Eliminate make_cleanup_ui_file_delete / make ui_file a class hierarchy
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534 }
535
536 /* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
538
539 int
540 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
541 {
542 int type_flags;
543
544 /* Check for known address space delimiters. */
545 if (!strcmp (space_identifier, "code"))
546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
547 else if (!strcmp (space_identifier, "data"))
548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
553 return type_flags;
554 else
555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
556 }
557
558 /* Identify address space identifier by integer flag as defined in
559 gdbtypes.h -- return the string version of the adress space name. */
560
561 const char *
562 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
563 {
564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
565 return "code";
566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
567 return "data";
568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
571 else
572 return NULL;
573 }
574
575 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
579
580 static struct type *
581 make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
583 {
584 struct type *ntype;
585
586 ntype = type;
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
594
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
610
611 /* Pointers or references to the original type are not relevant to
612 the new type. */
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
615
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
622
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
626 return ntype;
627 }
628
629 /* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
637
638 struct type *
639 make_type_with_address_space (struct type *type, int space_flag)
640 {
641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648 }
649
650 /* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
655
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
661
662 struct type *
663 make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
666 {
667 struct type *ntype; /* New type */
668
669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
672
673 if (cnst)
674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
675
676 if (voltl)
677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
678
679 if (typeptr && *typeptr != NULL)
680 {
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
694 }
695
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
698
699 if (typeptr != NULL)
700 *typeptr = ntype;
701
702 return ntype;
703 }
704
705 /* Make a 'restrict'-qualified version of TYPE. */
706
707 struct type *
708 make_restrict_type (struct type *type)
709 {
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714 }
715
716 /* Make a type without const, volatile, or restrict. */
717
718 struct type *
719 make_unqualified_type (struct type *type)
720 {
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727 }
728
729 /* Make a '_Atomic'-qualified version of TYPE. */
730
731 struct type *
732 make_atomic_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738 }
739
740 /* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
743
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
749
750 void
751 replace_type (struct type *ntype, struct type *type)
752 {
753 struct type *chain;
754
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
760
761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
762
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
765 chain = ntype;
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
780
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
784 }
785
786 /* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791 struct type *
792 lookup_memberptr_type (struct type *type, struct type *domain)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (type);
797 smash_to_memberptr_type (mtype, domain, type);
798 return mtype;
799 }
800
801 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803 struct type *
804 lookup_methodptr_type (struct type *to_type)
805 {
806 struct type *mtype;
807
808 mtype = alloc_type_copy (to_type);
809 smash_to_methodptr_type (mtype, to_type);
810 return mtype;
811 }
812
813 /* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
818
819 struct type *
820 allocate_stub_method (struct type *type)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
828 TYPE_TARGET_TYPE (mtype) = type;
829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
830 return mtype;
831 }
832
833 /* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
835
836 struct type *
837 create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
840 {
841 if (result_type == NULL)
842 result_type = alloc_type_copy (index_type);
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
845 if (TYPE_STUB (index_type))
846 TYPE_TARGET_STUB (result_type) = 1;
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
849
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
854
855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
856 TYPE_UNSIGNED (result_type) = 1;
857
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
865 return result_type;
866 }
867
868 /* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878 struct type *
879 create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881 {
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893 }
894
895 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898 static int
899 has_static_range (const struct range_bounds *bounds)
900 {
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903 }
904
905
906 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
909
910 int
911 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
912 {
913 type = check_typedef (type);
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
924 entries. */
925 int i;
926
927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
934 }
935
936 /* Set unsigned indicator if warranted. */
937 if (*lowp >= 0)
938 {
939 TYPE_UNSIGNED (type) = 1;
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
958 *highp = -*lowp - 1;
959 return 0;
960 }
961 /* ... fall through for unsigned ints ... */
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973 }
974
975 /* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
979 Return 1 if the operation was successful. Return zero otherwise,
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989 int
990 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991 {
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017 }
1018
1019 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031 */
1032
1033 int
1034 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035 {
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056 }
1057
1058 /* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
1071
1072 struct type *
1073 create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
1077 {
1078 if (result_type == NULL)
1079 result_type = alloc_type_copy (range_type);
1080
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
1091 element_type = check_typedef (element_type);
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
1104 else
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1118 TYPE_INDEX_TYPE (result_type) = range_type;
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1121
1122 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1123 if (TYPE_LENGTH (result_type) == 0)
1124 TYPE_TARGET_STUB (result_type) = 1;
1125
1126 return result_type;
1127 }
1128
1129 /* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132 struct type *
1133 create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136 {
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139 }
1140
1141 struct type *
1142 lookup_array_range_type (struct type *element_type,
1143 LONGEST low_bound, LONGEST high_bound)
1144 {
1145 struct gdbarch *gdbarch = get_type_arch (element_type);
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1149
1150 return create_array_type (NULL, element_type, range_type);
1151 }
1152
1153 /* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
1164
1165 struct type *
1166 create_string_type (struct type *result_type,
1167 struct type *string_char_type,
1168 struct type *range_type)
1169 {
1170 result_type = create_array_type (result_type,
1171 string_char_type,
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1174 return result_type;
1175 }
1176
1177 struct type *
1178 lookup_string_range_type (struct type *string_char_type,
1179 LONGEST low_bound, LONGEST high_bound)
1180 {
1181 struct type *result_type;
1182
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187 }
1188
1189 struct type *
1190 create_set_type (struct type *result_type, struct type *domain_type)
1191 {
1192 if (result_type == NULL)
1193 result_type = alloc_type_copy (domain_type);
1194
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1199
1200 if (!TYPE_STUB (domain_type))
1201 {
1202 LONGEST low_bound, high_bound, bit_length;
1203
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1209 if (low_bound >= 0)
1210 TYPE_UNSIGNED (result_type) = 1;
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
1214 return result_type;
1215 }
1216
1217 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220 void
1221 make_vector_type (struct type *array_type)
1222 {
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
1240 TYPE_VECTOR (array_type) = 1;
1241 }
1242
1243 struct type *
1244 init_vector_type (struct type *elt_type, int n)
1245 {
1246 struct type *array_type;
1247
1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1249 make_vector_type (array_type);
1250 return array_type;
1251 }
1252
1253 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259 struct type *
1260 internal_type_self_type (struct type *type)
1261 {
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278 }
1279
1280 /* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285 void
1286 set_type_self_type (struct type *type, struct type *self_type)
1287 {
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306 }
1307
1308 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
1314
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
1317 allocated. */
1318
1319 void
1320 smash_to_memberptr_type (struct type *type, struct type *self_type,
1321 struct type *to_type)
1322 {
1323 smash_type (type);
1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1325 TYPE_TARGET_TYPE (type) = to_type;
1326 set_type_self_type (type, self_type);
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1331 }
1332
1333 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339 void
1340 smash_to_methodptr_type (struct type *type, struct type *to_type)
1341 {
1342 smash_type (type);
1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1344 TYPE_TARGET_TYPE (type) = to_type;
1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1347 }
1348
1349 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1350 METHOD just means `function that gets an extra "this" argument'.
1351
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
1354 allocated. */
1355
1356 void
1357 smash_to_method_type (struct type *type, struct type *self_type,
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
1360 {
1361 smash_type (type);
1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
1363 TYPE_TARGET_TYPE (type) = to_type;
1364 set_type_self_type (type, self_type);
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
1368 TYPE_VARARGS (type) = 1;
1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1370 }
1371
1372 /* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
1375 const char *
1376 type_name_no_tag (const struct type *type)
1377 {
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
1384 return TYPE_NAME (type);
1385 }
1386
1387 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394 const char *
1395 type_name_no_tag_or_error (struct type *type)
1396 {
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
1401 type = check_typedef (type);
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
1412 }
1413
1414 /* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
1417
1418 struct type *
1419 lookup_typename (const struct language_defn *language,
1420 struct gdbarch *gdbarch, const char *name,
1421 const struct block *block, int noerr)
1422 {
1423 struct symbol *sym;
1424
1425 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1426 language->la_language, NULL).symbol;
1427 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1428 return SYMBOL_TYPE (sym);
1429
1430 if (noerr)
1431 return NULL;
1432 error (_("No type named %s."), name);
1433 }
1434
1435 struct type *
1436 lookup_unsigned_typename (const struct language_defn *language,
1437 struct gdbarch *gdbarch, const char *name)
1438 {
1439 char *uns = (char *) alloca (strlen (name) + 10);
1440
1441 strcpy (uns, "unsigned ");
1442 strcpy (uns + 9, name);
1443 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1444 }
1445
1446 struct type *
1447 lookup_signed_typename (const struct language_defn *language,
1448 struct gdbarch *gdbarch, const char *name)
1449 {
1450 struct type *t;
1451 char *uns = (char *) alloca (strlen (name) + 8);
1452
1453 strcpy (uns, "signed ");
1454 strcpy (uns + 7, name);
1455 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1456 /* If we don't find "signed FOO" just try again with plain "FOO". */
1457 if (t != NULL)
1458 return t;
1459 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1460 }
1461
1462 /* Lookup a structure type named "struct NAME",
1463 visible in lexical block BLOCK. */
1464
1465 struct type *
1466 lookup_struct (const char *name, const struct block *block)
1467 {
1468 struct symbol *sym;
1469
1470 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1471
1472 if (sym == NULL)
1473 {
1474 error (_("No struct type named %s."), name);
1475 }
1476 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1477 {
1478 error (_("This context has class, union or enum %s, not a struct."),
1479 name);
1480 }
1481 return (SYMBOL_TYPE (sym));
1482 }
1483
1484 /* Lookup a union type named "union NAME",
1485 visible in lexical block BLOCK. */
1486
1487 struct type *
1488 lookup_union (const char *name, const struct block *block)
1489 {
1490 struct symbol *sym;
1491 struct type *t;
1492
1493 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1494
1495 if (sym == NULL)
1496 error (_("No union type named %s."), name);
1497
1498 t = SYMBOL_TYPE (sym);
1499
1500 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1501 return t;
1502
1503 /* If we get here, it's not a union. */
1504 error (_("This context has class, struct or enum %s, not a union."),
1505 name);
1506 }
1507
1508 /* Lookup an enum type named "enum NAME",
1509 visible in lexical block BLOCK. */
1510
1511 struct type *
1512 lookup_enum (const char *name, const struct block *block)
1513 {
1514 struct symbol *sym;
1515
1516 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1517 if (sym == NULL)
1518 {
1519 error (_("No enum type named %s."), name);
1520 }
1521 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1522 {
1523 error (_("This context has class, struct or union %s, not an enum."),
1524 name);
1525 }
1526 return (SYMBOL_TYPE (sym));
1527 }
1528
1529 /* Lookup a template type named "template NAME<TYPE>",
1530 visible in lexical block BLOCK. */
1531
1532 struct type *
1533 lookup_template_type (char *name, struct type *type,
1534 const struct block *block)
1535 {
1536 struct symbol *sym;
1537 char *nam = (char *)
1538 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1539
1540 strcpy (nam, name);
1541 strcat (nam, "<");
1542 strcat (nam, TYPE_NAME (type));
1543 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1544
1545 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1546
1547 if (sym == NULL)
1548 {
1549 error (_("No template type named %s."), name);
1550 }
1551 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1552 {
1553 error (_("This context has class, union or enum %s, not a struct."),
1554 name);
1555 }
1556 return (SYMBOL_TYPE (sym));
1557 }
1558
1559 /* Given a type TYPE, lookup the type of the component of type named
1560 NAME.
1561
1562 TYPE can be either a struct or union, or a pointer or reference to
1563 a struct or union. If it is a pointer or reference, its target
1564 type is automatically used. Thus '.' and '->' are interchangable,
1565 as specified for the definitions of the expression element types
1566 STRUCTOP_STRUCT and STRUCTOP_PTR.
1567
1568 If NOERR is nonzero, return zero if NAME is not suitably defined.
1569 If NAME is the name of a baseclass type, return that type. */
1570
1571 struct type *
1572 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1573 {
1574 int i;
1575
1576 for (;;)
1577 {
1578 type = check_typedef (type);
1579 if (TYPE_CODE (type) != TYPE_CODE_PTR
1580 && TYPE_CODE (type) != TYPE_CODE_REF)
1581 break;
1582 type = TYPE_TARGET_TYPE (type);
1583 }
1584
1585 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1586 && TYPE_CODE (type) != TYPE_CODE_UNION)
1587 {
1588 std::string type_name = type_to_string (type);
1589 error (_("Type %s is not a structure or union type."),
1590 type_name.c_str ());
1591 }
1592
1593 #if 0
1594 /* FIXME: This change put in by Michael seems incorrect for the case
1595 where the structure tag name is the same as the member name.
1596 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1597 foo; } bell;" Disabled by fnf. */
1598 {
1599 char *type_name;
1600
1601 type_name = type_name_no_tag (type);
1602 if (type_name != NULL && strcmp (type_name, name) == 0)
1603 return type;
1604 }
1605 #endif
1606
1607 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1608 {
1609 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1610
1611 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1612 {
1613 return TYPE_FIELD_TYPE (type, i);
1614 }
1615 else if (!t_field_name || *t_field_name == '\0')
1616 {
1617 struct type *subtype
1618 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1619
1620 if (subtype != NULL)
1621 return subtype;
1622 }
1623 }
1624
1625 /* OK, it's not in this class. Recursively check the baseclasses. */
1626 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1627 {
1628 struct type *t;
1629
1630 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1631 if (t != NULL)
1632 {
1633 return t;
1634 }
1635 }
1636
1637 if (noerr)
1638 {
1639 return NULL;
1640 }
1641
1642 std::string type_name = type_to_string (type);
1643 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1644 }
1645
1646 /* Store in *MAX the largest number representable by unsigned integer type
1647 TYPE. */
1648
1649 void
1650 get_unsigned_type_max (struct type *type, ULONGEST *max)
1651 {
1652 unsigned int n;
1653
1654 type = check_typedef (type);
1655 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1656 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1657
1658 /* Written this way to avoid overflow. */
1659 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1660 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1661 }
1662
1663 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1664 signed integer type TYPE. */
1665
1666 void
1667 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1668 {
1669 unsigned int n;
1670
1671 type = check_typedef (type);
1672 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1673 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1674
1675 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1676 *min = -((ULONGEST) 1 << (n - 1));
1677 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1678 }
1679
1680 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1681 cplus_stuff.vptr_fieldno.
1682
1683 cplus_stuff is initialized to cplus_struct_default which does not
1684 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1685 designated initializers). We cope with that here. */
1686
1687 int
1688 internal_type_vptr_fieldno (struct type *type)
1689 {
1690 type = check_typedef (type);
1691 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1692 || TYPE_CODE (type) == TYPE_CODE_UNION);
1693 if (!HAVE_CPLUS_STRUCT (type))
1694 return -1;
1695 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1696 }
1697
1698 /* Set the value of cplus_stuff.vptr_fieldno. */
1699
1700 void
1701 set_type_vptr_fieldno (struct type *type, int fieldno)
1702 {
1703 type = check_typedef (type);
1704 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1705 || TYPE_CODE (type) == TYPE_CODE_UNION);
1706 if (!HAVE_CPLUS_STRUCT (type))
1707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1708 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1709 }
1710
1711 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1712 cplus_stuff.vptr_basetype. */
1713
1714 struct type *
1715 internal_type_vptr_basetype (struct type *type)
1716 {
1717 type = check_typedef (type);
1718 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1719 || TYPE_CODE (type) == TYPE_CODE_UNION);
1720 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1721 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1722 }
1723
1724 /* Set the value of cplus_stuff.vptr_basetype. */
1725
1726 void
1727 set_type_vptr_basetype (struct type *type, struct type *basetype)
1728 {
1729 type = check_typedef (type);
1730 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1731 || TYPE_CODE (type) == TYPE_CODE_UNION);
1732 if (!HAVE_CPLUS_STRUCT (type))
1733 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1734 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1735 }
1736
1737 /* Lookup the vptr basetype/fieldno values for TYPE.
