struct type *ntype; /* New type */
322 struct type *chain;
323
324 ntype = TYPE_POINTER_TYPE (type);
325
326 if (ntype)
327 {
328 if (typeptr == 0)
329 return ntype; /* Don't care about alloc,
330 and have new type. */
331 else if (*typeptr == 0)
332 {
333 *typeptr = ntype; /* Tracking alloc, and have new type. */
334 return ntype;
335 }
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
340 ntype = alloc_type_copy (type);
341 if (typeptr)
342 *typeptr = ntype;
343 }
344 else /* We have storage, but need to reset it. */
345 {
346 ntype = *typeptr;
347 chain = TYPE_CHAIN (ntype);
348 smash_type (ntype);
349 TYPE_CHAIN (ntype) = chain;
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
355 /* FIXME! Assumes the machine has only one representation for pointers! */
356
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
361 /* Mark pointers as unsigned. The target converts between pointers
362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
363 gdbarch_address_to_pointer. */
364 TYPE_UNSIGNED (ntype) = 1;
365
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
374 return ntype;
375 }
376
377 /* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380 struct type *
381 lookup_pointer_type (struct type *type)
382 {
383 return make_pointer_type (type, (struct type **) 0);
384 }
385
386 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
391
392 struct type *
393 make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
395 {
396 struct type *ntype; /* New type */
397 struct type **reftype;
398 struct type *chain;
399
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
404
405 if (ntype)
406 {
407 if (typeptr == 0)
408 return ntype; /* Don't care about alloc,
409 and have new type. */
410 else if (*typeptr == 0)
411 {
412 *typeptr = ntype; /* Tracking alloc, and have new type. */
413 return ntype;
414 }
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
419 ntype = alloc_type_copy (type);
420 if (typeptr)
421 *typeptr = ntype;
422 }
423 else /* We have storage, but need to reset it. */
424 {
425 ntype = *typeptr;
426 chain = TYPE_CHAIN (ntype);
427 smash_type (ntype);
428 TYPE_CHAIN (ntype) = chain;
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
436
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
440
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
443 TYPE_CODE (ntype) = refcode;
444
445 *reftype = ntype;
446
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
455 return ntype;
456 }
457
458 /* Same as above, but caller doesn't care about memory allocation
459 details. */
460
461 struct type *
462 lookup_reference_type (struct type *type, enum type_code refcode)
463 {
464 return make_reference_type (type, (struct type **) 0, refcode);
465 }
466
467 /* Lookup the lvalue reference type for the type TYPE. */
468
469 struct type *
470 lookup_lvalue_reference_type (struct type *type)
471 {
472 return lookup_reference_type (type, TYPE_CODE_REF);
473 }
474
475 /* Lookup the rvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_rvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
481 }
482
483 /* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
486 function type we return. We allocate new memory if needed. */
487
488 struct type *
489 make_function_type (struct type *type, struct type **typeptr)
490 {
491 struct type *ntype; /* New type */
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
495 ntype = alloc_type_copy (type);
496 if (typeptr)
497 *typeptr = ntype;
498 }
499 else /* We have storage, but need to reset it. */
500 {
501 ntype = *typeptr;
502 smash_type (ntype);
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
509
510 INIT_FUNC_SPECIFIC (ntype);
511
512 return ntype;
513 }
514
515 /* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518 struct type *
519 lookup_function_type (struct type *type)
520 {
521 return make_function_type (type, (struct type **) 0);
522 }
523
524 /* Given a type TYPE and argument types, return the appropriate
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
527
528 struct type *
529 lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532 {
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
536 if (nparams > 0)
537 {
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
551 else
552 TYPE_PROTOTYPED (fn) = 1;
553 }
554
555 TYPE_NFIELDS (fn) = nparams;
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562 }
563
564 /* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
566
567 int
568 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
569 {
570 int type_flags;
571
572 /* Check for known address space delimiters. */
573 if (!strcmp (space_identifier, "code"))
574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
575 else if (!strcmp (space_identifier, "data"))
576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
581 return type_flags;
582 else
583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
584 }
585
586 /* Identify address space identifier by integer flag as defined in
587 gdbtypes.h -- return the string version of the adress space name. */
588
589 const char *
590 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
591 {
592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
593 return "code";
594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
595 return "data";
596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
599 else
600 return NULL;
601 }
602
603 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
607
608 static struct type *
609 make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
611 {
612 struct type *ntype;
613
614 ntype = type;
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
622
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
638
639 /* Pointers or references to the original type are not relevant to
640 the new type. */
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
643
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
650
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
654 return ntype;
655 }
656
657 /* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
665
666 struct type *
667 make_type_with_address_space (struct type *type, int space_flag)
668 {
669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676 }
677
678 /* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
683
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
689
690 struct type *
691 make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
694 {
695 struct type *ntype; /* New type */
696
697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
700
701 if (cnst)
702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
703
704 if (voltl)
705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
706
707 if (typeptr && *typeptr != NULL)
708 {
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
722 }
723
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
726
727 if (typeptr != NULL)
728 *typeptr = ntype;
729
730 return ntype;
731 }
732
733 /* Make a 'restrict'-qualified version of TYPE. */
734
735 struct type *
736 make_restrict_type (struct type *type)
737 {
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742 }
743
744 /* Make a type without const, volatile, or restrict. */
745
746 struct type *
747 make_unqualified_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755 }
756
757 /* Make a '_Atomic'-qualified version of TYPE. */
758
759 struct type *
760 make_atomic_type (struct type *type)
761 {
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766 }
767
768 /* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
771
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
777
778 void
779 replace_type (struct type *ntype, struct type *type)
780 {
781 struct type *chain;
782
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
788
789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
790
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
793 chain = ntype;
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
808
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
812 }
813
814 /* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819 struct type *
820 lookup_memberptr_type (struct type *type, struct type *domain)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 smash_to_memberptr_type (mtype, domain, type);
826 return mtype;
827 }
828
829 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831 struct type *
832 lookup_methodptr_type (struct type *to_type)
833 {
834 struct type *mtype;
835
836 mtype = alloc_type_copy (to_type);
837 smash_to_methodptr_type (mtype, to_type);
838 return mtype;
839 }
840
841 /* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
846
847 struct type *
848 allocate_stub_method (struct type *type)
849 {
850 struct type *mtype;
851
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
856 TYPE_TARGET_TYPE (mtype) = type;
857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
858 return mtype;
859 }
860
861 /* See gdbtypes.h. */
862
863 bool
864 operator== (const dynamic_prop &l, const dynamic_prop &r)
865 {
866 if (l.kind != r.kind)
867 return false;
868
869 switch (l.kind)
870 {
871 case PROP_UNDEFINED:
872 return true;
873 case PROP_CONST:
874 return l.data.const_val == r.data.const_val;
875 case PROP_ADDR_OFFSET:
876 case PROP_LOCEXPR:
877 case PROP_LOCLIST:
878 return l.data.baton == r.data.baton;
879 }
880
881 gdb_assert_not_reached ("unhandled dynamic_prop kind");
882 }
883
884 /* See gdbtypes.h. */
885
886 bool
887 operator== (const range_bounds &l, const range_bounds &r)
888 {
889 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
890
891 return (FIELD_EQ (low)
892 && FIELD_EQ (high)
893 && FIELD_EQ (flag_upper_bound_is_count)
894 && FIELD_EQ (flag_bound_evaluated));
895
896 #undef FIELD_EQ
897 }
898
899 /* Create a range type with a dynamic range from LOW_BOUND to
900 HIGH_BOUND, inclusive. See create_range_type for further details. */
901
902 struct type *
903 create_range_type (struct type *result_type, struct type *index_type,
904 const struct dynamic_prop *low_bound,
905 const struct dynamic_prop *high_bound)
906 {
907 if (result_type == NULL)
908 result_type = alloc_type_copy (index_type);
909 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
910 TYPE_TARGET_TYPE (result_type) = index_type;
911 if (TYPE_STUB (index_type))
912 TYPE_TARGET_STUB (result_type) = 1;
913 else
914 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
915
916 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
917 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
918 TYPE_RANGE_DATA (result_type)->low = *low_bound;
919 TYPE_RANGE_DATA (result_type)->high = *high_bound;
920
921 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
922 TYPE_UNSIGNED (result_type) = 1;
923
924 /* Ada allows the declaration of range types whose upper bound is
925 less than the lower bound, so checking the lower bound is not
926 enough. Make sure we do not mark a range type whose upper bound
927 is negative as unsigned. */
928 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
929 TYPE_UNSIGNED (result_type) = 0;
930
931 return result_type;
932 }
933
934 /* Create a range type using either a blank type supplied in
935 RESULT_TYPE, or creating a new type, inheriting the objfile from
936 INDEX_TYPE.
937
938 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
939 to HIGH_BOUND, inclusive.
940
941 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
942 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
943
944 struct type *
945 create_static_range_type (struct type *result_type, struct type *index_type,
946 LONGEST low_bound, LONGEST high_bound)
947 {
948 struct dynamic_prop low, high;
949
950 low.kind = PROP_CONST;
951 low.data.const_val = low_bound;
952
953 high.kind = PROP_CONST;
954 high.data.const_val = high_bound;
955
956 result_type = create_range_type (result_type, index_type, &low, &high);
957
958 return result_type;
959 }
960
961 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
962 are static, otherwise returns 0. */
963
964 static int
965 has_static_range (const struct range_bounds *bounds)
966 {
967 return (bounds->low.kind == PROP_CONST
968 && bounds->high.kind == PROP_CONST);
969 }
970
971
972 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
973 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
974 bounds will fit in LONGEST), or -1 otherwise. */
975
976 int
977 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
978 {
979 type = check_typedef (type);
980 switch (TYPE_CODE (type))
981 {
982 case TYPE_CODE_RANGE:
983 *lowp = TYPE_LOW_BOUND (type);
984 *highp = TYPE_HIGH_BOUND (type);
985 return 1;
986 case TYPE_CODE_ENUM:
987 if (TYPE_NFIELDS (type) > 0)
988 {
989 /* The enums may not be sorted by value, so search all
990 entries. */
991 int i;
992
993 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
994 for (i = 0; i < TYPE_NFIELDS (type); i++)
995 {
996 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
997 *lowp = TYPE_FIELD_ENUMVAL (type, i);
998 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
999 *highp = TYPE_FIELD_ENUMVAL (type, i);
1000 }
1001
1002 /* Set unsigned indicator if warranted. */
1003 if (*lowp >= 0)
1004 {
1005 TYPE_UNSIGNED (type) = 1;
1006 }
1007 }
1008 else
1009 {
1010 *lowp = 0;
1011 *highp = -1;
1012 }
1013 return 0;
1014 case TYPE_CODE_BOOL:
1015 *lowp = 0;
1016 *highp = 1;
1017 return 0;
1018 case TYPE_CODE_INT:
1019 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1020 return -1;
1021 if (!TYPE_UNSIGNED (type))
1022 {
1023 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1024 *highp = -*lowp - 1;
1025 return 0;
1026 }
1027 /* fall through */
1028 case TYPE_CODE_CHAR:
1029 *lowp = 0;
1030 /* This round-about calculation is to avoid shifting by
1031 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1032 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1033 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1034 *highp = (*highp - 1) | *highp;
1035 return 0;
1036 default:
1037 return -1;
1038 }
1039 }
1040
1041 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1042 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1043 Save the high bound into HIGH_BOUND if not NULL.
1044
1045 Return 1 if the operation was successful. Return zero otherwise,
1046 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1047
1048 We now simply use get_discrete_bounds call to get the values
1049 of the low and high bounds.
1050 get_discrete_bounds can return three values:
1051 1, meaning that index is a range,
1052 0, meaning that index is a discrete type,
1053 or -1 for failure. */
1054
1055 int
1056 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1057 {
1058 struct type *index = TYPE_INDEX_TYPE (type);
1059 LONGEST low = 0;
1060 LONGEST high = 0;
1061 int res;
1062
1063 if (index == NULL)
1064 return 0;
1065
1066 res = get_discrete_bounds (index, &low, &high);
1067 if (res == -1)
1068 return 0;
1069
1070 /* Check if the array bounds are undefined. */
1071 if (res == 1
1072 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1073 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1074 return 0;
1075
1076 if (low_bound)
1077 *low_bound = low;
1078
1079 if (high_bound)
1080 *high_bound = high;
1081
1082 return 1;
1083 }
1084
1085 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1086 representation of a value of this type, save the corresponding
1087 position number in POS.
1088
1089 Its differs from VAL only in the case of enumeration types. In
1090 this case, the position number of the value of the first listed
1091 enumeration literal is zero; the position number of the value of
1092 each subsequent enumeration literal is one more than that of its
1093 predecessor in the list.
1094
1095 Return 1 if the operation was successful. Return zero otherwise,
1096 in which case the value of POS is unmodified.
1097 */
1098
1099 int
1100 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1101 {
1102 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1103 {
1104 int i;
1105
1106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1107 {
1108 if (val == TYPE_FIELD_ENUMVAL (type, i))
1109 {
1110 *pos = i;
1111 return 1;
1112 }
1113 }
1114 /* Invalid enumeration value. */
1115 return 0;
1116 }
1117 else
1118 {
1119 *pos = val;
1120 return 1;
1121 }
1122 }
1123
1124 /* Create an array type using either a blank type supplied in
1125 RESULT_TYPE, or creating a new type, inheriting the objfile from
1126 RANGE_TYPE.
1127
1128 Elements will be of type ELEMENT_TYPE, the indices will be of type
1129 RANGE_TYPE.
1130
1131 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1132 This byte stride property is added to the resulting array type
1133 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1134 argument can only be used to create types that are objfile-owned
1135 (see add_dyn_prop), meaning that either this function must be called
1136 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1137
1138 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1139 If BIT_STRIDE is not zero, build a packed array type whose element
1140 size is BIT_STRIDE. Otherwise, ignore this parameter.
1141
1142 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1143 sure it is TYPE_CODE_UNDEF before we bash it into an array
1144 type? */
1145
1146 struct type *
1147 create_array_type_with_stride (struct type *result_type,
1148 struct type *element_type,
1149 struct type *range_type,
1150 struct dynamic_prop *byte_stride_prop,
1151 unsigned int bit_stride)
1152 {
1153 if (byte_stride_prop != NULL
1154 && byte_stride_prop->kind == PROP_CONST)
1155 {
1156 /* The byte stride is actually not dynamic. Pretend we were
1157 called with bit_stride set instead of byte_stride_prop.
1158 This will give us the same result type, while avoiding
1159 the need to handle this as a special case. */
1160 bit_stride = byte_stride_prop->data.const_val * 8;
1161 byte_stride_prop = NULL;
1162 }
1163
1164 if (result_type == NULL)
1165 result_type = alloc_type_copy (range_type);
1166
1167 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1168 TYPE_TARGET_TYPE (result_type) = element_type;
1169 if (byte_stride_prop == NULL
1170 && has_static_range (TYPE_RANGE_DATA (range_type))
1171 && (!type_not_associated (result_type)
1172 && !type_not_allocated (result_type)))
1173 {
1174 LONGEST low_bound, high_bound;
1175
1176 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1177 low_bound = high_bound = 0;
1178 element_type = check_typedef (element_type);
1179 /* Be careful when setting the array length. Ada arrays can be
1180 empty arrays with the high_bound being smaller than the low_bound.
1181 In such cases, the array length should be zero. */
1182 if (high_bound < low_bound)
1183 TYPE_LENGTH (result_type) = 0;
1184 else if (bit_stride > 0)
1185 TYPE_LENGTH (result_type) =
1186 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1187 else
1188 TYPE_LENGTH (result_type) =
1189 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1190 }
1191 else
1192 {
1193 /* This type is dynamic and its length needs to be computed
1194 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1195 undefined by setting it to zero. Although we are not expected
1196 to trust TYPE_LENGTH in this case, setting the size to zero
1197 allows us to avoid allocating objects of random sizes in case
1198 we accidently do. */
1199 TYPE_LENGTH (result_type) = 0;
1200 }
1201
1202 TYPE_NFIELDS (result_type) = 1;
1203 TYPE_FIELDS (result_type) =
1204 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1205 TYPE_INDEX_TYPE (result_type) = range_type;
1206 if (byte_stride_prop != NULL)
1207 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1208 else if (bit_stride > 0)
1209 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1210
1211 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1212 if (TYPE_LENGTH (result_type) == 0)
1213 TYPE_TARGET_STUB (result_type) = 1;
1214
1215 return result_type;
1216 }
1217
1218 /* Same as create_array_type_with_stride but with no bit_stride
1219 (BIT_STRIDE = 0), thus building an unpacked array. */
1220
1221 struct type *
1222 create_array_type (struct type *result_type,
1223 struct type *element_type,
1224 struct type *range_type)
1225 {
1226 return create_array_type_with_stride (result_type, element_type,
1227 range_type, NULL, 0);
1228 }
1229
1230 struct type *
1231 lookup_array_range_type (struct type *element_type,
1232 LONGEST low_bound, LONGEST high_bound)
1233 {
1234 struct type *index_type;
1235 struct type *range_type;
1236
1237 if (TYPE_OBJFILE_OWNED (element_type))
1238 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1239 else
1240 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1241 range_type = create_static_range_type (NULL, index_type,
1242 low_bound, high_bound);
1243
1244 return create_array_type (NULL, element_type, range_type);
1245 }
1246
1247 /* Create a string type using either a blank type supplied in
1248 RESULT_TYPE, or creating a new type. String types are similar
1249 enough to array of char types that we can use create_array_type to
1250 build the basic type and then bash it into a string type.
1251
1252 For fixed length strings, the range type contains 0 as the lower
1253 bound and the length of the string minus one as the upper bound.