1738 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1739 vptr_fieldno. Also, if found and basetype is from the same objfile,
1740 cache the results.
1741 If not found, return -1 and ignore BASETYPEP.
1742 Callers should be aware that in some cases (for example,
1743 the type or one of its baseclasses is a stub type and we are
1744 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1745 this function will not be able to find the
1746 virtual function table pointer, and vptr_fieldno will remain -1 and
1747 vptr_basetype will remain NULL or incomplete. */
1748
1749 int
1750 get_vptr_fieldno (struct type *type, struct type **basetypep)
1751 {
1752 type = check_typedef (type);
1753
1754 if (TYPE_VPTR_FIELDNO (type) < 0)
1755 {
1756 int i;
1757
1758 /* We must start at zero in case the first (and only) baseclass
1759 is virtual (and hence we cannot share the table pointer). */
1760 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1761 {
1762 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1763 int fieldno;
1764 struct type *basetype;
1765
1766 fieldno = get_vptr_fieldno (baseclass, &basetype);
1767 if (fieldno >= 0)
1768 {
1769 /* If the type comes from a different objfile we can't cache
1770 it, it may have a different lifetime. PR 2384 */
1771 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1772 {
1773 set_type_vptr_fieldno (type, fieldno);
1774 set_type_vptr_basetype (type, basetype);
1775 }
1776 if (basetypep)
1777 *basetypep = basetype;
1778 return fieldno;
1779 }
1780 }
1781
1782 /* Not found. */
1783 return -1;
1784 }
1785 else
1786 {
1787 if (basetypep)
1788 *basetypep = TYPE_VPTR_BASETYPE (type);
1789 return TYPE_VPTR_FIELDNO (type);
1790 }
1791 }
1792
1793 static void
1794 stub_noname_complaint (void)
1795 {
1796 complaint (&symfile_complaints, _("stub type has NULL name"));
1797 }
1798
1799 /* Worker for is_dynamic_type. */
1800
1801 static int
1802 is_dynamic_type_internal (struct type *type, int top_level)
1803 {
1804 type = check_typedef (type);
1805
1806 /* We only want to recognize references at the outermost level. */
1807 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1808 type = check_typedef (TYPE_TARGET_TYPE (type));
1809
1810 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1811 dynamic, even if the type itself is statically defined.
1812 From a user's point of view, this may appear counter-intuitive;
1813 but it makes sense in this context, because the point is to determine
1814 whether any part of the type needs to be resolved before it can
1815 be exploited. */
1816 if (TYPE_DATA_LOCATION (type) != NULL
1817 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1818 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1819 return 1;
1820
1821 if (TYPE_ASSOCIATED_PROP (type))
1822 return 1;
1823
1824 if (TYPE_ALLOCATED_PROP (type))
1825 return 1;
1826
1827 switch (TYPE_CODE (type))
1828 {
1829 case TYPE_CODE_RANGE:
1830 {
1831 /* A range type is obviously dynamic if it has at least one
1832 dynamic bound. But also consider the range type to be
1833 dynamic when its subtype is dynamic, even if the bounds
1834 of the range type are static. It allows us to assume that
1835 the subtype of a static range type is also static. */
1836 return (!has_static_range (TYPE_RANGE_DATA (type))
1837 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1838 }
1839
1840 case TYPE_CODE_ARRAY:
1841 {
1842 gdb_assert (TYPE_NFIELDS (type) == 1);
1843
1844 /* The array is dynamic if either the bounds are dynamic,
1845 or the elements it contains have a dynamic contents. */
1846 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1847 return 1;
1848 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1849 }
1850
1851 case TYPE_CODE_STRUCT:
1852 case TYPE_CODE_UNION:
1853 {
1854 int i;
1855
1856 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1857 if (!field_is_static (&TYPE_FIELD (type, i))
1858 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1859 return 1;
1860 }
1861 break;
1862 }
1863
1864 return 0;
1865 }
1866
1867 /* See gdbtypes.h. */
1868
1869 int
1870 is_dynamic_type (struct type *type)
1871 {
1872 return is_dynamic_type_internal (type, 1);
1873 }
1874
1875 static struct type *resolve_dynamic_type_internal
1876 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1877
1878 /* Given a dynamic range type (dyn_range_type) and a stack of
1879 struct property_addr_info elements, return a static version
1880 of that type. */
1881
1882 static struct type *
1883 resolve_dynamic_range (struct type *dyn_range_type,
1884 struct property_addr_info *addr_stack)
1885 {
1886 CORE_ADDR value;
1887 struct type *static_range_type, *static_target_type;
1888 const struct dynamic_prop *prop;
1889 struct dynamic_prop low_bound, high_bound;
1890
1891 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1892
1893 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1894 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1895 {
1896 low_bound.kind = PROP_CONST;
1897 low_bound.data.const_val = value;
1898 }
1899 else
1900 {
1901 low_bound.kind = PROP_UNDEFINED;
1902 low_bound.data.const_val = 0;
1903 }
1904
1905 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1906 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1907 {
1908 high_bound.kind = PROP_CONST;
1909 high_bound.data.const_val = value;
1910
1911 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1912 high_bound.data.const_val
1913 = low_bound.data.const_val + high_bound.data.const_val - 1;
1914 }
1915 else
1916 {
1917 high_bound.kind = PROP_UNDEFINED;
1918 high_bound.data.const_val = 0;
1919 }
1920
1921 static_target_type
1922 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1923 addr_stack, 0);
1924 static_range_type = create_range_type (copy_type (dyn_range_type),
1925 static_target_type,
1926 &low_bound, &high_bound);
1927 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1928 return static_range_type;
1929 }
1930
1931 /* Resolves dynamic bound values of an array type TYPE to static ones.
1932 ADDR_STACK is a stack of struct property_addr_info to be used
1933 if needed during the dynamic resolution. */
1934
1935 static struct type *
1936 resolve_dynamic_array (struct type *type,
1937 struct property_addr_info *addr_stack)
1938 {
1939 CORE_ADDR value;
1940 struct type *elt_type;
1941 struct type *range_type;
1942 struct type *ary_dim;
1943 struct dynamic_prop *prop;
1944
1945 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1946
1947 type = copy_type (type);
1948
1949 elt_type = type;
1950 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1951 range_type = resolve_dynamic_range (range_type, addr_stack);
1952
1953 /* Resolve allocated/associated here before creating a new array type, which
1954 will update the length of the array accordingly. */
1955 prop = TYPE_ALLOCATED_PROP (type);
1956 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1957 {
1958 TYPE_DYN_PROP_ADDR (prop) = value;
1959 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1960 }
1961 prop = TYPE_ASSOCIATED_PROP (type);
1962 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1963 {
1964 TYPE_DYN_PROP_ADDR (prop) = value;
1965 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1966 }
1967
1968 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1969
1970 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1971 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1972 else
1973 elt_type = TYPE_TARGET_TYPE (type);
1974
1975 return create_array_type_with_stride (type, elt_type, range_type,
1976 TYPE_FIELD_BITSIZE (type, 0));
1977 }
1978
1979 /* Resolve dynamic bounds of members of the union TYPE to static
1980 bounds. ADDR_STACK is a stack of struct property_addr_info
1981 to be used if needed during the dynamic resolution. */
1982
1983 static struct type *
1984 resolve_dynamic_union (struct type *type,
1985 struct property_addr_info *addr_stack)
1986 {
1987 struct type *resolved_type;
1988 int i;
1989 unsigned int max_len = 0;
1990
1991 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1992
1993 resolved_type = copy_type (type);
1994 TYPE_FIELDS (resolved_type)
1995 = (struct field *) TYPE_ALLOC (resolved_type,
1996 TYPE_NFIELDS (resolved_type)
1997 * sizeof (struct field));
1998 memcpy (TYPE_FIELDS (resolved_type),
1999 TYPE_FIELDS (type),
2000 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2001 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2002 {
2003 struct type *t;
2004
2005 if (field_is_static (&TYPE_FIELD (type, i)))
2006 continue;
2007
2008 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2009 addr_stack, 0);
2010 TYPE_FIELD_TYPE (resolved_type, i) = t;
2011 if (TYPE_LENGTH (t) > max_len)
2012 max_len = TYPE_LENGTH (t);
2013 }
2014
2015 TYPE_LENGTH (resolved_type) = max_len;
2016 return resolved_type;
2017 }
2018
2019 /* Resolve dynamic bounds of members of the struct TYPE to static
2020 bounds. ADDR_STACK is a stack of struct property_addr_info to
2021 be used if needed during the dynamic resolution. */
2022
2023 static struct type *
2024 resolve_dynamic_struct (struct type *type,
2025 struct property_addr_info *addr_stack)
2026 {
2027 struct type *resolved_type;
2028 int i;
2029 unsigned resolved_type_bit_length = 0;
2030
2031 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2032 gdb_assert (TYPE_NFIELDS (type) > 0);
2033
2034 resolved_type = copy_type (type);
2035 TYPE_FIELDS (resolved_type)
2036 = (struct field *) TYPE_ALLOC (resolved_type,
2037 TYPE_NFIELDS (resolved_type)
2038 * sizeof (struct field));
2039 memcpy (TYPE_FIELDS (resolved_type),
2040 TYPE_FIELDS (type),
2041 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2042 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2043 {
2044 unsigned new_bit_length;
2045 struct property_addr_info pinfo;
2046
2047 if (field_is_static (&TYPE_FIELD (type, i)))
2048 continue;
2049
2050 /* As we know this field is not a static field, the field's
2051 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2052 this is the case, but only trigger a simple error rather
2053 than an internal error if that fails. While failing
2054 that verification indicates a bug in our code, the error
2055 is not severe enough to suggest to the user he stops
2056 his debugging session because of it. */
2057 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2058 error (_("Cannot determine struct field location"
2059 " (invalid location kind)"));
2060
2061 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2062 pinfo.valaddr = addr_stack->valaddr;
2063 pinfo.addr
2064 = (addr_stack->addr
2065 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2066 pinfo.next = addr_stack;
2067
2068 TYPE_FIELD_TYPE (resolved_type, i)
2069 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2070 &pinfo, 0);
2071 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2072 == FIELD_LOC_KIND_BITPOS);
2073
2074 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2075 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2076 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2077 else
2078 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2079 * TARGET_CHAR_BIT);
2080
2081 /* Normally, we would use the position and size of the last field
2082 to determine the size of the enclosing structure. But GCC seems
2083 to be encoding the position of some fields incorrectly when
2084 the struct contains a dynamic field that is not placed last.
2085 So we compute the struct size based on the field that has
2086 the highest position + size - probably the best we can do. */
2087 if (new_bit_length > resolved_type_bit_length)
2088 resolved_type_bit_length = new_bit_length;
2089 }
2090
2091 /* The length of a type won't change for fortran, but it does for C and Ada.
2092 For fortran the size of dynamic fields might change over time but not the
2093 type length of the structure. If we adapt it, we run into problems
2094 when calculating the element offset for arrays of structs. */
2095 if (current_language->la_language != language_fortran)
2096 TYPE_LENGTH (resolved_type)
2097 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2098
2099 /* The Ada language uses this field as a cache for static fixed types: reset
2100 it as RESOLVED_TYPE must have its own static fixed type. */
2101 TYPE_TARGET_TYPE (resolved_type) = NULL;
2102
2103 return resolved_type;
2104 }
2105
2106 /* Worker for resolved_dynamic_type. */
2107
2108 static struct type *
2109 resolve_dynamic_type_internal (struct type *type,
2110 struct property_addr_info *addr_stack,
2111 int top_level)
2112 {
2113 struct type *real_type = check_typedef (type);
2114 struct type *resolved_type = type;
2115 struct dynamic_prop *prop;
2116 CORE_ADDR value;
2117
2118 if (!is_dynamic_type_internal (real_type, top_level))
2119 return type;
2120
2121 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2122 {
2123 resolved_type = copy_type (type);
2124 TYPE_TARGET_TYPE (resolved_type)
2125 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2126 top_level);
2127 }
2128 else
2129 {
2130 /* Before trying to resolve TYPE, make sure it is not a stub. */
2131 type = real_type;
2132
2133 switch (TYPE_CODE (type))
2134 {
2135 case TYPE_CODE_REF:
2136 {
2137 struct property_addr_info pinfo;
2138
2139 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2140 pinfo.valaddr = NULL;
2141 if (addr_stack->valaddr != NULL)
2142 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2143 else
2144 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2145 pinfo.next = addr_stack;
2146
2147 resolved_type = copy_type (type);
2148 TYPE_TARGET_TYPE (resolved_type)
2149 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2150 &pinfo, top_level);
2151 break;
2152 }
2153
2154 case TYPE_CODE_ARRAY:
2155 resolved_type = resolve_dynamic_array (type, addr_stack);
2156 break;
2157
2158 case TYPE_CODE_RANGE:
2159 resolved_type = resolve_dynamic_range (type, addr_stack);
2160 break;
2161
2162 case TYPE_CODE_UNION:
2163 resolved_type = resolve_dynamic_union (type, addr_stack);
2164 break;
2165
2166 case TYPE_CODE_STRUCT:
2167 resolved_type = resolve_dynamic_struct (type, addr_stack);
2168 break;
2169 }
2170 }
2171
2172 /* Resolve data_location attribute. */
2173 prop = TYPE_DATA_LOCATION (resolved_type);
2174 if (prop != NULL
2175 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2176 {
2177 TYPE_DYN_PROP_ADDR (prop) = value;
2178 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2179 }
2180
2181 return resolved_type;
2182 }
2183
2184 /* See gdbtypes.h */
2185
2186 struct type *
2187 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2188 CORE_ADDR addr)
2189 {
2190 struct property_addr_info pinfo
2191 = {check_typedef (type), valaddr, addr, NULL};
2192
2193 return resolve_dynamic_type_internal (type, &pinfo, 1);
2194 }
2195
2196 /* See gdbtypes.h */
2197
2198 struct dynamic_prop *
2199 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2200 {
2201 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2202
2203 while (node != NULL)
2204 {
2205 if (node->prop_kind == prop_kind)
2206 return &node->prop;
2207 node = node->next;
2208 }
2209 return NULL;
2210 }
2211
2212 /* See gdbtypes.h */
2213
2214 void
2215 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2216 struct type *type, struct objfile *objfile)
2217 {
2218 struct dynamic_prop_list *temp;
2219
2220 gdb_assert (TYPE_OBJFILE_OWNED (type));
2221
2222 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2223 temp->prop_kind = prop_kind;
2224 temp->prop = prop;
2225 temp->next = TYPE_DYN_PROP_LIST (type);
2226
2227 TYPE_DYN_PROP_LIST (type) = temp;
2228 }
2229
2230 /* Remove dynamic property from TYPE in case it exists. */
2231
2232 void
2233 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2234 struct type *type)
2235 {
2236 struct dynamic_prop_list *prev_node, *curr_node;
2237
2238 curr_node = TYPE_DYN_PROP_LIST (type);
2239 prev_node = NULL;
2240
2241 while (NULL != curr_node)
2242 {
2243 if (curr_node->prop_kind == prop_kind)
2244 {
2245 /* Update the linked list but don't free anything.
2246 The property was allocated on objstack and it is not known
2247 if we are on top of it. Nevertheless, everything is released
2248 when the complete objstack is freed. */
2249 if (NULL == prev_node)
2250 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2251 else
2252 prev_node->next = curr_node->next;
2253
2254 return;
2255 }
2256
2257 prev_node = curr_node;
2258 curr_node = curr_node->next;
2259 }
2260 }
2261
2262 /* Find the real type of TYPE. This function returns the real type,
2263 after removing all layers of typedefs, and completing opaque or stub
2264 types. Completion changes the TYPE argument, but stripping of
2265 typedefs does not.
2266
2267 Instance flags (e.g. const/volatile) are preserved as typedefs are
2268 stripped. If necessary a new qualified form of the underlying type
2269 is created.
2270
2271 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2272 not been computed and we're either in the middle of reading symbols, or
2273 there was no name for the typedef in the debug info.
2274
2275 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2276 QUITs in the symbol reading code can also throw.
2277 Thus this function can throw an exception.
2278
2279 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2280 the target type.
2281
2282 If this is a stubbed struct (i.e. declared as struct foo *), see if
2283 we can find a full definition in some other file. If so, copy this
2284 definition, so we can use it in future. There used to be a comment
2285 (but not any code) that if we don't find a full definition, we'd
2286 set a flag so we don't spend time in the future checking the same
2287 type. That would be a mistake, though--we might load in more
2288 symbols which contain a full definition for the type. */
2289
2290 struct type *
2291 check_typedef (struct type *type)
2292 {
2293 struct type *orig_type = type;
2294 /* While we're removing typedefs, we don't want to lose qualifiers.
2295 E.g., const/volatile. */
2296 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2297
2298 gdb_assert (type);
2299
2300 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2301 {
2302 if (!TYPE_TARGET_TYPE (type))
2303 {
2304 const char *name;
2305 struct symbol *sym;
2306
2307 /* It is dangerous to call lookup_symbol if we are currently
2308 reading a symtab. Infinite recursion is one danger. */
2309 if (currently_reading_symtab)
2310 return make_qualified_type (type, instance_flags, NULL);
2311
2312 name = type_name_no_tag (type);
2313 /* FIXME: shouldn't we separately check the TYPE_NAME and
2314 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2315 VAR_DOMAIN as appropriate? (this code was written before
2316 TYPE_NAME and TYPE_TAG_NAME were separate). */
2317 if (name == NULL)
2318 {
2319 stub_noname_complaint ();
2320 return make_qualified_type (type, instance_flags, NULL);
2321 }
2322 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2323 if (sym)
2324 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2325 else /* TYPE_CODE_UNDEF */
2326 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2327 }
2328 type = TYPE_TARGET_TYPE (type);
2329
2330 /* Preserve the instance flags as we traverse down the typedef chain.
2331
2332 Handling address spaces/classes is nasty, what do we do if there's a
2333 conflict?
2334 E.g., what if an outer typedef marks the type as class_1 and an inner
2335 typedef marks the type as class_2?
2336 This is the wrong place to do such error checking. We leave it to
2337 the code that created the typedef in the first place to flag the
2338 error. We just pick the outer address space (akin to letting the
2339 outer cast in a chain of casting win), instead of assuming
2340 "it can't happen". */
2341 {
2342 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2343 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2344 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2345 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2346
2347 /* Treat code vs data spaces and address classes separately. */
2348 if ((instance_flags & ALL_SPACES) != 0)
2349 new_instance_flags &= ~ALL_SPACES;
2350 if ((instance_flags & ALL_CLASSES) != 0)
2351 new_instance_flags &= ~ALL_CLASSES;
2352
2353 instance_flags |= new_instance_flags;
2354 }
2355 }
2356
2357 /* If this is a struct/class/union with no fields, then check
2358 whether a full definition exists somewhere else. This is for
2359 systems where a type definition with no fields is issued for such
2360 types, instead of identifying them as stub types in the first
2361 place. */
2362
2363 if (TYPE_IS_OPAQUE (type)
2364 && opaque_type_resolution
2365 && !currently_reading_symtab)
2366 {
2367 const char *name = type_name_no_tag (type);
2368 struct type *newtype;
2369
2370 if (name == NULL)
2371 {
2372 stub_noname_complaint ();
2373 return make_qualified_type (type, instance_flags, NULL);
2374 }
2375 newtype = lookup_transparent_type (name);
2376
2377 if (newtype)
2378 {
2379 /* If the resolved type and the stub are in the same
2380 objfile, then replace the stub type with the real deal.
2381 But if they're in separate objfiles, leave the stub
2382 alone; we'll just look up the transparent type every time
2383 we call check_typedef. We can't create pointers between
2384 types allocated to different objfiles, since they may
2385 have different lifetimes. Trying to copy NEWTYPE over to
2386 TYPE's objfile is pointless, too, since you'll have to
2387 move over any other types NEWTYPE refers to, which could
2388 be an unbounded amount of stuff. */
2389 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2390 type = make_qualified_type (newtype,
2391 TYPE_INSTANCE_FLAGS (type),
2392 type);
2393 else
2394 type = newtype;
2395 }
2396 }
2397 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2398 types. */
2399 else if (TYPE_STUB (type) && !currently_reading_symtab)
2400 {
2401 const char *name = type_name_no_tag (type);
2402 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2403 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2404 as appropriate? (this code was written before TYPE_NAME and
2405 TYPE_TAG_NAME were separate). */
2406 struct symbol *sym;
2407
2408 if (name == NULL)
2409 {
2410 stub_noname_complaint ();
2411 return make_qualified_type (type, instance_flags, NULL);
2412 }
2413 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2414 if (sym)
2415 {
2416 /* Same as above for opaque types, we can replace the stub
2417 with the complete type only if they are in the same
2418 objfile. */
2419 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2420 type = make_qualified_type (SYMBOL_TYPE (sym),
2421 TYPE_INSTANCE_FLAGS (type),
2422 type);
2423 else
2424 type = SYMBOL_TYPE (sym);
2425 }
2426 }
2427
2428 if (TYPE_TARGET_STUB (type))
2429 {
2430 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2431
2432 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2433 {
2434 /* Nothing we can do. */
2435 }
2436 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2437 {
2438 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2439 TYPE_TARGET_STUB (type) = 0;
2440 }
2441 }
2442
2443 type = make_qualified_type (type, instance_flags, NULL);
2444
2445 /* Cache TYPE_LENGTH for future use. */
2446 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2447
2448 return type;
2449 }
2450
2451 /* Parse a type expression in the string [P..P+LENGTH). If an error
2452 occurs, silently return a void type. */
2453
2454 static struct type *
2455 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2456 {
2457 struct ui_file *saved_gdb_stderr;
2458 struct type *type = NULL; /* Initialize to keep gcc happy. */
2459
2460 /* Suppress error messages. */
2461 saved_gdb_stderr = gdb_stderr;
2462 gdb_stderr = &null_stream;
2463
2464 /* Call parse_and_eval_type() without fear of longjmp()s. */
2465 TRY
2466 {
2467 type = parse_and_eval_type (p, length);
2468 }
2469 CATCH (except, RETURN_MASK_ERROR)
2470 {
2471 type = builtin_type (gdbarch)->builtin_void;
2472 }
2473 END_CATCH
2474
2475 /* Stop suppressing error messages. */
2476 gdb_stderr = saved_gdb_stderr;
2477
2478 return type;
2479 }
2480
2481 /* Ugly hack to convert method stubs into method types.
2482
2483 He ain't kiddin'. This demangles the name of the method into a
2484 string including argument types, parses out each argument type,
2485 generates a string casting a zero to that type, evaluates the
2486 string, and stuffs the resulting type into an argtype vector!!!
2487 Then it knows the type of the whole function (including argument
2488 types for overloading), which info used to be in the stab's but was
2489 removed to hack back the space required for them. */
2490
2491 static void
2492 check_stub_method (struct type *type, int method_id, int signature_id)
2493 {
2494 struct gdbarch *gdbarch = get_type_arch (type);
2495 struct fn_field *f;
2496 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2497 char *demangled_name = gdb_demangle (mangled_name,
2498 DMGL_PARAMS | DMGL_ANSI);
2499 char *argtypetext, *p;
2500 int depth = 0, argcount = 1;
2501 struct field *argtypes;
2502 struct type *mtype;
2503
2504 /* Make sure we got back a function string that we can use. */
2505 if (demangled_name)
2506 p = strchr (demangled_name, '(');
2507 else
2508 p = NULL;
2509
2510 if (demangled_name == NULL || p == NULL)
2511 error (_("Internal: Cannot demangle mangled name `%s'."),
2512 mangled_name);
2513
2514 /* Now, read in the parameters that define this type. */
2515 p += 1;
2516 argtypetext = p;
2517 while (*p)
2518 {
2519 if (*p == '(' || *p == '<')
2520 {
2521 depth += 1;
2522 }
2523 else if (*p == ')' || *p == '>')
2524 {
2525 depth -= 1;
2526 }
2527 else if (*p == ',' && depth == 0)
2528 {
2529 argcount += 1;
2530 }
2531
2532 p += 1;
2533 }
2534
2535 /* If we read one argument and it was ``void'', don't count it. */
2536 if (startswith (argtypetext, "(void)"))
2537 argcount -= 1;
2538
2539 /* We need one extra slot, for the THIS pointer. */
2540
2541 argtypes = (struct field *)
2542 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2543 p = argtypetext;
2544
2545 /* Add THIS pointer for non-static methods. */
2546 f = TYPE_FN_FIELDLIST1 (type, method_id);
2547 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2548 argcount = 0;
2549 else
2550 {
2551 argtypes[0].type = lookup_pointer_type (type);
2552 argcount = 1;
2553 }
2554
2555 if (*p != ')') /* () means no args, skip while. */
2556 {
2557 depth = 0;
2558 while (*p)
2559 {
2560 if (depth <= 0 && (*p == ',' || *p == ')'))
2561 {
2562 /* Avoid parsing of ellipsis, they will be handled below.
2563 Also avoid ``void'' as above. */
2564 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2565 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2566 {
2567 argtypes[argcount].type =
2568 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2569 argcount += 1;
2570 }
2571 argtypetext = p + 1;
2572 }
2573
2574 if (*p == '(' || *p == '<')
2575 {
2576 depth += 1;
2577 }
2578 else if (*p == ')' || *p == '>')
2579 {
2580 depth -= 1;
2581 }
2582
2583 p += 1;
2584 }
2585 }
2586
2587 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2588
2589 /* Now update the old "stub" type into a real type. */
2590 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2591 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2592 We want a method (TYPE_CODE_METHOD). */
2593 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2594 argtypes, argcount, p[-2] == '.');
2595 TYPE_STUB (mtype) = 0;
2596 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2597
2598 xfree (demangled_name);
2599 }
2600
2601 /* This is the external interface to check_stub_method, above. This
2602 function unstubs all of the signatures for TYPE's METHOD_ID method
2603 name. After calling this function TYPE_FN_FIELD_STUB will be
2604 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2605 correct.
2606
2607 This function unfortunately can not die until stabs do. */
2608
2609 void
2610 check_stub_method_group (struct type *type, int method_id)
2611 {
2612 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2613 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2614 int j, found_stub = 0;
2615
2616 for (j = 0; j < len; j++)
2617 if (TYPE_FN_FIELD_STUB (f, j))
2618 {
2619 found_stub = 1;
2620 check_stub_method (type, method_id, j);
2621 }
2622
2623 /* GNU v3 methods with incorrect names were corrected when we read
2624 in type information, because it was cheaper to do it then. The
2625 only GNU v2 methods with incorrect method names are operators and
2626 destructors; destructors were also corrected when we read in type
2627 information.
2628
2629 Therefore the only thing we need to handle here are v2 operator
2630 names. */
2631 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2632 {
2633 int ret;
2634 char dem_opname[256];
2635
2636 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2637 method_id),
2638 dem_opname, DMGL_ANSI);
2639 if (!ret)
2640 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2641 method_id),
2642 dem_opname, 0);
2643 if (ret)
2644 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2645 }
2646 }
2647
2648 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2649 const struct cplus_struct_type cplus_struct_default = { };
2650
2651 void
2652 allocate_cplus_struct_type (struct type *type)
2653 {
2654 if (HAVE_CPLUS_STRUCT (type))
2655 /* Structure was already allocated. Nothing more to do. */
2656 return;
2657
2658 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2659 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2660 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2661 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2662 set_type_vptr_fieldno (type, -1);
2663 }
2664
2665 const struct gnat_aux_type gnat_aux_default =
2666 { NULL };
2667
2668 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2669 and allocate the associated gnat-specific data. The gnat-specific
2670 data is also initialized to gnat_aux_default. */
2671
2672 void
2673 allocate_gnat_aux_type (struct type *type)
2674 {
2675 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2676 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2677 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2678 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2679 }
2680
2681 /* Helper function to initialize a newly allocated type. Set type code
2682 to CODE and initialize the type-specific fields accordingly. */
2683
2684 static void
2685 set_type_code (struct type *type, enum type_code code)
2686 {
2687 TYPE_CODE (type) = code;
2688
2689 switch (code)
2690 {
2691 case TYPE_CODE_STRUCT:
2692 case TYPE_CODE_UNION:
2693 case TYPE_CODE_NAMESPACE:
2694 INIT_CPLUS_SPECIFIC (type);
2695 break;
2696 case TYPE_CODE_FLT:
2697 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2698 break;
2699 case TYPE_CODE_FUNC:
2700 INIT_FUNC_SPECIFIC (type);
2701 break;
2702 }
2703 }
2704
2705 /* Helper function to verify floating-point format and size.
2706 BIT is the type size in bits; if BIT equals -1, the size is
2707 determined by the floatformat. Returns size to be used. */
2708
2709 static int
2710 verify_floatformat (int bit, const struct floatformat **floatformats)
2711 {
2712 gdb_assert (floatformats != NULL);
2713 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2714
2715 if (bit == -1)
2716 bit = floatformats[0]->totalsize;
2717 gdb_assert (bit >= 0);
2718
2719 size_t len = bit / TARGET_CHAR_BIT;
2720 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2721 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2722
2723 return bit;
2724 }
2725
2726 /* Helper function to initialize the standard scalar types.