1254
1255 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1256 sure it is TYPE_CODE_UNDEF before we bash it into a string
1257 type? */
1258
1259 struct type *
1260 create_string_type (struct type *result_type,
1261 struct type *string_char_type,
1262 struct type *range_type)
1263 {
1264 result_type = create_array_type (result_type,
1265 string_char_type,
1266 range_type);
1267 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1268 return result_type;
1269 }
1270
1271 struct type *
1272 lookup_string_range_type (struct type *string_char_type,
1273 LONGEST low_bound, LONGEST high_bound)
1274 {
1275 struct type *result_type;
1276
1277 result_type = lookup_array_range_type (string_char_type,
1278 low_bound, high_bound);
1279 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1280 return result_type;
1281 }
1282
1283 struct type *
1284 create_set_type (struct type *result_type, struct type *domain_type)
1285 {
1286 if (result_type == NULL)
1287 result_type = alloc_type_copy (domain_type);
1288
1289 TYPE_CODE (result_type) = TYPE_CODE_SET;
1290 TYPE_NFIELDS (result_type) = 1;
1291 TYPE_FIELDS (result_type)
1292 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1293
1294 if (!TYPE_STUB (domain_type))
1295 {
1296 LONGEST low_bound, high_bound, bit_length;
1297
1298 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1299 low_bound = high_bound = 0;
1300 bit_length = high_bound - low_bound + 1;
1301 TYPE_LENGTH (result_type)
1302 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1303 if (low_bound >= 0)
1304 TYPE_UNSIGNED (result_type) = 1;
1305 }
1306 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1307
1308 return result_type;
1309 }
1310
1311 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1312 and any array types nested inside it. */
1313
1314 void
1315 make_vector_type (struct type *array_type)
1316 {
1317 struct type *inner_array, *elt_type;
1318 int flags;
1319
1320 /* Find the innermost array type, in case the array is
1321 multi-dimensional. */
1322 inner_array = array_type;
1323 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1324 inner_array = TYPE_TARGET_TYPE (inner_array);
1325
1326 elt_type = TYPE_TARGET_TYPE (inner_array);
1327 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1328 {
1329 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1330 elt_type = make_qualified_type (elt_type, flags, NULL);
1331 TYPE_TARGET_TYPE (inner_array) = elt_type;
1332 }
1333
1334 TYPE_VECTOR (array_type) = 1;
1335 }
1336
1337 struct type *
1338 init_vector_type (struct type *elt_type, int n)
1339 {
1340 struct type *array_type;
1341
1342 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1343 make_vector_type (array_type);
1344 return array_type;
1345 }
1346
1347 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1348 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1349 confusing. "self" is a common enough replacement for "this".
1350 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1351 TYPE_CODE_METHOD. */
1352
1353 struct type *
1354 internal_type_self_type (struct type *type)
1355 {
1356 switch (TYPE_CODE (type))
1357 {
1358 case TYPE_CODE_METHODPTR:
1359 case TYPE_CODE_MEMBERPTR:
1360 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1361 return NULL;
1362 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1363 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1364 case TYPE_CODE_METHOD:
1365 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1366 return NULL;
1367 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1368 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1369 default:
1370 gdb_assert_not_reached ("bad type");
1371 }
1372 }
1373
1374 /* Set the type of the class that TYPE belongs to.
1375 In c++ this is the class of "this".
1376 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1377 TYPE_CODE_METHOD. */
1378
1379 void
1380 set_type_self_type (struct type *type, struct type *self_type)
1381 {
1382 switch (TYPE_CODE (type))
1383 {
1384 case TYPE_CODE_METHODPTR:
1385 case TYPE_CODE_MEMBERPTR:
1386 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1387 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1388 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1389 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1390 break;
1391 case TYPE_CODE_METHOD:
1392 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1393 INIT_FUNC_SPECIFIC (type);
1394 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1395 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1396 break;
1397 default:
1398 gdb_assert_not_reached ("bad type");
1399 }
1400 }
1401
1402 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1403 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1404 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1405 TYPE doesn't include the offset (that's the value of the MEMBER
1406 itself), but does include the structure type into which it points
1407 (for some reason).
1408
1409 When "smashing" the type, we preserve the objfile that the old type
1410 pointed to, since we aren't changing where the type is actually
1411 allocated. */
1412
1413 void
1414 smash_to_memberptr_type (struct type *type, struct type *self_type,
1415 struct type *to_type)
1416 {
1417 smash_type (type);
1418 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1419 TYPE_TARGET_TYPE (type) = to_type;
1420 set_type_self_type (type, self_type);
1421 /* Assume that a data member pointer is the same size as a normal
1422 pointer. */
1423 TYPE_LENGTH (type)
1424 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1425 }
1426
1427 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1428
1429 When "smashing" the type, we preserve the objfile that the old type
1430 pointed to, since we aren't changing where the type is actually
1431 allocated. */
1432
1433 void
1434 smash_to_methodptr_type (struct type *type, struct type *to_type)
1435 {
1436 smash_type (type);
1437 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1438 TYPE_TARGET_TYPE (type) = to_type;
1439 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1440 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1441 }
1442
1443 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1444 METHOD just means `function that gets an extra "this" argument'.
1445
1446 When "smashing" the type, we preserve the objfile that the old type
1447 pointed to, since we aren't changing where the type is actually
1448 allocated. */
1449
1450 void
1451 smash_to_method_type (struct type *type, struct type *self_type,
1452 struct type *to_type, struct field *args,
1453 int nargs, int varargs)
1454 {
1455 smash_type (type);
1456 TYPE_CODE (type) = TYPE_CODE_METHOD;
1457 TYPE_TARGET_TYPE (type) = to_type;
1458 set_type_self_type (type, self_type);
1459 TYPE_FIELDS (type) = args;
1460 TYPE_NFIELDS (type) = nargs;
1461 if (varargs)
1462 TYPE_VARARGS (type) = 1;
1463 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1464 }
1465
1466 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1467 Since GCC PR debug/47510 DWARF provides associated information to detect the
1468 anonymous class linkage name from its typedef.
1469
1470 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1471 apply it itself. */
1472
1473 const char *
1474 type_name_or_error (struct type *type)
1475 {
1476 struct type *saved_type = type;
1477 const char *name;
1478 struct objfile *objfile;
1479
1480 type = check_typedef (type);
1481
1482 name = TYPE_NAME (type);
1483 if (name != NULL)
1484 return name;
1485
1486 name = TYPE_NAME (saved_type);
1487 objfile = TYPE_OBJFILE (saved_type);
1488 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1489 name ? name : "<anonymous>",
1490 objfile ? objfile_name (objfile) : "<arch>");
1491 }
1492
1493 /* Lookup a typedef or primitive type named NAME, visible in lexical
1494 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1495 suitably defined. */
1496
1497 struct type *
1498 lookup_typename (const struct language_defn *language,
1499 struct gdbarch *gdbarch, const char *name,
1500 const struct block *block, int noerr)
1501 {
1502 struct symbol *sym;
1503
1504 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1505 language->la_language, NULL).symbol;
1506 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1507 return SYMBOL_TYPE (sym);
1508
1509 if (noerr)
1510 return NULL;
1511 error (_("No type named %s."), name);
1512 }
1513
1514 struct type *
1515 lookup_unsigned_typename (const struct language_defn *language,
1516 struct gdbarch *gdbarch, const char *name)
1517 {
1518 char *uns = (char *) alloca (strlen (name) + 10);
1519
1520 strcpy (uns, "unsigned ");
1521 strcpy (uns + 9, name);
1522 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1523 }
1524
1525 struct type *
1526 lookup_signed_typename (const struct language_defn *language,
1527 struct gdbarch *gdbarch, const char *name)
1528 {
1529 struct type *t;
1530 char *uns = (char *) alloca (strlen (name) + 8);
1531
1532 strcpy (uns, "signed ");
1533 strcpy (uns + 7, name);
1534 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1535 /* If we don't find "signed FOO" just try again with plain "FOO". */
1536 if (t != NULL)
1537 return t;
1538 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1539 }
1540
1541 /* Lookup a structure type named "struct NAME",
1542 visible in lexical block BLOCK. */
1543
1544 struct type *
1545 lookup_struct (const char *name, const struct block *block)
1546 {
1547 struct symbol *sym;
1548
1549 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1550
1551 if (sym == NULL)
1552 {
1553 error (_("No struct type named %s."), name);
1554 }
1555 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1556 {
1557 error (_("This context has class, union or enum %s, not a struct."),
1558 name);
1559 }
1560 return (SYMBOL_TYPE (sym));
1561 }
1562
1563 /* Lookup a union type named "union NAME",
1564 visible in lexical block BLOCK. */
1565
1566 struct type *
1567 lookup_union (const char *name, const struct block *block)
1568 {
1569 struct symbol *sym;
1570 struct type *t;
1571
1572 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1573
1574 if (sym == NULL)
1575 error (_("No union type named %s."), name);
1576
1577 t = SYMBOL_TYPE (sym);
1578
1579 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1580 return t;
1581
1582 /* If we get here, it's not a union. */
1583 error (_("This context has class, struct or enum %s, not a union."),
1584 name);
1585 }
1586
1587 /* Lookup an enum type named "enum NAME",
1588 visible in lexical block BLOCK. */
1589
1590 struct type *
1591 lookup_enum (const char *name, const struct block *block)
1592 {
1593 struct symbol *sym;
1594
1595 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1596 if (sym == NULL)
1597 {
1598 error (_("No enum type named %s."), name);
1599 }
1600 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1601 {
1602 error (_("This context has class, struct or union %s, not an enum."),
1603 name);
1604 }
1605 return (SYMBOL_TYPE (sym));
1606 }
1607
1608 /* Lookup a template type named "template NAME<TYPE>",
1609 visible in lexical block BLOCK. */
1610
1611 struct type *
1612 lookup_template_type (char *name, struct type *type,
1613 const struct block *block)
1614 {
1615 struct symbol *sym;
1616 char *nam = (char *)
1617 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1618
1619 strcpy (nam, name);
1620 strcat (nam, "<");
1621 strcat (nam, TYPE_NAME (type));
1622 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1623
1624 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1625
1626 if (sym == NULL)
1627 {
1628 error (_("No template type named %s."), name);
1629 }
1630 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1631 {
1632 error (_("This context has class, union or enum %s, not a struct."),
1633 name);
1634 }
1635 return (SYMBOL_TYPE (sym));
1636 }
1637
1638 /* Given a type TYPE, lookup the type of the component of type named
1639 NAME.
1640
1641 TYPE can be either a struct or union, or a pointer or reference to
1642 a struct or union. If it is a pointer or reference, its target
1643 type is automatically used. Thus '.' and '->' are interchangable,
1644 as specified for the definitions of the expression element types
1645 STRUCTOP_STRUCT and STRUCTOP_PTR.
1646
1647 If NOERR is nonzero, return zero if NAME is not suitably defined.
1648 If NAME is the name of a baseclass type, return that type. */
1649
1650 struct type *
1651 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1652 {
1653 int i;
1654
1655 for (;;)
1656 {
1657 type = check_typedef (type);
1658 if (TYPE_CODE (type) != TYPE_CODE_PTR
1659 && TYPE_CODE (type) != TYPE_CODE_REF)
1660 break;
1661 type = TYPE_TARGET_TYPE (type);
1662 }
1663
1664 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1665 && TYPE_CODE (type) != TYPE_CODE_UNION)
1666 {
1667 std::string type_name = type_to_string (type);
1668 error (_("Type %s is not a structure or union type."),
1669 type_name.c_str ());
1670 }
1671
1672 #if 0
1673 /* FIXME: This change put in by Michael seems incorrect for the case
1674 where the structure tag name is the same as the member name.
1675 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1676 foo; } bell;" Disabled by fnf. */
1677 {
1678 char *type_name;
1679
1680 type_name = TYPE_NAME (type);
1681 if (type_name != NULL && strcmp (type_name, name) == 0)
1682 return type;
1683 }
1684 #endif
1685
1686 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1687 {
1688 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1689
1690 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1691 {
1692 return TYPE_FIELD_TYPE (type, i);
1693 }
1694 else if (!t_field_name || *t_field_name == '\0')
1695 {
1696 struct type *subtype
1697 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1698
1699 if (subtype != NULL)
1700 return subtype;
1701 }
1702 }
1703
1704 /* OK, it's not in this class. Recursively check the baseclasses. */
1705 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1706 {
1707 struct type *t;
1708
1709 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1710 if (t != NULL)
1711 {
1712 return t;
1713 }
1714 }
1715
1716 if (noerr)
1717 {
1718 return NULL;
1719 }
1720
1721 std::string type_name = type_to_string (type);
1722 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1723 }
1724
1725 /* Store in *MAX the largest number representable by unsigned integer type
1726 TYPE. */
1727
1728 void
1729 get_unsigned_type_max (struct type *type, ULONGEST *max)
1730 {
1731 unsigned int n;
1732
1733 type = check_typedef (type);
1734 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1735 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1736
1737 /* Written this way to avoid overflow. */
1738 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1739 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1740 }
1741
1742 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1743 signed integer type TYPE. */
1744
1745 void
1746 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1747 {
1748 unsigned int n;
1749
1750 type = check_typedef (type);
1751 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1752 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1753
1754 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1755 *min = -((ULONGEST) 1 << (n - 1));
1756 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1757 }
1758
1759 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1760 cplus_stuff.vptr_fieldno.
1761
1762 cplus_stuff is initialized to cplus_struct_default which does not
1763 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1764 designated initializers). We cope with that here. */
1765
1766 int
1767 internal_type_vptr_fieldno (struct type *type)
1768 {
1769 type = check_typedef (type);
1770 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1771 || TYPE_CODE (type) == TYPE_CODE_UNION);
1772 if (!HAVE_CPLUS_STRUCT (type))
1773 return -1;
1774 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1775 }
1776
1777 /* Set the value of cplus_stuff.vptr_fieldno. */
1778
1779 void
1780 set_type_vptr_fieldno (struct type *type, int fieldno)
1781 {
1782 type = check_typedef (type);
1783 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1784 || TYPE_CODE (type) == TYPE_CODE_UNION);
1785 if (!HAVE_CPLUS_STRUCT (type))
1786 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1787 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1788 }
1789
1790 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1791 cplus_stuff.vptr_basetype. */
1792
1793 struct type *
1794 internal_type_vptr_basetype (struct type *type)
1795 {
1796 type = check_typedef (type);
1797 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1798 || TYPE_CODE (type) == TYPE_CODE_UNION);
1799 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1800 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1801 }
1802
1803 /* Set the value of cplus_stuff.vptr_basetype. */
1804
1805 void
1806 set_type_vptr_basetype (struct type *type, struct type *basetype)
1807 {
1808 type = check_typedef (type);
1809 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1810 || TYPE_CODE (type) == TYPE_CODE_UNION);
1811 if (!HAVE_CPLUS_STRUCT (type))
1812 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1813 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1814 }
1815
1816 /* Lookup the vptr basetype/fieldno values for TYPE.
1817 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1818 vptr_fieldno. Also, if found and basetype is from the same objfile,
1819 cache the results.
1820 If not found, return -1 and ignore BASETYPEP.
1821 Callers should be aware that in some cases (for example,
1822 the type or one of its baseclasses is a stub type and we are
1823 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1824 this function will not be able to find the
1825 virtual function table pointer, and vptr_fieldno will remain -1 and
1826 vptr_basetype will remain NULL or incomplete. */
1827
1828 int
1829 get_vptr_fieldno (struct type *type, struct type **basetypep)
1830 {
1831 type = check_typedef (type);
1832
1833 if (TYPE_VPTR_FIELDNO (type) < 0)
1834 {
1835 int i;
1836
1837 /* We must start at zero in case the first (and only) baseclass
1838 is virtual (and hence we cannot share the table pointer). */
1839 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1840 {
1841 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1842 int fieldno;
1843 struct type *basetype;
1844
1845 fieldno = get_vptr_fieldno (baseclass, &basetype);
1846 if (fieldno >= 0)
1847 {
1848 /* If the type comes from a different objfile we can't cache
1849 it, it may have a different lifetime. PR 2384 */
1850 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1851 {
1852 set_type_vptr_fieldno (type, fieldno);
1853 set_type_vptr_basetype (type, basetype);
1854 }
1855 if (basetypep)
1856 *basetypep = basetype;
1857 return fieldno;
1858 }
1859 }
1860
1861 /* Not found. */
1862 return -1;
1863 }
1864 else
1865 {
1866 if (basetypep)
1867 *basetypep = TYPE_VPTR_BASETYPE (type);
1868 return TYPE_VPTR_FIELDNO (type);
1869 }
1870 }
1871
1872 static void
1873 stub_noname_complaint (void)
1874 {
1875 complaint (_("stub type has NULL name"));
1876 }
1877
1878 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1879 attached to it, and that property has a non-constant value. */
1880
1881 static int
1882 array_type_has_dynamic_stride (struct type *type)
1883 {
1884 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1885
1886 return (prop != NULL && prop->kind != PROP_CONST);
1887 }
1888
1889 /* Worker for is_dynamic_type. */
1890
1891 static int
1892 is_dynamic_type_internal (struct type *type, int top_level)
1893 {
1894 type = check_typedef (type);
1895
1896 /* We only want to recognize references at the outermost level. */
1897 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1898 type = check_typedef (TYPE_TARGET_TYPE (type));
1899
1900 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1901 dynamic, even if the type itself is statically defined.
1902 From a user's point of view, this may appear counter-intuitive;
1903 but it makes sense in this context, because the point is to determine
1904 whether any part of the type needs to be resolved before it can
1905 be exploited. */
1906 if (TYPE_DATA_LOCATION (type) != NULL
1907 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1908 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1909 return 1;
1910
1911 if (TYPE_ASSOCIATED_PROP (type))
1912 return 1;
1913
1914 if (TYPE_ALLOCATED_PROP (type))
1915 return 1;
1916
1917 switch (TYPE_CODE (type))
1918 {
1919 case TYPE_CODE_RANGE:
1920 {
1921 /* A range type is obviously dynamic if it has at least one
1922 dynamic bound. But also consider the range type to be
1923 dynamic when its subtype is dynamic, even if the bounds
1924 of the range type are static. It allows us to assume that
1925 the subtype of a static range type is also static. */
1926 return (!has_static_range (TYPE_RANGE_DATA (type))
1927 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1928 }
1929
1930 case TYPE_CODE_ARRAY:
1931 {
1932 gdb_assert (TYPE_NFIELDS (type) == 1);
1933
1934 /* The array is dynamic if either the bounds are dynamic... */
1935 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1936 return 1;
1937 /* ... or the elements it contains have a dynamic contents... */
1938 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1939 return 1;
1940 /* ... or if it has a dynamic stride... */
1941 if (array_type_has_dynamic_stride (type))
1942 return 1;
1943 return 0;
1944 }
1945
1946 case TYPE_CODE_STRUCT:
1947 case TYPE_CODE_UNION:
1948 {
1949 int i;
1950
1951 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1952 if (!field_is_static (&TYPE_FIELD (type, i))
1953 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1954 return 1;
1955 }
1956 break;
1957 }
1958
1959 return 0;
1960 }
1961
1962 /* See gdbtypes.h. */
1963
1964 int
1965 is_dynamic_type (struct type *type)
1966 {
1967 return is_dynamic_type_internal (type, 1);
1968 }
1969
1970 static struct type *resolve_dynamic_type_internal
1971 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1972
1973 /* Given a dynamic range type (dyn_range_type) and a stack of
1974 struct property_addr_info elements, return a static version
1975 of that type. */
1976
1977 static struct type *
1978 resolve_dynamic_range (struct type *dyn_range_type,
1979 struct property_addr_info *addr_stack)
1980 {
1981 CORE_ADDR value;
1982 struct type *static_range_type, *static_target_type;
1983 const struct dynamic_prop *prop;
1984 struct dynamic_prop low_bound, high_bound;
1985
1986 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1987
1988 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1989 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1990 {
1991 low_bound.kind = PROP_CONST;
1992 low_bound.data.const_val = value;
1993 }
1994 else
1995 {
1996 low_bound.kind = PROP_UNDEFINED;
1997 low_bound.data.const_val = 0;
1998 }
1999
2000 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2001 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2002 {
2003 high_bound.kind = PROP_CONST;
2004 high_bound.data.const_val = value;
2005
2006 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2007 high_bound.data.const_val
2008 = low_bound.data.const_val + high_bound.data.const_val - 1;
2009 }
2010 else
2011 {
2012 high_bound.kind = PROP_UNDEFINED;
2013 high_bound.data.const_val = 0;
2014 }
2015
2016 static_target_type
2017 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2018 addr_stack, 0);
2019 static_range_type = create_range_type (copy_type (dyn_range_type),
2020 static_target_type,
2021 &low_bound, &high_bound);
2022 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2023 return static_range_type;
2024 }
2025
2026 /* Resolves dynamic bound values of an array type TYPE to static ones.
2027 ADDR_STACK is a stack of struct property_addr_info to be used
2028 if needed during the dynamic resolution. */
2029
2030 static struct type *
2031 resolve_dynamic_array (struct type *type,
2032 struct property_addr_info *addr_stack)
2033 {
2034 CORE_ADDR value;
2035 struct type *elt_type;
2036 struct type *range_type;
2037 struct type *ary_dim;
2038 struct dynamic_prop *prop;
2039 unsigned int bit_stride = 0;
2040
2041 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2042
2043 type = copy_type (type);
2044
2045 elt_type = type;
2046 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2047 range_type = resolve_dynamic_range (range_type, addr_stack);
2048
2049 /* Resolve allocated/associated here before creating a new array type, which
2050 will update the length of the array accordingly. */
2051 prop = TYPE_ALLOCATED_PROP (type);
2052 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2053 {
2054 TYPE_DYN_PROP_ADDR (prop) = value;
2055 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2056 }
2057 prop = TYPE_ASSOCIATED_PROP (type);
2058 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2059 {
2060 TYPE_DYN_PROP_ADDR (prop) = value;
2061 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2062 }
2063
2064 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2065
2066 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2067 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2068 else
2069 elt_type = TYPE_TARGET_TYPE (type);
2070
2071 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2072 if (prop != NULL)
2073 {
2074 int prop_eval_ok
2075 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2076
2077 if (prop_eval_ok)
2078 {
2079 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2080 bit_stride = (unsigned int) (value * 8);
2081 }
2082 else
2083 {
2084 /* Could be a bug in our code, but it could also happen
2085 if the DWARF info is not correct. Issue a warning,
2086 and assume no byte/bit stride (leave bit_stride = 0). */
2087 warning (_("cannot determine array stride for type %s"),
2088 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2089 }
2090 }
2091 else
2092 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2093
2094 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2095 bit_stride);
2096 }
2097
2098 /* Resolve dynamic bounds of members of the union TYPE to static
2099 bounds. ADDR_STACK is a stack of struct property_addr_info
2100 to be used if needed during the dynamic resolution. */
2101
2102 static struct type *
2103 resolve_dynamic_union (struct type *type,
2104 struct property_addr_info *addr_stack)
2105 {
2106 struct type *resolved_type;
2107 int i;
2108 unsigned int max_len = 0;
2109
2110 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2111
2112 resolved_type = copy_type (type);
2113 TYPE_FIELDS (resolved_type)
2114 = (struct field *) TYPE_ALLOC (resolved_type,
2115 TYPE_NFIELDS (resolved_type)
2116 * sizeof (struct field));
2117 memcpy (TYPE_FIELDS (resolved_type),
2118 TYPE_FIELDS (type),
2119 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2120 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2121 {
2122 struct type *t;
2123
2124 if (field_is_static (&TYPE_FIELD (type, i)))
2125 continue;
2126
2127 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2128 addr_stack, 0);
2129 TYPE_FIELD_TYPE (resolved_type, i) = t;
2130 if (TYPE_LENGTH (t) > max_len)
2131 max_len = TYPE_LENGTH (t);
2132 }
2133
2134 TYPE_LENGTH (resolved_type) = max_len;
2135 return resolved_type;
2136 }
2137
2138 /* Resolve dynamic bounds of members of the struct TYPE to static
2139 bounds. ADDR_STACK is a stack of struct property_addr_info to
2140 be used if needed during the dynamic resolution. */
2141
2142 static struct type *
2143 resolve_dynamic_struct (struct type *type,
2144 struct property_addr_info *addr_stack)
2145 {
2146 struct type *resolved_type;
2147 int i;
2148 unsigned resolved_type_bit_length = 0;
2149
2150 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2151 gdb_assert (TYPE_NFIELDS (type) > 0);
2152
2153 resolved_type = copy_type (type);
2154 TYPE_FIELDS (resolved_type)
2155 = (struct field *) TYPE_ALLOC (resolved_type,
2156 TYPE_NFIELDS (resolved_type)
2157 * sizeof (struct field));
2158 memcpy (TYPE_FIELDS (resolved_type),
2159 TYPE_FIELDS (type),
2160 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2161 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2162 {
2163 unsigned new_bit_length;
2164 struct property_addr_info pinfo;
2165
2166 if (field_is_static (&TYPE_FIELD (type, i)))
2167 continue;
2168
2169 /* As we know this field is not a static field, the field's
2170 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2171 this is the case, but only trigger a simple error rather
2172 than an internal error if that fails. While failing
2173 that verification indicates a bug in our code, the error
2174 is not severe enough to suggest to the user he stops
2175 his debugging session because of it. */
2176 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2177 error (_("Cannot determine struct field location"
2178 " (invalid location kind)"));
2179
2180 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2181 pinfo.valaddr = addr_stack->valaddr;
2182 pinfo.addr
2183 = (addr_stack->addr
2184 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2185 pinfo.next = addr_stack;
2186
2187 TYPE_FIELD_TYPE (resolved_type, i)
2188 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2189 &pinfo, 0);
2190 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2191 == FIELD_LOC_KIND_BITPOS);
2192
2193 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2194 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2195 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2196 else
2197 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2198 * TARGET_CHAR_BIT);
2199
2200 /* Normally, we would use the position and size of the last field
2201 to determine the size of the enclosing structure. But GCC seems
2202 to be encoding the position of some fields incorrectly when
2203 the struct contains a dynamic field that is not placed last.
2204 So we compute the struct size based on the field that has
2205 the highest position + size - probably the best we can do. */
2206 if (new_bit_length > resolved_type_bit_length)
2207 resolved_type_bit_length = new_bit_length;
2208 }
2209
2210 /* The length of a type won't change for fortran, but it does for C and Ada.
2211 For fortran the size of dynamic fields might change over time but not the
2212 type length of the structure. If we adapt it, we run into problems
2213 when calculating the element offset for arrays of structs. */
2214 if (current_language->la_language != language_fortran)
2215 TYPE_LENGTH (resolved_type)
2216 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2217
2218 /* The Ada language uses this field as a cache for static fixed types: reset
2219 it as RESOLVED_TYPE must have its own static fixed type. */
2220 TYPE_TARGET_TYPE (resolved_type) = NULL;
2221
2222 return resolved_type;
2223 }
2224
2225 /* Worker for resolved_dynamic_type. */
2226
2227 static struct type *
2228 resolve_dynamic_type_internal (struct type *type,
2229 struct property_addr_info *addr_stack,
2230 int top_level)
2231 {
2232 struct type *real_type = check_typedef (type);
2233 struct type *resolved_type = type;
2234 struct dynamic_prop *prop;
2235 CORE_ADDR value;
2236
2237 if (!is_dynamic_type_internal (real_type, top_level))
2238 return type;
2239
2240 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2241 {
2242 resolved_type = copy_type (type);
2243 TYPE_TARGET_TYPE (resolved_type)
2244 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2245 top_level);
2246 }
2247 else
2248 {
2249 /* Before trying to resolve TYPE, make sure it is not a stub. */
2250 type = real_type;
2251
2252 switch (TYPE_CODE (type))
2253 {
2254 case TYPE_CODE_REF:
2255 {
2256 struct property_addr_info pinfo;
2257
2258 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2259 pinfo.valaddr = NULL;
2260 if (addr_stack->valaddr != NULL)
2261 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2262 else
2263 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2264 pinfo.next = addr_stack;
2265
2266 resolved_type = copy_type (type);
2267 TYPE_TARGET_TYPE (resolved_type)
2268 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2269 &pinfo, top_level);
2270 break;
2271 }
2272
2273 case TYPE_CODE_ARRAY:
2274 resolved_type = resolve_dynamic_array (type, addr_stack);
2275 break;
2276
2277 case TYPE_CODE_RANGE:
2278 resolved_type = resolve_dynamic_range (type, addr_stack);
2279 break;
2280
2281 case TYPE_CODE_UNION:
2282 resolved_type = resolve_dynamic_union (type, addr_stack);
2283 break;
2284
2285 case TYPE_CODE_STRUCT:
2286 resolved_type = resolve_dynamic_struct (type, addr_stack);
2287 break;
2288 }
2289 }
2290
2291 /* Resolve data_location attribute. */
2292 prop = TYPE_DATA_LOCATION (resolved_type);
2293 if (prop != NULL
2294 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2295 {
2296 TYPE_DYN_PROP_ADDR (prop) = value;
2297 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2298 }
2299
2300 return resolved_type;
2301 }
2302
2303 /* See gdbtypes.h */
2304
2305 struct type *
2306 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2307 CORE_ADDR addr)
2308 {
2309 struct property_addr_info pinfo
2310 = {check_typedef (type), valaddr, addr, NULL};
2311
2312 return resolve_dynamic_type_internal (type, &pinfo, 1);
2313 }
2314
2315 /* See gdbtypes.h */
2316
2317 struct dynamic_prop *
2318 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2319 {
2320 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2321
2322 while (node != NULL)
2323 {
2324 if (node->prop_kind == prop_kind)
2325 return &node->prop;
2326 node = node->next;
2327 }
2328 return NULL;
2329 }
2330
2331 /* See gdbtypes.h */
2332
2333 void
2334 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2335 struct type *type)
2336 {
2337 struct dynamic_prop_list *temp;
2338
2339 gdb_assert (TYPE_OBJFILE_OWNED (type));
2340
2341 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2342 struct dynamic_prop_list);
2343 temp->prop_kind = prop_kind;
2344 temp->prop = prop;
2345 temp->next = TYPE_DYN_PROP_LIST (type);
2346
2347 TYPE_DYN_PROP_LIST (type) = temp;
2348 }
2349
2350 /* Remove dynamic property from TYPE in case it exists. */
2351
2352 void
2353 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2354 struct type *type)
2355 {
2356 struct dynamic_prop_list *prev_node, *curr_node;
2357
2358 curr_node = TYPE_DYN_PROP_LIST (type);
2359 prev_node = NULL;
2360
2361 while (NULL != curr_node)
2362 {
2363 if (curr_node->prop_kind == prop_kind)
2364 {
2365 /* Update the linked list but don't free anything.
2366 The property was allocated on objstack and it is not known
2367 if we are on top of it. Nevertheless, everything is released
2368 when the complete objstack is freed. */
2369 if (NULL == prev_node)
2370 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2371 else
2372 prev_node->next = curr_node->next;
2373
2374 return;
2375 }
2376
2377 prev_node = curr_node;
2378 curr_node = curr_node->next;
2379 }
2380 }
2381
2382 /* Find the real type of TYPE. This function returns the real type,
2383 after removing all layers of typedefs, and completing opaque or stub
2384 types. Completion changes the TYPE argument, but stripping of
2385 typedefs does not.
2386
2387 Instance flags (e.g. const/volatile) are preserved as typedefs are
2388 stripped. If necessary a new qualified form of the underlying type
2389 is created.
2390
2391 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2392 not been computed and we're either in the middle of reading symbols, or
2393 there was no name for the typedef in the debug info.
2394
2395 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2396 QUITs in the symbol reading code can also throw.
2397 Thus this function can throw an exception.
2398
2399 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2400 the target type.
2401
2402 If this is a stubbed struct (i.e. declared as struct foo *), see if
2403 we can find a full definition in some other file. If so, copy this
2404 definition, so we can use it in future. There used to be a comment
2405 (but not any code) that if we don't find a full definition, we'd
2406 set a flag so we don't spend time in the future checking the same
2407 type. That would be a mistake, though--we might load in more
2408 symbols which contain a full definition for the type. */
2409
2410 struct type *
2411 check_typedef (struct type *type)
2412 {
2413 struct type *orig_type = type;
2414 /* While we're removing typedefs, we don't want to lose qualifiers.
2415 E.g., const/volatile. */
2416 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2417
2418 gdb_assert (type);
2419
2420 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2421 {
2422 if (!TYPE_TARGET_TYPE (type))
2423 {
2424 const char *name;
2425 struct symbol *sym;
2426
2427 /* It is dangerous to call lookup_symbol if we are currently
2428 reading a symtab. Infinite recursion is one danger. */
2429 if (currently_reading_symtab)
2430 return make_qualified_type (type, instance_flags, NULL);
2431
2432 name = TYPE_NAME (type);
2433 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2434 VAR_DOMAIN as appropriate? */
2435 if (name == NULL)
2436 {
2437 stub_noname_complaint ();
2438 return make_qualified_type (type, instance_flags, NULL);
2439 }
2440 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2441 if (sym)
2442 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2443 else /* TYPE_CODE_UNDEF */
2444 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2445 }
2446 type = TYPE_TARGET_TYPE (type);
2447
2448 /* Preserve the instance flags as we traverse down the typedef chain.
2449
2450 Handling address spaces/classes is nasty, what do we do if there's a
2451 conflict?
2452 E.g., what if an outer typedef marks the type as class_1 and an inner
2453 typedef marks the type as class_2?
2454 This is the wrong place to do such error checking. We leave it to
2455 the code that created the typedef in the first place to flag the
2456 error. We just pick the outer address space (akin to letting the
2457 outer cast in a chain of casting win), instead of assuming
2458 "it can't happen". */
2459 {
2460 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2461 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2462 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2463 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2464
2465 /* Treat code vs data spaces and address classes separately. */
2466 if ((instance_flags & ALL_SPACES) != 0)
2467 new_instance_flags &= ~ALL_SPACES;
2468 if ((instance_flags & ALL_CLASSES) != 0)
2469 new_instance_flags &= ~ALL_CLASSES;
2470
2471 instance_flags |= new_instance_flags;
2472 }
2473 }
2474
2475 /* If this is a struct/class/union with no fields, then check
2476 whether a full definition exists somewhere else. This is for
2477 systems where a type definition with no fields is issued for such
2478 types, instead of identifying them as stub types in the first
2479 place. */
2480
2481 if (TYPE_IS_OPAQUE (type)
2482 && opaque_type_resolution
2483 && !currently_reading_symtab)
2484 {
2485 const char *name = TYPE_NAME (type);
2486 struct type *newtype;
2487
2488 if (name == NULL)
2489 {
2490 stub_noname_complaint ();
2491 return make_qualified_type (type, instance_flags, NULL);
2492 }
2493 newtype = lookup_transparent_type (name);
2494
2495 if (newtype)
2496 {
2497 /* If the resolved type and the stub are in the same
2498 objfile, then replace the stub type with the real deal.