2727
2728 If NAME is non-NULL, then it is used to initialize the type name.
2729 Note that NAME is not copied; it is required to have a lifetime at
2730 least as long as OBJFILE. */
2731
2732 struct type *
2733 init_type (struct objfile *objfile, enum type_code code, int length,
2734 const char *name)
2735 {
2736 struct type *type;
2737
2738 type = alloc_type (objfile);
2739 set_type_code (type, code);
2740 TYPE_LENGTH (type) = length;
2741 TYPE_NAME (type) = name;
2742
2743 return type;
2744 }
2745
2746 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2747 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2748 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2749
2750 struct type *
2751 init_integer_type (struct objfile *objfile,
2752 int bit, int unsigned_p, const char *name)
2753 {
2754 struct type *t;
2755
2756 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2757 if (unsigned_p)
2758 TYPE_UNSIGNED (t) = 1;
2759
2760 return t;
2761 }
2762
2763 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2764 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2765 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2766
2767 struct type *
2768 init_character_type (struct objfile *objfile,
2769 int bit, int unsigned_p, const char *name)
2770 {
2771 struct type *t;
2772
2773 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2774 if (unsigned_p)
2775 TYPE_UNSIGNED (t) = 1;
2776
2777 return t;
2778 }
2779
2780 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2781 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2782 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2783
2784 struct type *
2785 init_boolean_type (struct objfile *objfile,
2786 int bit, int unsigned_p, const char *name)
2787 {
2788 struct type *t;
2789
2790 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2791 if (unsigned_p)
2792 TYPE_UNSIGNED (t) = 1;
2793
2794 return t;
2795 }
2796
2797 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2798 BIT is the type size in bits; if BIT equals -1, the size is
2799 determined by the floatformat. NAME is the type name. Set the
2800 TYPE_FLOATFORMAT from FLOATFORMATS. */
2801
2802 struct type *
2803 init_float_type (struct objfile *objfile,
2804 int bit, const char *name,
2805 const struct floatformat **floatformats)
2806 {
2807 struct type *t;
2808
2809 bit = verify_floatformat (bit, floatformats);
2810 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2811 TYPE_FLOATFORMAT (t) = floatformats;
2812
2813 return t;
2814 }
2815
2816 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2817 BIT is the type size in bits. NAME is the type name. */
2818
2819 struct type *
2820 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2821 {
2822 struct type *t;
2823
2824 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2825 return t;
2826 }
2827
2828 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2829 NAME is the type name. TARGET_TYPE is the component float type. */
2830
2831 struct type *
2832 init_complex_type (struct objfile *objfile,
2833 const char *name, struct type *target_type)
2834 {
2835 struct type *t;
2836
2837 t = init_type (objfile, TYPE_CODE_COMPLEX,
2838 2 * TYPE_LENGTH (target_type), name);
2839 TYPE_TARGET_TYPE (t) = target_type;
2840 return t;
2841 }
2842
2843 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2844 BIT is the pointer type size in bits. NAME is the type name.
2845 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2846 TYPE_UNSIGNED flag. */
2847
2848 struct type *
2849 init_pointer_type (struct objfile *objfile,
2850 int bit, const char *name, struct type *target_type)
2851 {
2852 struct type *t;
2853
2854 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2855 TYPE_TARGET_TYPE (t) = target_type;
2856 TYPE_UNSIGNED (t) = 1;
2857 return t;
2858 }
2859
2860 \f
2861 /* Queries on types. */
2862
2863 int
2864 can_dereference (struct type *t)
2865 {
2866 /* FIXME: Should we return true for references as well as
2867 pointers? */
2868 t = check_typedef (t);
2869 return
2870 (t != NULL
2871 && TYPE_CODE (t) == TYPE_CODE_PTR
2872 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2873 }
2874
2875 int
2876 is_integral_type (struct type *t)
2877 {
2878 t = check_typedef (t);
2879 return
2880 ((t != NULL)
2881 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2882 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2883 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2884 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2885 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2886 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2887 }
2888
2889 /* Return true if TYPE is scalar. */
2890
2891 int
2892 is_scalar_type (struct type *type)
2893 {
2894 type = check_typedef (type);
2895
2896 switch (TYPE_CODE (type))
2897 {
2898 case TYPE_CODE_ARRAY:
2899 case TYPE_CODE_STRUCT:
2900 case TYPE_CODE_UNION:
2901 case TYPE_CODE_SET:
2902 case TYPE_CODE_STRING:
2903 return 0;
2904 default:
2905 return 1;
2906 }
2907 }
2908
2909 /* Return true if T is scalar, or a composite type which in practice has
2910 the memory layout of a scalar type. E.g., an array or struct with only
2911 one scalar element inside it, or a union with only scalar elements. */
2912
2913 int
2914 is_scalar_type_recursive (struct type *t)
2915 {
2916 t = check_typedef (t);
2917
2918 if (is_scalar_type (t))
2919 return 1;
2920 /* Are we dealing with an array or string of known dimensions? */
2921 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2922 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2923 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2924 {
2925 LONGEST low_bound, high_bound;
2926 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2927
2928 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2929
2930 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2931 }
2932 /* Are we dealing with a struct with one element? */
2933 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2934 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2935 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2936 {
2937 int i, n = TYPE_NFIELDS (t);
2938
2939 /* If all elements of the union are scalar, then the union is scalar. */
2940 for (i = 0; i < n; i++)
2941 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2942 return 0;
2943
2944 return 1;
2945 }
2946
2947 return 0;
2948 }
2949
2950 /* Return true is T is a class or a union. False otherwise. */
2951
2952 int
2953 class_or_union_p (const struct type *t)
2954 {
2955 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2956 || TYPE_CODE (t) == TYPE_CODE_UNION);
2957 }
2958
2959 /* A helper function which returns true if types A and B represent the
2960 "same" class type. This is true if the types have the same main
2961 type, or the same name. */
2962
2963 int
2964 class_types_same_p (const struct type *a, const struct type *b)
2965 {
2966 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2967 || (TYPE_NAME (a) && TYPE_NAME (b)
2968 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2969 }
2970
2971 /* If BASE is an ancestor of DCLASS return the distance between them.
2972 otherwise return -1;
2973 eg:
2974
2975 class A {};
2976 class B: public A {};
2977 class C: public B {};
2978 class D: C {};
2979
2980 distance_to_ancestor (A, A, 0) = 0
2981 distance_to_ancestor (A, B, 0) = 1
2982 distance_to_ancestor (A, C, 0) = 2
2983 distance_to_ancestor (A, D, 0) = 3
2984
2985 If PUBLIC is 1 then only public ancestors are considered,
2986 and the function returns the distance only if BASE is a public ancestor
2987 of DCLASS.
2988 Eg:
2989
2990 distance_to_ancestor (A, D, 1) = -1. */
2991
2992 static int
2993 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2994 {
2995 int i;
2996 int d;
2997
2998 base = check_typedef (base);
2999 dclass = check_typedef (dclass);
3000
3001 if (class_types_same_p (base, dclass))
3002 return 0;
3003
3004 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3005 {
3006 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3007 continue;
3008
3009 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3010 if (d >= 0)
3011 return 1 + d;
3012 }
3013
3014 return -1;
3015 }
3016
3017 /* Check whether BASE is an ancestor or base class or DCLASS
3018 Return 1 if so, and 0 if not.
3019 Note: If BASE and DCLASS are of the same type, this function
3020 will return 1. So for some class A, is_ancestor (A, A) will
3021 return 1. */
3022
3023 int
3024 is_ancestor (struct type *base, struct type *dclass)
3025 {
3026 return distance_to_ancestor (base, dclass, 0) >= 0;
3027 }
3028
3029 /* Like is_ancestor, but only returns true when BASE is a public
3030 ancestor of DCLASS. */
3031
3032 int
3033 is_public_ancestor (struct type *base, struct type *dclass)
3034 {
3035 return distance_to_ancestor (base, dclass, 1) >= 0;
3036 }
3037
3038 /* A helper function for is_unique_ancestor. */
3039
3040 static int
3041 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3042 int *offset,
3043 const gdb_byte *valaddr, int embedded_offset,
3044 CORE_ADDR address, struct value *val)
3045 {
3046 int i, count = 0;
3047
3048 base = check_typedef (base);
3049 dclass = check_typedef (dclass);
3050
3051 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3052 {
3053 struct type *iter;
3054 int this_offset;
3055
3056 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3057
3058 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3059 address, val);
3060
3061 if (class_types_same_p (base, iter))
3062 {
3063 /* If this is the first subclass, set *OFFSET and set count
3064 to 1. Otherwise, if this is at the same offset as
3065 previous instances, do nothing. Otherwise, increment
3066 count. */
3067 if (*offset == -1)
3068 {
3069 *offset = this_offset;
3070 count = 1;
3071 }
3072 else if (this_offset == *offset)
3073 {
3074 /* Nothing. */
3075 }
3076 else
3077 ++count;
3078 }
3079 else
3080 count += is_unique_ancestor_worker (base, iter, offset,
3081 valaddr,
3082 embedded_offset + this_offset,
3083 address, val);
3084 }
3085
3086 return count;
3087 }
3088
3089 /* Like is_ancestor, but only returns true if BASE is a unique base
3090 class of the type of VAL. */
3091
3092 int
3093 is_unique_ancestor (struct type *base, struct value *val)
3094 {
3095 int offset = -1;
3096
3097 return is_unique_ancestor_worker (base, value_type (val), &offset,
3098 value_contents_for_printing (val),
3099 value_embedded_offset (val),
3100 value_address (val), val) == 1;
3101 }
3102
3103 \f
3104 /* Overload resolution. */
3105
3106 /* Return the sum of the rank of A with the rank of B. */
3107
3108 struct rank
3109 sum_ranks (struct rank a, struct rank b)
3110 {
3111 struct rank c;
3112 c.rank = a.rank + b.rank;
3113 c.subrank = a.subrank + b.subrank;
3114 return c;
3115 }
3116
3117 /* Compare rank A and B and return:
3118 0 if a = b
3119 1 if a is better than b
3120 -1 if b is better than a. */
3121
3122 int
3123 compare_ranks (struct rank a, struct rank b)
3124 {
3125 if (a.rank == b.rank)
3126 {
3127 if (a.subrank == b.subrank)
3128 return 0;
3129 if (a.subrank < b.subrank)
3130 return 1;
3131 if (a.subrank > b.subrank)
3132 return -1;
3133 }
3134
3135 if (a.rank < b.rank)
3136 return 1;
3137
3138 /* a.rank > b.rank */
3139 return -1;
3140 }
3141
3142 /* Functions for overload resolution begin here. */
3143
3144 /* Compare two badness vectors A and B and return the result.
3145 0 => A and B are identical
3146 1 => A and B are incomparable
3147 2 => A is better than B
3148 3 => A is worse than B */
3149
3150 int
3151 compare_badness (struct badness_vector *a, struct badness_vector *b)
3152 {
3153 int i;
3154 int tmp;
3155 short found_pos = 0; /* any positives in c? */
3156 short found_neg = 0; /* any negatives in c? */
3157
3158 /* differing lengths => incomparable */
3159 if (a->length != b->length)
3160 return 1;
3161
3162 /* Subtract b from a */
3163 for (i = 0; i < a->length; i++)
3164 {
3165 tmp = compare_ranks (b->rank[i], a->rank[i]);
3166 if (tmp > 0)
3167 found_pos = 1;
3168 else if (tmp < 0)
3169 found_neg = 1;
3170 }
3171
3172 if (found_pos)
3173 {
3174 if (found_neg)
3175 return 1; /* incomparable */
3176 else
3177 return 3; /* A > B */
3178 }
3179 else
3180 /* no positives */
3181 {
3182 if (found_neg)
3183 return 2; /* A < B */
3184 else
3185 return 0; /* A == B */
3186 }
3187 }
3188
3189 /* Rank a function by comparing its parameter types (PARMS, length
3190 NPARMS), to the types of an argument list (ARGS, length NARGS).
3191 Return a pointer to a badness vector. This has NARGS + 1
3192 entries. */
3193
3194 struct badness_vector *
3195 rank_function (struct type **parms, int nparms,
3196 struct value **args, int nargs)
3197 {
3198 int i;
3199 struct badness_vector *bv = XNEW (struct badness_vector);
3200 int min_len = nparms < nargs ? nparms : nargs;
3201
3202 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3203 bv->rank = XNEWVEC (struct rank, nargs + 1);
3204
3205 /* First compare the lengths of the supplied lists.