2499 But if they're in separate objfiles, leave the stub
2500 alone; we'll just look up the transparent type every time
2501 we call check_typedef. We can't create pointers between
2502 types allocated to different objfiles, since they may
2503 have different lifetimes. Trying to copy NEWTYPE over to
2504 TYPE's objfile is pointless, too, since you'll have to
2505 move over any other types NEWTYPE refers to, which could
2506 be an unbounded amount of stuff. */
2507 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2508 type = make_qualified_type (newtype,
2509 TYPE_INSTANCE_FLAGS (type),
2510 type);
2511 else
2512 type = newtype;
2513 }
2514 }
2515 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2516 types. */
2517 else if (TYPE_STUB (type) && !currently_reading_symtab)
2518 {
2519 const char *name = TYPE_NAME (type);
2520 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2521 as appropriate? */
2522 struct symbol *sym;
2523
2524 if (name == NULL)
2525 {
2526 stub_noname_complaint ();
2527 return make_qualified_type (type, instance_flags, NULL);
2528 }
2529 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2530 if (sym)
2531 {
2532 /* Same as above for opaque types, we can replace the stub
2533 with the complete type only if they are in the same
2534 objfile. */
2535 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2536 type = make_qualified_type (SYMBOL_TYPE (sym),
2537 TYPE_INSTANCE_FLAGS (type),
2538 type);
2539 else
2540 type = SYMBOL_TYPE (sym);
2541 }
2542 }
2543
2544 if (TYPE_TARGET_STUB (type))
2545 {
2546 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2547
2548 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2549 {
2550 /* Nothing we can do. */
2551 }
2552 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2553 {
2554 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2555 TYPE_TARGET_STUB (type) = 0;
2556 }
2557 }
2558
2559 type = make_qualified_type (type, instance_flags, NULL);
2560
2561 /* Cache TYPE_LENGTH for future use. */
2562 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2563
2564 return type;
2565 }
2566
2567 /* Parse a type expression in the string [P..P+LENGTH). If an error
2568 occurs, silently return a void type. */
2569
2570 static struct type *
2571 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2572 {
2573 struct ui_file *saved_gdb_stderr;
2574 struct type *type = NULL; /* Initialize to keep gcc happy. */
2575
2576 /* Suppress error messages. */
2577 saved_gdb_stderr = gdb_stderr;
2578 gdb_stderr = &null_stream;
2579
2580 /* Call parse_and_eval_type() without fear of longjmp()s. */
2581 TRY
2582 {
2583 type = parse_and_eval_type (p, length);
2584 }
2585 CATCH (except, RETURN_MASK_ERROR)
2586 {
2587 type = builtin_type (gdbarch)->builtin_void;
2588 }
2589 END_CATCH
2590
2591 /* Stop suppressing error messages. */
2592 gdb_stderr = saved_gdb_stderr;
2593
2594 return type;
2595 }
2596
2597 /* Ugly hack to convert method stubs into method types.
2598
2599 He ain't kiddin'. This demangles the name of the method into a
2600 string including argument types, parses out each argument type,
2601 generates a string casting a zero to that type, evaluates the
2602 string, and stuffs the resulting type into an argtype vector!!!
2603 Then it knows the type of the whole function (including argument
2604 types for overloading), which info used to be in the stab's but was
2605 removed to hack back the space required for them. */
2606
2607 static void
2608 check_stub_method (struct type *type, int method_id, int signature_id)
2609 {
2610 struct gdbarch *gdbarch = get_type_arch (type);
2611 struct fn_field *f;
2612 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2613 char *demangled_name = gdb_demangle (mangled_name,
2614 DMGL_PARAMS | DMGL_ANSI);
2615 char *argtypetext, *p;
2616 int depth = 0, argcount = 1;
2617 struct field *argtypes;
2618 struct type *mtype;
2619
2620 /* Make sure we got back a function string that we can use. */
2621 if (demangled_name)
2622 p = strchr (demangled_name, '(');
2623 else
2624 p = NULL;
2625
2626 if (demangled_name == NULL || p == NULL)
2627 error (_("Internal: Cannot demangle mangled name `%s'."),
2628 mangled_name);
2629
2630 /* Now, read in the parameters that define this type. */
2631 p += 1;
2632 argtypetext = p;
2633 while (*p)
2634 {
2635 if (*p == '(' || *p == '<')
2636 {
2637 depth += 1;
2638 }
2639 else if (*p == ')' || *p == '>')
2640 {
2641 depth -= 1;
2642 }
2643 else if (*p == ',' && depth == 0)
2644 {
2645 argcount += 1;
2646 }
2647
2648 p += 1;
2649 }
2650
2651 /* If we read one argument and it was ``void'', don't count it. */
2652 if (startswith (argtypetext, "(void)"))
2653 argcount -= 1;
2654
2655 /* We need one extra slot, for the THIS pointer. */
2656
2657 argtypes = (struct field *)
2658 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2659 p = argtypetext;
2660
2661 /* Add THIS pointer for non-static methods. */
2662 f = TYPE_FN_FIELDLIST1 (type, method_id);
2663 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2664 argcount = 0;
2665 else
2666 {
2667 argtypes[0].type = lookup_pointer_type (type);
2668 argcount = 1;
2669 }
2670
2671 if (*p != ')') /* () means no args, skip while. */
2672 {
2673 depth = 0;
2674 while (*p)
2675 {
2676 if (depth <= 0 && (*p == ',' || *p == ')'))
2677 {
2678 /* Avoid parsing of ellipsis, they will be handled below.
2679 Also avoid ``void'' as above. */
2680 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2681 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2682 {
2683 argtypes[argcount].type =
2684 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2685 argcount += 1;
2686 }
2687 argtypetext = p + 1;
2688 }
2689
2690 if (*p == '(' || *p == '<')
2691 {
2692 depth += 1;
2693 }
2694 else if (*p == ')' || *p == '>')
2695 {
2696 depth -= 1;
2697 }
2698
2699 p += 1;
2700 }
2701 }
2702
2703 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2704
2705 /* Now update the old "stub" type into a real type. */
2706 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2707 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2708 We want a method (TYPE_CODE_METHOD). */
2709 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2710 argtypes, argcount, p[-2] == '.');
2711 TYPE_STUB (mtype) = 0;
2712 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2713
2714 xfree (demangled_name);
2715 }
2716
2717 /* This is the external interface to check_stub_method, above. This
2718 function unstubs all of the signatures for TYPE's METHOD_ID method
2719 name. After calling this function TYPE_FN_FIELD_STUB will be
2720 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2721 correct.
2722
2723 This function unfortunately can not die until stabs do. */
2724
2725 void
2726 check_stub_method_group (struct type *type, int method_id)
2727 {
2728 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2729 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2730 int j, found_stub = 0;
2731
2732 for (j = 0; j < len; j++)
2733 if (TYPE_FN_FIELD_STUB (f, j))
2734 {
2735 found_stub = 1;
2736 check_stub_method (type, method_id, j);
2737 }
2738
2739 /* GNU v3 methods with incorrect names were corrected when we read
2740 in type information, because it was cheaper to do it then. The
2741 only GNU v2 methods with incorrect method names are operators and
2742 destructors; destructors were also corrected when we read in type
2743 information.
2744
2745 Therefore the only thing we need to handle here are v2 operator
2746 names. */
2747 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2748 {
2749 int ret;
2750 char dem_opname[256];
2751
2752 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2753 method_id),
2754 dem_opname, DMGL_ANSI);
2755 if (!ret)
2756 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2757 method_id),
2758 dem_opname, 0);
2759 if (ret)
2760 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2761 }
2762 }
2763
2764 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2765 const struct cplus_struct_type cplus_struct_default = { };
2766
2767 void
2768 allocate_cplus_struct_type (struct type *type)
2769 {
2770 if (HAVE_CPLUS_STRUCT (type))
2771 /* Structure was already allocated. Nothing more to do. */
2772 return;
2773
2774 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2775 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2776 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2777 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2778 set_type_vptr_fieldno (type, -1);
2779 }
2780
2781 const struct gnat_aux_type gnat_aux_default =
2782 { NULL };
2783
2784 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2785 and allocate the associated gnat-specific data. The gnat-specific
2786 data is also initialized to gnat_aux_default. */
2787
2788 void
2789 allocate_gnat_aux_type (struct type *type)
2790 {
2791 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2792 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2793 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2794 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2795 }
2796
2797 /* Helper function to initialize a newly allocated type. Set type code
2798 to CODE and initialize the type-specific fields accordingly. */
2799
2800 static void
2801 set_type_code (struct type *type, enum type_code code)
2802 {
2803 TYPE_CODE (type) = code;
2804
2805 switch (code)
2806 {
2807 case TYPE_CODE_STRUCT:
2808 case TYPE_CODE_UNION:
2809 case TYPE_CODE_NAMESPACE:
2810 INIT_CPLUS_SPECIFIC (type);
2811 break;
2812 case TYPE_CODE_FLT:
2813 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2814 break;
2815 case TYPE_CODE_FUNC:
2816 INIT_FUNC_SPECIFIC (type);
2817 break;
2818 }
2819 }
2820
2821 /* Helper function to verify floating-point format and size.
2822 BIT is the type size in bits; if BIT equals -1, the size is
2823 determined by the floatformat. Returns size to be used. */
2824
2825 static int
2826 verify_floatformat (int bit, const struct floatformat *floatformat)
2827 {
2828 gdb_assert (floatformat != NULL);
2829
2830 if (bit == -1)
2831 bit = floatformat->totalsize;
2832
2833 gdb_assert (bit >= 0);
2834 gdb_assert (bit >= floatformat->totalsize);
2835
2836 return bit;
2837 }
2838
2839 /* Return the floating-point format for a floating-point variable of
2840 type TYPE. */
2841
2842 const struct floatformat *
2843 floatformat_from_type (const struct type *type)
2844 {
2845 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2846 gdb_assert (TYPE_FLOATFORMAT (type));
2847 return TYPE_FLOATFORMAT (type);
2848 }
2849
2850 /* Helper function to initialize the standard scalar types.
2851
2852 If NAME is non-NULL, then it is used to initialize the type name.
2853 Note that NAME is not copied; it is required to have a lifetime at
2854 least as long as OBJFILE. */
2855
2856 struct type *
2857 init_type (struct objfile *objfile, enum type_code code, int bit,
2858 const char *name)
2859 {
2860 struct type *type;
2861
2862 type = alloc_type (objfile);
2863 set_type_code (type, code);
2864 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2865 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2866 TYPE_NAME (type) = name;
2867
2868 return type;
2869 }
2870
2871 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2872 to use with variables that have no debug info. NAME is the type
2873 name. */
2874
2875 static struct type *
2876 init_nodebug_var_type (struct objfile *objfile, const char *name)
2877 {
2878 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2879 }
2880
2881 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885 struct type *
2886 init_integer_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888 {
2889 struct type *t;
2890
2891 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896 }
2897
2898 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2899 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2900 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2901
2902 struct type *
2903 init_character_type (struct objfile *objfile,
2904 int bit, int unsigned_p, const char *name)
2905 {
2906 struct type *t;
2907
2908 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2909 if (unsigned_p)
2910 TYPE_UNSIGNED (t) = 1;
2911
2912 return t;
2913 }
2914
2915 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2916 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2917 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2918
2919 struct type *
2920 init_boolean_type (struct objfile *objfile,
2921 int bit, int unsigned_p, const char *name)
2922 {
2923 struct type *t;
2924
2925 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2926 if (unsigned_p)
2927 TYPE_UNSIGNED (t) = 1;
2928
2929 return t;
2930 }
2931
2932 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2933 BIT is the type size in bits; if BIT equals -1, the size is
2934 determined by the floatformat. NAME is the type name. Set the
2935 TYPE_FLOATFORMAT from FLOATFORMATS. */
2936
2937 struct type *
2938 init_float_type (struct objfile *objfile,
2939 int bit, const char *name,
2940 const struct floatformat **floatformats)
2941 {
2942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2943 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2944 struct type *t;
2945
2946 bit = verify_floatformat (bit, fmt);
2947 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2948 TYPE_FLOATFORMAT (t) = fmt;
2949
2950 return t;
2951 }
2952
2953 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2954 BIT is the type size in bits. NAME is the type name. */
2955
2956 struct type *
2957 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2958 {
2959 struct type *t;
2960
2961 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2962 return t;
2963 }
2964
2965 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2966 NAME is the type name. TARGET_TYPE is the component float type. */
2967
2968 struct type *
2969 init_complex_type (struct objfile *objfile,
2970 const char *name, struct type *target_type)
2971 {
2972 struct type *t;
2973
2974 t = init_type (objfile, TYPE_CODE_COMPLEX,
2975 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2976 TYPE_TARGET_TYPE (t) = target_type;
2977 return t;
2978 }
2979
2980 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2981 BIT is the pointer type size in bits. NAME is the type name.
2982 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2983 TYPE_UNSIGNED flag. */
2984
2985 struct type *
2986 init_pointer_type (struct objfile *objfile,
2987 int bit, const char *name, struct type *target_type)
2988 {
2989 struct type *t;
2990
2991 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2992 TYPE_TARGET_TYPE (t) = target_type;
2993 TYPE_UNSIGNED (t) = 1;
2994 return t;
2995 }
2996
2997 /* See gdbtypes.h. */
2998
2999 unsigned
3000 type_raw_align (struct type *type)
3001 {
3002 if (type->align_log2 != 0)
3003 return 1 << (type->align_log2 - 1);
3004 return 0;
3005 }
3006
3007 /* See gdbtypes.h. */
3008
3009 unsigned
3010 type_align (struct type *type)
3011 {
3012 unsigned raw_align = type_raw_align (type);
3013 if (raw_align != 0)
3014 return raw_align;
3015
3016 ULONGEST align = 0;
3017 switch (TYPE_CODE (type))
3018 {
3019 case TYPE_CODE_PTR:
3020 case TYPE_CODE_FUNC:
3021 case TYPE_CODE_FLAGS:
3022 case TYPE_CODE_INT:
3023 case TYPE_CODE_FLT:
3024 case TYPE_CODE_ENUM:
3025 case TYPE_CODE_REF:
3026 case TYPE_CODE_RVALUE_REF:
3027 case TYPE_CODE_CHAR:
3028 case TYPE_CODE_BOOL:
3029 case TYPE_CODE_DECFLOAT:
3030 {
3031 struct gdbarch *arch = get_type_arch (type);
3032 align = gdbarch_type_align (arch, type);
3033 }
3034 break;
3035
3036 case TYPE_CODE_ARRAY:
3037 case TYPE_CODE_COMPLEX:
3038 case TYPE_CODE_TYPEDEF:
3039 align = type_align (TYPE_TARGET_TYPE (type));
3040 break;
3041
3042 case TYPE_CODE_STRUCT:
3043 case TYPE_CODE_UNION:
3044 {
3045 if (TYPE_NFIELDS (type) == 0)
3046 {
3047 /* An empty struct has alignment 1. */
3048 align = 1;
3049 break;
3050 }
3051 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3052 {
3053 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3054 if (f_align == 0)
3055 {
3056 /* Don't pretend we know something we don't. */
3057 align = 0;
3058 break;
3059 }
3060 if (f_align > align)
3061 align = f_align;
3062 }
3063 }
3064 break;
3065
3066 case TYPE_CODE_SET:
3067 case TYPE_CODE_RANGE:
3068 case TYPE_CODE_STRING:
3069 /* Not sure what to do here, and these can't appear in C or C++
3070 anyway. */
3071 break;
3072
3073 case TYPE_CODE_METHODPTR:
3074 case TYPE_CODE_MEMBERPTR:
3075 align = type_length_units (type);
3076 break;
3077
3078 case TYPE_CODE_VOID:
3079 align = 1;
3080 break;
3081
3082 case TYPE_CODE_ERROR:
3083 case TYPE_CODE_METHOD:
3084 default:
3085 break;
3086 }
3087
3088 if ((align & (align - 1)) != 0)
3089 {
3090 /* Not a power of 2, so pass. */
3091 align = 0;
3092 }
3093
3094 return align;
3095 }
3096
3097 /* See gdbtypes.h. */
3098
3099 bool
3100 set_type_align (struct type *type, ULONGEST align)
3101 {
3102 /* Must be a power of 2. Zero is ok. */
3103 gdb_assert ((align & (align - 1)) == 0);
3104
3105 unsigned result = 0;
3106 while (align != 0)
3107 {
3108 ++result;
3109 align >>= 1;
3110 }
3111
3112 if (result >= (1 << TYPE_ALIGN_BITS))
3113 return false;
3114
3115 type->align_log2 = result;
3116 return true;
3117 }
3118
3119 \f
3120 /* Queries on types. */
3121
3122 int
3123 can_dereference (struct type *t)
3124 {
3125 /* FIXME: Should we return true for references as well as
3126 pointers? */
3127 t = check_typedef (t);
3128 return
3129 (t != NULL
3130 && TYPE_CODE (t) == TYPE_CODE_PTR
3131 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3132 }
3133
3134 int
3135 is_integral_type (struct type *t)
3136 {
3137 t = check_typedef (t);
3138 return
3139 ((t != NULL)
3140 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3141 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3142 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3143 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3144 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3145 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3146 }
3147
3148 int
3149 is_floating_type (struct type *t)
3150 {
3151 t = check_typedef (t);
3152 return
3153 ((t != NULL)
3154 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3155 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3156 }
3157
3158 /* Return true if TYPE is scalar. */
3159
3160 int
3161 is_scalar_type (struct type *type)
3162 {
3163 type = check_typedef (type);
3164
3165 switch (TYPE_CODE (type))
3166 {
3167 case TYPE_CODE_ARRAY:
3168 case TYPE_CODE_STRUCT:
3169 case TYPE_CODE_UNION:
3170 case TYPE_CODE_SET:
3171 case TYPE_CODE_STRING:
3172 return 0;
3173 default:
3174 return 1;
3175 }
3176 }
3177
3178 /* Return true if T is scalar, or a composite type which in practice has
3179 the memory layout of a scalar type. E.g., an array or struct with only
3180 one scalar element inside it, or a union with only scalar elements. */
3181
3182 int
3183 is_scalar_type_recursive (struct type *t)
3184 {
3185 t = check_typedef (t);
3186
3187 if (is_scalar_type (t))
3188 return 1;
3189 /* Are we dealing with an array or string of known dimensions? */
3190 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3191 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3192 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3193 {
3194 LONGEST low_bound, high_bound;
3195 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3196
3197 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3198
3199 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3200 }
3201 /* Are we dealing with a struct with one element? */
3202 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3203 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3204 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3205 {
3206 int i, n = TYPE_NFIELDS (t);
3207
3208 /* If all elements of the union are scalar, then the union is scalar. */
3209 for (i = 0; i < n; i++)
3210 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3211 return 0;
3212
3213 return 1;
3214 }
3215
3216 return 0;
3217 }
3218
3219 /* Return true is T is a class or a union. False otherwise. */
3220
3221 int
3222 class_or_union_p (const struct type *t)
3223 {
3224 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3225 || TYPE_CODE (t) == TYPE_CODE_UNION);
3226 }
3227
3228 /* A helper function which returns true if types A and B represent the
3229 "same" class type. This is true if the types have the same main
3230 type, or the same name. */
3231
3232 int
3233 class_types_same_p (const struct type *a, const struct type *b)
3234 {
3235 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3236 || (TYPE_NAME (a) && TYPE_NAME (b)
3237 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3238 }
3239
3240 /* If BASE is an ancestor of DCLASS return the distance between them.