3206 If there is a mismatch, set it to a high value. */
3207
3208 /* pai/1997-06-03 FIXME: when we have debug info about default
3209 arguments and ellipsis parameter lists, we should consider those
3210 and rank the length-match more finely. */
3211
3212 LENGTH_MATCH (bv) = (nargs != nparms)
3213 ? LENGTH_MISMATCH_BADNESS
3214 : EXACT_MATCH_BADNESS;
3215
3216 /* Now rank all the parameters of the candidate function. */
3217 for (i = 1; i <= min_len; i++)
3218 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3219 args[i - 1]);
3220
3221 /* If more arguments than parameters, add dummy entries. */
3222 for (i = min_len + 1; i <= nargs; i++)
3223 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3224
3225 return bv;
3226 }
3227
3228 /* Compare the names of two integer types, assuming that any sign
3229 qualifiers have been checked already. We do it this way because
3230 there may be an "int" in the name of one of the types. */
3231
3232 static int
3233 integer_types_same_name_p (const char *first, const char *second)
3234 {
3235 int first_p, second_p;
3236
3237 /* If both are shorts, return 1; if neither is a short, keep
3238 checking. */
3239 first_p = (strstr (first, "short") != NULL);
3240 second_p = (strstr (second, "short") != NULL);
3241 if (first_p && second_p)
3242 return 1;
3243 if (first_p || second_p)
3244 return 0;
3245
3246 /* Likewise for long. */
3247 first_p = (strstr (first, "long") != NULL);
3248 second_p = (strstr (second, "long") != NULL);
3249 if (first_p && second_p)
3250 return 1;
3251 if (first_p || second_p)
3252 return 0;
3253
3254 /* Likewise for char. */
3255 first_p = (strstr (first, "char") != NULL);
3256 second_p = (strstr (second, "char") != NULL);
3257 if (first_p && second_p)
3258 return 1;
3259 if (first_p || second_p)
3260 return 0;
3261
3262 /* They must both be ints. */
3263 return 1;
3264 }
3265
3266 /* Compares type A to type B returns 1 if the represent the same type
3267 0 otherwise. */
3268
3269 int
3270 types_equal (struct type *a, struct type *b)
3271 {
3272 /* Identical type pointers. */
3273 /* However, this still doesn't catch all cases of same type for b
3274 and a. The reason is that builtin types are different from
3275 the same ones constructed from the object. */
3276 if (a == b)
3277 return 1;
3278
3279 /* Resolve typedefs */
3280 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3281 a = check_typedef (a);
3282 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3283 b = check_typedef (b);
3284
3285 /* If after resolving typedefs a and b are not of the same type
3286 code then they are not equal. */
3287 if (TYPE_CODE (a) != TYPE_CODE (b))
3288 return 0;
3289
3290 /* If a and b are both pointers types or both reference types then
3291 they are equal of the same type iff the objects they refer to are
3292 of the same type. */
3293 if (TYPE_CODE (a) == TYPE_CODE_PTR
3294 || TYPE_CODE (a) == TYPE_CODE_REF)
3295 return types_equal (TYPE_TARGET_TYPE (a),
3296 TYPE_TARGET_TYPE (b));
3297
3298 /* Well, damnit, if the names are exactly the same, I'll say they
3299 are exactly the same. This happens when we generate method
3300 stubs. The types won't point to the same address, but they
3301 really are the same. */
3302
3303 if (TYPE_NAME (a) && TYPE_NAME (b)
3304 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3305 return 1;
3306
3307 /* Check if identical after resolving typedefs. */
3308 if (a == b)
3309 return 1;
3310
3311 /* Two function types are equal if their argument and return types
3312 are equal. */
3313 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3314 {
3315 int i;
3316
3317 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3318 return 0;
3319
3320 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3321 return 0;
3322
3323 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3324 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3325 return 0;
3326
3327 return 1;
3328 }
3329
3330 return 0;
3331 }
3332 \f
3333 /* Deep comparison of types. */
3334
3335 /* An entry in the type-equality bcache. */
3336
3337 typedef struct type_equality_entry
3338 {
3339 struct type *type1, *type2;
3340 } type_equality_entry_d;
3341
3342 DEF_VEC_O (type_equality_entry_d);
3343
3344 /* A helper function to compare two strings. Returns 1 if they are
3345 the same, 0 otherwise. Handles NULLs properly. */
3346
3347 static int
3348 compare_maybe_null_strings (const char *s, const char *t)
3349 {
3350 if (s == NULL && t != NULL)
3351 return 0;
3352 else if (s != NULL && t == NULL)
3353 return 0;
3354 else if (s == NULL && t== NULL)
3355 return 1;
3356 return strcmp (s, t) == 0;
3357 }
3358
3359 /* A helper function for check_types_worklist that checks two types for
3360 "deep" equality. Returns non-zero if the types are considered the
3361 same, zero otherwise. */
3362
3363 static int
3364 check_types_equal (struct type *type1, struct type *type2,
3365 VEC (type_equality_entry_d) **worklist)
3366 {
3367 type1 = check_typedef (type1);
3368 type2 = check_typedef (type2);
3369
3370 if (type1 == type2)
3371 return 1;
3372
3373 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3374 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3375 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3376 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3377 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3378 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3379 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3380 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3381 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3382 return 0;
3383
3384 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3385 TYPE_TAG_NAME (type2)))
3386 return 0;
3387 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3388 return 0;
3389
3390 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3391 {
3392 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3393 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3394 return 0;
3395 }
3396 else
3397 {
3398 int i;
3399
3400 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3401 {
3402 const struct field *field1 = &TYPE_FIELD (type1, i);
3403 const struct field *field2 = &TYPE_FIELD (type2, i);
3404 struct type_equality_entry entry;
3405
3406 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3407 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3408 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3409 return 0;
3410 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3411 FIELD_NAME (*field2)))
3412 return 0;
3413 switch (FIELD_LOC_KIND (*field1))
3414 {
3415 case FIELD_LOC_KIND_BITPOS:
3416 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3417 return 0;
3418 break;
3419 case FIELD_LOC_KIND_ENUMVAL:
3420 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3421 return 0;
3422 break;
3423 case FIELD_LOC_KIND_PHYSADDR:
3424 if (FIELD_STATIC_PHYSADDR (*field1)
3425 != FIELD_STATIC_PHYSADDR (*field2))
3426 return 0;
3427 break;
3428 case FIELD_LOC_KIND_PHYSNAME:
3429 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3430 FIELD_STATIC_PHYSNAME (*field2)))
3431 return 0;
3432 break;
3433 case FIELD_LOC_KIND_DWARF_BLOCK:
3434 {
3435 struct dwarf2_locexpr_baton *block1, *block2;
3436
3437 block1 = FIELD_DWARF_BLOCK (*field1);
3438 block2 = FIELD_DWARF_BLOCK (*field2);
3439 if (block1->per_cu != block2->per_cu
3440 || block1->size != block2->size
3441 || memcmp (block1->data, block2->data, block1->size) != 0)
3442 return 0;
3443 }
3444 break;
3445 default:
3446 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3447 "%d by check_types_equal"),
3448 FIELD_LOC_KIND (*field1));
3449 }
3450
3451 entry.type1 = FIELD_TYPE (*field1);
3452 entry.type2 = FIELD_TYPE (*field2);
3453 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3454 }
3455 }
3456
3457 if (TYPE_TARGET_TYPE (type1) != NULL)
3458 {
3459 struct type_equality_entry entry;
3460
3461 if (TYPE_TARGET_TYPE (type2) == NULL)
3462 return 0;
3463
3464 entry.type1 = TYPE_TARGET_TYPE (type1);
3465 entry.type2 = TYPE_TARGET_TYPE (type2);
3466 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3467 }
3468 else if (TYPE_TARGET_TYPE (type2) != NULL)
3469 return 0;
3470
3471 return 1;
3472 }
3473
3474 /* Check types on a worklist for equality. Returns zero if any pair
3475 is not equal, non-zero if they are all considered equal. */
3476
3477 static int
3478 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3479 struct bcache *cache)
3480 {
3481 while (!VEC_empty (type_equality_entry_d, *worklist))
3482 {
3483 struct type_equality_entry entry;
3484 int added;
3485
3486 entry = *VEC_last (type_equality_entry_d, *worklist);
3487 VEC_pop (type_equality_entry_d, *worklist);
3488
3489 /* If the type pair has already been visited, we know it is
3490 ok. */
3491 bcache_full (&entry, sizeof (entry), cache, &added);
3492 if (!added)
3493 continue;
3494
3495 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3496 return 0;
3497 }
3498
3499 return 1;
3500 }
3501
3502 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3503 "deep comparison". Otherwise return zero. */
3504
3505 int
3506 types_deeply_equal (struct type *type1, struct type *type2)
3507 {
3508 struct gdb_exception except = exception_none;
3509 int result = 0;
3510 struct bcache *cache;
3511 VEC (type_equality_entry_d) *worklist = NULL;
3512 struct type_equality_entry entry;
3513
3514 gdb_assert (type1 != NULL && type2 != NULL);
3515
3516 /* Early exit for the simple case. */
3517 if (type1 == type2)
3518 return 1;
3519
3520 cache = bcache_xmalloc (NULL, NULL);
3521
3522 entry.type1 = type1;
3523 entry.type2 = type2;
3524 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3525
3526 /* check_types_worklist calls several nested helper functions, some
3527 of which can raise a GDB exception, so we just check and rethrow
3528 here. If there is a GDB exception, a comparison is not capable
3529 (or trusted), so exit. */
3530 TRY
3531 {
3532 result = check_types_worklist (&worklist, cache);
3533 }
3534 CATCH (ex, RETURN_MASK_ALL)
3535 {
3536 except = ex;
3537 }
3538 END_CATCH
3539
3540 bcache_xfree (cache);
3541 VEC_free (type_equality_entry_d, worklist);
3542
3543 /* Rethrow if there was a problem. */
3544 if (except.reason < 0)
3545 throw_exception (except);
3546
3547 return result;
3548 }
3549
3550 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3551 Otherwise return one. */
3552
3553 int
3554 type_not_allocated (const struct type *type)
3555 {
3556 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3557
3558 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3559 && !TYPE_DYN_PROP_ADDR (prop));
3560 }
3561
3562 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3563 Otherwise return one. */
3564
3565 int
3566 type_not_associated (const struct type *type)
3567 {
3568 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3569
3570 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3571 && !TYPE_DYN_PROP_ADDR (prop));
3572 }
3573 \f
3574 /* Compare one type (PARM) for compatibility with another (ARG).
3575 * PARM is intended to be the parameter type of a function; and
3576 * ARG is the supplied argument's type. This function tests if
3577 * the latter can be converted to the former.
3578 * VALUE is the argument's value or NULL if none (or called recursively)
3579 *
3580 * Return 0 if they are identical types;
3581 * Otherwise, return an integer which corresponds to how compatible
3582 * PARM is to ARG. The higher the return value, the worse the match.
3583 * Generally the "bad" conversions are all uniformly assigned a 100. */
3584
3585 struct rank
3586 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3587 {
3588 struct rank rank = {0,0};
3589
3590 if (types_equal (parm, arg))
3591 return EXACT_MATCH_BADNESS;
3592
3593 /* Resolve typedefs */
3594 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3595 parm = check_typedef (parm);
3596 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3597 arg = check_typedef (arg);
3598
3599 /* See through references, since we can almost make non-references
3600 references. */
3601 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3602 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3603 REFERENCE_CONVERSION_BADNESS));
3604 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3605 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3606 REFERENCE_CONVERSION_BADNESS));
3607 if (overload_debug)
3608 /* Debugging only. */
3609 fprintf_filtered (gdb_stderr,
3610 "------ Arg is %s [%d], parm is %s [%d]\n",
3611 TYPE_NAME (arg), TYPE_CODE (arg),
3612 TYPE_NAME (parm), TYPE_CODE (parm));
3613
3614 /* x -> y means arg of type x being supplied for parameter of type y. */
3615
3616 switch (TYPE_CODE (parm))
3617 {
3618 case TYPE_CODE_PTR:
3619 switch (TYPE_CODE (arg))
3620 {
3621 case TYPE_CODE_PTR:
3622
3623 /* Allowed pointer conversions are:
3624 (a) pointer to void-pointer conversion. */
3625 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3626 return VOID_PTR_CONVERSION_BADNESS;
3627
3628 /* (b) pointer to ancestor-pointer conversion. */
3629 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3630 TYPE_TARGET_TYPE (arg),
3631 0);
3632 if (rank.subrank >= 0)
3633 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3634
3635 return INCOMPATIBLE_TYPE_BADNESS;
3636 case TYPE_CODE_ARRAY:
3637 if (types_equal (TYPE_TARGET_TYPE (parm),
3638 TYPE_TARGET_TYPE (arg)))
3639 return EXACT_MATCH_BADNESS;
3640 return INCOMPATIBLE_TYPE_BADNESS;
3641 case TYPE_CODE_FUNC:
3642 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3643 case TYPE_CODE_INT:
3644 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3645 {
3646 if (value_as_long (value) == 0)
3647 {
3648 /* Null pointer conversion: allow it to be cast to a pointer.
3649 [4.10.1 of C++ standard draft n3290] */
3650 return NULL_POINTER_CONVERSION_BADNESS;
3651 }
3652 else
3653 {
3654 /* If type checking is disabled, allow the conversion. */
3655 if (!strict_type_checking)
3656 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3657 }
3658 }
3659 /* fall through */
3660 case TYPE_CODE_ENUM:
3661 case TYPE_CODE_FLAGS:
3662 case TYPE_CODE_CHAR:
3663 case TYPE_CODE_RANGE:
3664 case TYPE_CODE_BOOL:
3665 default:
3666 return INCOMPATIBLE_TYPE_BADNESS;
3667 }
3668 case TYPE_CODE_ARRAY:
3669 switch (TYPE_CODE (arg))
3670 {
3671 case TYPE_CODE_PTR:
3672 case TYPE_CODE_ARRAY:
3673 return rank_one_type (TYPE_TARGET_TYPE (parm),
3674 TYPE_TARGET_TYPE (arg), NULL);
3675 default:
3676 return INCOMPATIBLE_TYPE_BADNESS;
3677 }
3678 case TYPE_CODE_FUNC:
3679 switch (TYPE_CODE (arg))
3680 {
3681 case TYPE_CODE_PTR: /* funcptr -> func */
3682 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3683 default:
3684 return INCOMPATIBLE_TYPE_BADNESS;
3685 }
3686 case TYPE_CODE_INT:
3687 switch (TYPE_CODE (arg))
3688 {
3689 case TYPE_CODE_INT:
3690 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3691 {
3692 /* Deal with signed, unsigned, and plain chars and
3693 signed and unsigned ints. */
3694 if (TYPE_NOSIGN (parm))
3695 {
3696 /* This case only for character types. */
3697 if (TYPE_NOSIGN (arg))
3698 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3699 else /* signed/unsigned char -> plain char */
3700 return INTEGER_CONVERSION_BADNESS;
3701 }
3702 else if (TYPE_UNSIGNED (parm))
3703 {
3704 if (TYPE_UNSIGNED (arg))
3705 {
3706 /* unsigned int -> unsigned int, or
3707 unsigned long -> unsigned long */
3708 if (integer_types_same_name_p (TYPE_NAME (parm),
3709 TYPE_NAME (arg)))
3710 return EXACT_MATCH_BADNESS;
3711 else if (integer_types_same_name_p (TYPE_NAME (arg),
3712 "int")
3713 && integer_types_same_name_p (TYPE_NAME (parm),
3714 "long"))
3715 /* unsigned int -> unsigned long */
3716 return INTEGER_PROMOTION_BADNESS;
3717 else
3718 /* unsigned long -> unsigned int */
3719 return INTEGER_CONVERSION_BADNESS;
3720 }
3721 else
3722 {
3723 if (integer_types_same_name_p (TYPE_NAME (arg),
3724 "long")
3725 && integer_types_same_name_p (TYPE_NAME (parm),
3726 "int"))
3727 /* signed long -> unsigned int */
3728 return INTEGER_CONVERSION_BADNESS;
3729 else
3730 /* signed int/long -> unsigned int/long */
3731 return INTEGER_CONVERSION_BADNESS;
3732 }
3733 }
3734 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3735 {
3736 if (integer_types_same_name_p (TYPE_NAME (parm),
3737 TYPE_NAME (arg)))
3738 return EXACT_MATCH_BADNESS;
3739 else if (integer_types_same_name_p (TYPE_NAME (arg),
3740 "int")
3741 && integer_types_same_name_p (TYPE_NAME (parm),
3742 "long"))
3743 return INTEGER_PROMOTION_BADNESS;
3744 else
3745 return INTEGER_CONVERSION_BADNESS;
3746 }
3747 else
3748 return INTEGER_CONVERSION_BADNESS;
3749 }
3750 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3751 return INTEGER_PROMOTION_BADNESS;
3752 else
3753 return INTEGER_CONVERSION_BADNESS;
3754 case TYPE_CODE_ENUM:
3755 case TYPE_CODE_FLAGS:
3756 case TYPE_CODE_CHAR:
3757 case TYPE_CODE_RANGE:
3758 case TYPE_CODE_BOOL:
3759 if (TYPE_DECLARED_CLASS (arg))
3760 return INCOMPATIBLE_TYPE_BADNESS;
3761 return INTEGER_PROMOTION_BADNESS;
3762 case TYPE_CODE_FLT:
3763 return INT_FLOAT_CONVERSION_BADNESS;
3764 case TYPE_CODE_PTR:
3765 return NS_POINTER_CONVERSION_BADNESS;
3766 default:
3767 return INCOMPATIBLE_TYPE_BADNESS;
3768 }
3769 break;
3770 case TYPE_CODE_ENUM:
3771 switch (TYPE_CODE (arg))
3772 {
3773 case TYPE_CODE_INT:
3774 case TYPE_CODE_CHAR:
3775 case TYPE_CODE_RANGE:
3776 case TYPE_CODE_BOOL:
3777 case TYPE_CODE_ENUM:
3778 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3779 return INCOMPATIBLE_TYPE_BADNESS;
3780 return INTEGER_CONVERSION_BADNESS;
3781 case TYPE_CODE_FLT:
3782 return INT_FLOAT_CONVERSION_BADNESS;
3783 default:
3784 return INCOMPATIBLE_TYPE_BADNESS;
3785 }
3786 break;
3787 case TYPE_CODE_CHAR:
3788 switch (TYPE_CODE (arg))
3789 {
3790 case TYPE_CODE_RANGE:
3791 case TYPE_CODE_BOOL:
3792 case TYPE_CODE_ENUM:
3793 if (TYPE_DECLARED_CLASS (arg))
3794 return INCOMPATIBLE_TYPE_BADNESS;
3795 return INTEGER_CONVERSION_BADNESS;
3796 case TYPE_CODE_FLT:
3797 return INT_FLOAT_CONVERSION_BADNESS;
3798 case TYPE_CODE_INT:
3799 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3800 return INTEGER_CONVERSION_BADNESS;
3801 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3802 return INTEGER_PROMOTION_BADNESS;
3803 /* >>> !! else fall through !! <<< */
3804 case TYPE_CODE_CHAR:
3805 /* Deal with signed, unsigned, and plain chars for C++ and
3806 with int cases falling through from previous case. */
3807 if (TYPE_NOSIGN (parm))
3808 {
3809 if (TYPE_NOSIGN (arg))
3810 return EXACT_MATCH_BADNESS;
3811 else
3812 return INTEGER_CONVERSION_BADNESS;
3813 }
3814 else if (TYPE_UNSIGNED (parm))
3815 {
3816 if (TYPE_UNSIGNED (arg))
3817 return EXACT_MATCH_BADNESS;
3818 else
3819 return INTEGER_PROMOTION_BADNESS;
3820 }
3821 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3822 return EXACT_MATCH_BADNESS;
3823 else
3824 return INTEGER_CONVERSION_BADNESS;
3825 default:
3826 return INCOMPATIBLE_TYPE_BADNESS;
3827 }
3828 break;
3829 case TYPE_CODE_RANGE:
3830 switch (TYPE_CODE (arg))
3831 {
3832 case TYPE_CODE_INT:
3833 case TYPE_CODE_CHAR:
3834 case TYPE_CODE_RANGE:
3835 case TYPE_CODE_BOOL:
3836 case TYPE_CODE_ENUM:
3837 return INTEGER_CONVERSION_BADNESS;
3838 case TYPE_CODE_FLT:
3839 return INT_FLOAT_CONVERSION_BADNESS;
3840 default:
3841 return INCOMPATIBLE_TYPE_BADNESS;
3842 }
3843 break;
3844 case TYPE_CODE_BOOL:
3845 switch (TYPE_CODE (arg))
3846 {
3847 /* n3290 draft, section 4.12.1 (conv.bool):
3848
3849 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3850 pointer to member type can be converted to a prvalue of type
3851 bool. A zero value, null pointer value, or null member pointer
3852 value is converted to false; any other value is converted to
3853 true. A prvalue of type std::nullptr_t can be converted to a
3854 prvalue of type bool; the resulting value is false." */
3855 case TYPE_CODE_INT:
3856 case TYPE_CODE_CHAR:
3857 case TYPE_CODE_ENUM:
3858 case TYPE_CODE_FLT:
3859 case TYPE_CODE_MEMBERPTR:
3860 case TYPE_CODE_PTR:
3861 return BOOL_CONVERSION_BADNESS;
3862 case TYPE_CODE_RANGE:
3863 return INCOMPATIBLE_TYPE_BADNESS;
3864 case TYPE_CODE_BOOL:
3865 return EXACT_MATCH_BADNESS;
3866 default:
3867 return INCOMPATIBLE_TYPE_BADNESS;
3868 }
3869 break;
3870 case TYPE_CODE_FLT:
3871 switch (TYPE_CODE (arg))
3872 {
3873 case TYPE_CODE_FLT:
3874 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3875 return FLOAT_PROMOTION_BADNESS;
3876 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3877 return EXACT_MATCH_BADNESS;
3878 else
3879 return FLOAT_CONVERSION_BADNESS;
3880 case TYPE_CODE_INT:
3881 case TYPE_CODE_BOOL:
3882 case TYPE_CODE_ENUM:
3883 case TYPE_CODE_RANGE:
3884 case TYPE_CODE_CHAR:
3885 return INT_FLOAT_CONVERSION_BADNESS;
3886 default:
3887 return INCOMPATIBLE_TYPE_BADNESS;
3888 }
3889 break;
3890 case TYPE_CODE_COMPLEX:
3891 switch (TYPE_CODE (arg))
3892 { /* Strictly not needed for C++, but... */
3893 case TYPE_CODE_FLT:
3894 return FLOAT_PROMOTION_BADNESS;
3895 case TYPE_CODE_COMPLEX:
3896 return EXACT_MATCH_BADNESS;
3897 default:
3898 return INCOMPATIBLE_TYPE_BADNESS;
3899 }
3900 break;
3901 case TYPE_CODE_STRUCT:
3902 switch (TYPE_CODE (arg))
3903 {
3904 case TYPE_CODE_STRUCT:
3905 /* Check for derivation */
3906 rank.subrank = distance_to_ancestor (parm, arg, 0);
3907 if (rank.subrank >= 0)
3908 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3909 /* else fall through */
3910 default:
3911 return INCOMPATIBLE_TYPE_BADNESS;
3912 }
3913 break;
3914 case TYPE_CODE_UNION:
3915 switch (TYPE_CODE (arg))
3916 {
3917 case TYPE_CODE_UNION:
3918 default:
3919 return INCOMPATIBLE_TYPE_BADNESS;
3920 }
3921 break;
3922 case TYPE_CODE_MEMBERPTR:
3923 switch (TYPE_CODE (arg))
3924 {
3925 default:
3926 return INCOMPATIBLE_TYPE_BADNESS;
3927 }
3928 break;
3929 case TYPE_CODE_METHOD:
3930 switch (TYPE_CODE (arg))
3931 {
3932
3933 default:
3934 return INCOMPATIBLE_TYPE_BADNESS;
3935 }
3936 break;
3937 case TYPE_CODE_REF:
3938 switch (TYPE_CODE (arg))
3939 {
3940
3941 default:
3942 return INCOMPATIBLE_TYPE_BADNESS;
3943 }
3944
3945 break;
3946 case TYPE_CODE_SET:
3947 switch (TYPE_CODE (arg))
3948 {
3949 /* Not in C++ */
3950 case TYPE_CODE_SET:
3951 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3952 TYPE_FIELD_TYPE (arg, 0), NULL);
3953 default:
3954 return INCOMPATIBLE_TYPE_BADNESS;
3955 }
3956 break;
3957 case TYPE_CODE_VOID:
3958 default:
3959 return INCOMPATIBLE_TYPE_BADNESS;
3960 } /* switch (TYPE_CODE (arg)) */
3961 }
3962
3963 /* End of functions for overload resolution. */
3964 \f
3965 /* Routines to pretty-print types. */
3966
3967 static void
3968 print_bit_vector (B_TYPE *bits, int nbits)
3969 {
3970 int bitno;
3971
3972 for (bitno = 0; bitno < nbits; bitno++)
3973 {
3974 if ((bitno % 8) == 0)
3975 {
3976 puts_filtered (" ");
3977 }
3978 if (B_TST (bits, bitno))
3979 printf_filtered (("1"));
3980 else
3981 printf_filtered (("0"));
3982 }
3983 }
3984
3985 /* Note the first arg should be the "this" pointer, we may not want to
3986 include it since we may get into a infinitely recursive
3987 situation. */
3988
3989 static void
3990 print_args (struct field *args, int nargs, int spaces)
3991 {
3992 if (args != NULL)
3993 {
3994 int i;
3995
3996 for (i = 0; i < nargs; i++)
3997 {
3998 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3999 args[i].name != NULL ? args[i].name : "<NULL>");
4000 recursive_dump_type (args[i].type, spaces + 2);
4001 }
4002 }
4003 }
4004
4005 int
4006 field_is_static (struct field *f)
4007 {
4008 /* "static" fields are the fields whose location is not relative
4009 to the address of the enclosing struct. It would be nice to
4010 have a dedicated flag that would be set for static fields when
4011 the type is being created. But in practice, checking the field
4012 loc_kind should give us an accurate answer. */
4013 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4014 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4015 }
4016
4017 static void
4018 dump_fn_fieldlists (struct type *type, int spaces)
4019 {
4020 int method_idx;
4021 int overload_idx;
4022 struct fn_field *f;
4023
4024 printfi_filtered (spaces, "fn_fieldlists ");
4025 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4026 printf_filtered ("\n");
4027 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4028 {
4029 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4030 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4031 method_idx,
4032 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4033 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4034 gdb_stdout);
4035 printf_filtered (_(") length %d\n"),
4036 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4037 for (overload_idx = 0;
4038 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4039 overload_idx++)
4040 {
4041 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4042 overload_idx,
4043 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4044 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4045 gdb_stdout);
4046 printf_filtered (")\n");
4047 printfi_filtered (spaces + 8, "type ");
4048 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4049 gdb_stdout);
4050 printf_filtered ("\n");
4051
4052 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4053 spaces + 8 + 2);
4054
4055 printfi_filtered (spaces + 8, "args ");
4056 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4057 gdb_stdout);
4058 printf_filtered ("\n");
4059 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4060 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4061 spaces + 8 + 2);
4062 printfi_filtered (spaces + 8, "fcontext ");
4063 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4064 gdb_stdout);
4065 printf_filtered ("\n");
4066
4067 printfi_filtered (spaces + 8, "is_const %d\n",
4068 TYPE_FN_FIELD_CONST (f, overload_idx));
4069 printfi_filtered (spaces + 8, "is_volatile %d\n",
4070 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4071 printfi_filtered (spaces + 8, "is_private %d\n",
4072 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4073 printfi_filtered (spaces + 8, "is_protected %d\n",
4074 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4075 printfi_filtered (spaces + 8, "is_stub %d\n",
4076 TYPE_FN_FIELD_STUB (f, overload_idx));
4077 printfi_filtered (spaces + 8, "voffset %u\n",
4078 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4079 }
4080 }
4081 }
4082
4083 static void
4084 print_cplus_stuff (struct type *type, int spaces)
4085 {
4086 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4087 printfi_filtered (spaces, "vptr_basetype ");
4088 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4089 puts_filtered ("\n");
4090 if (TYPE_VPTR_BASETYPE (type) != NULL)
4091 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4092
4093 printfi_filtered (spaces, "n_baseclasses %d\n",
4094 TYPE_N_BASECLASSES (type));
4095 printfi_filtered (spaces, "nfn_fields %d\n",
4096 TYPE_NFN_FIELDS (type));
4097 if (TYPE_N_BASECLASSES (type) > 0)
4098 {
4099 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4100 TYPE_N_BASECLASSES (type));
4101 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4102 gdb_stdout);
4103 printf_filtered (")");
4104
4105 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4106 TYPE_N_BASECLASSES (type));
4107 puts_filtered ("\n");
4108 }
4109 if (TYPE_NFIELDS (type) > 0)
4110 {
4111 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4112 {
4113 printfi_filtered (spaces,
4114 "private_field_bits (%d bits at *",
4115 TYPE_NFIELDS (type));
4116 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4117 gdb_stdout);
4118 printf_filtered (")");
4119 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4120 TYPE_NFIELDS (type));
4121 puts_filtered ("\n");
4122 }
4123 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4124 {
4125 printfi_filtered (spaces,
4126 "protected_field_bits (%d bits at *",
4127 TYPE_NFIELDS (type));
4128 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4129 gdb_stdout);
4130 printf_filtered (")");
4131 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4132 TYPE_NFIELDS (type));
4133 puts_filtered ("\n");
4134 }
4135 }
4136 if (TYPE_NFN_FIELDS (type) > 0)
4137 {
4138 dump_fn_fieldlists (type, spaces);
4139 }
4140 }
4141
4142 /* Print the contents of the TYPE's type_specific union, assuming that
4143 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4144
4145 static void
4146 print_gnat_stuff (struct type *type, int spaces)
4147 {
4148 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4149
4150 if (descriptive_type == NULL)
4151 printfi_filtered (spaces + 2, "no descriptive type\n");
4152 else
4153 {
4154 printfi_filtered (spaces + 2, "descriptive type\n");
4155 recursive_dump_type (descriptive_type, spaces + 4);
4156 }
4157 }
4158
4159 static struct obstack dont_print_type_obstack;
4160
4161 void
4162 recursive_dump_type (struct type *type, int spaces)
4163 {
4164 int idx;
4165
4166 if (spaces == 0)
4167 obstack_begin (&dont_print_type_obstack, 0);
4168
4169 if (TYPE_NFIELDS (type) > 0
4170 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4171 {
4172 struct type **first_dont_print
4173 = (struct type **) obstack_base (&dont_print_type_obstack);
4174
4175 int i = (struct type **)
4176 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4177
4178 while (--i >= 0)
4179 {
4180 if (type == first_dont_print[i])
4181 {
4182 printfi_filtered (spaces, "type node ");
4183 gdb_print_host_address (type, gdb_stdout);
4184 printf_filtered (_(" <same as already seen type>\n"));
4185 return;
4186 }
4187 }
4188
4189 obstack_ptr_grow (&dont_print_type_obstack, type);
4190 }
4191
4192 printfi_filtered (spaces, "type node ");
4193 gdb_print_host_address (type, gdb_stdout);
4194 printf_filtered ("\n");
4195 printfi_filtered (spaces, "name '%s' (",
4196 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4197 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4198 printf_filtered (")\n");
4199 printfi_filtered (spaces, "tagname '%s' (",
4200 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4201 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4202 printf_filtered (")\n");
4203 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4204 switch (TYPE_CODE (type))
4205 {
4206 case TYPE_CODE_UNDEF:
4207 printf_filtered ("(TYPE_CODE_UNDEF)");
4208 break;
4209 case TYPE_CODE_PTR:
4210 printf_filtered ("(TYPE_CODE_PTR)");
4211 break;
4212 case TYPE_CODE_ARRAY:
4213 printf_filtered ("(TYPE_CODE_ARRAY)");
4214 break;
4215 case TYPE_CODE_STRUCT:
4216 printf_filtered ("(TYPE_CODE_STRUCT)");
4217 break;
4218 case TYPE_CODE_UNION:
4219 printf_filtered ("(TYPE_CODE_UNION)");
4220 break;
4221 case TYPE_CODE_ENUM:
4222 printf_filtered ("(TYPE_CODE_ENUM)");
4223 break;
4224 case TYPE_CODE_FLAGS:
4225 printf_filtered ("(TYPE_CODE_FLAGS)");
4226 break;
4227 case TYPE_CODE_FUNC:
4228 printf_filtered ("(TYPE_CODE_FUNC)");
4229 break;
4230 case TYPE_CODE_INT:
4231 printf_filtered ("(TYPE_CODE_INT)");
4232 break;
4233 case TYPE_CODE_FLT:
4234 printf_filtered ("(TYPE_CODE_FLT)");
4235 break;
4236 case TYPE_CODE_VOID:
4237 printf_filtered ("(TYPE_CODE_VOID)");
4238 break;
4239 case TYPE_CODE_SET:
4240 printf_filtered ("(TYPE_CODE_SET)");
4241 break;
4242 case TYPE_CODE_RANGE:
4243 printf_filtered ("(TYPE_CODE_RANGE)");
4244 break;
4245 case TYPE_CODE_STRING:
4246 printf_filtered ("(TYPE_CODE_STRING)");
4247 break;
4248 case TYPE_CODE_ERROR:
4249 printf_filtered ("(TYPE_CODE_ERROR)");
4250 break;
4251 case TYPE_CODE_MEMBERPTR:
4252 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4253 break;
4254 case TYPE_CODE_METHODPTR:
4255 printf_filtered ("(TYPE_CODE_METHODPTR)");
4256 break;
4257 case TYPE_CODE_METHOD:
4258 printf_filtered ("(TYPE_CODE_METHOD)");
4259 break;
4260 case TYPE_CODE_REF:
4261 printf_filtered ("(TYPE_CODE_REF)");
4262 break;
4263 case TYPE_CODE_CHAR:
4264 printf_filtered ("(TYPE_CODE_CHAR)");
4265 break;
4266 case TYPE_CODE_BOOL:
4267 printf_filtered ("(TYPE_CODE_BOOL)");
4268 break;
4269 case TYPE_CODE_COMPLEX:
4270 printf_filtered ("(TYPE_CODE_COMPLEX)");
4271 break;
4272 case TYPE_CODE_TYPEDEF:
4273 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4274 break;
4275 case TYPE_CODE_NAMESPACE:
4276 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4277 break;
4278 default:
4279 printf_filtered ("(UNKNOWN TYPE CODE)");
4280 break;
4281 }
4282 puts_filtered ("\n");
4283 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4284 if (TYPE_OBJFILE_OWNED (type))
4285 {
4286 printfi_filtered (spaces, "objfile ");
4287 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4288 }
4289 else
4290 {
4291 printfi_filtered (spaces, "gdbarch ");
4292 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4293 }
4294 printf_filtered ("\n");
4295 printfi_filtered (spaces, "target_type ");
4296 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4297 printf_filtered ("\n");
4298 if (TYPE_TARGET_TYPE (type) != NULL)
4299 {
4300 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4301 }
4302 printfi_filtered (spaces, "pointer_type ");
4303 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4304 printf_filtered ("\n");