3241 otherwise return -1;
3242 eg:
3243
3244 class A {};
3245 class B: public A {};
3246 class C: public B {};
3247 class D: C {};
3248
3249 distance_to_ancestor (A, A, 0) = 0
3250 distance_to_ancestor (A, B, 0) = 1
3251 distance_to_ancestor (A, C, 0) = 2
3252 distance_to_ancestor (A, D, 0) = 3
3253
3254 If PUBLIC is 1 then only public ancestors are considered,
3255 and the function returns the distance only if BASE is a public ancestor
3256 of DCLASS.
3257 Eg:
3258
3259 distance_to_ancestor (A, D, 1) = -1. */
3260
3261 static int
3262 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3263 {
3264 int i;
3265 int d;
3266
3267 base = check_typedef (base);
3268 dclass = check_typedef (dclass);
3269
3270 if (class_types_same_p (base, dclass))
3271 return 0;
3272
3273 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3274 {
3275 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3276 continue;
3277
3278 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3279 if (d >= 0)
3280 return 1 + d;
3281 }
3282
3283 return -1;
3284 }
3285
3286 /* Check whether BASE is an ancestor or base class or DCLASS
3287 Return 1 if so, and 0 if not.
3288 Note: If BASE and DCLASS are of the same type, this function
3289 will return 1. So for some class A, is_ancestor (A, A) will
3290 return 1. */
3291
3292 int
3293 is_ancestor (struct type *base, struct type *dclass)
3294 {
3295 return distance_to_ancestor (base, dclass, 0) >= 0;
3296 }
3297
3298 /* Like is_ancestor, but only returns true when BASE is a public
3299 ancestor of DCLASS. */
3300
3301 int
3302 is_public_ancestor (struct type *base, struct type *dclass)
3303 {
3304 return distance_to_ancestor (base, dclass, 1) >= 0;
3305 }
3306
3307 /* A helper function for is_unique_ancestor. */
3308
3309 static int
3310 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3311 int *offset,
3312 const gdb_byte *valaddr, int embedded_offset,
3313 CORE_ADDR address, struct value *val)
3314 {
3315 int i, count = 0;
3316
3317 base = check_typedef (base);
3318 dclass = check_typedef (dclass);
3319
3320 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3321 {
3322 struct type *iter;
3323 int this_offset;
3324
3325 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3326
3327 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3328 address, val);
3329
3330 if (class_types_same_p (base, iter))
3331 {
3332 /* If this is the first subclass, set *OFFSET and set count
3333 to 1. Otherwise, if this is at the same offset as
3334 previous instances, do nothing. Otherwise, increment
3335 count. */
3336 if (*offset == -1)
3337 {
3338 *offset = this_offset;
3339 count = 1;
3340 }
3341 else if (this_offset == *offset)
3342 {
3343 /* Nothing. */
3344 }
3345 else
3346 ++count;
3347 }
3348 else
3349 count += is_unique_ancestor_worker (base, iter, offset,
3350 valaddr,
3351 embedded_offset + this_offset,
3352 address, val);
3353 }
3354
3355 return count;
3356 }
3357
3358 /* Like is_ancestor, but only returns true if BASE is a unique base
3359 class of the type of VAL. */
3360
3361 int
3362 is_unique_ancestor (struct type *base, struct value *val)
3363 {
3364 int offset = -1;
3365
3366 return is_unique_ancestor_worker (base, value_type (val), &offset,
3367 value_contents_for_printing (val),
3368 value_embedded_offset (val),
3369 value_address (val), val) == 1;
3370 }
3371
3372 \f
3373 /* Overload resolution. */
3374
3375 /* Return the sum of the rank of A with the rank of B. */
3376
3377 struct rank
3378 sum_ranks (struct rank a, struct rank b)
3379 {
3380 struct rank c;
3381 c.rank = a.rank + b.rank;
3382 c.subrank = a.subrank + b.subrank;
3383 return c;
3384 }
3385
3386 /* Compare rank A and B and return:
3387 0 if a = b
3388 1 if a is better than b
3389 -1 if b is better than a. */
3390
3391 int
3392 compare_ranks (struct rank a, struct rank b)
3393 {
3394 if (a.rank == b.rank)
3395 {
3396 if (a.subrank == b.subrank)
3397 return 0;
3398 if (a.subrank < b.subrank)
3399 return 1;
3400 if (a.subrank > b.subrank)
3401 return -1;
3402 }
3403
3404 if (a.rank < b.rank)
3405 return 1;
3406
3407 /* a.rank > b.rank */
3408 return -1;
3409 }
3410
3411 /* Functions for overload resolution begin here. */
3412
3413 /* Compare two badness vectors A and B and return the result.
3414 0 => A and B are identical
3415 1 => A and B are incomparable
3416 2 => A is better than B
3417 3 => A is worse than B */
3418
3419 int
3420 compare_badness (struct badness_vector *a, struct badness_vector *b)
3421 {
3422 int i;
3423 int tmp;
3424 short found_pos = 0; /* any positives in c? */
3425 short found_neg = 0; /* any negatives in c? */
3426
3427 /* differing lengths => incomparable */
3428 if (a->length != b->length)
3429 return 1;
3430
3431 /* Subtract b from a */
3432 for (i = 0; i < a->length; i++)
3433 {
3434 tmp = compare_ranks (b->rank[i], a->rank[i]);
3435 if (tmp > 0)
3436 found_pos = 1;
3437 else if (tmp < 0)
3438 found_neg = 1;
3439 }
3440
3441 if (found_pos)
3442 {
3443 if (found_neg)
3444 return 1; /* incomparable */
3445 else
3446 return 3; /* A > B */
3447 }
3448 else
3449 /* no positives */
3450 {
3451 if (found_neg)
3452 return 2; /* A < B */
3453 else
3454 return 0; /* A == B */
3455 }
3456 }
3457
3458 /* Rank a function by comparing its parameter types (PARMS, length
3459 NPARMS), to the types of an argument list (ARGS, length NARGS).
3460 Return a pointer to a badness vector. This has NARGS + 1
3461 entries. */
3462
3463 struct badness_vector *
3464 rank_function (struct type **parms, int nparms,
3465 struct value **args, int nargs)
3466 {
3467 int i;
3468 struct badness_vector *bv = XNEW (struct badness_vector);
3469 int min_len = nparms < nargs ? nparms : nargs;
3470
3471 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3472 bv->rank = XNEWVEC (struct rank, nargs + 1);
3473
3474 /* First compare the lengths of the supplied lists.
3475 If there is a mismatch, set it to a high value. */
3476
3477 /* pai/1997-06-03 FIXME: when we have debug info about default
3478 arguments and ellipsis parameter lists, we should consider those
3479 and rank the length-match more finely. */
3480
3481 LENGTH_MATCH (bv) = (nargs != nparms)
3482 ? LENGTH_MISMATCH_BADNESS
3483 : EXACT_MATCH_BADNESS;
3484
3485 /* Now rank all the parameters of the candidate function. */
3486 for (i = 1; i <= min_len; i++)
3487 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3488 args[i - 1]);
3489
3490 /* If more arguments than parameters, add dummy entries. */
3491 for (i = min_len + 1; i <= nargs; i++)
3492 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3493
3494 return bv;
3495 }
3496
3497 /* Compare the names of two integer types, assuming that any sign
3498 qualifiers have been checked already. We do it this way because
3499 there may be an "int" in the name of one of the types. */
3500
3501 static int
3502 integer_types_same_name_p (const char *first, const char *second)
3503 {
3504 int first_p, second_p;
3505
3506 /* If both are shorts, return 1; if neither is a short, keep
3507 checking. */
3508 first_p = (strstr (first, "short") != NULL);
3509 second_p = (strstr (second, "short") != NULL);
3510 if (first_p && second_p)
3511 return 1;
3512 if (first_p || second_p)
3513 return 0;
3514
3515 /* Likewise for long. */
3516 first_p = (strstr (first, "long") != NULL);
3517 second_p = (strstr (second, "long") != NULL);
3518 if (first_p && second_p)
3519 return 1;
3520 if (first_p || second_p)
3521 return 0;
3522
3523 /* Likewise for char. */
3524 first_p = (strstr (first, "char") != NULL);
3525 second_p = (strstr (second, "char") != NULL);
3526 if (first_p && second_p)
3527 return 1;
3528 if (first_p || second_p)
3529 return 0;
3530
3531 /* They must both be ints. */
3532 return 1;
3533 }
3534
3535 /* Compares type A to type B. Returns true if they represent the same
3536 type, false otherwise. */
3537
3538 bool
3539 types_equal (struct type *a, struct type *b)
3540 {
3541 /* Identical type pointers. */
3542 /* However, this still doesn't catch all cases of same type for b
3543 and a. The reason is that builtin types are different from
3544 the same ones constructed from the object. */
3545 if (a == b)
3546 return true;
3547
3548 /* Resolve typedefs */
3549 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3550 a = check_typedef (a);
3551 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3552 b = check_typedef (b);
3553
3554 /* If after resolving typedefs a and b are not of the same type
3555 code then they are not equal. */
3556 if (TYPE_CODE (a) != TYPE_CODE (b))
3557 return false;
3558
3559 /* If a and b are both pointers types or both reference types then
3560 they are equal of the same type iff the objects they refer to are
3561 of the same type. */
3562 if (TYPE_CODE (a) == TYPE_CODE_PTR
3563 || TYPE_CODE (a) == TYPE_CODE_REF)
3564 return types_equal (TYPE_TARGET_TYPE (a),
3565 TYPE_TARGET_TYPE (b));
3566
3567 /* Well, damnit, if the names are exactly the same, I'll say they
3568 are exactly the same. This happens when we generate method
3569 stubs. The types won't point to the same address, but they
3570 really are the same. */
3571
3572 if (TYPE_NAME (a) && TYPE_NAME (b)
3573 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3574 return true;
3575
3576 /* Check if identical after resolving typedefs. */
3577 if (a == b)
3578 return true;
3579
3580 /* Two function types are equal if their argument and return types
3581 are equal. */
3582 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3583 {
3584 int i;
3585
3586 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3587 return false;
3588
3589 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3590 return false;
3591
3592 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3593 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3594 return false;
3595
3596 return true;
3597 }
3598
3599 return false;
3600 }
3601 \f
3602 /* Deep comparison of types. */
3603
3604 /* An entry in the type-equality bcache. */
3605
3606 struct type_equality_entry
3607 {
3608 type_equality_entry (struct type *t1, struct type *t2)
3609 : type1 (t1),
3610 type2 (t2)
3611 {
3612 }
3613
3614 struct type *type1, *type2;
3615 };
3616
3617 /* A helper function to compare two strings. Returns true if they are
3618 the same, false otherwise. Handles NULLs properly. */
3619
3620 static bool
3621 compare_maybe_null_strings (const char *s, const char *t)
3622 {
3623 if (s == NULL || t == NULL)
3624 return s == t;
3625 return strcmp (s, t) == 0;
3626 }
3627
3628 /* A helper function for check_types_worklist that checks two types for
3629 "deep" equality. Returns true if the types are considered the
3630 same, false otherwise. */
3631
3632 static bool
3633 check_types_equal (struct type *type1, struct type *type2,
3634 std::vector<type_equality_entry> *worklist)
3635 {
3636 type1 = check_typedef (type1);
3637 type2 = check_typedef (type2);
3638
3639 if (type1 == type2)
3640 return true;
3641
3642 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3643 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3644 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3645 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3646 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3647 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3648 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3649 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3650 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3651 return false;
3652
3653 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3654 return false;
3655 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3656 return false;
3657
3658 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3659 {
3660 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3661 return false;
3662 }
3663 else
3664 {
3665 int i;
3666
3667 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3668 {
3669 const struct field *field1 = &TYPE_FIELD (type1, i);
3670 const struct field *field2 = &TYPE_FIELD (type2, i);
3671
3672 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3673 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3674 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3675 return false;
3676 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3677 FIELD_NAME (*field2)))
3678 return false;
3679 switch (FIELD_LOC_KIND (*field1))
3680 {
3681 case FIELD_LOC_KIND_BITPOS:
3682 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3683 return false;
3684 break;
3685 case FIELD_LOC_KIND_ENUMVAL:
3686 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3687 return false;
3688 break;
3689 case FIELD_LOC_KIND_PHYSADDR:
3690 if (FIELD_STATIC_PHYSADDR (*field1)
3691 != FIELD_STATIC_PHYSADDR (*field2))
3692 return false;
3693 break;
3694 case FIELD_LOC_KIND_PHYSNAME:
3695 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3696 FIELD_STATIC_PHYSNAME (*field2)))
3697 return false;
3698 break;
3699 case FIELD_LOC_KIND_DWARF_BLOCK:
3700 {
3701 struct dwarf2_locexpr_baton *block1, *block2;
3702
3703 block1 = FIELD_DWARF_BLOCK (*field1);
3704 block2 = FIELD_DWARF_BLOCK (*field2);
3705 if (block1->per_cu != block2->per_cu
3706 || block1->size != block2->size
3707 || memcmp (block1->data, block2->data, block1->size) != 0)
3708 return false;
3709 }
3710 break;
3711 default:
3712 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3713 "%d by check_types_equal"),
3714 FIELD_LOC_KIND (*field1));
3715 }
3716
3717 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3718 }
3719 }
3720
3721 if (TYPE_TARGET_TYPE (type1) != NULL)
3722 {
3723 if (TYPE_TARGET_TYPE (type2) == NULL)
3724 return false;
3725
3726 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3727 TYPE_TARGET_TYPE (type2));
3728 }
3729 else if (TYPE_TARGET_TYPE (type2) != NULL)
3730 return false;
3731
3732 return true;
3733 }
3734
3735 /* Check types on a worklist for equality. Returns false if any pair
3736 is not equal, true if they are all considered equal. */
3737
3738 static bool
3739 check_types_worklist (std::vector<type_equality_entry> *worklist,
3740 struct bcache *cache)
3741 {
3742 while (!worklist->empty ())
3743 {
3744 int added;
3745
3746 struct type_equality_entry entry = std::move (worklist->back ());
3747 worklist->pop_back ();
3748
3749 /* If the type pair has already been visited, we know it is
3750 ok. */
3751 bcache_full (&entry, sizeof (entry), cache, &added);
3752 if (!added)
3753 continue;
3754
3755 if (!check_types_equal (entry.type1, entry.type2, worklist))
3756 return false;
3757 }
3758
3759 return true;
3760 }
3761
3762 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3763 "deep comparison". Otherwise return false. */
3764
3765 bool
3766 types_deeply_equal (struct type *type1, struct type *type2)
3767 {
3768 struct gdb_exception except = exception_none;
3769 bool result = false;
3770 struct bcache *cache;
3771 std::vector<type_equality_entry> worklist;
3772
3773 gdb_assert (type1 != NULL && type2 != NULL);
3774
3775 /* Early exit for the simple case. */
3776 if (type1 == type2)
3777 return true;
3778
3779 cache = bcache_xmalloc (NULL, NULL);
3780
3781 worklist.emplace_back (type1, type2);
3782
3783 /* check_types_worklist calls several nested helper functions, some
3784 of which can raise a GDB exception, so we just check and rethrow
3785 here. If there is a GDB exception, a comparison is not capable
3786 (or trusted), so exit. */
3787 TRY
3788 {
3789 result = check_types_worklist (&worklist, cache);
3790 }
3791 CATCH (ex, RETURN_MASK_ALL)
3792 {
3793 except = ex;
3794 }
3795 END_CATCH
3796
3797 bcache_xfree (cache);
3798
3799 /* Rethrow if there was a problem. */
3800 if (except.reason < 0)
3801 throw_exception (except);
3802
3803 return result;
3804 }
3805
3806 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3807 Otherwise return one. */
3808
3809 int
3810 type_not_allocated (const struct type *type)
3811 {
3812 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3813
3814 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3815 && !TYPE_DYN_PROP_ADDR (prop));
3816 }
3817
3818 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3819 Otherwise return one. */
3820
3821 int
3822 type_not_associated (const struct type *type)
3823 {
3824 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3825
3826 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3827 && !TYPE_DYN_PROP_ADDR (prop));
3828 }
3829 \f
3830 /* Compare one type (PARM) for compatibility with another (ARG).
3831 * PARM is intended to be the parameter type of a function; and
3832 * ARG is the supplied argument's type. This function tests if
3833 * the latter can be converted to the former.
3834 * VALUE is the argument's value or NULL if none (or called recursively)
3835 *
3836 * Return 0 if they are identical types;
3837 * Otherwise, return an integer which corresponds to how compatible
3838 * PARM is to ARG. The higher the return value, the worse the match.
3839 * Generally the "bad" conversions are all uniformly assigned a 100. */
3840
3841 struct rank
3842 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3843 {
3844 struct rank rank = {0,0};
3845
3846 /* Resolve typedefs */
3847 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3848 parm = check_typedef (parm);
3849 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3850 arg = check_typedef (arg);
3851
3852 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3853 {
3854 if (VALUE_LVAL (value) == not_lval)
3855 {
3856 /* Rvalues should preferably bind to rvalue references or const
3857 lvalue references. */
3858 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3859 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3860 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3861 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3862 else
3863 return INCOMPATIBLE_TYPE_BADNESS;
3864 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3865 }
3866 else
3867 {
3868 /* Lvalues should prefer lvalue overloads. */
3869 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3870 {
3871 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3872 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3873 }
3874 }
3875 }
3876
3877 if (types_equal (parm, arg))
3878 {
3879 struct type *t1 = parm;
3880 struct type *t2 = arg;
3881
3882 /* For pointers and references, compare target type. */
3883 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3884 {
3885 t1 = TYPE_TARGET_TYPE (parm);
3886 t2 = TYPE_TARGET_TYPE (arg);
3887 }
3888
3889 /* Make sure they are CV equal, too. */
3890 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3891 rank.subrank |= CV_CONVERSION_CONST;
3892 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3893 rank.subrank |= CV_CONVERSION_VOLATILE;
3894 if (rank.subrank != 0)
3895 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3896 return EXACT_MATCH_BADNESS;
3897 }
3898
3899 /* See through references, since we can almost make non-references
3900 references. */
3901
3902 if (TYPE_IS_REFERENCE (arg))
3903 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3904 REFERENCE_CONVERSION_BADNESS));
3905 if (TYPE_IS_REFERENCE (parm))
3906 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3907 REFERENCE_CONVERSION_BADNESS));
3908 if (overload_debug)
3909 /* Debugging only. */
3910 fprintf_filtered (gdb_stderr,
3911 "------ Arg is %s [%d], parm is %s [%d]\n",
3912 TYPE_NAME (arg), TYPE_CODE (arg),
3913 TYPE_NAME (parm), TYPE_CODE (parm));
3914
3915 /* x -> y means arg of type x being supplied for parameter of type y. */
3916
3917 switch (TYPE_CODE (parm))
3918 {
3919 case TYPE_CODE_PTR:
3920 switch (TYPE_CODE (arg))
3921 {
3922 case TYPE_CODE_PTR:
3923
3924 /* Allowed pointer conversions are:
3925 (a) pointer to void-pointer conversion. */
3926 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3927 return VOID_PTR_CONVERSION_BADNESS;
3928
3929 /* (b) pointer to ancestor-pointer conversion. */
3930 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3931 TYPE_TARGET_TYPE (arg),
3932 0);
3933 if (rank.subrank >= 0)
3934 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3935
3936 return INCOMPATIBLE_TYPE_BADNESS;
3937 case TYPE_CODE_ARRAY:
3938 {
3939 struct type *t1 = TYPE_TARGET_TYPE (parm);
3940 struct type *t2 = TYPE_TARGET_TYPE (arg);
3941
3942 if (types_equal (t1, t2))
3943 {
3944 /* Make sure they are CV equal. */
3945 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3946 rank.subrank |= CV_CONVERSION_CONST;
3947 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3948 rank.subrank |= CV_CONVERSION_VOLATILE;
3949 if (rank.subrank != 0)
3950 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3951 return EXACT_MATCH_BADNESS;
3952 }
3953 return INCOMPATIBLE_TYPE_BADNESS;
3954 }
3955 case TYPE_CODE_FUNC:
3956 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3957 case TYPE_CODE_INT:
3958 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3959 {
3960 if (value_as_long (value) == 0)
3961 {
3962 /* Null pointer conversion: allow it to be cast to a pointer.
3963 [4.10.1 of C++ standard draft n3290] */
3964 return NULL_POINTER_CONVERSION_BADNESS;
3965 }
3966 else
3967 {
3968 /* If type checking is disabled, allow the conversion. */
3969 if (!strict_type_checking)
3970 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3971 }
3972 }
3973 /* fall through */
3974 case TYPE_CODE_ENUM:
3975 case TYPE_CODE_FLAGS:
3976 case TYPE_CODE_CHAR:
3977 case TYPE_CODE_RANGE:
3978 case TYPE_CODE_BOOL:
3979 default:
3980 return INCOMPATIBLE_TYPE_BADNESS;
3981 }
3982 case TYPE_CODE_ARRAY:
3983 switch (TYPE_CODE (arg))
3984 {
3985 case TYPE_CODE_PTR:
3986 case TYPE_CODE_ARRAY:
3987 return rank_one_type (TYPE_TARGET_TYPE (parm),
3988 TYPE_TARGET_TYPE (arg), NULL);
3989 default:
3990 return INCOMPATIBLE_TYPE_BADNESS;
3991 }
3992 case TYPE_CODE_FUNC:
3993 switch (TYPE_CODE (arg))
3994 {
3995 case TYPE_CODE_PTR: /* funcptr -> func */
3996 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3997 default:
3998 return INCOMPATIBLE_TYPE_BADNESS;
3999 }
4000 case TYPE_CODE_INT:
4001 switch (TYPE_CODE (arg))
4002 {
4003 case TYPE_CODE_INT:
4004 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4005 {
4006 /* Deal with signed, unsigned, and plain chars and
4007 signed and unsigned ints. */
4008 if (TYPE_NOSIGN (parm))
4009 {
4010 /* This case only for character types. */
4011 if (TYPE_NOSIGN (arg))
4012 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4013 else /* signed/unsigned char -> plain char */
4014 return INTEGER_CONVERSION_BADNESS;
4015 }
4016 else if (TYPE_UNSIGNED (parm))
4017 {
4018 if (TYPE_UNSIGNED (arg))
4019 {
4020 /* unsigned int -> unsigned int, or
4021 unsigned long -> unsigned long */
4022 if (integer_types_same_name_p (TYPE_NAME (parm),
4023 TYPE_NAME (arg)))
4024 return EXACT_MATCH_BADNESS;
4025 else if (integer_types_same_name_p (TYPE_NAME (arg),
4026 "int")
4027 && integer_types_same_name_p (TYPE_NAME (parm),
4028 "long"))
4029 /* unsigned int -> unsigned long */
4030 return INTEGER_PROMOTION_BADNESS;
4031 else
4032 /* unsigned long -> unsigned int */
4033 return INTEGER_CONVERSION_BADNESS;
4034 }
4035 else
4036 {
4037 if (integer_types_same_name_p (TYPE_NAME (arg),
4038 "long")
4039 && integer_types_same_name_p (TYPE_NAME (parm),
4040 "int"))
4041 /* signed long -> unsigned int */
4042 return INTEGER_CONVERSION_BADNESS;
4043 else
4044 /* signed int/long -> unsigned int/long */
4045 return INTEGER_CONVERSION_BADNESS;
4046 }
4047 }
4048 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4049 {
4050 if (integer_types_same_name_p (TYPE_NAME (parm),
4051 TYPE_NAME (arg)))
4052 return EXACT_MATCH_BADNESS;
4053 else if (integer_types_same_name_p (TYPE_NAME (arg),
4054 "int")
4055 && integer_types_same_name_p (TYPE_NAME (parm),
4056 "long"))
4057 return INTEGER_PROMOTION_BADNESS;
4058 else
4059 return INTEGER_CONVERSION_BADNESS;
4060 }
4061 else
4062 return INTEGER_CONVERSION_BADNESS;
4063 }
4064 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4065 return INTEGER_PROMOTION_BADNESS;
4066 else
4067 return INTEGER_CONVERSION_BADNESS;
4068 case TYPE_CODE_ENUM:
4069 case TYPE_CODE_FLAGS:
4070 case TYPE_CODE_CHAR:
4071 case TYPE_CODE_RANGE:
4072 case TYPE_CODE_BOOL:
4073 if (TYPE_DECLARED_CLASS (arg))
4074 return INCOMPATIBLE_TYPE_BADNESS;
4075 return INTEGER_PROMOTION_BADNESS;
4076 case TYPE_CODE_FLT:
4077 return INT_FLOAT_CONVERSION_BADNESS;
4078 case TYPE_CODE_PTR:
4079 return NS_POINTER_CONVERSION_BADNESS;
4080 default:
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 }
4083 break;
4084 case TYPE_CODE_ENUM:
4085 switch (TYPE_CODE (arg))
4086 {
4087 case TYPE_CODE_INT:
4088 case TYPE_CODE_CHAR:
4089 case TYPE_CODE_RANGE:
4090 case TYPE_CODE_BOOL:
4091 case TYPE_CODE_ENUM:
4092 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4093 return INCOMPATIBLE_TYPE_BADNESS;
4094 return INTEGER_CONVERSION_BADNESS;
4095 case TYPE_CODE_FLT:
4096 return INT_FLOAT_CONVERSION_BADNESS;
4097 default:
4098 return INCOMPATIBLE_TYPE_BADNESS;
4099 }
4100 break;
4101 case TYPE_CODE_CHAR:
4102 switch (TYPE_CODE (arg))
4103 {
4104 case TYPE_CODE_RANGE:
4105 case TYPE_CODE_BOOL:
4106 case TYPE_CODE_ENUM:
4107 if (TYPE_DECLARED_CLASS (arg))
4108 return INCOMPATIBLE_TYPE_BADNESS;
4109 return INTEGER_CONVERSION_BADNESS;
4110 case TYPE_CODE_FLT:
4111 return INT_FLOAT_CONVERSION_BADNESS;
4112 case TYPE_CODE_INT:
4113 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4114 return INTEGER_CONVERSION_BADNESS;
4115 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4116 return INTEGER_PROMOTION_BADNESS;
4117 /* fall through */
4118 case TYPE_CODE_CHAR:
4119 /* Deal with signed, unsigned, and plain chars for C++ and
4120 with int cases falling through from previous case. */
4121 if (TYPE_NOSIGN (parm))
4122 {
4123 if (TYPE_NOSIGN (arg))
4124 return EXACT_MATCH_BADNESS;
4125 else
4126 return INTEGER_CONVERSION_BADNESS;
4127 }
4128 else if (TYPE_UNSIGNED (parm))
4129 {
4130 if (TYPE_UNSIGNED (arg))
4131 return EXACT_MATCH_BADNESS;
4132 else
4133 return INTEGER_PROMOTION_BADNESS;
4134 }
4135 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4136 return EXACT_MATCH_BADNESS;
4137 else
4138 return INTEGER_CONVERSION_BADNESS;
4139 default:
4140 return INCOMPATIBLE_TYPE_BADNESS;
4141 }
4142 break;
4143 case TYPE_CODE_RANGE:
4144 switch (TYPE_CODE (arg))
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_CHAR:
4148 case TYPE_CODE_RANGE:
4149 case TYPE_CODE_BOOL:
4150 case TYPE_CODE_ENUM:
4151 return INTEGER_CONVERSION_BADNESS;
4152 case TYPE_CODE_FLT:
4153 return INT_FLOAT_CONVERSION_BADNESS;
4154 default:
4155 return INCOMPATIBLE_TYPE_BADNESS;
4156 }
4157 break;
4158 case TYPE_CODE_BOOL:
4159 switch (TYPE_CODE (arg))
4160 {
4161 /* n3290 draft, section 4.12.1 (conv.bool):
4162
4163 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4164 pointer to member type can be converted to a prvalue of type
4165 bool. A zero value, null pointer value, or null member pointer
4166 value is converted to false; any other value is converted to
4167 true. A prvalue of type std::nullptr_t can be converted to a
4168 prvalue of type bool; the resulting value is false." */
4169 case TYPE_CODE_INT:
4170 case TYPE_CODE_CHAR:
4171 case TYPE_CODE_ENUM:
4172 case TYPE_CODE_FLT:
4173 case TYPE_CODE_MEMBERPTR:
4174 case TYPE_CODE_PTR:
4175 return BOOL_CONVERSION_BADNESS;
4176 case TYPE_CODE_RANGE:
4177 return INCOMPATIBLE_TYPE_BADNESS;
4178 case TYPE_CODE_BOOL:
4179 return EXACT_MATCH_BADNESS;
4180 default:
4181 return INCOMPATIBLE_TYPE_BADNESS;
4182 }
4183 break;
4184 case TYPE_CODE_FLT:
4185 switch (TYPE_CODE (arg))
4186 {
4187 case TYPE_CODE_FLT:
4188 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4189 return FLOAT_PROMOTION_BADNESS;
4190 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4191 return EXACT_MATCH_BADNESS;
4192 else
4193 return FLOAT_CONVERSION_BADNESS;
4194 case TYPE_CODE_INT:
4195 case TYPE_CODE_BOOL:
4196 case TYPE_CODE_ENUM:
4197 case TYPE_CODE_RANGE:
4198 case TYPE_CODE_CHAR:
4199 return INT_FLOAT_CONVERSION_BADNESS;
4200 default:
4201 return INCOMPATIBLE_TYPE_BADNESS;
4202 }
4203 break;
4204 case TYPE_CODE_COMPLEX:
4205 switch (TYPE_CODE (arg))
4206 { /* Strictly not needed for C++, but... */
4207 case TYPE_CODE_FLT:
4208 return FLOAT_PROMOTION_BADNESS;
4209 case TYPE_CODE_COMPLEX:
4210 return EXACT_MATCH_BADNESS;
4211 default:
4212 return INCOMPATIBLE_TYPE_BADNESS;
4213 }
4214 break;
4215 case TYPE_CODE_STRUCT:
4216 switch (TYPE_CODE (arg))
4217 {
4218 case TYPE_CODE_STRUCT:
4219 /* Check for derivation */
4220 rank.subrank = distance_to_ancestor (parm, arg, 0);
4221 if (rank.subrank >= 0)
4222 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4223 /* fall through */
4224 default:
4225 return INCOMPATIBLE_TYPE_BADNESS;
4226 }
4227 break;
4228 case TYPE_CODE_UNION:
4229 switch (TYPE_CODE (arg))
4230 {
4231 case TYPE_CODE_UNION:
4232 default:
4233 return INCOMPATIBLE_TYPE_BADNESS;
4234 }
4235 break;
4236 case TYPE_CODE_MEMBERPTR:
4237 switch (TYPE_CODE (arg))
4238 {
4239 default:
4240 return INCOMPATIBLE_TYPE_BADNESS;
4241 }
4242 break;
4243 case TYPE_CODE_METHOD:
4244 switch (TYPE_CODE (arg))
4245 {
4246
4247 default:
4248 return INCOMPATIBLE_TYPE_BADNESS;
4249 }
4250 break;
4251 case TYPE_CODE_REF:
4252 switch (TYPE_CODE (arg))
4253 {
4254
4255 default:
4256 return INCOMPATIBLE_TYPE_BADNESS;
4257 }
4258
4259 break;
4260 case TYPE_CODE_SET:
4261 switch (TYPE_CODE (arg))
4262 {
4263 /* Not in C++ */
4264 case TYPE_CODE_SET:
4265 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4266 TYPE_FIELD_TYPE (arg, 0), NULL);
4267 default:
4268 return INCOMPATIBLE_TYPE_BADNESS;
4269 }
4270 break;
4271 case TYPE_CODE_VOID:
4272 default:
4273 return INCOMPATIBLE_TYPE_BADNESS;
4274 } /* switch (TYPE_CODE (arg)) */
4275 }
4276
4277 /* End of functions for overload resolution. */
4278 \f
4279 /* Routines to pretty-print types. */
4280
4281 static void
4282 print_bit_vector (B_TYPE *bits, int nbits)
4283 {
4284 int bitno;
4285
4286 for (bitno = 0; bitno < nbits; bitno++)
4287 {
4288 if ((bitno % 8) == 0)
4289 {
4290 puts_filtered (" ");
4291 }
4292 if (B_TST (bits, bitno))
4293 printf_filtered (("1"));
4294 else
4295 printf_filtered (("0"));
4296 }
4297 }
4298
4299 /* Note the first arg should be the "this" pointer, we may not want to
4300 include it since we may get into a infinitely recursive
4301 situation. */
4302
4303 static void
4304 print_args (struct field *args, int nargs, int spaces)
4305 {
4306 if (args != NULL)
4307 {
4308 int i;
4309
4310 for (i = 0; i < nargs; i++)
4311 {
4312 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4313 args[i].name != NULL ? args[i].name : "<NULL>");
4314 recursive_dump_type (args[i].type, spaces + 2);
4315 }
4316 }
4317 }
4318
4319 int
4320 field_is_static (struct field *f)
4321 {
4322 /* "static" fields are the fields whose location is not relative
4323 to the address of the enclosing struct. It would be nice to
4324 have a dedicated flag that would be set for static fields when
4325 the type is being created. But in practice, checking the field
4326 loc_kind should give us an accurate answer. */
4327 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4328 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4329 }
4330
4331 static void
4332 dump_fn_fieldlists (struct type *type, int spaces)
4333 {
4334 int method_idx;
4335 int overload_idx;
4336 struct fn_field *f;
4337
4338 printfi_filtered (spaces, "fn_fieldlists ");
4339 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4340 printf_filtered ("\n");
4341 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4342 {
4343 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4344 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4345 method_idx,
4346 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4347 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4348 gdb_stdout);
4349 printf_filtered (_(") length %d\n"),
4350 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4351 for (overload_idx = 0;
4352 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4353 overload_idx++)
4354 {
4355 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4356 overload_idx,
4357 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4358 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4359 gdb_stdout);
4360 printf_filtered (")\n");
4361 printfi_filtered (spaces + 8, "type ");
4362 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4363 gdb_stdout);
4364 printf_filtered ("\n");
4365
4366 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4367 spaces + 8 + 2);
4368
4369 printfi_filtered (spaces + 8, "args ");
4370 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4371 gdb_stdout);
4372 printf_filtered ("\n");
4373 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4374 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4375 spaces + 8 + 2);
4376 printfi_filtered (spaces + 8, "fcontext ");
4377 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4378 gdb_stdout);
4379 printf_filtered ("\n");
4380
4381 printfi_filtered (spaces + 8, "is_const %d\n",
4382 TYPE_FN_FIELD_CONST (f, overload_idx));
4383 printfi_filtered (spaces + 8, "is_volatile %d\n",
4384 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4385 printfi_filtered (spaces + 8, "is_private %d\n",
4386 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4387 printfi_filtered (spaces + 8, "is_protected %d\n",
4388 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4389 printfi_filtered (spaces + 8, "is_stub %d\n",
4390 TYPE_FN_FIELD_STUB (f, overload_idx));
4391 printfi_filtered (spaces + 8, "voffset %u\n",
4392 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4393 }
4394 }
4395 }
4396
4397 static void
4398 print_cplus_stuff (struct type *type, int spaces)
4399 {
4400 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4401 printfi_filtered (spaces, "vptr_basetype ");
4402 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4403 puts_filtered ("\n");