4305 printfi_filtered (spaces, "reference_type ");
4306 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4307 printf_filtered ("\n");
4308 printfi_filtered (spaces, "type_chain ");
4309 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4310 printf_filtered ("\n");
4311 printfi_filtered (spaces, "instance_flags 0x%x",
4312 TYPE_INSTANCE_FLAGS (type));
4313 if (TYPE_CONST (type))
4314 {
4315 puts_filtered (" TYPE_CONST");
4316 }
4317 if (TYPE_VOLATILE (type))
4318 {
4319 puts_filtered (" TYPE_VOLATILE");
4320 }
4321 if (TYPE_CODE_SPACE (type))
4322 {
4323 puts_filtered (" TYPE_CODE_SPACE");
4324 }
4325 if (TYPE_DATA_SPACE (type))
4326 {
4327 puts_filtered (" TYPE_DATA_SPACE");
4328 }
4329 if (TYPE_ADDRESS_CLASS_1 (type))
4330 {
4331 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4332 }
4333 if (TYPE_ADDRESS_CLASS_2 (type))
4334 {
4335 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4336 }
4337 if (TYPE_RESTRICT (type))
4338 {
4339 puts_filtered (" TYPE_RESTRICT");
4340 }
4341 if (TYPE_ATOMIC (type))
4342 {
4343 puts_filtered (" TYPE_ATOMIC");
4344 }
4345 puts_filtered ("\n");
4346
4347 printfi_filtered (spaces, "flags");
4348 if (TYPE_UNSIGNED (type))
4349 {
4350 puts_filtered (" TYPE_UNSIGNED");
4351 }
4352 if (TYPE_NOSIGN (type))
4353 {
4354 puts_filtered (" TYPE_NOSIGN");
4355 }
4356 if (TYPE_STUB (type))
4357 {
4358 puts_filtered (" TYPE_STUB");
4359 }
4360 if (TYPE_TARGET_STUB (type))
4361 {
4362 puts_filtered (" TYPE_TARGET_STUB");
4363 }
4364 if (TYPE_STATIC (type))
4365 {
4366 puts_filtered (" TYPE_STATIC");
4367 }
4368 if (TYPE_PROTOTYPED (type))
4369 {
4370 puts_filtered (" TYPE_PROTOTYPED");
4371 }
4372 if (TYPE_INCOMPLETE (type))
4373 {
4374 puts_filtered (" TYPE_INCOMPLETE");
4375 }
4376 if (TYPE_VARARGS (type))
4377 {
4378 puts_filtered (" TYPE_VARARGS");
4379 }
4380 /* This is used for things like AltiVec registers on ppc. Gcc emits
4381 an attribute for the array type, which tells whether or not we
4382 have a vector, instead of a regular array. */
4383 if (TYPE_VECTOR (type))
4384 {
4385 puts_filtered (" TYPE_VECTOR");
4386 }
4387 if (TYPE_FIXED_INSTANCE (type))
4388 {
4389 puts_filtered (" TYPE_FIXED_INSTANCE");
4390 }
4391 if (TYPE_STUB_SUPPORTED (type))
4392 {
4393 puts_filtered (" TYPE_STUB_SUPPORTED");
4394 }
4395 if (TYPE_NOTTEXT (type))
4396 {
4397 puts_filtered (" TYPE_NOTTEXT");
4398 }
4399 puts_filtered ("\n");
4400 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4401 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4402 puts_filtered ("\n");
4403 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4404 {
4405 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4406 printfi_filtered (spaces + 2,
4407 "[%d] enumval %s type ",
4408 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4409 else
4410 printfi_filtered (spaces + 2,
4411 "[%d] bitpos %s bitsize %d type ",
4412 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4413 TYPE_FIELD_BITSIZE (type, idx));
4414 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4415 printf_filtered (" name '%s' (",
4416 TYPE_FIELD_NAME (type, idx) != NULL
4417 ? TYPE_FIELD_NAME (type, idx)
4418 : "<NULL>");
4419 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4420 printf_filtered (")\n");
4421 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4422 {
4423 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4424 }
4425 }
4426 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4427 {
4428 printfi_filtered (spaces, "low %s%s high %s%s\n",
4429 plongest (TYPE_LOW_BOUND (type)),
4430 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4431 plongest (TYPE_HIGH_BOUND (type)),
4432 TYPE_HIGH_BOUND_UNDEFINED (type)
4433 ? " (undefined)" : "");
4434 }
4435
4436 switch (TYPE_SPECIFIC_FIELD (type))
4437 {
4438 case TYPE_SPECIFIC_CPLUS_STUFF:
4439 printfi_filtered (spaces, "cplus_stuff ");
4440 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4441 gdb_stdout);
4442 puts_filtered ("\n");
4443 print_cplus_stuff (type, spaces);
4444 break;
4445
4446 case TYPE_SPECIFIC_GNAT_STUFF:
4447 printfi_filtered (spaces, "gnat_stuff ");
4448 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4449 puts_filtered ("\n");
4450 print_gnat_stuff (type, spaces);
4451 break;
4452
4453 case TYPE_SPECIFIC_FLOATFORMAT:
4454 printfi_filtered (spaces, "floatformat ");
4455 if (TYPE_FLOATFORMAT (type) == NULL)
4456 puts_filtered ("(null)");
4457 else
4458 {
4459 puts_filtered ("{ ");
4460 if (TYPE_FLOATFORMAT (type)[0] == NULL
4461 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4462 puts_filtered ("(null)");
4463 else
4464 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4465
4466 puts_filtered (", ");
4467 if (TYPE_FLOATFORMAT (type)[1] == NULL
4468 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4469 puts_filtered ("(null)");
4470 else
4471 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4472
4473 puts_filtered (" }");
4474 }
4475 puts_filtered ("\n");
4476 break;
4477
4478 case TYPE_SPECIFIC_FUNC:
4479 printfi_filtered (spaces, "calling_convention %d\n",
4480 TYPE_CALLING_CONVENTION (type));
4481 /* tail_call_list is not printed. */
4482 break;
4483
4484 case TYPE_SPECIFIC_SELF_TYPE:
4485 printfi_filtered (spaces, "self_type ");
4486 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4487 puts_filtered ("\n");
4488 break;
4489 }
4490
4491 if (spaces == 0)
4492 obstack_free (&dont_print_type_obstack, NULL);
4493 }
4494 \f
4495 /* Trivial helpers for the libiberty hash table, for mapping one
4496 type to another. */
4497
4498 struct type_pair
4499 {
4500 struct type *old, *newobj;
4501 };
4502
4503 static hashval_t
4504 type_pair_hash (const void *item)
4505 {
4506 const struct type_pair *pair = (const struct type_pair *) item;
4507
4508 return htab_hash_pointer (pair->old);
4509 }
4510
4511 static int
4512 type_pair_eq (const void *item_lhs, const void *item_rhs)
4513 {
4514 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4515 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4516
4517 return lhs->old == rhs->old;
4518 }
4519
4520 /* Allocate the hash table used by copy_type_recursive to walk
4521 types without duplicates. We use OBJFILE's obstack, because
4522 OBJFILE is about to be deleted. */
4523
4524 htab_t
4525 create_copied_types_hash (struct objfile *objfile)
4526 {
4527 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4528 NULL, &objfile->objfile_obstack,
4529 hashtab_obstack_allocate,
4530 dummy_obstack_deallocate);
4531 }
4532
4533 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4534
4535 static struct dynamic_prop_list *
4536 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4537 struct dynamic_prop_list *list)
4538 {
4539 struct dynamic_prop_list *copy = list;
4540 struct dynamic_prop_list **node_ptr = &copy;
4541
4542 while (*node_ptr != NULL)
4543 {
4544 struct dynamic_prop_list *node_copy;
4545
4546 node_copy = ((struct dynamic_prop_list *)
4547 obstack_copy (objfile_obstack, *node_ptr,
4548 sizeof (struct dynamic_prop_list)));
4549 node_copy->prop = (*node_ptr)->prop;
4550 *node_ptr = node_copy;
4551
4552 node_ptr = &node_copy->next;
4553 }
4554
4555 return copy;
4556 }
4557
4558 /* Recursively copy (deep copy) TYPE, if it is associated with
4559 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4560 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4561 it is not associated with OBJFILE. */
4562
4563 struct type *
4564 copy_type_recursive (struct objfile *objfile,
4565 struct type *type,
4566 htab_t copied_types)
4567 {
4568 struct type_pair *stored, pair;
4569 void **slot;
4570 struct type *new_type;
4571
4572 if (! TYPE_OBJFILE_OWNED (type))
4573 return type;
4574
4575 /* This type shouldn't be pointing to any types in other objfiles;
4576 if it did, the type might disappear unexpectedly. */
4577 gdb_assert (TYPE_OBJFILE (type) == objfile);
4578
4579 pair.old = type;
4580 slot = htab_find_slot (copied_types, &pair, INSERT);
4581 if (*slot != NULL)
4582 return ((struct type_pair *) *slot)->newobj;
4583
4584 new_type = alloc_type_arch (get_type_arch (type));
4585
4586 /* We must add the new type to the hash table immediately, in case
4587 we encounter this type again during a recursive call below. */
4588 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4589 stored->old = type;
4590 stored->newobj = new_type;
4591 *slot = stored;
4592
4593 /* Copy the common fields of types. For the main type, we simply
4594 copy the entire thing and then update specific fields as needed. */
4595 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4596 TYPE_OBJFILE_OWNED (new_type) = 0;
4597 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4598
4599 if (TYPE_NAME (type))
4600 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4601 if (TYPE_TAG_NAME (type))
4602 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4603
4604 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4605 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4606
4607 /* Copy the fields. */
4608 if (TYPE_NFIELDS (type))
4609 {
4610 int i, nfields;
4611
4612 nfields = TYPE_NFIELDS (type);
4613 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4614 for (i = 0; i < nfields; i++)
4615 {
4616 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4617 TYPE_FIELD_ARTIFICIAL (type, i);
4618 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4619 if (TYPE_FIELD_TYPE (type, i))
4620 TYPE_FIELD_TYPE (new_type, i)
4621 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4622 copied_types);
4623 if (TYPE_FIELD_NAME (type, i))
4624 TYPE_FIELD_NAME (new_type, i) =
4625 xstrdup (TYPE_FIELD_NAME (type, i));
4626 switch (TYPE_FIELD_LOC_KIND (type, i))
4627 {
4628 case FIELD_LOC_KIND_BITPOS:
4629 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4630 TYPE_FIELD_BITPOS (type, i));
4631 break;
4632 case FIELD_LOC_KIND_ENUMVAL:
4633 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4634 TYPE_FIELD_ENUMVAL (type, i));
4635 break;
4636 case FIELD_LOC_KIND_PHYSADDR:
4637 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4638 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4639 break;
4640 case FIELD_LOC_KIND_PHYSNAME:
4641 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4642 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4643 i)));
4644 break;
4645 default:
4646 internal_error (__FILE__, __LINE__,
4647 _("Unexpected type field location kind: %d"),
4648 TYPE_FIELD_LOC_KIND (type, i));
4649 }
4650 }
4651 }
4652
4653 /* For range types, copy the bounds information. */
4654 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4655 {
4656 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4657 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4658 }
4659
4660 if (TYPE_DYN_PROP_LIST (type) != NULL)
4661 TYPE_DYN_PROP_LIST (new_type)
4662 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4663 TYPE_DYN_PROP_LIST (type));
4664
4665
4666 /* Copy pointers to other types. */
4667 if (TYPE_TARGET_TYPE (type))
4668 TYPE_TARGET_TYPE (new_type) =
4669 copy_type_recursive (objfile,
4670 TYPE_TARGET_TYPE (type),
4671 copied_types);
4672
4673 /* Maybe copy the type_specific bits.
4674
4675 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4676 base classes and methods. There's no fundamental reason why we
4677 can't, but at the moment it is not needed. */
4678
4679 switch (TYPE_SPECIFIC_FIELD (type))
4680 {
4681 case TYPE_SPECIFIC_NONE:
4682 break;
4683 case TYPE_SPECIFIC_FUNC:
4684 INIT_FUNC_SPECIFIC (new_type);
4685 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4686 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4687 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4688 break;
4689 case TYPE_SPECIFIC_FLOATFORMAT:
4690 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4691 break;
4692 case TYPE_SPECIFIC_CPLUS_STUFF:
4693 INIT_CPLUS_SPECIFIC (new_type);
4694 break;
4695 case TYPE_SPECIFIC_GNAT_STUFF:
4696 INIT_GNAT_SPECIFIC (new_type);
4697 break;
4698 case TYPE_SPECIFIC_SELF_TYPE:
4699 set_type_self_type (new_type,
4700 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4701 copied_types));
4702 break;
4703 default:
4704 gdb_assert_not_reached ("bad type_specific_kind");
4705 }
4706
4707 return new_type;
4708 }
4709
4710 /* Make a copy of the given TYPE, except that the pointer & reference
4711 types are not preserved.
4712
4713 This function assumes that the given type has an associated objfile.
4714 This objfile is used to allocate the new type. */
4715
4716 struct type *
4717 copy_type (const struct type *type)
4718 {
4719 struct type *new_type;
4720
4721 gdb_assert (TYPE_OBJFILE_OWNED (type));
4722
4723 new_type = alloc_type_copy (type);
4724 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4725 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4726 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4727 sizeof (struct main_type));
4728 if (TYPE_DYN_PROP_LIST (type) != NULL)
4729 TYPE_DYN_PROP_LIST (new_type)
4730 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4731 TYPE_DYN_PROP_LIST (type));
4732
4733 return new_type;
4734 }
4735 \f
4736 /* Helper functions to initialize architecture-specific types. */
4737
4738 /* Allocate a type structure associated with GDBARCH and set its
4739 CODE, LENGTH, and NAME fields. */
4740
4741 struct type *
4742 arch_type (struct gdbarch *gdbarch,
4743 enum type_code code, int length, const char *name)
4744 {
4745 struct type *type;
4746
4747 type = alloc_type_arch (gdbarch);
4748 set_type_code (type, code);
4749 TYPE_LENGTH (type) = length;
4750
4751 if (name)
4752 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4753
4754 return type;
4755 }
4756
4757 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4758 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4759 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4760
4761 struct type *
4762 arch_integer_type (struct gdbarch *gdbarch,
4763 int bit, int unsigned_p, const char *name)
4764 {
4765 struct type *t;
4766
4767 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4768 if (unsigned_p)
4769 TYPE_UNSIGNED (t) = 1;
4770
4771 return t;
4772 }
4773
4774 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4775 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4776 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4777
4778 struct type *
4779 arch_character_type (struct gdbarch *gdbarch,
4780 int bit, int unsigned_p, const char *name)
4781 {
4782 struct type *t;
4783
4784 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4785 if (unsigned_p)
4786 TYPE_UNSIGNED (t) = 1;
4787
4788 return t;
4789 }
4790
4791 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4792 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4793 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4794
4795 struct type *
4796 arch_boolean_type (struct gdbarch *gdbarch,
4797 int bit, int unsigned_p, const char *name)
4798 {
4799 struct type *t;
4800
4801 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4802 if (unsigned_p)
4803 TYPE_UNSIGNED (t) = 1;
4804
4805 return t;
4806 }
4807
4808 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4809 BIT is the type size in bits; if BIT equals -1, the size is
4810 determined by the floatformat. NAME is the type name. Set the
4811 TYPE_FLOATFORMAT from FLOATFORMATS. */
4812
4813 struct type *
4814 arch_float_type (struct gdbarch *gdbarch,
4815 int bit, const char *name,
4816 const struct floatformat **floatformats)
4817 {
4818 struct type *t;
4819
4820 bit = verify_floatformat (bit, floatformats);
4821 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4822 TYPE_FLOATFORMAT (t) = floatformats;
4823
4824 return t;
4825 }
4826
4827 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4828 BIT is the type size in bits. NAME is the type name. */
4829
4830 struct type *
4831 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4832 {
4833 struct type *t;
4834
4835 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4836 return t;
4837 }
4838
4839 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4840 NAME is the type name. TARGET_TYPE is the component float type. */
4841
4842 struct type *
4843 arch_complex_type (struct gdbarch *gdbarch,
4844 const char *name, struct type *target_type)
4845 {
4846 struct type *t;
4847
4848 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4849 2 * TYPE_LENGTH (target_type), name);
4850 TYPE_TARGET_TYPE (t) = target_type;
4851 return t;
4852 }
4853
4854 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4855 BIT is the pointer type size in bits. NAME is the type name.