4404 if (TYPE_VPTR_BASETYPE (type) != NULL)
4405 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4406
4407 printfi_filtered (spaces, "n_baseclasses %d\n",
4408 TYPE_N_BASECLASSES (type));
4409 printfi_filtered (spaces, "nfn_fields %d\n",
4410 TYPE_NFN_FIELDS (type));
4411 if (TYPE_N_BASECLASSES (type) > 0)
4412 {
4413 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4414 TYPE_N_BASECLASSES (type));
4415 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4416 gdb_stdout);
4417 printf_filtered (")");
4418
4419 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4420 TYPE_N_BASECLASSES (type));
4421 puts_filtered ("\n");
4422 }
4423 if (TYPE_NFIELDS (type) > 0)
4424 {
4425 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4426 {
4427 printfi_filtered (spaces,
4428 "private_field_bits (%d bits at *",
4429 TYPE_NFIELDS (type));
4430 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4431 gdb_stdout);
4432 printf_filtered (")");
4433 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4434 TYPE_NFIELDS (type));
4435 puts_filtered ("\n");
4436 }
4437 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4438 {
4439 printfi_filtered (spaces,
4440 "protected_field_bits (%d bits at *",
4441 TYPE_NFIELDS (type));
4442 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4443 gdb_stdout);
4444 printf_filtered (")");
4445 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4446 TYPE_NFIELDS (type));
4447 puts_filtered ("\n");
4448 }
4449 }
4450 if (TYPE_NFN_FIELDS (type) > 0)
4451 {
4452 dump_fn_fieldlists (type, spaces);
4453 }
4454 }
4455
4456 /* Print the contents of the TYPE's type_specific union, assuming that
4457 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4458
4459 static void
4460 print_gnat_stuff (struct type *type, int spaces)
4461 {
4462 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4463
4464 if (descriptive_type == NULL)
4465 printfi_filtered (spaces + 2, "no descriptive type\n");
4466 else
4467 {
4468 printfi_filtered (spaces + 2, "descriptive type\n");
4469 recursive_dump_type (descriptive_type, spaces + 4);
4470 }
4471 }
4472
4473 static struct obstack dont_print_type_obstack;
4474
4475 void
4476 recursive_dump_type (struct type *type, int spaces)
4477 {
4478 int idx;
4479
4480 if (spaces == 0)
4481 obstack_begin (&dont_print_type_obstack, 0);
4482
4483 if (TYPE_NFIELDS (type) > 0
4484 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4485 {
4486 struct type **first_dont_print
4487 = (struct type **) obstack_base (&dont_print_type_obstack);
4488
4489 int i = (struct type **)
4490 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4491
4492 while (--i >= 0)
4493 {
4494 if (type == first_dont_print[i])
4495 {
4496 printfi_filtered (spaces, "type node ");
4497 gdb_print_host_address (type, gdb_stdout);
4498 printf_filtered (_(" <same as already seen type>\n"));
4499 return;
4500 }
4501 }
4502
4503 obstack_ptr_grow (&dont_print_type_obstack, type);
4504 }
4505
4506 printfi_filtered (spaces, "type node ");
4507 gdb_print_host_address (type, gdb_stdout);
4508 printf_filtered ("\n");
4509 printfi_filtered (spaces, "name '%s' (",
4510 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4511 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4512 printf_filtered (")\n");
4513 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4514 switch (TYPE_CODE (type))
4515 {
4516 case TYPE_CODE_UNDEF:
4517 printf_filtered ("(TYPE_CODE_UNDEF)");
4518 break;
4519 case TYPE_CODE_PTR:
4520 printf_filtered ("(TYPE_CODE_PTR)");
4521 break;
4522 case TYPE_CODE_ARRAY:
4523 printf_filtered ("(TYPE_CODE_ARRAY)");
4524 break;
4525 case TYPE_CODE_STRUCT:
4526 printf_filtered ("(TYPE_CODE_STRUCT)");
4527 break;
4528 case TYPE_CODE_UNION:
4529 printf_filtered ("(TYPE_CODE_UNION)");
4530 break;
4531 case TYPE_CODE_ENUM:
4532 printf_filtered ("(TYPE_CODE_ENUM)");
4533 break;
4534 case TYPE_CODE_FLAGS:
4535 printf_filtered ("(TYPE_CODE_FLAGS)");
4536 break;
4537 case TYPE_CODE_FUNC:
4538 printf_filtered ("(TYPE_CODE_FUNC)");
4539 break;
4540 case TYPE_CODE_INT:
4541 printf_filtered ("(TYPE_CODE_INT)");
4542 break;
4543 case TYPE_CODE_FLT:
4544 printf_filtered ("(TYPE_CODE_FLT)");
4545 break;
4546 case TYPE_CODE_VOID:
4547 printf_filtered ("(TYPE_CODE_VOID)");
4548 break;
4549 case TYPE_CODE_SET:
4550 printf_filtered ("(TYPE_CODE_SET)");
4551 break;
4552 case TYPE_CODE_RANGE:
4553 printf_filtered ("(TYPE_CODE_RANGE)");
4554 break;
4555 case TYPE_CODE_STRING:
4556 printf_filtered ("(TYPE_CODE_STRING)");
4557 break;
4558 case TYPE_CODE_ERROR:
4559 printf_filtered ("(TYPE_CODE_ERROR)");
4560 break;
4561 case TYPE_CODE_MEMBERPTR:
4562 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4563 break;
4564 case TYPE_CODE_METHODPTR:
4565 printf_filtered ("(TYPE_CODE_METHODPTR)");
4566 break;
4567 case TYPE_CODE_METHOD:
4568 printf_filtered ("(TYPE_CODE_METHOD)");
4569 break;
4570 case TYPE_CODE_REF:
4571 printf_filtered ("(TYPE_CODE_REF)");
4572 break;
4573 case TYPE_CODE_CHAR:
4574 printf_filtered ("(TYPE_CODE_CHAR)");
4575 break;
4576 case TYPE_CODE_BOOL:
4577 printf_filtered ("(TYPE_CODE_BOOL)");
4578 break;
4579 case TYPE_CODE_COMPLEX:
4580 printf_filtered ("(TYPE_CODE_COMPLEX)");
4581 break;
4582 case TYPE_CODE_TYPEDEF:
4583 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4584 break;
4585 case TYPE_CODE_NAMESPACE:
4586 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4587 break;
4588 default:
4589 printf_filtered ("(UNKNOWN TYPE CODE)");
4590 break;
4591 }
4592 puts_filtered ("\n");
4593 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4594 if (TYPE_OBJFILE_OWNED (type))
4595 {
4596 printfi_filtered (spaces, "objfile ");
4597 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4598 }
4599 else
4600 {
4601 printfi_filtered (spaces, "gdbarch ");
4602 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4603 }
4604 printf_filtered ("\n");
4605 printfi_filtered (spaces, "target_type ");
4606 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4607 printf_filtered ("\n");
4608 if (TYPE_TARGET_TYPE (type) != NULL)
4609 {
4610 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4611 }
4612 printfi_filtered (spaces, "pointer_type ");
4613 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4614 printf_filtered ("\n");
4615 printfi_filtered (spaces, "reference_type ");
4616 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4617 printf_filtered ("\n");
4618 printfi_filtered (spaces, "type_chain ");
4619 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4620 printf_filtered ("\n");
4621 printfi_filtered (spaces, "instance_flags 0x%x",
4622 TYPE_INSTANCE_FLAGS (type));
4623 if (TYPE_CONST (type))
4624 {
4625 puts_filtered (" TYPE_CONST");
4626 }
4627 if (TYPE_VOLATILE (type))
4628 {
4629 puts_filtered (" TYPE_VOLATILE");
4630 }
4631 if (TYPE_CODE_SPACE (type))
4632 {
4633 puts_filtered (" TYPE_CODE_SPACE");
4634 }
4635 if (TYPE_DATA_SPACE (type))
4636 {
4637 puts_filtered (" TYPE_DATA_SPACE");
4638 }
4639 if (TYPE_ADDRESS_CLASS_1 (type))
4640 {
4641 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4642 }
4643 if (TYPE_ADDRESS_CLASS_2 (type))
4644 {
4645 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4646 }
4647 if (TYPE_RESTRICT (type))
4648 {
4649 puts_filtered (" TYPE_RESTRICT");
4650 }
4651 if (TYPE_ATOMIC (type))
4652 {
4653 puts_filtered (" TYPE_ATOMIC");
4654 }
4655 puts_filtered ("\n");
4656
4657 printfi_filtered (spaces, "flags");
4658 if (TYPE_UNSIGNED (type))
4659 {
4660 puts_filtered (" TYPE_UNSIGNED");
4661 }
4662 if (TYPE_NOSIGN (type))
4663 {
4664 puts_filtered (" TYPE_NOSIGN");
4665 }
4666 if (TYPE_STUB (type))
4667 {
4668 puts_filtered (" TYPE_STUB");
4669 }
4670 if (TYPE_TARGET_STUB (type))
4671 {
4672 puts_filtered (" TYPE_TARGET_STUB");
4673 }
4674 if (TYPE_PROTOTYPED (type))
4675 {
4676 puts_filtered (" TYPE_PROTOTYPED");
4677 }
4678 if (TYPE_INCOMPLETE (type))
4679 {
4680 puts_filtered (" TYPE_INCOMPLETE");
4681 }
4682 if (TYPE_VARARGS (type))
4683 {
4684 puts_filtered (" TYPE_VARARGS");
4685 }
4686 /* This is used for things like AltiVec registers on ppc. Gcc emits
4687 an attribute for the array type, which tells whether or not we
4688 have a vector, instead of a regular array. */
4689 if (TYPE_VECTOR (type))
4690 {
4691 puts_filtered (" TYPE_VECTOR");
4692 }
4693 if (TYPE_FIXED_INSTANCE (type))
4694 {
4695 puts_filtered (" TYPE_FIXED_INSTANCE");
4696 }
4697 if (TYPE_STUB_SUPPORTED (type))
4698 {
4699 puts_filtered (" TYPE_STUB_SUPPORTED");
4700 }
4701 if (TYPE_NOTTEXT (type))
4702 {
4703 puts_filtered (" TYPE_NOTTEXT");
4704 }
4705 puts_filtered ("\n");
4706 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4707 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4708 puts_filtered ("\n");
4709 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4710 {
4711 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4712 printfi_filtered (spaces + 2,
4713 "[%d] enumval %s type ",
4714 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4715 else
4716 printfi_filtered (spaces + 2,
4717 "[%d] bitpos %s bitsize %d type ",
4718 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4719 TYPE_FIELD_BITSIZE (type, idx));
4720 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4721 printf_filtered (" name '%s' (",
4722 TYPE_FIELD_NAME (type, idx) != NULL
4723 ? TYPE_FIELD_NAME (type, idx)
4724 : "<NULL>");
4725 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4726 printf_filtered (")\n");
4727 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4728 {
4729 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4730 }
4731 }
4732 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4733 {
4734 printfi_filtered (spaces, "low %s%s high %s%s\n",
4735 plongest (TYPE_LOW_BOUND (type)),
4736 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4737 plongest (TYPE_HIGH_BOUND (type)),
4738 TYPE_HIGH_BOUND_UNDEFINED (type)
4739 ? " (undefined)" : "");
4740 }
4741
4742 switch (TYPE_SPECIFIC_FIELD (type))
4743 {
4744 case TYPE_SPECIFIC_CPLUS_STUFF:
4745 printfi_filtered (spaces, "cplus_stuff ");
4746 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4747 gdb_stdout);
4748 puts_filtered ("\n");
4749 print_cplus_stuff (type, spaces);
4750 break;
4751
4752 case TYPE_SPECIFIC_GNAT_STUFF:
4753 printfi_filtered (spaces, "gnat_stuff ");
4754 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4755 puts_filtered ("\n");
4756 print_gnat_stuff (type, spaces);
4757 break;
4758
4759 case TYPE_SPECIFIC_FLOATFORMAT:
4760 printfi_filtered (spaces, "floatformat ");
4761 if (TYPE_FLOATFORMAT (type) == NULL
4762 || TYPE_FLOATFORMAT (type)->name == NULL)
4763 puts_filtered ("(null)");
4764 else
4765 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4766 puts_filtered ("\n");
4767 break;
4768
4769 case TYPE_SPECIFIC_FUNC:
4770 printfi_filtered (spaces, "calling_convention %d\n",
4771 TYPE_CALLING_CONVENTION (type));
4772 /* tail_call_list is not printed. */
4773 break;
4774
4775 case TYPE_SPECIFIC_SELF_TYPE:
4776 printfi_filtered (spaces, "self_type ");
4777 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4778 puts_filtered ("\n");
4779 break;
4780 }
4781
4782 if (spaces == 0)
4783 obstack_free (&dont_print_type_obstack, NULL);
4784 }
4785 \f
4786 /* Trivial helpers for the libiberty hash table, for mapping one
4787 type to another. */
4788
4789 struct type_pair : public allocate_on_obstack
4790 {
4791 type_pair (struct type *old_, struct type *newobj_)
4792 : old (old_), newobj (newobj_)
4793 {}
4794
4795 struct type * const old, * const newobj;
4796 };
4797
4798 static hashval_t
4799 type_pair_hash (const void *item)
4800 {
4801 const struct type_pair *pair = (const struct type_pair *) item;
4802
4803 return htab_hash_pointer (pair->old);
4804 }
4805
4806 static int
4807 type_pair_eq (const void *item_lhs, const void *item_rhs)
4808 {
4809 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4810 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4811
4812 return lhs->old == rhs->old;
4813 }
4814
4815 /* Allocate the hash table used by copy_type_recursive to walk
4816 types without duplicates. We use OBJFILE's obstack, because
4817 OBJFILE is about to be deleted. */
4818
4819 htab_t
4820 create_copied_types_hash (struct objfile *objfile)
4821 {
4822 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4823 NULL, &objfile->objfile_obstack,
4824 hashtab_obstack_allocate,
4825 dummy_obstack_deallocate);
4826 }
4827
4828 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4829
4830 static struct dynamic_prop_list *
4831 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4832 struct dynamic_prop_list *list)
4833 {
4834 struct dynamic_prop_list *copy = list;
4835 struct dynamic_prop_list **node_ptr = &copy;
4836
4837 while (*node_ptr != NULL)
4838 {
4839 struct dynamic_prop_list *node_copy;
4840
4841 node_copy = ((struct dynamic_prop_list *)
4842 obstack_copy (objfile_obstack, *node_ptr,
4843 sizeof (struct dynamic_prop_list)));
4844 node_copy->prop = (*node_ptr)->prop;
4845 *node_ptr = node_copy;
4846
4847 node_ptr = &node_copy->next;
4848 }
4849
4850 return copy;
4851 }
4852
4853 /* Recursively copy (deep copy) TYPE, if it is associated with
4854 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4855 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4856 it is not associated with OBJFILE. */
4857
4858 struct type *
4859 copy_type_recursive (struct objfile *objfile,
4860 struct type *type,
4861 htab_t copied_types)
4862 {
4863 void **slot;
4864 struct type *new_type;
4865
4866 if (! TYPE_OBJFILE_OWNED (type))
4867 return type;
4868
4869 /* This type shouldn't be pointing to any types in other objfiles;
4870 if it did, the type might disappear unexpectedly. */
4871 gdb_assert (TYPE_OBJFILE (type) == objfile);
4872
4873 struct type_pair pair (type, nullptr);
4874
4875 slot = htab_find_slot (copied_types, &pair, INSERT);
4876 if (*slot != NULL)
4877 return ((struct type_pair *) *slot)->newobj;
4878
4879 new_type = alloc_type_arch (get_type_arch (type));
4880
4881 /* We must add the new type to the hash table immediately, in case
4882 we encounter this type again during a recursive call below. */
4883 struct type_pair *stored
4884 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4885
4886 *slot = stored;
4887
4888 /* Copy the common fields of types. For the main type, we simply
4889 copy the entire thing and then update specific fields as needed. */
4890 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4891 TYPE_OBJFILE_OWNED (new_type) = 0;
4892 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4893
4894 if (TYPE_NAME (type))
4895 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4896
4897 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4898 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4899
4900 /* Copy the fields. */
4901 if (TYPE_NFIELDS (type))
4902 {
4903 int i, nfields;
4904
4905 nfields = TYPE_NFIELDS (type);
4906 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4907 for (i = 0; i < nfields; i++)
4908 {
4909 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4910 TYPE_FIELD_ARTIFICIAL (type, i);
4911 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4912 if (TYPE_FIELD_TYPE (type, i))
4913 TYPE_FIELD_TYPE (new_type, i)
4914 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4915 copied_types);
4916 if (TYPE_FIELD_NAME (type, i))
4917 TYPE_FIELD_NAME (new_type, i) =
4918 xstrdup (TYPE_FIELD_NAME (type, i));
4919 switch (TYPE_FIELD_LOC_KIND (type, i))
4920 {
4921 case FIELD_LOC_KIND_BITPOS:
4922 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4923 TYPE_FIELD_BITPOS (type, i));
4924 break;
4925 case FIELD_LOC_KIND_ENUMVAL:
4926 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4927 TYPE_FIELD_ENUMVAL (type, i));
4928 break;
4929 case FIELD_LOC_KIND_PHYSADDR:
4930 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4931 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4932 break;
4933 case FIELD_LOC_KIND_PHYSNAME:
4934 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4935 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4936 i)));
4937 break;
4938 default:
4939 internal_error (__FILE__, __LINE__,
4940 _("Unexpected type field location kind: %d"),
4941 TYPE_FIELD_LOC_KIND (type, i));
4942 }
4943 }
4944 }
4945
4946 /* For range types, copy the bounds information. */
4947 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4948 {
4949 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4950 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4951 }
4952
4953 if (TYPE_DYN_PROP_LIST (type) != NULL)
4954 TYPE_DYN_PROP_LIST (new_type)
4955 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4956 TYPE_DYN_PROP_LIST (type));
4957
4958
4959 /* Copy pointers to other types. */
4960 if (TYPE_TARGET_TYPE (type))
4961 TYPE_TARGET_TYPE (new_type) =
4962 copy_type_recursive (objfile,
4963 TYPE_TARGET_TYPE (type),
4964 copied_types);
4965
4966 /* Maybe copy the type_specific bits.
4967
4968 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4969 base classes and methods. There's no fundamental reason why we
4970 can't, but at the moment it is not needed. */
4971
4972 switch (TYPE_SPECIFIC_FIELD (type))
4973 {
4974 case TYPE_SPECIFIC_NONE:
4975 break;
4976 case TYPE_SPECIFIC_FUNC:
4977 INIT_FUNC_SPECIFIC (new_type);
4978 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4979 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4980 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4981 break;
4982 case TYPE_SPECIFIC_FLOATFORMAT:
4983 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4984 break;
4985 case TYPE_SPECIFIC_CPLUS_STUFF:
4986 INIT_CPLUS_SPECIFIC (new_type);
4987 break;
4988 case TYPE_SPECIFIC_GNAT_STUFF:
4989 INIT_GNAT_SPECIFIC (new_type);
4990 break;
4991 case TYPE_SPECIFIC_SELF_TYPE:
4992 set_type_self_type (new_type,
4993 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4994 copied_types));
4995 break;
4996 default:
4997 gdb_assert_not_reached ("bad type_specific_kind");
4998 }
4999
5000 return new_type;
5001 }
5002
5003 /* Make a copy of the given TYPE, except that the pointer & reference
5004 types are not preserved.
5005
5006 This function assumes that the given type has an associated objfile.
5007 This objfile is used to allocate the new type. */
5008
5009 struct type *
5010 copy_type (const struct type *type)
5011 {
5012 struct type *new_type;
5013
5014 gdb_assert (TYPE_OBJFILE_OWNED (type));
5015
5016 new_type = alloc_type_copy (type);
5017 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5018 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5019 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5020 sizeof (struct main_type));
5021 if (TYPE_DYN_PROP_LIST (type) != NULL)
5022 TYPE_DYN_PROP_LIST (new_type)
5023 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5024 TYPE_DYN_PROP_LIST (type));
5025
5026 return new_type;
5027 }
5028 \f
5029 /* Helper functions to initialize architecture-specific types. */
5030
5031 /* Allocate a type structure associated with GDBARCH and set its
5032 CODE, LENGTH, and NAME fields. */
5033
5034 struct type *
5035 arch_type (struct gdbarch *gdbarch,
5036 enum type_code code, int bit, const char *name)
5037 {
5038 struct type *type;
5039
5040 type = alloc_type_arch (gdbarch);
5041 set_type_code (type, code);
5042 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5043 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5044
5045 if (name)
5046 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5047
5048 return type;
5049 }
5050
5051 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5052 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5053 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5054
5055 struct type *
5056 arch_integer_type (struct gdbarch *gdbarch,
5057 int bit, int unsigned_p, const char *name)
5058 {
5059 struct type *t;
5060
5061 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5062 if (unsigned_p)
5063 TYPE_UNSIGNED (t) = 1;
5064
5065 return t;
5066 }
5067
5068 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5069 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5070 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5071
5072 struct type *
5073 arch_character_type (struct gdbarch *gdbarch,
5074 int bit, int unsigned_p, const char *name)
5075 {
5076 struct type *t;
5077
5078 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5079 if (unsigned_p)
5080 TYPE_UNSIGNED (t) = 1;
5081
5082 return t;
5083 }
5084
5085 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5086 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5087 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5088
5089 struct type *
5090 arch_boolean_type (struct gdbarch *gdbarch,
5091 int bit, int unsigned_p, const char *name)
5092 {
5093 struct type *t;
5094
5095 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5096 if (unsigned_p)
5097 TYPE_UNSIGNED (t) = 1;
5098
5099 return t;
5100 }
5101
5102 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5103 BIT is the type size in bits; if BIT equals -1, the size is
5104 determined by the floatformat. NAME is the type name. Set the
5105 TYPE_FLOATFORMAT from FLOATFORMATS. */
5106
5107 struct type *
5108 arch_float_type (struct gdbarch *gdbarch,
5109 int bit, const char *name,
5110 const struct floatformat **floatformats)
5111 {
5112 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5113 struct type *t;
5114
5115 bit = verify_floatformat (bit, fmt);
5116 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5117 TYPE_FLOATFORMAT (t) = fmt;
5118
5119 return t;
5120 }
5121
5122 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5123 BIT is the type size in bits. NAME is the type name. */
5124
5125 struct type *
5126 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5127 {
5128 struct type *t;
5129
5130 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5131 return t;
5132 }
5133
5134 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5135 NAME is the type name. TARGET_TYPE is the component float type. */
5136
5137 struct type *
5138 arch_complex_type (struct gdbarch *gdbarch,
5139 const char *name, struct type *target_type)
5140 {
5141 struct type *t;
5142
5143 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5144 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5145 TYPE_TARGET_TYPE (t) = target_type;
5146 return t;
5147 }
5148
5149 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5150 BIT is the pointer type size in bits. NAME is the type name.
5151 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5152 TYPE_UNSIGNED flag. */
5153
5154 struct type *
5155 arch_pointer_type (struct gdbarch *gdbarch,
5156 int bit, const char *name, struct type *target_type)
5157 {
5158 struct type *t;
5159
5160 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5161 TYPE_TARGET_TYPE (t) = target_type;
5162 TYPE_UNSIGNED (t) = 1;
5163 return t;
5164 }
5165
5166 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5167 NAME is the type name. BIT is the size of the flag word in bits. */
5168
5169 struct type *
5170 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5171 {
5172 struct type *type;
5173
5174 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5175 TYPE_UNSIGNED (type) = 1;
5176 TYPE_NFIELDS (type) = 0;
5177 /* Pre-allocate enough space assuming every field is one bit. */
5178 TYPE_FIELDS (type)
5179 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5180
5181 return type;
5182 }
5183
5184 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5185 position BITPOS is called NAME. Pass NAME as "" for fields that
5186 should not be printed. */
5187
5188 void
5189 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5190 struct type *field_type, const char *name)
5191 {
5192 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5193 int field_nr = TYPE_NFIELDS (type);
5194
5195 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5196 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5197 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5198 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5199 gdb_assert (name != NULL);
5200
5201 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5202 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5203 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5204 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5205 ++TYPE_NFIELDS (type);
5206 }
5207
5208 /* Special version of append_flags_type_field to add a flag field.
5209 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5210 position BITPOS is called NAME. */
5211
5212 void
5213 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5214 {
5215 struct gdbarch *gdbarch = get_type_arch (type);
5216
5217 append_flags_type_field (type, bitpos, 1,
5218 builtin_type (gdbarch)->builtin_bool,
5219 name);
5220 }
5221
5222 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5223 specified by CODE) associated with GDBARCH. NAME is the type name. */
5224
5225 struct type *
5226 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5227 enum type_code code)
5228 {
5229 struct type *t;
5230
5231 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5232 t = arch_type (gdbarch, code, 0, NULL);
5233 TYPE_NAME (t) = name;
5234 INIT_CPLUS_SPECIFIC (t);
5235 return t;
5236 }
5237
5238 /* Add new field with name NAME and type FIELD to composite type T.
5239 Do not set the field's position or adjust the type's length;
5240 the caller should do so. Return the new field. */
5241
5242 struct field *
5243 append_composite_type_field_raw (struct type *t, const char *name,
5244 struct type *field)
5245 {
5246 struct field *f;
5247
5248 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5249 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5250 TYPE_NFIELDS (t));
5251 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5252 memset (f, 0, sizeof f[0]);
5253 FIELD_TYPE (f[0]) = field;
5254 FIELD_NAME (f[0]) = name;
5255 return f;
5256 }
5257
5258 /* Add new field with name NAME and type FIELD to composite type T.
5259 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5260
5261 void
5262 append_composite_type_field_aligned (struct type *t, const char *name,
5263 struct type *field, int alignment)
5264 {
5265 struct field *f = append_composite_type_field_raw (t, name, field);
5266
5267 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5268 {
5269 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5270 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5271 }
5272 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5273 {
5274 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5275 if (TYPE_NFIELDS (t) > 1)
5276 {
5277 SET_FIELD_BITPOS (f[0],
5278 (FIELD_BITPOS (f[-1])
5279 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5280 * TARGET_CHAR_BIT)));
5281
5282 if (alignment)
5283 {
5284 int left;
5285
5286 alignment *= TARGET_CHAR_BIT;
5287 left = FIELD_BITPOS (f[0]) % alignment;
5288
5289 if (left)
5290 {
5291 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5292 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5293 }
5294 }
5295 }
5296 }
5297 }
5298
5299 /* Add new field with name NAME and type FIELD to composite type T. */
5300
5301 void
5302 append_composite_type_field (struct type *t, const char *name,
5303 struct type *field)
5304 {
5305 append_composite_type_field_aligned (t, name, field, 0);
5306 }
5307
5308 static struct gdbarch_data *gdbtypes_data;
5309
5310 const struct builtin_type *
5311 builtin_type (struct gdbarch *gdbarch)
5312 {
5313 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5314 }
5315
5316 static void *
5317 gdbtypes_post_init (struct gdbarch *gdbarch)
5318 {
5319 struct builtin_type *builtin_type
5320 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5321
5322 /* Basic types. */
5323 builtin_type->builtin_void
5324 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5325 builtin_type->builtin_char
5326 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5327 !gdbarch_char_signed (gdbarch), "char");
5328 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5329 builtin_type->builtin_signed_char
5330 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5331 0, "signed char");
5332 builtin_type->builtin_unsigned_char
5333 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5334 1, "unsigned char");
5335 builtin_type->builtin_short
5336 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5337 0, "short");
5338 builtin_type->builtin_unsigned_short
5339 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5340 1, "unsigned short");
5341 builtin_type->builtin_int
5342 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5343 0, "int");
5344 builtin_type->builtin_unsigned_int
5345 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5346 1, "unsigned int");
5347 builtin_type->builtin_long
5348 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5349 0, "long");
5350 builtin_type->builtin_unsigned_long
5351 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5352 1, "unsigned long");
5353 builtin_type->builtin_long_long
5354 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5355 0, "long long");
5356 builtin_type->builtin_unsigned_long_long
5357 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5358 1, "unsigned long long");
5359 builtin_type->builtin_float
5360 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5361 "float", gdbarch_float_format (gdbarch));
5362 builtin_type->builtin_double
5363 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5364 "double", gdbarch_double_format (gdbarch));
5365 builtin_type->builtin_long_double
5366 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5367 "long double", gdbarch_long_double_format (gdbarch));
5368 builtin_type->builtin_complex
5369 = arch_complex_type (gdbarch, "complex",
5370 builtin_type->builtin_float);
5371 builtin_type->builtin_double_complex
5372 = arch_complex_type (gdbarch, "double complex",
5373 builtin_type->builtin_double);
5374 builtin_type->builtin_string
5375 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5376 builtin_type->builtin_bool
5377 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5378
5379 /* The following three are about decimal floating point types, which
5380 are 32-bits, 64-bits and 128-bits respectively. */
5381 builtin_type->builtin_decfloat
5382 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5383 builtin_type->builtin_decdouble
5384 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5385 builtin_type->builtin_declong
5386 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5387
5388 /* "True" character types. */
5389 builtin_type->builtin_true_char
5390 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5391 builtin_type->builtin_true_unsigned_char
5392 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5393
5394 /* Fixed-size integer types. */
5395 builtin_type->builtin_int0
5396 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5397 builtin_type->builtin_int8
5398 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5399 builtin_type->builtin_uint8
5400 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5401 builtin_type->builtin_int16
5402 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5403 builtin_type->builtin_uint16
5404 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5405 builtin_type->builtin_int24
5406 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5407 builtin_type->builtin_uint24
5408 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5409 builtin_type->builtin_int32
5410 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5411 builtin_type->builtin_uint32
5412 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5413 builtin_type->builtin_int64
5414 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5415 builtin_type->builtin_uint64
5416 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5417 builtin_type->builtin_int128
5418 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5419 builtin_type->builtin_uint128
5420 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5421 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5422 TYPE_INSTANCE_FLAG_NOTTEXT;
5423 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5424 TYPE_INSTANCE_FLAG_NOTTEXT;
5425
5426 /* Wide character types. */
5427 builtin_type->builtin_char16
5428 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5429 builtin_type->builtin_char32
5430 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5431 builtin_type->builtin_wchar
5432 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5433 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5434
5435 /* Default data/code pointer types. */
5436 builtin_type->builtin_data_ptr
5437 = lookup_pointer_type (builtin_type->builtin_void);
5438 builtin_type->builtin_func_ptr
5439 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5440 builtin_type->builtin_func_func
5441 = lookup_function_type (builtin_type->builtin_func_ptr);
5442
5443 /* This type represents a GDB internal function. */
5444 builtin_type->internal_fn
5445 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5446 "<internal function>");
5447
5448 /* This type represents an xmethod. */
5449 builtin_type->xmethod
5450 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5451
5452 return builtin_type;
5453 }
5454
5455 /* This set of objfile-based types is intended to be used by symbol
5456 readers as basic types. */
5457
5458 static const struct objfile_data *objfile_type_data;
5459
5460 const struct objfile_type *
5461 objfile_type (struct objfile *objfile)
5462 {
5463 struct gdbarch *gdbarch;
5464 struct objfile_type *objfile_type
5465 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5466
5467 if (objfile_type)
5468 return objfile_type;
5469
5470 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5471 1, struct objfile_type);
5472
5473 /* Use the objfile architecture to determine basic type properties. */
5474 gdbarch = get_objfile_arch (objfile);
5475
5476 /* Basic types. */
5477 objfile_type->builtin_void
5478 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5479 objfile_type->builtin_char
5480 = init_integer_type (objfile, TARGET_CHAR_BIT,
5481 !gdbarch_char_signed (gdbarch), "char");
5482 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5483 objfile_type->builtin_signed_char
5484 = init_integer_type (objfile, TARGET_CHAR_BIT,
5485 0, "signed char");
5486 objfile_type->builtin_unsigned_char
5487 = init_integer_type (objfile, TARGET_CHAR_BIT,
5488 1, "unsigned char");
5489 objfile_type->builtin_short
5490 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5491 0, "short");
5492 objfile_type->builtin_unsigned_short
5493 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5494 1, "unsigned short");
5495 objfile_type->builtin_int
5496 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5497 0, "int");
5498 objfile_type->builtin_unsigned_int
5499 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5500 1, "unsigned int");
5501 objfile_type->builtin_long
5502 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5503 0, "long");
5504 objfile_type->builtin_unsigned_long
5505 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5506 1, "unsigned long");
5507 objfile_type->builtin_long_long
5508 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5509 0, "long long");
5510 objfile_type->builtin_unsigned_long_long
5511 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5512 1, "unsigned long long");
5513 objfile_type->builtin_float
5514 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5515 "float", gdbarch_float_format (gdbarch));
5516 objfile_type->builtin_double
5517 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5518 "double", gdbarch_double_format (gdbarch));
5519 objfile_type->builtin_long_double
5520 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5521 "long double", gdbarch_long_double_format (gdbarch));
5522
5523 /* This type represents a type that was unrecognized in symbol read-in. */
5524 objfile_type->builtin_error
5525 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5526
5527 /* The following set of types is used for symbols with no
5528 debug information. */
5529 objfile_type->nodebug_text_symbol
5530 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5531 "<text variable, no debug info>");
5532 objfile_type->nodebug_text_gnu_ifunc_symbol
5533 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5534 "<text gnu-indirect-function variable, no debug info>");
5535 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5536 objfile_type->nodebug_got_plt_symbol
5537 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5538 "<text from jump slot in .got.plt, no debug info>",
5539 objfile_type->nodebug_text_symbol);
5540 objfile_type->nodebug_data_symbol
5541 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5542 objfile_type->nodebug_unknown_symbol
5543 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5544 objfile_type->nodebug_tls_symbol
5545 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5546
5547 /* NOTE: on some targets, addresses and pointers are not necessarily
5548 the same.
5549
5550 The upshot is:
5551 - gdb's `struct type' always describes the target's
5552 representation.
5553 - gdb's `struct value' objects should always hold values in
5554 target form.
5555 - gdb's CORE_ADDR values are addresses in the unified virtual
5556 address space that the assembler and linker work with. Thus,
5557 since target_read_memory takes a CORE_ADDR as an argument, it
5558 can access any memory on the target, even if the processor has
5559 separate code and data address spaces.
5560
5561 In this context, objfile_type->builtin_core_addr is a bit odd:
5562 it's a target type for a value the target will never see. It's
5563 only used to hold the values of (typeless) linker symbols, which
5564 are indeed in the unified virtual address space. */
5565
5566 objfile_type->builtin_core_addr
5567 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5568 "__CORE_ADDR");
5569
5570 set_objfile_data (objfile, objfile_type_data, objfile_type);
5571 return objfile_type;
5572 }
5573
5574 void
5575 _initialize_gdbtypes (void)
5576 {
5577 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5578 objfile_type_data = register_objfile_data ();
5579
5580 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5581 _("Set debugging of C++ overloading."),
5582 _("Show debugging of C++ overloading."),
5583 _("When enabled, ranking of the "
5584 "functions is displayed."),
5585 NULL,
5586 show_overload_debug,
5587 &setdebuglist, &showdebuglist);
5588
5589 /* Add user knob for controlling resolution of opaque types. */
5590 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5591 &opaque_type_resolution,
5592 _("Set resolution of opaque struct/class/union"
5593 " types (if set before loading symbols)."),
5594 _("Show resolution of opaque struct/class/union"
5595 " types (if set before loading symbols)."),
5596 NULL, NULL,
5597 show_opaque_type_resolution,
5598 &setlist, &showlist);
5599
5600 /* Add an option to permit non-strict type checking. */
5601 add_setshow_boolean_cmd ("type", class_support,
5602 &strict_type_checking,
5603 _("Set strict type checking."),
5604 _("Show strict type checking."),
5605 NULL, NULL,
5606 show_strict_type_checking,
5607 &setchecklist, &showchecklist);
5608 }
This page took 0.135666 seconds and 5 git commands to generate.