4856 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4857 TYPE_UNSIGNED flag. */
4858
4859 struct type *
4860 arch_pointer_type (struct gdbarch *gdbarch,
4861 int bit, const char *name, struct type *target_type)
4862 {
4863 struct type *t;
4864
4865 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4866 TYPE_TARGET_TYPE (t) = target_type;
4867 TYPE_UNSIGNED (t) = 1;
4868 return t;
4869 }
4870
4871 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4872 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4873
4874 struct type *
4875 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4876 {
4877 int max_nfields = length * TARGET_CHAR_BIT;
4878 struct type *type;
4879
4880 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4881 TYPE_UNSIGNED (type) = 1;
4882 TYPE_NFIELDS (type) = 0;
4883 /* Pre-allocate enough space assuming every field is one bit. */
4884 TYPE_FIELDS (type)
4885 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4886
4887 return type;
4888 }
4889
4890 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4891 position BITPOS is called NAME. Pass NAME as "" for fields that
4892 should not be printed. */
4893
4894 void
4895 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4896 struct type *field_type, const char *name)
4897 {
4898 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4899 int field_nr = TYPE_NFIELDS (type);
4900
4901 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4902 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4903 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4904 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4905 gdb_assert (name != NULL);
4906
4907 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4908 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4909 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4910 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4911 ++TYPE_NFIELDS (type);
4912 }
4913
4914 /* Special version of append_flags_type_field to add a flag field.
4915 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4916 position BITPOS is called NAME. */
4917
4918 void
4919 append_flags_type_flag (struct type *type, int bitpos, const char *name)
4920 {
4921 struct gdbarch *gdbarch = get_type_arch (type);
4922
4923 append_flags_type_field (type, bitpos, 1,
4924 builtin_type (gdbarch)->builtin_bool,
4925 name);
4926 }
4927
4928 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4929 specified by CODE) associated with GDBARCH. NAME is the type name. */
4930
4931 struct type *
4932 arch_composite_type (struct gdbarch *gdbarch, const char *name,
4933 enum type_code code)
4934 {
4935 struct type *t;
4936
4937 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4938 t = arch_type (gdbarch, code, 0, NULL);
4939 TYPE_TAG_NAME (t) = name;
4940 INIT_CPLUS_SPECIFIC (t);
4941 return t;
4942 }
4943
4944 /* Add new field with name NAME and type FIELD to composite type T.
4945 Do not set the field's position or adjust the type's length;
4946 the caller should do so. Return the new field. */
4947
4948 struct field *
4949 append_composite_type_field_raw (struct type *t, const char *name,
4950 struct type *field)
4951 {
4952 struct field *f;
4953
4954 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4955 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4956 TYPE_NFIELDS (t));
4957 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4958 memset (f, 0, sizeof f[0]);
4959 FIELD_TYPE (f[0]) = field;
4960 FIELD_NAME (f[0]) = name;
4961 return f;
4962 }
4963
4964 /* Add new field with name NAME and type FIELD to composite type T.
4965 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4966
4967 void
4968 append_composite_type_field_aligned (struct type *t, const char *name,
4969 struct type *field, int alignment)
4970 {
4971 struct field *f = append_composite_type_field_raw (t, name, field);
4972
4973 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4974 {
4975 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4976 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4977 }
4978 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4979 {
4980 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4981 if (TYPE_NFIELDS (t) > 1)
4982 {
4983 SET_FIELD_BITPOS (f[0],
4984 (FIELD_BITPOS (f[-1])
4985 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4986 * TARGET_CHAR_BIT)));
4987
4988 if (alignment)
4989 {
4990 int left;
4991
4992 alignment *= TARGET_CHAR_BIT;
4993 left = FIELD_BITPOS (f[0]) % alignment;
4994
4995 if (left)
4996 {
4997 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4998 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4999 }
5000 }
5001 }
5002 }
5003 }
5004
5005 /* Add new field with name NAME and type FIELD to composite type T. */
5006
5007 void
5008 append_composite_type_field (struct type *t, const char *name,
5009 struct type *field)
5010 {
5011 append_composite_type_field_aligned (t, name, field, 0);
5012 }
5013
5014 static struct gdbarch_data *gdbtypes_data;
5015
5016 const struct builtin_type *
5017 builtin_type (struct gdbarch *gdbarch)
5018 {
5019 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5020 }
5021
5022 static void *
5023 gdbtypes_post_init (struct gdbarch *gdbarch)
5024 {
5025 struct builtin_type *builtin_type
5026 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5027
5028 /* Basic types. */
5029 builtin_type->builtin_void
5030 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5031 builtin_type->builtin_char
5032 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5033 !gdbarch_char_signed (gdbarch), "char");
5034 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5035 builtin_type->builtin_signed_char
5036 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5037 0, "signed char");
5038 builtin_type->builtin_unsigned_char
5039 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5040 1, "unsigned char");
5041 builtin_type->builtin_short
5042 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5043 0, "short");
5044 builtin_type->builtin_unsigned_short
5045 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5046 1, "unsigned short");
5047 builtin_type->builtin_int
5048 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5049 0, "int");
5050 builtin_type->builtin_unsigned_int
5051 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5052 1, "unsigned int");
5053 builtin_type->builtin_long
5054 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5055 0, "long");
5056 builtin_type->builtin_unsigned_long
5057 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5058 1, "unsigned long");
5059 builtin_type->builtin_long_long
5060 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5061 0, "long long");
5062 builtin_type->builtin_unsigned_long_long
5063 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5064 1, "unsigned long long");
5065 builtin_type->builtin_float
5066 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5067 "float", gdbarch_float_format (gdbarch));
5068 builtin_type->builtin_double
5069 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5070 "double", gdbarch_double_format (gdbarch));
5071 builtin_type->builtin_long_double
5072 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5073 "long double", gdbarch_long_double_format (gdbarch));
5074 builtin_type->builtin_complex
5075 = arch_complex_type (gdbarch, "complex",
5076 builtin_type->builtin_float);
5077 builtin_type->builtin_double_complex
5078 = arch_complex_type (gdbarch, "double complex",
5079 builtin_type->builtin_double);
5080 builtin_type->builtin_string
5081 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5082 builtin_type->builtin_bool
5083 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5084
5085 /* The following three are about decimal floating point types, which
5086 are 32-bits, 64-bits and 128-bits respectively. */
5087 builtin_type->builtin_decfloat
5088 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5089 builtin_type->builtin_decdouble
5090 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5091 builtin_type->builtin_declong
5092 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5093
5094 /* "True" character types. */
5095 builtin_type->builtin_true_char
5096 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5097 builtin_type->builtin_true_unsigned_char
5098 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5099
5100 /* Fixed-size integer types. */
5101 builtin_type->builtin_int0
5102 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5103 builtin_type->builtin_int8
5104 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5105 builtin_type->builtin_uint8
5106 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5107 builtin_type->builtin_int16
5108 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5109 builtin_type->builtin_uint16
5110 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5111 builtin_type->builtin_int32
5112 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5113 builtin_type->builtin_uint32
5114 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5115 builtin_type->builtin_int64
5116 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5117 builtin_type->builtin_uint64
5118 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5119 builtin_type->builtin_int128
5120 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5121 builtin_type->builtin_uint128
5122 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5123 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5124 TYPE_INSTANCE_FLAG_NOTTEXT;
5125 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5126 TYPE_INSTANCE_FLAG_NOTTEXT;
5127
5128 /* Wide character types. */
5129 builtin_type->builtin_char16
5130 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5131 builtin_type->builtin_char32
5132 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5133
5134
5135 /* Default data/code pointer types. */
5136 builtin_type->builtin_data_ptr
5137 = lookup_pointer_type (builtin_type->builtin_void);
5138 builtin_type->builtin_func_ptr
5139 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5140 builtin_type->builtin_func_func
5141 = lookup_function_type (builtin_type->builtin_func_ptr);
5142
5143 /* This type represents a GDB internal function. */
5144 builtin_type->internal_fn
5145 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5146 "<internal function>");
5147
5148 /* This type represents an xmethod. */
5149 builtin_type->xmethod
5150 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5151
5152 return builtin_type;
5153 }
5154
5155 /* This set of objfile-based types is intended to be used by symbol
5156 readers as basic types. */
5157
5158 static const struct objfile_data *objfile_type_data;
5159
5160 const struct objfile_type *
5161 objfile_type (struct objfile *objfile)
5162 {
5163 struct gdbarch *gdbarch;
5164 struct objfile_type *objfile_type
5165 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5166
5167 if (objfile_type)
5168 return objfile_type;
5169
5170 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5171 1, struct objfile_type);
5172
5173 /* Use the objfile architecture to determine basic type properties. */
5174 gdbarch = get_objfile_arch (objfile);
5175
5176 /* Basic types. */
5177 objfile_type->builtin_void
5178 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5179 objfile_type->builtin_char
5180 = init_integer_type (objfile, TARGET_CHAR_BIT,
5181 !gdbarch_char_signed (gdbarch), "char");
5182 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5183 objfile_type->builtin_signed_char
5184 = init_integer_type (objfile, TARGET_CHAR_BIT,
5185 0, "signed char");
5186 objfile_type->builtin_unsigned_char
5187 = init_integer_type (objfile, TARGET_CHAR_BIT,
5188 1, "unsigned char");
5189 objfile_type->builtin_short
5190 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5191 0, "short");
5192 objfile_type->builtin_unsigned_short
5193 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5194 1, "unsigned short");
5195 objfile_type->builtin_int
5196 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5197 0, "int");
5198 objfile_type->builtin_unsigned_int
5199 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5200 1, "unsigned int");
5201 objfile_type->builtin_long
5202 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5203 0, "long");
5204 objfile_type->builtin_unsigned_long
5205 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5206 1, "unsigned long");
5207 objfile_type->builtin_long_long
5208 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5209 0, "long long");
5210 objfile_type->builtin_unsigned_long_long
5211 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5212 1, "unsigned long long");
5213 objfile_type->builtin_float
5214 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5215 "float", gdbarch_float_format (gdbarch));
5216 objfile_type->builtin_double
5217 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5218 "double", gdbarch_double_format (gdbarch));
5219 objfile_type->builtin_long_double
5220 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5221 "long double", gdbarch_long_double_format (gdbarch));
5222
5223 /* This type represents a type that was unrecognized in symbol read-in. */
5224 objfile_type->builtin_error
5225 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5226
5227 /* The following set of types is used for symbols with no
5228 debug information. */
5229 objfile_type->nodebug_text_symbol
5230 = init_type (objfile, TYPE_CODE_FUNC, 1,
5231 "<text variable, no debug info>");
5232 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5233 = objfile_type->builtin_int;
5234 objfile_type->nodebug_text_gnu_ifunc_symbol
5235 = init_type (objfile, TYPE_CODE_FUNC, 1,
5236 "<text gnu-indirect-function variable, no debug info>");
5237 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5238 = objfile_type->nodebug_text_symbol;
5239 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5240 objfile_type->nodebug_got_plt_symbol
5241 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5242 "<text from jump slot in .got.plt, no debug info>",
5243 objfile_type->nodebug_text_symbol);
5244 objfile_type->nodebug_data_symbol
5245 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5246 "<data variable, no debug info>");
5247 objfile_type->nodebug_unknown_symbol
5248 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5249 "<variable (not text or data), no debug info>");
5250 objfile_type->nodebug_tls_symbol
5251 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5252 "<thread local variable, no debug info>");
5253
5254 /* NOTE: on some targets, addresses and pointers are not necessarily
5255 the same.
5256
5257 The upshot is:
5258 - gdb's `struct type' always describes the target's
5259 representation.
5260 - gdb's `struct value' objects should always hold values in
5261 target form.
5262 - gdb's CORE_ADDR values are addresses in the unified virtual
5263 address space that the assembler and linker work with. Thus,
5264 since target_read_memory takes a CORE_ADDR as an argument, it
5265 can access any memory on the target, even if the processor has
5266 separate code and data address spaces.
5267
5268 In this context, objfile_type->builtin_core_addr is a bit odd:
5269 it's a target type for a value the target will never see. It's
5270 only used to hold the values of (typeless) linker symbols, which
5271 are indeed in the unified virtual address space. */
5272
5273 objfile_type->builtin_core_addr
5274 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5275 "__CORE_ADDR");
5276
5277 set_objfile_data (objfile, objfile_type_data, objfile_type);
5278 return objfile_type;
5279 }
5280
5281 extern initialize_file_ftype _initialize_gdbtypes;
5282
5283 void
5284 _initialize_gdbtypes (void)
5285 {
5286 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5287 objfile_type_data = register_objfile_data ();
5288
5289 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5290 _("Set debugging of C++ overloading."),
5291 _("Show debugging of C++ overloading."),
5292 _("When enabled, ranking of the "
5293 "functions is displayed."),
5294 NULL,
5295 show_overload_debug,
5296 &setdebuglist, &showdebuglist);
5297
5298 /* Add user knob for controlling resolution of opaque types. */
5299 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5300 &opaque_type_resolution,
5301 _("Set resolution of opaque struct/class/union"
5302 " types (if set before loading symbols)."),
5303 _("Show resolution of opaque struct/class/union"
5304 " types (if set before loading symbols)."),
5305 NULL, NULL,
5306 show_opaque_type_resolution,
5307 &setlist, &showlist);
5308
5309 /* Add an option to permit non-strict type checking. */
5310 add_setshow_boolean_cmd ("type", class_support,
5311 &strict_type_checking,
5312 _("Set strict type checking."),
5313 _("Show strict type checking."),
5314 NULL, NULL,
5315 show_strict_type_checking,
5316 &setchecklist, &showchecklist);
5317 }
This page took 0.139887 seconds and 5 git commands to generate.